
James Madison University
JMU Scholarly Commons

Senior Honors Projects, 2010-current Honors College

Spring 2016

A Computational Investigation of Large Gaps in
Contingency Tables
Noah J. Watson
James Madison University

Follow this and additional works at: http://commons.lib.jmu.edu/honors201019

Part of the Discrete Mathematics and Combinatorics Commons, and the Other Applied
Mathematics Commons

This Dissertation/Thesis is brought to you for free and open access by the Honors College at JMU Scholarly Commons. It has been accepted for
inclusion in Senior Honors Projects, 2010-current by an authorized administrator of JMU Scholarly Commons. For more information, please contact
dc_admin@jmu.edu.

Recommended Citation
Watson, Noah J., "A Computational Investigation of Large Gaps in Contingency Tables" (2016). Senior Honors Projects, 2010-current.
151.
http://commons.lib.jmu.edu/honors201019/151

http://commons.lib.jmu.edu?utm_source=commons.lib.jmu.edu%2Fhonors201019%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
http://commons.lib.jmu.edu/honors201019?utm_source=commons.lib.jmu.edu%2Fhonors201019%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
http://commons.lib.jmu.edu/honors?utm_source=commons.lib.jmu.edu%2Fhonors201019%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
http://commons.lib.jmu.edu/honors201019?utm_source=commons.lib.jmu.edu%2Fhonors201019%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/178?utm_source=commons.lib.jmu.edu%2Fhonors201019%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/122?utm_source=commons.lib.jmu.edu%2Fhonors201019%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/122?utm_source=commons.lib.jmu.edu%2Fhonors201019%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
http://commons.lib.jmu.edu/honors201019/151?utm_source=commons.lib.jmu.edu%2Fhonors201019%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dc_admin@jmu.edu

A Computational Investigation of Large Gaps in Contingency Tables

An Honors Program Project Presented to

the Faculty of the Undergraduate

College of Science and Mathematics

James Madison University

by Noah James Watson

May 2016

Accepted by the faculty of the Department of Mathematics and Statistics, James Madison University, in partial

fulfillment of the requirements for the Honors Program.

FACULTY COMMITTEE:

Project Advisor: Edwin O'Shea, Ph.D

Associate Professor, Mathematics and Statistics

Reader: Elizabeth A. Arnold, Ph.D

Associate Professor, Mathematics and Statistics

Reader: Lihua Chen, Ph.D

Associate Professor, Mathematics and Statistics

HONORS PROGRAM APPROVAL:

Bradley R. Newcomer, Ph.D.,

Director, Honors Program

PUBLIC PRESENTATION

This work is accepted for presentation, in part or in full, at [venue] Department of Mathematics and Statistics

Colloquia on [date] April 25 .

Contents

1 Introduction 3

2 Integer programming gap 4

3 Contingency tables problem 7

4 Results 12

A 2× 2× 2× 2 Examples 15

B Code 17

2

1 Introduction

A major concern in information disclosure is to make sure when releasing information about a

survey that nobody’s privacy is compromised. Even when only information about the entire sample

is released it is sometimes possible to reconstruct information about the individuals involved. If

the information release is in the form of margins of a multi-dimensional contingency table then

one technique for detecting disclosures of information is to use integer programming to find upper

and lower bounds on the cells of the table using the information from the released margins. If the

upper and lower bounds are far apart then there is no major disclosure of information. But if the

bounds are tight then some information has been disclosed. The integer programming problem

is NP-complete in computational complexity [9] but the linear relaxation of the integer program

which can be solved in polynomial time. This raises the question of whether or not the bounds

given by the linear relaxation are always faithful to the true bounds given by the integer program.

Some research has already been done on the gaps between the problems arising from contin-

gency tables. It was thought [3] that the linear relaxation was always reliable for bounding cells.

Sullivant constructed a family of tables on n ≥ 4 binary random variables and a specified collec-

tion of margins such that the gap between the linear programming approximation of the cell bounds

and the true integer programming cell bound for one of these margins is 2n−3 − 1 and in doing so

showed that the linear programming relaxation may not always a good method of detecting disclo-

sures of information [10]. However, O’Shea later showed that Sullivant’s gaps are statistically rare

and in doing so gives credence to the notion that linear programming relaxations might still be a

good method of detecting disclosures [7].

