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Abstract 

The purpose of this study was to review the challenges that exist in the estimation 

of complex (multidimensional) models applied to complex (multilevel) data and to 

examine the performance of the recently developed Metropolis-Hastings Robbins-Monro 

(MH-RM) algorithm (Cai, 2010a, 2010b), designed to overcome these challenges and 

implemented in both commercial and open-source software programs. Unlike other 

methods, which either rely on high-dimensional numerical integration or approximation 

of the entire multidimensional response surface, MH-RM makes use of Fisher’s Identity 

to employ stochastic imputation (i.e., data augmentation) via the Metropolis-Hastings 

sampler and then apply the stochastic approximation method of Robbins and Monro to 

approximate the observed data likelihood, which decreases estimation time tremendously. 

Thus, the algorithm shows great promise in the estimation of complex models applied to 

complex data. 

To put this promise to the test, the accuracy and efficiency of MH-RM in 

recovering item parameters, latent variances and covariances, as well as ability estimates 

within and between groups (e.g., schools) was examined in a simulation study, varying 

the number of dimensions, the intraclass correlation coefficient, the number of clusters, 

and cluster size, for a total of 24 conditions. Overall, MH-RM performed well in 

recovering the item, person, and group-level parameters of the model. More replications 

are needed to better determine the accuracy of analytical standard errors for some of the 

parameters. Limitations of the study, implications for educational measurement practice, 

and directions for future research are offered. 



 

 

 

 

Chapter I 

Introduction 

The field of educational measurement has grown rapidly and vastly over the last 

few decades. A major contributor to this development is the ever-increasing power of 

computers to perform complex computational tasks, often in a fraction of the time needed 

to execute such tasks ten or twenty years ago. Sophisticated models, which are arguably a 

closer approximation of reality than simple models (McDonald, 2000; Reckase, 1997), 

are now not only possible to estimate but also viable options to employ in practice. 

Moreover, researchers have begun to account for the nested (hierarchical) structure of 

educational data by modeling the different sources of variability in test scores and their 

predictors using multilevel models (e.g., Adams, Wilson, & Wu, 1997). The purpose of 

this dissertation is to review the challenges that exist in estimating multidimensional 

models applied to multilevel data and examine the performance of a recently developed 

algorithm implemented in commercial and open-source software programs to overcome 

these challenges. 

Chapter I serves as a brief introduction to multidimensional and multilevel models 

and their use in educational measurement. It also provides an overview of the algorithm 

under study, its applications in published research, as well as the purpose and specific 

research questions of this dissertation. In Chapter II, I discuss in more depth the 

challenges in estimating multidimensional models using popular estimation methods. In 

addition, I review the development, specification, and interpretation of multilevel 

measurement models. I conclude this chapter with a presentation of the multilevel 

multidimensional model under study. Chapter III lays out the method used to examine the 
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research questions posed at the end of the introduction and explains the choice of 

conditions and specific levels for the simulation study. In Chapter IV, I present the results 

with the aid of visual displays. Finally, Chapter V provides a summary of the results and 

draws conclusions on the accuracy and efficiency of MH-RM in the estimation of 

multilevel multidimensional measurement models and offers implications for educational 

measurement practice as well as directions for future research. 

Background 

Assessment practitioners usually design and administer tests that measure not one 

but several abilities or latent traits. For example, large-scale testing programs such as the 

SAT® and the GRE® contain multiple subtests (e.g., reading/verbal reasoning, 

math/quantitative reasoning, writing) to obtain a multifaceted picture of students’ 

readiness for college and graduate school, respectively. Moreover, researchers are 

interested in the relationships among different domains. Nevertheless, each subtest is 

typically scored independently using a unidimensional item response theory (IRT) model. 

Once ability estimates or scaled scores are obtained, these scores are correlated with each 

other and/or other measures to investigative substantive research questions. A serious 

drawback of this independent calibration approach is that it ignores the relationships 

among the domains during parameter estimation, which is likely to result in loss of 

information in the estimation of item parameters and person ability measures. That is, the 

correlations among latent traits, which could help in the estimation of item and person 

parameters, are essentially ignored. Such loss of information is especially evident when 

the domains are highly correlated (which is often the case with cognitive assessments) 
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and the number of items per domain is small, as it is in large testing programs such as 

NAEP (Zhang, 2012).  

Multidimensional Item Response Theory (MIRT) 

An alternative approach to modeling multiple constructs is simultaneous 

estimation via multidimensional IRT (MIRT), which extends the unidimensional model 

to include multiple latent traits. Under the unidimensional three-parameter logistic (3PL) 

model (Birnbaum, 1968; Lord, 1980) a typical examinee j’s conditional probability of 

correct response to a dichotomously scored item i (P (Uij) = 1) is a function of a single 

latent variable θj and the item parameters (ai = discrimination, bi = difficulty, and ci = 

lower asymptote1): 

 

( )

( )
( 1| , , , ) (1 )

1

i j i

i j i

a b

ij j i i i i i a b

e
P U θ a b c c c

e








   


. (1.1) 

Under the 3PL MIRT model, the probability of correct response to an item is a function 

of multiple latent variables θj = (θj1, θj2,…, θjm) related to the item via a vector of loadings 

ai = (ai1, ai2,…, aim), where m = the number of dimensions (Reckase, 2009): 

 ( 1| , , , ) (1 )
1

i

i

d

ij i i i i
d

e
P U c d c c

e

 

 
   



i j

i j

a θ

j i
a θ

θ a . (1.2) 

Here the exponent term a(θ – b) from Equation (1.1) is written in the slope/intercept form 

aθ + d by replacing –ab with the scalar d (Reckase, 2009, Chapter 4).  Note that the 

model presented in Equation (1.2) is a compensatory MIRT model, meaning that low 

ability in one dimension can be compensated for by high ability in another dimension. It 

is also worth noting that if the test has simple structure (i.e., the test is multidimensional 

                                                 
1 The lower asymptote, also known as the pseudo-guessing parameter, indicates the probability of correct 

response for examinees of low proficiency, possibly due to guessing. 
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but each individual item loads onto a single dimension), only one discrimination 

parameter takes on a nonzero positive value at a time. In this situation, the scalar d can be 

converted to the familiar difficulty parameter: 

 2

i
i

i

d
b

a


 . (1.3) 

It is important to note, however, that even though the simple-structure MIRT model 

resembles a unidimensional model, the estimation of the model is still multidimensional 

in nature in that the dimensions with zero loadings still play a role in the estimation of 

parameters. This is akin to the borrowing of information in score augmentation 

techniques (e.g., Wainer et al., 2001). In essence, the estimation of item parameters and 

ability estimates is aided by the auxiliary information contained in the correlations among 

the latent dimensions. With fewer items, several dimensions, and high correlations among 

the dimensions, this additional information can substantially increase the precision of 

parameter estimates (de la Torre & Patz, 2005). In addition, the correlations among 

dimensions are used in the prior if the person ability estimates are obtained via Bayesian 

methods (e.g., expected a posteriori, EAP). 

Proponents of MIRT models argue that in reality items and tests are rarely strictly 

unidimensional; therefore multidimensional models should be used over unidimensional 

models to account for the multidimensionality (Ackerman, 1994). Hartig and Höhler 

(2009) highlighted three types of applications of MIRT models. First, MIRT models can 

be used to accommodate unintended multidimensionality when a unidimensional 

construct was originally assumed. For example, groups of items based on a common 

stimulus (known as “testlets”) can often share variability above and beyond the main trait 

being measured; thus, the unidimensional model could be extended post hoc to a MIRT 
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model (e.g., a bifactor model) to accommodate the additional covariability within testlets 

after controlling for the primary trait (DeMars, 2006; Wainer, Bradlow, & Wang, 2007). 

Second, when a test was intentionally designed to measure multiple dimensions 

(i.e., latent traits2), MIRT models allow the examination of the latent covariance structure 

among the modeled traits. In fact, the latent trait covariance matrix is an automatic 

byproduct of the analysis. Importantly, since these relationships are estimated at the latent 

level, they are stronger and more accurate than the observed correlations among subtests 

based on raw scores (i.e., number correct). Even the correlations among traits based on 

unidimensional IRT ability estimates or scaled scores tend to be underestimated, unless 

they are disattenuated for measurement error (see de la Torre & Patz, 2005). However, in 

the presence of complex structure, these relationships can be overestimated (Zhang, 

2012).  

Finally, MIRT models make it possible to model data with complex structure 

where multiple skills or solution strategies can impact the probability of correct 

response3. By far the most prominent implication of this application of MIRT models is 

the investigation of DIF from a multidimensional perspective (Ackerman, 1992; Jeon, 

Rijmen, & Rabe-Hesketh, 2013; Walker & Beretvas, 2001). Given the numerous 

advantages of MIRT models, it is not surprising that many methodologists recommend 

their use to model complex (multidimensional) constructs (e.g., Ackerman, 1994; 

Reckase, 2009). The numerous benefits of MIRT models do not come without a price, 

                                                 
2 The term latent trait is used to refer to the substantive construct underlying the data, whereas the term 

dimension is used to refer to the statistically estimated representation of this trait in the model. 
3 Note that only simple-structure MIRT models are considered here to keep the models relatively simple 

given the multilevel structure of the data. See Chalmers and Flora (2014) for an extensive study of single-

level complex-structure MIRT models estimated via the Metropolis-Hastings Robbins-Monro (MH-RM) 

algorithm. 
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however. In the following section, I describe the main challenge that has hindered a 

widespread use of these models in practice. 

The “Curse of Dimensionality” 

Despite the vast theoretical support for MIRT models, applications in research 

and especially in practice remain limited, even with large enough sample sizes. The main 

reason is the so-called “curse of dimensionality” (Bellman, 2003, p. ix). With respect to 

measurement, this term means that when estimating a MIRT model using maximum 

marginal likelihood (MML), the estimation of item parameters requires numerical 

integration over a large number of Gaussian quadrature points, which makes the 

estimation process computationally intensive and often intractable (Asparouhov & 

Muthén, 2012; Cai, 2010a, 2010b). For example, if each of three latent trait dimensions is 

integrated over 9 fixed quadrature points, the total number of quadrature points increases 

geometrically to 93 = 729. The default number of fixed quadrature points in many 

statistical software packages is often much larger than nine, which makes the estimation 

of a model with more than four or five dimensions impossible. The default number of 

quadrature points can typically be lowered manually by the researcher; however, doing so 

may lead to convergence problems or decrease the accuracy of posterior means and 

standard deviations of parameter estimates (Lesaffre & Spiessens, 2001; Rabe-Hesketh, 

Skrondal, & Pickles, 2002). Several alternative estimation methods that do not require the 

use of quadrature have been proposed; however, none of them appear to offer an optimal 

solution (see Cai, 2010a). I review these alternatives in Chapter II. 
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The Metropolis-Hastings Robbins-Monro (MH-RM) Algorithm 

Overview. Recently, a new algorithm, Metropolis-Hastings Robbins-Monro 

(MH-RM), was developed to overcome the “curse of dimensionality.” MH-RM was first 

proposed by Cai (2008) and later extended to high-dimensional exploratory (Cai, 2010a) 

and confirmatory item factor analysis (Cai, 2010b). Unlike other methods, which either 

rely on high-dimensional numerical integration or approximation of the entire 

multidimensional response surface, MH-RM makes use of Fisher’s Identity to employ 

stochastic imputation (i.e., data augmentation) via the Metropolis-Hastings sampler and 

then apply the stochastic approximation method of Robbins and Monro to approximate 

the observed data likelihood. Thus, MH-RM is able to avoid both numerical integration 

and approximation of the entire posterior distribution, which makes it a particularly 

useful estimator for data with a large number of items, many dimensions, or missing data 

(Cai, 2010b). MH-RM has been implemented in flexMIRT (Cai, 2013), IRTPRO (Cai, du 

Toit, & Thissen, 2011), and the “mirt” package (Chalmers, 2012) in the open-source 

statistical programming environment R (R Core Team, 2013). 

Applications. Several published studies have employed the MH-RM algorithm. 

Yang and Cai (2014) used MH-RM in the estimation of contextual effects4 via nonlinear 

multilevel latent variable modeling and illustrated the model using data from the 

Programme for International Student Assessment (PISA). Thissen (2014) applied MH-

RM to estimate a correlated six-dimensional model on data from the certification exam of 

the American Production and Inventory Control Society (APICS). Wiley, Shavelson, and 

                                                 
4 In multilevel modeling, contextual effects are the effects of group (i.e., Level 2) variables on the 

dependent variable after controlling for the effect of individual (i.e., Level 1) variables. In other words, 

there is a difference in the relationship between the predictor and the criterion at different levels of the 

analysis. An example of a contextual effect is the effect of school-level socioeconomic status after 

controlling for individual student socioeconomic status. 
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Kurpius (2014) used MH-RM to examine the factor structure of the current version of the 

SAT®. Finally, Wright (2013) applied MH-RM in the estimation of unidimensional and 

multidimensional IRT models in efforts to gather construct validity evidence for 

situational judgment tests.  

These applications of the MH-RM algorithm to operational data show the 

potential of MH-RM to estimate a wide variety of models in practice. It is important to 

note, however, that though flexible, the algorithm is still fairly new, and much more 

research is needed to examine its performance when applied to various models. For 

example, Wiley and colleagues (2014) applied the algorithm with a 3PL model; however, 

no known study has examined the accuracy and efficiency of MH-RM with this model. In 

addition, the study by Yang and Cai (2014) is the only one to use MH-RM in the 

estimation of a multilevel nonlinear model. Thus, multilevel models are another 

important area of research with respect to MH-RM in particular and as applied to 

educational measurement in general. 

Multilevel Models 

Multilevel models are a family of statistical models developed to accommodate 

and appropriately model data with hierarchical (i.e., nested or clustered) structure 

(Raudenbush & Bryk, 2002; Hox, 2010; Snijders & Bosker, 2010). For example, students 

are nested within schools, nurses are nested within hospitals, employees are nested within 

companies, etc. Because of this nesting, objects of measurement often share many 

characteristics with others within their unit. That is, lower-level units within a higher-

level unit or cluster are typically more similar to one another than to lower-level units in 

other clusters. This relatedness results in violation of the assumption of independent 



9 

 

 

residuals assumed by regression. Ignoring this violation results in underestimated 

standard errors and inflated Type I error for inferential tests. 

Fortunately, multilevel models allow for the decomposition of variance within 

and between clusters, so that the standard errors of parameter estimates and any 

inferential tests associated with them are more accurate. Furthermore, multilevel models 

allow for the inclusion of person- and cluster-level predictors as well as cross-level 

interactions to explain variability in the outcome. Because of their flexibility, multilevel 

models have been widely used to model educational data. For example, researchers and 

policy makers are often interested in students’ achievement, after controlling for student 

background and school-level variables. Multilevel models are a natural choice for this 

purpose. Alternatively, one may look for contextual or compositional effects that are 

highly related to differences in achievement and seek ways to minimize their influence. 

Despite the increasing popularity of multilevel models in educational research, 

less attention has been given to the measurement of latent traits in nested data structures. 

Prior efforts in this area have focused on modeling the measurement error in predictors 

(items) by specifying items as nested within examinees and then specifying a latent 

dependent variable in a structural measurement model, also known as a nonlinear 

multilevel model (e.g., Adams et al., 1997; Cheong & Raudenbush, 2000). The advantage 

of these models is that by adding covariates, the model can be extended to an explanatory 

model. The main disadvantage is that to actually model the dependency among 

examinees in the same school, a third level must be added, which makes the model 

computationally more complex, especially with random item discrimination parameters 

(Kamata, Bauer, & Miyazaki, 2008). 



10 

 

 

An alternative approach is to extend the measurement model to multiple levels. 

That is, the variance associated with item response patterns can be “decomposed” so that 

separate latent traits can be specified at the individual examinee level and at the cluster 

(e.g., classroom or school) level. This is the approach taken by Höhler, Hartig, and 

Goldhammer (2010), although they specified only a 2PL model and were only interested 

in the latent covariance structure at different levels, and how it differs from a model 

which ignores the nested structure of the data. However, their model could easily be 

extended to a 3PL model to account for the probability of correct response by examinees 

of low proficiency. More importantly, ability estimates could be estimated at both the 

examinee level and the school level. In fact, this is one of the most attractive features of 

the multilevel MIRT model. That is, not only does the model allow for the proper 

accommodation of nesting, but it also allows for the estimation of more reliable school-

level ability measures due to their direct estimation rather than simple averaging of 

individual examinee ability estimates. Estimating and reporting direct and more reliable 

school-level estimates of ability would be especially appealing to educators and 

policymakers. 

In sum, Wiley and colleagues (2014) applied the MH-RM algorithm with a 

multidimensional 3PL model in a single-level analysis, and Yang and Cai (2014) used 

MH-RM to estimate a multilevel nonlinear 2PL unidimensional model. However, no 

known study has examined the use of MH-RM with multilevel and multidimensional 

data. The current study is intended to serve this purpose. 
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The Current Study 

Purpose. The purpose of this dissertation is to examine the performance of the 

MH-RM algorithm in the estimation of a 3PL multilevel MIRT (3PL ML-MIRT) model 

under different conditions. The study will conceptually represent students nested within 

schools. Given the applications of MH-RM to single-level multidimensional and 

multilevel unidimensional data, it is important to know how accurate and efficient the 

MH-RM algorithm is in estimating these and more complex models (e.g., multilevel 

multidimensional measurement models). In particular, the dissertation strives to answer 

the following research questions: 

Research question #1: How well does the MH-RM algorithm recover the true 

parameter values? Of particular interest is the bias and efficiency associated with item 

parameter estimates, Level 2 (between) variances and covariances, Level 1 (within) 

covariances, and ability estimates at both levels. In addition, it is of interest to examine 

the accuracy (i.e., lack of bias) of the standard errors of item parameter estimates, latent 

trait variance and covariance estimates, and ability estimates. 

Research question #2: What conditions are optimal in obtaining accurate 

estimates of parameters? Specifically, what combinations of number of dimensions, 

intraclass correlation coefficient, and sample size (i.e., number of clusters and cluster 

size) affect these estimates? Additionally, how long does it take on average across 

replications to estimate the model in each of these conditions?



 

 

 

 

Chapter II 

Review of the Literature 

Popular Methods for Estimating MIRT Models 

Several methods have been developed over the last few decades to allow the 

estimation of high-dimensional IRT models and to make the estimation process more 

time-efficient. In the following sections I describe each method conceptually, 

highlighting both its desirable features and its limitations. The first of these methods is an 

extension of the fixed quadrature method discussed in the previous chapter. 

Adaptive quadrature MML. As discussed in the introduction, estimating the 

item parameters of a MIRT model via maximum marginal likelihood (MML) relies on 

the numerical integration of the latent trait variables by use of quadrature points. The 

problem of using fixed Gaussian-Hermite quadrature points arises when the number of 

dimensions increases to four or five (or more) because the total number of quadrature 

points increases by a power equal to the number of dimensions, making the evaluation of 

integrals extremely difficult to impossible. For example, if each dimension in a five-

dimensional model is integrated by 9 quadrature points, the total number of quadrature 

points amounts to 95 = 59,049. To circumvent this problem, methodologists proposed 

adaptive quadrature rules (Liu & Pierce, 1994; Naylor & Smith, 1982). Unlike fixed-

point quadrature, adaptive quadrature approximates the posterior distribution by 

strategically placing the quadrature nodes under areas of the distribution that are more 

“interesting,” that is, of higher density (Liu & Pierce, 1994, p. 264). As a result, fewer 

quadrature points are required for approximation with adequate accuracy (Schilling & 

Bock, 2005). Although adaptive quadrature MML is currently the most popular MIRT 
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estimation technique, it remains limited in the number of latent dimensions it can handle. 

Specifically, although the total number of quadrature points is smaller than it is for fixed 

quadrature, the number of quadrature points still increases geometrically as the number of 

dimensions increases linearly. Further, when adaptive quadrature MML is implemented 

with the expectation maximization (EM) algorithm, the asymptotic covariance matrix is 

not automatically a byproduct of the calibration; thus, standard errors must be estimated 

in a separate step (Cai, 2010a). This does not mean that the standard errors are any less 

accurate. The two-step approach simply adds to the computation time of the MML-EM 

method. 

MCEM. Another way of estimating a MIRT model is via the Monte Carlo 

expectation maximization (MCEM) algorithm (Meng & Schilling, 1996). In this 

algorithm, the integration in the E-step is achieved by sampling the quadrature points 

(i.e., Monte Carlo simulation), in place of using Gaussian-Hermite quadrature. However, 

as Cai (2010a, 2010b) points out, in order to achieve pointwise convergence of parameter 

estimates, the simulation size (i.e., number of random draws) must increase 

tremendously, especially in the last few iterations, as the parameter estimates get closer to 

the maximum of the likelihood function. Moreover, the convergence time of MCEM is 

increased due to the fact that for each E-step iteration, the sampler generates a new set of 

random draws. Given these limitations, MCEM may not be the algorithm of choice in 

practical applications. 

MCMC. Finally, a fully Bayesian (i.e., stochastic) approach to estimating MIRT 

models involves multiple imputation from the posterior distribution via Markov Chain 

Monte Carlo (MCMC) procedures. Specifically, a Markov chain is specified such that its 
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target or invariant measure (i.e., the stationary distribution to which it converges) is the 

posterior distribution, from which point estimates of the parameters can be obtained (see 

Keller, 2005). There are two common sampling techniques for the Markov chain—the 

Gibbs sampler and the Metropolis-Hastings algorithm within Gibbs. The Gibbs sampler 

operates on the Birnbaum paradigm, where one set of parameters are estimated 

conditional on (i.e., holding constant) another set of parameters (see Baker & Kim, 2004, 

Chapter 4). For example, let β represent a set of item parameters and let θ represent a set 

of latent variables. Starting with some provisional item parameters βt, the (t + 1)th 

iteration of the MCMC algorithm goes through two stages. In the first stage, ability 

parameters θ(t+1) are drawn from the complete conditional distribution ( 1) ~ ( | , ),t t θ θ Y β

where Y denotes the observed response data. In the second stage, new values for the item 

parameters β(t+1)  are drawn from the complete conditional distribution 

( 1) ( 1)~ ( | , )t t β β Y θ . The simulation process continues until the Markov chain 

converges to the posterior distribution; that is, after some large number of iterations and 

discarding some initial draws (i.e., burn-in cycles), the draws from the complete 

conditional distribution can be assumed to come from the posterior distribution.  

