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Abstract 

Given coefficient alpha’s wide prevalence as a measure of internal reliability, it is 

important to know the conditions under which it is an appropriate estimate of reliability.  

The present paper explores alpha’s assumption of uncorrelated errors when used with 

ordinal data.  Alpha overestimates true reliability when correlated errors are present.  In 

this paper, I use a simulation study to recreate three mechanisms proposed to create 

correlated errors in ordinal data.  The first mechanism, misclassification error, occurs 

when there are correlated measurement errors present in the data.  The second 

mechanism, grouping error, occurs when there are not enough categories to represent the 

construct in question.  The final mechanism is transformation error, which occurs when 

observed data do not match the distribution of true scores.  Results indicated that 

misclassification and transformation error caused correlated errors, but only 

misclassification error caused correlated errors that were large enough for alpha to 

overestimate true reliability.  Researchers should consider the assumption of correlated 

errors when reporting and making decisions based on alpha’s value alone.  
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Chapter I: Introduction 

Coefficient alpha is a popular estimate of a scale’s internal reliability.  As such, it 

is reported in nearly every test manual and with nearly every published scale.  According 

to Sijtsma (2009a), over 7,000 papers have citations for alpha, and many more do not cite 

a source when using the coefficient.  Alpha is discussed and reported in journals ranging 

from highly technical, such as Psychometrika, to applied and substantive, such as Journal 

of Applied Psychology and Personality and Individual Differences. Oftentimes, alpha is 

the only reported reliability estimate, and decisions about the suitability of a scale’s 

reliability are made based on alpha’s value alone.   

Despite alpha’s widespread use and popularity, there are a number of assumptions 

associated with alpha that are unlikely to be met in practice.  These assumptions, 

discussed in more detail in the literature review, are tau-equivalence and uncorrelated 

errors.  In this paper, I focus on the assumption of uncorrelated errors.  Correlated errors 

occur when two or more items on a test share variance above and beyond the variance 

they share with other items on the test.  That is, some aspect unrelated to the relevant 

construct is causing subsets of items to covary more with each other than they do with the 

other items on the test.  Previous research (in the form of mathematical proofs as well as 

simulation work) has shown that when errors are positively correlated, alpha 

overestimates true reliability (e.g., Gu et al., 2013; Raykov 2001).  Given alpha’s 

prevalence, it is important that researchers understand the conditions under which alpha 

is an accurate estimate of reliability.  Otherwise, researchers run the risk of making 

inappropriate conclusions about the suitability of their scales.   
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Research has established that correlated errors can occur as a result of the format 

of the test or item wording (e.g., Green & Yang, 2009a).  Additionally, many researchers 

believe that error correlations may occur due to other item or response scale properties, 

but do not elaborate on the mechanism(s) by which this occurs (e.g., Lucke, 2005; 

Shelvin, Miles, Davies, & Walker, 2000).  The exception is a paper by Johnson and 

Creech (1983), who suggest that categorizing data from a continuous underlying 

construct could result in correlated error terms.  More specifically, correlated errors could 

result from the use of ordered categorical data via three specific mechanisms.  The first of 

these mechanisms is called grouping error, and is thought to occur when there are not 

enough categories to fully represent the construct in question.  The second mechanism is 

transformation error, hypothesized to occur when the underlying continuous distribution 

does not match the observed categorical distribution of scores in terms of skew.  The final 

mechanism is misclassification error, which occurs when error score elements cause 

scores to be classified differently than they would have been if they had been classified 

by true scores only.  Each of these mechanisms can cause observed categorized scores to 

be more related to one another than the true scores would indicate.  I expand on these 

issues in the literature review.   

Positive error correlations should cause alpha to overestimate true reliability, but 

in a pilot simulation study, I found that even with grouping and transformation error 

introduced into the categorized scores, alpha actually underestimated true reliability for 

categorized items.  This is likely due to the fact that Pearson Product-Moment (PPM) 

correlations were used in all calculations, and it is well known that PPM correlations are 

attenuated when used with ordinal data (Bollen & Barb, 1981).  In fact, as the number of 
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categories decreased and the skew of the categorized data increased (theoretically causing 

increased grouping and transformation error, respectively), alpha underestimated true 

reliability to a greater extent, which is exactly the opposite of what Johnson and Creech 

(1983) would predict.  This finding perfectly aligns with what Bollen and Barb (1981) 

would predict, however.  Therefore, it is unclear from my pilot study if Johnson and 

Creech’s (1983) mechanisms did cause correlated errors that were smaller in magnitude 

than the effects of the correlation attenuation, or if these mechanisms did not cause error 

terms to be correlated at all.  

Given alpha’s prevalence and the results of the pilot study, it is important to 

determine if the mechanisms proposed by Johnson and Creech (1983) actually do cause 

correlated error terms. If so, alpha may not be appropriate for ordinal data.  Therefore, in 

the present paper, I will seek to answer the following questions: 1) Are the mechanisms 

suggested by Johnson and Creech (1983) actually causing correlated error terms in 

categorical data?  2) If so, are the correlated error terms causing alpha to overestimate 

true reliability, or is alpha underestimated due to the correlation attenuation?   

