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Abstract 

In the absence of random assignment, researchers must consider the impact of selection 

bias – pre-existing covariate differences between groups due to differences among those 

entering into treatment and those otherwise unable to participate. Propensity score 

matching (PSM) and generalized boosted modeling (GBM) are two quasi-experimental 

pre-processing methods that strive to reduce the impact of selection bias before analyzing 

a treatment effect. PSM and GBM both examine a treatment and comparison group and 

either match or weight members of those groups to create new, balanced groups. The 

new, balanced groups theoretically can then be used as a proxy for the balanced groups 

achieved via random assignment. However, in order to successfully employ GBM and 

PSM, researchers must properly specify the models used to reduce selection bias. Not 

only do researchers need to account for all covariates related to bias, but they also need to 

properly specify polynomial terms or interactions. This study investigated scenarios 

where either a quadratic term or an interaction term contributed to selection bias, and 

questioned: (1) how incorrectly specified PSM models, correctly specified PSM models, 

and GBM approaches compare in their ability to create balanced treatment and 

comparison groups; and (2) how much these methods reduce treatment effect estimation 

bias. Ultimately, this study found that PSM methods achieved adequate balance, even 

when misspecified to omit an interaction or quadradic term. In terms of reducing bias, the 

correctly specified PSM model performed the best, followed by the incorrectly specified 

PSM model and then the GBM model. All methods had a more accurate treatment effect 

estimate than the baseline model, which included no pre-processing for selection bias. 

Recommendations and implications are offered for researchers.  
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Chapter One 

Introduction 

The famous philosopher, David Hume, described causality with the statement: 

“We may define a cause to be an object precedent and contiguous to another, and where 

all the objects resembling the former are placed in like relations of precedency and 

contiguity to those objects that resemble the latter” (Hume, 20031, p. 469). This definition 

suggests that causality requires two things: (1) that the “cause” precedes the “effect”, and 

(2) without the “cause” there would be no “effect” (Wainer, 2015). The first requirement 

is relatively simple to establish, because with a proper research design, one can examine 

an effect prior to treatment, and then again after treatment. If the effect was not present 

until after treatment, then it can be said the treatment (the hopeful “cause”) preceded the 

effect. If the effect existed before treatment and stayed the same after treatment, then the 

treatment cannot have caused the effect. 

The second requirement of causality, that without the cause there would be no 

effect, is more difficult to establish. Who is to say what may have occurred had there 

been no “cause?” How can one observe two alternate realities in which something 

happens and simultaneously does not happen? Questions such as these introduce the 

concept of counterfactuals, and how they apply to cause and effect arguments.  

The Counterfactual 

 “Counterfactuals are at the heart of any scientific inquiry” (Guo & Fraser, 2015, 

p. 23). Counterfactuals address what could have happened had some event not occurred 

(or occurred differently). Going back to Hume’s definition, without the cause, would 

 
1 This quote came from a republishing of Hume’s original 1740 book.  
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there be an effect? Rubin (1975) once concluded, “No causation without manipulation” 

(p. 234). In other words, the counterfactual is only relevant when the cause is 

manipulated (e.g., giving treatment or not giving treatment), rather than when the cause is 

something fixed, or otherwise unchangeable (e.g., someone’s race). Wainer (2015) 

further elaborates on this point in his book, Truth or Truthiness: 

Thus the statement “she is short because she is a woman” is causally meaningless, 

for to measure the effect of being a woman we would have to know how tall she 

would have been had she been a man. The heroic assumptions required for such a 

conclusion removes it from the realm of empirical discussion. (Wainer, 2015, p. 

23-24) 

Only variables that can be (ethically) manipulated by a person or researcher can 

be the “causes of interest.” In the context of the current study, the “cause of interest” will 

be an individual undergoing treatment, presuming that treatment participation may cause 

a certain effect. Using an applied example, if a “treatment” is taking a practice test in 

preparation for an examination, then the comparison would be not taking that practice 

test. If researchers expect that taking a practice test increases a score on a final, then the 

“cause of interest” would be taking the practice test, and the “effect” would be an 

increase of score on the final. 

The counterfactual would then examine the effect with and without the “cause of 

interest.” In the applied example, the counterfactual investigates the final exam score 

(outcome) of a practice test taker had they never taken the practice test to begin with; or 

conversely, the final exam score of someone who did not take a practice test, had they 
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taken the practice test. This definition of counterfactuals is the reason counterfactuals 

often go by the alibi of “potential outcomes.” 

However, an individual cannot simultaneously go into a final having taken the 

practice test and having never taken the practice test. Likewise, individuals can never 

simultaneously be in both the treatment and comparison conditions. So, to observe 

counterfactuals would be to observe something impossible. Researchers can never 

directly estimate the size of an effect for an individual without the true counterfactual, so 

they must rely on research design and proper statistical analysis to approximate the 

counterfactual for a group instead (Wainer, 2015). Frequently, researchers use 

randomized experiments for their research design in order to estimate the counterfactual 

for a group.  

Randomized Experiments 

 The randomized experiment is often the considered the “gold-standard” of 

research design. Although some researchers use the terms “randomized experiment” and 

“true experiment” interchangeably, a randomized experiment refers to a study in which 

contrasted treatments (e.g., treatment and control) are assigned to experimental units by 

chance (e.g., coin toss), while a true experiment is vaguely defined as any study that 

includes a manipulated independent variable and an observed dependent variable 

(Shadish, Cook, & Campbell, 2002). In short, randomized experiments require random 

assignment, while “true experiments” do not.  

Random assignment refers to the process of assigning treatment group 

membership independently of baseline characteristics. When a researcher conducts a 

randomized experiment, random assignment ensures that each study participant has the 
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same probability of treatment group membership (and consequently the same probability 

of control group membership) as any other individual in the study. If assignment were 

decided by a coin flip, then everyone has a 50% chance of being assigned into the 

treatment group and a 50% chance of being assigned into the control group. Random 

assignment is not to be confused with random selection (or random sampling), which 

refers to the process of picking a sample from the broader human population. While 

random assignment strengthens the argument for causality, random selection strengthens 

the argument for generalizing the results to a larger population.  

 Randomized experiments are able to approximate the counterfactual at the group 

level because of random assignment. When treatment assignment is completely random, 

both the treated and untreated groups should have similar distributions of baseline 

covariates. Because the baseline covariates did not influence assignment and are similarly 

distributed between groups, the control group is theoretically similar to what the 

treatment group would have been without treatment. Thus, the control group is a proxy to 

the treatment group’s counterfactual (Rosenbaum & Rubin, 1983; Wainer, 2015).  

In applied research, sometimes barriers arise that prevent random assignment of 

participants (e.g., ethical standards, resource limitations, etc.). When it is unethical or 

otherwise infeasible to conduct a randomized experiment, researchers often turn to non-

randomized, or observational data. However, without random assignment, researchers 

lose the plausible claim of group similarity in baseline covariates, and therefore lose a 

strong argument for approximating the counterfactual. In order to maintain scientific 

rigor in the observational setting, researchers must carefully consider whether they can 

account for the counterfactual using a quasi-experimental research design.  
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Quasi-Experimental Design 

 Although quasi-experiments do not employ randomization, they still have many 

basic similarities to randomized experiments; both methods test hypotheses and attempt 

to make causal claims, just in different ways. Quasi-experimental designs need to 

compensate for the selection bias introduced by the absence of random assignment. 

Selection bias occurs when groups systematically differ in baseline characteristics 

due to the processes by which individuals become a member of those groups. Often, this 

is conceptualized as self-selection, where certain characteristics may increase the 

likelihood of an individual choosing to select into treatment (e.g., a highly motivated 

student may be more likely to complete an optional practice test). However, selection 

bias may also be the result of myriad factors. Financial selection may occur if 

participating in treatment requires a certain degree of disposable income. If someone 

cannot afford transportation, childcare, technology (e.g., computers, phone, internet), or 

treatment fees, then they cannot participate in a study, even if they desire to (e.g., a 

highly motivated student cannot afford the fee to take the optional practice test). 

Geographic selection may occur if a treatment exists only in specific geographic locations 

(e.g., a student’s town does not have a testing center for taking the optional practice test). 

Selection biases such as these are a major threat to quasi-experimental methodology, 

because they damage the ability to make casual claims, and thus weaken internal validity 

(Austin, 2011; Austin et al., 2007; Guo & Fraser, 2015; Shadish et al., 2002).  

According to Shadish et al. (2002), there are four types of validity: (1) internal 

validity, (2) external validity, (3) construct validity, and (4) statistical conclusion validity. 

Although all types of validity have implications for causal inferences, internal validity is 
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most directly related to causality. Some researchers interpret internal validity as the sine 

qua non, or the type of validity that is a necessary element to proper research. This is 

likely because causation is both at the heart of internal validity and at the heart of 

scientific inquiry. Internal validity examines further whether a causal relationship exists 

between the treatment and the outcome within the context of the study. Internal validity is 

often confounded by forces that could have occurred in the absence of treatment, which 

touches on the second piece of Hume’s (2003) definition, that without the cause, the 

effect would not occur (Shadish et al., 2002).  

Selection bias introduces an alternative explanation of an effect; did the treatment 

cause the effect, or did the a priori group differences cause the effect? In order to make 

causal claims in the face of selection bias, researchers must consider, then rule out all 

possible alternative explanations and confounds. Confounds refer to extraneous variables 

that covary with the outcome, or variable of interest (Shadish et al., 2002). To rule out 

alternative explanations and the effect of confounds, researchers and statisticians 

developed a series of quasi-experimental techniques. 

Techniques to Reduce Selection Bias 

When circumstances prohibit the use of random assignment, researchers have 

three options for controlling selection-related confounders: (1) use a research design that 

rules out alternate explanations for the cause and effect relationship (e.g., pre-tests or 

observations over time), (2) use statistical models to adjust treatment effects to account 

for sources of bias (e.g., ANCOVA), or (3) pre-process groups to balance them on 

specific covariates (e.g., stratification or matching) before analysis. Unfortunately, flaws 

exist for each of these techniques. Although incorporating strong elements into quasi-
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experimental designs (such as a pre-test) can strengthen causal inferences, designing such 

a study requires a considerable amount of resources and advance planning. Additionally, 

an improved research design still does not always rule out alternative explanations. The 

second technique has theoretical and practical issues, as statistical models such as 

ANCOVA do not directly model bias, and statistical power decreases as each new 

covariate is incorporated. The third technique runs into problems if a researcher wants 

many levels of stratification or matching on many specific covariates (Bai & Clark, 2018; 

Shadish et al., 2002). However, one solution for the third technique, is to create a single 

value that summarizes a series of covariates, or in other words, to create a propensity 

score (Rosenbaum & Rubin, 1983).  

Propensity scores denote an individual’s probability of treatment, conditional on 

observed distributions of baseline covariates (Austin, 2009). Therefore, two individuals 

with the same “true” propensity score have similar distributions of covariates, regardless 

of treatment assignment (Rosenbaum & Rubin, 1983). Because propensity scores 

describe the distributions of multiple confounding covariates in a single composite value, 

several statistical methods use propensity scores to analyze quasi-experimental data with 

the aim of mimicking the rigor of a randomized experiment. 

In randomized experiments, the propensity scores are fixed by the study design. 

For example, a researcher may determine that each individual has a 50% chance of being 

assigned treatment. If random assignment is done correctly, each individual has the same 

probability of treatment, and thus the same true propensity score (Rosenbaum & Rubin, 

1983). In quasi-experimental designs, however, the propensity scores must be estimated, 

as they are not fixed by the study design, due to selection bias. Propensity scores can be 
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estimated with a variety of statistical techniques (Austin, 2009; Rosenbaum & Rubin, 

1983). This paper will focus on the traditional logistic regression technique and the newer 

generalized boosted model (GBM) technique. 

Logistic regression is frequently used to create propensity scores, as it predicts a 

binary outcome (e.g., treatment or comparison group) by modeling a series of researcher-

chosen covariates. GBM is a machine learning-based technique that can model complex 

relationships to create propensity scores. GBM produces propensity scores by splitting 

(and classifying) data iteratively and “boosting” misclassifications in order to improve 

predictions. In GBM, the resulting propensity scores are the “average” of many 

propensity score models. Unlike logistic regression, GBM is entirely data-based (Bai & 

Clark, 2018; McCaffrey et al., 2013; Sinharay, 2016).  

 Propensity Score Matching. Propensity scores have many applications but are 

most commonly used to conduct propensity score matching (PSM; Austin, 2009). PSM is 

one technique that attempts to replicate the covariate balance achieved via random 

assignment. To do this, propensity scores are estimated for each individual. Afterwards, 

individuals in the treatment and comparison group are matched based on these scores. 

Ideally, once a new, matched sample is created, the treatment and comparison groups will 

have similar propensity score, and thus similar distributions of baseline covariates 

(Rosenbaum & Rubin, 1983). By employing PSM, a quasi-experimental design can 

mimic the group composition achieved through random assignment; therefore, the 

matched comparison group emulates the matched treatment group’s counterfactual and 

vice versa. 
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Propensity Score Weighting. Alternatively, the technique of propensity score 

weighting also provides a way of preprocessing data to approximate the counterfactual. 

Once created, propensity scores may be used to assign weights to individuals in the 

comparison group – such that individuals in the comparison group who are more similar 

to the treatment group will receive a larger weights and count for more than their less 

similar peers who receive smaller weights. Ideally, the new weighted comparison group 

mimics the group composition of the treatment group; therefore, the weighted 

comparison group emulates the treatment group’s counterfactual. 

Purpose of the Study 

The current study will be a simulation study that compares propensity score 

estimators and techniques in the context of model misspecification. One example of how 

these simulated data could be related to real world situations, would be in psychometric 

studies which examine the influence of a practice test on a student’s exam score. In such 

an example, the practice tests operate as the treatment, while the score on the exam would 

operate as an outcome. As students may opt into taking practice tests, the treatment group 

may be qualitatively different than the comparison group on selection-related covariates. 