Although virtually any posterior distribution can be approximated using MCMC 

with the Gibbs sampler, some distributions (e.g., those involving a large number of item 

parameters and many dimensions) may be extremely difficult to approximate 

computationally. For such cases, the Metropolis-Hastings (MH) algorithm within Gibbs 

can be very useful. MH alleviates the computational burden on the Gibbs sampler in two 

ways. First, it allows the specification of proposal distributions for the parameters. The 

advantage here is that it is far easier to sample from a proposal distribution than from the 
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complete conditional distribution5. Second, once the proposal distributions have been 

specified, rather than retaining all draws from the Markov chain, each draw from the 

proposal distribution can be evaluated based on its probability to be also from the 

complete conditional distribution. Specifically, if the probability of the proposed draw is 

higher than that of the current state, the draw is accepted with probability 1; if the 

probability of the proposed draw is lower than that of the current state, the probability of 

accepting the draw depends on the ratio of the likelihood of the current draw to the 

likelihood of the previous draw (see Keller, 2005 for details).  

These two features of the MH algorithm substantially speed up the estimation 

process compared to using only the Gibbs sampler. However, one big challenge is the 

specification of appropriate proposal distributions, which may need to be determined 

empirically by trial and error. In addition, because MCMC still approximates the entire 

response surface in multidimensional space, application of MCMC with MH within 

Gibbs to multivariate problems may still require extensive computational time, 

prohibiting application in practice. Finally, assessing convergence in MCMC applied to 

sophisticated models with many items or many latent trait dimensions can be 

cumbersome and requires human judgment. In response to the limitations of the popular 

MIRT estimation methods described above, a new method was developed. 

MH-RM and Prior Research on Its Functionality 

Overview. The Metropolis-Hastings Robbins-Monro (MH-RM) algorithm is a 

data-augmentation technique that combines the MH algorithm described above with the 

                                                 
5 Proposal distributions are typically (multivariate) normal or t distributions that resemble the target 

parameter distributions. The Gibbs sampler is modified by the MH algorithm such that instead of 

repeatedly sampling from the complete conditional distribution, the proposal distribution for each 

parameter (i.e., discrimination, difficulty, lower asymptote) is specified at each transition based on the 

previous state of the Markov chain (see Patz & Junker, 1999). 
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Robbins-Monro (RM) stochastic approximation algorithm (Cai, 2010a, 2010b). Although 

the MH-RM algorithm operates differently from MCMC, it still involves Markov chain 

random imputation via the MH sampler. The random draws are then combined via 

stochastic approximation to inform how much to adjust the estimates in each iteration via 

the RM algorithm. As such, MH-RM can be considered an extension of the stochastic 

approximation EM (SAEM) algorithm (Delyon, Levielle, & Moulines, 1999). The section 

below describes the logic behind MH-RM and each of its steps in more detail. 

How does MH-RM work? The MH-RM algorithm transforms parameter 

estimation into a missing data problem by use of Fisher’s identity. As in the previous 

section, let Y represent the observed data, and now let X represent the missing data (i.e., 

the unknown latent variables or random effects). Thus, the complete data ( , )Z Y X . 

The complete data likelihood for a vector of parameters θ is then ( | )L θ Z , and the 

complete data log-likelihood is ( | )l θ Z . Recall that the goal of maximum likelihood 

estimation is to find through an iterative process (e.g., the EM algorithm) the set of 

parameter estimates for which the observed data are most likely. That is, the goal is to 

find θ̂  based on the observed data log-likelihood function ( | )l θ Y . Whereas maximizing 

( | )l θ Y  is computationally intensive due to high-dimensional integrals, maximizing the 

complete data log-likelihood ( | )l θ Z , which is based on products of likelihoods, is much 

simpler. Specifically, for a current set of parameter estimates 
*
θ  the expectation of the 

complete data log-likelihood can be expressed as  

 
* *( | ) ( | ) ( | , )Q l d θ θ θ Z X Y θ , (2.1) 
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where  is some sample space to which X belongs, and ( | , )d X Y θ  is the conditional 

distribution of the missing data, given the observed data. This is essentially the E-step of 

the familiar EM algorithm, the M-step being the maximization of *( | )Q θ θ  by computing 

new parameter estimates. 

If we denote the gradient6 of the complete data log-likelihood as 

     | |l 
θ

s θ Z θ Z , (2.2) 

then by Fisher’s identity, the conditional expectation of ( | )s θ Z  over ( | , )d X Y θ  is 

equal to the gradient of the observed data log-likelihood: 

    | | ( | , ).l d  θ XY s Z Yθ θθ  (2.3) 

Thus, augmenting the missing data by taking draws from its posterior predictive 

distribution ( | , )d X Y θ  and solving for Equation (2.2) amounts to evaluating the 

gradient of the observed data log-likelihood without actually analytically evaluating it 

(Cai, 2010a, 2010b). 

Before delving into the specific steps comprising the MH-RM algorithm, it is 

helpful to review some concepts and notation following Cai (2010a). Specifically let 

 
2 ( | )

( | )
l

 
 

θ Z
H θ Z

θ θ
 (2.4) 

denote the complete data information matrix (i.e., –1 times the second derivative matrix 

of the complete data log-likelihood). Also, let ( , | , )A Y θ  be a Markov transition kernel 

with ( | , ) X Y θ  as its target, such that for any subset of parameters θ Θ  and any 

subspace A  

                                                 
6 The gradient is a vector based on the first-order partial derivatives. It can be thought of as the 

multidimensional counterpart of the derivative of a function in one dimension. 
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 ( | , ) ( | , ) ( , | , )
A

d d A   X Y θ X Y θ X Y θ . (2.5) 

Keeping these expressions in mind, let us review the phases of MH-RM. 

The MH-RM item calibration algorithm, as implemented in flexMIRT (Cai, 

2013), involves three stages. Stage I procures starting values for the parameters via 

unweighted least squares factor extraction. Stage II improves these values via “EM-like” 

procedures (Houts & Cai, 2013, p. 86). Finally, assuming some initial values θ(0) and Γ0 , 

and letting θ(t) represent the parameter estimates at the tth iteration, Stage III is where 

MH-RM actually occurs in the following three steps within each iteration: 

1. Stochastic imputation. Draw mk sets of imputed missing data 

 ( 1); 1,...,t

j tj m X  from the Markov chain ( )( , | , )tA Y θ  to get mt sets of complete data 

 ( 1) ( 1), ;t t

j j

 Z Y X 1,..., tj m . The MH sampler can be used for these imputations based 

on the relation ( | , ) ( | )L X Y θ Z θ  (i.e., the posterior predictive distribution of the 

missing data, given the observed data and some estimates of θ, is proportional to the 

complete data likelihood). 

2. Stochastic approximation. Based on Equation (2.3), approximate the observed 

data gradient 
1ts  by averaging the complete data gradients 

 
( ) ( 1)

1

1

1
( | )

tm
t t

t j

jtm







 s s θ Z  (2.6) 

and the conditional expectation of the complete data information matrix 

 
( ) ( 1)

1

1

1
( | )

tm
t t

t t t j t

jtm
 





 
   

 
Γ Γ H θ Z Γ . (2.7) 

Equations (2.6) and (2.7) are conceptually similar to obtaining the first and second 

derivative in MML estimation. 
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3. Robbins-Monro update. Set the new set of parameters to 

 
( 1) ( ) 1

1 1( )t t

t t t 

  θ θ Γ s , (2.8) 

where 
t  (t ≤ 1) is a sequence of gain constants that regulates the amount of adjustment 

to the parameter estimates in each iteration of the algorithm. Cai (2010a) notes that “…in 

practice, [γt] may be taken as 1/[t], in which case the choice of Γ0 becomes arbitrary.” (p. 

40). Conceptually, the term 
1

1 1( )t t



 Γ s  represents the ratio of the first derivative to the 

second derivative. Thus, this step of the MH-RM algorithm can be thought of as a 

multidimensional version of the Newton-Raphson procedure. For more details on any of 

the steps above see Cai (2010a, 2010b).  

Similarities and differences among MCMC, MH-RM, and MML-EM. In 

terms of similarities, all three algorithms serve the general goal of producing item 

parameter estimates in item factor analysis (IFA). The ways in which they do so, 

however, are markedly different. In general, MCMC and MH-RM are different from 

MML-EM in that MCMC and MH-RM are stochastic, whereas MML-EM is 

deterministic in nature. That is, the EM algorithm maximizes the log-likelihood of the 

item parameters, given the data, whereas in MCMC and MH-RM there is no direct 

maximization taking place. Rather, these are two approximation algorithms operating on 

the principle of data augmentation via repeated sampling from a target posterior 

distribution. This very feature is what MCMC and MH-RM share in common (via the 

MH sampler). 

Though somewhat similar, MCMC and MH-RM do operate quite differently, 

especially in the way the posterior distribution is approximated and parameter estimates 

are obtained. Specifically, MCMC approximates the entire posterior distribution, whereas 



20 

 

 

MH-RM focuses on point estimates and standard errors (Cai, 2010b). This allows MH-

RM to reach convergence7 much faster than MCMC. More specifically, in MH-RM the 

“jumps” in the Markov chain serve simply to determine the direction of change 

throughout iterations, not to provide accurate approximation of a surface that may be off-

target. Time-efficiency and other characteristics of the MH-RM algorithm are reviewed 

next. 

Prior research on the functionality of MH-RM. The MH-RM algorithm is 

fairly recent, and not much research has been done to investigate its performance under 

different conditions. However, several studies have compared MH-RM to some of the 

popular estimation techniques described earlier, and the results are promising. Thus, in 

the following subsections I review prior research on the performance of MH-RM 

compared to fixed quadrature MML-EM, adaptive quadrature MML-EM, and MCMC.  

MH-RM vs. fixed quadrature MML-EM. The Bock and Aitkin (1981) EM 

algorithm has now been used for decades in applications of IRT. As such, it is a logical 

choice of algorithms to which MH-RM should be compared. Cai (2010a) did so in an 

exploratory factor analysis (EFA) framework by examining the parameter recovery (raw 

bias and sampling variability) of a two-dimensional model with mixed structure. That is, 

five of the 10 trichotomous items loaded on a single dimension, whereas the other five 

items loaded on both dimensions. The sample size was 1000, and the study was based on 

100 replications. The two algorithms recovered the item parameters equally well with the 

same root mean square deviation (0.014), though with this simple model the MML-EM 

algorithm converged faster. 

                                                 
7 Convergence for MH-RM is assumed when the absolute difference of parameter estimates between 

iterations is < 10-4. 
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Similar results were found in studies in a confirmatory factor analysis (CFA) 

framework. Cai (2010b) compared fixed quadrature MML-EM to MH-RM with a 

unidimensional and a three-dimensional correlated-factors IFA model. The 

unidimensional model was based on responses from 1,000 simulees to 10 items with five 

ordered categories. Here 49 fixed quadrature points were specified for MML-EM. The 

results revealed nearly identical item parameter estimates for both algorithms, with root 

mean squared error (RMSE) for the slopes being slightly larger (.13) for MML-EM than 

for MH-RM (.10). MML-EM took 0.21 seconds8 per replication on average, whereas 

MH-RM took 9 seconds on average. Similar to the EFA study above, fixed quadrature 

MML-EM appears more time efficient in low-dimensional models. 

To demonstrate the time efficiency of MH-RM over fixed quadrature MML-EM 

in more complex models, Cai (2010b) also compared the two algorithms on data from 

500 simulees responding to 18 items mapped to three correlated dimensions. Each 

dimension was measured by six items (two dichotomous, two trichotomous, and two with 

five ordered categories). For faster convergence under MML-EM, the number of fixed 

quadrature points was reduced to 20. Both MML-EM and MH-RM recovered the item 

parameters and inter-factor correlations equally well (the overall RMSE was .17 for both 

algorithms). In terms of processing time, MML-EM took 49 seconds per replication on 

average, whereas MH-RM took 20 seconds per replication on average. Clearly the use of 

MH-RM becomes more advantageous as the number of dimensions increases. This point 

is illustrated by several studies described next9. 

                                                 
8 Unless stated otherwise, estimation processing is measured in CPU time. 
9 More recently, Monroe and Cai (2014) compared the performance of MH-RM and MML-EM applied to 

models with nonnormal (e.g., skewed, bimodal) latent distributions estimated by Ramsay-curve methods. 

They found that both algorithms recovered item parameters equally well in terms of average RMSE and 
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MH-RM vs. adaptive quadrature MML-EM. Another study by Cai (2010a) 

compared MH-RM to MML-EM with adaptive quadrature using real data based on a 

social quality of life scale for children, which included 24 five-category items. He fit both 

a unidimensional and a five-dimensional exploratory IFA model to the data. Although the 

unidimensional model did not fit well, results from both models could be used to pit the 

two algorithms against each other. To obtain good approximation of the likelihood with 

MML-EM, 21 quadrature points were used for the unidimensional model; however, the 

number of quadrature points per factor needed to be reduced to 5 for the five-dimensional 

model, which amounted to 55 = 3125 quadrature points (and function evaluations) in 

total. This number should foreshadow the differences in estimation time between the two 

algorithms.  

Specifically, for the unidimensional model adaptive quadrature MML-EM took 5 

seconds, whereas MH-RM took 10 seconds. However, for the five-dimensional model 

MML-EM took 1 hour and 27 minutes, whereas MH-RM took only 95 seconds. This 

application with real data highlights the advantage of MH-RM in high-dimensional IFA 

models over the “gold standard” estimation method in terms of time-efficiency (Cai, 

2010a, p. 34). With respect to parameter estimates (intercepts and target rotated factor 

loadings) both algorithms produced nearly identical results with an absolute difference of 

.02 between the two methods under both models. In terms of sampling variability, the 

algorithms were also comparable. Specifically, the estimated standard errors of the slopes 

for the two algorithms were very similar in the unidimensional model (within |.01| 

                                                                                                                                                 
estimated bias. For MH-RM, the Monte Carlo standard deviations were somewhat larger than the average 

standard errors estimated by the EM algorithm. No computation time differences were reported. 
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difference)10, as was the root mean square deviation of rotated loadings in the five-

dimensional model (.101 for adaptive quadrature MML-EM vs. .103 for MH-RM). 

Finally, the log-likelihoods of the two algorithms under the two models differed only in 

the decimals. All in all, MH-RM produced essentially the same results as the commonly 

accepted algorithm, but more than 50 times faster. 

Cai (2010b) used the same data to compare adaptive quadrature MML-EM and 

MH-RM in a confirmatory IFA model, which hypothesized a general social quality of life 

factor, three method factors (positively worded items, negatively worded items, and items 

about interactions with adults), and four “doublets” (i.e., pairs of items with highly 

correlated residuals once controlling for the other four factors; Cai, 2010b, p. 326)11. For 

MML-EM, four adaptive quadrature points per dimension were used to approximate the 

log-likelihood. Both MML-EM and MH-RM produced very similar parameter estimates, 

standard errors, and log-likelihoods. However, the two algorithms differed widely in 

processing time. Adaptive quadrature MML-EM took 4.5 hours until convergence, 

whereas MH-RM took 145 seconds to converge. Again, this result supports the time-

efficiency quality of MH-RM in high-dimensional models. Next, I review a comparison 

of MH-RM to another popular estimation method, MCMC. 

MH-RM vs. MCMC. Cai (2010a) also compared the performance of MH-RM 

with that of Gibbs sampler based MCMC in a generating four-factor model consisting of 

19 four-category items. An exploratory IFA model with oblique target rotation was used 

to evaluate item parameter recovery and inter-factor correlations. The results indicated 

                                                 
10 Interestingly, the standard errors of the intercepts in the unidimensional model were not reported. 
11 For identification purposes, the slopes of the two items within each “doublet” were set equal; all eight 

factors were standardized (means of 0, variances of 1) and specified as orthogonal (i.e., all factor 

covariances constrained to 0). 
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that MH-RM and MCMC estimates were very close to one another as well as to the 

generating parameter values, both for item parameters (rotated factor loadings) and inter-

factor correlations. Cai noted that the root mean square deviation from the true values 

was larger for MH-RM (0.046) than it was for MCMC (0.039) and explained that this 

could be due to the fact that the software running MH-RM (IRTPRO) optimizes a log-

likelihood, whereas the software used for MCMC (MultiNorm) does not. In terms of 

computation time, MH-RM took seconds, whereas MCMC took 1 hour 20 minutes and 

34 seconds. 

MH-RM vs. other methods. Asparouhov and Muthén (2012) examined parameter 

recovery (absolute bias and confidence interval coverage) and processing time for the 

MH-RM algorithm and four other methods based on both ordered categorical and 

dichotomous data. IRTPRO (Cai et al., 2011) was used for MH-RM. The other four 

methods were estimated in Mplus Version 7 (Muthén & Muthén, 1998-2012). These 

methods were Monte Carlo with 500 integration points, Monte Carlo with 5000 

integration points12, Bayesian estimation (i.e., MCMC) with weak (noninformative) 

priors, and the weighted least squares mean and variance (WLSMV) adjusted estimator. 

Both the polytomous and the dichotomous data were based on 35 items; 100 samples of 

500 simulees were generated following a seven-dimensional model with five items 

mapped to each dimension. Asparouhov and Muthén reported very little to no bias across 

the five methods. However, they found that the confidence interval coverage of the 

loading estimates was significantly lower for MH-RM (54% for the polytomous data and 

                                                 
12 It is important to note that the Monte Carlo integration method implemented in Mplus is different from 

numerical integration based on (adaptive) quadrature in that Monte Carlo integration does not depend on 

the number of dimensions; thus, it is a viable stochastic approximation alternative to quadrature-based EM 

in the estimation of high-dimensional IFA models. However, the number of integration points Q does affect 

numerical error because numerical error is proportional to 1/√Q (see Asparouhov & Muthén, 2012). 
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42% in the dichotomous case) than it was for the other four methods, which maintained 

coverage rates close to 95%. 

In terms of processing time, MH-RM was compared to the other methods in three 

different scenarios: 1) a real data EFA example with 17 dichotomous items and four 

orthogonal dimensions, 2) the simulated seven-dimensional EFA model with 35 

dichotomous items presented above, and 3) a two-group CFA measurement invariance 

model with 25 dichotomous items and five orthogonal dimensions. Processing time was 

measured in seconds. Whereas the results for the full-information estimation methods 

were inconclusive, the limited-information WLSMV was the fastest and estimated all 

three scenarios in either one or two seconds13. The processing time for MH-RM varied 

considerably across scenarios relative to the other full-information techniques. Although 

the results appear divergent from those presented in Cai (2010a, pp. 50-51), Asparouhov 

and Muthén note that it is difficult to compare processing time across very similar 

estimation techniques such as the full-information stochastic methods examined here 

because convergence criteria and other user-defined options may prohibit the 

generalization of any comparison results to new models or data. 

Summary. In summary, the MH-RM algorithm appears to be a promising tool in 

estimating MIRT models. Not only does MH-RM appear to have overcome the “curse of 

                                                 
13 Despite its speed advantage, WLSMV has several limitations. First, it uses information only from the 

first- (i.e., the means, which here would be percent correct) and second-order moments (i.e., the standard 

deviations, which here would be the tetrachoric correlations based on the normally distributed latent 

continuous variables assumed to underlie the observed categories), whereas full-information methods 

incorporate entire observed response patterns. Second, WLSMV does not allow for a lower asymptote to 

accommodate the probability of correct response for low-ability examinees, which can lead to bias in other 

parameter estimates (see Jurich & DeMars, 2013; Yen, 1981). This limitation also prohibits the application 

of WLSMV to the 3PL data modeled in this dissertation. Further, the use of WLSMV may not be optimal 

when the latent distribution is not normal as is assumed by the estimator (see DeMars, 2012). Finally, it 

would be impossible to estimate the multilevel MIRT models discussed and examined later with a limited-

information estimator such as WLSMV. 
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dimensionality” by making it possible to estimate high-dimensional models, but it also 

estimates such models remarkably fast. Although prior research on its ability to recover 

item parameters is not entirely unanimous, the majority of simulation studies are quite 

favorable. In terms of bias, MH-RM has been found to be just as accurate as the popular 

algorithms in use (e.g., MML-EM, MCMC). With respect to efficiency, prior research 

has found MH-RM to provide essentially the same standard errors as MML-EM. 

Importantly, with MH-RM standard errors are an automatic byproduct and do not need to 

be estimated in a separate step as they do with MML-EM. However, studies comparing 

MH-RM to other methods (Monte Carlo integration, Mplus Bayes estimation) indicate 

that MH-RM standard errors tend to be noticeably underestimated. Finally, multiple 

studies have shown the astonishing time efficiency of MH-RM in estimating various 

models. 

Although highly promising, the findings summarized above are based on limited 

research; much more research is needed to support the use of the MH-RM in practice. 

Despite its infancy, MH-RM has already been applied in several published studies 

(Thissen, 2014; Wiley et al., 2014; Wright, 2013; Yang & Cai, 2014), making the call for 

more research even more urgent. In addition, several extensions of the algorithm have 

been discussed and are likely to appear in the literature in the upcoming years (Cai, 

2010a; 2010b). One of these extensions is the application of the MH-RM algorithm to 

multilevel models. As the current dissertation focuses on this application area, these 

models are discussed next. 
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Analyzing Data with Nested Structure 

As briefly discussed in Chapter I, the structure of educational data is typically 

nested, meaning that individual students are not simple random samples from the 

population to which one wishes to generalize. Instead, students are nested or clustered 

within larger units, such as classrooms, schools, districts, etc. Such clustering of data 

occurs for practical reasons. For example, it is far less expensive to collect data from, say, 

100 students in one school than it is to collect data from one student each in 100 different 

schools. To maximize the randomization process and the approximation of the sample to 

the population of interest, a two-stage complex sampling design is usually employed, 

whereby primary sampling units (e.g., schools) are sampled first, and lower-level 

sampling units (e.g., students within schools) are sampled second.  Examples of nested 

data obtained via multi-stage sampling include large international assessment programs 

(e.g., the Programme for International Student Assessment [PISA], Trends in 

International Mathematics and Science Study [TIMSS], Progress in International Reading 

Literacy Study [PIRLS]), among others.  