To answer the questions above, I will use a simulation study in which I will 

generate continuous true scores and apply the three categorization mechanisms proposed 

by Johnson and Creech (1983).  I will calculate the true reliability for each dataset in 

order to estimate the extent to which reliability estimates are biased.  Finally, I will 

examine the extent to which errors are correlated, and the extent to which error 

correlations (if present) influence the bias of the estimates.   

Given the opposing forces of correlation attenuation and correlated errors, it is 

difficult to predict alpha’s performance with categorical data.  Nonetheless, I hypothesize 
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that coefficient alpha will tend to underestimate true reliability, based on the results of the 

pilot study.  I further predict that grouping error and transformation error will not cause 

correlated error terms in the data, but that misclassification error will.  

In the following chapters, I start with a review of the literature relevant to alpha’s 

assumption of uncorrelated errors.  This section starts with an introduction to Classical 

Test Theory (CTT), and the definition of reliability under CTT.  Then, I present an 

alternative way to conceptualize reliability under a Structural Equation Modeling (SEM) 

perspective.  Next, I turn to different ways to estimate reliability, starting with alpha, and 

then move to SEM-based reliability estimates.  Within the section about alpha, I review 

the following issues: 1) the assumptions of alpha, 2) previous simulation work dealing 

with the uncorrelated errors assumption, and 3) the role of categorical data.  Within the 

section concerning SEM-based estimates, I discuss previous work that created SEM 

estimates that do not have some of the same assumptions of alpha.  Finally, I present my 

methods for addressing my hypotheses in detail. 
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Chapter II: Literature Review 

Classical Test Theory and some Definitions 

Much of this paper utilizes the framework of Classical Test Theory (CTT).  CTT 

states that for any person’s observed score (X) on a test item there are two components: 1) 

a true score (T) that represents the person’s actual score on that item and 2) an error 

component (E) (Crocker & Algina, 1986). That is, for person i and item j: 

��� � ������� (1) 

This equation holds for an individual item j on a test and easily extends to a 

summed test score. According to CTT, true scores for any person and item or test remain 

the same across test administrations, but E scores are completely random.  If the same 

person were to take the same test comprised of the same items repeatedly, without being 

able to remember their responses from previous administrations, they would obtain 

different observed scores due to differences in error scores; however the true score for 

each item (and, therefore, summed test score) would be the same for every 

administration.  The E scores, on the other hand, are random and would differ from 

administration to administration, but at infinitum would sum to zero.  Thus, the average 

of an infinite number of observed scores for a person on an item or a test equals that 

person’s true score on that item or test.  Mathematically, this statement is equivalent to 

Equation 2: 

lim��
∑ ��������  �  ��� 

(2) 

where m is the number of administrations.  Unfortunately, it is usually not possible to 

give a person the same test multiple times without some practice effects altering the 

results.  Even if it were possible to eliminate practice effects, a person would need to take 
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the test an infinite number of times to obtain an accurate true score, which is obviously 

not possible (Crocker & Algina, 1986).  Therefore, a true score can never be directly 

measured; however, CTT and the theoretical true score will serve as extremely helpful 

frameworks for the remainder of this paper.  

Because true scores cannot be directly measured, other approaches to identifying true 

score components and error components in observed scores have been developed that rely 

on alternate test forms.  Alternate test forms can be parallel, tau-equivalent, essentially 

tau-equivalent, or congeneric.  In general, the relationship between two tests c and d can 

be described by Equation 3: 

�� � ��� � ����� � ��� (3) 

such that a and b are constants, T is the true score on tests c and d, respectively, and E is 

an error term.  This equation describes the relationship between scores on any two tests or 

any two items on a single test.  The properties of a, b, and E depend on the type of 

alternate test forms. 

Parallelism is the most restrictive and strongest relationship between two tests.  

CTT defines parallel tests as measuring the same construct in identical units of 

measurement with the same precision (Raykov, 2001).  Mathematically, this is equivalent 

to Equation 3, with the following restrictions (Gu, Little & Kingston, 2013): 

�� � �� � �  � �� � 0 (3.1) 

�� � �� � �  � �� � 1 (3.2) 

������ � � � ������ (3.3) 
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for tests with k items.  As such, parallel tests have equivalent true scores, true score 

means and equivalent true score and error variances (and therefore equivalent observed 

score variances).   

A weaker relationship between two tests is described by tau-equivalence.  When 

tests are tau-equivalent, they measure the same construct with the same units of 

measurement, although possibly on a different scale or with a different degree of 

precision (Raykov, 1997).  Tau-equivalent tests meet assumptions (3.1) and (3.2) but may 

not meet assumption (3.3) (Gu et al., 2013).  Thus tau-equivalent tests have equal 

observed score means and equal true score variances, but unequal error variances and 

observed score variances.  A slightly weaker condition than tau-equivalence is essential 

tau-equivalence.  Essentially tau-equivalent tests meet assumption (3.2), but not 

necessarily (3.1) or (3.3) (Gu et al., 2013). In other words, true scores from essentially 

tau-equivalent tests only differ by a constant, resulting in equal true score variances but 

unequal observed score means.  Finally, two test forms can be congeneric.  Although 

congeneric tests measure the same construct, they do so with different units of 

measurement and precision (Komaroff, 1997).  Congeneric tests do not meet any of the 

assumptions associated with Equation 3 and have unequal true scores and true, error, and 

observed score variances.   

