Journal of Conventional Weapons Destruction

Volume 7
Issue 2 The Journal of Mine Action

Article 20

August 2003

From Kosovo to Afghanistan, Cluster Bombs Again

Fernando Termentini
Consultant

Follow this and additional works at: https://commons.lib.jmu.edu/cisr-journal

Part of the Defense and Security Studies Commons, Emergency and Disaster Management Commons, Other Public Affairs, Public Policy and Public Administration Commons, and the Peace and Conflict Studies Commons

Recommended Citation
Available at: https://commons.lib.jmu.edu/cisr-journal/vol7/iss2/20

This Article is brought to you for free and open access by the Center for International Stabilization and Recovery at JMU Scholarly Commons. It has been accepted for inclusion in Journal of Conventional Weapons Destruction by an authorized editor of JMU Scholarly Commons. For more information, please contact dc_admin@jmu.edu.
similar environment, could potentially have cleared 57 million more sq meters for the same amount of money, as opposed to the 1.14 million sq meters that was achieved.\footnote{This increase is an increase of 15.6 million sq meters or 600 percent. The estimate of possible achievement brings together a combination of factors, and illustrates that considerable more clearance could have been achieved had more emphasis been placed on the effective use of donations. It should also be emphasised that with properly prioritised site selection the possible increase could have been as high as 25 percent more than indicated. In other words, for a cost of KM 242 millions, an estimated output of 116.9 million sq meters could have arguably been achieved.} but also the selection of the most effective method. In order to work effectively throughout the year, many decisions about where, when and how to work need to be made. Realistically, it is not always possible to achieve the ideal effectiveness, but this was proved that at present, many of the critical elements for achieving effectiveness are not even considered. The facts are that:

- Many donations are not made available in time to achieve the most effective results.
- Site selection, based on the best conditions to achieve effective demining, is rarely considered.
- Commercial/NGNOs completed more sq meter/KM ($) than the non-commercial with fewer personnel.
- Commercial and NGOs have completed more tasks/KM ($) than the non-commercial.
- Commercial and NGOs have destroyed more mines/KM ($), and the non-commercial.
- The average cost per sq meter undertaken by the non-commercial groups is at least five times higher than the average cost per sq meter of the commercial NGOs groups.
- The commercial/NGNOs work more hours per day and more days per month than the non-commercial sector.
- Many donors stated that they are "not interested" in their donation being utilised more effectively.

In BHL, political, institutional and personal views have had a negative impact on the effective use of donations and international objectives have delayed the effective creation of a sustainable national capacity. 

- Donors are supporting more projects that have little or no effect on improving productivity, cost effectiveness or the removal of the cause.
- While annual output has remained at around 6 to 6.7 million sq meters destroyed, the number of tasks and mines destroyed has gradually decreased since 2000; yet, technical survey and the increased number of deminers since 1999 have dramatically increased the sq meters cleared and number of tasks completed.

The lack of a balanced, business-like approach that addresses safety, quality, productivity and effectiveness, as international, institutional and organizational levels, as well as at the national mine action programme level, is obvious. The lack of that balanced approach, coupled with ineffective management of those responsible for implementing donations unnecessarily, prolongs the suffering of affected populations. Yet, we still obtain these donations "in the name of humanitarianism.

We are truly humanitarian we need to focus more on removing the threat of landmines quickly and as safely as possible so that affected countries can begin the long process of post-conflict recovery.\footnote{In order to view the full study, check out www.eandi.com.}

*All graphics courtesy of the author.*

Contact Information

Eddie Banks
Project Director
E and I
E-mail: banks@eandi.com
Websites: www.eandi.com
www.mldcorps.com

Cluster bombs have created problems in several countries, as they are one of the many unexploded hazards often left behind after a conflict. This article gives an overview of the threat and shows how the organization Intersos has been working to help clear up the problem.

