In close collaboration with a leading provider of C-IED training to humanitarian mine action organizations, the C-IED APT will be developed to be able to

- move rubble and obstructions aside (delicately when appropriate),
- conduct a rapid camera survey of an area, producing accurate map records,
- investigate suspicious objects either robustly or delicately,
- collect ordnance that may not be considered safe to move by hand,
- disrupt potential IEDs with either a water charge, fragil-
ble or solid projectile: each of three disrupters feature three
pre-loaded barrels (25.4 mm and 40 mm),
- fire a closed grapnel and line that can then be used to pull the target,
- place explosive charges to disrupt or destroy IEDs,
- attach hooks and a winch cable to drag heavy items to another place,
- deploy cutting equipment able to cut an additional entry into a vehicle/container,
- deploy a commercial off-the-shelf freeze neutralizing kit,
- gain safe entry to a vehicle for internal camera inspection,
- carry a multichannel (selective) wireless signal jammer to prevent wireless initiation systems being used in the vicinity,
- carry and place smaller robots when access through small openings is required.16

One advantage it has over all other similarly sized C-IED machines is the ability to be driven by an on-board operator to the area of need. Its small footprint and maneuverability allow it to drive over sidewalks when traffic is gridlocked following an incident. It can push or lift debris aside to access an area, and its flexible chassis and ground clearance allow it to move over rubble to get where it is needed.

See endnotes page 67

For more information about the Demining APT, contact andrew.vian.smith@edu.unige.it at the University of Genoa. For more information about the C-IED APT, contact Matteo Zoppi at zoppi@dimec.unige.it.

ENDNOTES
Interpreting Submunition Fragmentation Marks on Hard Surfaces for the Survey of Cluster Munition Strikes by Evans [from page 11]

21st Century Survey in Eastern Ukraine and the Use of Technology in Insecure Environments by Torbet and Thompson [from page 20]
2. The ceasefire agreement signed in February 2015.
5. A draft law aiming to establish one is currently being read in Ukraine’s parliament, the Vekhovna Rada.
7. In Ukraine the threshold defined by HALO is evidence sighted by a survey team or a credible witness (someone who has seen a mine, accident site, etc.).
8. The form includes a clear statement that the information it contains is not submitted to IMSMA, or used to plan clearance, until the NTS process is complete and a full NTS form is completed.

Mine Detecting Rats Make an Impact in Cambodia by Fast, Bach, McCarthy, and Cox [from page 32]

Mine Action in Burma: Building Trust and Incremental Gains by Crowther, Dresner, and Aaron [from page 39]

Social Inclusion of Marginalized Communities: Mine Action in Laos by Kalar [from page 44]
5. Personal interview, April 2017.
16. Personal interview, March 2017
17. Personal interview, March 2017.
Epidemiological Study of Landmines/ERW Accidents and Victims in Kachin, Kayah, and Shan States, Burma by Zwang and Simon [from page 48]

References
1. The study has been funded by the United States Department of State (USDOS).
4. While the purpose of this study did not assess whether DRC/DDG provided support for all participants or which questions were not asked, all the landmines victims identified by DRC/DDG usually received victim assistance.

Bridging a Critical Mine Action Information Management Gap: Complex Conflict Environments by Ghareeb Barzangy [from page 53]
1. National database IMSMA for Gray Area managed by iMMAP.

Addressing the Explosive Hazard Threat in Northern Syria: Risk Education on UXO, Landmines, Booby Traps, and IEDs by Skilling and Zapasnik [from page 55]
10. Needs and Population Monitoring uses a set of tools and methods implemented through OCHA to identify, assess, and track target populations.

An APT Demining Machine by Andy Smith [from page 61]
1. “Clearance” is defined in IMAS 09.10 as “the removal and/or destruction of all mine and ERW hazards.”
2. The author saw this in use with HALO Trust in 1996/7.
3. Notably by the demining INGO Menschen gegen Minen (MgM).
5. This small machine was made and used by the author. For a video showing the use of this rice-tractor machine, Accessed 17 May 2017. see http://bit.ly/2qtxZK.
6. Much of Myanmar, Colombia and Tajikistan are examples, but there is often confidence of the absence of an AT mine threat in many places elsewhere.
7. The author had designed the prototypes of its wheels in 2011.
8. The author uses the following definition of “appropriate technology”: Technology is appropriate when it can achieve the desired end; is tailored to fit the psychosocial and biophysical context prevailing in a particular location; is suitable to the social and economic conditions of the geographic area; is affordable to both buy and use; and can be managed and maintained using local skills.
10. The APT can be used with COTS agricultural equipment, magnet arrays, detector arrays and a dedicated counter-IED platform.
11. The mines used were: 5 x PMA 1A, 5 x PMA 2, 5 x PMA-3, 1x PMR-2A and 1 x PROM-1.
12. Report available upon request from the author.
13. It was verified as cutting vegetation (up to 10cm Ø) at a rate of 2739 m2 per hour in the test area.
15. The current plan is to protect against 5.56 NATO BALL ammunition (steel core). Enhanced protection will add between 500 and 1000kg in weight depending on whether shaped-charge amelioration is required.
16. The C-IED specialist training organisation is PCM ERW Risk Management & MAT Kosovo LLC, contact info@pcm-erw.com.