Alternate test forms can be considered as parallel, tau-equivalent, or congeneric, 

and items within a test can also be described as having those relationships.  For example, 

a test with parallel items would have items with equivalent true scores, true score means 

and equivalent true score and error variances (and therefore equivalent observed score 

variances).   
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Reliability under CTT 

 Reliability of a scale is an important concept in psychometrics, and an idea that is 

inextricably intertwined with Classical Test Theory (CTT).  Note that this paper focuses 

exclusively on internal reliability of a scale, and not on alternate forms of reliability such 

as test-retest reliability or interrater reliability.  A scale’s internal reliability describes the 

extent to which that scale is able to measure the construct in question without the 

influence of measurement error from the use of different questions.  In other words, 

measures of internal reliability quantify the extent to which the use of different scale 

items contributes to error (Cortina, 1993).  Therefore, a scale with high internal reliability 

has items that are consistent enough that they are not causing test scores to have a large 

error component.  Conversely, a scale with low internal reliability has items that are 

different from one another in such a way that scale total scores have a large error 

component.  Put differently, error scores are the part of an observed score that are 

reflective of random effects; that is, random variance unexplained by true scores.  If an 

item is, for example, measuring an irrelevant construct or has idiosyncratic wording, it 

will be less related to other items on the test, which would harm the internal reliability of 

a test.  CTT assumes that errors are random and therefore uncorrelated, but it is possible 

that some aspects of error could be systematic.  I will explore this idea further in the 

“Estimates of Reliability” section, below.  

Under CTT, reliability is defined as the ratio between true score variance and total 

test variance (Equation 4).  Reliability can equivalently be defined as the squared 

correlation between the true and observed scores on a test (Equation 5).   
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� � �����
����� 

(4) 

� �  �!"#�� (5) 

In the equations above, reliability increases as true score variance increases 

(holding other sources of variation constant).  Also, true score variance and error score 

variance are inversely related to one another; given a constant total test variance, as true 

score variance increases, error score variance decreases.  Thus, true reliability is the 

proportion of total test variance explained by true score variance.   

As noted above, however, these equations are strictly theoretical, because true 

scores are not observable or directly measurable.  A more practical definition of 

reliability uses the idea of parallel tests.  According to Sijtsma (2009b), reliability can be 

defined by the product-moment correlation between two parallel tests.  If two tests are 

truly parallel, then the true components of the scores would correlate, but the random 

error components would not. Thus if there is a smaller error component, the correlation 

between the tests and therefore the reliability of each test would be greater.  Parallel tests 

are based on the idea of true scores as well, so it is difficult to show that tests meet the 

assumption of parallelism.  Thus, none of these definitions are practical for objectively 

measuring and reporting internal reliability for a scale.  There are a number of ways to 

estimate true reliability, although none do so perfectly.  These methods are discussed in 

the section, “Estimates of Reliability.”  First, reliability is explored from another 

perspective. 

Reliability under SEM 

Reliability can be viewed through a structural equation modeling (SEM) 

perspective as well.  According to Sijtsma (2009b), SEM techniques for assessing 
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reliability are becoming more common as SEM software has become more readily 

available for researchers.  Just as scores can be described in a CTT framework (Equation 

1), a score for person i and item j can be described using an SEM-based equation as well 

(Equation 6): 

��� �  $� ��� � ��� (6) 

such that $� is a factor loading for a given item, given a single-factor scale.  To discuss 

reliability under an SEM framework, it is important to understand the concepts of 

dimensionality and factor loadings.   

Dimensionality refers to the number of factors a scale has.  In this paper, the focus 

will be on unidimensional scales, although many of the concepts can be extended to 

multi-dimensional scales as well.  In SEM, factor loadings reflect the relationship 

between an item and the construct it is measuring (called a latent variable or a factor in 

SEM).  Factors are not directly observed, but rather are inferred from a combination of 

observed variables.  For example, imagine a five-item scale that claims to measure 

construct Γ (which could be any number of psychological constructs, such as depression, 

self-efficacy, sense of belonging, etc.).  All five items share some amount of variance, 

and SEM posits that it is caused by the presence of Γ.  All of the items “load” on Γ to a 

certain extent; a high factor loading indicates that Γ can explain a large amount of the 

variance in that item.  In fact, if an item has a standardized factor loading of $�  on a 

factor, then that factor can explain �$��� of the total variance in that item (Raykov & 

Marcoulides, 2010).  In many ways, a factor is like a true score as it does not contain any 

measurement error.  Therefore, factor loadings are directly related to true reliability under 
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a unidimensional model; larger factor loadings reflect greater amounts of shared variance, 

and a smaller amount of error, and true reliability is greater.   