By Fernando Termentini, Intersos

Background

Cluster bomb units (CBUs)\footnote{Websites: www.eandi.com} are well known from the Gulf War to post-Dayton Bosnia, but they were completely forgotten by the Oslo arms Treaty, which didn't recognize them in APLs. In Kosovo and in Afghanistan, they have proven to be more dangerous than APLs. Cluster bombs are UXOs that became known in Italy when some fishermen found them in their nets in the Adriatic Sea. Apart from the fishermen, whose security was threatened, nobody at that time spoke out in Italy about the future danger: hundreds of these UXOs would spread in Kosovo and Serbian territory, killing and injuring people, mostly children. In fact, CBU don't have self-destructing device that disables them if they do not explode, so they remain as a long-lasting danger for civilians, and they can explode with a slight touch or upon removal.

Modern CBU models are BL7 and BL75, made in the United States, and MK-41, made in the United Kingdom. They are the "elder sisters" of the weapons used in Kuwait and of the KB-1 used by Serbs and Muslim Bosnian people during the Balkan Wars. CBU differ from APLs in their appearance, the former being more colourful and intriguing, so that they can trigger people's curiosity. An APL is basically a defensive ordnance with a local target, while a CBU is an offensive ordnance with a wide-area target. CBU are real unexploded traps with much more explosive capacity than APLs, as an APL can kill a range of 50 m, while a CBU can be fatal at a range of 150 m.

In fact, CBUs are dropped during air raids in dispensers with a capacity of more than 200 bombs each, landing randomly on the ground. When they do not explode, they hide in the grass or under the ground, up to 50 cm deep, so that nobody can really tell where they are. In principle, APLs should be mapped, making their identification, marking and clearance easier and allowing civilians to avoid them. CBU impact areas, instead, are very wide targets, difficult to identify and map before systematic surveys and clearance are carried out. They can be identified starting from their drop point, if known, or by tracing them on the ground in a sequence.

In those days, we knew exactly where 90 percent of Kosovos mines were, because the Serbs buried over the maps of registered mined areas to the international community. But we didn't know with the same accuracy where CBUs had been dropped. In fact, we had little news on Universal Transverse Mercator (UTM) coordinates of droppping points, which made it virtually impossible to fix the actual mined areas and quantify the real problem.

Immediately, the international community launched an appeal to quickly...
The U.S. Humanitarian Mine Action Program in Iraq

The United States government has developed a wide-ranging plan to build an indigenous mine action capability within Iraq. The plan will help rid Iraq of the threat of landmines and UXO so that the country can focus on rebuilding its society.

by the United States
Humanitarian Mine Action Program

Imagine growing up in a country where you had to live with the sounds of gunfire and the glow of missiles keeping you awake at night. Imagine the overwhelming feeling of joy when these terrors ended. Imagine wanting to run freely among your friends, but not being able to, because of the dangerous objects that lay around your neighborhood long after the war is over. Is there such a country that now, more than ever, needs an organized, well-developed program to remove these threatening objects?

In order to help provide this humanitarian assistance, the United States government has developed a robust and wide-ranging plan to build an indigenous mine action capability within the country. The plan will help rid Iraq of the threat of landmines and UXO. With the help of the United States, the United Nations and other countries around the world, Iraq will be able to foresee the end of its landmine problem and focus on rebuilding its society.

The Landmine/UXO Problem

Iraq has been the victim of violent conflict throughout its history, which, in recent years, has left the land plagued with landmines and UXO, disrupting the social, economic and environmental development of the country. Before Operation Iraqi Freedom (OIF), an estimated 10-15 million landmines were deployed in Iraq, dating from conflicts as far back as World War II, with the majority of the landmines laid during the Iran-Iraq War from 1980 to 1988. International observers consider that landmines present a clear risk in Iraq, but a more significant threat is posed by UXO. The International Committee of the Red Cross (ICRC) reported in 2001 that UXO from previous conflicts has constituted the major humanitarian threat for the past seven years in northern Iraq, along the border with Iran, as well as a thorough central and southern Iraq. The problem is now exacerbated by the widespread presence of abandoned munitions and unexploded remnants from the most recent conflict.