Previous literature considering SAT test preparation finds that already privileged students 

(i.e., students with unearned advantages based on group membership and parental 

economic status) are most likely and able to select into treatment (test preparation). Thus, 

a student’s race, ethnicity, gender, family income, parental education, and geographic 

region all relate to both the levels of test preparation and the final SAT score (Alon, 

2010; Buchmann, Cirndron, & Roscingno, 2010; Park, 2012; Park & Becks, 2015). The 

practice test example is provided in order to ground this simulation study in actual quasi-
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experimental designs, and to provide real-world implications of how PSM decisions (e.g., 

the use of logistic regression or GBM to calculate propensity scores) may influence the 

inferences drawn under various covariate conditions.  
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Chapter Two 

Review of the Literature 

As Chapter 1 focused on the logic of causality, traditional issues with quasi-

experimental methods, and potential solutions, this literature review will discuss 

propensity score techniques in greater depth. This chapter provides a comprehensive 

review of the decisions made when conducting propensity score matching (PSM), and 

introduces the fundamentals of generalized boosted modeling (GBM) as a propensity 

score weighting technique. Finally, the literature review will also briefly review past 

studies that examine the differences between PSM and GBM. 

Although previous literature has compared PSM and GBM on their ability to create a 

balanced sample, no literature has examined how the two compare when higher-order 

relationships (i.e., interactions and powers) exist in the data. Thus, this paper seeks to 

unpack how both methods work, and how propensity score model specification may 

affect how the balance achieved by PSM compares to that achieved by GBM.  

Propensity Score Techniques  

 Some researchers use regression-based, or covariate adjustment techniques (e.g., 

ANCOVA) to model and correct for a priori covariate imbalance between groups. 

However, McCaffrey et al. (2013) laid out five main advantages to using propensity score 

techniques instead: (1) by summarizing a group of covariates, propensity scores offer a 

succinct way for evaluating treatment effects; (2) propensity scores methods offer a 

formal model for causal inference, (3) bias from mispecifying the model for the mean can 

be avoided, as propensity score techniques do not require modeling the mean; (4) while 

parametric regression modeling may extrapolate whenever the treatment and comparison 
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groups differ, propensity score methods do not extrapolate; and (5) propensity score 

adjustments can be implemented without any use of the outcomes, only a priori 

covariates and treatment assignment, and this removes the potential for covariates to be 

chosen based on their impact on the estimated treatment effect.  

A variety of propensity score techniques can be found in the literature. Propensity 

scores have been used for covariate adjustment, stratification, inverse probability of 

treatment weighting, and matching (Austin & Mamdani, 2006; Austin 2009). In the 

medical literature, propensity score matching (PSM) is used most frequently as a way to 

handle observational data (Austin, 2009).  

Traditional Propensity Score Matching 

 PSM is a technique that involves using propensity scores to match individuals in 

the treatment group with individuals in the comparison group. By doing so, researchers 

create a new, matched sample, which theoretically controls for the systematic bias of 

covariates related to self-selection (Rosenbaum & Rubin, 1983).  

 PSM involves several steps, which have been laid out by various authors 

(Benedetto et al., 2018; Caliendo & Kopeinig, 2008; Stuart, 2010). Harris and Horst 

(2016) endorsed a six-step model that summarizes the general process for PSM found in 

the literature (Figure 1). The first step is to examine the literature and run baseline 

analyses to select covariates that are important for creating a propensity score. The 

second step is to incorporate these covariates into a model, such as a logistic regression 

model (or a generalized boosted model). After you have created those propensity scores, 

the third step is to select a method for matching the treatment and comparison group 

individuals. Once that method is selected, then the fourth step is matching individuals to 



13 
 

 
 

create a new, matched sample which will be used for the rest of the process. In the fifth 

step, the researcher assesses balance in the matched sample, in order to ensure that the 

PSM process successfully reduced selection bias. Finally, the sixth step involves 

analyzing the new matched sample to estimate the treatment effect.  

Figure 1 

Six Steps for Propensity Score Matching 

 
Note. Figure adapted from Harris & Horst (2016). 

Step 1: Covariate selection. Steiner, Cook, Shadish, and Clark (2010) stated that, 

“…choice of covariates is more important than the choice of analytic method, assuming 

that the analysis is competent and sensitive to the assumptions required” (p. 264). 

Although it is possible for propensity score analyses to yield the same results as 

randomized experiments, propensity scores will only effectively reduce selection bias if 

propensity scores are adequately modeled (Bai & Clark, 2018). Ideally, covariates should 

be chosen based on theoretical foundation and statistical relationships with the outcome. 

To establish a theoretical basis, a thorough literature review should always be the first 

step in selecting covariates. This literature review allows researchers to familiarize 

Step 1:

Select Important 
Covariates

Step 2:

Select Model for Creating 
Propensity Scores

(e.g., Logistic Regression)

Step 3: 

Select a Matching Method 

Step 4:

Match Treatment and 
Comparison Individuals

Step 5:

Conduct Balance 
Diagnostics

Step 6:

Estimate Treatment Effect 
after Matching
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themselves with what variables have historically influenced selection and the treatment 

effect estimation (Bai & Clark, 2018). 

 After familiarizing oneself with the literature, a researcher should then consider 

how the covariates, treatment assignment, and outcome statistically relate to each other. 

Researchers should consider preliminary statistical assessment in determining appropriate 

covariates. Doing so not only allows researchers to examine which variables relate to the 

outcome and treatment group selection but can also hint to whether collinearity may be 

an issue in the chosen propensity score estimation model (Bai & Clark, 2018). 

The accuracy of estimates depends on the assumption of strong ignorability. 

Strong ignorability relies on the idea that each person in a study has two potential 

outcomes [Y = (Y0, Y1)]: an outcome that would occur if given no treatment (Y0), and an 

outcome that would occur if given treatment (Y1). Strong ignorability is met when two 

things happen: (1) treatment assignment (Z) and the potential outcomes are conditionally 

independent given the observed covariates X [Pr(Z|X, Y) = Pr(Z|X)], and (2) there is a 

nonzero probability of being in either condition [0 < Pr(e(xi)) < 1, for all xi, where e(xi) 

represents the propensity scores], implying that each individual has some chance of either 

outcome (Rosenbaum & Rubin, 1983; Shadish, 2010).  

In other words, the propensity score model should have no unmeasured 

confounders. In this context, confounders refer to covariates that may be influencing the 

independence of the outcome and treatment assignment. As the goal of propensity score 

techniques is often to isolate the influence of confounders, researchers, ideally, hope to 

include all possible confounders. When these confounders are not included in the model, 

the propensity score model has violated a key assumption of no unmeasured confounders. 
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Failure to include an important confounder, or other types of misspecification in a model 

(e.g., failure to include an interaction or polynomial) can lead to biased estimation of 

treatment effects (Austin, 2007; Drake, 1993).  

The strong ignorability assumption is clear in theory, but in applied propensity 

score research it is difficult to determine whether the included covariates capture the 

selection bias, or even to what extent a bias actually exists. In most observational studies, 

strong ignorability is assumed rather than directly tested, because there are no tests that 

can determine whether the covariates allow condition selection to have the same 

independence as random assignment (Shadish, 2010; Steiner et al., 2010). Some 

researchers incorrectly believe that attaining good balance is indicative of meeting the 

strong ignorability assumption, but Shadish (2013) stated that, “balance may be 

necessary, but it is not sufficient for strong ignorability to be met” (p. 134). 

Some researchers try “kitchen sink” methods of choosing covariates with the 

logic that if all variables are included into the model, then there should not be any 

unmeasured confounders. However, the inclusion of more covariates does not always 

lead to a reduction in selection bias (Brookhart et al., 2006; Steiner et al., 2010). For 

example, if a researcher uses a large number of covariates with certain PSM methods 

then the matched sample size may be dramatically reduced, as finding matches becomes 

more difficult (Austin, 2009). Other researchers build propensity score models using 

predictors of convenience, or covariates that are readily available (e.g., gender, marital 

status, age). This is considered bad practice, because propensity score based on predictors 

of convenience does not reduce bias well on average (Shadish, 2010).  
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Researchers examining an outcome should only include true confounders or 

potential true confounders in the propensity score model. True confounders are covariates 

that relate to the chosen outcome, as well as the selection bias. Therefore, the propensity 

score model should not include policy or temporal variables associated with selection but 

not the outcome (Austin, Grootendorst, & Anderson, 2007). Additionally, the propensity 

score model should not include any discriminatory covariates that were used as part of 

the criteria for entering treatment, as this would introduce propensity score with a zero 

value (Austin, 2011; Stuart, 2010). For example, if a treatment is only offered to female-

identifying individuals, then gender should not be included in the model, because a male-

identifying individual would have a zero probability of treatment [Pr(e(xi) = 0]. 

Step 2: Propensity Score Estimation. Propensity scores have been estimated 

with a variety of techniques, including but not limited to, discriminant analysis, multiple 

regression, and logistic regression (Austin, 2009; Rosenbaum & Rubin, 1983; Stuart, 

2010). Of these, researchers use logistic regression most frequently (Austin, 2009, 2011). 

 Logistic regression is a statistical technique used to predict a binary outcome 

(e.g., 0 or 1, treatment or no treatment) from a set of predictors that may be categorical or 

continuous. Due to the binary outcome, the errors will not be normally distributed, which 

fails an assumption of the commonly used general linear model, which is typically 

estimated using ordinary least squares (OLS) estimation. Instead, logistic regression must 

use a generalized linear model, which uses maximum likelihood estimation (MLE), rather 

than the OLS estimation method (Azen & Walker, 2011; Cohen, Cohen, West, & Aiken, 

2003). 
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 To elaborate further on the difference between the general and generalized linear 

model, the general linear model includes a model for the means (fixed effects) and a 

model for the variances (random effects). The model for the means is often what 

researchers are interested in when they are testing hypotheses, as it models the 

relationship between the predictors and the outcome. The model for the variance is often 

what researchers must make assumptions about and describes how the residuals are 

distributed across cases. In the general linear model, the assumption is that errors are 

normally distributed (so when errors are not normally distributed researchers must use the 

generalized linear model). The general linear model is sometimes written as: 

 
𝑌𝑜𝑢𝑡𝑐𝑜𝑚𝑒 =  (𝛽0 + 𝛽1𝑋1 + ⋯ +  𝛽𝐾𝑋𝐾) + 𝑒 

(1) 

where 𝑌𝑜𝑢𝑡𝑐𝑜𝑚𝑒 represents the value of the outcome, (𝛽0 + 𝛽1𝑋1 + ⋯ +  𝛽𝐾𝑋𝐾) 

represents the model for the (conditional) mean of Youtcome and 𝑒 represents the model for 

the conditional variance of Youtcome. When researchers are predicting Y, the formula then 

becomes: 

 
𝑌′𝑜𝑢𝑡𝑐𝑜𝑚𝑒 =  𝛽0 + 𝛽1𝑋1 + ⋯ +  𝛽𝐾𝑋𝐾 (2) 

where Y′outcome represents the predicted value of the outcome given the k predictors in the 

model, (𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝐾𝑋𝐾) represents the model for the (conditional) mean, and 

the error can be found by subtracting Y′outcome from Youtcome  

As logistic regression assumes a Bernoulli distribution2 for the errors, it uses the 

generalized linear model. The generalized linear model includes models for the mean and 

variance as well, but additionally includes a link function (that is not an identity link 

 
2 The Bernoulli distribution is a simple probability distribution for categorical data that can be used to 

determine the probability of success (e.g., treatment group assignment) for a single trial (e.g., one 

individual; Azen & Walker, 2011).  
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function). The link function transforms a non-normal (or in this context, binary) expected 

outcome into something that can be modeled as a linear function of the predictors (Azen 

& Walker, 2011; Cohen, Cohen, West, & Aiken, 2003). The generalized linear model is 

sometimes written as: 

 
𝑔(𝑌′𝑂𝑢𝑡𝑐𝑜𝑚𝑒) =  𝛽0 + 𝛽1𝑋1 + ⋯ +  𝛽𝐾𝑋𝐾 (3) 

where Y′outcome represents the predicted value of the outcome given the k predictors in the 

model, (𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝐾𝑋𝐾) represents the model for the (conditional) mean, and 

𝑔(. ) represents the link function. When the link function is equal to 1, then the 

generalized linear model simplifies down to the general linear model.  

In logistic regression, the link function is a logit link. The logit link is a logit 

transformation of the expected value of Y. This transforms a bounded, dichotomous 

expected value of an outcome (0,1) to an unbounded value that ranges from negative to 

positive infinity. This transformation allows the association between each predictor and 

the transformed expected value of the outcome and the predictors to be modeled using a 

linear model. The logit is the natural log of the odds of the event occurring, and is the 

default predicted score given by logistic regression, as it is the result of the logit link 

function. Therefore, the simple logistic regression equation becomes: 

 
Logit (𝑌′𝑂𝑢𝑡𝑐𝑜𝑚𝑒)  =  𝛽0 + 𝛽1𝑋1 + ⋯ +  𝛽𝐾𝑋𝐾 (4) 

 Unfortunately, logits are difficult to interpret; therefore, researchers often 

transform the values to odds or probabilities for ease of interpretation. Odds can be 

derived by exponentiating the logit, or by dividing the probability of an event occurring 

by the probability of the event not occurring. Odds and odds ratios can be as low as 0 and 

increase to positive infinity. Probability can be derived from the odds by dividing the 
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odds by one plus the odds and is often the unit most familiar to the general public 

(Meyers, Gamst, & Guarino, 2005; Osborne, 2012).  

 To estimate a propensity score via logistic regression, a model should be built 

using covariates theorized to influence selection and the outcome as the predictors of the 

propensity score, and treatment group membership as the binary outcome (i.e., treatment 

or comparison). Researchers can choose to incorporate interactions and polynomials of 

the covariates into the logistic regression model, if such relationships are theorized to 

exist. The logistic regression model assigns a logit value to each individual, which can be 

transformed into a probability to operate as that individual’s propensity score.  

The focus of this section so far has been on logistic regression as the propensity 

score estimator, as logistic regression is most commonly used for PSM (Austin, 2009, 

2011). Although this study examined traditional logistic regression estimation 

approaches, these methods were also be compared to the approach of using generalized 

boosted models for quasi-experimental analysis. As generalized boosted models are not 

typically used for PSM, they will not be discussed in this section about the six steps of 

PSM. Instead, generalized boosted models will be covered more extensively later in the 

literature review, along with propensity score weighting.  