Under an SEM framework, reliability can be conceptualized as the extent to 

which items load on a factor (i.e., how much variance in all of the items can be explained 

by a single factor) as compared to the total variance in the test.  Variance in individual 

item scores that is unexplained by the factor is called that item’s “unique variance,” 

which is directly parallel to error score variances in CTT and is represented by the 

variance of E in Equation 6. Therefore, Equation 7 shows McDonald’s (1999) omega, an 

equation for reliability in the SEM framework: 

� � �∑ $������ �
�����  

(7) 

for a unidimensional test with k items.  If all loadings are equal, this reliability estimate 

will equal coefficient alpha.  Some models have been created to fit scales that have more 

than one factor (e.g., Raykov & Shrout, 2002), but they are beyond the scope of the 

present discussion.  For a more comprehensive view of reliability in an SEM framework, 

see Yang and Green (2011).   

Estimates of Reliability 

Coefficient Alpha. 

 Coefficient alpha is an extremely widely used indicator of internal reliability. 

Kuder and Richardson (1937; as cited by Sijtsma, 2009a) developed a form of alpha, but 

this form was only appropriate for use with dichotomous data.  Guttman (1945; as cited 

by Sijtsma, 2009a) later developed alpha in its current form as one of six ways to 

estimate a lower bound for reliability.  Coefficient alpha became especially popular after 
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Cronbach (1954) wrote an extensive paper on the estimate, given by the equation below 

for a test with k items: 

% � &
& ' 1 (1 ' ∑ ��������� �

����� ) 
(8) 

 Although alpha does have a number of advantages, such as being simple to 

compute, alpha also has a number of drawbacks.  Most notably, there is a great deal of 

confusion about how to interpret alpha.  As noted by Cortina (1993), many people 

misinterpret alpha to be a measure of unidimensionality or first-factor saturation, 

meaning the extent to which all items on a scale are measuring the same construct.  

Extant literature refutes this claim, however, as high values of alpha can be obtained with 

a multidimensional scale (Cortina, 1993; Cronbach, 1951).   

Assumptions underlying coefficient alpha.  Another major drawback of alpha is 

that it has assumptions that may rarely be met in practice.  The first assumption of alpha 

is tau-equivalence; measures that are not tau-equivalent yield alpha values lower than the 

measure’s true reliability (Lord, Novick & Birnbaum, 1968, pp. 88).  Recall from the 

previous section that tau-equivalence between two test forms requires that they measure 

the same construct with the same units of measurement.  For a single test to be tau-

equivalent, each item must measure the same construct with the same units of 

measurement.  Put in terms of Equation 3 and its associated assumptions, consider tests c 

and d to be different items on the same test (instead of alternate test forms).  For a test to 

be considered tau-equivalent, two items must only differ in error variances.  In terms of 

SEM, tau-equivalence means that each item must have the same factor loading.  A 

number of simulation studies have found that alpha underestimates true reliability as the 

number of non-tau equivalent items on a measure increases and as the degree to which 
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the items violate tau-equivalency increases (e.g., Komaroff, 1997; Zimmerman, 1993).  

There has been some success in developing estimates of reliability that do not make this 

assumption, such as coefficient omega (Equation 7).  Yang and Green (2011) review 

other such estimates.  

The second assumption of alpha is that error components for each item are 

uncorrelated. Violations of this assumption are the focus of this paper.  Uncorrelated 

errors are also a tenet of CTT, but this condition is unlikely to be met in practice.  Recall 

Equation 1, which states that for any item on a test, observed scores are comprised of a 

true score component and error score component.  In theory, it is assumed that the error 

components across items are random and therefore uncorrelated to one another, but this 

may not be the case in practice.  It could be that some subset of items share variance 

above and beyond the variance they share with the other items on the test; in this case, 

these items would have correlated errors.  Put differently, these items share variance that 

cannot be explained by the common factor, and that is therefore not reflected in their 

factor loadings.  Raykov (2001) provides a mathematical proof showing that alpha 

overestimates true reliability when error terms are positively correlated (and 

underestimated when error terms are negatively correlated), informally shown presently.  

Recall Equation 8 for alpha:  

% � &
& ' 1 (1 ' ∑ ��������� �

����� ) 
(8) 

Let  

% � &
& ' 1 *1 ' +, (9) 

So that  
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+ �  ∑ ��������� �
����� �  ∑ ����� � ������ �

���∑ ��� � ��������
 

(10) 

�  ∑ ������ � ����,� ������
���∑ ������ � � ���∑ ������ � � 2 ∑ /012�� , ��3 � 2 ∑ /01��� , ��� � 2 ∑ /01��� , �������,�����4�����4�

 
(11) 

Because true scores and error scores are truly unrelated to one another, it is true that 

/012��, ��3 � 0 (12) 

Substituting into Equation 11,  

+ �  ∑ ������ � ����,� ������
��2∑ ������ 3 � ��2∑ ������ 3 � 2 ∑ /012��, ��3 � 2 ∑ /01���, �������4�����4�

 
(13) 

 

As can be seen in Equation 1), ����� (the denominator of Q) contains four 

components: 1) ��2∑ ������ 3, the sum of variances of each item’s true score component, 

2) ��2∑ ������ 3, the sum of the variances of each item’s error score component, 

3)∑ /012��, ��3����4� , sum of the covariance between every pair of true scores, and 

4) ∑ /01��� , �������4� , the sum of the covariance between every pair of error components.  

Note that the first and second components are also included in the ∑ ��������� � term of 

alpha (the numerator of Q).   