Nesting or clustering of examinees is not limited to assessment programs that 

involve multi-stage sampling. Natural nesting occurs for any testing program that 

includes virtually all lower-level units within higher-level units (i.e., census data). For 

example, assessment in K-12 for accountability purposes often requires that all students 

at certain grade levels in all schools within a state be tested. In such cases, the examinees 

are not sampled (i.e., the entire student population in a given grade completes the 

assessments), yet the examinees are nested within their respective schools and school 

districts. 
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Regardless of how the data are obtained, analyzing nested data poses some 

challenges due to the shared variability among Level 1 units (e.g., students) nested within 

Level 2 units (e.g., schools). This shared variability occurs because Level 1 units within 

the same cluster (i.e., Level 2 unit) are typically much more similar to one another than 

they are to Level 1 units in other clusters. For example, one would expect students 

attending the same school to share many more background and achievement 

characteristics with one another than they would with students attending other schools. 

These similarities could be due to geographic, demographic, socioeconomic, curricular, 

co-curricular or other factors. What is important is that Level 1 units do share some 

variability, and unless modeled, this shared variability could result in confounded 

parameter estimates (e.g., variance components) and underestimated standard errors. The 

amount of shared variability among Level 1 units due to clustering can be summarized in 

the intraclass correlation coefficient. 

The Intraclass Correlation Coefficient  

Overview. The intraclass correlation coefficient (ICC) is conceptually defined as 

the ratio of the between-cluster variance to the total variance (between + within): 
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For a specific sample, the ICC can be computed using the mean square components of 

ANOVA: 
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where n. is the sample size per cluster, if balanced (e.g., the same number of students in 

each school). When the cluster size is unbalanced, the average cluster size n. can be 

computed by 
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 where N is the total sample size, K is the number of clusters, and nk is the number of 

Level 1 units within cluster k (Stapleton, 2013). 

Conceptually, the ICC indicates the degree of dependence among Level 1 units 

due to clustering. It measures the “extent to which members of the same [cluster] are 

more similar to one another than members of other [clusters]” (Cohen, Cohen, West, & 

Aiken, 2003, p. 537). The above presentation of the ICC is focused on a single dependent 

variable. However, the concept can be easily extended to the multivariate case. In fact, as 

shown in Chapter III in greater detail, in the 3PL ML-MIRT model an ICC can be 

specified for each latent variable based on the variances from both levels because the 

observed item responses are conditional on the latent variables at different levels.  

Typical ICC values. Theoretically, ICC values range from 0 (complete 

independence) to 1 (complete dependence). Prior research has suggested that in 

geographically determined clusters (e.g., states, districts), ICCs tend to be relatively low 

for demographic variables (e.g., age, gender), somewhat higher for socioeconomic 

variables and attitudes, and maybe even higher for educational data involving classrooms 

(Stapleton, 2013). Specifically, typical ICC values for health-related variables (e.g., 

drinking) or attitudinal measures (e.g., career interests) are in the range of .02-.07, 

whereas ICC values for mathematics achievement scores from eighth-grade students have 
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been reported in the range .30-.40 when the Level 2 units are classrooms and .15-.20 

when the Level 2 units are schools (Muthén, 1997). Hedges and Hedberg (2007) 

examined existing datasets from schools across the U.S. and found that the average 

unconditional ICC for mathematics and reading in K-12 was .22. Based on their findings 

and prior research, Hedges and Hedberg recommended the use of ICCs in the range of 

.15-.25 for cluster-randomized experiments involving diverse or low-socioeconomic-

status schools and ICC values of .05-.15 when the clusters are low-achieving schools. 

Implications. Although there is substantial variability in ICCs across different 

populations, it should be noted that even ICC values as small as .01 or .05 can have 

serious implications for standard errors and tests of significance unless taken into 

account. As mentioned earlier, performing a single-level analysis on nested data results in 

underestimation of the sampling variability that would have been observed had the data 

been obtained via simple random sampling. The literature suggests that although fixed 

effects (e.g., regression coefficients) tend to be unbiased, the standard errors of many 

parameters can be severely underestimated (Stapleton & Thomas, 2008). For example, 

the effect of an ICC ρ on the standard error of the mean for a given cluster size n. is 

known as the design effect and can be computed by [1 ( . 1) ]n    (Kish, 1965 as cited in 

Stapleton, 2013). As a result, the standard error is underestimated by a factor equal to the 

square root of the design effect. Based on this formula, when the ICC is 0, the design 

effect is 1, and the standard error remains unbiased. However, when the ICC is greater 

than 0, the standard error is underestimated, and more so as the cluster size increases, 

resulting in overly inflated alpha levels (see Kreft & de Leeuw, 1998, p. 10). With an 
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inflated alpha rate, any significance tests may be biased, leading the researcher to make 

incorrect inferences about the model and the parameter estimates. 

Requirements. Although ICCs as low as .01 can lead to substantial increase in 

Type I error rates, sufficiently large ICCs are needed to estimate a multilevel model. This 

is because when there is not enough variability between clusters, there is not enough 

information to estimate another set of parameters. Thus, when the ICC is near 0, it may 

not be possible to estimate a multilevel model (Stapleton, 2013), and doing so may not be 

necessary. 

Another important consideration in multilevel modeling is the number of 

observations at different levels of the analysis. Simply because a model can be estimated 

does not guarantee that its parameter estimates can be trusted. Several simulation studies 

have investigated the question of how many Level 1 units (e.g., students) and Level 2 

units (e.g., schools) are necessary to obtain stable and unbiased parameter estimates in 

multilevel linear models (e.g., Maas & Hox, 2005). The consensus is that a large number 

of clusters (e.g., ≥ 30) is much more desirable than a large number of observations within 

clusters (Maas & Hox, 2005; Snijders, 2005; Spybrook, 2008). Lüdtke, Marsh, Robitzsch, 

and Trautwein (2011) performed an extensive study investigating the effects of the 

number of Level 1 and Level 2 units, ICCs, and other factors in linear multilevel models 

for contextual effects that correct for measurement and/or sampling error in the predictor. 

In line with the considerations discussed here, they found that the combination of small 

number of clusters and low ICC resulted in unstable estimates.  

Although there are no known guidelines as to the desirable number of clusters and 

cluster size in nonlinear multilevel models, several simulation studies suggest that small 
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numbers of clusters and small cluster sizes can be even more problematic than in linear 

multilevel models. Such problems have been noted and largely attributed to the imperfect 

estimation methods available for multilevel models with binary outcomes (Goldstein & 

Rasbash, 1996; Rodríguez & Goldman, 1995). A decade later, despite improvements in 

estimation techniques, simulation research suggests that fixed parameter estimates and 

their standard errors may still be biased when the cluster size is small (e.g., 10), even with 

a large number of clusters (Austin, 2010; Clarke, 2008; Moineddin, Matheson, & Glazier, 

2007). The bias seems to disappear with 30 or more clusters of at least 30 each.  

Similarly, unlike linear multilevel models, in which a large number of clusters can 

typically compensate for small cluster size (e.g., 5 or 10), the standard errors in nonlinear 

multilevel models with small cluster size tend to be substantially biased. Importantly, 

there has not been any research on multilevel models with multiple binary outcomes such 

as the multilevel measurement models examined in this dissertation. As such, this is 

another area to which the study is meant to contribute (e.g., how does a cluster size of 20 

vs. 100 affect fixed parameter estimates such as item difficulty and discrimination and 

random effects such as the latent variances and covariances at different levels?). To help 

the reader understand the specific type of nonlinear multilevel models considered here, 

the next section situates this type of model in the greater family of multilevel 

measurement models by tracing its development and comparing it to similar models. 

Multilevel Measurement Models 

The notion of specifying a measurement model at multiple levels when the data 

have nested structure is not new. Muthén (1991) credited Cronbach for laying out the 

theoretical foundation of such models back in the mid-1970s and noted that their 
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application has been largely inhibited by the limited power of computers and software 

packages. Since then, the technological aspect of educational measurement has grown 

tremendously, and numerous formulations of multilevel measurement and structural 

equation models have been suggested and demonstrated (e.g., Muthén & Satorra, 1995; 

Mehta & Neale, 2005; Pastor, 2003; Rabe-Hesketh, Skrondal, & Pickles, 2004). In the 

following section, I present a simple unidimensional CFA model following Muthén 

(1991)14. Then I note how the model has been conceptualized as a three-level model in 

the multilevel IRT literature, and how more recently Höhler and colleagues (2010) 

combined the multilevel IRT and MIRT frameworks into a single ML-MIRT model. 

Finally, I extend this ML-MIRT model to include a pseudo-guessing parameter and show 

the model both mathematically and graphically. 

Multilevel CFA. The premise of multilevel CFA lies in the decomposition of the 

total variance for each observed variable into between-cluster variance and within-cluster 

variance. Specifically, the observed score on item i for examinee j nested within cluster k 

can be expressed as 

 
B W

ijk i ik ijky y y y   , (2.12) 

where 
iy  is the grand mean on item i, 

B

iky  is cluster k’s deviation from the grand mean on 

item i (which contributes to between-cluster variance), and 
W

ijky  is examinee j’s deviation 

from cluster k’s mean on item i (which contributes to the within-cluster variance). 

Assuming clusters have the same number of Level 1 units, the only contribution they 

have toward the total variability is via the cluster means, which can be conceptualized as 

                                                 
14 This specific paper was chosen to illustrate multilevel CFA for its simplicity. In the analysis, Muthén 

combined multiple dichotomous items into “subscores” which then served as indicators (Muthén, 1991, p. 

341), a procedure termed item parceling. Methodologists have clearly discouraged the practice of item 

parceling (see Bandalos & Finney, 2001). 
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deviations from the grand mean. Similarly, the only contribution of individual scores 

toward the total variability is their deviation from the cluster means. Thus, the variance of 

y  is a function of between- and within-cluster variability, which are independent of each 

other and thus additive: 

 
2 2 2

B Wy    . (2.13) 

The same principle applies to the multivariate case. There instead of decomposing the 

variance of a single variable, one decomposes the entire variance-covariance matrix yΣ  

into a between-cluster covariance matrix 
B

yΣ  and a within-cluster covariance matrix 
W

yΣ : 
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y y y Σ Σ Σ . (2.14) 

Traditionally, each of these matrices was estimated separately (e.g., Muthén, 1994) using 

a limited information ML estimator known as the Muthén multilevel ML estimator 

(MUML; Muthén & Satorra, 2005). There are some issues with this approach (see 

Zyphur, Kaplan, & Christian, 2008), and several stepwise approaches to model fitting 

have been proposed instead (e.g., Hox, 2010; Stapleton, 2013), using full information ML 

estimation. 

The decomposition of the observed variance-covariance matrix not only aids the 

understanding of the multilevel model, but it also serves an important role in the 

statistical identification of the model. Specifically, the different levels of analysis in 

multilevel CFA are modeled explicitly as different latent factor structures. Theoretically, 

each of these latent factor structures is allowed to have its own set of measurement and 

structural parameters. The estimation of unique parameters and factor structures across 

levels is possible due to the decomposition of the variance-covariance matrix. The 
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estimation of different measurement (item) parameters across levels is much more 

meaningful in the organizational literature, where Level 2 constructs can have a 

completely different meaning from Level 1 constructs (see Bliese & Jex, 2002). Given 

the current study focuses on educational data and applications, item parameters were 

assumed to be the same across levels because the latent dimensions bear the same 

interpretation. 

Multilevel IRT. Following Adams and colleagues’ (1997) conceptualization of 

IRT within a multilevel framework, several different multilevel IRT models have been 

proposed (see Kamata & Vaughn, 2011 for an overview). These include Fox and Glas’ 

(2001) multilevel IRT model, Kamata’s (2001) hierarchical generalized linear model, and 

Muthén and Asparouhov’s (2011) multilevel CFA model with categorical indicators. 

Although these models may differ in estimation methods, link functions (e.g., normal 

ogive vs. logistic function), and scaling of the parameters, they still share many 

similarities. For example, the measurement part of the model is typically set up as a two-

level model, where observed item responses are nested within persons. Then, to examine 

variation across clusters and the effects of person and cluster-level predictors, the model 

is usually extended to a three-level model (e.g., items nested within students nested 

within schools). Overall, it appears that the focus of multilevel IRT developments has 

been on specifying a single latent dimension measured by a set of items and modeling its 

variance as a function of predictors at different levels. 

It is important to distinguish between two different types of multilevel item 

response models: measurement models, which focus on the measurement of individual 

examinees, and explanatory models, which are not concerned with the measurement of 
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individual examinees and instead focus on the explanation of item responses in terms of 

examinee- and item-level predictors (see De Boeck & Wilson, 2004, Chapter 1 for an in-

depth treatment of this topic). The multilevel IRT models described above fall within the 

explanatory type, whereas the models examined in this dissertation fall within the 

measurement type. That is, here one is interested in the descriptive measurement of 

ability at the student and the school level. As such, the model is descriptive in nature (i.e., 

not explanatory); the clustering of students within schools is simply seen as a nuance of 

the data which the model can accommodate. 

Höhler and colleagues (2010) took the latter approach by focusing on the 

estimation of a MIRT model in a multilevel framework and interpreting the correlations 

among latent traits at different levels compared to a single-level MIRT model in which 

the nested nature of the data was ignored. This conceptualization of a ML-MIRT model is 

much more similar to the multilevel CFA model discussed earlier than to the typical 

multilevel IRT formulations mentioned above. Specifically, Höhler and colleagues 

(2010) applied a two-level, three-dimensional model to the language test scores of 9th-

grade students nested within classrooms. They indicated that all analyses were carried out 

in Mplus Version 5.1, using ML estimator with robust standard errors for the MIRT 

models and Monte Carlo integration with 1000 points per dimension for the ML-MIRT 

models. It appears that Höhler and colleagues specified a 1PL and/or a 2PL model; 

however, this was not explicitly stated. Importantly, failure to model the pseudo-guessing 

parameter to accommodate the probability of correct guessing for examinees of low 

proficiency can lead to underestimation of the loadings for difficult items (Jurich & 

DeMars, 2013; Yen, 1981). The model considered in this dissertation builds on Höhler 
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and colleagues’ (2010) model to include a pseudo-guessing parameter and more than 

three dimensions. This is made possible by using the MH-RM algorithm for estimation. 

The model is described in more detail next. 

The 3PL ML-MIRT model. Similar to the decomposition of an observed score 

presented in Equation (2.12), the latent ability level of examinee j from cluster k on 

dimension g can be decomposed as 
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gjk g gk gjk      , (2.15) 

where g  is the grand mean on dimension g (which is typically constrained to 0 for 

identification purposes), 
B

gk gk g     is the deviation of cluster k’s mean from the grand 

mean, and 
W

gjk gjk gk     is examinee j’s deviation from cluster k’s mean on dimension 

g. Then the 3PL ML-MIRT model as an extension of Equation (1.2) becomes 
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Assuming simple structure (i.e., an item loads on a single theoretical dimension, which 

amounts to one between- and one within-cluster dimension) and fixing item 

discrimination parameters to be equivalent for the same item across levels, the model 

simplifies to 
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It is important to reiterate that despite the simple structure, the dimensions with zero 

loadings still play a role in the estimation of parameters. Also of importance are the two 

sets of ability estimates from the model: a between-cluster ability estimate 
Bˆ
k associated 
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with Level 2 and a within-cluster ability estimate 
Wˆ
jk associated with Level 1. 

Conceptually, these represent the school-level and the student-level ability estimates. 

That is, the model not only estimates each student’s ability estimate (as in single-level 

models) but also school-average ability estimates, which are direct estimates of the model 

(in the sense that one “borrows” information from the other schools assumed to come 

from the same population of schools in a two-level analysis) and take on the same value 

for each student within a given school. A graphical depiction of the 3PL ML-MIRT 

model is presented in Figure 1. 

The 3PL ML-MIRT model is fairly sophisticated and may be even impossible to 

estimate via the popular estimation techniques and algorithms discussed in this chapter. 

Fortunately, the MH-RM algorithm was designed to overcome estimation challenges 

posed by complex models, and its capabilities were put to the test in the current study. As 

discussed throughout this chapter, MH-RM is very flexible and has shown promising 

results in handling both MIRT and multilevel models. Importantly, only Wiley and 

colleagues (2014) have applied the MH-RM algorithm to 3PL MIRT data; however they 

performed a single-level analysis. Thus, no one has examined the performance of MH-

RM with the 3PL ML-MIRT model, hence the need for the current study.  
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Figure 1. A graphical representation of the 3PL ML-MIRT model with five dimensions and 45 

dichotomous items.  

The top half shows the measurement model between clusters, whereas the bottom half shows the model 

within clusters. Within-cluster variances are fixed to 1.0 to identify the model; between-cluster variances 

are freely estimated. All covariances within the same level (shown as double-headed arrows for simplicity) 

are freely estimated as well. No level-specific superscript is used for the discrimination parameters to 

highlight the fact that they are the same for each item across levels (i.e., one loading is estimated per item 

and is fixed to be the same across levels). Squares represent dichotomous item responses, and ellipses (…) 

indicate items not shown in the graph for simplicity.



 

 

 

 

Chapter III 

Method 

Given no prior research on the performance of the MH-RM algorithm applied to 

3PL ML-MIRT models, the focus of this study is on the most important aspects of such 

complex models. Specifically, the main challenge in estimating MIRT models has been 

the “curse of dimensionality.” Thus, examining if and how well MH-RM can estimate 

3PL MIRT models is of primary interest. Similarly, analyzing nested data appropriately 

requires knowledge and understanding of several important characteristics of the data 

(e.g., the number of clusters and cluster size, the ICC level). As such, these characteristics 

were also considered in multilevel modeling. Finally, prior simulation and real-data 

research were used to inform the specific conditions to be investigated. These conditions 

are presented next.  

Conditions 

The current study varied four different factors: one pertaining to multidimensional 

models and three factors pertaining to multilevel models. Specifically, the design varied 

the number of dimensions (three vs. five), the ICC level (.15, .25, and .35), the number of 

clusters (40 vs. 200), and cluster size (20 vs. 100). Crossing the levels of these four 

factors results in 2 dimension levels × 3 ICC levels × 2 numbers of clusters × 2 cluster 

sizes = 24 conditions total (see Table 1). 
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Table 1 

Breakdown of the 24 Simulation Conditions 

Condition # Dimensions ICC K n. N 

1 3 .15 40 20 800 

2 3 .15 40 100 4,000 

3 3 .15 200 20 4,000 

4 3 .15 200 100 20,000 

5 3 .25 40 20 800 

6 3 .25 40 100 4,000 

7 3 .25 200 20 4,000 

8 3 .25 200 100 20,000 

9 3 .35 40 20 800 

10 3 .35 40 100 4,000 

11 3 .35 200 20 4,000 

12 3 .35 200 100 20,000 

13 5 .15 40 20 800 

14 5 .15 40 100 4,000 

15 5 .15 200 20 4,000 

16 5 .15 200 100 20,000 

17 5 .25 40 20 800 

18 5 .25 40 100 4,000 

19 5 .25 200 20 4,000 

20 5 .25 200 100 20,000 

21 5 .35 40 20 800 

22 5 .35 40 100 4,000 

23 5 .35 200 20 4,000 

24 5 .35 200 100 20,000 
Note. K = number of clusters; n. = cluster size; N = total sample size. 

 

The three versus five dimensions were chosen for two reasons. First, to truly 

examine the performance of MH-RM in estimating MIRT models, three or more 

dimensions would be desired. As discussed in Chapter II, other methods (e.g., adaptive 

quadrature MML-EM) are equally or more time efficient than MH-RM when estimating 

one- or two-dimensional models. Thus, the benefits of MH-RM become more evident in 

the estimation of models with more dimensions. On the other hand, given the models 

considered here are also multilevel models, examining models with more than five 

dimensions may require too much time for the timely completion of the study. Second, 

and related to the first reason, examining models with three to five dimensions is what 

one might encounter in practice. For example, one can conceive of the three-dimensional 
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model as representing three subtests (e.g., English Language Arts, math, and science). 

Similarly, one can apply the five-dimensional model when one wishes to calibrate data 

collected on the different domains of a subject area. An example is the five different 

domains of mathematics as defined by the Common Core State Standards for grades 3-5: 

Operations and Algebraic Thinking, Number and Operations in Base Ten, Number and 

Operations—Fractions, Measurement and Data, and Geometry (National Governors 

Association, 2010).  

With respect to the number of clusters and cluster size, the values chosen for the 

study could represent different combinations of sample or population compositions 

encountered by assessment practitioners. For example, the larger number of clusters 

(200) could represent schools, whereas the smaller number of clusters (40) could 

represent classrooms within the same school or school district. Similarly, the larger 

cluster size (100) could represent students nested within the same school, whereas the 

smaller cluster size (20) could represent students nested within a smaller Level 2 unit 

(e.g., a classroom). Multiplying the number of clusters by cluster size results in three 

possible overall sample sizes ranging from 800 to 20,000. This range should cover a good 

number of the typical sample sizes found in large international assessment and state K-12 

testing programs. It should be noted that the design considered here is balanced, meaning 

that for a given condition all clusters consist of the same number of Level 1 units. Maas 

and Hox (2005) reported that having a balanced versus unbalanced design had little to no 

effect on parameter estimates and standard errors. In addition, for simplicity the design 

does not incorporate sampling weights as might be done in practice. Finally, the ICC 

values, which are specified at the latent level and for simplicity were assumed to be the 
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same for all dimensions at both levels, were chosen based on prior research to 

accommodate typical classroom- as well as school-level ICCs (Hedges & Hedberg, 2007; 

Muthén, 1997). More detail on the specification of ICC values is provided in the next 

section.  

Data Generation 

The data for all conditions were generated via the “Simulation” mode in 

flexMIRT (Houts & Cai, 2013). Specifically, batch-mode input files were generated in R 

(R Core Team, 2013) to generate and calibrate the data in flexMIRT. The generating 

model is based on user-supplied item parameters and a latent variance-covariance matrix. 

One of the advantages of flexMIRT is that it can easily generate multilevel data with a 

user-specified cluster size. The ICC values can be specified via the generating latent 

between- and within-cluster variance components. Each of these features of the 

generating models is described in detail below. 

