February 2006

Afghanistan Landmine Impact Survey

Patrick Fruchet
U.N. Mine Action Centre for Afghanistan

Mike Kendellen
Survey Action Center

Follow this and additional works at: https://commons.lib.jmu.edu/cisr-journal

Part of the Defense and Security Studies Commons, Emergency and Disaster Management Commons, Other Public Affairs, Public Policy and Public Administration Commons, and the Peace and Conflict Studies Commons

Recommended Citation
Available at: https://commons.lib.jmu.edu/cisr-journal/vol9/iss2/16

This Article is brought to you for free and open access by the Center for International Stabilization and Recovery at JMU Scholarly Commons. It has been accepted for inclusion in Journal of Conventional Weapons Destruction by an authorized editor of JMU Scholarly Commons. For more information, please contact dc_admin@jmu.edu.
The fieldwork for the Afghanistan Landmine Impact Survey was completed in January 2005, and the United Nations certified it 30 Sept. 2005. The final ALIS report is expected to be published in March 2006. This article provides an overview of the findings and how the mine action community in Afghanistan is using the results in its strategic planning.

By Patrick Fruchet [U.N. Mine Action Centre for Afghanistan] and Mike Kendellen [Survey Action Center]

Background

The Mine Action Programme for Afghanistan is one of the largest and longest-running mine action programs in the world. In 1993, the Mine Clearance Planning Agency, an Afghan non-governmental organization, conducted the first Level One Survey, the predecessor to the Landmine Impact Survey. Over the years, new suspected hazard areas were periodically added to the MAPA database. As years passed, however, the database was unable to meet the increasing needs of mine action stakeholders. The situation called for a proactive response.

In 2000, the United Nations Mine Action Service, the Survey Action Center, and the government of Afghanistan first discussed the need for an ALIS for Afghanistan. The lack of international interest in mine action in Afghanistan while under the Taliban, and the subsequent Coalition operations against al-Qaeda and the Taliban after 9/11, however, postponed implementation of an ALIS until 2002, when conditions were more conducive to executing a national survey. In November 2002, the U.N. Development Programme and the European Commission signed a contract for SAC to oversee the ALIS and provide technical support to the Mine Clearance Planning Agency. In May 2003, SAC and MCPA fielded teams to commence the survey. MCPA teams were able to travel to all but five of the 329 districts in the 32 provinces. The teams operated under severe security constraints in potentially dangerous conditions and deserved commendation for their extraordinary achievement. During this time, MCPA survey teams visited over 5,000 communities suspected to have landmine and unexploded ordnance problems.

The ALIS was funded by the EC through UNDP and the UNMAS Voluntary Trust Fund for Assistance in Mine Action, as well as the governments of Canada and Germany through SAC.

Retrofitting

The Afghanistan survey was, in some respects, different from many Landmine Impact Surveys conducted around the world. One such difference was the so-called “retrofitting” of 13 years of mine contamination and mine action operations information contained in the Mine Action Programme for Afghanistan databases. Survey teams deployed to the field carried with them the available database information on the area in which they were traveling and sought to verify or discount the database information. The result is a “retrofitted” database providing a sound basis for making planning assumptions.

Over the course of the 13-month fieldwork period, approximately 50 percent of the database was discounted as being outdated and invalid. This section was replaced by an equal volume of new information that can be used for long-term planning, priority-setting and operational tasking. The ALIS successfully converted the individual mine data in the UNMACA database into community data that provide a clearer picture of the true extent of the impact of landmines on Afghan communities. The ALIS results established new benchmarks from which progress and success can now be measured. Prior to the survey, the UNMACA database listed 850 square kilometers (328 miles squared) of suspected hazard areas. Upon completion of the survey, the revised contaminated area was 735 kilometers (276 square miles), a 15-percent reduction.

Key Findings

The ALIS produced three major findings: first, landmines impact 7 percent of the more than 33,000 communities in Afghanistan; second, 18 percent of landmine/UXO victims are children between 5 and 14 years of age (a very high percentage); and third, the retrofitted aspect of the survey has updated the MAPA database and reduced the mine-contaminated area by 15 percent.

More specifically, the ALIS identified 2,368 communities impacted by landmines and/or UXO in 295 of the 329 districts. An estimated 4.2 million people live in these landmine- or UXO-impacted communities, with 1.6 million of these living in high- to medium-impact communities. It is estimated that approximately 17 percent of all citizens are living in mine-impacted communities.

Community impact. A scoring mechanism developed by the Survey Working Group categorizes the communities by degree of impact. The scoring system is driven by three elements: the number of victims, blocked access to resources or development opportunities and the types of communities impacted by the contamination. The Afghan government modified this system within parameters established by the SWG, putting extra weight on blockages in high-impact communities. The Afghanistan survey was, in some respects, different from many Landmine Impact Surveys conducted around the world. One such difference was the so-called “retrofitting” of 13 years of mine contamination and mine action operations information contained in the Mine Action Programme for Afghanistan databases. Survey teams deployed to the field carried with them the available database information on the area in which they were traveling and sought to verify or discount the database information. The result is a “retrofitted” database providing a sound basis for making planning assumptions.

Over the course of the 13-month fieldwork period, approximately 50 percent of the database was discounted as being outdated and invalid. This section was replaced by an equal volume of new information that can be used for long-term planning, priority-setting and operational tasking. The ALIS successfully converted the individual mine
by war are the main reasons why villagers were abandoned and remain empty.

Victims of mine incidents. In the LIS, “recent victims” are defined as persons who have been killed or wounded within the 24-month period prior to the survey. The survey recorded 3,245 recent mine/UXO casualties (922 killed and 1,323 injured), which averaged to approximately 1,100 victims per year over the course of the two-year period covered by the survey. Of the 2,245 casualties, 90 percent were male and 7 percent female. The gender of the remaining 3 percent is unknown. The fatality rate is nearly the same for males (41 percent) as for females (42 percent).