Step 3 and 4: Matching. After the propensity scores are estimated, individuals in 

the treatment group will be matched to individuals in the comparison group, to create a 

new, matched sample that hopefully resolves the threat of selection bias. This paper will 

focus on one-to-one matching methods, as they are more common in the literature than 

one-to-many matching. One-to-one matching involves matching one treatment group 

individual to one comparison group individual, while one-to-many matching involves 
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matching one treatment group individual to many comparison group individuals (i.e., 2 or 

3). In sequential one-to-many matching (without replacement), everyone in the treatment 

group matches with someone in the comparison group (just as in one-to-one matching), 

then additional second, third, and higher-level matches are made from the remaining 

individuals in the comparison group (Parsons, 2004; Rassen et al., 2012). One-to-many 

matching is used less frequently than one-to-one matching, but there are several matching 

methods equipped to handle such a design (e.g., radius matching or nearest neighbor 

matching). 

A variety of one-to-one matching methods are available, each with its own pros 

and cons. Researchers may decide on a matching technique depending on specifications 

and expectations for the study’s matched sample size and quality of matches. Matched 

sample size is important when the treatment group is small prior to matching, as the 

matched sample will likely be small already and decrease further if treatment group 

individuals are lost.  

 Nearest Neighbor. Nearest neighbor (NN) matching relies on a greedy algorithm 

to match individuals in the treatment and comparison groups. The greedy algorithm starts 

with the first individual in the treatment group (typically sorted in descending order by 

propensity score) and matches them to the individual in the comparison group who has 

the propensity score closest in value; both of those individuals are then removed so that 

they will not be matched again in the following iterations. Afterwards, the algorithm 

continues down the list, matching each individual in the treatment group with the 

remaining unmatched comparison group individual with the closest propensity score.  
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NN is popular because it is easy to use, and it will match every individual in the 

treatment group3. By matching everyone in the treatment group, the matched sample size 

stays as large as possible. However, every individual is simply matched to the “best 

option” remaining in the larger group, regardless of how different the propensity score 

values may be. Because NN never re-evaluates those matches to determine if better ones 

could have been selected, this matching process is dependent on the order of the 

participants. For example, if two treatment group participants have a propensity score of 

.55, then the one listed earlier in the dataset may match a comparison group individual 

propensity score of .51, and the one listed later may be matched with the next closest 

individual, who has a propensity score of .13. Situations such as the above make nearest 

neighbor matching methods less appealing, as the risk of poor-quality matches may bias 

the treatment effect (Harris & Horst, 2016; Smith, 1997); although, typically, NN is still a 

decent option for PSM (Gu & Rosenbaum, 1993). 

To fix potential quality issues with NN matching, some researchers incorporated 

changes into the NN approach. One such change is the introduction of replacement, 

where an individual from the comparison group could be matched multiple times, if they 

were closest to several treatment group participants. Although some researchers suggest 

that matching with replacement is better than matching without replacement (Bai, 2015), 

others do not recommend this approach as the data become dependent (Austin, 2009). 

 Nearest Neighbor with Caliper. Instead of using nearest neighbor or replacement 

techniques, researchers can use NN with a caliper adjustment. With a caliper adjustment, 

researchers can specify an “acceptable” distance within which matches can be made. This 

 
3 An exception would be in situations where the comparison group is smaller than the treatment group, but 

this is not recommended (see Sample Size Ratio, p. 41-42). 
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distance is often a value created by multiplying a fixed amount (e.g., .1 or .2) by the 

standard deviation of a logit from the propensity score model. Unlike NN without a 

caliper, this approach does not match everyone in the treatment group. If no individual in 

the comparison group has a propensity score within the caliper distance of a treatment 

group participant, then the treatment group participant will not be included in the 

resulting matched sample. Thus, it is important for researchers to carefully consider 

whether the higher quality matches of a smaller caliper are worth the loss in sample size 

(Jacovidis, Foelber, & Horst, 2017). It is also difficult to determine what size difference 

in propensity score should be considered tolerable in the first place (Caliendo & 

Kopeinig, 2005; Smith & Todd, 2005). 

 Optimal Matching. Optimal matching also offers an alternative for the potentially 

poor-quality matches made by NN without caliper adjustment. Optimal matching allows 

matches to be reconfigured to increase the global fit. In other words, after the initial 

matching process, pairs may be broken up and reassigned in order to minimize the overall 

distance between propensity scores among the matches (Rosenbaum, 1989; Stuart, 2010).  

Genetic Matching. The above matching methods all rely on proper specification 

of the propensity score model. These methods have no definitive process for 

reconsidering the propensity score model, except for researchers to try a variety of 

models if the balance is not ideal. Because outcome data are not included in the 

propensity score model, creating multiple models is not often viewed as a sequential 

testing problem (Diamond & Sekhon, 2013). 

Genetic matching eliminates the need to manually check the propensity scores by 

employing an iterative process which checks the model for misspecification (Figure 2). 
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An evolutionary search algorithm proposes iterative batches of weights. In each batch, 

many matched samples are produced, and then evaluated for loss (e.g., individual 

discrepancy measured by Kolmogorov-Smirnov tests). The model converges towards the 

weights which produced the smallest amount of loss, which is considered the “optimal 

solution.” In short, genetic matching uses multiple iterations to find the best weights in a 

propensity score model to improve the balance between matched treatment and 

comparison groups (Diamond & Sekhon, 2013).  

Figure 2 

Iterative Estimation of a Propensity Score Model 

 

 
Note. Adapted from Diamond and Sekhon’s (2013) flowchart. 

 Other Forms of Matching – An Aside. There are other quasi-experimental 

matching methods that do not directly incorporate propensity scores but are often used in 

conjunction with PSM techniques. These matching methods include approaches such as 

exact matching and matching on Mahalanobis distance. Although neither of these 

techniques will be used in the current study, they are worth mentioning for the sake of 

comprehensiveness.  

Exact Matching. Exact matching involves matching individuals who have the 

same value on specific covariates, rather than matching them on a propensity score. Exact 
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matching is used to match important covariates, often categorical variables. Choosing 

continuous variables, or categorical variable with many levels may result in a greater loss 

of individuals from the matched sample, because it will be more difficult to find an exact 

match when the covariate has more variety between individuals. For example, exact 

matching on whether an individual passed or failed a test would result in a greater sample 

size than exact matching on the score each individual received on that test. Additionally, 

it is more difficult to exact match as the number of covariates increase, because two 

individuals will only match if they have the same values for every covariate chosen for 

exact matching. For example, when exact matching on gender and education, a female 

with a Ph.D. could only be paired with another female with a Ph.D. If matching on 

gender, education, and state, then a female with a Ph.D. from Nebraska, could only be 

paired with a female with a Ph.D. from Nebraska, which reduces the pool of potential 

matches from the sample.  

Mahalanobis Distance Matching. Sometimes referred to a Mahalanobis metric 

matching, Mahalanobis distance matching (MDM) was a predecessor to PSM (Guo & 

Fraser, 2015; Rubin, 1979). MDM is distance-based, rather than model-based (no logistic 

regression). Treatment and comparison group individuals were matched based on the 

Mahalanobis distance d (i, j) calculated with the following formula: 

 
𝑑(𝑖, 𝑗)  =  (𝐮 –  𝐯)𝑇 𝐂−1(𝐮 –  𝐯) (5) 

where u and v correspond to the vector of matching variables for treatment group 

participant i and comparison group participant j, respectively, and C corresponds to the 

sample covariance matrix of the matching variables from the full comparison group 

(although some researchers define C differently). When many covariates are included, 
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Mahalanobis distances between observations tend to be larger, and it is increasingly 

difficult to find matches (Guo & Fraser, 2015). 

 Once the Mahalanobis distance has been calculated, then MDM can be achieved 

through the greedy matching on the Mahalanobis distance values (NN). Rosenbaum and 

Rubin (1985) found that MDM reduced standardized differences for individual 

coordinates of x better than PSM methods but did not reduce standardized differences 

along the propensity score as well. As a result, Rosenbaum and Rubin recommended a 

hybrid approach which used MDM with calipers defined by propensity scores.  

 A Brief Comparison of Propensity Score Matching Methods. Researchers most 

commonly use NN and NN with caliper adjustment for PSM (Austin, 2009; Harris & 

Horst, 2016; Stuart, 2010); however, between the two, NN with caliper produces higher 

quality matches (reduces selection bias more) than NN without caliper (Bai, 2011). When 

there is a large comparison group to treatment group ratio (i.e., many more individuals in 

the comparison group), then optimal matching performs similarly to NN in terms of 

balance achieved. However, when there is a smaller ratio of comparison group to 

treatment group individuals, optimal matching methods will perform better (Austin, 

2011; Gu & Rosenbaum, 1993). In simulation studies genetic matching was also more 

effective than NN matching at reducing selection bias (Diamond & Sekhon, 2013). Given 

that the purpose of matching is to create balanced groups, researchers must evaluate 

whether the groups are truly balanced to determine whether the proper matching methods 

were used. 

Step 5: Assessing Balance Diagnostics. Ultimately, propensity scores are 

balancing scores, so logically, the quality of propensity score estimation is directly 
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connected to the quality of balance that is achieved after matching. To suggest that a 

matching method has achieved balance, is suggesting the distributions of baseline 

covariates are similar between the matched treatment and comparison groups (Ho et al., 

2007). Austin (2009) examined the efficacy of several numeric and visual methods for 

assessing balance diagnostics when propensity score matching.  

 Significance Testing. Some researchers have argued for using significance tests 

(e.g., t-tests) to determine whether the covariates have similar distributions, and thus, 

balance (Pan & Bai, 2015). However, this is not a theoretically sound approach to 

balance diagnostics for two reasons. First, the matched sample will be a reduced version 

of the unmatched sample, which decreases statistical power and consequently, the ability 

to detect imbalance. Therefore, any perceived improvement in balance from the 

unmatched to the matched sample, may actually be an artifact of reducing sample size 

and power. Second, inferential statistics are intended to be used when a researcher desires 

to make inferences about a larger population. Balance, however, is a property of a 

particular sample rather than a larger population. Because inferential statistics are 

intended for inferences about populations, not samples, then they should not be used for 

determining properties of samples (Austin, 2009; Imai, King, & Stuart, 2008). 

Comparing Means. One method of numerically diagnosing balance is to compare 

the standardized difference in propensity score (and individual covariates) between 

groups. Also known as standardized bias, the standardized difference for continuous 

variables can be found with the following formula, based on Cohen’s d: 

 
𝑑 =  

(𝑋̅𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 −  𝑋̅𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛)

√𝑠2
𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 +  𝑠2

𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛

2

 
(6) 
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where 𝑋̅ denotes the sample mean of the covariate of interest in the treatment and 

comparison group, and s2 denotes the sample variance of the covariate in the treatment 

and comparison group (Austin, 2009). 

Less commonly used, a similar formula finds the standardized difference for 

dichotomous variables: 

 
𝑑 =  

(𝑝̂𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 −  𝑝̂𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛)

√
𝑝̂𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡(1 −  𝑝̂𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡) +  𝑝̂𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛(1 −  𝑝̂𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛)

2

 
(7) 

where 𝑝̂ denotes the mean (i.e., proportion) of the variable in the treatment and 

comparison group (Austin, 2009). 

 Unlike statistical tests, the standardized difference is not influenced by sample 

size. Austin (2009) suggested, “In observational studies, as in randomized experiments, 

balance is a large-sample property; moderate imbalance can be expected in small 

samples, even if the propensity score is correctly specified.” Currently, there is no 

consensus on what value constitutes balance or imbalance. Normand et al. (2001) 

suggested that a difference of .1 denoted meaningful imbalance, and this criterion has 

been resounded in other literature (Austin, 2009, 2011). What Works Clearinghouse 

proposed more stringent guidelines for achieving baseline equivalence; standardized 

differences should be less than a quarter of the standard deviation when the analysis 

includes acceptable statistical adjustment4 [<.25(sd)], or below one twentieth of the 

 
4 What Works Clearinghouse considers a variety of statistical adjustments to be acceptable, depending on 

the relationship between the outcome and the covariate in question. One example of this could be including 

the imbalanced covariate into an ANCOVA model.  
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standard deviation when the analysis does not include statistical adjustment [<.05(sd); 

What Works Clearinghouse™ Standards Handbook]5.  

Percent Bias Reduction. Another helpful indicator of balance is to examine the 

percent reduction in bias from the unmatched sample to the matched sample. This value 

should be calculated for the propensity scores, as well as for each of the covariates used 

in the propensity score modeling and matching process. The percent bias reduction (PBR) 

can be calculated with the following, equivalent formulas: 

PBR =
(𝑋̅𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 − 𝑋̅𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛)

𝑏𝑒𝑓𝑜𝑟𝑒 
− (𝑋̅𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 − 𝑋̅𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛)

𝑎𝑓𝑡𝑒𝑟 

(𝑋̅𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 − 𝑋̅𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛)
𝑏𝑒𝑓𝑜𝑟𝑒 

× 100% (8) 

𝑃𝐵𝑅 =  
|𝐵| −  |𝐵𝑚|

|𝐵|
 × 100% (9) 

where B is the mean difference before matching, and Bm is the mean difference after 

matching (Pan & Bai, 2015). 

Using this formula, a positive percent value indicates that the PSM process 

reduced bias, and therefore improved balance. A negative value indicates that the PSM 

process increased or overcorrected for bias, and therefore, balance was made worse. 

Although there are no established cutoffs for PBR, some recommendations suggest a 

value of 80% indicates sufficient reduction in bias (Cochran & Rubin, 1973; Pan & Bai, 

2015). However, the PBR is greatly dependent on the baseline (unmatched) sample’s 

balance, such that covariates with only mild balance problems before matching will likely 

not have a large PBR or may overcorrect; however, a small balance improvement may 

still be important if the covariate greatly influences the outcome or treatment selection. 