Item parameters. Given the number of dimensions (three or five), the 

hypothetical test length was set at 45 items, which allows 15 items per dimension in the 

condition with three latent trait dimensions and nine items per dimension in the condition 

with five dimensions. The generating item parameters were held fixed across replications. 

In both the three- and five-dimensional models, three alternating values for the 

discrimination parameters were chosen (a = 1, 1.5, and 2). These values are on the 

logistic metric and correspond to about 0.59, 0.88, and 1.18 on the normal metric. The 

odd number of items (45) and the number of items per dimension (15 or 9) allow 

distributing the three discrimination parameter values equally across the items under the 

two different models, which was useful in summarizing the results. 
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The item difficulties were set at nine different values (0, ±0.380, ±0.787, ±1.262, 

and ±1.922) determined by the inverse of the normal cumulative distribution with μ = 0, σ 

= 1.5. These values are the familiar difficulty parameters in IRT. Before being supplied to 

flexMIRT, they were converted by 

 i i id b a  . (3.1) 

It is important to note that the nine difficulty values were spread over the three and five 

dimensions strategically, so that each dimension had about the same number of easy, 

medium, and difficult items; however, not all difficulty levels were fully crossed with the 

three item discrimination values. 

The pseudo-guessing parameters for all items were fixed to .20, which is typical 

for multiple-choice items with five response options. In flexMIRT this is done by 

specifying the logit of the lower asymptote to be equal to -1.4 (see Houts & Cai, 2013). 

Latent variance-covariance matrix and ICC values. Since the within-cluster 

variances were set to 1.0 for model identification purposes, the within-cluster covariances 

are on the correlation metric. However, this assumes that the variability within cluster is 

the same for all Level 2 units. For example, this implies that the within-school variability 

is the same across schools, which is a serious assumption that may or may not be true in 

reality. Given the high correlations among dimensions found in educational data 

(Sinharay, 2010), both the within- and between-cluster correlations were set to values of 

.70, .80, and .90. In the three-dimensional model, there are only three correlations (Level 

1) or covariances (Level 2). Thus, these three values were used (see Table 2). In the five-

dimensional model, each of these values was repeated three times, with the exception of 
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.70 which was repeated four times (for a total of 5*(5 1) / 2 10   correlations per level; 

see Table 3).  

Importantly, to set the ICC at a specific value, the generating between-cluster 

variances were specified such that the desired ICC was obtained via Equation (2.9). For 

example, to obtain an ICC of .25, one would plug this value and the within-cluster 

variance (1.0) into Equation (2.9) and solve for the between-cluster variance: 
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It should be noted that because the ICCs are based on the ratio of the latent between- and 

within-cluster variance components, these ICCs were somewhat higher than the ICCs 

based on observed scores (see Höhler et al, 2010). Thus, although an ICC of .35 may 

appear large, its observed counterpart would be lower and thus closer to the typical ICC 

values found in educational data (e.g., Hedges & Hedberg, 2007). 

Latent means and distributions. The abilities for each dimension in both levels 

were generated to be multivariate normal, with a mean of 0 and a standard deviation or 

variance of 1.0 at Level 1 and variance as described above at Level 2. 
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Table 2 

Generating Variances and Covariances for the Three-Dimensional Models 

ICC = .15 
B

1  
B

2  
B

3  
W

1  
W

2  
W

3  

B

1  0.176      

B

2  0.123 0.176     

B

3  0.141 0.158 0.176    

W

1  0 0 0 1   

W

2  0 0 0 0.7 1  

W

3  0 0 0 0.8 0.9 1 

ICC = .25 
B

1  
B

2  
B

3  
W

1  
W

2  
W

3  

B

1  0.333      

B

2  0.233 0.333     

B

3  0.266 0.300 0.333    

W

1  0 0 0 1   

W

2  0 0 0 0.7 1  

W

3  0 0 0 0.8 0.9 1 

ICC = .35 
B

1  
B

2  
B

3  
W

1  
W

2  
W

3  

B

1  0.538      

B

2  0.377 0.538     

B

3  0.430 0.484 0.538    

W

1  0 0 0 1   

W

2  0 0 0 0.7 1  

W

3  0 0 0 0.8 0.9 1 

Note. Variances are on the main diagonal. Covariances are on the lower off-diagonal. Numbers in the subscripts differentiate the 

latent dimensions within each level. Letters in the superscripts indicate the level (B = between or Level 2; W = within or Level 1). 

By definition, covariances across levels are fixed at zero. When converted to correlations, the covariances at Level 2 match the 

correlations at Level 1 (.70, .80, and .90). 
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Table 3 

Generating Variances and Covariances for the Five-Dimensional Models 

 
Note. Variances are on the main diagonal. Covariances are on the lower off-diagonal. Numbers in the subscripts differentiate the latent 

dimensions within each level. Letters in the superscripts indicate the level (B = between or Level 2; W = within or Level 1). By 

definition, covariances across levels are fixed at zero. When converted to correlations, the covariances at Level 2 match the 

correlations at Level 1 (.70, .80, and .90). 
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Dependent Variables of Interest 

Parameter recovery under the MH-RM algorithm was examined over 100 

replications.15 Specifically, the accuracy and efficiency of parameters (item 

discrimination, item difficulty, between-cluster variances and covariances, and within-

cluster covariances) were assessed in terms of bias and sampling variability, respectively. 

The results were aggregated over parameters with the same generating value. For 

example, the bias and efficiency of all item discriminations with a generating value of 1 

were aggregated across dimensions within the same condition. Given the inconclusive 

results of prior studies regarding MH-RM standard errors described in Chapter II, 

standard error accuracy is of particular interest. In addition, the processing time was 

reported (in real time) for each condition across replications. Bias and efficiency 

measures are defined below. 

 Bias. Bias is defined as the average difference between the estimated parameter 

and the generating parameter value. For a given parameter   bias was computed as  

 
 1

ˆ( )
R

r

rBias
R



 







, 
(3.2) 

where ˆ
r  is the parameter estimate from the rth replication,   is the true parameter 

value, and R is the total number of replications. 

                                                 
15 Having more replications (e.g., 500 or 1000) would be desirable, especially for the standard errors. 

However, one preliminary run of data generation and model calibration across all conditions took about 27 

hours on a computer with dual-core i7-4500U CPU processor at 16GB with up to 2.40GHz RAM. Thus, for 

the timely completion of this dissertation a second computer with quad-core i5-2400U CPU processor at 

4GB with up to 3.10GHz RAM was used to run some of the replications. 
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RMSE. The root mean squared error (RMSE) combines both bias and sampling 

variability of parameter estimates across replications. Specifically, RMSE was computed 

as 

 
2

2 21

ˆ( )
R

r

rRMSE Bias SE
R

  

 




  


, 
(3.3) 

where SEβ is the empirical standard error of the parameter (i.e., the standard deviation of 

the parameter estimates across replications), and all elements are as defined above. 

 Standard error accuracy. The accuracy of standard errors was examined in 

terms of confidence interval coverage probability, which is the proportion of replications 

in which the 95% confidence interval contains the generating (true) parameter. 

Specifically, based on the analytical standard error from each replication, a 95% 

confidence interval around the parameter estimate from that replication was constructed. 

Then an indicator variable was created such that it took on a value of 1 when the 

confidence interval contained the true parameter and 0 otherwise. Averaging the values 

of this variable across all replications returned the confidence interval coverage for the 

parameter in question. Confidence interval coverage rates near 95% are desirable because 

they would indicate the analytical standard errors and Type I error rates are accurate. It is 

important to note, however, that if the parameter estimates were biased, the 95% 

confidence interval would not cover 95% of the estimates, even if the standard errors 

were accurate.



 

 

 

 

Chapter IV 

Results 

All data management work and statistical analyses were performed in SAS 

software, version 9.4. All figures displayed in the results were created in the R 

programming environment (R Core Team, 2013). To determine which combinations of 

condition factors had the greatest impact on the dependent variables of interest, I 

estimated the proportion of variance accounted for by each factor through a series of 

regression models using the proc glm procedure in SAS software, which allows the 

inclusion of both categorical and continuous predictors. More specifically, the condition 

factors (e.g., cluster size), generating value of the parameter where applicable (e.g., 

generating item discrimination a), as well as the two-way and three-way interactions 

among these factors served as predictors of the dependent variable (e.g., item difficulty 

bias). Four-way (or higher-order) interactions were not examined because they can result 

in estimation difficulties and can be nearly impossible to display and interpret. See 

Appendix A for more detail on the procedures used to examine the regression models as 

well as the output from the full models containing all main effects, two-way interactions, 

and three-way interactions. 

Bias 

Overall, item parameters (which were fixed to be equivalent across levels), latent 

variances and covariances, and the abilities were reproduced well. In the following, I 

break down the results regarding bias by item parameters (item difficulty and item 

discrimination), latent variances (only for Level 2 since the Level 1 variances were fixed 

at 1.0 for identification), latent covariances/correlations at both levels, as well as ability 
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estimates at both levels. The ability estimates at Level 2 (i.e., the cluster mean abilities) 

and Level 1 (i.e., individual deviations from the cluster mean abilities) were examined 

separately to distinguish bias at the cluster (e.g., school) level from bias at the individual 

(e.g., student) level. However, in practice, the ability estimates from the two levels would 

be summed to report individual students’ ability estimates or scaled scores. As a 

reminder, bias was defined as the average difference between the estimated value and the 

generating value of a parameter. Thus, positive bias indicates the parameter was 

overestimated, whereas negative bias indicates the parameter was underestimated. 

Item difficulty. The item difficulty values (which as explained in Appendix A are 

somewhat confounded by item discrimination) were slightly positively biased on average 

(mean bias across conditions was 0.128, SD = 0.059), indicating that, on average, the 

items were estimated to be easier than they actually were (see Equation 1.3 for the 

relationship between the item “easiness” parameter [d] considered here and the traditional 

item difficulty parameter [b]). The full regression model with all main effects, two-way 

interactions, and three-way interactions explained the majority of the variability in this 

bias (see Table A1 in Appendix A), with generating item discrimination value (labeled 

“aval”) being the most significant predictor of this variability, followed by the number of 

dimensions (“dim”), generating item difficulty value (“dval”), number of clusters, cluster 

size, the ICC level, and some interactions, each explaining at least 1% of the variability in 

item difficulty bias. I interpret these effects next with the aid of visual displays. 

As shown in Figure 2, there was a positive relationship between generating a 

value and bias in item difficulty. Figure 2 also shows the main effect of the number of 

dimensions, with bias being consistently higher in the three-dimensional models than in 
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the five-dimensional models. Finally, one should note the effect of sample size. 

Specifically, item difficulty bias appeared to be slightly lower with a larger number of 

small clusters (bottom left panel). Having the same overall sample size but made up of a 

small number of large clusters (top right panel) resulted in noticeably larger bias. 

Furthermore, the bias in item difficulty did not appear to improve much by adding more 

large clusters (bottom right panel); in fact it appeared to be more beneficial to have a 

large number of small clusters than the same large number of large clusters. 

 

 

Figure 2. Item difficulty bias (y axis) as a function of generating a value (x axis), number of clusters (top 

vs. bottom panels), cluster size (left-hand-side vs. right-hand-side panels), and number of dimensions 

(shapes). 

 

There was a significant quadratic effect of generating d value on item difficulty 

bias. However, as shown in Figure 3, this effect was likely due to the generating a values, 
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with more discriminating items showing greater bias, especially for middle-difficulty 

items. Nevertheless, the higher the generating d value (i.e., the easier the item), the 

greater the bias, above and beyond the effect of item discrimination. In addition, the 

effect of the ICC level was present only when cluster size was small (top panels): the 

lower the ICC level, the smaller the bias in item difficulty; ICC level did not appear to 

affect item difficulty bias when clusters were large (bottom panels). 

 

 

Figure 3. Item difficulty bias (y axis) as a function of generating d value (x axis), cluster size (top vs. 

bottom panels), ICC level (columns of panels), and generating a value (colors). 
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Figure 4. Item discrimination bias (y axis) as a function of generating a value (x axis), number of clusters 

(top vs. bottom panels), cluster size (left-hand-side vs. right-hand-side panels), and number of dimensions 

(shapes). 

 

Item discrimination. The bias in item discrimination across replications and 

conditions was small (mean bias = 0.013, SD = 0.027). Linear regression (Table A2) 

revealed that the most important factors affecting item discrimination bias were sample 

size, the number of dimensions, and generating a value. 

Similar to the bias in item difficulty, the bias in item discrimination was larger for 

higher generating a values (see Figure 4), with the exception of the smallest sample size 

combination (top left panel, where a = 2). However, this could be due to chance. Unlike 

item difficulty bias, item discrimination bias tended to be smaller in the three-

dimensional models than in the five-dimensional models. In addition, item discrimination 

bias was the smallest when the overall sample size was the largest (bottom right panel), 
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and the make-up of number of clusters versus cluster size appeared to be of little 

significance. 

 

Figure 5. Level 2 (between) variance bias (y axis) as a function of ICC level (x axis), number of clusters 

(top vs. bottom panels), cluster size (left-hand-side vs. right-hand-side panels), and number of dimensions 

(shapes). 

 

Variances and covariances. Recall that only Level 2 (between) variances were 

estimated; Level 1 (within) variances were fixed to 1.0 for identification. Thus, the three 

parameters of interest here were Level 2 (between) variances, Level 2 (between) 

covariances, and Level 1 (within) covariances. 

Level 2 (between) variances. Overall, Level 2 (between) variances were very 

slightly positively biased across all conditions (mean bias = 0.005, SD = 0.010). More 

than half of the variability in this bias was explained by the number of dimensions, the 

ICC level, the number of clusters, cluster size, and the interactions of these factors (see 
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Table A3). As shown in Figure 5, when the number of clusters was small (top two 

panels), bias in the Level 2 (between) variances tended to be smaller in the five-

dimensional models than in the three-dimensional models, whereas the number of 

dimensions did not appear important when there was a large number of clusters (bottom 

two panels). Finally, there was no clear pattern in terms of the ICC level. The effect for 

ICC displayed in the top left panel could simply be due to chance because of the small 

sample size there (800). 

Level 2 (between) correlations. Correlations rather than covariances among the 

Level 2 dimensions were examined for two reasons. First, one could argue that 

correlations allow for a more accurate examination of bias in the relationships among the 

latent dimensions than covariances because covariances contain bias due to the bias in the 

Level 2 variances. By converting the estimated covariances to correlations and 

subtracting the generating correlation values (.7, .8, and .9) in the calculation of bias, the 

bias due to the Level 2 variances cancels out in the conversion formula and does not carry 

over into the result. As such, one obtains a pure estimate of the discrepancy between the 

estimated and generating values. The second reason is that correlations are far easier to 

interpret than covariances. In addition, the Level 1 (within) covariances are already on 

the correlation metric because the variances there were set to 1.0. Thus, examining 

correlations rather than covariances allows for direct comparison across Level 1 and 

Level 2 correlation bias. 

Similar to the Level 2 (between) variances, Level 2 correlations were very slightly 

positively biased across all conditions (mean bias = .003, SD = .008). Again, the factors 

accounting for the majority of the variability in this bias were the number of dimensions, 
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the ICC level, the number of clusters, cluster size, and the interactions among them (see 

Table A4). Although Figure 6 does not reveal a clear pattern of these effects, it appears as 

though bias was lower when there were more clusters (bottom two panels), and especially 

when the clusters were small (bottom left panel). With respect to the ICC level and the 

number of dimensions, it is difficult to draw any conclusions with certainty. It is 

important to note, however, that the bias values across different factors displayed in 

Figure 6 were very small and relatively close to one another. One could argue that such 

small differences are not important. 

 

Figure 6. Level 2 (between) correlation bias (y axis) as a function of ICC level (x axis), number of clusters 

(top vs. bottom panels), cluster size (left-hand-side vs. right-hand-side panels), and number of dimensions 

(shapes). 

 

Level 1 (within) correlations. Overall, the Level 1 (within) correlation bias was 

small and negative (mean bias = -.020 SD = .018), indicating that the relationships 

between the dimensions at Level 1 tended to be slightly underestimated. Linear 
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regression revealed that almost all of the variability in this bias was due to the main 

effects of generating value, the number of dimensions, and their interaction (see Table 

A5). As shown in Figure 7, bias was smaller in the three-dimensional models than in the 

five-dimensional models. In addition, the larger the generating values for the Level 1 

(within) correlations, the more those correlations were underestimated (i.e., greater bias). 

 

Figure 7. Level 1 (within) correlation bias (y axis) as a function of generating value (x axis) and number of 

dimensions (shapes). 

 

Ability estimates. Level 2 (between) and Level 1 (within) ability estimates were 

biased very slightly across conditions. On average, Level 2 (between) abilities were 

slightly underestimated (mean = -0.074, SD = 0.026), whereas Level 1 (within) abilities 

were unbiased (mean = -0.008, SD = 0.005). Again, I used linear regression to identify 

the most important factors that impacted bias in the ability estimates. The results from the 

full models with all predictors are presented in Table A6 and A7 in Appendix A. 
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Figure 8. Level 2 (between) ability estimate bias (y axis) as a function of rounded generating θ value (x 

axis), cluster size (top vs. bottom panels), and ICC level (columns of panels from left to right). 

 

As shown in Figure 8, bias in the Level 2 (between) ability estimates was 

primarily a function of the generating ability level (i.e., generating θ value). Specifically, 

lower generating abilities were overestimated, whereas higher generating abilities tended 

to be underestimated. This inward bias was to be expected with Bayes estimates, as they 

are usually “pulled” toward the mean. It is important to note, however, that for a large 

range of the proficiency continuum bias in ability estimates was very small. As to the 

other factors, bias was larger for small clusters, and bias increased as the ICC level 

increased. However, the effect of the ICC level was not so profound when cluster size 

was large. 

Bias in the ability estimates at Level 1 (within) was essentially a function of 

generating θ value (see Figure 9). Again, ability at the low end of the proficiency 
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continuum were overestimated, whereas abilities at the high end of the proficiency 

continuum were underestimated. The majority of mid-level abilities were unbiased. 

 

Figure 9. Level 1 (within) ability estimate bias (y axis) as a function of rounded generating θ value (x axis). 

 

RMSE 

Root mean squared error (RMSE) as defined in Equation 3.3 is a combination of 

both bias and sampling variability, thus providing insight not only into the average 

accuracy of MH-RM in recovering the parameters of the model, but also into its 

efficiency (i.e., extent to which estimates were stable across replications). Again, results 

are presented for item difficulty, item discrimination, Level 2 (between) variances, Level 

2 (between) correlations, Level 1 (within) correlations, and ability estimates. 

Item difficulty. On average, item difficulty RMSE was not overly large (mean 

RMSE = 0.193, SD = 0.110). Linear regression revealed that several simulation condition 

factors, generating d and a values, as well as interactions accounted for the majority of 

variance in item difficulty RMSE (see Table A8). As was the case with bias, a sizeable 

part of the variance in item difficulty RMSE was accounted for by the quadratic effect of 
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generating d value. However, as shown in Figure 10, this effect was largely due to the 

generating a value confounded with d, even though there was no main effect for 

generating a value. Similar to bias, item difficulty RMSE was larger for more 

discriminating items. Beyond this effect, item difficulty RMSE was the highest for 

extremely difficult items (highest point on the left within each panel in Figure 10) and a 

little higher for middle-difficulty items when generating a value equaled 2. The latter 

effect was most likely due to bias, which is part of RMSE. 

 

Figure 10. Item difficulty RMSE (y axis) as a function of generating d value (x axis), number of clusters 

(top vs. bottom panels), cluster size (left-hand-side vs. right-hand-side panels), and generating a value 

(colors). 
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Figure 11. Item difficulty RMSE (y axis) as a function of generating a value (x axis), number of clusters 

(top vs. bottom panels), cluster size (left-hand-side vs. right-hand-side panels), and number of dimensions 

(shapes). 

 

As expected, RMSE tended to be the smallest when the overall sample size was 

the largest (bottom right panel), with a slight advantage of a large number of small 

clusters (bottom left panel) over a smaller number of large clusters (top right panel). 

Figure 11 also shows this pattern. Again, one can see the positive relationship between 

generating a value and RMSE. Finally, the number of dimensions affected item difficulty 

RMSE such that the three-dimensional models had slightly higher item difficulty RMSE 

than the five-dimensional models. The same pattern was observed in item difficulty bias. 

However, there the effect was consistent across all four combinations of number of 

clusters and cluster size. Here, the effect was more visible when cluster size was large 

(right-hand-side panels in Figure 11). 
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Item discrimination. Overall, item discrimination RMSE was small across 

conditions and replications (mean RMSE = 0.123, SD = 0.085). Almost all of the 

variance in item discrimination RMSE was accounted for by sample size (number of 

clusters and cluster size and their interaction), the main effect of generating a value, and 

the main and quadratic effects of generating d value (see Table A9). The quadratic effect 

of generating d value is somewhat visible in Figure 12. But again, generating item 

discrimination is already part of item difficulty, which may be why the quadratic effect of 

d was significant (e.g., examine one color at a time to see how the RMSE dips for d = 0 

and increases slightly for easier and more difficult items).  

 

 

Figure 12. Item discrimination RMSE (y axis) as a function of generating d value (x axis), number of 

clusters (top vs. bottom panels), cluster size (left-hand-side vs. right-hand-side panels), and generating a 

value (colors). 
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In addition, there were no extremely easy items; otherwise, one might expect to 

see high RMSE on the right-hand-side of each panel as well, making the plot symmetric 

and revealing the quadratic effect of d. Still, highly discriminating and difficult items 

resulted in larger RMSE. By contrast, the effect of generating a value alone was much 

more prominent; the higher the generating a, the greater the item discrimination RMSE. 

In terms of sample size, a large total sample size (bottom right panel) appeared to trump 

the effect of either number of clusters or cluster size. 

Variances and covariances. Following the structure of the results for bias, I 

present RMSE for the Level 2 (between) variances, Level 2 (between) correlations, and 

Level 1 (within) correlations. Note that because Level 2 variance and correlation bias was 

so small, RMSE is predominantly a function of sampling variability. 

