A Rose by Any Other Name: The Interrelationship of Landmines and Other Explosive Remnants of War

Richmond H. Dugger III

UXB International, Inc.

Follow this and additional works at: https://commons.lib.jmu.edu/cisr-journal

Part of the Defense and Security Studies Commons, Emergency and Disaster Management Commons, Other Public Affairs, Public Policy and Public Administration Commons, and the Peace and Conflict Studies Commons

Recommended Citation

Available at: https://commons.lib.jmu.edu/cisr-journal/vol10/iss1/11

This Article is brought to you for free and open access by the Center for International Stabilization and Recovery at JMU Scholarly Commons. It has been accepted for inclusion in Journal of Conventional Weapons Destruction by an authorized editor of JMU Scholarly Commons. For more information, please contact dc_admin@jmu.edu.
A Rose by Any Other Name: The Interrelationship of Landmines and Other Explosive Remnants of War

The author explores the vast diversification in landmine etymology, pinpointing efforts that sought to provide more information but only complicated an already difficult process. Dugger continues with a historical perspective on the progression of language and processes used to address problems posed by landmines and other explosive remnants of war.

When I first became involved with unexploded ordnance and landmines in 1983, the terminology was more straightforward and perhaps a bit more descriptive than the tortured phrases we use today. We named our company “UXB” after seeing the long-running action Masquerade Theatre entitled “Danger UXB.” (UXB is a British acronym for “unexploded bomb”) and the show depicted the trials and successes of the elite British UXB team in stemming an apocalyptic tide. Most everything back in the early 1980s could be described as a mine, a rocket or a bomb. The more clever members of our group would try to enhance the description. We would note that certain types of mines were a “little” mine or a “big” bomb. Whatever the “name du jour,” all of these terms were potentially deadly and sometimes bore more of an impact upon the geopolitical landscape than their precise otherwise indicated.

Still politicians may believe they are the facilitators of change, in most cases they are not. How refining it would be for politicians in some of the conflicted countries to decide to settle their disputes with a duel, as opposed to military opponents. Generally, they are manufactured by a group of Second-World countries and are deployed by many Third-World countries that are prone to make do with what they can afford.

Of course, few of these facilitators recognize that a “landmine is a landmine” and a “bomb is a bomb.” The technological differences are enigmatic, even for the most astute student of the field. The political differences are more substantial. The targets were likely to be soldiers, but there may be a dearth of information on the destruction of a civilian. We can weave more powerful and more meaningful stories than this.

Landmines and other explosive remnants of war (ERW) have a dual role in the world’s vocabulary, especially when accounting for the tremendous human cost. Locating and destroying a single landmine or a now landmine can cost upwards of US$1,000, but even that cost pales when you consider the unnecessary and deplorable cost of injury or death of a child or other civilian.

Ordnance and other ERW are quite different from landmines. Ordinance predates landmines by over 400 years and is principally fired, but can be air-dropped or launched in more current periods; this term is used as opposed to “other remnants of war” for discussion simplicity.

Ordnance evolution may be divided into three segments. The earliest segment includes that period during which stone-dome was employed; guns during the period 1313 to 1520 were mostly wrought-iron and steel. The second segment was that extending from 1520 to 1854, during which cast-iron round shot was routinely employed. In this segment, both bronze and cast-iron ordnance was actually used, but technology advanced little from the first period. The increase in power of the ordnance systems during this period was due primarily to the use of cast iron instead of clay; steel vaults were introduced and some small technological increase due to better technical design of the guns toward the end of this period. The third or current segment started in 1854 with the innovation of elongated projectiles and rifled gun barrels. Rapid progress has been made since then. Ordnance items are manufactured by most countries today, and they are deployed by virtually every country.