 
5 What Works Clearinghouse uses a measure of standardized difference based on Hedge’s G, rather than 

Cohen’s d. 
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 Variance Ratios. Another numeric method of diagnosing balance is through 

variance ratios. The variance ratio is calculated with the following formula (Stuart & 

Rubin, 2008): 

 Variance Ratio =  
𝑠2

𝑀𝑎𝑡𝑐ℎ𝑒𝑑 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐺𝑟𝑜𝑢𝑝

𝑠2
𝑀𝑎𝑡𝑐ℎ𝑒𝑑 𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝐺𝑟𝑜𝑢𝑝

 (10) 

where s2 denotes the variance of the propensity score (or the individual covariates) for the 

matched treatment or comparison group, respectively. Rubin (2001) recommended that 

the ratios of the variance of the propensity scores be close to one, with a deviation of .5 

being too extreme. It is recommended that a comparison of means for the propensity 

scores and covariates is used in tandem with the variance ratio (Harris & Horst, 2006; Ho 

et al., 2007). 

 Five-Number Summary. The last numerical method of assessing balance is the 

examination of the five-number summary, which was suggested by Hoaglin et al. (1983) 

as an adequate summary of distribution. In the context of PSM, the five-number summary 

includes the minimum, 1st quartile, median, 3rd quartile, and maximum of each 

continuous covariate for both the treatment and comparison groups. 

Five-number summaries are not commonly used (or reported) in PSM studies, 

likely because interpretation is difficult. There is no statistical way of determining what 

amount of variation is reasonable, and what amount suggests a misspecification of the 

propensity score model. This technique gives researchers a rough, quantitative look at 

distribution and skew, but may only be useful for assessing issues with balance if the 

propensity model is grossly misspecified (Austin, 2009). 

 Visual Analysis. Multiple graphical methods of assessing balance exists, 

including, but not limited to, side by side boxplots, quantile-quantile (Q-Q) plots, jitter 
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plots, side by side histograms, density plots, and cumulative distribution functions 

(Austin, 2009; Ho et al., 2007; Stuart, 2010). These visual methods of assessing balance 

can be used to compare propensity scores between groups, as well as the balance among 

individual covariates. Like the five-number summary, graphical comparisons are 

interpretationally limited, because it involves simply “eyeballing” a graphical summary 

for any disparity between the treatment and comparison groups. Therefore, it is difficult 

to determine what amount of deviance is expected from a correctly specified model, and 

what amount of deviance indicated misspecification. Austin (2009) recommended that 

visual analyses should be used in addition to numeric methods, as a stronger argument for 

balance may be made with a combination of numeric and visual diagnostic tools.  

Step 6: Treatment Effects. PSM is an approach intended for hypotheses 

regarding the Average Treatment effect on the Treated (ATT). If the goal is to estimate 

the treatment effect on the overall population, rather than just treated individuals, then 

researchers should consider the Average Treatment Effect (ATE; Ho et al., 2007; 

Rosenbaum & Rubin, 1983). If the researcher’s hypothesis involves the ATE, then the 

data is best handled with propensity score methods other than matching, such as inverse 

propensity score weighting or stratification (Benedetto, Head, Angelini, & Blackstone, 

2018). Despite the distinction between ATT and ATE, knowing one provides a good 

estimator of the other, and if the causal effects are constant, then the two are identical (Ho 

et al., 2007). 

Regarding the use of inferential statistical methods to determine the treatment 

effect, there is some debate about whether matched groups should be treated as dependent 

or independent. Some researchers regard the matched groups to be dependent, as they 
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believe the matching process ensures similar propensity score values, thus, theoretically, 

the matched groups come from the same multivariate distribution (Austin, 2011). If the 

matched samples are considered dependent, continuous variables could be analyzed 

with paired t tests, while binary variables warrant the use of McNemar’s test, or certain 

logistic regression techniques (Benedetto et al., 2018).  

Other researchers consider the matched treatment and comparison group to be 

independent, as the matching process is conducted separately from the outcome, so the 

outcomes of matched individuals should not be correlated (Schafer & Kang, 2008). This 

study will borrow Stuart’s (2010) justification for independence suggesting that an 

analysis does not need to account the matching process for two reasons: (1) the 

conditioning on the covariates used is sufficient, and (2) PSM does not guarantee that the 

individual pairs are well matched on all covariates, but rather the groups of individuals 

have similar distributions. Therefore, all of the individuals in the matched sample may be 

pooled together and incorporated into a regression analysis. After the regression analysis 

is conducted, the weighted averages of the regression coefficients are used to calculate 

the ATT.  

Once the treatment effect has been estimated, the researcher has finished all six 

steps of PSM, and may continue on to analyze and discuss the implications of the study. 

Concluding the description of the PSM steps, the following sections will discuss 

additional considerations in the PSM process before branching out to cover generalized 

boosted modeling.  
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 Additional Considerations in PSM 

 Each of the six steps of PSM discussed above introduces a series of decisions that 

need to be made at each step (e.g., “How many covariates should I include?” or “Which 

matching method should be used?”). However, there are also decisions that need to be 

made before the PSM process, which may impact the decisions made during the six steps. 

These decisions involve the collection of participants for the study, and consider aspects 

such as comparison group selection, sample size, and common support.  

 Comparison Group Selection. Although much attention is often given to the 

treatment group, the comparison group is equally important for successful PSM. Bias 

tends to be lower in studies that carefully select a comparison group to be maximally 

similar to the treatment group on certain characteristics (e.g., both groups are from the 

same location). Suppose a researcher’s treatment group was comprised of individuals in a 

specific major at a certain university; the best comparison group would be formed from 

other individuals in that same major at that same university, rather than students from 

another major or university (Cook, 2008; Shadish, 2013, Shadish & Cook, 2009). 

 In simulations, there is usually no concern over whether the comparison group is 

fitting, because both the comparison and treatment groups are created based on theory. 

However, in applied studies this can become a larger concern, especially when the 

sampling process is not explicitly discussed – how does one know if proper consideration 

was given to the initial design of the comparison group? The process of comparison 

group selection is especially concerning in archival studies, which may pool together 

individuals who differ in important ways (Shadish, 2013). 



33 
 

 
 

Sample Size. PSM can sometimes inflate bias in the effect estimate, rather than 

reduce it. One method of minimizing this threat is to increase sample size. For this 

reason, PSM is considered to be a large sample method, but exactly how large has been a 

source of discussion in the literature. Simulations found that in total samples of n = 200, 

the analysis increased bias about 15-17% of the time. In samples of n = 500, this 

percentage dropped to around 1-3%, and at n = 1000, the percentage dropped further to 

less than 1%. Around n = 1500, the chance of increasing bias is completely negligible 

(Luellen, 2007; Shadish, 2013). This echoed the work of Feng et al. (2011), who 

simulated samples of n = 100, 300, 1000, 3000, and 10000, and recommended moderate 

to large sample sizes. Additionally, McCandless et al. (2012) simulated samples of n = 

100, 250, 500, and 1000, and found poor performance when sample size was below 250.  

Sample Size Ratio. One variable that moderates the effect of sample size on bias, 

is the ratio of comparison to treatment group individuals – some researchers even suggest 

that ratio is more important than sample size (Bai, 2015; Rubin, 1979). It is often 

recommended to have a much larger comparison group than treatment, so that each 

treatment group individual has more potential matches to “choose from.” The benefits of 

a higher ratio are most evident when comparing a 1:1 ratio to a 2:1 (comparison group n: 

treatment group n). Higher ratios (e.g., 3:1, 9:1) further reduce bias, but by a negligible 

amount considering the increase in cost that accompanies larger ratios (Rubin, 1979).  

Common Support. Common support refers to the extent by which the propensity 

scores for the treatment and comparison group “overlap” in distribution. When there is 

more overlap, or high common support, better quality matches can be made. When there 

is less common support, there may be problematic differences in the distributions of 
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propensity scores. A lack of common support may result in fewer matched pairs (if using 

a caliper), which inadvertently leads to a loss of information, particularly with individuals 

who may be qualitatively different. When estimating treatment effects, a lack of common 

support damages the ability to make unbiased and representative ATE and ATT estimates 

(Caliendo & Kopeinig, 2005; Stuart, 2010). 

The most straight-forward way of examining common support is through visual 

analysis. Researchers can create a jitter plot of propensity scores comparing the treatment 

and comparison groups and look where the propensity scores cluster and overlap (Figure 

3).  

Figure 3 

Jitter Plot Comparison for Common Support 
 

Lack of Common Support 
 

Treatment Group 

  

Comparison Group 

  

 
Common Support 

Treatment Group 
 

Comparison Group 
 

Note. An example of two jitter plots representing the propensity score distributions for 

the treatment and comparison groups in a scenario that lacks common support (top), and 

a scenario that has common support (bottom).  

 

Generalized Boosted Models 

 Generalized boosted modeling (GBM) was developed in the late 1990s and has 

recently gained popularity with the growing interest in machine learning. GBM is a 

supervised learning technique, which refers to a type of machine learning where a 

researcher supplies input (X) and an output variable (Y), and an algorithm is employed to 
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map the two [Y = f(X)]. This is different from unsupervised machine learning, when only 

input data is supplied (Brownlee, 2016; Lison, 2015).  

In short, generalized boosted modeling is a decision tree-based boosting technique 

that provides probabilities of group membership that can be applied to estimate 

propensity scores (Westriech, Lessler, & Funk, 2010). Researchers have used the 

probabilities generated by GBMs to create propensity scores, effectively offering an 

alternative to the logistic regression approach (McCaffrey, Ridgeway, & Morral, 2004). 

Although GBMs can be used in situations with multiple treatments (McCaffrey et al., 

2013), this paper will continue to focus on treatment assignment as a binary outcome 

(i.e., treatment group and comparison group). 

How GBMs Work. To understand GBM, a handful of data mining techniques 

need to be described first for context, as the GBM method builds on Classification and 

Regression Tree (CART) models, random forests, and boosting.  

CART Models. Classification and Regression Trees both can use the same inputs 

and work in the same way, but they differ in the outcome they produce. Classification 

trees produce categorical outcome estimates, and regression trees produces continuous 

outcome estimates. CARTs take a dataset and use a series of binary splits to create 

subsets of the data. The goal of splitting is to get similar values of the outcome within 

subsets and values as different as possible between subsets.  

 The first split of a CART model is based on a chosen value of a single input 

variable. If the input variable is categorical, then subsets will be split as belonging to a 

category or not belonging to a category (e.g., if examining education as an input, the data 

may be split by having a high school diploma or not having a diploma). If the input 
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variable is continuous, the binary splits can occur between any pair of consecutively 

ordered observed values (e.g., if examining age as an input, the data may be split by 

persons younger than 18, and persons 18 and older). Out of all possible splits, the 

algorithm selects the split that is most discriminatory. For regression trees, the most 

discriminatory value is one that minimizes prediction error, or the discrepancy between 

the predicted outcome value and actual outcome. For classification trees, the most 

discriminatory values consider misclassification error, deviance, and the total variance 

across the classes (measured by Gini index). The tree continues to split the data until the 

researcher-set “allowable” number of splits has been reached (McCaffrey, 2004). Each 

split down the tree can use the same input variables (with a different split value) or 

separate input variables – whatever produces the best split. A predicted value is decided 

upon by following a pathway (i.e., a series of splits) for an individual based on their 

covariates, until the end of the tree (i.e., final node/subgroup) is reached. If predicting a 

categorical outcome (using a classification tree), then the predicted outcome would be 

whatever outcome was shared by the majority of the individuals in that subgroup/node. If 

predicting a continuous outcome (using a regression tree), then the predicted outcome 

would be an average of all individuals in that subgroup/node. 

 An educational application for regression trees could be electronic essay scoring, 

while classification trees may be used to examine drop-out status given a set of 

covariates. Unlike traditional prediction methods (e.g., multiple linear regression or 

logistic regression), CARTS require no distributional assumption, allowing them to 

explain more complex interactions among predictors. The flaw of CART modeling is that 

they can be biased in unbalanced datasets, prone to overfit, and small changes in the data 
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can lead to very different splits. Ensemble methods, such as random forests and boosting, 

can be employed to alleviate some of these concerns (Sinharay, 2016). 

Random Forests. To further approach how GBMs work, the application of 

random forests to CART models warrants discussion. In this application, random forests 

are essentially CART models with bootstrapping. In supervised learning methods, 

prediction models are constructed from a sample called a training set. To create random 

forests, a certain number (B) of bootstrap samples are drawn from the training set with 

replacement, so that each bootstrap sample has the same sample size as the training set. 

Then, a tree is constructed from each bootstrap sample, resulting in B trees. Each tree 

uses a random subset of the available p predictors (√𝑝 for classification and p/3 for 

regression; Hastie et al., 2009) so that the trees are different from each other (a process 

known as decorrelating). Afterwards, a predicted value of the response for an observation 

is decided upon by “combining” the predictions from the B trees. For regression trees, the 

predicted values from the B trees are averaged, and for classification trees, the “majority 

vote” from the B trees is used (Sinharay, 2016).  

Boosting and GBM. Similar to random forests, boosting also combines 

predictions from B trees. However, boosting accomplishes this in a different way. Instead 

of using bootstrapping to construct many trees and then combining them, boosting creates 

several trees sequentially, such that information from the previous tree is used to modify 

the next tree (Sinharay, 2016). There no longer needs to be bootstrapping or a random 

subset of predictors, because each tree “learns” from the mistakes (misclassifications) of 

the trees before it instead.  
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When GBM is used for propensity score methods, the important baseline 

covariates are used as the input variables, and treatment group membership is used as the 

categorical outcome. So, GBM starts with a weak model that guesses whether an 

individual is in the “treatment” or “comparison” group with an error rate only marginally 

better than chance. Individuals who have been misclassified (e.g., a treatment group 

individual who has split into the comparison group category) are “boosted,” or given a 

larger weight in the next iteration. The larger weight increases the chance that the next 

tree will correctly classify that individual (Sinharay, 2016). This process continues for 

thousands of iterations until a “stopping rule” has been met. In the context of PSM, 

GBM’s iterative process stops when covariates are balanced. The optimal iteration of 

GBM (most balance in covariates) is achieved when either the absolute standardized bias 

is minimized or the Kolmogorov-Smirnov statistic is maximized (McCaffrey et al., 

2013).  

