ITEP Work Plan

Marta Garotta

International Test and Evaluation Program for Humanitarian Demining (ITEP)

Follow this and additional works at: https://commons.lib.jmu.edu/cisr-journal

Part of the Defense and Security Studies Commons, Emergency and Disaster Management Commons, Other Public Affairs, Public Policy and Public Administration Commons, and the Peace and Conflict Studies Commons

Recommended Citation

Available at: https://commons.lib.jmu.edu/cisr-journal/vol7/iss2/41

This Article is brought to you for free and open access by the Center for International Stabilization and Recovery at JMU Scholarly Commons. It has been accepted for inclusion in Journal of Conventional Weapons Destruction by an authorized editor of JMU Scholarly Commons. For more information, please contact dc_admin@jmu.edu.
The author presents an overview of Test and Evaluation (T&E) projects within the International Test and Evaluation Program for Humanitarian Demining (ITEP), which is involved in testing and evaluating equipment, systems, and methods.

One of the major objectives for participants in ITEP work is to share information and to join efforts in the area of T&E of humanitarian demining equipment, systems, and methods, in order to leverage resources and promote the use of commonly agreed upon test protocols. An important instrument needed to obtain active collaboration in ITEP is the ITEP Work Plan. The following is an overview of ongoing and planned national and international collaborative T&E projects within the ITEP. In its main aims are to increase the efficiency of T&E activities by avoiding duplications, providing a clear overview of what is being learned and using methodologies based on common practices or agreed upon test protocols and standards. Finalised projects are kept in the Work Plan and are classified as completed and/or archived.

Overview of the Work Plan

The Work Plan is structured on the basis of a systematic approach to T&E. Technologies are grouped into six technical programs covering a number of projects. Currently, the ITEP Work Plan contains a collection of 43 projects. Figure 1 provides an overview of the distribution of projects in each technical program. A separate program has been added to cover T&E services provided by the Secretariat and project management groups. Examples of ITEP services are the establishment and maintenance of the ITEP web site and the collection of lessons learned.

For each technical program and project, the systematic approach to T&E uses the following criteria: Input, Methodology, T&E, and Output. "Input" refers to activities related to collecting and collating information on previous T&E activities, test methodologies, test results and lessons learned. Different stakeholders might be consulted during this process.

"Methodology" includes T&E supporting activities such as identification and determination of test parameters (e.g., related to mine threat, climate, soil, vegetation, etc.) and development of best practices and interim T&E protocols; which, without a stage, be developed into full standards.

"T&E" covers strict T&E of demining equipment and procedures, during which developed methodologies are validated and lessons learned are fed back into ITEP.

"Output" refers mainly to the activities encompassing the production and distribution of reports, data and information on T&E. It may also cover the establishment of T&E standards, an activity that may be led by a number of organizations such as ISO, CEN, UNMAS and GICHD.

Figure 2 illustrates the current distribution of projects in each technical program, according to the above criteria.

Examples of How ITEP Works

The ITEP Work Plan was first drafted in 2002 and is continuously updated whenever new national or collaborative efforts are set up. Participants report new projects to the ITEP Secretariat, who incorporates them into the Work Plan. A yearly major review and update of the Work Plan is organized by a standing ITEP Work Plan Working Group, which includes representatives of all participants. They report on the progress and status of the projects and provide feedback on the finalised T&E activities. Some examples of how ITEP works and how this is reflected in the ITEP Work Plan are given as follows.

The plan has highlighted duplications of efforts, and where this has occurred participants have been encouraged to collaborate. Such was the case in the currently planned T&E of Commercial Off-The-Shelf landmine neutralisation devices. Sweden, Canada and the United States were all planning a similar project and have decided to combine their efforts, which resulted in ITEP project 6.2.1, Comparative T&E of Individual Mine Neutralisation Devices. The project will start at the end of this year and be at a Swedish test range this summer and should bring the interested T&E participant up to a standard of a standard test protocol (e.g., test targets). This type of planned T&E activity, published in the ITEP Work Plan, is approved by the national and/or manufacturers, who might want to include a particular product in the comparative T&E activity. As such, ITEP can provide a responsive T&E program.