Ordnance generally is more powerful than landmines and the damage to men and material can be significantly more devastating. The moral effect of guns would be considered more or less constant today, as people all over the world are aware of artillery, bombs and the noise and destructiveness they can cause. However, the ordnance threat produces an ore effect quite different from landmines, mainly because of the denouncements and visible destructiveness. This is where the ever-present fear that one’s final moment will arrive without giving any advance notice.

A “rose by any other name would smell as sweet,” and while the “sweetness” of landmines and ERW may be somewhat evident to facilitators who employ the technology of landmines and the high cost/high technology usually found in other ERW, and how these current or legacy threats impact war and the world’s population and effect change.

Even the suspected presence of the “dangerous dust”—landmines and other ERW—can have a significant impact on how populations function. The effectiveness of any weapon depends upon two factors: its ability to damage or destroy men and matériel and the morale effects of its use, or threat thereof, upon the enemy. In most cases, the threats posed by landmines and other remnants of war are not wholly independent of each other. Since this audience is knowledgeable on the specifics of both landmines and other ERW, I want to dwell more on the conceptual framework that seeks to categorize the sources of these two types of threats and how, even from differing sources, these threats have been commodified, coexist and cause problems in many countries throughout the world.

The earlier descriptions of a pressure-operated landmine come from the German military historian H. Frischo von Fleming, who described a plafondmine (a flying mine) in 1726 book. He wrote, “It consisted of a ceramic container with glass and metal fragments embedded in the clay containing 0.90 kilos [2 lb] of gunpowder, busting at a shallow depth in the glass of a fortress and caused by someone stepping on it or making a lowstrength mine.”

The same basic low-cost, low-technology method is being used quite effectively today. In quantity, anti-personnel landmines can be procured for less than US$3 each. They can be rapidly deployed by minimally trained personnel and provide a significant anti-infiltration capability even for the most advanced military opponents. Generally, they are manufactured by a group of Second-World countries and are deployed by many Third-World countries that are prone to make do with what they can afford.

For obvious reasons, the most powerful and war-tested threats to various countries’ militaries are air-dropped ordnance. For instance, the 90-mm rounds for the “Dana” anti-aircraft rocket contains a configuration of 0.90 kilos [2 lb] of high-explosive (HE) warhead. The second explosion results in an explosion of a considerable size and can cause damage to far more than just the vehicle it was in. It is very possible for ordnance or other unexploded ammunition to remain undetected for years and still be a threat.

For now, I will focus on landmines and ERW since the recent past has brought landmines to the forefront of discussion and action. The physical properties of the threats, the concentration of contamination, and the impact on population masses exposed to the threat provide numerous times and sponsors, but they are primarily information- and data-gathering programs. One of the most daunting challenges assessment programs face is compiling the actual data supporting whether or not an actual threat from landmines and ERW exists. There are many reasons for this difficulty. Some threats are not always going to be obvious since most of them will be buried or otherwise hidden. The techniques generally employed for these assessments involve gathering data and information from all readily available sources: military, civilian, government personnel, United Nations agencies, nongovernmental organizations, intergovernmental organizations and others conducting similar assessments. The collection, analysis, and information is often difficult to analyze, and it is equally difficult to assign proper weighting and maintain a meaningful reference point. As a consequence, various ingenuous methods are employed by these assessment personnel. This information leads to the various community threats and arrive at solutions at least somewhat thorough and documented data and information available. Despite the difficulty, once these threats are identified, they can be mitigated.

To mitigate population impact, many of the humanitarian-oriented world organizations have implemented various assessment programs with the goals to determine the following with some degree of scientific accuracy:

• The areas impacted by landmines and other ERW
• The physical properties of the contamination
• The concentration of contamination
• The impact on population masses exposed to the threat

These threats have various names and sponsors, but they are primarily information- and data-gathering programs. One of the most daunting challenges assessment programs face is compiling the actual data supporting whether or not an actual threat from landmines and ERW exists. There are many reasons for this difficulty. Some threats are not always going to be obvious since most of them will be buried or otherwise hidden. The techniques generally employed for these assessments involve gathering data and information from all readily available sources: military, civilian, government personnel, United Nations agencies, nongovernmental organizations, intergovernmental organizations and others conducting similar assessments. The collection, analysis, and information is often difficult to analyze, and it is equally difficult to assign proper weighting and maintain a meaningful reference point. As a consequence, various ingenuous methods are employed by these assessment personnel. This information leads to the various community threats and arrive at solutions at least somewhat thorough and documented data and information available. Despite the difficulty, once these threats are identified, they can be mitigated.

