
James Madison University
JMU Scholarly Commons

Masters Theses The Graduate School

Spring 2015

Propensity score matching in higher education
assessment
Heather D. Harris
James Madison University

Follow this and additional works at: https://commons.lib.jmu.edu/master201019
Part of the Quantitative Psychology Commons

This Thesis is brought to you for free and open access by the The Graduate School at JMU Scholarly Commons. It has been accepted for inclusion in
Masters Theses by an authorized administrator of JMU Scholarly Commons. For more information, please contact dc_admin@jmu.edu.

Recommended Citation
Harris, Heather D., "Propensity score matching in higher education assessment" (2015). Masters Theses. 55.
https://commons.lib.jmu.edu/master201019/55

https://commons.lib.jmu.edu/?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.lib.jmu.edu/master201019?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.lib.jmu.edu/grad?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.lib.jmu.edu/master201019?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1041?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.lib.jmu.edu/master201019/55?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dc_admin@jmu.edu


 

 

 

 

 

 

Propensity Score Matching in Higher Education Assessment 

 

Heather Harris 

 

 

 

 

 

 

 

 

A thesis submitted to the Graduate Faculty of  

 

JAMES MADISON UNIVERSITY 

 

In 

 

Partial Fulfillment of the Requirements  

 

for the degree of 

 

Master of Arts 

 

Psychological Sciences 

 

 

 

 

 

 

 

May 2015 

 

 

  



 
 

ii 

 

Dedication 

“Here’s to the crazy ones. The misfits. The rebels. The troublemakers. The round pegs in 

the square holes. The ones who see things differently. They’re not fond of rules. And they 

have no respect for the status quo. You can quote them, disagree with them, glorify or 

vilify them. About the only thing you can’t do is ignore them. Because they change things. 

They push the human race forward. And while some may see them as the crazy ones, we 

see genius. Because the people who are crazy enough to think they can change the world, 

are the ones who do.” 

- Rob Siltanen & Lee Clow 
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Abstract 

The applied nature of higher education assessment does not lend itself to rigorous 

experimental research designs. However, assessment practitioners would like to make 

claims about the influence of educational programs on student learning outcomes. 

Propensity score matching (PSM) methods are quasi-experimental techniques that allow 

researchers to control for known confounding variables. In the context of higher 

education, PSM techniques allow assessment practitioners to control for confounding 

variables related to students’ self-selected participation in university programs. Research 

and recommendations on how to apply PSM techniques are scattered throughout several 

disciplines. However, additional research is needed to evaluate how well PSM techniques 

control self-selection bias in the context of educational assessment. To couch PSM 

techniques within the framework of higher education assessment, the current study first 

summarized common practices and recommendations from literature across several 

disciplines, then evaluated the application of common PSM techniques via an applied 

example of honors program assessment. Specifically, the study applied common PSM 

techniques to compare students in the honors program with students either not invited 

into the program or students who decided not to participate in the program. Data analyses 

four research questions: 1) Do honors students differ from students not in the honors 

program on motivation variables?; 2) How well do different common PSM techniques 

create quality comparison groups of students?; 3) How well do different common PSM 

techniques retain honors students in the comparison of program outcomes?; and 4) Do 

honors students differ from students not in the honors program on outcomes after PSM 

techniques are applied? Honors students did not differ from students not in the honors 

program on motivation variables thought to be related to self-selection into the program. 
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Across matching methods applied in the current study, the quality of propensity score 

matches was near optimal. Average scores on the outcomes of interest to the honors 

program did not significantly differ by group. However, decreased sample sizes resulted 

in a loss of minority student representation in the honors sample and different practically 

significant results on program outcomes. Recommendations and implications for applied 

assessment practitioners are offered.  
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Chapter One 

Introduction 

Universities implement a wide variety of programs to promote student learning 

and development. The assessment of such programs is important to determine whether 

students are indeed learning and developing as a function of program participation. 

Moreover, sound assessment practices help determine the extent to which students’ 

learning and development can be attributed to university programs rather than simply 

maturation associated with life experiences (Chickering, 1999).  

While assessment of college learning is on the rise, academic settings do not lend 

themselves to strong experimental designs (Kember, 2003; Kuh, Jankowski, Ikenberry & 

Kinzie, 2014). Ideally, researchers would like to make causal claims about the impact of 

their programs; however, the characteristics of strong experimental research designs are 

not easily implemented within applied educational contexts. For example, research 

designs in assessment are frequently hindered by time and contextual factors within 

education, such as the length of semester and student self-selection into classes (Kember, 

2003).  

In addition to logistical constraints, students who choose to participate in 

university programs may be qualitatively different from students in the general student 

population. Academic interventions often target student learning outcomes that are 

important to the university (e.g., science literacy). However, participation in academic 

interventions may vary systematically as a function of students’ interest in the program or 

student eligibility. Therefore, key to this type of research is differentiating the effect of 

the program from self-selection bias. 
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Selection bias is defined as systematic differences in baseline characteristics due 

to self-selection at the individual level (Winship & Mare, 1992). Such bias limits the 

inferences one can make about a program’s efficacy. For example, there may be 

individual differences specific to students who decide to participate in a university honors 

program. If some students who are eligible for the program decide to participate while 

others who are eligible decide not to participate, the underlying reasons for students’ 

decisions may make participants qualitatively unique from non-participants. Thus, there 

are likely systematic differences between the two groups that make it difficult to 

accurately draw inferences about group differences in learning outcomes. 

 Typically, the “gold standard” for making causal inferences is a true experiment 

via the random assignment of participants to either intervention or control conditions (Ho 

et al., 2007; Kember, 2003; Luellen, Shadish, & Clark, 2005). In a true experiment, 

participants are randomly assigned to either intervention or control conditions. In such 

designs, participants vary only randomly across the two conditions on both observed and 

unobserved baseline variables. In contrast, when students self-select to participate in a 

university program, they may qualitatively differ from students who do not participate. 

Thus, differences in baseline characteristics between participants and nonparticipants 

may confound the ability to make valid inferences as the two groups do not differ 

randomly from one another. 

Shadish, Cook, and Campbell (2002) defined confound as “an extraneous variable 

that covaries with the variable of interest” (p. 506). For example, students who enroll in 

certain programs may be more motivated than students who do not. If academic 

motivation is related to both students’ decisions to join an honors program and academic 
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performance (i.e., program outcomes), it is difficult to parse apart the contribution of 

academic motivation on academic performance from the actual impact of the program 

itself. In other words, the self-selection baseline characteristic of academic motivation is 

a confound. 

Random assignment is the primary way that researchers address confounding 

variables and the threat they pose to internal validity. In a typical “true experiment” (i.e., 

randomized control design), internal validity is essentially the extent to which changes in 

the dependent variable can be attributed causally to the manipulated independent variable 

(Shadish et al., 2002). Because of ethical and logistical concerns related to randomly 

assigning students to programs, researchers employ quasi-experimental research designs 

as an alternative (Shadish et al., 2002). However, inherent in quasi-experimental research 

designs is the validity threat posed by confounding variables.  

Fortunately, propensity score matching (PSM) techniques can account for such 

confounding variables (Austin, 2010a; Ho et al., 2007; Stuart, 2010; Stuart & Rubin, 

2008a). However, research on PSM is scattered throughout several disciplines including 

economics (Czajka, Hirabayashi, Little, & Rubin, 1992), medicine (D’Agostino, 1998; 

Rubin, 2004), statistics (Rosenbaum, 2002; Rubin, 2006; Stuart, 2010), marketing, (Lu, 

Zanutto, Hornik, & Rosenbaum, 2001) and applied educational assessment (Agodini & 

Dynarski, 2004; Dehejia & Wahba, 1999; Frisco, Muller, & Frank, 2007; Hansen, 2004; 

Heckman, Ichimura, & Todd, 1998). Though the terminology varies, PSM is used in 

relatively the same manner across disciplines and offers a solute on to situations in which 

random assignment is not possible. In the context of higher education assessment, 
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however, more research on the variables related to students’ self-selection into university 

programs is needed.  

 The current study situates PSM techniques within an applied educational context. 

Because implementing PSM techniques involves a series of decisions, a review of the 

literature will first be summarized. Specifically, common practices found in the PSM 

literature will be outlined and recommendations will be summarized for implementing 

PSM techniques in higher education assessment.  

An applied example of honors program assessment will follow, adhering to 

recommendations outlined in the literature review. At the author’s institution, a select 

number of incoming first-year students are invited to participate in the honors program 

based on their academic performance in high school. However, only 20% of invited 

students join the honors program. Therefore, students who participate in the honors 

program might be qualitatively different from students who decided not to participate or 

who were not invited to participate in the program on variables such as academic 

motivation. To highlight how the series of PSM decisions may influence the inferences 

drawn from program assessment, several common PSM techniques will be applied and 

evaluated. 
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Chapter Two 

Review of the Literature 

In the context of educational assessment, practitioners frequently attempt to draw 

causal inferences about the impact of their programs. Specifically, assessment 

professionals would like to claim that their programs or interventions directly impact 

student learning. However, given the quasi-experimental nature of the research, the extent 

to which one can make causal inferences in applied contexts is limited (Holland, 1986; 

Winship & Morgan, 1999). 

Ideally, when attempting to make causal inferences about the impact of some 

variable, researchers randomly assign participants to conditions. However, the applied 

context of education often means random assignment to programs or interventions is 

neither feasible nor ethical. Because it mimics the strengths of true experimental designs, 

propensity score matching (PSM) provides an appealing alternative (Luellen, Shadish, & 

Clark, 2005). The current study introduces the concept of PSM, describes best practices 

for conducting PSM studies, and provides an applied example situated within the 

educational context. 

What are Propensity Scores? 

The first step in accounting for variables related to self-selection is to calculate 

propensity scores. A propensity score is a balancing score that is calculated to create a 

matched comparison group that is similar to the intervention group on a set of baseline 

characteristics (Austin, 2011; Stuart & Rubin, 2008a). Propensity scores are simply the 

“conditional probability of exposure to a treatment given observed covariates” (Joffe & 

Rosenbaum, 1999, p. 327). The propensity score can be thought of as the combination of 
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multiple factors that the researcher believes are related to the reason that participants join 

the intervention (e.g., level of interest, motivation or extraversion).  

Mathematically speaking, propensity scores are typically created via logistic 

regression, and are the predicted probability that a student will participate in the 

intervention given a set of covariates (Luellen, Shadish, & Clark, 2005).  Students’ 

probability of participation is represented by a single calculated score that represents the 

probability of participating in an intervention, given the covariates. Students with the 

same propensity score, regardless of whether or not they were in the intervention or 

comparison group, have identical distributions on the set of covariates (Austin, 2011; 

Caliendo & Kopeinig, 2005; Ho et al., 2007; Stuart, 2010). Austin (2011) described 

propensity scores succinctly: 

First, the propensity score is a balancing score: conditional on the propensity 

score, the distribution of observed baseline covariates is similar between treated 

and untreated subjects. Thus, just as randomization will, on average, result in both 

measured and unmeasured covariates being balanced between treatment groups, 

so conditioning on the propensity score will, on average, result in measured 

[Author emphasis] baseline covariates being balanced between treatment groups. 