Age in Afghanistan is one of the determinants for describing the serious consequences from landmines. Although two-thirds of the victims in Afghanistan are males 15–59 years of age, 609 victims, or 18 percent of the total, are 5–14 years old.

The ALIS data on casualties show the devastating effects of mine accidents on livelihoods. Comparing current and pre-incident occupations, the data indicate some major changes. Unemployment among all survivors increased by 56 percent, and there were notable decreases in the percentage of farmers, military personnel, and laborers among the survivors—all occupations requiring mobility over difficult terrain (a challenge for any landmine/UXO survivor who becomes an amputee)—and increases in the numbers of those doing household work.

The ALIS data show 664 communities—or 28 percent of the 2,368 impacted communities—recorded recent victims. Twenty-six communities recorded 10 or more recent victims including nine or more recent victims including three communities reporting 22, 33 and 35 recent victims. Blockages. The more commonly reported economic blockage was pastureland, which was reported in 71 percent of the impacted communities. Cropland was the second most commonly reported blockage.

The ALIS included “development and economic activities” as a potential blockage by landmines, but only 9 percent of impacted communities, or 217 of them, reported this type of blockage.

Consequences for Mine Action Planning

The results of the ALIS indicate a foreseeable and reasonable end to the landmine problem within the next decade. The survey findings made it possible to estimate the number of mine victims, the number of affected families, the number of blockages, and the number of communities affected. The survey also provided information on the damage caused by landmines, including the loss of economic activities, the loss of productive resources, and the loss of social and economic development.

With the advent of the ALIS, UNMACA has worked with the government and other mine action stakeholders to sharpen mine action prioritization to tackle the deadliest minefields (high SHAs) in Afghanistan by 2007, medium SHAs by 2009, and all remaining minefield SHAs by 2013 and UXO SHAs by 2015.

The ALIS data will also assist in further refining the MAPA’s casualty reduction strategy. Additionally, the ALIS results allowed mine risk education programs to develop new strategies for risk reduction that will better use limited resources and encourage safe behavior among various community members targeting communities based on the level of impact from landmines according to the ALIS.

The ALIS can also impact planning for development. Based on information from governmental, inter- national and non-governmental organizations, as well as from the results of the ALIS, cost estimates can be calculated for mine action that affects road construction, power lines and irrigation. However, such estimates require definitively ranked priorities and time frames for development projects.

In order to make more effective use of the LIS, Afghanistan is one of the first mine action programs to create monitoring teams to ensure the database stays current. The Landmine Impact Assessment Teams were assembled at UNMACA soon after the ALIS was completed. They conducted community views countryside to both validate and update the ALIS findings. The LIAT-based monitoring systems ensures the database is consistently maintained, which, in turn, will allow UNMACA to undertake regular analysis and monitoring to ensure planning is effective. Priorities can be updated on an ongoing basis to ensure high-impact communities are kept at the top of the agenda, including communities newly categorized as impacted because of recent victims or new blockages. By periodically updating the critical two-year window of information driving community impact scoring, UNMACA will base MAPA planning on the best available information.

Conclusion

The LIS has advanced the planning for mine action in Afghanistan. The survey has provided MAPA with an updated and verified database in which baseline data can be used in planning and measuring achievement and success. Significantly, the LIS identified areas seriously affected by landmines as well as areas not affected. The survey resulted in the idea that landmines are everywhere in Afghanistan.

The government of Afghanistan, the ultimate user of the survey, expressed its satisfaction with the LIS final report and the monitoring and evaluation of results for the major strategies. Specifically, the ALIS provided data for the government of Afghanistan to design a national mine action strategy encompassing development planning and new possibilities for a sharply focused strategy in Kabul on 8 Nov. 2005 when Dr. Mohammed Hadier Reza, the deputy minister of mine action, reviewed the results. The government of Afghanistan will convene an entirely different set of participants—experts who would discuss how to accelerate the social and economic recovery of areas cleared by 2007.

In this article, the author details how USAID has changed over the years and the agency’s current focus. The five lessons discussed are a guide for donors to follow to assure dollars are well-spent.

by Lloyd Feinberg | U.S. Agency for International Development
An Operator's Perspective on Ottawa's Article 5, Nergaard Mine Free: Not Anytime Soon,

Notes

1. In the United States, this conflict is referred to as the Vietnam War.

2. The War Goes On, Vosburgh

Endnotes

3. ISO 9000 is a set of standards for quality management systems that is accepted around the world. For more information about the various quality certifications, visit International Organization for Standardization at http://www.iso.org/ or Simply Qualify’s Frequently Asked Questions about ISO 9000 at http://www.isoeasy.org/faq03.htm.

4. As observed by MAG Cambodia’s technical operations manager, Gary Fenton.

5. These individuals are often called landmine survivors. For a complete definition, see http://www.icbl.org/lm/2004/intro/survivor, accessed Dec. 2, 2005.

References

An Operator's Perspective on Ottawa's Article 5, Nergaard

Notes

1. In the United States, this conflict is referred to as the Vietnam War.

2. The War Goes On, Vosburgh

Endnotes

3. ISO 9000 is a set of standards for quality management systems that is accepted around the world. For more information about the various quality certifications, visit International Organization for Standardization at http://www.iso.org/ or Simply Qualify’s Frequently Asked Questions about ISO 9000 at http://www.isoeasy.org/faq03.htm.

4. As observed by MAG Cambodia’s technical operations manager, Gary Fenton.

5. These individuals are often called landmine survivors. For a complete definition, see http://www.icbl.org/lm/2004/intro/survivor, accessed Dec. 2, 2005.

References