To mitigate population impact, many of the humanitarian-oriented world organizations have implemented various assessment programs with the goals to determine the following with some degree of scientific accuracy:

• The areas impacted by landmines and other ERW
• The physical properties of the contamination
• The concentration of contamination
• The impact on population masses exposed to the threat

These threats have various names and sponsors, but they are primarily information- and data-gathering programs. One of the most daunting challenges assessment programs face is compiling the actual data supporting whether or not an actual threat from landmines and ERW exists. There are many reasons for this difficulty. Some threats are not always going to be obvious since most of them will be buried or otherwise hidden. The techniques generally employed for these assessments involve gathering data and information from all readily available sources: military, civilian, government personnel, United Nations agencies, nongovernmental organizations, intergovernmental organizations and others conducting similar assessments. The collection, analysis, and information is often difficult to analyze, and it is equally difficult to assign proper weighting and maintain a meaningful reference point. As a consequence, various ingenuous methods are employed by these assessment personnel. This information leads to the various community threats and arrive at solutions at least somewhat thorough and documented data and information available. Despite the difficulty, once these threats are identified, they can be mitigated.

To mitigate population impact, many of the humanitarian-oriented world organizations have implemented various assessment programs with the goals to determine the following with some degree of scientific accuracy:

• The areas impacted by landmines and other ERW
• The physical properties of the contamination
• The concentration of contamination
• The impact on population masses exposed to the threat

These threats have various names and sponsors, but they are primarily information- and data-gathering programs. One of the most daunting challenges assessment programs face is compiling the actual data supporting whether or not an actual threat from landmines and ERW exists. There are many reasons for this difficulty. Some threats are not always going to be obvious since most of them will be buried or otherwise hidden. The techniques generally employed for these assessments involve gathering data and information from all readily available sources: military, civilian, government personnel, United Nations agencies, nongovernmental organizations, intergovernmental organizations and others conducting similar assessments. The collection, analysis, and information is often difficult to analyze, and it is equally difficult to assign proper weighting and maintain a meaningful reference point. As a consequence, various ingenuous methods are employed by these assessment personnel. This information leads to the various community threats and arrive at solutions at least somewhat thorough and documented data and information available. Despite the difficulty, once these threats are identified, they can be mitigated.

To mitigate population impact, many of the humanitarian-oriented world organizations have implemented various assessment programs with the goals to determine the following with some degree of scientific accuracy:

• The areas impacted by landmines and other ERW
• The physical properties of the contamination
• The concentration of contamination
• The impact on population masses exposed to the threat

These threats have various names and sponsors, but they are primarily information- and data-gathering programs. One of the most daunting challenges assessment programs face is compiling the actual data supporting whether or not an actual threat from landmines and ERW exists. There are many reasons for this difficulty. Some threats are not always going to be obvious since most of them will be buried or otherwise hidden. The techniques generally employed for these assessments involve gathering data and information from all readily available sources: military, civilian, government personnel, United Nations agencies, nongovernmental organizations, intergovernmental organizations and others conducting similar assessments. The collection, analysis, and information is often difficult to analyze, and it is equally difficult to assign proper weighting and maintain a meaningful reference point. As a consequence, various ingenuous methods are employed by these assessment personnel. This information leads to the various community threats and arrive at solutions at least somewhat thorough and documented data and information available. Despite the difficulty, once these threats are identified, they can be mitigated.