The optimal iteration chosen by the stopping rule is the one that produces the 

propensity scores for each individual. These propensity scores are then used to weight the 

observations when estimating the treatment effect. The propensity score weights adjust 

the groups so that the treatment and comparison groups have similar distributions of 

covariates. Therefore, individuals in the comparison group who are more similar to 

individuals in the treatment group may be given a larger weight, so their covariate 

distribution counts as “more.” Individuals in the comparison group who are less similar to 

individuals in the treatment group may be given a smaller weight, so their covariate 

distribution counts as “less.” The propensity score weights can be used to produce a 

weighted ATT estimate, or a weighted ATE estimate (McCaffrey et al., 2004). 
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Pros and Cons to GBM. GBM is a technique that can effectively model complex 

relationships, due to its non-reliance on a distributional assumption (ability to model non-

normal data). Therefore, trees can handle non-linear relationships, large numbers of 

covariates, interactions, variable transformation (e.g., log(x) or x2), and a variety of 

variable types (e.g., continuous, nominal, ordinal; McCaffrey et al., 2004). Because GBM 

is a nonparametric model, the chance of model misspecification errors is reduced and, 

therefore, the treatment effects are less likely to be biased (Drake, 1993; McCaffrey, 

2004).  

However, when the sample size is small, and the number of covariates is large, 

then the algorithm may not be able to reach an optimal iteration or find balance. Another 

downside to the GBM approach is that it is purely data-driven by nature, and like many 

machine learning techniques, GBM can be criticized for modeling relationships with a 

numerical, rather than theoretical basis (Burgette et al., 2015).  

Propensity Score Weighting 

 GBM operates best in tandem with propensity score weighting techniques, rather 

than matching. Propensity score weighting is a technique where observations are 

multiplied by a derivative of the propensity score in order to achieve balance between 

groups. The theory behind propensity score weighting is that a sample is weighted such 

that a new, synthetic sample is created where the distribution of baseline covariates is 

independent of treatment (i.e., approximate the counterfactual better). Commonly, this is 

done via inverse probability of treatment weighting (IPTW), where an individual’s 

weight is determined by the inverse probability of receiving the treatment (Austin, 2011; 

Clark, 2015).  
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The steps for conducting propensity score weighting are similar to those of PSM 

(Olmos & Govindasamy, 2015): 

1. Examine outcomes6 and balance before weighting 

2. Select method of propensity score estimation 

3. Weight estimation using propensity scores 

4. Conduct balance diagnostics 

5. Outcomes analysis 

The similarities to PSM exist in the importance of covariate selection, how 

balance is assessed, and the importance of picking an adequate propensity score 

estimator. As with PSM, the propensity scores for weighting can be estimated in a variety 

of ways, including logistic regression and GBM. However, this study will pair propensity 

score weighting with GBM as the propensity score estimation method, while logistic 

regression will be the estimation method for the PSM technique. This plays to the 

strengths of both estimation methods, as logistic regression is better for matching, and 

GBM is better for weighting (Bai & Clark, 2018; Stone & Tang, 2013). 

One benefit to using propensity score weighting over matching, is that you do not 

need as large a sample to effectively use it. Unlike matching methods, which tend to lose 

comparison group or treatment group individuals, weighting methods allow an entire 

sample to be factored into the final analysis to some degree (Olmos & Govindasamy, 

2015). 

 
6Although some researchers advise against examining the outcome before employing a propensity score 

technique, as to avoid researcher bias.  
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Logistic Regression and GBM 

 Previous literature comparing logistic regression and GBM’s ability to estimate 

propensity scores found that the best estimation method depended on the propensity score 

method (e.g., matching, stratifying, weighting). Both logistic regression and GBM 

typically work well with most datasets, but logistic regression tends to perform better 

when matching or stratifying, and GBM tends to perform better when weighting (Bai & 

Clark, 2018; Stone & Tang, 2013).  

Several authors have suggested that when GBM uses a “stopping rule” based on 

minimizing the difference between the weighted distributions of the covariates in the two 

groups (i.e., treatment and comparison), then GBM estimates propensity score weights 

that yield better balance scores and smaller mean square error than other propensity 

estimation methods (Harder, Stuart, & Anthony, 2010; McCaffrey et al., 2004; 

McCaffrey et al., 2013). 

Additionally, logistic regression models can be problematic estimators of 

propensity scores when the model is misspecified (Lee et al., 2009; McCaffrey et al. 

2013), whereas GBM can compensate for misspecification as long as the right covariates 

have been included. In simulation studies, when logistic regression models are 

misspecified to omit non-linear and non-additive data, boosted models have been shown 

in simulations to have substantially better bias reduction (Lee et al., 2009). This is 

especially important, as logistic regression models are organized by a human researcher, 

who may not think to include higher order relationships and accidentally incorrectly 

specify a model. GBM is data-driven, so higher order relationships are more likely to be 
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factored into the propensity score model, but at the cost of capitalizing on sample-

dependent error and losing generalizability. 

The Current Study 

The current study seeks to elaborate on previous literature comparing logistic 

regression and GBM as propensity score estimators. As the literature has suggested that 

logistic regression is more appropriate in the context of PSM, and that GBM is more 

appropriate for propensity score weighting (Pan & Bai, 2015), each estimation method 

was paired with the technique it is best suited for. This study examined the differences in 

balance, and estimated treatment effect between PSM paired with logistic regression, and 

propensity score weighting paired with GBM.  

Research Questions. Specifically, this study is investigating two research 

questions. In scenarios where either a quadratic term or an interaction term contributes to 

selection bias: 

1. How do incorrectly specified PSM models, correctly specified PSM 

models, and GBM approaches compare in their ability to achieve covariate 

balance between the treatment and comparison groups? 

2. How much do the above methods reduce treatment effect estimation bias, 

compared to a baseline model with no matching or weighting? 
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Chapter Three 

Method 

The present study compares logistic regression as a propensity score estimator for 

propensity score matching (PSM) with the newer technique of generalized boosted 

modeling (GBM) as a propensity score estimator in the context of weighting. Given that 

logistic regression propensity score models are researcher-set, and therefore prone to 

misspecification related to missing quadratic relationships and interaction terms, how do 

logistic regression models compare to GBM in the presence of misspecification? These 

techniques were evaluated and compared on the quality of matches produced (balance) 

and the accuracy of estimated treatment effects. This study is an elaboration on a 

simulation study performed by Austin (2009) who estimated balance and bias differences 

after matching on correctly and incorrectly specified logistic regression-based propensity 

score models. 

Conditions 

 To answer the research question, I manipulated two main factors: (Factor 1) the 

“true” propensity model, and (Factor 2) the propensity score technique or lack thereof 

(Table 1). Factor 1 contained two levels, which are hereafter referred to as scenarios. In 

Scenario A, a quadratic relationship exists between one of the covariates and the true 

propensity score. In Scenario B, an interaction exists between the two covariates with 

respect to their relationship with the true propensity score.  

Factor 2 was therefore comprised of four levels: (1) correctly specified logistic 

regression as the model for PSM; (2) incorrectly specified logistic regression as the 

model for PSM, which did not include a polynomial nor interaction; (3) GBM with 
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weighting; and (4) a baseline model which involved no manipulation of the samples. 

Therefore, the combination of Factor 1 and Factor 2 results in a total of 8 fully crossed 

conditions. 

 

Table 1 

The 2x4 Design of the Current Study 

 Factor 2: Model 

Factor 1: 

“True” Propensity Score  

Model 

Correctly 

Specified 

PSM 

Incorrectly 

Specified 

PSM 

GBM Baseline 

Scenario A: 

Probit(YGroup) = b0 + b1X1 + b2X2 + b3𝑋2
2 

(Quadratic Relationship) 

  

Condition 

1 

Condition 

2 

Condition 

3 

Condition 

4 

Scenario B: 

Probit(YGroup) = b0 + b1X1 + b2X2+ b3X1X2 

(Interaction) 

  

Condition 

5 

Condition 

6 

Condition 

7 

Condition 

8 

Note. Scenario A and B represent the structure of the “true” logistic regression models 

which predict treatment group membership. The variables X1 and X2 will be simulated 

with the cumulative normal distribution. The correct or incorrect specification of PSM 

refer to the specification of the logistic regression model that will produce propensity 

scores for the PSM group. The incorrectly specified logistic regression model in Factor 

2 will be one that does not include polynomial or interaction terms, Logit(YGroup) = b0 + 

b1X1 + b2X2. 

 

Simulation of Data  

The current study used RStudio version 1.1.463 (RStudio Team, 2016) to create 

and analyze the simulated data. Figure 4 outlines the process for simulating data in this 

study. 
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Figure 4 

Six-Step Process for Simulating Data. 

 
I conducted Monte Carlo simulations that included 1000 replications with 1000 

simulees per replication to examine situations where the true propensity score models 

included (A) a quadratic term or (B) an interaction term. For both scenarios, X1 and X2 

were obtained from bivariate normal distributions with means of 0 and standard 

deviations of 1. The correlation between X1 and X2 as specified to be 0.3, a correlation 

intended to emulate relationships often found among real world variables in the 

educational psychology setting. According to Osborne (2003), the mean effect sizes (d = 

.68, SD = .37) reported in the educational psychology literature are equivalent to an r = 

.32. If one considers effect sizes one standard deviation above and below .68, then the 

range of equivalent rs would be from .16 to .46. I chose an r = .3 to be within that range 

and similar to what is average in the literature.  

 In addition to X1 and X2, Scenario A included a third variable defined by squaring 

X2, or 𝑋2
2. Scenario B included X1 and X2, as well as their product, 𝑋1𝑋2. Therefore, 

within a single replication, Scenario A and B each included 1000 simulees, and scores 

from the same simulees were tested across all three conditions of Factor 2 (i.e., correctly 

Simulate covariates 
and relationships 
(i.e., interactions, 

polynomials)

Simulate "true" 
propensity score 

(differs by scenario)

Assign individuals to 
groups via comparing 
true propensity score 

to a random draw

Create outcome 
model with random 

error

Conduct PSM or 
GBM

Perform an outcome 
analysis using ATT 

estimand
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specified PSM, incorrectly specified PSM, GBM). The current study included 1000 

replications of this process. 

The relationship between the covariates and latent propensity was fixed across the 

models; X1 and X2 had a relationship of r = .2 with the latent propensity and the third 

variable (𝑋2
2 in Scenario A, 𝑋1𝑋2 in Scenario B) had a relationship of r = .5 with the 

latent propensity, such that the quadratic and interaction terms were more strongly related 

to treatment assignment compared to the initial two variables. Below I describe 

separately for Scenarios A and B how I simulated the latent propensity values to align 

with the aforementioned specifications and to yield the desired proportions of simulees in 

the treatment and control groups.  

Scenario A. Treatment status was generated by first creating “true propensity 

scores” via a three-step process7. First, because I set the relationships among the 

covariates, as well as the relationship between the covariates and the latent propensity, I 

was able to produce the probit regression coefficients through matrix algebra8. Second, 

multiplying the data matrix by the vector of probit regression coefficients produced a 

 
7 An important distinction must be made between Youtcome, Y’group, Ygroup, and the “true propensity 

scores.” Youtcome refers to the overall outcome or the dependent variable that may have been influenced by 

selection bias. In order to reduce the influence of selection bias, I conducted PSM or GBM to predict group 

membership based on baseline characteristics. The group membership predicted by either  

PSM or GBM is denoted, Y'group
 while the actual, simulated group membership is denoted Ygroup. The “true 

propensity score” refers to a simulee’s probability of treatment group membership, regardless of whether 

they were assigned or predicted to be in that group. This “true propensity score” is equivalent to 

probit(Ygroup) converted into a probability metric. Both PSM and GBM then produce an “estimated 

propensity score,” which is equivalent to logit(Y'group) converted to a probability metric. 
8 The logic here follows the equation, B = (X'X)-1X'Y'group, where B represents the weights of the 

coefficients, X'X represents the covariate correlation matrix and X'Y'group represents the correlations 

between the covariates and latent probability of treatment group membership, which was hard coded to be 

.2, .2, and .5 for X1, X2, and the third variable (𝑋2
2 or X1X2) respectively. X'X was procured in a 

preliminary step, where I obtained values of X1 and X2 for 1,000,000 simulees from a bivariate normal 

distribution with means of 0 and standard deviations of 1 for each variable. X1 and X2 were correlated, r = 

0.3. Values of 𝑋2
2 in Scenario A and 𝑋1𝑋2 in Scenario B were then calculated and the correlations among 

all predictors estimated. The values of all three predictors were then standardized before calculating the 

beta coefficients. 
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predicted Ygroup for each simulee9. Third, each simulee was assigned a value from the 

cumulative probability density function value (on a 0 to 1 scale), which indicated the 

proportion of scores in the normal curve that fell at or below the predicted value (Ygroup) 

for that simulee. This value from the cumulative density function represented their true 

latent propensity, which was then labeled their “true propensity score.” This process 

outputs propensity scores theoretically similar and empirically, nearly identical to 

creating true propensity scores via a correctly specified logistic regression model that 

predicted propensity scores from X1, X2, and the quadratic term, 𝑋2
2. 

After creating true propensity scores, I assigned a random draw to each simulee 

(between 0 and 1), such that if the true propensity score was greater than the random 

draw, then the simulee was assigned to the treatment group (group = 1). If the propensity 

score was less than or equal to the random draw, then the simulee would be assigned to 

the comparison group (group = 0). This is the same as pulling a random number for group 

assignment from a Bernoulli distribution with its defining parameter (pi) equal to the true 

propensity score for each simulee. When assigning group membership, the 

treatment:comparison group ratio was fixed to be approximately 200:800 or 1:4. This was 

done by rescaling the latent propensity distribution prior to random draw and group 

assignment10. The final propensity for treatment correlated with the true propensity 

scores, r = 0.998 for both scenarios. This correlation is not a perfect one, as the true 

 
9Because the true propensity score is a continuous variable, the relationship between the data matrix and the 

predicted YGroup is linear, such that 𝒀′𝐺𝑟𝑜𝑢𝑝 = 𝑿𝑩 where X is the data matrix and B is the vector of probit 

regression coefficients. 
10 The latent propensity distribution was linearly rescaled by subtracting the constant value of the intercept 

of the probit model. This intercept was calculated by taking the z-score of the standard normal distribution 

corresponding to .80 and dividing it by √(1 − R2) with Scenario A and B each having their own R2. This 

R2 was calculated by B'RB/(B'RB+1)) 
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propensity model was simulated with a probit model, and final propensity for treatment 

was created with a logit model.  