(p. 419) 

Austin (2011) also emphasized that unmeasured covariates (i.e., variables not used in the 

propensity matching model) will not be balanced between intervention and comparison 

groups. Thus, only measured confounding variables (also referred to as “observed” 

covariates in the PSM literature) will be accounted for when PSM models are employed, 

a difference between PSM and random assignment.   
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The propensity score allows researchers to control for the systematic bias of 

measured confounding variables in order to render a more precise estimate of treatment 

effects (Rosenbaum & Rubin, 1983b; Rosenbaum & Rubin, 1984). If all factors related to 

participants’ self-selection were known, the bias associated with self-selection could be 

ameliorated (Steyer, Gabler, von Davier, & Nachtigall, 2000). However, because we 

never know all of the possible factors and underlying motivations for students’ 

participation in university programs, we are unable to confirm that all confounding 

variables have been accounted for.  

The assessment of a freshman seminar program on student attrition serves as an 

applied higher education example (Clark & Cundiff, 2011). Researchers compared 

measured outcomes (e.g., attrition) with and without employing PSM techniques. 

Program effects were only significant once propensity scores were incorporated for 

covariates associated with both students’ participation in and student attrition from the 

freshmen seminar program. Because the estimates of the program’s efficacy were 

conflated with confounding factors prior to implementing PSM, practitioners may have 

drawn incorrect inferences from their assessment of this program, that it was ineffective. 

The inferences drawn from higher education assessment data are strengthened by 

isolating the impact of the intervention from confounding factors (Clark & Cundiff, 

2011). Thus, effective interventions are more likely to be identified as such, despite self-

selection confounds.  

Several important implementation considerations for PSM have been noted by 

previous researchers (Austin, 2011; Caliendo & Kopeinig, 2005; Stuart, 2010; Stuart & 

Rubin, 2008a). Specifically, the process of conducting PSM involves a series of decisions 
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including the choice of covariates, models for creating propensity scores, matching 

distances and algorithms, estimation of treatment effects, diagnosing the quality of 

matches, and common issues and approaches for dealing with missing data (e.g., 

Caliendo & Kopeinig, 2008; Gu & Rosenbaum, 1993; Ho, King, & Stuart, 2007; Steiner, 

Shadish, Cook, & Clark, 2010; Stuart, 2010; Stuart & Rubin, 2008a). Because 

recommendations in the literature are numerous and come from a diverse assembly of 

disciplines, this paper highlights “best practices” relevant to applied university 

assessment. 

Choice of Covariates for PSM Models 

Ideally, propensity scores are created from variables related to self-selection into 

an intervention (i.e., potential confounds). Moreover, the inclusion or exclusion of key 

covariates affects the accuracy of inferences made about intervention efficacy (Brookhart 

et al., 2006; Steiner et al., 2010). Careful consideration should therefore be given to the 

selection of covariates, as matches will only be made based on the multivariate composite 

of the specific covariates the researcher decides to include in the model. Covariates not 

included in the model may systematically vary between groups and therefore lead to 

biased estimates and a lack of internal validity (Steiner et al., 2010, 2011).  In particular, 

differences in the sets of covariates used to create the propensity score can affect variance 

and the associated error when estimating treatment effects (Brookhart et al., 2006). 

Additionally, including covariates that are not related to the outcome may also negatively 

affect the estimate of treatment effects (Brookhart et al., 2006). For example, if 

motivation is included as a covariate but is not related to students’ self-selection into an 

honors program, estimates of the intervention’s effects on students and student outcomes 
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may be attenuated. Conversely, if a confounding variable (covariate) is not included in 

the creation of the propensity scores, the bias in estimated treatment effects tends to 

increase as confounding effects increase (Drake, 1993). 

Any covariate that almost completely accounts for the assignment to the 

intervention or control conditions should be viewed cautiously as it may indicate an 

underlying issue when attempting to make causal inferences (Stuart, 2010). If one 

covariate fully accounts for the assignment to either the intervention or non-intervention 

condition, it may be indicative of a third factor that is driving participation in that 

program. For example, if participation in a university program targeting underage 

drinking can be completely predicted by attendance, yet all students attend because of 

disciplinary requirements, then the occurrence of disciplinary action is what is driving 

attendance and, plausibly, behavioral change. In this example, a comparison group cannot 

be formed using this covariate (i.e., attendance) because the entire population of 

individuals matching the selection criteria (i.e., disciplinary action for underage drinking) 

is required to participate in the intervention.  

Other important considerations regarding the use of covariates in PSM models 

include whether the variables can be accurately measured and the stability of covariates 

over time. Moreover, there is a distinction between covariates that are observable traits 

(e.g., personality traits via a personality inventory) rather than covert, unknown traits 

(e.g., unreported life events; Dehejia & Wahba, 1999). Pre-intervention variable 

characteristics are also important to consider including the length of time covariates were 

present prior to the intervention. For example, there may be notable differences between 

students who have felt efficacious their entire lives and individuals who have recently 
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increased to the same level of self-reported academic self-efficacy. Despite the same 

level of recent self-efficacy, time-related factors may go unmeasured.  

Confounding Variables. In PSM modeling, only variables that influence both the 

decision for individuals to participate in the program and the outcome variable in tandem 

should be included as covariates (Caliendo & Kopeinig, 2008; Steiner et al., 2010; 

Steiner et al., 2011). For example, one criteria for students to qualify for a university 

honors program could be whether they scored above a specified benchmark on a 

standardized test (e.g., SAT). However, it is also plausible that their aptitude as measured 

by the test would be related to both their participation in the honors program and also 

their general performance on outcomes targeted by the honors program (e.g., GPA). In 

this example, the variables related to students’ self-selection into a university program 

might directly contribute to their success on outcomes of interest. Thus, it would be 

inappropriate to presume that the intervention can be credited for desirable outcomes 

without accounting for confounding variables. Not only should one consider which 

variables are potential confounds, but the stability of covariates over time should also be 

considered.   

Stability of Covariates. The stability of covariates over time should also be 

considered, as unstable covariates may not reliably reduce systematic bias related to self-

selection. Findings from simulation studies have suggested that unstable covariates can 

appreciably reduce the ability of propensity scores to remove bias (Steiner et al., 2011). 

One example of an unreliable covariate would be a measure of affect (e.g., happiness). If 

the variable has the potential of changing frequently, it is therefore not exclusively a 

confounding variable related to self-selection and may introduce error if used to create a 
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comparison group. The covariates used to create a matched sample should be relatively 

stable across time in order to provide a valid and reliable measure of baseline 

characteristics. If covariates lack reliability, the model is unstable and may lead to invalid 

inferences about the effects of an intervention on participants (Shadish et al., 2002).  

Additionally, variables that could be influenced by participation in the treatment 

should not be included in the creation of propensity scores (Greenland, 2003). This is 

particularly important if the covariates are used retrospectively and measured at the end 

of the intervention. For example, one covariate could be students’ sense of belonging. 

However, if it is measured after students’ participation in the program, their sense of 

belonging could have changed as a function of their participation. To ensure that the 

model does not include variables that have changed following participation, covariates 

should be measured a priori for both participants and nonparticipants (Austin, 2011; 

Stuart, 2010). In order to create the highest quality matches possible, not only is it 

important to consider the stability of covariates, but researchers also need to consider 

whether one covariate should be weighted differently than another. 

Weighting Covariates. To ensure quality matches, some covariates may be 

weighted differently than others. For example, a researcher may feel that gender is an 

important matching variable. In this instance, exact matches can be made prior to creating 

propensity scores to ensure that individuals are directly matched on important covariates 

like gender or ethnicity (Caliendo & Kopeinig, 2008; Dehejia, 2013; Lechner, 2002). To 

use exact matching, subsamples are created prior to creating propensity scores (e.g., all 

White women are included in one subsample). The only possible matches that can be 

made will be from the subsample of similar nonparticipants (e.g., other White women). 
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Propensity scores are then calculated separately by subsample using other covariates 

associated with self-selection into the intervention. If exact matching is used to match 

participants and nonparticipants on specific covariates (e.g., gender), the covariates 

should not also be included in the creation of propensity scores.  

Evaluating Covariates. When choosing covariates, it is important to include 

theoretically sound variables (Brookhart et al., 2006; Steiner et al., 2010). For example, 

standardized test scores are important to include as covariates when assessing an 

intervention aimed at fostering academic success, such as a university honors program. If 

standardized scores are a determinant of whether or not someone is admitted into an 

honors program, then without accounting for student performance on standardized tests, 

it is difficult to disentangle the impact of the program from students’ incoming abilities.  

Cross-validation has been championed as a convenient approach for deciding 

upon covariates (Frolich, 2004). Because researchers often do not know all of the factors 

associated with students’ self-selection into a university intervention, the leave-one-out 

cross-validation approach affords researchers the flexibility to attempt multiple variations 

of covariate subsets to create balanced groups. Leave-one-out cross-validation may also 

be used to create different comparison groups using different sets (or “blocks”) of 

variables (Caliendo & Kopeinig, 2008). With cross-validation, matched groups of 

participants and nonparticipants are created for each block of covariates, and then 

compared to one another on the overall quality of matches created. However, to avoid 

allegations of researcher bias in covariate selection, the covariates should be decided 

upon prior to estimating the effects the intervention on outcomes (Ho et al., 2007; Rubin, 

2001). Similar to cross-validation, the current study will use two sets of covariates to 
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create matches then diagnose the quality of the matches. However, propensity scores 

must first be created.  

Creating Propensity Scores 

One uniform requirement for PSM, regardless of the method used, is that every 

individual must have a nonzero probability of participation in the intervention (Austin, 

2011). If an individual has a propensity score of zero, it indicates that they have zero 

probability of having participated in the intervention conditional upon the covariates. In 

higher education, probabilities of zero can be problematic because it might mean that a 

confounding variable is inhibiting students from participating in a program. For example, 

female students may have a calculated probability of zero for participating in a fraternity 

based off of a set of covariates including gender. In this example, female students did not 

necessarily decide not to join a fraternity; rather, their gender determined their eligibility 

for participating.  

Propensity scores may be calculated using various techniques (e.g., logistical 

regression, discriminant analysis, multiple regression, etc.) to create a multivariate 

composite of the covariates (Rosenbaum & Rubin, 1983; Stuart, 2010; Stuart & Rubin, 

2008a). Several methods exist depending on the number or levels of programs offered 

(e.g., one intervention offered versus two variations of the same intervention). The most 

frequently used method is logistic regression (Austin, 2011; Stuart, 2010), which is the 

method that will be applied in the current study. Thus, the primary focus of the current 

paper will be on PSM using logistic regression.   

Logistic Regression. The most commonly employed method for estimating 

propensity scores in the PSM literature is logistic regression (Austin, 2011; Stuart, 2010). 
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Logistic regression is a robust statistical technique that allows the use of continuous and 

categorical predictors (Tabachnick & Fidell, 2013). Because the covariates predict a 

binary variable (i.e., participation or not participation), the generalized linear model is 

used and a link function transforms the binary dependent variable into a binomial 

distribution (i.e., an “s” shaped distribution). 

To calculate propensity scores using logistic regression, the set of covariates (i.e., 

confounding variables) are entered as predictors of the binary outcome. Because the 

errors are no longer normally distributed, ordinary least squares (OLS) is not appropriate. 

Logistic regression employs maximum likelihood estimation (MLE) to explain the 

maximum amount of deviance in the model (Azen & Walker, 2011). The amount of 

deviance left unexplained by the estimated parameters is the extent to which the data 

cannot be explained by the model (Azen & Walker, 2011).  

Propensity scores are the predicted probability of participating in a program, 

given the set of variables related to self-selection. Scores are calculated for all students 

regardless of their participation in the intervention. Predicted probabilities (i.e., 

propensity scores) are continuous values bounded between 0 and 1. From probabilities, 

the odds of a student participating can be calculated to remove the upper bound.  