 

Figure 13. Level 2 (between) variance RMSE (y axis) as a function of ICC level (x axis), number of 

clusters (top vs. bottom panels), and cluster size (left-hand-side vs. right-hand-side panels). 
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Level 2 (between) variances. On average, Level 2 (between) variance RMSE was 

very small across conditions and replications (mean RMSE = 0.068, SD = 0.038). Its 

variability was predominantly a function of ICC level, the number of clusters, cluster 

size, and the interactions of these factors (see Table A10). As shown in Figure 13, ICC 

level and the number of clusters appeared to affect Level 2 (between) variance RMSE the 

most, such that as the ICC level increased, so did RMSE. Additionally, a larger number 

of clusters (regardless of size) was accompanied by lower RMSE. 

Level 2 (between) correlations. Similar to the variances, the Level 2 (between) 

correlations had small RMSE overall (mean RMSE = .056, SD = .036). Linear regression 

revealed that the variability in RMSE was almost completely accounted for by the 

number of clusters, generating value, cluster size, ICC level, and their interactions (see 

Table A11). Figure 14 clearly shows the effect of number of clusters: the more clusters 

(regardless of size and ICC level), the lower the RMSE (bottom two panels). When the 

number of clusters was small, however, ICC did play a role (the higher, the better), 

especially when the clusters were small (top left panel). Finally, the higher the generating 

value of the Level 2 (between) correlation, the smaller the RMSE. Interestingly, the last 

pattern was also observed with the Level 1 (within) correlation bias, but not with the 

Level 2 (between) correlation bias. 
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Figure 14. Level 2 (between) correlation RMSE (y axis) as a function of ICC level (x axis), number of 

clusters (top vs. bottom panels), cluster size (left-hand-side vs. right-hand-side panels), and generating 

value (shapes). 

 

Level 1 (within) correlations. In line with Level 2 (between) variances and 

correlations, Level 1 (within) correlations had a small RMSE across conditions and 

replications (mean RMSE = .030, SD = .015). Linear regression revealed that nearly all 

of the variability in Level 1 (within) correlation RMSE could be accounted for by four 

factors and their interactions: the number of dimensions, the generating value, the number 

of clusters, and cluster size (see Table A12). As shown in Figure 15, unlike the effect of 

the number of dimensions on Level 1 (within) correlation bias, RMSE was consistently 

smaller in the three-dimensional models than in the five-dimensional models, and 

especially at higher generating values. Overall, the higher the generating value, the larger 
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the Level 1 (within) correlation RMSE. Finally, the greater the total sample size, the 

smaller the RMSE (regardless of number of clusters vs. cluster size). 

 

 

Figure 15. Level 1 (within) correlation RMSE (y axis) as a function of generating value (x axis), number of 

clusters (top vs. bottom panels), cluster size (left-hand-side vs. right-hand-side panels), and number of 

dimensions (shapes). 

 

Ability estimates. Overall, RMSE for the Level 2 (between) ability estimates was 

small (mean = 0.207, SD = 0.056). However, RMSE was noticeably larger for the Level 1 

(within) ability estimates (mean = 0.495, SD = 0.041) although they were unbiased on 

average, indicating a lot more measurement error at Level 1. Regression analyses 

revealed that for Level 2 (between) abilities RMSE was largely a function of cluster size 

(see Table A13), whereas for Level 1 (within) abilities RMSE was essentially a function 

of only the generating θ value (see Table A14). Figure 16 clearly shows the strong effect 
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of cluster size on RMSE for the Level 2 (between) ability estimates. RMSE was much 

smaller for cluster sizes of 100 than it was for cluster sizes of 20. In addition, RMSE was 

smaller for generating θ values near the middle range of proficiency and tended to get 

larger for very low or very high proficiency levels, especially for small clusters. 

 

 

Figure 16. Level 2 (between) ability estimate RMSE (y axis) as a function of generating θ value (x axis), 

number of clusters (top vs. bottom panels), cluster size (left-hand-side vs. right-hand-side panels), and 

number of dimensions (shapes). 

 

By contrast, RMSE for the Level 1 (within) ability estimates was not affected by 

sample size and was purely a function of generating θ value (see Figure 17). Here, even 

small deviations from 0 (or the average proficiency in each cluster) were associated with 

large RMSE, and the effect was even stronger at the extremes of the proficiency 

continuum. 
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Figure 17. Level 1 (within) ability estimate RMSE (y axis) as a function of generating θ value (x axis). 

 

Standard Error Accuracy 

As described in Chapter III, the accuracy of the standard errors for the item 

parameters and latent variances and covariances was examined by constructing 95% 

confidence intervals based on the parameter estimate from each replication and the 

analytical standard error from the flexMIRT output. A coverage rate was then computed 

as the number of replications in which the 95% confidence interval contained the 

generating parameter value. Coverage rates close to 95% indicate that the analytical 

standard errors across replications tended to be accurate. Values greater than 95% 

indicate that the standard errors were too large, whereas values smaller than 95% indicate 

that the standard errors were too small. 

It is important to note, however, that in the presence of bias, the coverage rates 

computed as described above may not reflect the accuracy of analytical standard errors 
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due to bias in the parameter estimates. Specifically, the greater the bias, the smaller the 

confidence interval coverage rates would be. This is because the generating value is more 

likely to be outside the conference interval constructed around a biased estimate. The 

results presented so far indicated that bias was small overall (see Appendix B). Thus, if 

the standard errors were accurate, the coverage rates should not be much lower than 95%.  

Another factor that could impact confidence interval coverage rates is the number 

of observations on which they are based. In this case, the coverage rates were computed 

based on the estimates and standard errors for each parameter in the 100 replications. As 

discussed in Chapter III, more observations are desirable, in order to assess the 

trustworthiness of standard errors more accurately. However, there was another issue, 

which led to an even smaller number of observations for some parameters. Specifically, 

the analytical error variances (i.e., the squared analytical standard errors) of certain 

parameters and conditions were negative in some replications. Because of this, the 

standard errors for these parameters and conditions were treated as missing. Thus, the 

confidence interval coverage rate for a given parameter was based only on the 

replications with a nonnegative error variance for that parameter. In the case of 

parameters with the same generating value, only those parameters with a negative error 

variance were excluded from the computation of coverage. 

The analytical error variances for item discrimination were negative under only a 

few conditions, and in no more than 1% of the replications. For item difficulties, the 

analytical error variances were also negative only under certain conditions and in no 

more than 3% of the replications. Negative analytical error variances were much more 

prevalent for the latent variances and covariances. In the three-dimensional models, 
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negative analytical error variances occurred in up to 1% of the Level 2 (between) 

variances and covariances, and in up to 24% of the Level 1 (within) 

covariances/correlations, usually in the conditions with the largest sample size (20,000). 

In the five-dimensional models, negative analytical error variances occurred much more 

frequently: in up to 23% of the Level 2 (between) variances and covariances, and in up to 

56% of the Level 1 (within) covariances/correlations. 

These results indicated that reasonable analytical standard errors were produced 

most of the time for item difficulty and item discrimination regardless of sample size and 

the number of dimensions. However, for Level 2 (between) variances and covariances, 

and especially for the Level 1 (within) covariances/correlations, analytical error variances 

were sometimes negative in three-dimensional models with large sample sizes, and 

frequently negative in the five-dimensional models, indicating the confidence interval 

coverage rates for these parameters may not be trustworthy. 

Nevertheless, below I examine the confidence interval coverage rates for item 

parameters, variances and covariances, and ability estimates (following the same 

structure as bias and RMSE) for several reasons. First, standard errors are important 

because they speak to the amount of variability in an estimate we could expect upon 

replications with a similar sample size. Second, prior studies have provided conflicting 

evidence regarding the accuracy of standard errors obtained via MH-RM; thus, any 

additional information about standard errors with MH-RM is welcome. And finally, no 

prior research has examined the accuracy of standard errors under the specific conditions 

considered in this study. 
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Item difficulty. Across conditions, confidence interval coverage for item 

difficulty was much lower than the nominal rate of 95% (mean = .560, SD = .117), 

indicating the analytical standard errors were too small. Regression analysis revealed that 

almost all of the variability in confidence interval coverage could be accounted for by 

cluster size, the number of clusters, generating a value, the number of dimensions, 

generating d value, the ICC level, as well as some interactions among these factors (see 

Table A14). 

 

Figure 18. Item difficulty confidence interval coverage (y axis) as a function of ICC level (x axis), number 

of clusters (top vs. bottom panels), cluster size (left-hand-side vs. right-hand-side panels), and number of 

dimensions (shapes). 

 

Figure 18 shows an interaction between cluster size and the ICC: for small 

clusters, as the ICC increased, the confidence interval coverage decreased, whereas for 

large clusters, as the ICC increased, the confidence interval coverage increased. Most 
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importantly, Figure 18 clearly shows that the most important factor affecting confidence 

interval coverage was sample size. Specifically, item difficulty confidence interval 

coverage rates were closest to their desired value for the smallest sample size of 800 (top 

left panel); they were extremely small for a total sample size of 20,000 (bottom right 

panel), and somewhere in between for a sample size of 4,000 (the remaining two panels). 

This pattern did not appear to be related to bias; therefore, the results speaks directly to 

the accuracy of the standard errors for item difficulty, which were too small for large 

sample sizes.  

 

Figure 19. Item difficulty confidence interval coverage (y axis) as a function of generating d value (x axis), 

number of clusters (top vs. bottom panels), cluster size (left-hand-side vs. right-hand-side panels), and 

generating a value (colors). 

 

Figure 19 reiterates the effect of sample size and also shows the interaction 

between generating a and d values. Similar to bias and RMSE, there was a significant 
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quadratic effect of generating d, and this effect appears to be confounded by the effect of 

generating a value. For example, the quadratic effect of generating d value on item 

difficulty confidence interval coverage is more visible for highly discriminating items 

(blue color) than less discriminating items (green and pink) and indicates that confidence 

interval coverage was slightly higher (i.e., standard errors are more accurate) for 

extremely easy (right within each panel) or extremely difficult (left within each panel) 

items. By itself, higher discrimination was associated with smaller confidence interval 

coverage rates for item difficulty.  

 

Figure 20. Item discrimination confidence interval coverage (y axis) as a function of generating a value (x 

axis), number of clusters (top vs. bottom panels), and cluster size (left-hand-side vs. right-hand-side 

panels).  

 

Item discrimination. Unlike item difficulty, confidence interval coverage for 

item discrimination across conditions was very close to the nominal rate of 95% (mean = 
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0.930, SD = 0.016), indicating that the analytical standard errors were accurate. Several 

predictors and their interactions were able to explain a small proportion of the variability 

in confidence interval coverage (see Table A16).  

As shown in Figure 20, similar to item difficulty, confidence interval coverage 

rates for item discrimination were closest to 95% for the smallest total sample size (800). 

Coverage rates were lower for sample sizes of 4,000, and even lower for the sample size 

of 20,000. Still, item discrimination confidence interval coverage rates were not nearly as 

low for the larger sample sizes as they were for item difficulty. In terms of generating a 

values, which again appeared to affect the confidence interval coverage rates the most, 

higher generating a values were associated with lower confidence interval coverage rates 

(i.e., smaller analytical standard errors relative to the empirical standard errors). 

Variances and covariances. Following the layout of the results so far, the 

regression analyses of confidence interval coverage rates associated with the latent 

variances and covariances/correlations are presented next. 

Level 2 (between) variances. On average, across conditions and replications, the 

confidence interval coverage rates for the Level 2 (between) variances were very close to 

95% (mean = .925, SD = .004), again indicating that the standard errors were accurate. 

Linear regression revealed that half of the variability in confidence interval coverage 

could be accounted for by cluster size, the number of clusters, the number of dimensions, 

the ICC level, and interactions among these factors (see Table A17). Figure 21 shows no 

clear pattern of how the factors interact to affect confidence interval coverage. However, 

it appears that larger sample size (especially larger cluster size) was associated with 

confidence interval coverage rates closer to 95%, and more so in the five-dimensional 
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models. The effect of ICC level is not clear. However, it appears to interact with the other 

factors via three-way interactions. The interpretation of those is moot, especially 

considering the small deviations of the confidence interval coverage rates from 95%. 

 

Figure 21. Level 2 (between) variance confidence interval coverage (y axis) as a function of ICC level (x 

axis), number of clusters (top vs. bottom panels), cluster size (left-hand-side vs. right-hand-side panels), 

and the number of dimensions (shapes).  

 

Level 2 (between) covariances. Similar to the variances, the confidence interval 

coverage rates for the Level 2 (between) covariances were close to 95% across conditions 

and replications (mean = .927, SD = .005), indicating that the standard errors tended to be 

accurate. The majority of the variability in confidence interval coverage was explained by 

cluster size, the number of clusters, the ICC level, the number of dimensions, and the 

interactions of these factors (see Table A18). Figure 22 shows that for the most part, 

confidence interval coverage rates were closer to 95% when the sample size was large. 
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This result is consistent with the effect of sample size on confidence interval coverage for 

the Level 2 variances. The effects of the number of dimensions and ICC level were not 

clear, although interestingly enough the pattern was almost identical to the one earlier for 

the Level 2 variances. 

 

Figure 22. Level 2 (between) covariance confidence interval coverage (y axis) as a function of ICC level (x 

axis), number of clusters (top vs. bottom panels), cluster size (left-hand-side vs. right-hand-side panels), 

and the number of dimensions (shapes). 

 

Level 1 (within) covariances. Unlike the Level 2 (between) variances and 

covariances, confidence interval coverage for the Level 1 (within) covariances was much 

lower than 95% (mean = .563,  SD = .285), indicating that, on average, the analytical 

standard errors were much lower than their empirical counterparts. The majority of the 

variability in confidence interval coverage was explained primarily by the generating 

value and its interaction with cluster size and the number of clusters (see Table A19). 
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Figure 23. Level 1 (within) covariance confidence interval coverage (y axis) as a function of generating 

value (x axis), number of clusters (top vs. bottom panels), and cluster size (left-hand-side vs. right-hand-

side panels). 

 

As shown in Figure 23, the larger the generating value for the Level 1 (within) 

covariances, the smaller the confidence interval coverage. In other words, the standard 

errors for Level 1 (within) covariances became too small as the level of correlation 

among the latent dimensions increased. There was also a relationship between total 

sample size and confidence interval coverage. Surprisingly, the smaller the sample size, 

the more accurate the standard errors. It is important to note, however, that the larger the 

sample size, the more negative error variances were found; thus the smaller number of 

observations on which Figure 23 was based. As such these results should be interpreted 

with caution. 

Ability estimates. Confidence interval coverage rates for the ability estimates 

were computed similarly to the item parameters and variances and covariances. 
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Specifically, for each Level 2 unit (e.g., school), the 95% confidence interval was 

constructed from the standard error. A coverage rate was then computer as the number of 

schools in which the 95% confidence interval contained the generating parameter value. 

The same procedure was followed for Level 1 units. In addition, unlike the item 

parameters and latent variances and covariances, there were no negative standard errors 

for the ability estimates at either level, so the coverage rates here were based on all Level 

2 and Level 1 estimates from all replications.  

Across conditions, the mean confidence interval coverage was .887 (SD = .043) 

for Level 2 (between) ability estimates and .950 (SD = .005) for Level 1 (within) ability 

estimates. Tables A20 and A21 show the output from the full regression models with all 

predictors and interactions. 

 

Figure 24. Level 2 (between) ability estimate confidence interval coverage (y axis) as a function of 

generating θ value (x axis) and ICC level (colors). 
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As shown in Figure 2416, Level 2 (between) ability estimate confidence interval 

coverage was primarily a function of generating θ value. Specifically, at extremely low 

and extremely high levels of proficiency, confidence interval coverage rates were too 

high (and in a few occasions too low), whereas for ability levels closer to the mid-range, 

confidence interval coverage was still lower than 95%, but closer to this value (i.e., 

analytical standard errors were more accurate). Moreover, Figure 24 shows that coverage 

was closer to 95% for low proficiency (e.g., -2 to 0) than it was for high proficiency. 

Finally, this effect of generating θ value was moderated by the ICC level: the higher the 

ICC level, the better the coverage rates (i.e., more accurate standard errors). 

Unlike Level 2, confidence interval coverage rates for Level 1 (within) ability 

estimates were at the desired level of 95%, on average. In other words, the relative size of 

the analytical standard errors for the Level 1 (within) ability estimates was accurate. 

Figure 25 shows the effect of generating θ value, which was the only significant predictor 

of the variability in confidence interval coverage for the Level 1 (within) ability 

estimates. Consistent with the results for bias and RMSE, confidence interval coverage 

rates were best for Level 1 (within) ability levels near the mid-range of the proficiency 

continuum. Standard errors were too small at the extremes. The average bias, RMSE, and 

confidence interval coverage across conditions for item parameters, Level 2 variances, 

Level 2 and Level 1 covariances/correlations, and ability estimates at both levels are 

presented in Table B1 in Appendix B. A summary of these results is provided in the next 

chapter. 

                                                 
16 The points in Figure 24 (and all figures displaying ability estimates) are based on groups created by 

rounding the generating θ values at the second decimal (.01). Thus, points with perfect and zero coverage 

are most likely based on one school (Level 2) or one student (Level 1) within that generating ability 

interval. 
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Figure 25. Level 1 (within) ability estimate confidence interval coverage (y axis) as a function of 

generating θ value (x axis). 

 

Processing Time 

Although MH-RM was not compared to any other algorithm in this study, it was 

still of interest to examine the average processing time across replications for each 

condition. The simulation study was conducted on two different computers: replications 1 

through 25 of all 24 conditions were conducted on PC 1; replications 26 through 100 

were conducted on PC 2. It is important to note that PC 2 was much more powerful (i.e., 

computationally faster) than PC 1. Thus, there was a lot of variability in estimation time17 

not only across the simulation conditions, but also across machines. 

                                                 
17 Simulation of the data was also performed in flexMIRT, but because each simulation run took only 1-3 

seconds, even for the five dimensional models with 20,000 simulees, only estimation times were examined. 
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Figure 26. Average processing time in minutes (y axis) across conditions (x axis) by personal computer (1 

= two cores, four logical processors; 2 = four cores, eight logical processors). 

 

The average processing time by condition is provided in real time in Figure 26 for each of 

the two computers across replications. For PC 1 each point is based on 25 replications, 

whereas for PC 2 each point is based on 75 replications. Processing time for the 

estimation of the models was mostly a function of sample size. The models with 20,000 

simulees took the most time: over 3.5 hours for PC 1 and almost an hour for PC 2. By 

contrast, the models with the smallest sample size (800), took 7-10 minutes for PC 1 and 

2-3 minutes for PC 2, which is remarkably fast. It appears that when the sample size is 

small, the number of dimensions is not an issue. However, for larger sample sizes, a 

higher number of dimensions does add to the processing time. The make-up of the 

sample (i.e., number of clusters vs. cluster size) does not appear important, nor does the 
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ICC level. Overall, MH-RM shows great processing time efficiency in estimating these 

complex models.



 

 

 

 

Chapter V 

Discussion 

The overarching goal of this chapter is to bring together the main ideas from the 

previous four chapters in a meaningful way. The chapter consists of five sections, each 

with a specific objective. I begin Chapter V with a summary of the results presented in 

the previous chapter. In addition to highlighting the main findings, this section elaborates 

on the interpretation of the results. Next, I discuss the limitations of the current study, and 

how they can impact the inferences one could draw from the results. Then, I place MH-

RM in the spotlight and compare the findings from the current study to those from prior 

research, drawing conclusions specific to the accuracy and efficiency of MH-RM as an 

estimation algorithm. In the final two sections, I discuss the implications of this work for 

practice and point to possible directions for future research. 

Summary 

The purpose of this dissertation was to examine the performance of the MH-RM 

algorithm in the estimation of a 3PL ML-MIRT model under different conditions. 

Specifically, of particular interest was the bias, efficiency, and confidence interval 

coverage associated with item parameters (i.e., item difficulty and discrimination), latent 

variances and covariances/correlations at Level 2 (e.g., schools) and Level 1 (e.g., 

students), as well as the ability estimates at both levels. Each of these dependent variables 

was regressed on the simulation condition factors (i.e., the number of dimensions, the 

ICC level, the number of clusters, and cluster size), relevant generating parameter values, 

and their interactions, to identify the features of the model and the sample that had the 

greatest impact on the dependent variables (i.e., bias, RMSE, and standard error 
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accuracy). In addition, I examined the average estimation time under each condition for 

two different computers used in the study to inform researchers and practitioners using 

the MH-RM algorithm as implemented in flexMIRT as to the time demands to estimate 

similar models. 

First, it is important to note that MH-RM was able to estimate all 100 replications 

for each of the 24 conditions. That is, the algorithm exhibited 100% convergence rate18 

and generally produced meaningful analytical standard errors. As described in Chapter 

IV, the error variances for some item parameters and latent variances/covariances were 

negative, usually when the overall sample size was large, and especially in the five-

dimensional models. One should note that when this occurred, the error variances were 

extremely small in the replications in which they were positive. When only the item 

parameters are of interest, negative error variances are not likely to be a problem. 

In terms of bias, or how far off estimates are from the generating (true) value for a 

given parameter on average, there was a small positive bias for item difficulty and Level 

2 (between) ability estimates, and very little bias for item discrimination. The bias for 

latent variances and covariances and Level 1 (within) ability estimates was extremely 

small. Given the latent variances and covariances and Level 1 (e.g., student-level) ability 

estimates were essentially unbiased, they will not be considered further.  

Item difficulty (i.e., “easiness”) was slightly overestimated on average, meaning 

that items were estimated to be easier than they actually were, and especially so when the 

items were highly discriminating, and the model had three dimensions. Item difficulties 

were the least biased when the ICC was small (.15), and cluster size was small (20). 

                                                 
18 Out of 24,000 model calibrations, only two iterations failed to converge. Once the random seed number 

was changed, both of these iterations finished successfully. 
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Given highly discriminating items are beneficial for reliability and the overall integrity of 

the model, the only clear advantage here is that of having more dimensions.  

By contrast, bias for item discrimination was very small, and actually smaller in 

the three-dimensional models. However, similar to bias for the difficulties, highly 

discriminating items tended to be more biased. It is important to note that logically, one 

might expect greater bias for higher generating values. That is, when the true value of a 

parameter is a larger number, there is more room for error, which manifests as greater 

bias. Moreover, as discussed in Chapter IV, item discrimination is also part of item 

difficulty. Thus, bias in one parameter also carries over into the other. On the whole, 

however, bias in item discrimination was very small, and there is no reason for concern. 