When the assumption of uncorrelated errors is met, error terms do not covary, so 

the fourth component is equal to zero.  Thus, Q only decreases to the extent that true 

scores covary with one another.  As is clear in Equation 9, when Q decreases, alpha 

increases.  In the case of uncorrelated errors, higher alpha values reflect higher true score 

covariances (equivalently, higher factor loadings and higher true reliability estimates).  

When the assumption of uncorrelated errors is not met, however, the fourth term is no 

longer equal to zero, which causes Q to decrease (and alpha to increase) to the extent that 
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error terms are positively correlated; conversely, if negative error correlations are present, 

Q will increase and alpha will decrease.  In this way, higher alpha values are not 

completely reflective of higher true reliability estimates, but are, to some extent, 

reflective of correlated error terms.  Put another way, alpha interprets error covariance as 

true score covariance, and becomes falsely inflated when positive error correlations are 

present.  Unfortunately, it is impossible to tell from a single alpha value if correlated 

errors are present or not.   

Furthermore, alpha assumes a linear relationship between items.  Although it is 

not usually discussed as an explicit assumption of alpha, alpha does utilize Pearson 

product-moment correlations, which do assume linearity.  This assumption is explored 

further in the section “Reliability estimates with categorized data,” below.   

Previous research on the effects of correlated errors.  There has been a good 

deal of simulation work conducted to more fully examine alpha’s performance under 

conditions of error correlations.  In 1993, Zimmerman, Zumbo, and Lalonde set the stage 

for this field of simulation work by generating data such that the true reliability could be 

calculated directly and compared to estimates of reliability such as alpha.  Zimmerman et 

al. (1993) created data sets of continuous observed item scores that varied on the 

following characteristics: 1) number of people (observations) varied from 10 to 80; 2) 

number of items on the scale was set to either 8 or 10; 3) error correlations occurred 

among either 3 or 6 items; 4) error correlations were set at 0 (not correlated), .25, or .4; 4) 

true reliability was set to be either .5, .6, .75, .8, or .9; and 5) the distribution of the 

observed scores was set to be either normal, uniform, exponential, or mixed-normal.  

Zimmerman et al. (1993) calculated alpha for data resulting from all possible 
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combinations of these conditions, iterated this process 2000 times, and compared alpha’s 

value to the true reliability estimate.  They found that when errors were correlated, alpha 

overestimated true reliability.  Furthermore, there was greater overestimation in datasets 

with larger error correlations; when true reliability equaled .8 and errors were correlated 

at .25, alpha was about .863, whereas when errors were correlated at .4, alpha averaged to 

.873 over all iterations.  Alpha also overestimated true reliability to the extent that a 

larger number of items had correlated errors. When 3 items had correlated error terms, 

alpha overestimated true reliability by no more than .05, but when 6 items had correlated 

error terms, alpha overestimated true reliability by as much as .44.   

In 1997, Komaroff extended Zimmerman’s 1993 research with a very similar 

simulation study.  In Komaroff’s (1997) study, continuous data sets representing 

observed scores were created that varied on: 1) test length (6, 12 or 18 items), 2) factor 

loadings (0, .2, .5, .7, or 1) on a single factor, 3) correlated errors (item errors were 

correlated at .2, .5, .7, or 1), and 4) the number of items with correlated errors (1 through 

half of the items).  Consistent with the findings from Zimmerman et al. (1993), Komaroff 

(1997) found that alpha overestimated true reliability by as much as .66 in the datasets 

that had a greater number of correlated errors, and the datasets with more highly 

correlated errors.  Additionally, Komaroff (1997) extended previous research by using 

SEM to estimate the correlated errors and adjusting alpha accordingly, by subtracting the 

sum of the correlated errors from the numerator and denominator of alpha.  This method 

was effective in adjusting alpha to some extent, but did not fully correct alpha.  

Shelvin, Miles, Davies, and Walker (2000) further supported this research.  In 

their simulation study, Shelvin et al. (2000) created continuous observed score data sets 
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that varied on: 1) factor loadings; all items loaded either .3, .5 or .7 on a single factor, 2) 

the extent to which two items had correlated error terms (either a correlation of 0, .1, .2, 

or .3) and 3) sample size (data sets had 50, 100, 200, or 400 cases).  As expected, Shelvin 

et al. (2000) found that alpha increased under conditions of higher factor loadings and 

higher error term correlations. Furthermore, they found that the correlated errors had a 

larger effect on alpha when factor loadings were relatively low.   

A very simple simulation conducted by Raykov (2001) also supports the finding 

that alpha overestimates true reliability under conditions of correlated errors.  Raykov 

(2001) varied the degree to which one pair of errors terms were correlated; the 

correlations were set to be equal to -.4, -.3, -.2, -.1, 0, .1, .2, .3, or .4.  Raykov found that 

increased error covariance lead to alpha slippage.  Specifically, positively correlated 

errors caused alpha to overestimate true reliability and negative correlations among errors 

caused alpha to underestimate true reliability.   