In this paper our goal is to provide an extensive catalog of the gaps that can occur on tables of

few variables, in particular, on tables where there are no more than 5 variables. We will start with

some background of the general theory of the integer programming gap. We will then show how

to apply it to the contingency tables problem. Finally we will state our results.

3

2 Integer programming gap

The general integer programming problem in standard form is given by,

Minimize z · c subject to Az = b (2.1)

where A is a d× k integer matrix, b ∈ Zd and c ∈ Qk are all fixed and z is allowed to vary where

z ∈ Zk and z ≥ 0. The matrix A is called the constraint matrix and c is called the cost vector. The

minimum of z · c is called the optimal value of 2.1 and the z that obtains this value is called an

optimal solution. If we replace the condition that z ∈ Nk with z ∈ Rk and z ≥ 0 then we obtain

the linear programming relaxation of problem 2.1.

Minimize z · c subject to Az = b (2.2)

where A is a d× k integer matrix, b ∈ Zd and c ∈ Qk are all fixed and z is allowed to vary where

z ∈ Rk and z ≥ 0. If an integer program is feasible and bounded then the linear relaxation is also

feasible and bounded. Moreover, the optimal value of the linear relaxation is less than or equal to

the optimal value of the integer program since the latter has more constraints to satisfy.

We define the integer programming gap, gap(A, c), to be the maximum difference between

optimal values of 2.1 and 2.2 as b ranges over all vectors such that 2.1 is feasible and bounded. It

is this quantity that we wish to study in the context of the contingency table problem.

Given some constraint matrix A and cost vector c, we will outline a way to find gap(A, c).

A vector u = (u1, u2, ..., uk) ∈ Nk is called non-optimal if it is not an optimal solution of 2.1

when we let b = Au. If we consider some polynomial ring R[x1, x2, ...xk] we can represent each

non-optimal vector u by xu = xu1
1 x

u2
2 · · · x

uk
k . Let M(A, c) be the ideal in the polynomial ring

R[x1, x2, ...xk] generated by these xu as u varies over all non-optimal vectors. We can compute

M(A, c) by taking the Graver basis ofA and using [8, Algorithm 4.4.2] to find the largest monomial

ideal contained in the ideal generated by the polynomial representation of the Graver basis [5]. A

4

monomial ideal in R[x1, x2, ...xk] is called irreducible if it is generated by powers of the variables.

That is, if it is of the form,

I(u, τ) =
〈
x
ui1

+1

i1
, x

ui2
+1

i2
, ..., x

uir+1
ir

〉

where τ = {i1, i2, ..., ir} and u ∈ Nk and u is zero off of τ . Every monomial ideal M in

R[x1, x2, ...xk] can be written uniquely as an irredundant intersection of finitely many irreducible

monomial ideals. These monomial ideals are called the irreducible components of M . We can

define the gap value of each such component I(u, τ) with respect to a constraint matrix A and a

cost vector c by the optimal value of the auxiliary linear program

Maximize u · c− v · c subject to Av = Au and ∀j ∈ τ vj ≥ 0 (2.3)

For each I(u, τ) define the set (u, τ) = {u + v′ | v′ ∈ Nk and ∀j ∈ τ v′j = 0}. We call (u, τ)

the standard pair for I(u, τ) and we say it has root u and free directions τ [6]. The main result

of Hoşten and Sturmfels [5] is that the gap value of I(u, τ) is equal to the maximum difference

between the optimal values of 2.1 and 2.2 as b ranges over all vectors in Zd so that the optimal

solution of 2.1 is in (u, τ). Furthermore it also has been shown that gap(A, c) equals the maximum

gap value of any irreducible component I(u, τ) of the monomial ideal M(A, c). These results

are given in [5] in the more general context of lattice programs. We will end this section with a

demonstrative example.