Odds are the probability of an event occurring (e.g., a student participating in an 

honors program) divided by the probability of the event not occurring. However, odds are 

not an ideal transformation of the variable as negative odds values are not possible. 

Therefore, the natural logarithm of the odds provides a mathematical solution as it 

unbounds the lower asymptote and has no restriction of range (Osborne, 2012).  
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The natural logarithm of the odds (also known as the logit) is a transformation of 

the probability of participation (Osborne, 2012). Students’ predicted participation in a 

program becomes the logit(y), the logit or log-odds of participating in the program, and 

the regression equation is simply: 

Logit(𝑦) = a + 𝑏1𝑥1  

The logistic regression equation for predicted probability can therefore be 

obtained by working backwards from the equation for predicted logits.  

𝑝𝑖̂= 
1

1+𝑒−(𝐵1 𝑋2+𝐵0) 
 = 

𝑒(𝐵1 𝑋2+𝐵0)

1+ 𝑒(𝐵1 𝑋2+𝐵0) 

In the equation, 𝑝𝑖̂ equals the predicted probability of a student participating in the 

honors program, e(-B
1
X

2
+B

0
) equals the rate of change in log odds, and Bi are the unique 

contributions of the covariates related to students’ self-selection into the honors program 

(Cohen, Cohen, West, & Aiken, 2003, p. 486).  

The creation of the propensity score is based upon the concept of the 

counterfactual (Winship & Morgan, 1999). Scores are calculated for all students 

predicting the probability of program participation regardless of whether students actually 

participated. For example, a propensity score of .5 indicates a 50/50 chance of students 

participating in a program (Cohen, 2003).  

It is important to note that propensity scores are created for the sole purpose of 

producing a balancing score rather than for making inferences back to a population. We 

are simply using logistic regression as a “general method of nonparametric preprocessing, 

suitable for improving any parametric method” (Ho et al., 2007, p. 202). Because the 

covariates are related to students’ self-selection into the program, it is reasonable to 

expect participants to have higher propensity scores than nonparticipants. The propensity 
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scores are then used to create a comparison group of nonparticipants who have a similar 

propensity for treatment as participants (Stuart, 2010; Stuart & Rubin, 2008a). 

Matching Methods 

Once propensity scores are computed, there are numerous approaches for creating 

a comparison group of nonparticipants including exact matching, nearest neighbor (NN) 

matching, optimal matching, and nearest neighbor with caliper adjustment (Austin, 2011; 

Caliendo & Kopeinig, 2005; Stuart, 2010; Stuart & Rubin, 2008b). However, the most 

commonly used approaches, and the methods applied in the current study, are NN and 

NN with caliper. Additional considerations include the number of nonparticipants to be 

matched to each participant and also whether replacement (i.e., matching nonparticipants 

multiple times to participants) is allowed.  

Exact Matching. Exact matching is when “perfect” matches are created on 

specific covariates. It can be used as the only technique, or can be used in tandem with 

other matching methods. Exact matching on important covariates is ideal whenever 

possible to ensure a high quality comparison group (Austin, 2011). However, exact 

matching requires large sample sizes and homogeneous populations of participants and 

nonparticipants. Therefore, it is not frequently used as unmatched participants are 

dropped from the sample and subsequently reduce the sample size (Stuart, 2010). Thus, 

approaches such as NN are frequently employed. 

Nearest Neighbor (NN). As it is often not possible to create a matched group that 

is exactly matched to the intervention group, algorithms can be used to find the closest 

possible match (Austin, 2011; Stuart, 2010).  One approach to creating matches is the use 

of a “nearest neighbor” (NN) design (Gu & Rosenbaum, 1993). The NN design employs 
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a greedy algorithm that matches each individual in the intervention condition sequentially 

with the nearest possible nonparticipant’s propensity score (Stuart, 2010; Stuart & Rubin, 

2008a). Starting with the first participant, the greedy algorithm picks the best match out 

of the pool of possible matches, then moves on to the next participant. Because the 

greedy algorithm moves sequentially through the list of participants, it is possible for 

later matches to be less than ideal.  Specifically, if a match is made late in the sequence, 

the most similar propensity scores may have already been “assigned.” The algorithm does 

not “backup” and form a match if a nonparticipant was assigned in a previous iteration 

(Stuart, 2010).  

Although, NN is one of the most commonly used matching methods, the use of 

the NN matching algorithm can result in bias and poor quality matches (Smith, 1997). 

The NN design does not allow for control of quality over the potential matches as 

matches will be made regardless of how much the nonparticipant’s score differs from the 

participant’s score. Rather, the matches are merely the “best option” out of all possible 

options within the pool of potential matches. Therefore, it is recommended that additional 

adjustments be made (Smith, 1997). 

Matching with replacement is one option for overcoming the limitation of poor 

quality matches (Caliendo & Kopeinig, 2005; Stuart, 2010). Matching with replacement 

allows propensity scores of nonparticipants paired during a previous iteration to remain in 

the pool of potential matches. Although matching with replacement allows the highest 

quality matches possible for each iteration, pairing nonparticipants in multiple matches 

creates a potential issue as it violates the assumption of independence of observations 

(i.e., that each of the matches are unrelated to one another). This violation of 
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independence may also be problematic when estimating the effects of the intervention, as 

nonparticipants that are matched twice should only be counted as one individual assigned 

to the comparison group when conducting inferential statistics on the outcome variables 

(Stuart, 2010). To ensure high quality matches are made using a one-to-one matching 

ratio, additional adjustments may be used. 

Nearest Neighbor (NN) with Caliper Adjustment. The use of a caliper 

adjustment has been frequently implemented to ensure a high quality of matches between 

the intervention and comparison groups (Austin, 2011; Caliendo & Kopeinig, 2005; 

Stuart, 2010; Stuart & Rubin, 2008a). A caliper is a specified distance within which the 

matches on the propensity score are considered acceptable and outside of which the 

matches are not acceptable and therefore not allowed. Using a caliper adjustment, non-

participants are only matched to a participant if their propensity score falls within a 

designated distance (in propensity score standard deviations) from the participant’s 

propensity score. The appropriate distance at which to set the caliper can be difficult to 

know a priori as researchers often do not usually know the distribution of possible 

covariates (let alone, the composite used to create the propensity score) prior to 

conducting analyses (Smith & Todd, 2005).  

Although caliper distances have not been studied specifically in the context of 

educational program assessment, they have been examined within the medical context 

(Austin, 2009). Monte Carlo simulations indicated matches within a caliper distance of 

0.2 and were optimal to estimate treatment effects (Austin, 2011). Although numerous 

matching algorithms exist, NN matching with a recommended caliper width distance of 
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0.2 standard deviations is most commonly recommended in the PSM literature (Austin, 

2009, 2011; Stuart, 2010).  

NN with a caliper adjustment compensates for some of the issues mentioned when 

only using the NN matching method. However, because NN matching with a caliper 

restricts the range of potential matches, NN (without a caliper adjustment) may be 

implemented when a researcher is unsure of the width of caliper that should be used to 

create matches. The present study will use both NN and NN with a predetermined caliper 

and will evaluate the quality of matches made using both techniques. However, before 

doing so, there are several other methods that are worth mentioning.  

Optimal Matching. Similar to NN matching, optimal matching uses a greedy 

algorithm to pick the closest match from the pool of nonparticipants (Rosenbaum, 2002; 

Stuart, 2010). However, unlike NN matching, optimal matching allows for previously 

paired matches within the sample to be repaired with a different match based on the 

global fit and quality of all matches without matching with replacement (Stuart, 2010). 

Therefore, a match made during an earlier iteration may be broken to reassign a 

nonparticipant to a better match in an effort to increase the overall quality of propensity 

score matches.  

Other Methods. Genetic matching has become a popular approach for creating 

quality matches (Diamond & Sekhon, 2013). Genetic matching techniques employ an 

iterative process to create matches. The weight of each covariate is readjusted within the 

composite scores to improve the overall balance of matches between the participant and 

nonparticipant groups. Simulation studies concluded that the use of this “evolutionary 

search algorithm” is more effective than NN at reducing selection bias in the sample as it 
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allows for the adjustment of covariate weights according to their contribution to self-

selection and the outcome (Diamond & Sekhon, 2013). For the purposes of the current 

study, genetic matching will not be used because it is more complex and less practical 

than NN matching techniques. Additionally, limited recommendations in the literature 

and software options are available for using this technique. Regardless of which matching 

technique is used, the balance between the participants and nonparticipants should be 

compared to ensure that the distribution of propensity scores in each group is even. Once 

the intervention and comparison groups are evenly matched using PSM, the outcomes are 

compared between groups using typical inferential statistical analyses (Ho et al., 2007; 

Stuart, 2010). Prior to doing so, however, researchers should evaluate the quality of 

matches. 

Comparing Balance  

Once the matches are made, the quality of the matches is diagnosed to ensure the 

comparison group has a distribution of propensity scores similar to participants. Several 

approaches exist to diagnose matches including comparing the balance numerically and 

visually (Caliendo & Kopeinig, 2005; Stuart, 2010). There is a lack of consensus in the 

literature regarding the use of null hypothesis significance testing (NHST) analyses (e.g., 

t-tests) to diagnose the quality of matches on the covariates and composite propensity 

scores (Caliendo & Kopeinig, 2005; Ho et al., 2007; Rosenbaum & Rubin, 1985; Stuart, 

2010). 

Numeric Balance. Despite the common use of NHST analyses to compare the 

distribution of covariates and propensity scores in the PSM literature (e.g., t-tests), use of 

NHST for this purpose has been criticized in recent work (e.g., Ho et al., 2007; Stuart, 
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2010). Though the approach of using t-tests to compare balance is accessible to many 

researchers, the use of p values to compare balance is not appropriate for two primary 

reasons: 1) statistically significant differences may be found between groups because of 

power due to large sample sizes, and 2) there are no inferences being made in relation to 

a population as the comparison is only comparing the properties within the samples (Ho 

et al., 2007; Stuart, 2010).  

To appropriately compare the balance of participants and nonparticipants, other 

approaches have been suggested. Stuart (2010) advised comparing the covariate balance 

(i.e., balance of propensity scores) by comparing the standardized difference of group 

propensity score means. Additionally, Stuart suggested comparing the ratio of variances 

between participants and nonparticipants on the propensity score and on each individual 

covariate. A researcher should also compare the mean of both groups on each covariate to 

determine whether the groups differ on any of the individual covariates to a degree 

greater than one-fourth of a standard deviation (Ho et al., 2007). In addition to numeric 

comparisons of balance, a visual inspection of the data also allows for further balance 

diagnosis.  

Visual Balance. Several visual aids can be used to diagnose propensity score 

balance between groups (i.e., participants versus nonparticipants). Graphics used for this 

purpose include quantile-quantile (QQ) plots and jitter graphs (Ho et al, 2007; Stuart, 

2010; Stuart & Rubin, 2008a). The visual inspection of these graphs simply involves the 

researcher “eyeballing” the distribution of propensity scores for each group across 

different criteria. For example, QQ plots display propensity scores across a probability 

distribution that is divided into quantiles. When visuals are pivotal in determining 
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whether the two groups are balanced, they may be included in the results to provide 

additional evidence of the balance between groups. Once the quality of matches is 

evaluated, the effects of the intervention can be estimated. 