  A recent simulation study by Gu et al. (2013) took a more comprehensive view 

towards both alpha and an SEM estimate of reliability, which was omega (Equation 7) 

computed with estimates from a non-linear SEM model.  Gu et al. (2013) created datasets 

that varied on: 1) the number of items violating tau-equivalence (either 3 or 6), 2) the 

ratio of true to error variance (i.e., true reliability; ranged from .1 to .9), and 3) magnitude 

of error correlations (ranged from 0 to .4).  Gu et al. (2013) found that the SEM estimate 

gave more accurate estimates of true reliability than alpha; overall, alpha tended to 

grossly overestimate (by as much as .38 when true reliability was low and error 

correlations were high), and SEM tended to underestimate true reliability, although only 

by .09 at most.  They also found that as the ratio of true to error variance increased, both 
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estimators demonstrated less bias, and this effect was more pronounced in alpha (i.e., as 

true reliability increased, both estimators demonstrated decreased bias).  Additionally, 

and as expected based on Raykov’s (2001) proof and simulation work, it was found that 

as error correlation increased, bias of both estimators increased.   

In sum, there has been a good deal of simulation work exploring the effects of 

correlated error terms on coefficient alpha and on SEM-based estimates of reliability.  

These studies have consistently found that error correlations have a direct effect on 

coefficient alpha, with positive error correlations causing alpha to overestimate true 

reliability.  Alpha will overestimate true reliability as the magnitude of the correlations 

increase or as more items have correlated errors.  Furthermore, these effects are more 

pronounced when true reliability (or factor loadings) is relatively low. 

The role of categorical data. 

All of the simulation work described above was conducted using continuous data, 

and error terms were forced to be correlated in the data through simulation methods.  This 

raises the question of how error terms become correlated in real data.  Green and Yang 

(2009a) and Lucke (2005) suggest that items could have correlated error terms due to 

wording effects.  For example, if some subset of items on a test is negatively worded, it 

may cause test-takers to answer in a systematic way that leads to shared variance between 

those items only.  Another example of a wording effect that would cause correlated error 

terms is items with shared stems or prompts.  Again, a particular prompt may be 

interpreted by test-takers in a particular way, so items that use that prompt will share 

more variance with one another than they do with the rest of the items on the test.  Green 
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and Hershberger (2000) also point out that memory effects could cause correlated error 

terms when items build on one another.  

Reliability estimates with categorized data. 

These are examples of error correlations being caused by certain aspects of the 

test items, but other researchers have suggested that correlated error terms could arise just 

by the nature of the data.  Imagine a distribution of continuous scores that represent a 

group of test-takers’ true scores, but due to the style of test, test-takers can only answer 

from a finite number of ordered categories.  This type of data is common in the social 

sciences, and often comes from a Likert-style response scale.  Johnson and Creech (1983) 

suggest that correlated errors are inherent to this type of categorical data.  Specifically, 

they suggest three mechanisms through which ordinal data can cause correlated error 

terms.  The first mechanism is transformation error, which occurs when the distances 

between categories are not linear transformations of the underlying variable; that is, 

distributions from the continuous data and the categorical data do not match.  For 

example, if test-takers’ true scores formed a normal distribution, but the distribution of 

observed categorical responses is uniform, this would cause transformation error.  The 

second mechanism Johnson and Creech (1983) describe is grouping error.  Grouping 

error occurs when there are not enough categories to represent the construct.  Although 

some constructs might truly have only a small number of possible levels (e.g., you are 

pregnant or not), it is likely that many psychological constructs fall on a continuum (e.g., 

you are somewhere between totally happy and totally sad).  When test-takers are forced 

to classify themselves into one of a small number of categories, the participants’ 

categorized scores will be more similar than their continuous true scores.  The final 
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mechanism suggested by Johnson and Creech (1983) by which errors become correlated 

in categorical data is misclassification error.  The first two mechanisms treat all error as 

due to classification.  Misclassification error is slightly different from the other two 

sources of error in that it takes into account a continuous error element.  Misclassification 

error occurs when a test-taker’s true score would place them into a certain category, but 

their continuous “observed” score has an error component large enough  to cause the 

score to be categorized differently.  See Figure 1 for a graphical representation of 

misclassification error.    

It is worth noting that there has been some discussion about whether correlated 

errors should truly be considered and treated as “error.”  Green and Hershberger (2000) 

argue that some error terms covary systematically due to the item wording or effects from 

previous items.  Since this sort of error would occur on every administration of the test, 

Green and Hershberger (2000) argue that it is a sort of “reliable error,” that does not 

count as part of a true score (or true score variance), but is not random error either.  Rae 

(2006) agrees with Green and Hershberger’s (2000) stance, and argues that correlated 

errors should be treated as a second factor under an SEM framework, and therefore 

treated as true score variance; that is, Rae argues that scales’ reliability should not suffer 

from systematic and reliable correlated error terms.  Because in this paper I am concerned 

with error that arises from categorical data, I will not treat systematic error as reliable.  It 

may be appropriate to think of the correlated error terms as comprising a separate 

“method” factor, but this factor will still be treated as error, and not true score variance.  

