Surface Modification and Characterization of Nano-Composite Polymers Chris Hughes

Department of Physics and Astronomy
James Madison University

Brian Augustine

Department of Chemistry and Biochemistry james Madison University

Outline

- Nano-Composite POSS-MA/PMMA
- Time Evolution of Surface Structures
- Adhesion Promotion of Metals on PMMA

POSS-MA/PMMA

PMMA Backbone

POSS Cage

poly[(propylmethacryl-heptaisobutyl-polyhedral oligomeric silsequioxane)-co-(methylmethacrylate)]

Sample Prep

- Oxidized silicon wafers using a tube furnace at 1000°C for 4 hours.
- Cleaned 1 cm x 1 cm SiO₂ samples with acetone, isopropanol, and water using ultrasonic cleaner. Dried thoroughly with N₂.
- Spun-cast 0.2 0.3 mL POSS-MA dissolved in CHCl₃ using a 0.2 μm syringe filter onto clean substrates at 1000 rpm spin speed.

AFM Imaging

- Smooth surfaces were seen for low POSS wt% thin films.
- 45 wt% POSS films had micon-sized features on surface.
- 30 wt% POSS films showed an distinct evolution of structures over the space of hours.

Determining Kinetics

- Attempts have been made to determine the area of the growths as a function of time.
- Should fit to an Avrami relationship.
- Secondary growth was observed.

Determining Kinetics

- Attempts have been made to determine the area of the growths as a function of time.
- Should fit to an Avrami relationship.
- Secondary growth was observed.

Possible Model

- At the moment, we aren't sure what these structure are...
 - crystallization
 - phase separation
 - + impurities

Possible Model

Zheng, et al., "Polymer Nanocomposites through Controlled Self-Assembly of Cubic Silsequioxane Scaffolds", *Macromolecules*, **37**, (2004), 8606-8611

Possible Model

Sommer, J-U; Reiter, G.; "Crystallization in ultra-thin film polymer films: Morphogenesis and Thermodynamical Aspects", *Thermochemica Acta*, **432**, (2005), 135-147

Standard Method for Au Adhesion on SiO₂

How to make this work on PMMA?

Our Model

Asdeposited After Oxygen Plasma Exposure

Substrate

Substrate

Tape Testing for Adhesion

Optical Microscopy (calculate area)

Metal Adhesion Promotion

- Halogenated solvents are "complexing solvents" for PMMA.
- Form complexes with oxygens in PMMA backbone.
- Remain behind in polymer afterwards and can act as sites for metal adhesion.

Chlorine XPS

DFT Modeling

Using Vapor Exposure to Introduce Chloroform

Acknowledgements

- * Dr. Xiaofeng Hu, JMU Materials Science
- * Mrs. Matt Bradley, Skylar White, and Alan Mo, JMU-Chemistry
- * NSF RUI Grant # DMR- 1005641
- ⋆ DoD Assure Grant # DMR-0851367