What is somewhat concerning is the bias in the ability estimates (specifically at 

Level 2). On average, Level 2 (e.g., school) ability estimates were underestimated, 

(again, on average Level 1 [e.g., student] ability estimates were unbiased). The reason for 

the direction of bias was not clear. However within each level, bias behaved as expected. 

Specifically, for both levels, low generating abilities were overestimated, whereas high 

generating abilities were underestimated. That is, ability estimates at both levels were 

pulled toward their respective means, which was to be expected of Bayes estimates. In 

addition, bias for Level 2 ability estimates was smaller when the clusters were larger, 

which also made sense—the bigger the clusters, the less biased the cluster-level abilities. 

Thus, if cluster means are of primary interest, larger clusters are desired. When 

interpreting the magnitude of bias for the abilities, it is important to consider that 95% of 

Level 1 units (e.g., students) had generating abilities between -1.96 and 1.96, and 95% of 

Level 2 units (e.g., schools) had abilities within ±0.822 for ICC = .15, within ±1.131 for 
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ICC = .25, and within ±1.428 for ICC = .35. Within these ranges, bias was small, 

especially at Level 2. For example, in Figure 8 (Chapter IV), bias appeared greater when 

the ICC was lower, but this was largely because the -2 to 2 range included values that 

were relatively rarer for the lower ICC levels. Thus, overall MH-RM recovered the vast 

majority of ability estimates quite well at both levels. 

Root mean squared error (RMSE) showed a pattern similar to bias for each of the 

parameters. This was not surprising, since RMSE combines bias and sampling variability 

(i.e., the empirical standard errors or average standard deviations of the estimates across 

replications). On average, RMSE was small for item difficulty and item discrimination, 

very small for the latent variances and covariances/correlations, not overly large for the 

Level 2 ability estimates, and noticeably larger for the Level 1 ability estimates.  

Similar to bias, RMSE for item difficulty and item discrimination was smallest for 

items with low discrimination. For item parameters as well as the latent variances and 

covariances, the largest total sample size (20,000) was associated with the smallest 

RMSE. For Level 2 variances and covariances, the mid-level sample size (4,000) showed 

a clear advantage of a larger number of small clusters over a smaller number of large 

clusters. Thus, although a large total sample size is desirable, it appears to be better to 

have more clusters, even if they are small. This finding aligns with the large body of 

research in the multilevel literature converging on the same conclusion (e.g., Maas & 

Hox, 2005; Snijders, 2005; Spybrook, 2008).  

As for the ability estimates, RMSE also behaved as expected. Specifically, both 

Level 2 and Level 1 ability estimates at the extremes of the proficiency continuum were 

associated with greater RMSE because there was less information in these ranges, 
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whereas abilities near the middle had smaller RMSE. In addition, for Level 2 ability 

estimates RMSE was smaller in larger clusters. Again, when Level 2 (e.g., school-level) 

ability estimates are of primary importance, the sampling design should include larger 

clusters (i.e., more students per school). 

Confidence interval coverage was assessed to determine the accuracy of the 

analytical standard errors produced by MH-RM in flexMIRT. It is important to note that 

the interpretation of confidence interval coverage is dependent upon and limited by the 

availability of meaningful error variances. As mentioned above, the analytical error 

variances for the latent variances and covariances in a substantial number of replications 

were negative, especially in the five-dimensional models. Because of this, the error 

variances (and standard errors) from those replications were treated as missing in the 

construction of confidence intervals by which coverage rates were evaluated. Therefore, 

one should interpret the coverage rates for the latent variances and covariances with great 

caution, since they were based on fewer replications, and even 100 replications might be 

considered too few in the evaluation of standard errors.  

That said, the results revealed that, on average, standard errors were fairly 

accurate for item discrimination, Level 2 variances and covariances, and Level 1 ability 

estimates; a little too small for Level 2 ability estimates; and extremely small for item 

difficulty and Level 1 covariances/correlations. Since the standard errors for item 

discrimination, Level 2 variances and covariances, and Level 1 ability estimates were 

essentially accurate, I do not consider them further. What is more interesting are the 

standard errors for item difficulty, Level 1 covariances, and Level 2 ability estimates.  
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The standard errors for ability estimates behaved as one might expect. 

Specifically, standard errors for Level 2 abilities near 0 or a little below 0 were the most 

accurate, whereas for abilities near the extremes, standard errors tended to be too small. 

The same pattern was observed for the standard errors of Level 1 ability estimates, except 

that here standard errors for abilities near 0 or slightly above zero were the most accurate, 

whereas standard errors of very low or very high abilities were too small. Recall that 95% 

coverage rates indicate the standard errors are accurate in the absence of bias. When bias 

is present, coverage rates may be too small, even when the analytical standard errors are 

very close to the empirical standard errors. So the asymmetry described above may well 

be due to bias. 

The notion of bias also helps explain in part the extremely low confidence interval 

coverage for item difficulty. Recall that, on average, there was a sizeable bias in item 

difficulties. When bias is present, the 95% confidence intervals on which the coverage 

rates are based are sometimes constructed around biased estimates, which makes it less 

likely for the generating value to fall within the confidence intervals. As a result, 

confidence interval coverage rates are too small.  

However, the low confidence interval coverage was not merely a function of bias. 

Sample size also influenced confidence interval coverage for item difficulty, such that 

when sample size was large, the estimated standard errors were too small. As an aside, 

recall that sample size did not affect bias in the item difficulties. Clearly, the analytical 

standard errors of item difficulties are too small in large samples, and this is not simply a 

function of bias. Given no prior research on the standard errors specific to multilevel 

measurement models, this finding is extremely important. Confidence interval coverage 
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rates were also extremely small for the Level 1 covariances, and there was no large bias 

associated with this parameter. A far more likely explanation here is that there were a lot 

of negative error variances. As such, the confidence interval coverage rate computed here 

was based on a small number of observations. More replications may be needed to obtain 

a more accurate estimate of standard error accuracy for the Level 1 

covariances/correlations. This leads us to the next section, which covers the limitations of 

this dissertation. 

Limitations 

Despite the extensive scope of this dissertation, the design and execution of the 

simulation study have several limitations that are worthy of consideration. First, it is 

important to acknowledge that in all of the models item parameters were constrained to 

be of the same magnitude across levels. That is, a single item difficulty and item 

discrimination was estimated for each item for both levels of the measurement model. By 

applying this constraint on the model, one is assuming that the items function the same 

way at the cluster level as they do at the individual level. This constraint was not 

mandatory. In fact, the model allows for the item parameters to differ across levels. In 

some disciplines (e.g., industrial/organizational psychology), there are constructs that 

have substantively different meanings and may necessitate the free estimation of item 

loadings at different levels (see Bliese & Jex, 2002). However, in educational 

measurement, it may be difficult to make an argument for freely estimating the item 

parameters at different levels, especially when one considers the interpretation of those 

parameters. 
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Perhaps a more serious limitation concerns the specification of multilevel 

measurement models. In this study, the Level 1 (within) variances were constrained to 1 

for identification purposes, whereas the Level 2 (between) variances for each dimension 

were freely estimated. This is a rather strong assumption, and it implies that the within-

cluster variance in all Level 2 units was the same. In practice, this translates into having 

the same variability in student ability across schools, which may or may not be the case. 

One can easily imagine Level 2 factors, such as school type (e.g., public vs. private), or 

school-level socioeconomic status (SES) among others, having an impact on the 

variability in student achievement and consequently ability estimates. For example, 

imagine that School X is a public, urban school, with half of its students qualifying for 

free or reduced lunch. One would expect a good amount of variability in achievement and 

ability estimates across students. Now imagine that School Y is a private school in the 

suburbs, where no students qualify for free or reduced lunch (i.e., high SES). Here, all 

students are high achievers, and as a result, there is little variability in ability estimates. 

Clearly, constraining the variability within schools to be the same would not be reflective 

of reality. A less likely but noteworthy argument is that regardless of school type and 

SES, there will always be variability in achievement across students within schools, and 

that the model constraint of setting the within-school variance to 1 is not farfetched. 

Although setting the Level 1 (within) variances to 1 was required for model 

identification, it is important to acknowledge what this constraint implies in practice. 

Another limitation, though not particularly significant, was that item difficulties 

were not fully crossed with item discrimination values. Specifically, there were no 

combinations of very easy, yet highly discriminating items. This did not appear to have 
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any effect on the results. However, it made the interpretation of the quadratic effect of 

generating difficulty less straightforward because d = -ab was not symmetrical around 0. 

Finally, the results of the study were based on 100 replications for each condition. 

Although this number of replications may be sufficient for the examination of bias and 

RMSE, a much larger number of replications (e.g., 1000 or more) is desirable for the 

proper assessment of standard error accuracy. This is especially true for the latent 

variances and covariances whose error variances were often negative in the five-

dimensional models. Many more replications are needed there. 

MH-RM as an Estimator of Multilevel Measurement Models 

Overall, the MH-RM algorithm performed well in the estimation of the three- and 

five-dimensional multilevel measurement models examined in this dissertation. As 

mentioned above, MH-RM was able to estimate all 100 replications of all 24 conditions 

in a reasonable amount of time, especially with a more powerful computer. Given the 

specific conditions examined here and the fact that MH-RM has not been studied before 

with multilevel measurement models, the results I obtained cannot be compared directly 

to how MH-RM performed with different models (e.g., single-level exploratory or 

confirmatory IFA). However, a crude comparison of the results from this study and the 

research on the functionality of MH-RM compared to other estimation methods (see 

Chapter II) revealed that the results obtained here generally agree with the findings in 

published research. For example, the RMSE for item loadings reported in Cai (2010a, 

2010b) is similar to the average RMSE for item discrimination reported here. Similarly, 

there was little bias for the item parameters and latent variances and covariances found 

here and in prior research. Thus, as far as item parameters and latent variances and 
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covariances are concerned, the current study provided further support for MH-RM as a 

promising solution to the “curse of dimensionality” prohibiting the estimation of high-

dimensional measurement models.  

However, the purpose of modeling item response data is not only to obtain item 

parameters and examine the variances and covariances across dimensions, but also to 

produce ability estimates. Thus, it is important to know how accurate those estimates are, 

and whether their standard errors can be trusted. No known study has examined the 

accuracy of ability estimates produced by MH-RM. Therefore, the current study is the 

first to shed some light in this area. In terms of bias, I found that Level 2 ability estimates 

were slightly biased, whereas Level 1 ability estimates were unbiased. However, the bias 

was not overly large, and within level, it behaved in expected ways. Thus, the results 

supported MH-RM as a viable estimator on this front as well. What is concerning, on the 

other hand, is that the standard errors for some parameters may be inaccurate. For 

example, the standard errors for item discrimination were found to be essentially 

accurate, whereas those for item difficulty were too small. Interestingly, Asparouhov and 

Muthén (2012) found the opposite: standard errors of item thresholds (i.e., difficulties) 

were more or less accurate, whereas the standard errors of item loadings (i.e., 

discriminations) were too small. Again, the examination of standard error accuracy in the 

current study was somewhat limited therefore this disagreement warrants further 

investigation with more replications. 

The bottom line is that MH-RM appears to be a viable option in the estimation of 

multilevel measurement models with as many as five dimensions on each level, as 

evidenced by the larger part of the results examined here. More importantly, this study 
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unlocks the potential for application and future research of MH-RM in multilevel 

multidimensional IRT models. Next I discuss the potential benefits of such applications 

in practice and provide possible paths for future research. 

Implications for Practice 

Being the first of its kind, the 3PL ML-MIRT model presented in this dissertation 

has enormous potential for educational measurement practice. K-12 education 

practitioners continuously demand more diagnostic feedback from assessments for 

accountability to help diagnose and address students’ specific needs. One way of meeting 

this demand is the implementation of multidimensional models, where one can model 

multiple subdomains within a subject area simultaneously. A relevant example today is 

the Common Core State Standards. Now that the “curse of dimensionality” has been 

lifted by the MH-RM algorithm, multidimensional models can be easily applied in 

practice. Importantly, specifying a model with multiple (typically highly correlated) 

dimensions can help reduce the number of items per dimension needed to achieve a 

certain level of precision compared to unidimensional models, which typically require 

more items to achieve the same measurement precision. This is due to the borrowing of 

information across dimensions, which is only possible with multidimensional models. 

Given that achievement in one subject area is usually highly correlated with achievement 

in other subject areas, the dimensions in a MIRT model need not be limited to 

subdomains within the same subject area—one can model the response data from 

multiple subtests (e.g., English Language Arts, mathematics, and science), not just the 

subdomains within a single content area (e.g., mathematics). 
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The other feature of the 3PL ML-MIRT model that can be extremely beneficial in 

practice is the measurement of proficiency at multiple levels. That is, the model not only 

properly accommodates the hierarchical structure of the date due to nesting (e.g, students 

nested within schools), but it also produces estimates of ability at the individual (e.g., 

student) and the cluster (e.g., school) level. Thus, the 3PL ML-MIRT model allows for 

the estimation of more reliable cluster-level ability measures than those that would be 

obtained by simply averaging the individual ability estimates within clusters. This is 

because in the 3PL ML-MIRT model, the cluster means are estimated directly using 

information from all other schools in the model. In educational measurement, these 

school-level estimates would be particularly useful, especially within a school district or 

a state, where policy decisions are often based on aggregate school achievement metrics. 

As such, the models discussed here have direct implications for practice in that policy 

decisions will be made on the basis of more dependable scores. This, in turn, also 

increases the validity of inferences based on school-level estimates of achievement. 

The applications of the 3PL ML-MIRT model are not limited to the school level. 

The sample sizes and combinations of number of clusters and cluster sizes examined in 

this study revealed that the model can be applied to a variety of sampling designs. For 

instance, one could model a large number of schools (e.g., 200) or a smaller number of 

classrooms (e.g., 40) with students nested within them (e.g., 100 within each school or 20 

within each classroom, respectively). Furthermore, the models examined in this 

dissertation covered a fairly large range of ICC levels that one is likely to observe in 

educational data. When applying the 3PL ML-MIRT model in practice, one should 

always consider the level of dependency of observations within clusters. This is 
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important because if the ICC is too small (which is unlikely in educational data), the 

model may not converge due to lack of sufficient information to estimate the parameters 

of the model at both levels. Another reason why the ICC level is so important is that it 

can affect the parameters differently. For example, if Level 2 (e.g., school level) ability 

estimates are of primary interest, the results of this study showed that higher ICC level 

was associated with smaller bias, especially in small clusters (e.g., schools). However, 

recall that this effect was in part an artifact of the different school mean ranges at 

different ICC levels (e.g., a school mean of 1 is much more extreme when ICC = .15 than 

it is when ICC = .35). On the other hand, if the Level 2 (between) variances were of 

primary interest, the RMSE was higher for higher ICCs. Therefore, one should take into 

consideration the ICC level associated with each dimension and how it might impact the 

parameter estimates associated with that dimension. 

In practice, the 3PL ML-MIRT model could be applied with two-stage sampling 

designs frequently used in international achievement testing programs as well as with 

census data encountered in K-12 state assessments for accountability. Overall, the results 

presented in this dissertation provided substantial support for the use of the model in 

practice. However, given the limited research on the performance of MH-RM as an 

estimator of the 3PL ML-MIRT model, it is up to the education practitioners and 

policymakers to decide when to apply the model and for what purposes, depending on the 

questions at hand. As a reminder, the MH-RM algorithm is remarkably fast, especially 

when used with a powerful computer (e.g., four or more logical processors), which is 

especially desirable if the total sample size is large. Thus, one could always estimate a 

3PL ML-MIRT model and compare the results across different models (e.g., a single-
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level MIRT or several multilevel unidimensional models). One could then assess the 

advantages and disadvantages of the models in light of the data, the research questions, 

and the simulation results described here. 

Future Research 

Although the MH-RM algorithm was developed fairly recently, researchers have 

already used it in several studies with real data. Importantly, very few studies have 

examined the performance of MH-RM with various models. Thus, there are many 

opportunities for further research on the functionality of MH-RM in general. In this 

dissertation, I specifically examined the accuracy and efficiency of MH-RM as applied to 

multilevel multidimensional models under various conditions, and although the scope of 

the study was extensive, there are many more avenues for further research. Below I point 

to several directions for future research. 

The research design of the current study could be enhanced in several ways. For 

example, the examination of the accuracy of standard errors for various parameters of the 

model presented here was limited. Specifically, many more replications are needed in 

order to obtain stable confidence interval coverage rates. This would be a great way to 

supplement the findings of the current study and expand the body of empirical support for 

the application of MH-RM with multilevel measurement models in practice. A 

recommendation for researchers who wish to replicate some form of the design employed 

in this dissertation is to fully cross the generating item difficulty and item discrimination 

values, so that all item types that one may encounter in practice are covered. Another 

modification of the design could involve the specification of different correlations among 

the dimensions at different levels. For example, it could be that in reality the dimensions 
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are much more highly correlated at the school or classroom level than they are at the 

student level, controlling for cluster membership (e.g., Höhler et al., 2010). It would be 

interesting to explore whether and how specifying different correlations at different levels 

impacts the results in terms of bias, RMSE, and possibly standard errors at different 

levels. 

Another way to build on the 3PL ML-MIRT model is to add predictors at Level 2 

and Level 1. For example, several demographic/background variables at both the school 

and student levels could be added to the model to explain some of the variability in 

ability estimates. Now the model has two parts: a measurement part (such as 3PL ML-

MIRT models examined in this dissertation) and a structural part, which would provide 

regression coefficients and significance tests for the Level 2 and Level 1 predictors of the 

Level 2 (between) and Level 1 (within) variances. The main advantage of estimating both 

parts of the model in a unified framework (i.e., in a single hybrid model) is that the 

dependent variables in the structural part of the model are latent. That is, unlike a 

traditional multilevel model in which one would model the ability estimates as observed 

dependent variables prone to measurement error, the hybrid model allows for more 

accurate estimates of the regression coefficients in the structural part of the model 

because measurement error in the ability estimates is taken into account. Although it 

would be interesting to examine such a model for research purposes, more research is 

needed to evaluate these models before they can applied in practice. 

Yet another possibility for future research is to examine the performance of MH-

RM in the estimation of 3PL ML-MIRT models with complex-structure items. Recall that 

all items in this study had simple structure, meaning that the probability of correct 
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response to an item was a function of a single latent dimension (modeled at two levels), 

as well as item parameters constrained to be the same across levels. A logical extension 

of this framework is to include items that require combinations of skills or latent traits 

(i.e., a compensatory model) or an exact set of multiple skills (i.e., noncompensatory 

model). 

Finally, since MH-RM is now implemented in the “mirt” package in R (Chalmers, 

2012), a future study could compare the estimation of a multilevel IRT, MIRT, or ML-

MIRT model (if possible) in the “mirt” package using MH-RM, and then compare the 

results of the same model estimated in flexMIRT, again using MH-RM as the calibration 

algorithm. Possible dependent variables of interest include convergence rate, bias, 

RMSE, and standard error accuracy for item parameters, latent variances (and 

covariances, where applicable), ability estimates (at different levels, where applicable), as 

well as processing time. 
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Appendix A 

 

Regression analysis procedures and output from full models including all 

main effects, two-way interactions, and three-way interactions  

 

Procedures 

 

First, I built a full linear regression model including all main effects, two-way 

interactions, and three-way interactions. Then, I examined the statistical significance and 

effect size (semi-partial η2) for each main effect or interaction. As a general rule, an 

effect had to be statistically significant, and, more importantly, explain at least 1% of the 

variance in the criterion, in order to be retained in the model.  

To make interpretation of the significant predictors easier, nonsignificant 

predictors were removed in groups, starting with the nonsignificant three-way 

interactions, then the nonsignificant two-way interactions, and finally any nonsignificant 

main effects. Nonsignificant main effects and interactions were retained in the model in 

the presence of a significant higher-level interaction that explained at least 1% of the 

variance in the criterion. An exception to this cutoff (1% variance explained) was made 

for the main effect for the generating value of the “difficulty” parameter d, which was 

confounded by a (see Equation 1.3). More specifically, when the main effect of the 

generating value of a on the criterion was much larger than that of the generating value of 

d, then only the effect of a was considered in the interpretation of the results, since a is 

already in d (except when the generating a = 1). Thus, a higher minimum percentage of 

variance explained was used, in order to consider the main effect of generating d value 

meaningful.  

The output from the full regression models including all main effects, two-way 

interactions, and three-way interactions is provided further below in Tables A1 through 

A21. The reduced models, in which nonsignificant predictors were removed using the 

procedure described above, are not presented, since they were used to simply identify the 

practically significant predictors to plot and interpret.  

Multicollinearity was assessed by examining the difference between R2 (i.e., the 

total percentage of variance explained in the criterion by the predictors) and the sum of 

the semi-partial eta squares (i.e., the sum of the unique contributions of the predictors, 

controlling for one another), where the semi-partial correlation was computed as the ratio 

of the Type III sum of squares to the corrected total sum of squares: 

 
2

Total

SS

SS
  .  

Specifically, a relatively large positive difference between R2 and the sum of the 

semi-partial correlations (Ση2) indicated multicollinearity (i.e., redundancy among the 

predictors). In other words, at least some predictors were highly correlated with one 

another; thus the sum of their unique contributions was noticeably smaller than their 

combined predictive power (R2). However, sometimes Ση2 exceeded R2. This 

phenomenon is known as “cooperative suppression” (Cohen & Cohen, 1975, pp. 90-91) 

and occurs when all predictors are positively correlated with the criterion, but some are 
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negatively correlated with one another. As a result, the semi-partial correlations of some 

predictors with the criterion exceed their zero-order counterparts. 

Recall that the Level 2 variances (between) were generated such that the ICCs 

were set at desired values (see Tables 2 and 3 in Chapter III). Because of this, the ICC 

magnitude as a condition factor in the simulation study and the generating Level 2 

(between) variance values were nearly perfectly correlated (r was not 1.0 due to rounding 

error). In other words, the two predictors were completely redundant with one another, 

which was reflected in the output as degrees of freedom = 0, effects of 0.00 and missing 

significance statistics for these effects. Thus, in order to obtain more meaningful results, 

out of the two predictors only the ICC was retained in the model as a predictor of bias, 

RMSE, and confidence interval coverage for the Level 2 variances. A similar problem 

occurred for the Level 2 (between) covariances in the regression model for confidence 

interval coverage. Here, the correlation of generating Level 2 (between) covariance 

values and the ICC was not too high (r = .963), but high enough to cause estimation 

issues. Once removed, the effects of all other predictors in the model could be estimated. 