It is also worth noting that some authors, such as Green and Yang (2009b), argue 

that the CTT definitions of reliability (Equations 4 and 5) are not appropriate for 
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categorical data, because they are based on a linear model.  Even a scale that has items 

with categorical data and factor loadings of 1, and therefore no error variance, will yield 

CTT reliability estimates less than one and factor loadings less than one when Pearson 

correlations are used with categorical data in calculations (as they typically are).  This is 

due to the fact that ordered categorical data and continuous data differ in their metric; the 

correlation between the categorical and original continuous scores will always be 

attenuated. Put differently, Pearson correlations result in underestimates of the 

relationship between categorical items.  Although correlated errors often cause alpha to 

overestimate true reliability, it is likely that alpha could underestimate true reliability due 

to attenuated correlations between items due to the categorical nature of the data.  These 

opposing forces will be important to keep in mind throughout this paper. 

Alpha with categorical data.  Although alpha is purported to be appropriate for 

use with categorical data according to Guttman (1945, as cited in Sijtsma, 2009a) the 

effects of categorical data on coefficient alpha have not been thoroughly examined.  

There are a few exceptions, the first of which is a paper by Lissitz and Green (1975), 

which included a simulation of categorical data and examined the effects on alpha.  In 

this paper, continuous normally distributed data representing true scores were generated 

with factor loadings set at .2, .5, or .8, and then uncorrelated error scores were added to 

create “observed scores.” These “observed scores” were then categorized into uniform 

distributions with 2, 3, 5, 7, 9, or 14 categories, yielding the categorical observed score 

data sets that were analyzed.  Then, alpha and true reliability (calculated as the squared 

correlation between the true continuous scores and the categorical scores) were 

calculated.  Note that Lissitz and Green (1975) assumed that the error terms for the 
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categorical data were uncorrelated because the continuous scores did not have correlated 

errors, counter to what Johnson and Creech (1983) suggest.  It was found that as the 

number of categories increased and as the factor loadings increased, alpha and true 

reliability increased as well.  Moreover, the largest differences between alpha and true 

reliability were found under conditions of low factor loadings, with alpha 

underestimating true reliability. This implies that any correlated errors resulting from the 

categorization process were of a lesser magnitude than the effects resulting from 

attenuation of correlations due to the use of categorized data.  Alternatively, it is possible 

that the categorization process did not cause error terms to be correlated at all, and the 

underestimation of alpha is simply reflective of the correlation attenuation.  Interestingly, 

the number of categories did not have an effect on the difference between alpha and true 

reliability, as would be predicted by Johnson and Creech (1983) due to grouping error. It 

is impossible from these results to tease apart the respective influences of correlated 

errors and attenuated correlations on alpha.  

A second study by Bandalos and Enders (1996) also examined the effects of 

categorical data on coefficient alpha’s performance.  Specifically, they created a 

simulation study in which continuous data observed scores were created that varied on: 1) 

the distribution of the continuous data as normal, uniform, moderately non-normal (skew 

= 1.75; kurtosis = 3.75), severely non-normal (skew = 2.0; kurtosis = 7.0), or leptokurtic 

and symmetric (skew = 0; kurtosis = 3.0), 2) the distribution of the categorized data 

(normally distributed, uniformly distributed, and nonnormally distributed), 3) the extent 

to which items were correlated (25, .5, or .75), and 4) the number of categories (3, 5, 7, 9, 

or 11). This design allowed for the shape of the categorized data to be either the same as 
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or different from the shape of the continuous data. This allowed for a test of the effects of 

transformation error.  Bandalos and Enders (1996) found that alpha was highest when the 

shape of the categorical data’s distributions matched the shape of the underlying 

continuous distribution.  This effect was strongest when inter-item correlations were 

relatively low.  Additionally, the authors found that reliability increased as the number of 

categories increased, but this effect became smaller as the number of categories 

increased; that is, the difference in reliability was large when moving from 3 to 5 

categories, but was minimal when moving from 7 to 9 categories.  Johnson and Creech 

(1996) would expect that as the agreement between the underlying distribution and the 

categorical distribution increases, transformation error would occur to a lesser extent and 

alpha would overestimate true reliability to a lesser extent.  The exact opposite was found 

in the Bandalos and Enders (1996) study, as alpha increased when agreement between the 

two distributions matched, despite true reliability remaining the same across distributions.   

As briefly described in the introduction, I found similar results to those of Lissitz 

and Green (1975) in two pilot studies.  In the pilot studies, I created categorized data sets 

from normally distributed variables that varied on: 1) the number of categories (2, 3 or 5), 

2) factor loadings (.4, .6, or. 8), and 3) the skew of observed data (0, 1.5, or 3).  

According to Johnson and Creech (1983), these variations should cause grouping and 

transformation error.  In the first study, the data sets had 3 items, and in the second, there 

were 10 items.  In both studies, alpha consistently underestimated true reliability to the 

extent that there were fewer categories and a greater amount of skew, and the effects of 

skew and categories were greater with lower factor loadings.  Additionally, comparison 

across the two studies revealed that alpha was more biased (that is, underestimated to a 
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greater extent) when there were only 3 items as opposed to 10 items.  Again, it is 

impossible to tell from these results if there are correlated errors in the datasets that are 

outweighed by correlation attenuation, or if the attenuation is the only force affecting 

alpha.   