To mitigate population impact, many of the humanitarian-oriented world organizations have implemented various assessment programs with the goals to determine the following with some degree of scientific accuracy:

• The areas impacted by landmines and other ERW
• The physical properties of the contamination
• The concentration of contamination
• The impact on population masses exposed to the threat
Abatement, which utilizes country assessments. As an enhancement to the standard assessment process, the WBA program seeks to develop concurrent plans, in coordination with the various country teams, to assist using a fast-track approach so that serious threats can be addressed much more expeditiously than with other methods. Under this methodology, as country assessments reveal threats, the information is shared with the host country and discussions include possible solutions to the threats. As the assessments continue, the solution sets are fine-tuned, and it quickly becomes obvious which option is best to mitigate the specific threats. Once the solution is mutually agreed upon by the Department of State and the host country, the same teams that are conducting the assessments can be expanded to handle the implementation.

The benefits of this improved approach are numerous but include faster response to identified threats, a more cost-effective mitigation of threats, a fast-tracked timeline (the same teams expand to handle the solution; there is a minimal learning curve for personnel) for response, and ongoing host-country buy-in to the solution. The Department of State has done an admirable job in constructing a highly efficient, responsive, accurate and timely program for weapons removal and abatement.

In conclusion, there is an irrefutable relationship between landmines and other remnants of war. Their origins are complexly independent; their technology and cost components are quite different; their general manufacturing and deployment sources are different; but both excel as weapons since the effectiveness of any weapon depends upon two factors:

1. Its ability to damage or destroy men and material
2. The morale effect of its use, or threat thereof, upon the enemy

Both of these threats have many names, and I am certain someone somewhere is thinking up a new name for landmines and other explosive remnants of war. Regardless of the new tortured phrases we will be forced to endure, let us not forget that “A rose by any other name would smell as sweet,” but these threats are the thorns of the rose.

See Endnotes, page 110

The cluster munitions campaign, following the precedent of the International Campaign to Ban Landmines, is beginning to make an impact on state views of banning or restricting cluster munitions. This article examines the history behind the fight to ban or restrict cluster munitions and its ties to the ICBL. The author also discusses the most recent developments in the process to ban or restrict cluster bombs.

by Robin Collins [World Federalist Movement–Canada]

The end of the Cold War has a lot to do with the greater attention the world now gives to humanitarian grievances. The Unexploded ordnance impact data has been accumulating, but without the precedent of the anti-personnel mine campaign and the Ottawa Convention, the Belgians would probably never have considered banning cluster munitions in 2006.

Most of the ICBL’s 1,400 members have limited themselves to APM eradication, victim assistance and other Convention goals, but have not yet rallied in similar numbers to the cluster-munitions effort. The Cluster Munition Coalition, formed in late 2003, has approximately 170 members. Many of the CMC’s members and leadership, however, are seasoned campaigners. Familiar to ICBL-watchers are Handicap International, Human Rights Watch, Landmine Action (UK), Mines Action Canada and Pax Christi, who are among those sitting on CMIC’s 18-member steering committee.

The ICBL and its dynamic partnership with like-minded APM ban states (the Ottawa Process) was an innovative and collaborative way of quickly moving the ban agenda forward. Disappointment with the existing Convention on Certain Conventional Weapons’ consensus rule (where a single recalcitrant state can dilute or block Convention provisions supported by the majority) led to the new parallel process. The parties to the Ottawa Process focused on the idea that humanitarian impact can trump military utility. This idea was not new because international humanitarian law and an array of treaties from the mid-1800s onwards already referred to obligations towards civilians during conflict, containing such ideas as proportionality, discrimination, military necessity and humane treatment. The CMIC effort has followed the precedent of the ICBL, struggling through the slow CCW process and challenging the stragglers. If cluster-munition campaigns were unprepared for the inadequacy of the prevention measures of the Convention’s Protocol V that were agreed to by governments, they have sober expectations about their...