Intervention Treatment Effects  

Depending on the research question, estimates of the treatment effects can be 

made for either 1) the impact of the intervention for only the participants (average 

treatment effect on the treated), or 2) to make inferences about the potential impact of the 

program for the overall student population (average treatment effect; Caliendo & 

Kopeinig, 2005; Ho et al., 2007). If the goal is to estimate treatment effects for only the 

individuals who participated, then the average treatment effect on the treated (ATT) can 

be easily estimated. In the context of ATT, the entire population of individuals of interest 

has data available to analyze on relevant outcomes (Austin, 2011; Imbens, 2004). 

Alternately, the goal might be to make inferences regarding the effects of an intervention 

as it would generalize to the overall population of students, regardless of whether they 

received treatment. In this situation, the average treatment effect (ATE) is estimated as 

the average effects weighted by the overall population baseline characteristics (see IPTW 

section; Ho et al., 2007).  
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To calculate ATT, the impact of a program (or “treatment effect” in the PSM 

literature) is estimated for participants only (Ho et al., 2007, p. 204). Where the average 

treatment effect (T) is the expected value of the outcome (Yi) for the treated [Yi (1)] minus 

the observed value of the outcome [Yi (0)] for the untreated conditional upon the 

covariate (Xi).    

ATT =  
1

∑ 𝑇𝑖
𝑛
𝑖=1

 ∑ 𝑇𝑖𝐸[𝑌𝑖 (

𝑛

𝑖=1

1) −  𝑌𝑖 (0)| 𝑋𝑖] 

=  
1

∑ 𝑇𝑖
𝑛
𝑖=1

 ∑ 𝑇𝑖[𝜇1 (

𝑛

𝑖=1

𝑋𝑖) −  𝜇0 (𝑋𝑖)] 

Whereas to calculate ATE, the mean impact of the program is calculated for all of 

the individuals in the sample (Ho et al., 2007).  Where the average treatment effect (ATE) 

is the expected value of the outcome (Yi) for the treated [Yi (1)] minus the expected value 

of the outcome [Yi (0)] for the untreated conditional upon the covariate (Xi).   

ATE =  
1

𝑛
 ∑ 𝐸[𝑌𝑖 (

𝑛

𝑖=1

1) −  𝑌𝑖 (0)| 𝑋𝑖] 

=   
1

𝑛
 ∑ 𝜇(𝑋𝑖

𝑛

𝑖=1

) −  𝜇0 (𝑋𝑖) 

For example, program coordinators may want to estimate the impact of an honors 

program on honors students at the university. In this situation, the entire population of 

students of interest is served by the program. Thus, only the estimate of the program on 

the participants is relevant (i.e., ATT). However, if the program coordinators were 

interested in estimating how the program would generalize to a larger population of 

students, they would want to estimate the average effects of the honors program (i.e., 

ATE).  
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Once researchers have decided on the type of intervention effect that is most 

relevant to their study (i.e., either ATT or ATE), an estimate of the intervention effects 

can be calculated. The distinguishing characteristic of ATE (from ATT) is that it again 

brings us back to the idea of the counterfactual. Specifically, ATE is used to estimate the 

effects on nonparticipants for whom no intervention effects are measured. Though the 

distinctions between ATT and ATE are important, it has been suggested in the literature 

that the estimation of one tends to be a good estimator of the other (Ho et al., 2007). 

Typically, researchers are interested in the ATT, which will also be the focus of the 

current study. The impact of the honors program on participants in the current study will 

be compared using η2 and Cohen’s d effect sizes. 

Models for Estimating Intervention Effects 

Various other non-matching methods for estimating the effects of an intervention 

have been explored in the PSM literature. Though the present study will focus solely on 

PSM, other approaches use the propensity score to adjust estimates rather than as a 

matching parameter. Such models include: covariate adjustment via regression, 

stratification (also referred to as subclassification in the PSM literature), and inverse 

probability of treatment weighting (Austin, 2011; D’Agostino, 1998). Inverse probability 

of treatment weighting (IPTW) affords researchers the ability to estimate both the ATE 

and the ATT. Thus, the average estimated impact of the intervention can be calculated as 

it might generalize to nonparticipants (Austin, 2011). However, the most straightforward 

way of estimating treatment effects is to create the balanced groups and conduct 

traditional inferential comparison. Because other estimation models may be suitable to 

answer other research questions, three models will be briefly described.  
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Covariate Adjustment. In the covariate adjustment approach, intervention 

outcomes are regressed upon the propensity scores using either a linear model (for 

continuous outcomes) or logistic model (for dichotomous outcomes). The individual 

propensity scores are used as predictors in this approach (Austin, 2011; Hade & Lu, 

2011). Similar to analysis of covariance (for continuous models), the means of the 

outcomes (e.g., GPA) can be adjusted using the propensity scores for participants and 

nonparticipants. For dichotomous outcomes, the outcome is adjusted using an odds ratio 

in logistic regression (Austin, 2011). The adjusted outcomes can then be compared using 

an independent t-test (comparing means between groups) or chi-square (comparing ratios 

between groups). Another approach that does not use propensity scores as a matching 

parameter is stratification.  

Stratification. Also known in the literature as “subclassification,” the 

stratification approach does not include matching. Rather, participants and 

nonparticipants are grouped into strata based on researcher-defined propensity score 

cutoff points (Austin, 2011; Stuart, 2010). The strata are created using a predetermined 

number of subgroups set by the researcher (Stuart, 2010). Individuals who have similar 

propensity scores are essentially grouped together so participants and nonparticipants 

within each stratum can be compared. Though stratification allows for comparisons at 

each strata, the estimates are still dependent upon whether individuals participated in the 

intervention. Inverse probability of treatment weighting, on the other hand, allows for an 

estimate of intervention effects that is independent of individuals’ participation in the 

intervention.  
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Inverse Probability of Treatment Weighting (IPTW). The inverse probability 

of treatment technique is calculated as the inverse probability of the intervention the 

individual actually received (Austin, 2011a). The equation for calculating IPTW scores is 

as follows (Austin, 2011a, p. 408): 

 

𝑤𝑖 =  
𝑍𝑖

𝑒𝑖 
+  

(1 − 𝑍𝑖)

1 − 𝑒𝑖 
 

 

Where wi refers to the inverse probability of treatment weight; Zi refers to 

treatment (Z =1 refers to treated; Z = 0 refers to untreated) and ei is the propensity score 

for each individual.  If a person is treated, the second part of the equation falls off (1-1 = 

0 in the numerator). If untreated, the first part of the equation falls off (0 in the 

numerator). IPTW models allow researchers to create a sample of both participants and 

nonparticipants that have weights on baseline characteristics independent of their 

participation. Intervention effects can then be estimated after adjusting for baseline 

characteristics in a specific population (Austin, 2011). IPTW is one method of calculating 

ATE; however, ATT rather than ATE is of interest in the current study. Therefore, the 

IPTW approach will not be employed. However, prior to comparing outcomes using 

ATT, participants and non-participants must have overlapping propensity score 

distributions.  
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Common Support 

The extent to which participants and nonparticipants overlap in their distribution 

of propensity scores is referred to in the PSM literature as the area of “common support” 

(Caliendo & Kopeinig, 2005; Stuart, 2010). Differences in the distribution of propensity 

scores can be problematic and may restrict the number of nonparticipant matches with 

similar propensity scores (Caliendo & Kopeinig, 2005). Because NN matching with a 

caliper only creates matches within a predetermined range of scores, a lack of common 

support can result in fewer matched pairs. A lack of common support across participants 

and nonparticipants may also lead to a loss of information. Individuals who are 

qualitatively different across the groups might be excluded from the analyses because of 

the inability to find appropriate matches (Caliendo & Kopeinig, 2005; Stuart, 2010).  

Figure 1 shows an example of the area of common support across propensity 

score distributions (ranging from 0 to 1). The area where there are propensity scores for 

both the intervention and comparison groups is indicated in the dashed window. A lack of 

common support can lead to difficulty matching nonparticipants to participants using NN 

matching with a caliper. A lack of common support can also lead to issues estimating the 

effects of an intervention. Specifically, when ATE estimates are of interest, a lack of 

common support may indicate that ATE cannot be estimated because participants and 

nonparticipants vary too greatly from one another to allow for a reliable estimate (Stuart, 

2010). In situations when ATT is of interest, common support is needed to ensure that the 

estimation of intervention effects is reliable and representative of the group. Additionally, 
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there may be qualitative differences in the participants who are excluded from the 

comparison due to the unavailability of similar propensity scores (Stuart, 2010).  

Outcome Variables 

Once a quality subsample of nonparticipants is created as a comparison group, the 

analyses become quite simple. Preprocessing of the data to create a comparison group 

allows researchers to conduct simple inferential tests on the outcomes (Caliendo & 

Kopeinig; Gu & Rosenbaum, 1993; Ho et al, 2007; Stuart, 2010; Stuart & Rubin, 2008a). 

In sum, the tests researchers use following PSM techniques are exactly the same as they 

would be if simply comparing independent groups.  

Outcome variables should be compared between groups only after matches are 

created and the quality of balance between participants and nonparticipants has been 

evaluated. Once the nonparametric preprocessing steps are finalized (i.e., propensity 

scores are created and participants and nonparticipants are matched), the threat of 

researcher bias in creating groups is no longer an issue. One way of ensuring the 

outcomes did not impact a researcher’s decisions is to merge on the outcome variables 

only after all of the PSM preprocessing steps have been completed. Stuart and Rubin 

(2008a) noted that the inclusion of outcome variables after all matches have been made is 

critical for following PSM best practices.  

Purpose of the Current Study 

Because the literature regarding best practices for implementing PSM spans 

multiple disciplines, more research is needed on the application of PSM in higher 

education assessment. One recent study used PSM techniques to estimate the effects of an 

honors program on student GPA and time to degree completion (Keller & Lacy, 2013).  

The covariates included in the honors program PSM study, however, did not include 
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motivation measures as covariates. At the institution in which the current study was 

conducted, each year a select group of entering first year students are invited to join the 

honors program, based on entering SAT scores and high school grades. The honors 

program requires students to complete several rigorous honors’ courses. In the final year 

of the program, students complete an honors thesis, requiring rigor above and beyond the 

typical undergraduate experience. The decision to join the honors program is purely 

voluntary, so one might expect that students who elect to join the program may differ 

from those who opt out of the program. It is anticipated that there may be self-selection 

bias related to academic motivation. Thus, honors program assessment provides a unique 

opportunity to investigate the use of PSM in higher education for two reasons:  

1) Honors programs often require an additional investment of time and energy 

from the student. Thus, it is feasible that motivation may be related to self-

selection into the program and important to include as a PSM covariate.  

2) Because motivation may differ between honors students and non-honors 

students, the area of common support may not be as robust as for other university 

programs (e.g., general education courses).  

Applying PSM best practices to the applied honors program example, the research 

questions for the current study are four-fold:  

1) Do motivation characteristics differ systematically between students in the honors 

program and students who qualified for the honors program but chose not to participate? 

Additionally, do honors students and the general student population differ in motivation? 

2) How does the quality of propensity score matches differ when created from two 

different sets of covariates? Specifically, matched groups will be created from two 
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different covariate sets – one that includes standardized test scores and one that includes a 

university-created score, based on high school performance. 

3) Which matching condition results in high quality matches while preserving 

information and retaining honors students in the final comparison? Specifically, there 

were three different matching conditions: NN and NN with caliper distances of 0.1 and 

0.2 standard deviations.  Because use of a strict caliper can result in loss of information, it 

was important to evaluate any loss of information resulting from the application of the 

calipers. 