Example Consider the family of integer programs indexed by n ∈ N that are given by

Minimize (x, y) · (1, 0) subject to (1, 10) · (x, y) = n

where (x, y) ∈ Z2 and x, y ≥ 0. Here A = [1, 10] and c = (1, 0). The corresponding family of

linear relaxations are obtained by letting (x, y) be in R2 so that x, y ≥ 0. Clearly, since the cost of

y is 0, the optimal value of any of these linear relaxations is 0 and is obtained by letting (x, y) =

5

(0, n
10

). On the other hand, the optimal value of any of the integer programs will always be the

remainder of nwhen divided by 10. The largest this can be is 9. So gap((1, 10), (1, 0)) = 9. We can

also find gap((1, 10), (1, 0)) by computing the Graver basis and finding the irreducible components

of M((1, 10), (1, 0)). The Graver basis is just {[10,−1]}. So the ideal M((1, 10), (1, 0)) in the

polynomial ring R[x1, x2] is given by 〈x10
1 〉. This is already irreducible. So we have just one

component, I(u, τ) where u = (9, 0) and τ = {1}. We can find the gap value of the component

by solving the auxiliary linear program

Maximize (9, 0) · (1, 0)− (v1, v2) · (1, 0) subject to (1, 10) · (v1, v2) = 9 and v1 ≥ 0

where (v1, v2) ∈ R2. We can solve this using any of the common algorithms for linear programs.

The optimal value is 9 and the optimal solution is (0, 9
10

). We can also find the standard pair for

the one component, (u, τ) = ((9, 0), {1}) = {(9, n) | n ∈ N}. If we map (u, τ) via A then we get

the set of right hand sides such that the optimal solution is in (u, τ).

x1

x2

•
(9,0)
•

(9,1)
•

(9,2)
•

(9,3)
•

(9,4)
•

(9,5)
•

(9,6)
•

(9,7)
•

(9,8)
•

(9,9)
•

(9,10)

n•
9.0

A •
19.0

A •
29.0

A •
39.0

A •
49.0

A •
59.0

A •
69.0

A •
79.0

A •
89.0

A •
99.0

A •
109.0

A

N

6

3 Contingency tables problem

Let us now turn our attention to using integer programs to bound cells of multi-dimensional con-

tingency tables with the information from some set of margins. We can consider a n-dimensional

contingency table to be given by a vector d = 〈d1, d2, ..., dn〉 that specifies the number of levels

in each dimension and a vector y = 〈y11...1, y11...2, y11...3, ..., yd1d2...dn〉 where yi1i2...in corresponds

to the cell entry in the ijth level in the jth dimension. Each margin we release is just a lower

dimensional contingency table and its values are simply higher dimensional analogues of row and

column sums. We can think of a set of margins ∆ as being specified by some collection of subsets

of the set {1, 2, ..., n} that specifies which relationships we release. We can assume that ∆ is a

simplicial complex since if we release the relationships between some set of variables we implic-

itly release the relationships between any subset of those variables. For example if we release the

relationships between {1, 2, 3}, then we implicitly release the relationships between {1, 2}, {2, 3},

or even just {1}. This way of describing margins is called a hierarchical model [7].

Example Consider the 2-dimensional contingency table given by the following 2× 5 table

HHH
HHH

HHHH
Dim 1

Dim 2
Level 1 Level 2 Level 3 Level 4 Level 5 Row sums

Level 1 20 30 10 15 10 85

Level 2 25 15 12 20 10 82

Col sums 45 45 22 35 20

We can specify this table by d = 〈2, 5〉 and with y = 〈y11, y12, y13, y14, y15, y21, y22, y23, y24, y25〉 =

〈20, 30, 10, 15, 10, 25, 15, 12, 20, 10〉. The margins obtained by row and column sums are specified

by the set ∆ = {{1}, {2}} and we get the 1-dimensional margin tables by summing over the

variables not present. The set {2} specifies the column sums and the set {1} specifies the row

sums. The problem we are interested in is the case when we know the margins and want to estimate

or at least bound the cells. In the context of this example it would be like being given

7

HH
HHH

HHH
HH

Dim 1

Dim 2
Level 1 Level 2 Level 3 Level 4 Level 5 Row sums

Level 1 y11 y12 y13 y14 y15 85

Level 2 y21 y22 y23 y24 y25 82

Col sums 45 45 22 35 20

and having to bound some yij . N

Our goal is to rework this problem into an integer programming problem. To do this we will

need a constraint matrix the encodes the relationship between the table and its margins. Given ∆

we can construct a matrix A∆ in the following way. For each maximal face F of ∆ we construct∏
i∈F

di many rows, one for each element of the margin. The columns are indexed by the elements

of y. Each row has a 1 in the jth column if the jth element of y is part of the sum for the element

of the margin that the row corresponds to and a 0 otherwise.