CBUs in Other Countries

The threat of CBUs in the Balkans is not only a problem in Kosovo. In the Republic of Serbia, for example, UXO remain everywhere—even in public gardens—as the Intermes Mine Action Unit's experts pointed out in June 2001 after an accurate assessment of the territory to define the magnitude of the problem. In Afghanistan, we found a death rate as high as 50 percent in some cases. It is to be mentioned that, prior to the Coalition Forces Military Campaign, barring area clearance (BAC) operations in Afghanistan were mainly conducted by surface clearing. The widespread use of CBUs during the air campaign and the legality of cluster submunitions have forced the Mine Action Centre for Afghanistan (MACA) to adopt stricter Standard Operating Procedures (SOPs) similar to the ones adopted by the UN Mine Action Centres in Kosovo and Herzegovina (BH), with the depth of clearance for CBUs set at 500 mm. Thus, it was necessary to train BAC teams on the use of the Schonstedt remote detector, a new instrument specifically designed for detecting ferrous materials to a depth of 500 mm. Intersos provided approximately 60 Schonstedt detectors to the Afghan NGO partner and trained these BAC teams to use them properly and efficiently.

The following are two main examples of CBU data collected:

1. Kabul Province, Karez Village: 363,580 sq m infested by mines (agricultural and grazing ground). Dispensers dropped: 4. Total cluster bombs dropped (BL-97): 800. With 80 percent of the area cleared, we found 484 unexploded BL-97s (60 percent of the total).
2. Kabul Province, Mousajir Village: 248,000 sq m infested by mines (agricultural and grazing ground). Dispensers dropped: 6. Total cluster bombs dropped (BL-97): 1,200. With 90 percent of the area cleared, we found 513 unexploded BL-97s (43 percent of the total).

CBUs and the International Community

Overall, CBUs are not considered similar in the effects to APs. For this reason, they were not restricted by the Ottawa Treaty. Cluster bombs, which continue to be used, pollute the environment and are a serious threat for civilians. They represent a real limitation to the economic development of states and a serious economic burden for the international community.

In fact, a matter of primary importance is to conduct humanitarian clearing of these affected territories, which means areas need to be 99.6 percent clean, as international standards dictate. This kind of percentage involves great costs and long term funds from the international community, but gives back a lot in terms of saving human lives. Therefore, we believe that the international community should pay much more attention to this issue and rid the world of these deadly weapons.

The U.S. Humanitarian Mine Action Program

The U.S. Humanitarian Mine Action Program (USCENTCOM) set up procedures to identify minefield locations throughout Iraq. Over 2,500 minefields, 2,200 UXO sub-munitions locations and thousands of abandoned munitions sites have been identified, and more are found on a daily basis. USCENTCOM has also established mechanisms to transfer information to non-governmental organizations (NGOs) about the minefield and UXO locations as part of the effort to clear the land of these silent killers.

Prior to OIF, the landmine/UXO problem was well-documented in northern Iraq only; thanks to a survey conducted by the United Nations. It was in the north that the only substantial mine action efforts took place, consisting of landmine/UXO clearance and mine risk education (MRE). The Iraqi government, however, took a dim view of mine action in the north, attempting to bring such practices to a halt. According to the

<table>
<thead>
<tr>
<th>Village</th>
<th>Area Mined (in sq m)</th>
<th>Total number of CBUs dropped</th>
<th>Percent of area cleared</th>
<th>Number of unexploded CBUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karot</td>
<td>363,500</td>
<td>800</td>
<td>80</td>
<td>-846 (60 percent)</td>
</tr>
<tr>
<td>Mosajir</td>
<td>248,200</td>
<td>1,200</td>
<td>90</td>
<td>513 (43 percent)</td>
</tr>
</tbody>
</table>