4) Do matched groups of honors students significantly and/or practically differ from non-

honors students and students in the general population on outcomes targeted by the 

honors program?  
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Chapter Three 

Methods 

Participants  

Participants in the current study were enrolled in a mid-sized public university in 

the Mid-Atlantic U.S. Participants completed a battery of cognitive and noncognitive 

assessments at two time points – during orientation to the university, and again when they 

had completed between 45-70 credits. Data from three subsamples of students were 

compared: 1) students enrolled in the university honors program, referred to as the 

“Honors Program Sample” or “the participants”; 2) students who qualified for the honors 

program but did not accept the offer of admission to the program, referred to as the “Non-

Honors sample” or “non-participants’; and 3) students who did not qualify for the honors 

program, referred to as the “General Student Population.” Matched comparison groups 

were selected from each of these three groups. 

Honors Program Sample (i.e., Participants). Honors students were 181 first-

semester undergraduate students enrolled in the honors program at James Madison 

University in the fall semester of 2012. There were a higher number of females (57.9%) 

than males enrolled in the honors program and a high percentage of students in the 

honors program identified as White (84.2%). The average age of students in the honors 

group in fall of 2012 was 18.38 (SD = 0.35). 

Non-Honors Sample (i.e., Non-participants). Non-participants were 836 non-

honors first-semester undergraduate students also attending James Madison University in 

the fall semester of 2012. Similar to the honors program sample, there were a higher 

number of females (60.4%) than males and a high percentage of students in the non-

honors program identified as White (86.6%). The average age of students in the non-
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honors group in the fall of 2012 was 18.42 (SD = 0.35). The importance of identifying the 

non-honors sample was that they were offered admission into the honors, yet opted not to 

participate in the program.  

General Student Population (GSP). The general student population (GSP) 

consisted of 2,836 undergraduate students attending James Madison University. Like the 

honors and non-honors samples, all students in the general university sample were also 

first-semester students. A similar percentage of students in the GSP were female (61.5%) 

and identified as White (87.5%) as the honor and non-honors samples. The average age 

of students in the general university sample in the fall of 2012 was 18.45 (SD = 0.48). It 

is important to note that students in the GSP were not eligible for the honors program and 

not invited to participate.  

Procedure 

Data were collected during two university-wide Assessment Days. Assessment 

Day is a university-wide class-exempt day during which students complete multiple 

cognitive and attitudinal measures for university assessment purposes. The first 

Assessment Day was during the fall semester 2012 orientation to the university. The 

second Assessment Day was in the spring of 2014 when students were midway through 

their sophomore year and had accrued 45-70 credits. The covariate measures were 

collected during the first Assessment Day and via archival institutional data. Pre-test 

scores on three cognitive tests (outcome measures) were collected on the first Assessment 

Day. Post-test scores for the three cognitive tests were collected on the second 

Assessment Day.  
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Covariate Measures  

 Covariates were selected prior to comparing group means on the outcome 

variables. Two sets of covariates were included in separate analyses, for purposes of 

creating the propensity scores. The first covariate set included demographic variables, 

motivation for general education coursework, SAT Math scores, SAT Verbal scores, and 

the number of transfer credits accepted by the university. The second covariate set 

included demographic variables, motivation for general education coursework, the 

number of transfer credits accepted by the university, and a university-computed honors 

rating score (ARS scores). Because the only difference between the two sets is whether 

SAT or ARS scores were included, the two covariate sets will heretofore be referred to as 

1) the SAT covariate set and 2) the ARS covariate set.   

 Demographic Variables. Because the non-honors and GSP samples consisted of 

a higher proportion of females and White students than the honors sample, gender and 

ethnicity were included in both covariate sets. Gender was dummy-coded as 0 (male) and 

1 (female). Ethnicity was dummy-coded (using 0 and 1) for each of the ethnicity 

classifications as identified at the institution as separate variables including “White,” 

“Hispanic,” “Native American,” “Pacific Islander,” “African American,” and “Asian.” 

Also, note that the ethnicity groupings are not mutually-exclusive. For example, someone 

could self-identify as both “White” and as “Pacific Islander.” 

Student Motivation. Student motivation was operationally defined via an 

expectancy-value framework (Eccles, 1983).  According to expectancy-value theory, 

students’ motivations are a function of their expectancies regarding their ability to 

complete academic tasks (e.g., “I expect to do well in my classes this semester.”) and the 
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value they place on the tasks (e.g., “I think my classes this semester are worthwhile”; 

Eccles, 1983). The cost associated with completing a task (e.g., “I think my classes 

require too much time and effort for me to do well.”) is negatively related to motivation 

(Wigfield & Eccles, 2002). Specifically, students’ motivation for their undergraduate 

coursework was measured via three subscales: expectancy (4 items), value (6 items) and 

cost (6 items).  Students responded to each of the items on a 1-8 scale (from “completely 

disagree” to “completely agree”), and no items on the three subscales were reverse-

scored. Items were summed to create total scores on each of the three subscales. Scores 

on the expectancy subscale ranged from 4-32, and scores on the value and cost subscales 

ranged from 6-48. The internal consistency reliability estimates of scores for each of the 

three motivation subscales are indicated in Table 1. 

Standardized Test Scores. Standardized test scores were predominantly SAT 

Math and SAT Verbal scores because of the geographic location of the institution. 

Possible SAT Math and Verbal scores range from 200-800. If students had data on ACT 

scores rather than SAT scores, the ACT-SAT Concordance was used to convert ACT 

scores to the SAT scale (ACT, 2013). Standardized test scores were only included in the 

SAT covariate set.  

Transfer Credits. Students’ incoming credits were obtained via institutional 

research data. Incoming credits are the number of college-level credits that were accepted 

and transferred to the institution from students’ previous coursework or Advanced 

Placement exams. Students with no incoming credits were assigned a 0. 

Honors Program Score (i.e., ARS Scores). ARS scores are computed using high 

school grades from classes that are deemed relevant to collegiate coursework. Relevant 
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classes are then assigned points for the letter grade earned in each class (e.g., 12 points 

for an A, 11 points for an A-, etc.) then averaged to create a final score out of 12 possible 

points. Scores are rounded to the nearest possible whole number (e.g., a score of 11.4 

would round to an ARS score of 11).  ARS scores were only included in the ARS 

covariate set, and were only available for the honors and non-honors samples, and not for 

the GSP sample. 

Outcome Measures 

Four measures served as outcome measures:  American Experience test (AMEX), 

Global Experience test (GLEX), the Natural World test (NW; version 9), and sophomore 

grade point average (GPA). The pre-test scores for the AMEX, GLEX, and the NW were 

collected during the fall 2012 Assessment Day when students were first entering the 

university. The post-test scores for the AMEX, GLEX, and NW were collected during 

spring 2014 assessment day when the students accrued 45-70 credits.   

American Experience (i.e., AMEX). The American Experience test is a 40-item 

selected response test written to assess students’ knowledge of American history and 

politics. The average internal consistency of scores from repeated administrations of the 

AMEX across over a decade of administration at the current university has been 

approximately .88 (Cronbach’s alpha). Items on the AMEX are scored as either correct or 

incorrect and range from 0-40. The correlations between the AMEX test and general 

education American history and politics course grades has been documented at the 

institution as moderate and positive (DeMars, 2014).  

Global Experience (GLEX). The Global Experience test is a 32-item selected 

response test written to assess students’ global and political knowledge. The average 
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internal consistency of scores from repeated administrations of the GLEX across over a 

decade of administration at the current university has been approximately .76 

(Cronbach’s alpha). Items on the GLEX are scored as either correct or incorrect and 

range from 0-32. The correlations between the GLEX test and general education global 

studies course grades have been documented at the institution as moderate and positive 

(DeMars, 2014).  

Natural World Test (NW). The Natural World Test (NW) is a 66-item selected 

response test written to assess scientific and quantitative reasoning (Sundre, 2008). Items 

are scored as either correct or incorrect and range from 0-66. The correlations between 

the NW test and general education science course grades has been documented at the 

institution as moderate and positive (Johnston, Hathcoat, & Sundre, 2014). 

Student GPA. The honors program director identified cumulative GPA as an 

outcome of interest. Student GPAs were provided via institutional research data at the 

time of post-test and were reported on a 4.0 scale. Therefore, the range of possible values 

was 0 to 4.0. To remain in good academic standing, students are required to maintain a 

cumulative GPA of 2.0 or greater during their undergraduate career.  

Data Screening  

Prior to creating propensity score matches, the data were visually screened for 

outliers and response set. Individuals who responded with answers outside of the range of 

the response scales were recoded as missing data. Listwise deletion was conducted for 

two reasons. First, propensity scores could only be computed for cases with complete 

data. Second, missing covariate and outcome data were missing at random, given that 
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students were randomly assigned to assessment testing rooms, and completed the tests 

assigned to their particular room. 
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Chapter Four 

Results 

 All data processing and analyses were completed in R Version 3.1.1 (R Core 

Team, 2013) and in IBM SPSS Statistics (Version 21). Prior to creating matches, all of 

the covariates were graphed using the ggplot2 package in R (Wickham, 2009). Covariate 

density distributions were compared across the three groups (see Figures 2-7). Overall, 

the three student groups had similar distributions on each of the covariates. That is, 

visually, the groups’ distributions appeared similar on each of the individual covariates. 

 Similar to the density plots, descriptive information for each of the three student 

groups also indicated that the groups’ distributions were similar on each of the covariates 

(see Table 1). Groups differed most on the number of transfer credits that were accepted 

by the university. For each of the three groups, the standard deviations for the number of 

transfer credits accepted at the university were high relative to the other covariates.  

Table 2 includes demographic information for each of the three student groups. 

Students were able to identify as more than one ethnicity; thus, the number of students 

represented in the columns in Table 2 is higher than the number of students indicated in 

each student group.  Because propensity scores would be computed via logistic 

regression, the data were screened for sparseness prior to conducting the analyses. 

Additionally, there was overlap in the distributions for each of the covariates across each 

of the three groups suggesting that there was adequate common support.  

  



39 

 

 
 

Research Question 1: Do motivation characteristics differ systematically between 

students in the honors program and students who qualified for the honors program 

but chose not to participate? Additionally, do honors students and the general 

student population differ in motivation? 

Prior to creating propensity score matches, it was important to determine whether 

groups differed systematically on motivation. That is, if groups did differ on motivation, 

it could indicate that students who chose to participate in the honors program are more 

motivated than the non-honors students who were invited to participate but chose not to. 

Three analyses of variance were conducted to evaluate whether the three groups of 

students differed on the motivation subscales: expectancy, value and cost. The three 

levels of the independent variable included three student groups: honors students, non-

honors students, and the GSP. If the motivation of the groups differed, it could indicate 

that motivation is associated with students’ participation in the honors program.  

Because the groups were so discrepant in size, careful attention was paid to the 

assumption of heterogeneity of variances. Variances were nearly identical in each 

instance. All possible variance ratios (F-max) between groups were near 1. 

Overall, there were no significant differences among any of the student groups on 

the three motivation subscales. The three groups did not differ on average expectancy for 

general education F(2, 4042) = .212, p = .809. Additionally, the three groups did not 

differ on average value for general education coursework F(2, 4024) = .142, p = .868. 

Finally, the three groups did not differ on perceived cost of general education coursework 

F(2, 3975) = .560, p = .571. The relationship between student groups and each of the 

three motivation subscales was miniscule (2 < .001), with student groups accounting for 
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less than 0.1% of the variance in general education course expectancy, value, and cost. 