Example Consider the 3-dimensional contingency table given by

8

7

3

5
8

10

5

6

Dim 2

Dim 1

Dim 3

We can specify this table by d = 〈2, 2, 2〉 and with y = 〈y111, y112, y121, y122, y211, y212, y221, y222〉 =

〈5, 3, 8, 8, 6, 5, 10, 7〉. Since di = 2 for all i, we call it a binary table. Suppose the set of released

margins ∆ has facets {1, 2} and {1, 3}. The corresponding margins are given by the following

8

2-dimensional tables

H
HHH

HHH
HHH

Dim 1

Dim 2
Level 1 Level 2

Level 1 8 16

Level 2 11 17

H
HHH

HHH
HHH

Dim 1

Dim 3
Level 1 Level 2

Level 1 13 11

Level 2 16 12

The matrix A∆ can be constructed in the way described above. The first half of the rows come
from {1, 2} and the second half come from {1, 3}.

A∆ =

1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1

Note that if we compute A∆y we get

1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1

5
3
8
8
6
5

10
7

=

8
16
11
17
11
13
16
12

 {1, 2}
 {1, 3}

which recovers our 2-dimensional margins. N

If we take b = A∆y them we can construct an integer program to bound cells of our contingency

table in the following way. We can think of such right hand sides as collections of released tables

of margins. Let ej denote the vector that has a 1 in the jth coordinate and 0 elsewhere. Then the

integer program

Minimize z · ej subject to A∆z = A∆y (3.1)

9

gives a lower bound on the jth element of our table. We know that 3.1 is feasible since y gives a

solution, though y may not be optimal. Similarly the integer program

Maximize z · ej subject to A∆z = A∆y (3.2)

gives an upper bound on the jth element of our table. We can rewrite 3.2 as a minimize problem

by just using −ej instead of ej and taking the negation of the optimal value.

Example Let’s return to our last example. Suppose that we are given the margins from
before but we don’t know the values of the original table. If we want an upper bound of y111 we
can construct the integer program

Maximize z111 subject to

1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1

z111

z112

z121

z122

z211

z212

z221

z222

=

8
16
11
17
11
13
16
12

Solving this using any of the standard means yields the upper bound of 8 for y111. N

Without loss of generality we will usually let j = 1 and just consider bounding y11...1. Our

main focus is in finding the maximal difference between 3.1 and 3.2 and their linear relaxations as

y varies over all vectors in Zk. This is the same as letting the right hand side vary over all elements

of the image of Zk via A∆. We will denote this maximal difference by gap(∆).

We are interested in what kinds of gaps can arise and from what types of hierarchical models.

Sullivant constructed in [10] a family of tables on n ≥ 4 binary random variables and a specified

collection of models such that the gap(∆) is 2n−3 − 1. However, O’Shea later showed in [7] that

Sullivant’s gaps are rare in that they come from standard pairs that are small in the following sense.

We can think of the size of a standard pairs (u, τ) as the dimension of the slice of the image of

A that the image of (u, τ) is contained in. This dimension can be easily found as the rank of the

submatrix of A obtained by removing the columns indexed by τ . If the dimension is equal to

10

the rank of A then we say that (u, τ) is wide. The standard pair from the example at the end of

the integer programming section is an example of a wide pair since the smallest subspace it lives

in is dimension 1. If the dimension is less the the rank of A then it makes up a very small part

of all feasible right hand sides. If we assume a uniform distribution of feasible vectors then the

probability of encountering a vectors from (u, τ) becomes zero. There are even reasons to believe

that a uniform distribution is in many cases be overly generous. See [7] for further discussion. In

the following section we give our results about some gaps that are rare in the this sense as well as

some examples of ones that are not.