The continuous outcome was generated using the linear regression model, 

YOutcome ~ 1 (Ygroup) + .05X1 + .05X2 + .05𝑋2
2+ v, where v represents random error in the 

model. The values of v were simulated randomly to follow a normal distribution with a 

mean of 0 and a standard deviation of 0.50. Figure 5 displays information from the 

validation sample (a single simulee sample of 1000), including the distributions of X1, X2, 

𝑋2
2, group membership, the true propensity score (PS), the outcome, and the correlations 

among variables. Figure 6 displays the relationship between X2, 𝑋2
2 and the propensity 

score in the logit metric.  
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Figure 5 

Scenario A’s Correlation Matrices, Histograms, and Scatterplots 

 

Note. Scenario A’s Correlation matrices, histograms, and scatterplots of the simulated 

covariates, X1, X2, and polynomial term. In this figure, X1 and X2 are normally 

distributed, xsq represents 𝑋2
2, group represents treatment group assignment, PS 

represents the “true” propensity scores (in probability metric), and YA represents the 

simulated outcome for Scenario A.  
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Figure 6 

Relationships Between Propensity Scores and Covariates in Scenario A 

X1 and Propensity Score (Log odds Metric) 

 
X1 

X2 and Propensity Score (Log odds Metric)

 
X2 

𝑋2
2 and Propensity Score (Log odds Metric) 

 
𝑋2

2 
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Scenario B. Treatment status was generated by first creating “true propensity 

scores,” which were produced in the same manner described above, except that it 

included the interaction term, X1X2, rather than a quadratic term. Then, a random draw 

was assigned to each simulee, such that if the true propensity score was greater than the 

random draw, then the simulee was assigned to the treatment group (group = 1). 

Otherwise, a simulee would be assigned to the comparison group (group = 0). When 

assigning group membership, the treatment:comparison group ratio was fixed to be 

approximately 200:800 or 1:4. This was done by rescaling the latent propensity 

distribution, similar to Scenario A. The final propensity for treatment also correlated with 

the true propensity scores, r = 0.998. 

The continuous outcome was generated using the linear regression model, 

YOutcome ~ 1 (Ygroup) + .05X1 + .05X2 + .05 X1X2 + v, where v represents random error in 

the model. The values of v were simulated randomly to follow a normal distribution with 

a mean of 0 and a standard deviation of 0.50. Figure 7 displays the distributions of X1, X2, 

X1X2, group membership, the propensity score in probability metric (PS), and outcome 

from the validation sample, as well as the correlations among each variable. Figure 8 

displays the relationship between X2, X1X2 and the propensity score in the log odds 

metric.  
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Figure 7 

Scenario B’s Correlation Matrices, Histograms, and Scatterplots 

 
Note. Simulation B’s Correlation matrices, histograms, and scatterplots of the 

simulated covariates, X1, X2, X1X2, and the interaction and polynomial terms. In this 

figure, X1 and X2 are normally distributed, xint represents the product (interaction) 

between X1 and X2 , group represents treatment group assignment, PS represents the 

“true” propensity scores (in probability metric), and YB represents the simulated 

outcome for Scenario B. 
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Figure 8 

Relationships Between Propensity Scores and Covariates in Scenario B 

X2 and Propensity Score (Log odds Metric) X1X2 and Propensity Score (Log odds Metric) 

 
X2 X1X2 

 

Validation Data Sets 

 A validation data set was produced from both of the simulated scenarios. These 

datasets were used for visual balance diagnostics and to ensure the data were simulated 

correctly. To investigate whether the data were simulated correctly, I examined the 

number of simulees assigned to treatment and comparison groups, descriptive statistics 

for the relevant covariates, and the relationships among the variables (Table 2; Figures 

5,7). 
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Table 2 

Descriptive Statistics by Scenario and Group 

 n M SD Min Max 

Scenario A      

Group: 0      

X1 830 -0.05 1.00 -3.61 3.32 

X2 830 -0.06 0.86 -2.87 2.52 

𝑋2
2 830 -0.17 0.68 -0.67 4.87 

PS 830 0.14 0.11 0.04 0.90 

YA 830 -0.02 0.51 -1.37 1.42 

Group: 1      

X1 170 0.23 0.95 -2.13 3.24 

X2 170 0.31 1.48 -3.90 3.39 

𝑋2
2 170 0.85 1.67 -0.67 9.54 

PS 170 0.32 0.22 0.07 ~1.00 

YA 170 1.05 0.47 -0.09 2.62 

Scenario B      

Group: 0      

X1 813 -0.08 0.95 -3.61 2.93 

X2 813 -0.08 0.92 -3.56 2.91 

X1X2 813 0.16 0.81 -4.40 3.65 

PS 813 0.15 0.11 ~0.00 0.85 

YB 813 -0.02 0.50 -1.37 1.45 

Group: 1      

X1 187 0.33 1.13 -2.70 3.32 

X2 187 0.35 1.24 -3.90 3.39 

X1X2 187 0.71 1.37 -1.44 7.86 

PS 187 0.33 0.27 0.06 0.99 

YB 187 1.04 0.49 -0.17 2.23 

Note. “Group: 0” indicates the simulated comparison group, and “Group:1” indicates 

the simulated treatment group. PS indicates the “true” propensity score on the 

probability metric. YA and YB indicate the outcome variable in Scenario A, and 

Scenario B respectively. Notably, the maximum value of PS in Scenario A, group 1, 

appears to violate the assumption that propensity scores should not be equal to 1 or 0. 

The value of the maximum propensity score is less than one when it is not rounded to 

two decimal places (0.99739). Similarly, the minimum PS value in Scenario B, group 

0, is larger than 0 when not rounded to 2 decimal points (0.00389). However, these 

values are still worth discussing in regard to violating the assumptions. 

 

Propensity Score Matching 

 For the PSM conditions, propensity scores were estimated via the MatchIt 

package in R (Ho et al., 2011). The MatchIt package allowed for the use of logistic 

regression as an estimation method, and nearest neighbor matching using a 0.2 caliper 

width as a matching method. I chose NN matching with a caliper adjustment as it 
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generally produces more balanced matches than nearest neighbor matching without a 

caliper and performs on par with optimal matching when there is a large ratio of 

comparison group to treatment group individuals (Austin, 2011; Bai, 2011; Gu & 

Rosenbaum, 1993). Additionally, the use of NN with caliper matching reflects the 

methods used by Austin (2009).  

Generalized Boosted Modeling 

I used the Twang package in R (Ridgeway et al., 2015) to conduct generalized 

boosted modeling. For GBM, X1 and X2
 were the only two variables included in the model 

to predict group membership, YGroup. The polynomial and interaction terms were not 

included, as GBM should incorporate interactions and polynomials into the model if they 

are relevant to the prediction (McCaffrey et al., 2013). 

Following the practices of Ridgeway et al. (2015), within each replication of the 

GBM analysis, I chose to produce 5000 trees, with an interaction depth of 2, a shrinkage 

value of .01, and an ATT estimand. Additionally, I determined the optimal iteration by 

minimizing the average standardized absolute mean difference (effect size), a method 

recommended by McCaffrey et al. (2004) and supported by the Twang package 

(Ridgeway et al., 2015). The Twang package (Ridgeway et al., 2015) was then used to 

pull out the weights produced by GBM, and those weights were incorporated into an 

outcome model using the survey package (Lumley, 2004, 2019). 

Evaluating the Research Questions 

After simulating data for the two scenarios, relevant information was saved, 

assessed, and then collapsed across replications. This information allowed me to assess 

balance and estimate treatment effect across the treatment conditions.  
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 Group Balance. To assess balance, I employed both visual and numerical 

diagnostic techniques, as recommended in the literature (Austin, 2009). Although 

obtaining and assessing visual diagnostics for all 2000 replications (1000 for each 

scenario) is impractical, the validation data were used to produce jitter, density, and Q-Q 

plots (via the ggplot2 and MatchIt R package; Ho et al., 2011; Wickham, 2016). The 

majority of the balance diagnostics therefore relied heavily on numerical interpretations. 

Numerically, the variance ratios, standardized differences, and PBRs were examined and 

compared for X1, X2, 𝑋2
2 (Scenario A) and X1X2 (Scenario B) when applicable. The jitter 

plots and standardized difference plots produced in the validation sample through PSM 

are included below (Figures 9-16). In the jitter plots (Figures 9, 11, 13, and 15), there is 

an appropriate amount of common support between the matched treatment and 

comparison (labeled control) groups; however, due to the caliper matching method, a 

handful of treatment units were left unmatched in each PSM condition. In each of the 

standardized differences plots (Figures 10, 12, 14, and 16) the propensity score balance 

(PS), X1, X2, showed unbalance before matching (value above 0.2) and balance after 

matching (value below .2). The same could be shown in conditions that examined 𝑋2
2 

(Figure 10) and X1X2 (Figure 14). It is worth noting that when the models in the 

validation sample included the third variable (𝑋2
2 or X1X2), the PS and third variable had a 

greater degree of unbalance before matching, that was corrected after matching.  
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Figure 9 

Jitter Plot from Matching on a Correctly Specified Propensity Score Model in Scenario 

A 

 
 

Figure 10 

Standardized Differences after Matching on a Correctly Specified Propensity Score 

Model in Scenario A 
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Figure 11 

Jitter Plot from Matching on an Incorrectly Specified Propensity Score Model in 

Scenario A 

 

 

Figure 12 

Standardized Differences after Matching on an Incorrectly Specified Propensity Score 

Model in Scenario A 
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Figure 13 
Jitter Plot from Matching on a Correctly Specified Propensity Score Model in 

Scenario B 

 

 

Figure 14 

Standardized Differences after Matching on a Correctly Specified Propensity Score 

Model in Scenario B 
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Figure 15 

Jitter Plot from Matching on an Incorrectly Specified Propensity Score Model in 

Scenario B 

 
 

Figure 16 

Standardized Differences after Matching on an Incorrectly Specified Propensity Score 

Model in Scenario B 

 
 

 For GBM, the balance by iteration and standardized differences plots form the 

validation sample are all located in Figure 17. Only X1 and X2 were inputted into the 

GBM model in both scenarios. This is because, due to the nature of GBM, the Twang 

package specifies that, “there is no need to specify interaction terms in the formula” 

PS 

 

X1 

X2 
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(Ridgeway et al., 2017, p. 3) and McCaffrey et al. (2013) notes GBM’s ability “to capture 

complex and nonlinear relationships between treatment assignment and the pretreatment 

covariates without over-fitting the data”(p. 3). Therefore, only the standardized 

differences for those two variables were included in the plot. Both figures showed 

improvement in balance from unbalanced (above .2) to balanced (below .2), but Scenario 

A reached an optimal value in fewer iterations (1772) than Scenario B (3962). This 

difference is notable in each of the balance by iteration plots, as an observable “dip” in 

the dots appears at each plots’ optimal iteration. Table 3 further explores the balance in 

the validation samples, by displaying the percent balance reduction (PBR) for each 

variable included in each condition. When examining PBR, values closer to 100 indicate 

a greater reduction in unbalance (data are more balanced after matching or weighting) 

and values closer to -100 indicate an increase in unbalance (data are less balanced after 

matching or weighting).  
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Figure 17 

Balance by Iteration for GBM Effect Size Stopping Rule & Standardized Differences 

Scenario A Scenario B 

  

 

 

Note. The top two figures represent the balance measure by iteration of GBM. In the 

validation sample, the optimal iterations for Scenario A and B were the 1772 and 3962 

iterations respectively. Absolute standardized differences from those iterations are 

displayed before and after weighting below. 
 

X1 

X2 

X1 

X2 
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Table 3 

Percent Bias Reduction by Condition in Validation Sample 

 PBR (%) 

Scenario A – Correct PSM Model  

X1 74.69 

X2 72.87 

𝑋2
2 99.05 

PS 95.64 

Scenario A – Incorrect PSM Model  

X1 71.93 

X2 91.77 

PS 99.25 

Scenario A – GBM  

X1 81.00 

X2 77.27 

Scenario B – Correct PSM Model  

X1 98.05 

X2 95.15 

X1X2 97.64 

PS 97.00 

Scenario B – Incorrect PSM Model  

X1 92.64 

X2 92.45 

PS 98.34 

Scenario B – GBM  

X1 56.69 

X2 48.16 

Note. Percent balance reduction (PBR) is on a scale of -100 to 100, where negative 

values indicate that a worse balance was achieved (i.e., overcorrecting) after matching 

or weighting, and positive values indicate that a better balance was achieved after 

matching or weighting. Some researchers recommend an 80% criteria as sufficient 

reduction in bias (Cochran & Rubin, 1973; Pan & Bai, 2015). 

  

Treatment Effect Estimation. Treatment effects were estimated for each 

replication of the final matched (or weighted) groups. I considered the mean difference in 

outcome between the treatment and comparison groups (i.e., coefficient for the grouping 

variable), to evaluate whether the simulated treatment effect was removed. Any 

difference between the average group coefficient in the outcomes model and the 

simulated group difference, 1, was considered to be residual bias. I compared this bias in 

the mean difference between the predicted and true outcome and examined the cell means 
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for each of the 8 conditions by conducting a 2x4 within-subjects ANOVA, considering 

effect size over statistical significance, due to the large sample size.  
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Chapter Four 

Results 

Sample Size 

Before Matching. Although all simulated samples had a sample size of 1000, the 

average baseline treatment sample sizes were smaller than the goal size. The goal 

treatment:comparison group ratio was about 1:4 so the average treatment group sample 

should have had around 200 people. Instead, the treatment group sample size averaged 

between 161.78 and 191.23, or around a 1:4.6 ratio (Table 4). This discrepancy is 

permissible, as the change in ratio benefits the bias reduction, but only by a negligible 

amount (Rubin, 1979). 

After Matching. Because the PSM models used NN matching with a .2 caliper, 

all PSM models tended to lose treatment group simulees who could not be matched. 