Overall, there were no differences among honors students, non-honors students, and the 

GSP on the three motivation subscales. Thus, the absence of differences among student 

groups could indicate that motivation was not related to honors students’ self-selection 

into the program. Nonetheless, slight differences in motivation may still contribute to 

propensity scores (i.e., probability of participation). Thus, despite the lack of group 

differences on academic motivation, it was included in the creation of propensity scores 

in Research Question 2. 

Research Questions 2: Does using a different set of covariates to created matches 

(i.e., SAT scores versus ARS scores) provide a higher quality of propensity score 

matches? 

To answer the second research question, a series of nine PSM models were 

conducted via logistic regression (MatchIt; Ho et al., 2007). Thus, there were nine 

different conditions in this study resulting in nine different pairs of matched groups. Six 

conditions involved forming a matched comparison group of Non-Honors students. Of 

those six conditions, three groups were formed from the SAT covariate set and three 

matched groups were formed from the ARS covariate set. Within the two covariate set 

conditions, there were three matching conditions:  NN, NN with a caliper of 0.2 standard 

deviations and NN with a caliper of 0.1 standard deviations. The other three conditions 

involved forming matched comparison groups of students from the GSP. Each of the 

three conditions were formed from the SAT covariate set, as ARS scores were not 

available for the GSP. The GSP comparison groups were also formed under the same 
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three matching conditions: NN, NN with a caliper of 0.2 standard deviations, and NN 

with a caliper of 0.1 standard deviations. 

Numerical and visual inspections were conducted and compared across the nine 

conditions. The numeric diagnosing of matches included a comparison of the mean 

differences between the honors group and the comparison group on each of the individual 

covariates. Additionally, the variance ratio and standardized mean difference of the 

propensity scores between groups were examined. Visual diagnosis of matches included 

an inspection of individual covariates using a Quantile-Quantile (QQ) plot and a visual 

inspections of the distribution of propensity scores using jitter graphs and histograms.   

Though students were matched on the multivariate composite (i.e., propensity 

score) created from the covariates, it was important to determine how similar the matched 

groups were on each of the individual covariates. Table 3 displays the means, standard 

deviations, and standardized mean differences (i.e., effect sizes) on individual covariates 

across the nine matching conditions. Overall, both covariate sets resulted in groups that 

were similar on the individual covariate means and standard deviations for each of the 

three matching conditions. 

The standardized mean differences for individual covariates were compared for 

matches created in each of the six honors/non-honors matching conditions (Table 3). For 

the SAT covariate set, the standardized mean difference between honors and non-honors 

students’ means on each of the individual covariates was under d = 0.10. Matched pairs 

created from the ARS covariate set also had similar means on each of the covariates (d  < 

0.10), with the exception of the cost variable (d = -0.10). In the nearest neighbor with 0.2 

caliper matching condition, groups differed more on individual covariates when matches 
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were created from the SAT covariate set than when matches were created from the ARS 

covariate set. Specifically, standardized mean differences on SAT Verbal (d = 0.15) and 

cost (d = 0.12) were higher than that of any of the standardized mean differences for the 

covariates in the ARS set. In the nearest neighbor with 0.1 caliper matching condition, 

standardized mean differences were similar across the two covariate sets. For the SAT 

covariate set, the largest the standardized mean differences were for SAT Math (d = 0.16) 

and SAT Verbal (d = 0.18). Matched groups created from the ARS covariate set differed 

on expectancy (d = -0.16) and value (d = -0.14).  

The quality of matches created in the three honors/GSP conditions was 

comparable to the quality of matches created in the six non-honors conditions. The means 

and standard deviations were also similar across the three GSP matching conditions (see 

Table 3). In the NN matching condition, the two groups were the most disparate on 

standardized mean differences for SAT Verbal (d = 0.11) and value (d = -0.11). In the 

NN with 0.2 caliper matching condition, the honors and GSP groups differed more than 

the honors and non-honors matched samples. Specifically, the effect size for the mean 

differences between groups for value (d = -0.13), and the number of transfer credits 

accepted by the university (d = -0.15) were the most disparate. In the NN with 0.1 caliper 

matching condition, there were no notable standardized mean differences (i.e., above d = 

0.10).  

Overall, the standardized mean differences for individual covariates across the 

nine matching conditions were small. The largest standardized mean differences on 

individual covariates still fell under the benchmark for small effect sizes (Cohen, 1992; 

Normand, Landrum, Guadagnoli, Ayanian, Ryan, Cleary, & McNeil, 2001) and were less 
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than the recommended .25 standard deviations (Ho et al., 2007). Thus, the effect sizes 

associated with even the most disparate mean differences on individual covariates 

indicated that quality matches were made.  

In addition to comparing the covariates individually, the quality of matches was 

evaluated by examining each groups’ propensity scores on the multivariate composite 

(i.e., the propensity score). Table 4 displays the variance and means of each group’s 

propensity scores by covariate set and matching condition, and includes variance ratios 

and standardized mean differences between groups in each condition. The variance ratio 

is calculated by dividing the variance of the honors group (i.e., participants) propensity 

scores by the non-honors or GSP (i.e., non-participants) propensity scores. Ideally, the 

variance ratio (VR) should be close to one (Stuart & Rubin, 2008a). And, indeed, the VR 

was one in each of the nine conditions (see Table 4). Thus, the quality of matches based 

on the VR at each level was optimal.  

The SMD is calculated by subtracting the standardized mean propensity score 

value of the honors group (i.e., participants) from that of the non-honors and GSP groups 

(i.e., non-participants). Ideally, the standardized mean difference (SMD) between the 

propensity scores of two matched groups should be near zero. And indeed, the SMD was 

near zero for each of the conditions (see Table 4). Thus, based on both VR and SMD, the 

quality of matches was optimal across the nine conditions again suggesting high quality 

matches across each of the nine conditions. 

A final method for comparing the quality of matches involved visually diagnosing 

the matches. As an example, Figure 7 is a quantile-quantile QQ plot produced by the 

MatchIt package in R (Ho et al., 2007). In the QQ plot, the covariate (listed on the left) 



44 

 

 
 

for the treatment group is plotted against the same covariate for the untreated group. Note 

in the left half of Figure 7, the entire sample for the treated group is plotted by quantile 

against the untreated group. Note in the right half of Figure 7, the two matched groups’ 

scores by quantile are again plotted for each covariate. If the scores fall along the 45 

degree line, it indicates that there are no differences in the empirical distribution of scores 

(Ho et al., 2011).  

The QQ plot allows the researcher to visually compare how similar each group is 

at each quantile in the group’s distribution on each of the covariates overall (left column) 

and after creating matches (right column). Note that the majority of points remain near 

the center line for the matched QQ plots. This pattern indicates that participants and 

nonparticipants at each quantile in the distribution had similar scores on the covariates. 

Visual inspection of the QQ plots for each of nine conditions indicated that the groups 

were balanced on the individual covariates used to create propensity scores.  

A second method of diagnosis involves a visual inspection of jitter graphs. Figure 

8 displays the jitter graphs for the nine matching conditions (created via the MatchIt 

package in R; Ho et al., 2007). Note the propensity score scale along the x axis. Given 

that propensity scores serve as a method of providing a matched (balanced) comparison 

group, the jitter graphs provide a visual method for examining the balance of propensity 

score distributions across matched groups. The jitter graphs can also be used to 

preliminarily examine loss of information, which will be addressed in the third research 

question. For example, note in the lower left hand graph in Figure 8 that the honors 

student with the highest propensity score was not included in the matched sample. 
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Nonetheless, in each of the nine conditions, a comparison group was created that had a 

similar distribution of propensity scores. 

The distribution of propensity scores for the original full samples and the matched 

samples can also be visually compared via histograms. Figure 9 displays histograms for 

diagnosing matches created in the MatchIt package in R (Ho et al., 2007). Once again, 

note the similarity of the distributions of propensity scores of the matched groups, 

suggesting that high quality matches were made across the nine conditions.  

In sum, based on numeric and visual inspection, each condition resulted in quality 

matches. However, next it was important to evaluate any loss of information that may 

have resulted from the various matching conditions, particularly those that employed 

strict calipers. Thus, the amount of information lost when a stricter caliper was employed 

(i.e., 0.1 standard deviations) was evaluated in the third research question. 

Research Question 3: Can one of the different matching techniques (e.g., NN 

and NN with caliper distances of 0.1 and 0.2 standard deviations) provide high 

quality matches while preserving information and retaining honors students in the 

comparison?  

 To answer the third research question, the demographic representativeness of 

students retained in the nine matching conditions was explored. Given the high quality of 

matches across all nine conditions in the second research question, it paved the way for 

further evaluation. Specifically, loss of information was evaluated in this third research 

question. 

Loss of information was operationalized in this study as the retention of minority 

representation in the honors group. Table 5 displays the number of individuals by gender 
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and ethnicity across each of the nine conditions. Most notably, the number of Black 

students retained in the honors group was most impacted (in the honors-non-honors SAT 

covariate set condition). Of the original five Black males and ten Black females, only one 

male and one female were retained in the NN with 0.1 caliper condition. Conversely, 52 

of the original 65 White males and 73 of the original 89 White females were retained. 

Although students were lost from both ethnicities, proportionately more Black than White 

students were non-matched; thereby resulting in loss of information from the Black 

students. Other losses of minority representation in this condition included: two of five 

Asian males, the only Pacific Islander male, one of two American Indian females, two of 

three Hispanic males, and three of eight of Hispanic females. Similar trends in loss of 

information occurred in the other two matched groups as the caliper width decreased to 

0.2 and 0.1. 

Because several minority groups included only a few honors students, the use of a 

caliper resulted in the forfeit of minority group representation. Therefore, the final 

comparison of outcomes was no longer representative of the original honors population. 

Thus, estimates of the impact of the honors program may only apply to the population of 

students retained in the comparison group. Because the quality of matches was already 

high using NN matching, the loss of information that occurred as a result of the strict 

caliper matching was not compensated for by an increase in the quality of propensity 

score matches. In fact, the quality of all matches was high, regardless of matching 

condition. Therefore, given that there was no substantial loss of information for the NN 

condition, it made sense to champion the NN conditions.  
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Research Question 4: Are honors students significantly and/or practically different 

from non-honors students and students in the general population on outcomes 

targeted by the honors program?  

To answer the fourth research question, matched honors students and the 

comparison groups were compared on outcome measures across each of the nine 

conditions. Prior to comparing student groups on the outcomes, density distributions by 

student group were plotted for each of the outcome variables (see Figures 10-16). 

Overall, the groups’ were similar on both the fall 2012 and spring 2014 scores on the 

AMEX, GLEX, and the NW tests. The three student groups also had similar density 

distributions for spring 2014 cumulative GPAs.  

The outcome variables were not included in the data set prior to creating matches. 

Rather, all outcome variables were merged on to the data set only after creating matches. 

The internal consistency reliability estimates of scores for each of the outcome measures 

are indicated in Table 6. Also note that each of the matched samples across the nine 

conditions may include different subsamples of students. 

None of the students in the sample were assigned to complete all three of the tests 

during Assessment Day because of testing time constraints and cognitive fatigue 

considerations. Thus, by design, no students had complete data for the three tests. 

However, because students were randomly assigned to the particular tests they completed 

for Assessment Day, students with scores on the three cognitive tests (i.e., the AMEX, 

GLEX, and NW) represented a random subsample of students. 

Three 3x2 mixed ANOVAs were conducted for the three outcomes of interest to 

the honors program (AMEX, GLEX, and NW) for each of the nine conditions. 
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Independent t-tests were conducted to compare average sophomore-level GPA’s across 

the matched groups in each of the nine conditions. Because multiple ANOVAs and 

independent t-tests were conducted, the critical value was set at the α = .01 level to 

reduce the risk of making Type I errors.  