 

Descriptions of the predictors in Tables A1-A21 

 

Predictor Description 

dim number of dimensions 

icc intraclass correlation coefficient value 

numclust number of clusters 

clustsize cluster size 

aval generating item discrimination (a) value 

dval generating item difficulty (d) value 

dvalsq generating item difficulty (d) value squared (quadratic effect) 

genval generating value (variance, covariance/correlation) 

roundt generating θ value rounded to the second decimal 
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Table A1 

Linear Regression of Item Difficulty Bias on Condition Factors, Generating d Value, Generating a Value, 

and Interactions 

Predictor df 
Type III 

SS 

Mean 

Square 
F p η2 

dim 1 0.379 0.379 286.450 <.0001 0.102 

icc 2 0.100 0.050 37.830 <.0001 0.027 

numclust 1 0.108 0.108 81.420 <.0001 0.029 

clustsize 1 0.148 0.148 111.650 <.0001 0.040 

aval 2 0.918 0.459 346.690 <.0001 0.246 

dval 1 0.139 0.139 105.380 <.0001 0.037 

dvalsq 1 0.004 0.004 3.150 0.0764 0.001 

dim*icc 2 0.003 0.002 1.270 0.2822 0.001 

dim*numclust 1 0.000 0.000 0.030 0.8633 0.000 

dim*clustsize 1 0.013 0.013 10.120 0.0015 0.004 

dim*aval 2 0.020 0.010 7.370 0.0007 0.005 

dval*dim 1 0.035 0.035 26.390 <.0001 0.009 

icc*numclust 2 0.004 0.002 1.370 0.2553 0.001 

icc*clustsize 2 0.183 0.091 69.040 <.0001 0.049 

icc*aval 4 0.006 0.002 1.160 0.3274 0.002 

dval*icc 2 0.001 0.001 0.410 0.6623 0.000 

numclust*clustsize 1 0.022 0.022 16.490 <.0001 0.006 

numclust*aval 2 0.017 0.008 6.410 0.0017 0.005 

dval*numclust 1 0.000 0.000 0.370 0.5426 0.000 

clustsize*aval 2 0.006 0.003 2.280 0.1026 0.002 

dval*clustsize 1 0.010 0.010 7.370 0.0068 0.003 

dval*aval 2 0.005 0.002 1.720 0.1789 0.001 

dim*icc*numclust 2 0.004 0.002 1.650 0.1929 0.001 

dim*icc*clustsize 2 0.003 0.001 0.980 0.3775 0.001 

dim*icc*aval 4 0.001 0.000 0.160 0.9603 0.000 

dval*dim*icc 2 0.003 0.002 1.220 0.2966 0.001 

icc*numclust*clustsize 2 0.002 0.001 0.810 0.4468 0.001 

icc*numclust*aval 4 0.000 0.000 0.020 0.9993 0.000 

dval*icc*numclust 2 0.000 0.000 0.000 0.9971 0.000 

numclust*clustsize*aval 2 0.008 0.004 3.190 0.0414 0.002 

dval*numclust*clustsize 1 0.005 0.005 3.440 0.0640 0.001 

dval*clustsize*aval 2 0.027 0.013 10.140 <.0001 0.007 

Note. Corrected Total SS = 3.728; R2 = .638; Ση2 = .583.  
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Table A2 

Linear Regression of Item Discrimination Bias on Condition Factors, Generating d Value, Generating a 

Value, and Interactions 

Predictor df 
Type III 

SS 

Mean 

Square 
F p η2 

dim 1 0.022 0.022 35.630 <.0001 0.027 

icc 2 0.001 0.000 0.470 0.6278 0.001 

numclust 1 0.025 0.025 41.340 <.0001 0.031 

clustsize 1 0.031 0.031 51.150 <.0001 0.039 

aval 2 0.008 0.004 6.560 0.0015 0.010 

dval 1 0.000 0.000 0.000 0.9707 0.000 

dvalsq 1 0.001 0.001 1.450 0.2283 0.001 

dim*icc 2 0.000 0.000 0.150 0.8600 0.000 

dim*numclust 1 0.000 0.000 0.710 0.4008 0.001 

dim*clustsize 1 0.001 0.001 1.090 0.2974 0.001 

dim*aval 2 0.013 0.006 10.580 <.0001 0.016 

dval*dim 1 0.001 0.001 0.960 0.3281 0.001 

icc*numclust 2 0.003 0.001 2.140 0.1187 0.003 

icc*clustsize 2 0.001 0.001 1.150 0.3171 0.002 

icc*aval 4 0.002 0.000 0.640 0.6307 0.002 

dval*icc 2 0.001 0.001 1.010 0.3647 0.002 

numclust*clustsize 1 0.007 0.007 10.850 0.0010 0.008 

numclust*aval 2 0.010 0.005 8.370 0.0002 0.013 

dval*numclust 1 0.002 0.002 3.710 0.0543 0.003 

clustsize*aval 2 0.006 0.003 5.200 0.0056 0.008 

dval*clustsize 1 0.002 0.002 2.590 0.1082 0.002 

dval*aval 2 0.003 0.001 2.450 0.0866 0.004 

dim*icc*numclust 2 0.001 0.000 0.440 0.6460 0.001 

dim*icc*clustsize 2 0.000 0.000 0.370 0.6938 0.001 

dim*icc*aval 4 0.001 0.000 0.240 0.9161 0.001 

dval*dim*icc 2 0.000 0.000 0.250 0.7778 0.000 

icc*numclust*clustsize 2 0.002 0.001 1.550 0.2132 0.002 

icc*numclust*aval 4 0.000 0.000 0.190 0.9457 0.001 

dval*icc*numclust 2 0.000 0.000 0.290 0.7502 0.000 

numclust*clustsize*aval 2 0.008 0.004 6.360 0.0018 0.010 

dval*numclust*clustsize 1 0.006 0.006 9.470 0.0021 0.007 

dval*clustsize*aval 2 0.009 0.005 7.570 0.0005 0.011 

Note. Corrected Total SS = 0.810; R2 = .231; Ση2 = .206.  
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Table A3 

Linear Regression of Level 2 (Between) Variance Bias on Condition Factors and Interactions 

Predictor df 
Type III 

SS 

Mean 

Square 
F p η2 

dim 1 0.001 0.001 10.830 0.0015 0.059 

icc 2 0.000 0.000 4.060 0.0213 0.044 

numclust 1 0.000 0.000 1.320 0.2534 0.007 

clustsize 1 0.001 0.001 14.780 0.0003 0.080 

dim*icc 2 0.001 0.000 5.460 0.0061 0.059 

dim*numclust 1 0.000 0.000 2.360 0.1286 0.013 

dim*clustsize 1 0.000 0.000 1.620 0.2074 0.009 

icc*numclust 2 0.001 0.000 8.080 0.0007 0.088 

icc*clustsize 2 0.001 0.000 7.390 0.0012 0.080 

numclust*clustsize 1 0.000 0.000 0.000 0.9954 0.000 

dim*icc*numclust 2 0.001 0.000 8.120 0.0006 0.088 

dim*icc*clustsize 2 0.000 0.000 0.880 0.4187 0.010 

icc*numclust*clustsize 2 0.001 0.000 7.230 0.0013 0.079 

Note. Corrected Total SS = 0.010; R2 = .592; Ση2 = .617.  
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Table A4 

Linear Regression of Level 2 (Between) Correlation Bias on Condition Factors, Generating Value, and 

Interactions 

Predictor df 
Type III 

SS 

Mean 

Square 
F p η2 

dim 1 0.000 0.000 0.000 0.9890 0.000 

icc 2 0.000 0.000 4.360 0.0176 0.055 

numclust 1 0.000 0.000 3.040 0.0870 0.019 

clustsize 1 0.000 0.000 0.060 0.8098 0.000 

genval 2 0.000 0.000 0.960 0.3885 0.012 

dim*icc 2 0.001 0.000 9.710 0.0003 0.123 

dim*numclust 1 0.000 0.000 0.130 0.7182 0.001 

dim*clustsize 1 0.001 0.001 14.940 0.0003 0.095 

dim*genval 2 0.000 0.000 3.080 0.0544 0.039 

icc*numclust 2 0.000 0.000 2.360 0.1047 0.030 

icc*clustsize 2 0.000 0.000 1.670 0.1989 0.021 

icc*genval 4 0.000 0.000 0.710 0.5896 0.018 

numclust*clustsize 1 0.000 0.000 0.120 0.7341 0.001 

numclust*genval 2 0.000 0.000 0.160 0.8505 0.002 

clustsize*genval 2 0.000 0.000 0.910 0.4074 0.012 

dim*icc*numclust 2 0.001 0.000 9.440 0.0003 0.120 

dim*icc*clustsize 2 0.000 0.000 2.740 0.0739 0.035 

dim*icc*genval 4 0.000 0.000 0.250 0.9083 0.006 

icc*numclust*clustsize 2 0.000 0.000 3.630 0.0333 0.046 

icc*numclust*genval 4 0.000 0.000 1.190 0.3240 0.030 

numclust*clustsize*genval 2 0.000 0.000 0.280 0.7548 0.004 

Note. Corrected Total SS = 0.005; R2 = .664; Ση2 = .668.  
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Table A5 

Linear Regression of Level 1 (Within) Correlation Bias on Condition Factors, Generating Value, and 

Interactions 

Predictor df 
Type III 

SS 

Mean 

Square 
F p η2 

dim 1 0.005 0.005 182.010 <.0001 0.326 

icc 2 0.000 0.000 0.270 0.7660 0.001 

numclust 1 0.000 0.000 2.880 0.0960 0.005 

clustsize 1 0.000 0.000 0.050 0.8190 0.000 

genval 2 0.008 0.004 142.140 <.0001 0.509 

dim*icc 2 0.000 0.000 0.060 0.9410 0.000 

dim*numclust 1 0.000 0.000 0.730 0.3980 0.001 

dim*clustsize 1 0.000 0.000 0.190 0.6660 0.000 

dim*genval 2 0.001 0.001 23.540 <.0001 0.084 

icc*numclust 2 0.000 0.000 0.630 0.5370 0.002 

icc*clustsize 2 0.000 0.000 0.430 0.6520 0.002 

icc*genval 4 0.000 0.000 0.110 0.9770 0.001 

numclust*clustsize 1 0.000 0.000 1.210 0.2770 0.002 

numclust*genval 2 0.000 0.000 0.030 0.9700 0.000 

clustsize*genval 2 0.000 0.000 0.010 0.9920 0.000 

dim*icc*numclust 2 0.000 0.000 0.020 0.9830 0.000 

dim*icc*clustsize 2 0.000 0.000 0.280 0.7570 0.001 

dim*icc*genval 4 0.000 0.000 0.030 0.9990 0.000 

icc*numclust*clustsize 2 0.000 0.000 0.560 0.5730 0.002 

icc*numclust*genval 4 0.000 0.000 0.010 1.0000 0.000 

numclust*clustsize*genval 2 0.000 0.000 0.090 0.9180 0.000 

Note. Corrected Total SS = 0.017; R2 = .905; Ση2 = .938.  
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Table A6 

Linear Regression of Level 2 (Between) Ability Estimate Bias on Condition Factors, Rounded Generating θ 

Value, and Interactions 

Predictor df 
Type III 

SS 

Mean 

Square 
F p η2 

dim 1 4.003 4.003 436.060 <.0001 0.004 

icc 2 1.415 0.707 77.060 <.0001 0.001 

numclust 1 0.937 0.937 102.030 <.0001 0.001 

clustsize 1 6.150 6.150 669.970 <.0001 0.006 

roundt 1 437.718 437.718 47680.400 <.0001 0.426 

dim*icc 2 0.172 0.086 9.380 <.0001 0.000 

dim*numclust 1 0.059 0.059 6.410 0.0113 0.000 

dim*clustsize 1 0.339 0.339 36.970 <.0001 0.000 

roundt*dim 1 2.987 2.987 325.340 <.0001 0.003 

icc*numclust 2 0.149 0.075 8.120 0.0003 0.000 

icc*clustsize 2 1.598 0.799 87.020 <.0001 0.002 

roundt*icc 2 34.418 17.209 1874.580 <.0001 0.034 

numclust*clustsize 1 0.095 0.095 10.390 0.0013 0.000 

roundt*numclust 1 0.016 0.016 1.750 0.1855 0.000 

roundt*clustsize 1 131.636 131.636 14339.100 <.0001 0.128 

dim*icc*numclust 2 0.078 0.039 4.250 0.0143 0.000 

dim*icc*clustsize 2 0.006 0.003 0.320 0.7287 0.000 

roundt*dim*icc 2 0.564 0.282 30.740 <.0001 0.001 

icc*numclust*clustsize 2 0.002 0.001 0.090 0.9151 0.000 

roundt*icc*numclust 2 0.073 0.036 3.960 0.0190 0.000 

roundt*numclust*clustsize 1 0.011 0.011 1.190 0.2753 0.000 

Note. Corrected Total SS = 1026.960; R2 = .701; Ση2 = .606.  
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Table A7 

Linear Regression of Level 1 (Within) Ability Estimate Bias on Condition Factors, Rounded Generating θ 

Value, and Interactions 

Predictor df Type III SS 
Mean 

Square 
F p η2 

dim 1 0.324 0.324 5.850 0.0156 0.000 

icc 2 0.079 0.040 0.720 0.4884 0.000 

numclust 1 3.110 3.110 56.170 <.0001 0.000 

clustsize 1 10.672 10.672 192.760 <.0001 0.000 

roundt 1 46288.421 46288.421 836071.000 <.0001 0.806 

dim*icc 2 0.003 0.002 0.030 0.9724 0.000 

dim*numclust 1 0.183 0.183 3.310 0.0689 0.000 

dim*clustsize 1 0.025 0.025 0.450 0.5029 0.000 

roundt*dim 1 60.749 60.749 1097.270 <.0001 0.001 

icc*numclust 2 0.052 0.026 0.470 0.6231 0.000 

icc*clustsize 2 0.014 0.007 0.120 0.8846 0.000 

roundt*icc 2 5.402 2.701 48.790 <.0001 0.000 

numclust*clustsize 1 0.203 0.203 3.660 0.0558 0.000 

roundt*numclust 1 56.675 56.675 1023.670 <.0001 0.001 

roundt*clustsize 1 2.388 2.388 43.130 <.0001 0.000 

dim*icc*numclust 2 0.101 0.051 0.910 0.4008 0.000 

dim*icc*clustsize 2 0.274 0.137 2.480 0.0841 0.000 

roundt*dim*icc 2 0.474 0.237 4.280 0.0139 0.000 

icc*numclust*clustsize 2 0.187 0.093 1.680 0.1856 0.000 

roundt*icc*numclust 2 0.010 0.005 0.090 0.9170 0.000 

roundt*numclust*clustsize 1 0.000 0.000 0.000 0.9479 0.000 

Note. Corrected Total SS = 57403.267; R2 = .926; Ση2 = .809.  
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Table A8 

Linear Regression of Item Difficulty RMSE on Condition Factors, Generating d Value, Generating a Value, 

and Interactions 

Predictor df 
Type III 

SS 

Mean 

Square 
F p η2 

dim 1 0.128 0.128 97.960 <.0001 0.010 

icc 2 0.056 0.028 21.390 <.0001 0.004 

numclust 1 1.506 1.506 1153.780 <.0001 0.116 

clustsize 1 0.170 0.170 129.870 <.0001 0.013 

aval 2 1.092 0.546 418.350 <.0001 0.084 

dval 1 0.029 0.029 22.330 <.0001 0.002 

dvalsq 1 0.913 0.913 699.520 <.0001 0.070 

dim*icc 2 0.003 0.001 1.140 0.3197 0.000 

dim*numclust 1 0.006 0.006 4.240 0.0398 0.000 

dim*clustsize 1 0.042 0.042 32.340 <.0001 0.003 

dim*aval 2 0.006 0.003 2.200 0.1110 0.000 

dval*dim 1 0.000 0.000 0.340 0.5613 0.000 

icc*numclust 2 0.002 0.001 0.820 0.4412 0.000 

icc*clustsize 2 0.092 0.046 35.200 <.0001 0.007 

icc*aval 4 0.004 0.001 0.840 0.4977 0.000 

dval*icc 2 0.006 0.003 2.190 0.1126 0.000 

numclust*clustsize 1 0.253 0.253 193.590 <.0001 0.019 

numclust*aval 2 0.069 0.035 26.470 <.0001 0.005 

dval*numclust 1 0.187 0.187 143.100 <.0001 0.014 

clustsize*aval 2 0.008 0.004 2.970 0.0520 0.001 

dval*clustsize 1 0.063 0.063 48.220 <.0001 0.005 

dval*aval 2 0.010 0.005 3.990 0.0189 0.001 

dim*icc*numclust 2 0.002 0.001 0.760 0.4688 0.000 

dim*icc*clustsize 2 0.000 0.000 0.130 0.8821 0.000 

dim*icc*aval 4 0.001 0.000 0.140 0.9657 0.000 

dval*dim*icc 2 0.007 0.003 2.670 0.0696 0.001 

icc*numclust*clustsize 2 0.001 0.000 0.260 0.7741 0.000 

icc*numclust*aval 4 0.001 0.000 0.130 0.9718 0.000 

dval*icc*numclust 2 0.000 0.000 0.130 0.8758 0.000 

numclust*clustsize*aval 2 0.003 0.002 1.250 0.2869 0.000 

dval*numclust*clustsize 1 0.005 0.005 4.120 0.0425 0.000 

dval*clustsize*aval 2 0.263 0.132 100.780 <.0001 0.020 

Note. Corrected Total SS = 12.966; R2 = .897; Ση2 = .380.  
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Table A9 

Linear Regression of Item Discrimination RMSE on Condition Factors, Generating d Value, Generating a 

Value, and Interactions 

Predictor df 
Type III 

SS 

Mean 

Square 
F p η2 

dim 1 0.033 0.033 160.920 <.0001 0.004 

icc 2 0.007 0.004 17.670 <.0001 0.001 

numclust 1 1.992 1.992 9826.560 <.0001 0.253 

clustsize 1 1.613 1.613 7954.200 <.0001 0.205 

aval 2 0.610 0.305 1504.050 <.0001 0.078 

dval 1 0.127 0.127 625.870 <.0001 0.016 

dvalsq 1 0.125 0.125 614.960 <.0001 0.016 

dim*icc 2 0.000 0.000 0.370 0.6922 0.000 

dim*numclust 1 0.000 0.000 0.860 0.3526 0.000 

dim*clustsize 1 0.001 0.001 6.010 0.0144 0.000 

dim*aval 2 0.010 0.005 25.140 <.0001 0.001 

dval*dim 1 0.000 0.000 0.100 0.7503 0.000 

icc*numclust 2 0.001 0.000 1.250 0.2878 0.000 

icc*clustsize 2 0.000 0.000 0.740 0.4788 0.000 

icc*aval 4 0.001 0.000 1.820 0.1233 0.000 

dval*icc 2 0.002 0.001 4.430 0.0121 0.000 

numclust*clustsize 1 0.230 0.230 1133.410 <.0001 0.029 

numclust*aval 2 0.074 0.037 182.440 <.0001 0.009 

dval*numclust 1 0.037 0.037 184.640 <.0001 0.005 

clustsize*aval 2 0.074 0.037 182.930 <.0001 0.009 

dval*clustsize 1 0.013 0.013 64.420 <.0001 0.002 

dval*aval 2 0.003 0.001 7.170 0.0008 0.000 

dim*icc*numclust 2 0.000 0.000 0.180 0.8368 0.000 

dim*icc*clustsize 2 0.000 0.000 0.140 0.8693 0.000 

dim*icc*aval 4 0.000 0.000 0.160 0.9607 0.000 

dval*dim*icc 2 0.002 0.001 4.490 0.0115 0.000 

icc*numclust*clustsize 2 0.000 0.000 0.560 0.5705 0.000 

icc*numclust*aval 4 0.001 0.000 1.420 0.2241 0.000 

dval*icc*numclust 2 0.000 0.000 0.300 0.7408 0.000 

numclust*clustsize*aval 2 0.003 0.002 8.480 0.0002 0.000 

dval*numclust*clustsize 1 0.001 0.001 6.600 0.0104 0.000 

dval*clustsize*aval 2 0.006 0.003 15.550 <.0001 0.001 

Note. Corrected Total SS = 7.864; R2 = .974; Ση2 = .632.  
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Table A10 

Linear Regression of Level 2 (Between) Variance Root Mean Squared Error (RMSE) on Condition Factors, 

and Interactions 

Predictor df 
Type III 

SS 

Mean 

Square 
F p η2 

dim 1 0.000 0.000 0.010 0.9210 0.000 

icc 2 0.055 0.028 832.320 <.0001 0.399 

numclust 1 0.057 0.057 1712.890 <.0001 0.410 

clustsize 1 0.005 0.005 148.660 <.0001 0.036 

dim*icc 2 0.000 0.000 3.670 0.0301 0.002 

dim*numclust 1 0.000 0.000 0.240 0.6284 0.000 

dim*clustsize 1 0.001 0.001 16.800 0.0001 0.004 

icc*numclust 2 0.006 0.003 88.570 <.0001 0.042 

icc*clustsize 2 0.000 0.000 2.950 0.0583 0.001 

numclust*clustsize 1 0.002 0.002 50.530 <.0001 0.012 

dim*icc*numclust 2 0.000 0.000 1.010 0.3706 0.000 

dim*icc*clustsize 2 0.000 0.000 0.010 0.9890 0.000 

icc*numclust*clustsize 2 0.000 0.000 0.390 0.6787 0.000 

Note. Corrected Total SS = 0.138; R2 = .982; Ση2 = .907.  
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Table A11 

Linear Regression of Level 2 (Between) Correlation Root Mean Squared Error (RMSE) on Condition 