Particularly, the matched samples appeared to lose more treatment group simulees in 

conditions where the propensity score model was correctly specified than in conditions 

where the model was incorrectly specified (Table 5). This sample loss is explained when 

looking at the validation jitter plots (Figures 9, 11, 13, & 15); the correctly specified PSM 

model better explains group differences, so groups are further apart than the incorrectly 

specified PSM model. Thus, more simulees would reasonably have propensity scores that 

were greater than the .2 caliper apart from each other. Because GBM uses weighting 

rather than matching with a caliper, no treatment group members were dropped. 
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Table 4 

Treatment Sample Sizes 

  M SD Min Max 

Scenario A     

 Baseline nTreatment 189.24 11.03 158 223 

Correctly Specified PSM  

Matched nTreatment 161.78 11.06 131 195 

Incorrectly Specified PSM  

Matched nTreatment 176.06 12.54 136 217 

Scenario B     

 Baseline nTreatment 191.23 11.23 153 226 

Correctly Specified PSM  

Matched nTreatment 165.57 11.23 128 202 

Incorrectly Specified PSM  

Matched nTreatment 172.96 11.54 135 209 

Note. Baseline nTreatment refers to the number of simulees in the treatment condition 

before matching. Due to the nature of weighting, the GBM conditions would have kept 

everyone in the treatment group, so those conditions would have equivalent sample 

sizes as the baseline conditions.  
 

Table 5 

Treatment Sample Loss After Matching  

 Mean Loss %  

Loss 

SD 

Scenario A – Correct PSM Model 27.46 14.51 6.37 

Scenario A – Incorrect PSM Model  13.19 6.97 6.75 

Scenario B – Correct PSM Model 25.66 13.42 6.41 

Scenario B – Incorrect PSM Model 18.27 9.55 5.84 

Note. Mean loss was calculated by subtracting the matched treatment sample size 

from the respective baseline/unmatched treatment sample size for that scenario. 

Percent loss was calculated by dividing the mean loss by the respective 

scenario’s baseline treatment group size (189.24 for Scenario A, 191.23 for 

Scenario B; Table 4) and multiplying that number by 100.  

 

Examining Balance Between Models 

 To numerically examine the balance across the various conditions, I considered 

PBR and standardized mean differences. Additionally, I considered the variance ratio of 

the propensity scores for the PSM conditions in order to evaluate the width of the 

distribution of propensity scores and whether it was similar across the treatment and 

comparison groups. 
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 Percent Bias Reduction. Although the mean PBR for all conditions appeared to 

be similar, the PBRs for propensity scores tended to have the lowest standard error (Table 

6). Notably, all models except the Scenario B GBM model overcorrected some of the 

covariates on at least one occasion (denoted by negative minimum PBR values, which 

indicate worse group balance after matching/weighting). However, the Scenario B GBM 

model also did not have ideal PBR values (i.e., PBR values greater than 80%; Cochran & 

Rubin, 1973; Pan & Bai, 2015). 

 Standardized Mean Difference. Although the Twang and MatchIt R packages 

both calculate standardized mean differences, they use a different standardizer in their 

formulas. I chose to default to the formula used by the MatchIt package, which used the 

comparison group standard deviation as a standardizer, rather than the treatment group 

standard deviation. Thus, the chosen formula for standardized mean difference was: 

𝑆𝑀𝐷 =  
µ𝑋|𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 −  µ𝑋|𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛

𝑠𝑋|𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛

 (11) 

This value can be interpreted such that values close to zero indicate better balance among 

the covariates and propensity score than values further away from zero. This study’s 

mean standardized differences after matching/weighting remained close to zero across all 

conditions (Table 7). Although discrepancies between calculations of SMDs and their 

benchmarks exist, I chose to still compare these calculations of SMDs to the .1 

benchmark endorsed by Austin (2009, 2011) for the Cohen’s d method of calculating 

SMD. Using this benchmark, there was adequate balance across conditions when 

evaluated using SMD, regardless of model or correct specification. 

 Variance Ratios. To evaluate the width of the propensity score distributions, the 

mean variance ratios of the propensity score should be close to 1, with a standard 
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deviation that is less than .50 (Rubin, 2001). With this criterion in mind, all PSM 

conditions except the Scenario A incorrectly specified condition appeared to have similar 

variability on the propensity score (Table 8). Not only did the Scenario A incorrectly 

specified condition average a variance ratio nearly double the recommended value of one, 

but the standard deviation was greater than the recommended .50. 

Table 6 

Percent Bias Reduction by Condition 
 

  M  SE Min Max 

Scenario A – Correct PSM Model 

 X1 82.73 15.04 -33.37 99.95 

X2 84.92 13.56 -2.12 99.95 

𝑋2
2 95.13 3.22 82.10 100.00 

PS 96.14 0.89 92.93 99.16 

Scenario A – Incorrect PSM Model 

 X1 87.74 11.78 -15.20 100.00 

X2 89.11 10.46 13.13 99.97 

PS 95.73 1.72 88.79 99.85 

Scenario A – GBM 

 X1 84.23 11.73 1.09 100.00 

X2 75.96 19.11 -13.64 100.00 

Scenario B – Correct PSM Model 

 X1 85.47 15.04 -180.47 100.00 

X2 87.31 10.42 34.28 100.00 

X1X2 95.58 3.14 82.09 100.00 

PS 96.22 0.94 93.33 98.82 

Scenario B – Incorrect PSM Model 

 X1 89.17 13.60 -210.93 100.00 

X2 91.63 8.99 -10.75 100.00 

PS 95.77 1.63 89.51 99.96 

Scenario B – GBM 

 X1 78.00 13.37 22.17 100.00 

X2 79.10 12.28 25.66 100.00 

Note. The above values are in percent metric. The upper bound of PBRs are 

constrained to a maximum value of 100.  
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Table 7 

Standardized Mean Differences by Condition Before and After Matching/Weighting 

 MBefore MAfter SEAfter MinAfter MaxAfter 

Scenario A – Correct PSM Model      
X1 21.56 0.01 0.07 -0.25 0.21 
X2 20.10 0.01 0.05 -0.14 0.14 
𝑋2

2 58.41 0.03 0.02 -0.01 0.01 
PS - 0.03 0.01 0.01 0.05 

Scenario A – Incorrect PSM Model      
X1 21.56 -0.02 0.05 -0.17 0.14 
X2 20.10 0.02 0.03 -0.07 0.13 
PS - 0.02 0.01 0.00 0.04 

Scenario A – GBM      
X1 21.56 0.05 0.04 -0.04 0.26 
X2 20.10 0.07 0.05 -0.12 0.25 

Scenario B – Correct PSM Model      
X1 22.10 0.02 0.05 -0.09 0.09 
X2 24.41 0.02 0.05 -0.17 0.18 
X1X2 54.02 0.02 0.03 -0.06 0.11 
PS - 0.03 0.01 0.01 0.05 

Scenario B – Incorrect PSM Model      
X1 22.10 0.01 0.04 -0.10 0.15 
X2 24.41 0.01 0.04 -0.11 0.16 
PS - 0.02 0.01 -0.01 0.05 

Scenario B – GBM      
X1 22.10 0.07 0.05 -0.02 0.25 
X2 24.41 0.08 0.05 -0.03 0.25 

Note. Standardized mean differences of 0 indicate more similarity between the matched 

(or weighted) comparison group and treatment group. Positive values indicate that the 

treatment group mean was higher than the comparison group mean, while negative 

values indicate the comparison group mean was higher than the treatment group mean. 

Propensity scores before matching/weighting were not saved out.  
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Table 8 

Variance Ratios for Propensity Scores 

 M SD Min Max 

Scenario A – Correct PSM Model 1.05 0.02 0.99 1.12 

Scenario A – Incorrect PSM Model 2.16 0.72 1.06 6.13 

Scenario B – Correct PSM Model 1.05 0.02 1.00 1.11 

Scenario B – Incorrect PSM Model 1.30 0.21 0.87 3.87 

Note. The above variance ratios refer to the variance of the treatment group’s 

propensity scores, over the variance of the comparison group’s propensity scores (after 

matching). To evaluate the width of the propensity score distributions, the mean 

variance ratios of the propensity score should be close to 1, with a standard deviation 

that is less than .50 (Rubin, 2001). 

 

Treatment Effect Estimation 

 As there appeared to be adequate balance achieved by each of the propensity 

score methods, I proceeded on to the treatment effect estimation. To estimate how much 

each model reduced selection bias in the treatment estimate, I examined the regression 

model, which used either the matched or weighted sample to predict the outcome 

variable, Youtcome, from treatment group membership. Particularly, I examined the 

coefficient that accompanied the group variable in the outcome regression model, to see 

whether the coefficient would be equal to one, the simulated group difference on the 

outcome variable. Table 9 provides descriptive statistics for the group coefficients across 

conditions. Amount of bias in the model could then be considered as the group 

coefficient minus one and is illustrated by condition in Figure 18. 
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Table 9 

Group Coefficients by Model  

  M SE 

Scenario A   

 Baseline Model 1.081 0.041 

Correct PSM Model 1.001 0.053 

Incorrect PSM Model  1.023 0.054 

GBM 1.023 0.049 

Scenario B   

 Baseline Model 1.082 0.041 

Correct PSM Model 1.000 0.053 

Incorrect PSM Model  1.013 0.053 

GBM 1.026 0.047 

Note. The means represent the mean regression coefficient for group when predicting 

the outcome from group membership across the 1000 simulations. The baseline model 

predicted the outcome from group membership before any matching or weighting was 

conducted, Y′outcome = b0 + b1xgroup. The true group difference was simulated to be 1.  

 

Figure 18 

Average Amount of Bias by Condition 

 
Note. Bias is a function of the respective models’ group coefficient (after matching or 

weighting; Table 9) subtracting the true group difference, one.  

 

To determine whether the difference in bias across conditions was statistically and 

practically significant, I conducted a 2x4 within-subjects ANOVA on the group 

coefficients, with Factor 1 consisting of the two scenarios (i.e., A and B) and Factor 2 
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consisting of the four approaches/models (i.e., correctly specified PSM, incorrectly 

specified PSM, GBM, and a baseline model with no alterations to the sample). A within-

subject ANOVA suited this study better than between-subjects ANOVA because 

conditions within each replication were simulated in a way that made them dependent. 

Both scenarios were created from the same initial baseline covariates (i.e., X1 and X2) for 

each replication. I used those baseline covariates to create a third variable (𝑋2
2 or 𝑋1𝑋2) 

and outcome (Y) for each scenario. Thus, all models/conditions used the same X1 and X2, 

and all models/conditions within a scenario were influenced by the same third variable 

(𝑋2
2 or 𝑋1𝑋2) and outcome (Y). 

Before running the ANOVA, I checked Mauchly’s Test to evaluate the sphericity 

assumption for factorial within-subjects ANOVAs. Mauchly’s test was significant for 

both Factor 2 [W = .870, X2(5) =138.68, p < .001] and the interaction between the factors 

[W = .523, X2(5) = 647.44, p < .001]. The Greenhouse-Geisser Epsilon for both Factor 2 

and the interaction between factors were ε = .93, and ε = .76, respectively. Due to the 

large sample size of this study, the Greenhouse-Geisser correction was chosen over the 

Huynh-Feldt due to its conservative nature. 

Using the Greenhouse-Geisser Correction, the omnibus test for the Factor 1 main 

effect (Scenario) was not significant, but the test for the Factor 2 main effect and the 

interaction between factors was significant (Table 10). Based on the value of partial η2 

for the interaction, however, the interaction effect is likely not a practically meaningful 

contributor to bias due to its small effect size (η2 > .01; Cohen, 1988), despite being 

statistically significant. Therefore, both the main effect of Factor 2 and the interaction 
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will be separately considered in the results, rather than picking one over the other. Both 

will be discussed further in the discussion section.  

Table 10 

Omnibus Tests of Within-Subjects Effects  

 df  F p η2 1 - β 

Factor 1: Scenario 1, 999 2.403 .121 .002 .341 

Factor 2: Model 2.785, 2782.042 2911.695 <.001 .745 ~1.000 

Factor 1 x Factor 2 2.291, 2289.182 25.111 <.001 .025 ~1.000 

Note. Used a Greenhouse-Geisser Correction. 

 

 Exploring the Interaction. To explore the interaction, I examined the simple 

effects, as recommended by Maxwell and Delaney (2004). To do this, I conducted a one-

way within-subjects ANOVA for each scenario separately, and found significant 

differences in average bias across the conditions within Scenario A [F(3.50, 2545.23) = 

1486.12, p < .001, η2 = .60], and Scenario B [F(3.87, 2645.42) = 1887.89, p < .001, η2 = 

.89] using the Greenhouse-Geisser correction (εa = .85, εb = .88, respectively). The 

Bonferroni adjusted pairwise comparisons conditional on Scenario are located in Table 

11. Of interest, all comparisons were statistically significant except the comparison 

between the incorrectly specified PSM and the GBM models in Scenario A. In both 

scenarios, the baseline model consistently included more bias than all other models, and 

the correctly specified model consistently included less bias than all other models. In 

Scenario A, there was no significant difference in bias between GBM and the incorrectly 

specified model (p = ~1). However, in Scenario B, there was a significant difference in 

bias, such that the incorrectly specified PSM model had less bias than the GBM model (p 

< .001). 
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Table 11 

Pairwise Comparisons within Each Scenario 

     95% CI 

Model Comparison 

(I X J) 

MDiff.  

(I – J) 
SE p LB UB 

Scenario A - Quadratic      

 Baseline X Correct .080 .001 <.001 .076 .083 

Baseline X Incorrect .058 .001 <.001 .055 .061 

Baseline X GBM .058 .001 <.001 .056 .060 

Correct X Incorrect -.021 .002 <.001 -.025 -.017 

Correct X GBM -.022 .001 <.001 -.025 -.018 

Incorrect X GBM .000 .001 ~1.00 -.004 .003 

Scenario B - Interaction      

 Baseline X Correct .082 .001 <.001 .078 .085 

Baseline X Incorrect .069 .001 <.001 .066 .072 

Baseline X GBM .056 .001 <.001 .053 .058 

Correct X Incorrect -.013 .001 <.001 -.016 -.009 

Correct X GBM -.026 .001 <.001 -.029 -.023 

Incorrect X GBM -.013 .001 <.001 -.017 -.010 

Note. Pairwise comparisons used a Bonferroni correction. LB and UB represent the 

lower bound and upper bound, respectively. 