Table 7 includes the AMEX means, standard deviations, and eta squared values 

for each of the matched groups. Overall, the honors and the comparison groups’ average 

AMEX scores were similar in each of the nine conditions. The interaction effect of 

“group” by “time” was also not significant at the α = .01 level. The main effect of 

“group” was not significant at the α = .01 level, indicating that students in the honors 

group did not perform better than the comparison group on the AMEX. Finally, the main 

effect of “time” was also not significant, indicating that both honors and students in the 

comparison group did not perform significantly better on the post-test (i.e., spring 2014) 

than they had on pre-test. Overall, only 3% or less of the variance in AMEX scores was 

accounted for by the main effects and interaction effects across the nine conditions. 

Table 8 includes the GLEX means, standard deviations, and eta squared values for 

each of the matched groups. Again, the honors and the comparison groups’ average 

GLEX scores were similar in each of the nine conditions. The interaction effect of 

“group” by “time” was not significant at the α = .01 level. The main effect of “group” 

was again not significant at the α = .01 level, indicating that students in the honors group 

did not perform better than the comparison group on the GLEX. Finally, the main effect 

of “time” was also not significant, indicating that both honors and students in the 

comparison group did not perform significantly better on the second test (i.e., spring 

2014). Overall, 5% or less of the variance in GLEX scores was accounted for by the main 
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effects and interaction effects across the nine conditions. For the honors and non-honors 

ARS covariate set matched groups, there was a small practically significant main effect 

for time that increased as the caliper distance decreased.   

Table 9 includes the NW means, standard deviations, and eta squared values for 

each of the matched groups. The sample sizes of honors, non-honors, and GSP students 

for whom there was data was not ideal across the nine conditions. Once again, the honors 

and the comparison groups’ average NW scores were similar in each of the nine 

conditions. The interaction effect of “group” by “time” was again not significant at the α 

= .01 level. The main effect of “group” was again not significant at the α = .01 level, 

indicating that students in the honors group did not on average perform better than the 

comparison group on the NW. Finally, the main effect of “time” was not statistically 

significant, indicating that both honors and students in the comparison group overall did 

not perform significantly better on the second test (i.e., spring 2014). However, note that 

although the interaction was not statistically significant, there was a large practical effect 

(Kirk, 1996). That is, 15% of the variance in NW-9 scores could be attributed to the 

interaction. 

Although the scores for the overall honors sample started near those of the overall 

GSP sample (see Table 6), the subsamples of students included in this matched condition 

are not reflective of the original samples (see Table 9 and Figure 17). Specifically, after 

matching, the subsample of 10 honors students (Honors 0.2) selected in this condition 

scored similarly well on both the pre-test and post-test. However, given that the overall 

honors sample scored approximately four points lower than the honors subsample on the 

NW test and slightly increased on the post-test, the matched honors subsample was no 
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longer representative of the original honors sample. Thus, the honors subsamples’ scores 

on the NW were no longer reflective of the overall honors groups’ scores on the NW.  

One would expect the GSP subsample to differ from the original GSP sample because we 

were creating a matched group on their propensity for treatment, the counterfactual.  

However, given that the honors groups’ participation in treatment is known, one would 

hope that their average scores would not be altered through matching.  

Note that averages on the NW test across the nine conditions represented 

outcomes of potentially different groups of students. Recall that students from the 

original honors or non-honors/GSP pool of students may or may not have ended up in the 

final matched samples. Thus, a practically significant interaction was present for the 

honors versus GSP comparison in the 0.2 caliper condition only after two honors students 

and two GSP students were cut from the NN comparison groups. Moreover, note that the 

practical significance of the interaction term was attenuated as additional students were 

dropped from the sample in the 0.1 caliper condition.  

Table 10 includes GPA means, standard deviations, and effect sizes (i.e., Cohen’s 

d) for each of the nine conditions. Honors students’ GPAs did not significantly differ 

from the comparison groups at the α = .01 level across each of the nine conditions. 

However, in the honors/non-honors SAT covariate set NN condition, there was a small 

effect size with the non-honors subsample of students having higher average GPAs than 

the honors student subsample.  

Overall, there were no statistically significant differences between the honors and 

comparison groups across the nine conditions on the AMEX, GLEX, NW, and GPA. 

However, in one condition, the interaction effect for the NW was practically significant 
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and there were small to medium practically significant increases in GLEX scores across 

time for the ARS covariate set conditions. Additionally, there was a small effect size 

between the honors and non-honors subsamples on GPA for the SAT covariate set 

conditions. Thus, the findings across the nine conditions were not the same.  

Because practically significant differences were not found systematically across 

the nine conditions, a researcher might draw different inferences depending on the 

condition he examines. It is important to keep in mind that each of the outcome 

comparisons was conducted using different subsamples of students. As the caliper 

decreased, the sample size decreased as well. Therefore, the representativeness of the 

subsample to the original full sample of students is an important consideration as 

inferences are drawn.   
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Chapter Five 

Discussion 

 The purpose of this study was to evaluate propensity score matching (PSM) 

techniques in the context of higher education assessment. Specifically, the four research 

questions addressed implementation considerations and decisions that assessment 

practitioners would be faced with when using PSM techniques to assess university 

programs. The first research question compared honors students, non-honors students, 

and students in the general student population (GSP) on motivation measures prior to 

creating matches. The second research question compared the quality of matches for 

different comparison groups created from two different covariate sets. The third research 

question weighed the improvement in quality of matches against loss of student 

demographic information as caliper distances became stricter (e.g., 0.2 and 0.1 standard 

deviations). Finally, the fourth research question compared matched groups across the 

nine conditions on academic outcomes of interest to the honors program. 

Research Question #1 

Prior to creating propensity score matches from a covariate set that included three 

motivation subscales, the three student groups’ motivation scores were compared via one-

way ANOVA. Honors students, non-honors students, and GSP students did not 

significantly or practically differ on any of the three motivation subscales. The finding 

that students did not differ could indicate that motivation was not related to honors 

students’ self-selection into the program. If motivation was a confounding variable, levels 

of expectancy, value, and cost for the honors students would be expected to differ 

systematically from the other two groups. Additionally, a lack of differences on average 



53 

 

 
 

motivation scores or in the density distribution plots for each of the covariates may have 

foreshadowed the results of the second and third research questions. Specifically, the fact 

that students did not differ on the motivation measures suggested that motivation was not 

related to honors students’ self-selection into the program 

Research Question #2 

 The quality of matches was diagnosed numerically and visually across the nine 

conditions. Overall, the quality of matches was high. The SAT and ARS covariate sets 

did not result in any noticeable differences in the quality of the matches created. 

Numerically, the mean values for individual covariates were well-balanced across the 

nine conditions. The variance ratios and standardized mean differences were also either at 

or near optimal levels, indicating that groups had similar distributions of propensity score 

values. Finally, visual inspection of the QQ plots, jitter graphs, and histograms suggested 

high quality, balanced matches across all of the nine conditions.  

Although the purpose of implementing a caliper distance was to increase the 

quality of matches, no improvements in quality of matches were observed as the caliper 

distance was reduced to a distance of 0.1 standard deviations. Moreover, because the 

quality of matches was near optimal using only NN matching, the quality of matches did 

not improve when a caliper distance was used. The creation of stricter matches within the 

caliper distance of 0.2 and 0.1 standard deviations merely resulted in the exclusion of 

students from the honors and comparison matched groups. Thus, it was important to 

determine which students were excluded from analyses when the stricter caliper distance 

was used to create matches.  
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Research Question #3 

 To evaluate the loss of demographic information, the number of minority students 

excluded from the sample at each caliper distance was inspected. Overall, students from 

minority groups (e.g., Asian, Pacific Islander, etc.) were excluded at a proportionately 

higher rate than White students. Because there were few minority students in the original 

honors program sample, the loss of these students notably altered the composition of the 

comparison groups. Thus, the comparison groups created using a caliper distance of 0.2 

and 0.1 standard deviations were not representative of the original honors student 

population.  

Overall, minority students were at a higher risk than the majority students of 

being excluded because ethnicity was dummy coded and used to calculate propensity 

scores. As the caliper distance was reduced, the number of potential matches that had a 

similar multivariate pattern of scores decreased. Thus, it became more difficult to match 

minority students and they were consequently dropped from the comparison sample. 

Additionally, because a higher proportion of honors students were female, males were 

also more likely to be excluded as the caliper distance was reduced.  

The exclusion of minority students from the final outcome comparisons resulted 

in honors samples that were not wholly representative of the original honors population. 

Thus, the quality of inferences an assessment practitioner is able to make regarding the 

impact of the honors program on all participants may be depreciated when a strict caliper 

is applied. For example, an assessment practitioner may be interested in generalizing the 

estimated impact of the honors program on student GPA to all honors students. However, 

he must first take into account the fact that the demographic composition of the 

comparison groups is no longer representative of the overall honors student population. If 
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differences in the outcome (e.g., GPA) are also correlated with students’ demographic 

characteristics, it would be inappropriate to generalize the estimate to the entire honors 

population.  

The loss of minority students in outcome comparisons also resulted in a loss of 

information regarding how specific minority students performed on outcome measures. 

For example, an assessment practitioner could be interested in how the program outcome 

of GPA differs between White and Asian honors students. However, if the composition 

of the comparison groups again differs from the overall honors population, the estimate 

may not be representative of the two ethnic groups in the original honors population. One 

solution for the practitioner interested in preserving the representation of all demographic 

sub-groups would be to exact match on those sub-groups.  For example, if the sample 

size is large enough, the researcher may want to create exact matches for Black females 

and Black males, and then create propensity scores for the exact matched sub-groups.  

Finally, there is a cost/benefit decision that must be made regarding the use of 

calipers and the potential loss of information. In the present study, the quality of matches 

did not increase as the caliper distance was reduced. Hence, the loss of information did 

not come with any benefit. Moreover, the comparison of individual covariates indicated 

that the NN with a caliper of 0.1 actually formed the worst quality of matches. Had the 

quality of matches improved markedly through the use of a caliper, the quality of 

inferences might have also been improved. Thus, the benefit associated with using a 

caliper might be outweighed by the cost associated with losing minority representation in 

the final comparison of outcomes.  
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Research Question #4  

 To answer the fourth research question, 2x2 mixed ANOVAs and independent 

samples t-tests were conducted to compare student performance on the outcome 

measures. Outcome measures were compared for the student groups in each of the nine 

conditions. The main effects of time (fall 2012 and spring 2014) and group (honors 

versus comparison groups) were investigated as well as an interaction term (time*group).  

Overall, there were no significant differences between groups on the outcomes of 

the AMEX, GLEX, NW, or on student GPA. However, of practical significance were the 

small to moderate increases in GLEX scores across the ARS covariate set conditions, the 

interaction of NW scores for honors and GSP students when a caliper of 0.2 was 

implemented, and the small effect between honors and GSP students in the NN SAT 

covariate set condition. Because the honors and GSP averages changed as a function of 

sampling, it is possible that sampling bias was introduced as the original sample of 

honors students was reduced. This finding may also shed light on ways in which 

estimates can be biased based on the matching choices a researcher makes.  

The impact of losing information (i.e., students) from the honors versus GSP 

condition using a caliper of 0.2 introduced sampling bias. Particularly concerning was a 

change in the pattern of the honors subsamples’ means from the original sample’s pattern 

of means. Specifically, the honors subsample average NW pre-test scores were four 

points higher than the overall honors sample NW pre-test scores (See Tables 6 and 9). 