11

4 Results

Our method and goal were straightforward: Implement the techniques described in the previous

sections to find gap(∆) and exhaustively compute it for all models with certain small dimen-

sions. We coded our implementation in the SageMath mathematics software package [2] and

used 4ti2, which is a software package for algebraic and combinatorial problems, to find the

Graver basis of the matrices [1] and used Macaulay2 to find the irreducible components [4]. The

full code can be found in the appendix.

Proposition 4.1 There does not exist a model ∆ on {1, 2, 3, 4} and a 2 × 2 × 2 × 2 table or a

3 × 2 × 2 × 2 table with margins b such that gap(A∆, b) ≥ 1 and b comes from a wide standard

pair.

This was shown by exhaustively computing gap(∆) for all such models and comparing the neces-

sary ranks to see if any of the standard pairs are wide. There are only two models up to relabeling

for 2× 2× 2× 2 tables that even have nonzero gaps. None of the components are both wide and

have a gap greater than or equal to 1. The models are listed in the appendix along with the irre-

ducible components where the nonzero gaps occur. There are more nonzero gaps for 3× 2× 2× 2

tables but there are still no components that are both wide and have a gap greater than or equal to

1.

Proposition 4.2 There do exist models ∆ on {1, 2, 3, 4, 5} and 2×2×2×2×2 tables with margins

b such that gap(A∆, b) ≥ 1 and b comes from a wide standard pair.

We showed this by computationally finding examples where this occurs.

Example Consider the model ∆ with facets {1, 2, 3, 5}, {3, 4, 5}, {1, 2, 4}, {1, 3, 4}, and {2, 3, 4}

for a margin of a 2×2×2×2×2 table. We can visualize ∆ as a simplicial complex in the following

way:

12

3

1

2

5

4

Here the filled in area is the 3-dimensional face and the shaded areas are the four 2-dimensional
faces. We can find A∆ and it is given by

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 1 0 0 0 0 0 0 1 1 0
0 0 1 1 0 0 0 0 0 0 1 1 0
0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0
0 1 1 0 0 0 0 0 0 1 1 0 0
0 1 1 0 0 0 0 0 0 1 1
1 1 0 0 1 1 0
0 0 1 1 0 0 1 1 0
0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0
0 1 1 0 0 1 1 0 0
0 1 1 0 0 1 1
1 1 1 1 0
0 0 0 0 1 1 1 1 0
0 0 0 0 0 0 0 0 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 0 0 0 0 0 0 0 0
0 1 1 1 1 0 0 0 0
0 1 1 1 1

13

which has 48 many rows and 32 many columns and rank 25. We can compute M(A∆, e1) and find

its irreducible components. There are 136 components and 8 of them have a gap equal to 1 and have

standard pairs that are dimension 25. One of these components is 〈x3, x5, x11, x13, x22, x24, x
2
30〉

which has a gap of 1. We can also compute M(A∆,−e1) which also has 136 components and also

has 8 with a gap greater than or equal to 1 and standard pairs that are dimension 25. N

It is important to note that we are not claiming the these examples have commonly occurring

tables with large gap values. Remember that the gap of a component is the maximum of all possible

gaps arising from right hand sides from the standard pair corresponding to the component. We

make no assertion that all or even most of right hand sides from the standard pair have large gaps.

These examples are just not rare in the sense of Sullivant’s gaps.

We hope to pursue the question that the previous remark raises in future work. We would also

like to have a complete classification of all models of margins from 2× 2× 2× 2× 2 tables.