Factors, Generating Value, and Interactions 

Predictor df 
Type III 

SS 

Mean 

Square 
F p η2 

dim 1 0.001 0.001 15.030 0.0003 0.005 

icc 2 0.004 0.002 55.780 <.0001 0.036 

numclust 1 0.039 0.039 1094.670 <.0001 0.350 

clustsize 1 0.007 0.007 185.030 <.0001 0.059 

genval 2 0.027 0.014 378.680 <.0001 0.242 

dim*icc 2 0.000 0.000 1.480 0.2369 0.001 

dim*numclust 1 0.000 0.000 5.400 0.0240 0.002 

dim*clustsize 1 0.000 0.000 13.540 0.0005 0.004 

dim*genval 2 0.000 0.000 0.300 0.7418 0.000 

icc*numclust 2 0.002 0.001 23.570 <.0001 0.015 

icc*clustsize 2 0.002 0.001 31.990 <.0001 0.020 

icc*genval 4 0.000 0.000 2.570 0.0483 0.003 

numclust*clustsize 1 0.002 0.002 64.740 <.0001 0.021 

numclust*genval 2 0.005 0.003 73.970 <.0001 0.047 

clustsize*genval 2 0.000 0.000 5.680 0.0058 0.004 

dim*icc*numclust 2 0.000 0.000 0.230 0.7991 0.000 

dim*icc*clustsize 2 0.000 0.000 1.330 0.2740 0.001 

dim*icc*genval 4 0.000 0.000 0.280 0.8899 0.000 

icc*numclust*clustsize 2 0.000 0.000 5.240 0.0084 0.003 

icc*numclust*genval 4 0.000 0.000 3.110 0.0226 0.004 

numclust*clustsize*genval 2 0.000 0.000 4.440 0.0164 0.003 

Note. Corrected Total SS = 0.112; R2 = .983; Ση2 = .759.  
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Table A12 

Linear Regression of Level 1 (Within) Correlation Root Mean Squared Error (RMSE) on Condition 

Factors, Generating Value, and Interactions 

Predictor df 
Type III 

SS 

Mean 

Square 
F p η2 

dim 1 0.005 0.005 273.070 <.0001 0.366 

icc 2 0.000 0.000 0.500 0.6118 0.001 

numclust 1 0.001 0.001 72.080 <.0001 0.097 

clustsize 1 0.002 0.002 102.560 <.0001 0.138 

genval 2 0.002 0.001 45.570 <.0001 0.122 

dim*icc 2 0.000 0.000 0.020 0.9821 0.000 

dim*numclust 1 0.000 0.000 0.050 0.8170 0.000 

dim*clustsize 1 0.000 0.000 0.050 0.8269 0.000 

dim*genval 2 0.001 0.001 31.680 <.0001 0.085 

icc*numclust 2 0.000 0.000 0.350 0.7032 0.001 

icc*clustsize 2 0.000 0.000 0.150 0.8571 0.000 

icc*genval 4 0.000 0.000 0.140 0.9677 0.001 

numclust*clustsize 1 0.000 0.000 17.060 0.000 0.023 

numclust*genval 2 0.000 0.000 13.080 <.0001 0.035 

clustsize*genval 2 0.001 0.000 15.050 <.0001 0.040 

dim*icc*numclust 2 0.000 0.000 0.020 0.9849 0.000 

dim*icc*clustsize 2 0.000 0.000 0.140 0.8689 0.000 

dim*icc*genval 4 0.000 0.000 0.010 0.9996 0.000 

icc*numclust*clustsize 2 0.000 0.000 0.720 0.4894 0.002 

icc*numclust*genval 4 0.000 0.000 0.050 0.9948 0.000 

numclust*clustsize*genval 2 0.000 0.000 1.220 0.3028 0.003 

Note. Corrected Total SS = 0.014; R2 = .929; Ση2 = .915.  
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Table A13 

Linear Regression of Level 2 (Between) Ability Estimate Root Mean Squared Error (RMSE) on Condition 

Factors, Rounded Generating θ Value, and Interactions 

Predictor df Type III SS 
Mean 

Square 
F p η2 

dim 1 0.409 0.409 56.380 <.0001 0.001 

icc 2 0.471 0.236 32.520 <.0001 0.001 

numclust 1 0.147 0.147 20.300 <.0001 0.000 

clustsize 1 134.454 134.454 18551.100 <.0001 0.314 

roundt 1 19.013 19.013 2623.280 <.0001 0.044 

dim*icc 2 0.157 0.078 10.810 <.0001 0.000 

dim*numclust 1 0.037 0.037 5.130 0.0235 0.000 

dim*clustsize 1 1.168 1.168 161.220 <.0001 0.003 

roundt*dim 1 0.107 0.107 14.740 0.0001 0.000 

icc*numclust 2 0.044 0.022 3.040 0.0479 0.000 

icc*clustsize 2 0.124 0.062 8.520 0.0002 0.000 

roundt*icc 2 0.933 0.466 64.360 <.0001 0.002 

numclust*clustsize 1 0.235 0.235 32.490 <.0001 0.001 

roundt*numclust 1 0.233 0.233 32.080 <.0001 0.001 

roundt*clustsize 1 0.074 0.074 10.280 0.0013 0.000 

dim*icc*numclust 2 0.002 0.001 0.140 0.8711 0.000 

dim*icc*clustsize 2 0.021 0.010 1.420 0.2414 0.000 

roundt*dim*icc 2 0.033 0.017 2.280 0.1022 0.000 

icc*numclust*clustsize 2 0.017 0.008 1.140 0.3183 0.000 

roundt*icc*numclust 2 0.024 0.012 1.690 0.1846 0.000 

roundt*numclust*clustsize 1 0.066 0.066 9.040 0.0026 0.000 

Note. Corrected Total SS = 428.561; R2 = .434; Ση2 = .368.  
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Table A14 

Linear Regression of Level 1 (Within) Ability Estimate Root Mean Squared Error (RMSE) on Condition 

Factors, Rounded Generating θ Value, and Interactions 

Predictor df Type III SS Mean Sq F p η2 

dim 1 53.788 53.788 263.030 <.0001 0.003 

icc 2 10.388 5.194 25.400 <.0001 0.001 

numclust 1 158.034 158.034 772.800 <.0001 0.010 

clustsize 1 56.915 56.915 278.320 <.0001 0.003 

roundt 1 558.164 558.164 2729.470 <.0001 0.034 

dim*icc 2 0.448 0.224 1.100 0.3345 0.000 

dim*numclust 1 0.184 0.184 0.900 0.3426 0.000 

dim*clustsize 1 0.051 0.051 0.250 0.6184 0.000 

roundt*dim 1 0.331 0.331 1.620 0.2031 0.000 

icc*numclust 2 0.313 0.156 0.760 0.4655 0.000 

icc*clustsize 2 0.082 0.041 0.200 0.8191 0.000 

roundt*icc 2 0.047 0.023 0.110 0.8915 0.000 

numclust*clustsize 1 0.080 0.080 0.390 0.5326 0.000 

roundt*numclust 1 1.268 1.268 6.200 0.0128 0.000 

roundt*clustsize 1 8.264 8.264 40.410 <.0001 0.000 

dim*icc*numclust 2 0.004 0.002 0.010 0.9903 0.000 

dim*icc*clustsize 2 0.236 0.118 0.580 0.5616 0.000 

roundt*dim*icc 2 0.465 0.232 1.140 0.3209 0.000 

icc*numclust*clustsize 2 0.206 0.103 0.500 0.6048 0.000 

roundt*icc*numclust 2 0.943 0.471 2.300 0.0998 0.000 

roundt*numclust*clustsize 1 0.353 0.353 1.730 0.1889 0.000 

Note. Corrected Total SS = 16541.478; R2 = .058; Ση2 = .051.  
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Table A15 

Linear Regression of Item Difficulty Confidence interval coverage on Condition Factors, Generating d 

Value, Generating a Value, and Interactions 

Predictor df 
Type III 

SS 

Mean 

Square 
F p η2 

dim 1 2.430 2.430 151.670 <.0001 0.023 

icc 2 0.115 0.058 3.590 0.0279 0.001 

numclust 1 15.988 15.988 997.880 <.0001 0.154 

clustsize 1 40.774 40.774 2544.940 <.0001 0.392 

aval 2 3.368 1.684 105.100 <.0001 0.032 

dval 1 0.870 0.870 54.290 <.0001 0.008 

dvalsq 1 5.592 5.592 349.010 <.0001 0.054 

dim*icc 2 0.008 0.004 0.250 0.7762 0.000 

dim*numclust 1 0.004 0.004 0.270 0.6017 0.000 

dim*clustsize 1 0.059 0.059 3.670 0.0556 0.001 

dim*aval 2 0.009 0.005 0.290 0.7455 0.000 

dval*dim 1 0.001 0.001 0.050 0.8260 0.000 

icc*numclust 2 0.071 0.035 2.210 0.1103 0.001 

icc*clustsize 2 1.780 0.890 55.560 <.0001 0.017 

icc*aval 4 0.007 0.002 0.110 0.9807 0.000 

dval*icc 2 0.021 0.011 0.670 0.5144 0.000 

numclust*clustsize 1 1.285 1.285 80.200 <.0001 0.012 

numclust*aval 2 0.024 0.012 0.750 0.4739 0.000 

dval*numclust 1 0.652 0.652 40.720 <.0001 0.006 

clustsize*aval 2 0.092 0.046 2.870 0.0571 0.001 

dval*clustsize 1 0.365 0.365 22.800 <.0001 0.004 

dval*aval 2 0.560 0.280 17.490 <.0001 0.005 

dim*icc*numclust 2 0.022 0.011 0.700 0.4963 0.000 

dim*icc*clustsize 2 0.014 0.007 0.450 0.6400 0.000 

dim*icc*aval 4 0.015 0.004 0.230 0.9210 0.000 

dval*dim*icc 2 0.009 0.005 0.290 0.7481 0.000 

icc*numclust*clustsize 2 0.231 0.115 7.200 0.0008 0.002 

icc*numclust*aval 4 0.023 0.006 0.360 0.8402 0.000 

dval*icc*numclust 2 0.017 0.008 0.520 0.5922 0.000 

numclust*clustsize*aval 2 0.490 0.245 15.280 <.0001 0.005 

dval*numclust*clustsize 1 0.078 0.078 4.850 0.0278 0.001 

dval*clustsize*aval 2 0.892 0.446 27.830 <.0001 0.009 

Note. Corrected Total SS = 103.962; R2 = .843; Ση2 = .730.  
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Table A16 

Linear Regression of Item Discrimination Confidence interval coverage on Condition Factors, Generating 

d Value, Generating a Value, and Interactions 

Predictor df 
Type III 

SS 

Mean 

Square 
F p η2 

dim 1 0.000 0.000 0.050 0.8237 0.000 

icc 2 0.003 0.001 0.940 0.3913 0.002 

numclust 1 0.023 0.023 14.740 0.0001 0.013 

clustsize 1 0.037 0.037 23.010 <.0001 0.020 

aval 2 0.036 0.018 11.280 <.0001 0.019 

dval 1 0.001 0.001 0.390 0.5300 0.000 

dvalsq 1 0.006 0.006 3.720 0.0540 0.003 

dim*icc 2 0.000 0.000 0.080 0.9269 0.000 

dim*numclust 1 0.027 0.027 16.910 <.0001 0.014 

dim*clustsize 1 0.017 0.017 10.510 0.0012 0.009 

dim*aval 2 0.016 0.008 5.100 0.0063 0.009 

dval*dim 1 0.009 0.009 5.380 0.0205 0.005 

icc*numclust 2 0.003 0.001 0.910 0.4033 0.002 

icc*clustsize 2 0.001 0.001 0.410 0.6641 0.001 

icc*aval 4 0.001 0.000 0.150 0.9615 0.001 

dval*icc 2 0.001 0.000 0.280 0.7559 0.000 

numclust*clustsize 1 0.006 0.006 3.650 0.0565 0.003 

numclust*aval 2 0.027 0.014 8.560 0.0002 0.015 

dval*numclust 1 0.002 0.002 1.450 0.2286 0.001 

clustsize*aval 2 0.012 0.006 3.780 0.0232 0.006 

dval*clustsize 1 0.001 0.001 0.740 0.3911 0.001 

dval*aval 2 0.003 0.002 0.970 0.3785 0.002 

dim*icc*numclust 2 0.000 0.000 0.090 0.9156 0.000 

dim*icc*clustsize 2 0.002 0.001 0.670 0.5108 0.001 

dim*icc*aval 4 0.009 0.002 1.410 0.2282 0.005 

dval*dim*icc 2 0.003 0.002 0.980 0.3760 0.002 

icc*numclust*clustsize 2 0.001 0.000 0.310 0.7302 0.001 

icc*numclust*aval 4 0.003 0.001 0.420 0.7934 0.001 

dval*icc*numclust 2 0.001 0.001 0.390 0.6756 0.001 

numclust*clustsize*aval 2 0.001 0.001 0.460 0.6311 0.001 

dval*numclust*clustsize 1 0.000 0.000 0.030 0.8592 0.000 

dval*clustsize*aval 2 0.001 0.000 0.250 0.7776 0.000 

Note. Corrected Total SS = 1.857; R2 = .127; Ση2 = .136.  
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Table A17 

Linear Regression of Level 2 (Between) Variance Confidence interval coverage on Condition Factors and 

Interactions 

Predictor df 
Type III 

SS 

Mean 

Square 
F p η2 

dim 1 0.000 0.000 0.000 0.9988 0.000 

icc 2 0.002 0.001 1.730 0.1847 0.015 

numclust 1 0.001 0.001 1.700 0.1957 0.007 

clustsize 1 0.019 0.019 33.460 <.0001 0.145 

dim*icc 2 0.009 0.005 8.010 0.0007 0.070 

dim*numclust 1 0.006 0.006 10.890 0.0015 0.047 

dim*clustsize 1 0.010 0.010 17.870 <.0001 0.078 

icc*numclust 2 0.003 0.001 2.370 0.1001 0.021 

icc*clustsize 2 0.000 0.000 0.230 0.7924 0.002 

numclust*clustsize 1 0.004 0.004 6.880 0.0106 0.030 

dim*icc*numclust 2 0.009 0.004 7.520 0.0011 0.065 

dim*icc*clustsize 2 0.007 0.004 6.200 0.0032 0.054 

icc*numclust*clustsize 2 0.000 0.000 0.100 0.9074 0.001 

Note. Corrected Total SS = 0.134; R2 = .674; Ση2 = .535.  
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Table A18 

Linear Regression of Level 2 (Between) Covariance Confidence Interval Coverage on Condition Factors 

and Interactions 

Predictor df 
Type III 

SS 

Mean 

Square 
F p η2 

dim 1 0.000 0.000 0.450 0.5042 0.001 

icc 2 0.001 0.001 1.220 0.2985 0.004 

numclust 1 0.001 0.001 2.750 0.0996 0.005 

clustsize 1 0.023 0.023 53.220 <.0001 0.093 

dim*icc 2 0.011 0.006 13.200 <.0001 0.046 

dim*numclust 1 0.010 0.010 22.760 <.0001 0.040 

dim*clustsize 1 0.018 0.018 41.400 <.0001 0.073 

icc*numclust 2 0.006 0.003 7.080 0.0012 0.025 

icc*clustsize 2 0.000 0.000 0.040 0.9598 0.000 

numclust*clustsize 1 0.012 0.012 28.560 <.0001 0.050 

dim*icc*numclust 2 0.011 0.006 13.010 <.0001 0.046 

dim*icc*clustsize 2 0.009 0.004 10.110 <.0001 0.035 

icc*numclust*clustsize 2 0.002 0.001 1.860 0.1593 0.007 

Note. Corrected Total SS = 0.246; R2 = .763; Ση2 = .419.  
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Table A19 

Linear Regression of Level 1 (Within) Covariance Confidence Interval Coverage on Condition Factors, 

Generating Value, and Interactions 

Predictor df 
Type III 

SS 

Mean 

Square 
F p η2 

dim 1 0.506 0.506 65.330 <.0001 0.035 

icc 2 0.011 0.005 0.700 0.4964 0.001 

numclust 1 0.789 0.789 101.920 <.0001 0.054 

clustsize 1 0.627 0.627 81.000 <.0001 0.043 

genval 2 6.392 3.196 412.700 <.0001 0.439 

dim*icc 2 0.018 0.009 1.170 0.3144 0.001 

dim*numclust 1 0.006 0.006 0.820 0.3673 0.000 

dim*clustsize 1 0.008 0.008 1.040 0.3091 0.001 

dim*genval 2 0.139 0.069 8.950 0.0002 0.010 

icc*numclust 2 0.007 0.004 0.480 0.6211 0.001 

icc*clustsize 2 0.011 0.006 0.720 0.4888 0.001 

icc*genval 4 0.001 0.000 0.040 0.9965 0.000 

numclust*clustsize 1 0.000 0.000 0.010 0.9401 0.000 

numclust*genval 2 0.369 0.184 23.820 <.0001 0.025 

clustsize*genval 2 0.309 0.155 19.960 <.0001 0.021 

dim*icc*numclust 2 0.007 0.004 0.470 0.6266 0.000 

dim*icc*clustsize 2 0.013 0.006 0.810 0.4478 0.001 

dim*icc*genval 4 0.002 0.001 0.070 0.9914 0.000 

icc*numclust*clustsize 2 0.003 0.002 0.200 0.8159 0.000 

icc*numclust*genval 4 0.005 0.001 0.170 0.9541 0.000 

numclust*clustsize*genval 2 0.193 0.097 12.480 <.0001 0.013 

Note. Corrected Total SS = 14.549; R2 = .940; Ση2 = .647.  
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Table A20 

Linear Regression of Level 2 (Between) Ability Estimate Confidence Interval Coverage on Condition 

Factors, Rounded Generating θ Value, and Interactions 

Predictor df 
Type III 

SS 

Mean 

Square 
F p η2 

dim 1 0.003 0.003 0.080 0.7748 0.000 

icc 2 11.259 5.630 170.660 <.0001 0.009 

numclust 1 1.945 1.945 58.950 <.0001 0.002 

clustsize 1 0.146 0.146 4.420 0.0355 0.000 

roundt 1 107.958 107.958 3272.750 <.0001 0.085 

dim*icc 2 2.896 1.448 43.890 <.0001 0.002 

dim*numclust 1 0.454 0.454 13.760 0.0002 0.000 

dim*clustsize 1 7.895 7.895 239.350 <.0001 0.006 

roundt*dim 1 0.796 0.796 24.120 <.0001 0.001 

icc*numclust 2 0.412 0.206 6.240 0.0020 0.000 

icc*clustsize 2 0.252 0.126 3.820 0.0219 0.000 

roundt*icc 2 10.489 5.245 158.990 <.0001 0.008 

numclust*clustsize 1 0.591 0.591 17.900 <.0001 0.000 

roundt*numclust 1 1.763 1.763 53.460 <.0001 0.001 

roundt*clustsize 1 3.352 3.352 101.610 <.0001 0.003 

dim*icc*numclust 2 0.243 0.121 3.680 0.0253 0.000 

dim*icc*clustsize 2 0.296 0.148 4.480 0.0113 0.000 

roundt*dim*icc 2 0.068 0.034 1.030 0.3583 0.000 

icc*numclust*clustsize 2 0.118 0.059 1.780 0.1682 0.000 

roundt*icc*numclust 2 0.357 0.178 5.400 0.0045 0.000 

roundt*numclust*clustsize 1 0.033 0.033 0.990 0.3202 0.000 

Note. Corrected Total SS = 1263.688; R2 = .126; Ση2 = .120.  



122 

 

 

Table A21 

Linear Regression of Level 1 (Within) Ability Estimate Confidence Interval Coverage on Condition 

Factors, Rounded Generating θ Value, and Interactions 

Predictor df 
Type III 

SS 

Mean 

Square 
F p η2 

dim 1 0.542 0.542 5.670 0.0173 0.000 

icc 2 0.597 0.298 3.120 0.0442 0.000 

numclust 1 57.331 57.331 599.080 <.0001 0.008 

clustsize 1 45.433 45.433 474.760 <.0001 0.006 

roundt 1 156.012 156.012 1630.250 <.0001 0.021 

dim*icc 2 0.334 0.167 1.740 0.1749 0.000 

dim*numclust 1 0.082 0.082 0.860 0.3545 0.000 

dim*clustsize 1 0.075 0.075 0.790 0.3753 0.000 

roundt*dim 1 0.038 0.038 0.400 0.5269 0.000 

icc*numclust 2 0.086 0.043 0.450 0.6366 0.000 

icc*clustsize 2 0.049 0.025 0.260 0.7727 0.000 

roundt*icc 2 0.046 0.023 0.240 0.7874 0.000 

numclust*clustsize 1 0.003 0.003 0.030 0.8651 0.000 

roundt*numclust 1 0.221 0.221 2.310 0.1288 0.000 

roundt*clustsize 1 0.732 0.732 7.650 0.0057 0.000 

dim*icc*numclust 2 0.029 0.015 0.150 0.8572 0.000 

dim*icc*clustsize 2 0.105 0.052 0.550 0.5787 0.000 

roundt*dim*icc 2 0.269 0.135 1.410 0.2446 0.000 

icc*numclust*clustsize 2 0.135 0.067 0.700 0.4946 0.000 

roundt*icc*numclust 2 0.490 0.245 2.560 0.0774 0.000 

roundt*numclust*clustsize 1 0.537 0.537 5.610 0.0178 0.000 

Note. Corrected Total SS = 7584.077; R2 = .038; Ση2 = .035.  
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Appendix B 

 
Table B1 

Mean Bias, Root Mean Squared Error (RMSE), and Confidence Interval Coverage for Item Parameters, 

Latent Variances and Covariances, and Ability Estimates 

Parameter Bias (SD) RMSE (SD) 

Confidence 

interval coverage 

(SD) 

Item difficulty 0.128 (0.059) 0.193 (0.110) 0.560 (0.117) 

Item discrimination 0.013 (0.027) 0.123 (0.085) 0.930 (0.016) 

Level 2 (between) variance 0.005 (0.010) 0.068 (0.038) 0.925 (0.004) 

Level 2 (between) covariance/correlation 0.003 (0.008) 0.056 (0.036) 0.927 (0.005) 

Level 1 (within) covariance/correlation -0.020 (0.018) 0.030 (0.015) 0.563 (0.285) 

Level 2 (between) ability estimate -0.074 (0.026) 0.207 (0.056) 0.887 (0.043) 

Level 1 (within) ability estimate -0.008 (0.005) 0.495 (0.041) 0.950 (0.005) 
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