One might expect the GSP scores to differ after matching, because the matched pairs 

were created on their propensity for participation in the honors program, the 

counterfactual. However, given that honors student participation was known, altering 

their scores through matching was not ideal. Thus, sampling bias could potentially lead to 
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different, yet inaccurate, conclusions after matching. Because the actual performance in 

the overall sample of honors students on the NW test is known, it is clear that the 

subsample of students did not reflect the performance of the overall honors group.  

 Figure 17 shows the honors and GSP groups’ NW scores overall (solid line and 

long-dashed line) and for the two subgroups of students in the 0.2 caliper condition 

(dotted line and small-dashed line). The honors and GSP pre-test means are further apart 

for the subsamples of students in the caliper of 0.2 condition. The sampling bias 

associated with the reduced samples resulted in a practically significant interaction. 

However, it is important to note that only eleven honors students and 21 non-honors 

students remained in this condition for the NW comparison. In the honors versus GSP 

caliper of 0.1 condition, the loss of additional students resulted in additional sampling 

bias and no practically significant findings.  

Summary 

 Overall, the honors, non-honors, and GSP groups had very similar distributions on 

each of the covariates and outcome measures (see Figures 1-6 and 10-16). Thus, there 

was a high level of common support to creating quality matches using the covariates 

selected for the current study. Because the three student groups did not differ in their 

distributions on the motivation subscales, it’s possible that motivation is not a 

confounding variable related to self-selection into the honors program. Therefore, 

motivation is likely not appropriate to use as a covariate when creating propensity score 

matches. The university at which this study was conducted is fairly selective. Thus, it is 

possible that all students at the university are similarly highly motivated resulting in 

similar group averages on the motivation subscales. Additionally, it is possible that 

unknown factors are driving students’ participation in the honors program. Because only 
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measured covariates are accounted for in PSM, unmeasured confounding variables result 

in biased estimates of intervention effects.  

Best practices in PSM include the use of theoretically-sound variables as 

covariates (Brookhart et al., 2006; Steiner et al., 2010). In practice, however, covariates 

that are theoretically related to self-selection might not actually drive student 

participation. In the current study, approximately 20% of eligible students decided to 

participate in the honors program and 80% decided not to participate despite being 

eligible. Thus, it was anticipated that the motivation subscales of expectancy, value and 

cost would be related to students’ self-selection into the honors program. However, 

similar score distributions on the motivation measures indicated that the student groups 

did not differ systematically. Thus, it may be that motivation for general coursework is 

not different for the three groups, but that other underlying factors related to motivation 

are different. For example, because there is a monetary award (scholarship) attached to 

the honors program, a different form of motivation could be related to students’ 

participation. For example, perhaps those who opt in to the honors program are more 

extrinsically-motivated than those who opt out. Moreover, there is the title attached to 

being an “honors student;” perhaps there is a form of motivation attached to the status. In 

sum, it is possible that motivation was operationally defined in the current study in a way 

that is not pertinent.  

Given that honors students are required to complete rigorous coursework and 

complete an honors thesis as a part of the program, perhaps a motivation-related variable, 

such as work-avoidance, would be more strongly related to self-selection than the 

variables selected for the current study. In the future, it might be worthwhile for 
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assessment practitioners to consider alternate covariates when creating matched groups 

from similarly highly motivated students. Additionally, practitioners may want to 

examine the distribution of potential covariates between participants and nonparticipants 

prior to creating matches even when the covariates are theoretically sound.  

Although not currently suggested in the propensity score literature, assessment 

practitioners may wish to evaluate the relative contribution of each covariate in the 

creation of propensity scores. For propensity scores created via logistic regression, 

practitioners can conduct a logistic regression model including the covariates as 

independent variables to predict participation (dependent variable). Within the model, the 

relative contribution of each covariate can be evaluated to determine how much each 

covariate contributes to predicting student participation. Additionally, conducting the 

logistic regression model also allows assessment practitioners to evaluate how well the 

set of covariates predicts participation via examination of the null deviance explained.   

Limitations 

Several limitations to the current study exist. Of particular interest is that the 

AMEX, GLEX and NW measures were collected under low-stakes testing conditions at 

both time points. Although small increases are consistently measured pre-to-post at the 

institution at which this study was conducted, there are known motivation issues 

associated with low-stakes tests (e.g., Wise & DeMars, 2005). Specifically, sophomore 

students tend to report lower test-taking motivation during the second Assessment Day 

than on the first Assessment Day. Thus, scores on the three tests administered during the 

second Assessment Day may not be reflective of students’ actual knowledge but rather 

their willingness to put forth effort on the tests. Future studies may want to consider 
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incorporating outcome measures that are course/program-embedded or conducted under 

different stakes. 

Another limitation to the current study is that not all honors students may have 

completed general education courses that aligned with the outcome measures (i.e., 

AMEX, GLEX, and NW tests). Thus, honors students might not have received the 

“treatment” of taking courses with smaller class sizes before completing the post-tests as 

a sophomore. Because course completion was not taken into consideration for the 

purposes of the current study, it is unknown whether honors students’ scores on the 

outcome measures is representative of how students would perform upon completing the 

general education courses.  

The reduction in sample size, and consequently the number of individuals 

included in the final comparisons, is another limitation to this study. Particularly on the 

NW test, all of the subsamples created in the caliper conditions had fewer than 20 

students. Thus, as students were dropped from the comparisons, omitted scores were 

more likely to have a greater impact on the group means than if the sample were large. 

For example, in the SAT covariate set condition of honors versus GSP with a caliper of 

0.2, the loss of two students from both groups resulted in a practically significant 

interaction on the NW test. Particularly concerning was the distortion of the honors’ 

means on the NW test, which after matching were no longer representative of the original 

means. However, the results were not practically significant as additional students were 

lost in the 0.1 caliper condition. Therefore, the 0.2 caliper condition may illustrate issues 

with sampling error that can occur with the reduction of sample size. However, additional 

research is needed regarding the use of PSM techniques in higher education assessment. 
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Future Research 

More research is needed on PSM techniques in the context of higher education 

assessment. Although applied PSM studies within the educational context have become 

more frequent in recent years, further research is needed regarding how well these 

techniques operate within the social sciences. Specifically, it is unknown which 

covariates are important to include across different educational contexts. For example, it 

may be important to include extraversion as a covariate when evaluating educational 

programs that require high levels of social interaction. On the other hand, openness might 

be an important covariate to include for study abroad assessment. Because the potential 

reasons underlying self-selection may be as varied as the university programs students 

select into, it is important to emphasize that covariates are best chosen on a program-by-

program basis.  

For the future assessment of honors programs, researchers may wish to 

investigate other forms of motivation than expectancy, value, and cost for students’ 

coursework. Because honors students were not different from other students on the form 

of academic motivation employed in the current study, it is likely that it did not contribute 

to students’ self-selection into the honors program. Student motivation related to status 

(i.e., being an “honors student”) or financial benefits (scholarships), however, might 

differentially motivate student participation. Additionally, there may be differences in 

work avoidance among honors and non-honors students, particularly if the honors 

program requirement of completing a thesis deterred students from participating.  

Finally, simulation studies could shed light on how well PSM techniques perform 

in the social sciences. Though numerous simulation studies have been conducted in the 
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context of economics and medicine (e.g., Austin, 2009b; 2011), studies have yet to be 

replicated using covariates related to self-selection in educational research. For example, 

a researcher could simulate data with covariates adjusted at varying degrees of 

relatedness to self-selection and the program outcomes. Until such studies are conducted, 

it is unknown whether PSM techniques operate differently in the context of social science 

research.   

Implications 

 In the current study, ARS scores did not prove useful above and beyond the 

standardized test scores when creating matches using the two sets of covariates. Across 

the six non-honors matching conditions, similarly high-quality matches were made. 

Additionally, there were no discernable differences in student performance on the honors 

program outcomes using either the ARS or the SAT covariate sets. Thus, it might be 

worthwhile to explore using SAT scores in addition to other variables as an honors 

program eligibility criterion.  

 Additionally, the underlying reasons that approximately 80% of eligible student 

opt not to participate in the honors program remain unknown. Because student motivation 

was similar among honors and non-honors students, there are likely other (unobserved) 

variables contributing to student participation. If the mechanisms related to self-selection 

into a program are unmeasured or not known, PSM techniques cannot effectively be used. 

However, if variables related to self-selection are known, then it may also be possible to 

intervene in order to promote student participation. If interested in exploring reasons that 

students opt into the honors program, it may behoove honors program administration to 
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conduct focus groups in order to shed light on some of the factors associated with 

students’ decisions to participate.  

Conclusions 

Although more research is needed on PSM in the context of higher education 

assessment, it is a promising method that offers a way of accounting for confounding 

variables in applied contexts. Because the use of PSM techniques has become more 

frequent in recent years, it is important to investigate how to best use these techniques 

within the realm of assessment. Specifically, the underlying motivations for students’ 

participation in university programs may vary widely and uniquely with each program. 

Thus, additional research is needed to understand how to best use PSM techniques in 

educational assessment in order to better estimate the impact of university programs on 

students.  
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Table 2.  

Demographic Information for Honors, Non-Honors, and General Student Population 
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Figure 1. Area of common support across propensity score distributions (ranging from 0 

to 1). The area of common support is indicated in the red dashed window.  

 

 

 

Figure 2. Density plot of SAT Math scores plotted for Honors, Non-Honors, and the 

General Student Population student groups. 
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Figure 3. Density plot of SAT Verbal scores plotted for Honors, Non-Honors, and the 

General Student Population student groups. 

 

Figure 4. Density plot of transfer credits accepted at the university plotted for Honors, 

Non-Honors, and the General Student Population student groups. 
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Figure 5. Density plot of General Education expectancy scores plotted for Honors, Non-

Honors, and the General Student Population student groups. 

 

Figure 6. Density plot of General Education value scores plotted for Honors, Non-

Honors, and the General Student Population student groups.  
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Figure 7. Density plot of General Education cost scores plotted for Honors, Non-Honors, 

and the General Student Population student groups. 
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Figure 8. Example of QQ Plots produced by the MatchIt Package in R for visual 

diagnosing of matches (Ho et al., 2007). 
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Figure 11. Density plot of Fall 2012 American Experience (AMEX) scores plotted for 

Honors, Non-Honors, and the General Student Population student groups. 

 

Figure 12. Density plot of Spring 2014 American Experience (AMEX) scores plotted for 

Honors, Non-Honors, and the General Student Population student groups. 
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Figure 13. Density plot of Fall 2012 Global Experience (GLEX) scores plotted for 

Honors, Non-Honors, and the General Student Population student groups. 

 

 

Figure 14. Density plot of Spring 2014 Global Experience (GLEX) scores plotted for 

Honors, Non-Honors, and the General Student Population student groups. 
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Figure 15. Density plot of Fall 2012 Natural World (NW9) scores plotted for Honors, 

Non-Honors, and the General Student Population student groups. 

 

Figure 16. Density plot of Spring 2014 Natural World (NW9) scores plotted for Honors, 

Non-Honors, and the General Student Population student groups. 
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Figure 17. Density plot of Spring 2014 student GPA plotted for Honors, Non-Honors, 

and the General Student Population student groups. 
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Figure 18. Graph of pre-test and post-test scores on the NW test for Honors and the 

General Student Population student groups in the NN with a caliper distance of 0.2 

standard deviations and the original sample. 
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