14

A 2× 2× 2× 2 Examples

∆ = {{1, 2, 3}, {1, 4}, {2, 4}, {3, 4}}

M(A∆, e1) M(A∆,−e1)

Gap Component Wide Gap Component Wide

0.5 〈x7, x9, x10, x
2
12〉 Yes 0.5 〈x2

1, x2, x4, x15〉 Yes

0.5 〈x7, x9, x
2
10, x12〉 Yes 0.5 〈x1, x

2
2, x4, x15〉 Yes

0.5 〈x7, x9,
2 x10, x12〉 Yes 0.5 〈x1, x2, x

2
4, x15〉 Yes

0.5 〈x2
7, x9, x10, x12〉 Yes 0.5 〈x1, x2, x4, x

2
15〉 Yes

1.0 〈x2
0, x3, x5, x6, x11, x13, x14〉 No 1.0 〈x3, x5, x6, x

2
8, x11, x13, x14〉 No

15

∆ = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}

M(A∆,−e1) M(A∆, e1)

Gap Component Wide Gap Component Wide

0.6667 〈x1, x2, x4, x8, x
3
15〉 Yes 1.0 〈x2

0, x3, x5, x6, x
2
7, x9, x10, x

2
11, x12, x

2
13, x

2
14〉 No

0.6667 〈x1, x2, x4, x
2
8, x

2
15〉 Yes 1.0 〈x2

0, x
2
3, x

2
5, x6, x7, x

2
9, x10, x11, x12, x13, x

2
14〉 No

0.6667 〈x1, x2, x
2
4, x8, x

2
15〉 Yes 1.0 〈x2

0, x
2
3, x5, x

2
6, x7, x9, x

2
10, x11, x12, x

2
13, x14〉 No

0.6667 〈x1, x
2
2, x4, x8, x

2
15〉 Yes 1.0 〈x2

0, x3, x
2
5, x

2
6, x7, x9, x10, x

2
11, x

2
12, x13, x14〉 No

0.6667 〈x2
1, x2, x4, x8, x

2
15〉 Yes 1.0 〈x2

0, x3, x5, x6, x
2
7, x

2
9, x

2
10, x11, x

2
12, x13, x14〉 No

1.6667 〈x2
1, x

2
2, x3, x

2
4, x5, x6, x7, x

2
8, x9, x10, x11, x12, x13, x14, x

2
15〉 No

0.6667 〈x1, x2, x4, x
3
8, x15〉 Yes

0.6667 〈x1, x2, x
2
4, x

2
8, x15〉 Yes

0.6667 〈x1, x
2
2, x4, x

2
8, x15〉 Yes

0.6667 〈x2
1, x2, x4, x

2
8, x15〉 Yes

0.6667 〈x1, x2, x
3
4, x8, x15〉 Yes

0.6667 〈x1, x
2
2, x

2
4, x8, x15〉 Yes

0.6667 〈x2
1, x2, x

2
4, x8, x15〉 Yes

0.6667 〈x1, x
3
2, x4, x8, x15〉 Yes

0.6667 〈x2
1, x

2
2, x4, x8, x15〉 Yes

0.6667 〈x3
1, x2, x4, x8, x15〉 Yes

16

B Code

def makeMarginMatrix(C, d):
p = len(d)*[1]
for i in range(1,len(d)):

p[i]= p[i-1]*d[i-1]
rng = range(p[len(d)-1]*d[len(d)-1])
index = [[floor(n/p[i])%d[i] for i in range(len(d))] for n in rng]
M=[]
for F in C:

flat = [d[i]ˆint(i in F) for i in range(len(d))]
k = len(d)*[1]
for i in range(1,len(d)):

k[i]= k[i-1]*flat[i-1]
margins=[]
for n in range(k[len(d)-1]*flat[len(d)-1]):

margins.append([floor(n/k[i])%flat[i] for i in range(len(d))])
for v in margins:

M.append([int(all(index[n][i]==v[i] for i in F)) for n in rng])
return matrix(M)

def toBinomial(v, R):
p = [max(i, 0) for i in v]
n = [abs(min(i, 0)) for i in v]
return R.monomial(*p) - R.monomial(*n)

def initFormsIdeal(I, R, w):
IFI=[]
for f in I.gens():

exp = f.exponents()
modexp = [[e[i]*w[i] for i in range(len(e))] for e in exp]
if sum(modexp[0])>sum(modexp[1]):