The T&E of the ARTRAC 100, requested by the UK"s Department for International Development, was brought under the ITEP umbrella (ITEP project 3.2.1, T&E of the Mechanical Equipment ARTRAC 100). This means that interested ITEP participants were asked for input on the test protocol and for participation in the trial. Canada, Sweden and the European Commission (EC) provided support. The resulting T&E report is available on the ITEP website, and participates are harmonising test protocols between the ITEP participants. As a result, a best practice for T&E of this equipment is currently being drafted by the Canadian Centre for Mine Action Technologies (CCMAT) (ITEP project 3.1.1, T&E Guidance on Standardisation CEN Workshop Agreement (CWA) on Demining Machines). This guidance is to be used by the CEN Workshop Agreement (CWA) on Demining Machines. The goal is to draft a CWA for distribution and revision by the end of 2003. The 2003 goal must be met in order to deliver an agreed CWA to CEN (and later to IMAS) by 2004.

Two prototype handheld multi-sensor mine detectors, developed for the United Kingdom and tested for the United Kingdom's Department for International Development, were evaluated under the ITEP project 2.4.2.1 as a bilateral test and evaluation project (ITEP project 2.4.2.2, T&E of QuantiQ and ERA Portable Mine Detectors). This means that the U.S. large-scale detector test facilities at Fort A.P. Hill, Virginia, were available for blind tests against a large number of similar mine detectors and cluster targets. Hence, both the European and American detection protocols were tested against a standard protocol and the obtained results are considered statistically valid and comparable. As the tests involved equipment under development, only summary test information has been made available on the ITEP website. Detailed reports and data on reports may be obtained from the respective companies under a non-disclosure agreement.

Future projects will be made available on the ITEP website. The established test protocol and lessons learned will also constitute important input for the standardisation process. Furthermore, this activity could perform the function of a response T&E program, including products on request by the user and/or producer.

A systematic inventory of T&E activities, capability needs, requirements and capabilities in south eastern Europe (SEE) was finalised in November 2001. The project, under the leadership of the EC, and with input from Belgium, the Czech Republic, Estonia, Hungary, Poland, Romania, Serbia and Montenegro, the United Kingdom, produced a detailed overview of ongoing projects and existing T&E capabilities that could be used in the field by the SEE region. Deficiencies in the current T&E operations and requirements were also identified and future needs are being established as a part of the ITEP website. Although this project took place before the ITEP Work Plan came into force, it is mentioned as an example because it was the first collaborative effort executed under the ITEP umbrella.

Defining the first version of the CEN Workshop Agreement (CWA) on T&E of metal detectors is an important collaborative effort achieved under the ITEP umbrella (ITEP project 2.1.1.1, Methodologies for/Assessment of Metal Detector Performance) and the European CEN Workshop Agreement on T&E of Metal Detectors). The EC performs a leading role in this ITEP activity, with the availability of a full-time Secretariat at JRC. Full details on the first results of this project and the future activities will be available in the next issue of the Journal of Mine Action.
NOTES FROM THE FIELD

Logistics-Explosives-Safety

Cost, safety, and compliance with international regulations are among the most important factors with respect to shipping explosives. The following article gives detailed insight into the transport and storage of explosives necessary for destroying mines and UXO.

by Rolf Oechsli, RUAG Munitions and Jorgen Schneider, Dyno Nobel
Danmark A/S

Introduction

The humanitarian disaster caused by landmines and unexploded ordnance (UXO) is, throughout more than 60 countries has created an active and growing response from the international community that could eventually lead to the elimination of the use of landmines. At mines can be very dangerous or impossible to render safe, they often must be destroyed in-situ. Quality demolition products are essential for the safety of the mine clearance experts. Delivering materials for the demining teams can be solved with reasonable economic resources and within a relatively short time; however, problems associated with explosives must be solved first. For example:

- Can explosives suitable for demining be delivered locally?
- Can explosives be transported to the site and stored safely?
- Is it possible to get explosives from neighbouring countries?

Compatibility Groups

Compatibility groups inform you about how to stow a container and how it can be transported safely. Definition of compatibility groups of substances and articles for demolition are listed in Table 1 in the right.

When stowing a container with explosives, you are allowed to have normal goods in the container as well, but under no circumstances can it contain other dangerous goods. Table 2 shows what is possible to stow when stowing a container.

By putting division number and compatibility group together, it is possible to stow and transport the explosives by sea or air in accordance with International Maritime Organization (IMO) regulations (transporting by ship) or in accordance with the International Air Transport Association (IATA) dangerous goods regulation (transporting by air) as in Table 3.

Table 3 is rather theoretically and can be difficult to understand. All explosives will be listed as Class 1. In addition, they will have a division number, a compatibility group, a UN number and a proper shipping name. Typical explosives for demolition can be as Table 4 depicts.