 

Main Effect of Model. If focusing on the main effect of model rather than the 

interaction, then each of the models are significantly different from the other (Table 12), 

such that the correctly specified PSM model had significantly lower bias than the rest of 

the models, and the baseline model had significantly higher bias than the rest of the 

models. The bias for the incorrectly specified PSM model averaged lower than the GBM 

model.  



75 
 

 
 

Table 12 

Factor 2 Main Effect Model Pairwise Comparison Collapsed Across Factor 1 

    95% CI 

Model Comparison 

(I x J) 

MDiff 

(I – J) 
SE p LB UB 

Baseline X Correct .081 .001 <.001 .078 .083 

Baseline X Incorrect .064 .001 <.001 .061 .066 

Baseline X GBM .057 .001 <.001 .055 .059 

Correct X Incorrect -.017 .001 <.001 -.020 -.014 

Correct X GBM -.024 .001 <.001 -.026 -.021 

Incorrect X GBM -.007 .001 <.001 -.009 -.004 

Note. Model comparisons used a Bonferroni correction. LB and UB represent the lower 

bound and upper bound, respectively. 
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Chapter Five 

Discussion 

 The goal of this study was to compare PSM and GBM in their ability to create 

balanced groups and reduce treatment effect bias. This study considered the impact of 

selection bias that includes interactions or quadratic terms, as well as the impact of a 

common human error – omitting interactions and quadratic terms in a PSM model. To 

compare PSM and GBM-based methods, a simulation study was done, so that the 

objective “truth” could be compared to the outcomes of the models. In this section, I will 

briefly discuss findings from the balance metrics used, then discuss the reduction of bias 

found across conditions, the limitations of the study, and the recommendations for 

researchers moving forward.  

Balance Diagnostics 

 As the propensity score is a balancing score (Austin, 2009), the rationale for 

employing PSM and GBM-based weighting is to create balanced treatment and 

comparison groups. Therefore, an important first step in comparing methods is to 

evaluate the balance achieved after matching or weighting. Per Austin’s (2009) 

recommendations, multiple methods were used to numerically assess balance, including 

PBR, SMD, and variance ratios.  

The average PBRs for each condition were above 75% for each covariate – 

indicating a decent improvement in balance on the whole. However, every condition 

except the GBM for Scenario B overcorrected the balance at some point – denoted by the 

presence of a negative value in the minimum column of Table 6. This suggests that in 

some replications, the group difference between the treatment and comparison group 
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were overcorrected in the opposite direction (e.g., if treatment group mean was greater 

than the comparison group mean before matching, then treatment group mean may be 

lower than the comparison group mean after matching). This is an important aspect to 

consider, as overcorrections such as this can bias the treatment effect more, rather than 

less. This is not to say that the Scenario B GBM model was without its flaws, as the 

PBRs tended to average below the recommended value of 80% for both X1 and X2. 

Because the average PBR for X2 in the Scenario A GBM model was also below 80%, 

there may be a relationship between variable(s) involved in the creation of the third 

variable (i.e., Scenario A’s X2
2, and Scenario B’s X1X2) and low PBR values in GBM.  

 The SMD examined whether the distributional centers (i.e., means) of the 

propensity scores and covariates were aligned in the treatment and comparison groups 

after adjustment (i.e., matching or weighting). The standardized difference in means were 

all between .01 and .08, when a value of 0 suggests no difference between means (i.e., 

balance in the distributions). Although all models exhibited good balance, the GBM 

models had the highest SMDs, as all the PSM models had lower SMDs that ranged 

between .01 and .03. 

 After considering whether the means were aligned, I evaluated the width of the 

propensity score distributions by considering the variance ratios. On Table 8, it is evident 

that the incorrect PSM model for Scenario A deviates from the other PSM models. 

Additionally, both incorrectly specified PSM models have a larger range of variance 

ratios than their correctly specified counterparts, and thus, a larger standard error.  

 Considering the numerical balance metrics above and the visual balance metrics 

displayed in Chapter 3 (Figures 9-17), it appears as though PSM and GBM both resulted 
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in improved balance over baseline scenarios. Although it cannot be said that one model 

would consistently achieve more balance in other situations, in this simulation the correct 

PSM models had more stability in the variance ratios than the incorrect PSM models 

(evidenced by Table 8). Additionally, GBM consistently had lower PBR averages and 

higher SMD after weighting (Table 6) than the PSM counterparts. Therefore, based upon 

the limited conditions of the current study, the correctly specified PSM model achieved 

the best balance – but it is worth noting that a correctly specified model was still prone to 

occasional overcorrections.  

Treatment Effect Estimation  

 After adequate balance has been confirmed for propensity score methods, then 

one can evaluate the treatment effect estimate. I used an ANOVA to examine how the 

propensity score methods and the baseline models compared in the average difference 

found between the treatment and comparison group in the outcomes model. Although one 

could either favor the main effects or interaction interpretation of the ANOVA, the 

correctly specified PSM model reduced the most bias, but all models reduced a 

significant amount of bias from the baseline model.  

ANOVA Interpretation. When examining results from a simulated study, it is 

important to consider the impact of sample size on frequentist tests of statistical 

significance. This study used 1000 replications of 1000 subjects, so the results may be 

prone towards Type 1 error (finding significance when it does not exist). Because of this, 

I used conservative adjustments (e.g., Greenhouse-Geisser and Bonferroni adjustments). 

Additionally, I evaluated effect sizes to differentiate between statistical and practical 

significance. I used partial eta-squared (η2) for my effect size, considering Cohen’s 
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(1988) benchmarks for effect size, where .01 indicates a small effect, .06 indicates a 

medium effect, and .14 indicates a large effect.  

 The interaction between the Scenario and the Model was statistically significant 

but had a small effect size (η2 = .025). The main effect for model was also statistically 

significant, but with a much larger effect size than the interaction (η2 = .745). This evokes 

the question of what interpretation of the within-subjects ANOVA is most relevant and 

meaningful. On one hand, it seems misguided to ignore a significant interaction. On the 

other hand, perhaps the main effect interpretation is more meaningful and practical for 

real-world applications, as the effect size is very large, and the interpretation is more 

intuitive. I favor of the main effect interpretation, but I will interpret both below to be 

thorough.   

 Interaction Interpretation. An examination of the interaction via the simple 

effects (Table 11) suggests that a correctly specified PSM model reduces bias the most 

and produces a treatment effect estimate that is closest to one (i.e., the population 

treatment effect). Additionally, a baseline model with no matching or weighting 

consistently has the most bias, and a treatment effect estimate furthest from one. The 

source of the significant interaction appears to be the comparison of the incorrectly 

specified PSM model and the GBM model across the scenarios. In the presence of a 

quadratic relationship (Scenario A), both the incorrectly specified and the GBM models 

reduced the same amount of bias. In the presence of an interaction (Scenario B), the 

incorrectly specified PSM model reduced bias more than the GBM model. Of interest, the 

incorrectly specified model in Scenario A also had the most extreme variance ratio, 

indicating an extreme difference in the distribution of the propensity score. The 
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implications of this in the interaction cannot be fully explored, because there were no 

calculations of variance ratio for the GBM conditions. However, as mentioned 

previously, GBM methods can be compared using other methods of balance diagnostics, 

such as PBRs. This comparison revealed a trend of unbalance among predictors involved 

in the creation of the third variable, such that X2 was slightly unbalanced in Scenario A, 

and both X1 and X2 were slightly unbalanced in Scenario B (denoted by average PBR 

values below 80%; Cochran & Rubin, 1973; Pan & Bai, 2015). 

 Model Main Effect. Although the interaction had a small effect, the interpretation 

of the main effect is more practical, as there is an incredibly large effect size – so the 

statistical significance cannot be entirely attributed to the large sample. Ultimately, the 

interpretation of the main effect is similar to the interaction interpretation in that the 

correctly specified PSM model is the best at reducing bias, but all models perform better 

than baseline. While the interaction differentiates the utility of incorrectly specified PSM 

models in the scenario with a quadratic term, an examination of the main effect suggests 

that incorrectly specified PSM models perform better than GBM across scenarios (but 

only slightly, MDiff = -.007).  

Limitations 

 Limitations in design and execution point to opportunities for future research to 

elaborate on the methods in this study. The design of the study was limited in that only 

one matching method represented PSM, nearest neighbor with a caliper of .20. Because 

of this decision, the results of the PSM models cannot be extrapolated to other matching 

methods (e.g., nearest neighbor without caliper, optimal, genetic). Additionally, I cannot 

wholly separate the results of the PSM models from the influence of sample size loss due 
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to the stringent requirements imposed by the caliper (i.e., matched pairs had to be within 

.2 SD of each other). On average, the treatment group lost between 13.19 and 27.46 

simulees, and given that the treatment group sample size was often less than 200, a 

considerable portion of that treatment group was lost. Although dropping some treatment 

group members assisted in creating balanced groups, losing group members risks 

changing the composition of the treatment group to something no longer reflective of the 

intended population. Thus, significant loss in treatment group members may bias 

treatment effect estimates and decrease power for detecting that treatment effect (Stone & 

Tang, 2013). 

 The treatment sample size is also a limitation of the study. Although I simulated 

the data with the intention of a 200-800 split, the treatment group sample size averaged 

below 200 (Table 4). This may be attributable to the linear rescaling of the latent 

propensity distribution. Additionally, it is worth noting that the latent propensity scores 

were created with a probit model, rather than a logit model. Thus, the distribution of the 

simulated latent propensity scores could not perfectly be estimated by the logit models 

used for the research question. 

Another limitation of the simulation may be the amount of bias simulated. While 

the treatment effect is comparable to previous studies (Austin, 2009), it is unknown 

whether this amount of bias adequately reflects the amount of selection bias present in 

applied samples, or in what circumstances this amount of bias is concerning or not. 

Additionally, this study simplifies selection bias as a result of two covariates, when in 

reality selection bias can be complex and multidimensional.  
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Recommendations  

 Future Studies on Quasi-Experimental Techniques. Researchers hoping to 

elaborate on this topic should consider simulation studies that involve more covariates, 

and experiment with the magnitude of the covariates’ relationships to each other, the true 

propensity score, and the outcome variable. Additionally, as mentioned in the limitations, 

I only used one matching method, rather than comparing the different methods that 

existed. Future research should consider adding additional matching methods, such as the 

well-performing optimal matching, or the commonly used NN without a caliper. 

Additionally, researchers could further explore the effects of different sized calipers, to 

better examine the tradeoff made between holding a strict caliper and maintaining the 

treatment group size. It would also be informative to see if there was additional bias in 

the treatment effect if not held to a strict caliper. Perhaps with a different caliper, or no 

caliper, there would have been a more definitive difference found between the 

performance of the incorrectly specified PSM model and the GBM model in how much 

the treatment effect bias was ultimately reduced. 

Additionally, I used GBM without specifying an interaction or quadratic term, to 

test the claims that such relationships would still be included by the nature of the GBM 

processes (McCaffrey et al., 2013, Ridgeway et al., 2017). However, perhaps GBM may 

not fully capture such relationships unless they are more explicitly specified into the 

model. It could be interesting to compare how GBM would have performed when the 

quadradic or interaction term were explicitly specified, compared to the implicit 

specification from including X1 and X2. 
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Future Studies Using Quasi-Experimental Techniques. Before conducting 

quasi-experimental studies in which selection bias is bound to be present, researchers 

should first carefully examine the literature for what covariates may be related to 

selection bias. By doing so, researchers can arrange to measure all covariates 

theoretically related to selection bias. This way, researchers can assure a correctly 

specified model, which is an assumption that underlies any statistical method. One aspect 

worth noting is that the incorrectly specified PSM model achieved adequate balance, 

despite the obvious model misspecification. This supports the claim mentioned earlier in 

the literature review that, “balance may be necessary, but it is not sufficient for strong 

ignorability to be met” (Shadish, 2013; p. 134). Therefore, I would further caution 

applied researchers that balance diagnostics should not be used as an indicator for correct 

model specification – as it only provides information on what the researcher has chosen 

to include.  

Once a researcher has collected data, then they can then examine the data closely 

for interactions and exponentiation before making decisions about a model. It is worth 

noting that checking the collected data for interactions and exponentiation cannot make 

up for model misspecification caused by a researcher never having measured an 

important covariate.  

Once a researcher believes they have discerned important covariates, interactions, 

and exponentiation they can chose whether to use GBM or PSM. In this study, the 

correctly specified PSM model with NN matching using a .2 caliper produced the best 

reduction in bias; therefore, this approach is recommended for situations with interactions 

and exponentiation. However, GBM and the incorrectly specified PSM model still 
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produced a meaningful reduction in bias (although it is worth noting that these models 

included all covariates contributing to selection bias and no spurious or otherwise 

misleading covariates). 

Applied researchers should consider running multiple analyses and reporting and 

comparing each in the context of the study. By doing so, the applications of this study can 

be better examined, and the usefulness of each technique may be evaluated in real-world 

contexts that have more nuance in selection bias and its effects. This suggestion is echoed 

by several other researchers in the literature, such as Austin (2011), who recommends an 

iterative approach to model building to achieve better balance in a sample.  

Conclusion  

By comparing statistical approaches for approximating the counterfactual such as 

PSM and GBM, these results should help inform researchers about best practices when 

making causal claims in the absence of random assignment. This study found that a 

correctly specified PSM model reduced selection bias better than an incorrectly specified 

PSM model or GBM – both in scenarios with quadradic terms and interactions. 

Therefore, with careful research and consideration of covariate relationships, a correctly 

specified PSM model provides the closest approximation to the treatment group’s 

counterfactual. Although in applied research, it is immensely difficult to perfectly specify 

a model for selection bias, the performance of GBM and the incorrectly specified PSM 

model provide encouragement that even an omission of a higher-order term can still lead 

to bias reduction in the estimation of the outcome. However, nothing performs as well as 

a correctly specified model.  
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