IFI.append(R.monomial(*exp[0]))
else:

if sum(modexp[0])<sum(modexp[1]):
IFI.append(R.monomial(*exp[1]))

else:
IFI.append(f)

return ideal(*IFI)

def makeHomogen(P, H, v):
mons = v.monomials()
if len(mons)==1:

return v.coefficient(mons[0])* H.monomial(*list(mons[0].degrees())+
P.ngens()*[0])

else:
return v.coefficient(mons[0])* H.monomial(*list(mons[0].degrees())+

17

list(mons[1].degrees())) + v.coefficient(mons[1])*
H.monomial(*list(mons[1].degrees())+list(mons[0].degrees()))

def largestMonomailIdeal(I, P):
n = P.ngens()
H = PolynomialRing(QQ, 2*n, names = list(P.variable_names())
+ [’y’+str(i) for i in range(n)])
homoIdGens = [makeHomogen(P, H, v) for v in list(I.gens())]

newId = ideal(homoIdGens)
f = H.monomial(*(2*n)*[1])
newId.saturation(ideal(f))

mons = []
for v in newId.gens():

if len(v.exponents())==1:
mons.append(P(v))

return ideal(*mons)

def irrDecomMono(I):
return [macaulay2.ideal(f).to_sage() for f in
macaulay2.irreducibleDecomposition(macaulay2.monomialIdeal(I))]

def makeIP(M,b,c):
p = MixedIntegerLinearProgram(maximization=False, solver = "GLPK")
w = p.new_variable(integer=True, nonnegative=True)
for i in range(len(M.rows())):

q = M.rows()[i]
p.add_constraint(p.sum([w[n]*q[n] for n in range(len(q))]) == b[i])

p.set_objective(p.sum([w[n]*c[n] for n in range(len(c))]))
return p

def makeLP(M,b,c):
p = MixedIntegerLinearProgram(maximization=False, solver = "GLPK")
w = p.new_variable(integer=False, nonnegative=True)
for i in range(len(M.rows())):

q = M.rows()[i]
p.add_constraint(p.sum([w[n]*q[n] for n in range(len(q))]) == b[i])

p.set_objective(p.sum([w[n]*c[n] for n in range(len(c))]))
return p

def auxiliaryLP(A,c,u0):
u = [max(j-1,0) for j in u0]
b = A*column_matrix([u])
p = MixedIntegerLinearProgram(maximization=True, solver = "GLPK")
w = p.new_variable(integer=False, nonnegative=False)
for i in range(len(M.rows())):

18

q = M.rows()[i]
p.add_constraint(p.sum([w[n]*q[n] for n in range(len(q))]) == b[i][0])

p.set_objective(list(matrix([c])*column_matrix([u]))[0][0]
- p.sum([w[n]*c[n] for n in range(len(c))]))

sup = []
for i in range(len(u)):

if u0[i]>0:
sup.append(i)

for i in range(len(u)):
if i in sup:

p.set_min(w[i], 0)

return p

def monIdealVector(I, R):
g = I.gens()
explist = []
for f in g:

explist.extend(f.exponents())
u0 = [sum([v[i] for v in explist]) for i in range(R.ngens())]
return u0

def maxGap(A, c):
from sage.interfaces.four_ti_2 import four_ti_2
G = four_ti_2.graver(mat=A)
if G.nrows()==0:

return 0
n = A.ncols()
P = PolynomialRing(QQ, n, names = [’x’+str(i) for i in range(n)])
I = ideal(*[toBinomial(r, P) for r in G.rows()])

IFI = initFormsIdeal(I, P, c)

BMI = largestMonomailIdeal(IFI, P)

ID = irrDecomMono(BMI)

return max([auxiliaryLP(A,c,monIdealVector(ic, P)).solve() for ic in ID])

def SpernerFamilies(n):
A = [tuple(i) for i in powerset(range(n))]
from sage.combinat.posets.posets import FinitePoset
B = []
for i in A:

for j in A:

19

if set(i).issubset(set(j)):
B.append([i,j])

g = DiGraph()
g.add_vertices(A)
g.add_edges(B)
P = FinitePoset(g)
IsoList = []
for S in P.antichains_iterator():

if all(not IncidenceStructure(S).is_isomorphic(K) for K in IsoList):
IsoList.append(IncidenceStructure(S))
sFamilies = [i.blocks() for i in IsoList]
return sFamilies

def fat(M, l):
s = [sign(i) for i in l]
Mt = M.transpose()
cols = Mt.rows()
subcols=[]
for n in range(len(l)):

if s[n] == 0:
subcols.append(cols[n])

SM = column_matrix(subcols)
return M.rank() <= SM.rank()

def gapData(A):
n = A.ncols()
c = n*[0]
c[0] = 1
e = n*[0]
e[0] = -1
gap = 0
from sage.interfaces.four_ti_2 import four_ti_2
G = four_ti_2.graver(mat=A)
if G.nrows()==0:

return gap
P = PolynomialRing(QQ, n, names = [’x’+str(i) for i in range(n)])
I = ideal(*[toBinomial(r, P) for r in G.rows()])

IFIc = initFormsIdeal(I, P, c)
IFIe = initFormsIdeal(I, P, e)

BMIc = largestMonomailIdeal(IFIc, P)
BMIe = largestMonomailIdeal(IFIe, P)

IDc = irrDecomMono(BMIc)
IDe = irrDecomMono(BMIe)
for ic in IDc:

20

k = auxiliaryLP(A,c,monIdealVector(ic, P)).solve()
if k>gap:

gap = k
if k > 0 :# and fat(A, monIdealVector(ic, P)):

print "+ gap:", k,
print "i.c:",
for g in ic.gens():

print g,
print fat(A, monIdealVector(ic, P))

for ic in IDe:
k = auxiliaryLP(A,e,monIdealVector(ic, P)).solve()
if k>gap:

gap = k
if k > 0 :# and fat(A, monIdealVector(ic, P)):

print "- gap:", k,
print "i.c:",
for g in ic.gens():

print g,
print fat(A, monIdealVector(ic, P))

return gap

#Main

n = 4
d = [2,2,2,2]
count = 0
SF = SpernerFamilies(n)
for i in range(len(SF)):
S = SF[i]
Y = SimplicialComplex(S)
M = makeMarginMatrix(S, d)

if M.nrows()>0:
g = gapData(M)
if g>= 1:

print count, S
print

count = count +1
print "Finished."

21

References

[1] 4ti2 team. 4ti2—a software package for algebraic, geometric and combinatorial problems on

linear spaces.

[2] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 6.9), 2016.

http://www.sagemath.org.

[3] Adrian Dobra and Stephen E. Fienberg. Bounds for cell entries in contingency tables given

marginal totals and decomposable graphs. Proc. Natl. Acad. Sci. USA, 97(22):11885–11892

(electronic), 2000.

[4] Daniel R. Grayson and Michael E. Stillman. Macaulay2, a software system for research in

algebraic geometry.

[5] Serkan Hoşten and Bernd Sturmfels. Computing the integer programming gap. Combinator-

ica, 27(3):367–382, 2007.

[6] Serkan Hoşten and Rekha R. Thomas. Standard pairs and group relaxations in integer pro-

gramming. J. Pure Appl. Algebra, 139(1-3):133–157, 1999. Effective methods in algebraic

geometry (Saint-Malo, 1998).

[7] Edwin O’Shea. On the occurrence of large gaps in small contingency tables. 2009.

[8] Mutsumi Saito, Bernd Sturmfels, and Nobuki Takayama. Gröbner deformations of hyper-

geometric differential equations, volume 6 of Algorithms and Computation in Mathematics.

Springer-Verlag, Berlin, 2000.

[9] Alexander Schrijver. Theory of linear and integer programming. Wiley-Interscience Series

in Discrete Mathematics. John Wiley & Sons, Ltd., Chichester, 1986. A Wiley-Interscience

Publication.

[10] Seth Sullivant. Small contingency tables with large gaps. SIAM J. Discrete Math., 18(4):787–

793 (electronic), 2005.

22

	James Madison University
	JMU Scholarly Commons
	Spring 2016

	A Computational Investigation of Large Gaps in Contingency Tables
	Noah J. Watson
	Recommended Citation

	tmp.1461857386.pdf.Ywepk