Other Estimates of Reliability 

 The most common SEM-based reliability estimate for single-factor scales is 

McDonald’s omega (McDonald, 1995).  Originally developed as an alternative to 

coefficient alpha, omega calculates reliability as the variance of the common factor score 

over the total score variance (i.e., variance of common scores plus variance of unique 

scores).  The numerator of McDonald’s omega (Equation 14) is the squared sum of the 

standardized factor loadings for each item.  As the squared factor loadings represent the 

variance in each item explained by the common factor, the squared sum of these loadings 

represents the amount of variance that the common factor explains across all items.  The 

formula for omega is below, and is identical to Equation 7.   

5 �  �∑ $������ �
�����  

(14) 

As is the case in CTT, omega assumes uncorrelated error terms; however omega 

is appropriate under conditions of non-tau-equivalence (Revelle & Zinbarg, 2009).  When 

items are tau-equivalent, omega and alpha are equal.  Another SEM-based reliability 

estimate comes from Komaroff (1997), and is presented in Equation 15:  

%6 � &
& ' 1 (∑ ∑ �27� , 7�3 ' ∑ ∑ �28�, 8�3��4�,���������4�,�������

�� ��� ' ∑ ∑ �28� , 8�3��4�,�������
) 

(15) 

such that %9 is alpha adjusted so as to subtract error covariances from the numerator and 

denominator.  This estimate is very similar to omega, except it is adjusted for error 
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correlations.  It does not, however, adjust for violations of tau-equivalence. Thus tau-

equivalence is assumed. 

The estimates discussed above are linear estimates of reliability; they are only 

appropriate with continuous data.  Recently, some non-linear estimates appropriate for 

use with ordinal data have been developed.  Notably, Green and Yang (2009b) created a 

non-linear SEM estimate of reliability that has been found to work well when the correct 

model is specified (Yang & Green, 2011).  This estimate is very similar to coefficient 

omega, but differs in the estimation method used to acquire the factor loadings; Green 

and Yang (2009b) use a non-linear SEM estimation method that is appropriate for 

categorical data.  Green and Yang (2009b) argue that Equations 4 and 5 are not 

appropriate for categorical scores, as they would actually be representative of the 

reliability of the continuous scores, and not the categorical scores.  Additionally, 

correlations among categorized item scores will always be attenuated if Pearson Product-

Moment (PPM) correlations are used (Bollen & Barb, 1981).  Moreover, many estimates 

of reliability, including alpha, rely on PPM correlations, which would yield attenuated 

estimates of alpha when used with categorical data.  Thus, alpha might actually 

underestimate true reliability when data are ordinal.  This is precisely what happened in 

the pilot study.   

Green and Yang’s (2009b) estimate of reliability circumvents these problems by 

employing polychoric correlations and weighted least squares estimation, which yield 

accurate estimates of variable intercorrelations, and therefore of reliability, for categorical 

data. 

Summary 



26 

 

 

 

In this chapter, I have discussed two conditions that influence reliability estimates 

with ordered categorical data: 1) the presence of correlated error terms, which cause 

alpha and other reliability estimates to overestimate true reliability, and 2) the use of 

Pearson correlations, which causes many reliability estimates to underestimate true 

reliability. A great deal of research has been conducted to examine the effects that 

correlated errors can have on coefficient alpha.  A number of simulation studies have 

been conducted which support Raykov’s (1997) proof that correlated errors cause alpha 

to overestimate true reliability.  Nearly all of these studies, however, used continuous 

data exclusively, and there are two problems with this approach.  First, as hypothesized 

by Johnson and Creech (1983), it may be the case that mechanisms exist by which the 

categorization of continuous data results in correlated error terms.  Second, due to 

properties of the PPM correlation, estimates of reliability that use this correlation with 

categorical data are likely to be attenuated.  None of the studies I reviewed have 

addressed these issues in combination.  While it is clear that error correlations in 

continuous data will cause alpha to overestimate true reliability, the same effect in 

categorical data is largely unstudied.  More specifically, the mechanisms through which 

errors become correlated in ordered categorical data have not been thoroughly studied 

empirically, nor have the consequent effects on coefficient alpha. 

Note that the problems in estimating reliability with categorical data only occur 

when these data are treated as continuous.  When categorical data are treated 

appropriately (as is the case with Item Response Theory models and non-linear SEM 

models), these issues do not arise as error terms are not estimated.  It is often the case, 

however, that categorical data are treated as continuous (Flora & Curran, 2004).  
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Therefore, it is worthwhile to investigate the effects of the source of errors in categorical 

data being treated as continuous. 

Research Questions 

I designed the present paper to answer the following research questions, as 

mentioned previously.  First, do any of the three mechanisms proposed by Johnson and 

Creech (1983) cause error correlations in observed ordinal data?  If grouping error is 

present, errors correlations should be present and should increase in magnitude when 

there are fewer categories in the observed data.  If transformation error is present, errors 

correlations should arise and increase in magnitude when the observed data are more 

severely skewed (given that the true continuous scores are normally distributed), and 

should not arise when the observed data are normally distributed.  If misclassification 

error occurs, error correlations should arise when continuous correlated error terms, 

representing correlated sources of systematic error, are introduced to scores prior to 

categorizing, and the magnitude of these estimated error correlations should increase 

commensurately with those introduced into the continuous data. 

The next research question is: if correlated errors are present, do they cause alpha 

to overestimate true reliability?  Are they of great enough magnitude to counteract the 

opposing effect of underestimation of the PPM correlations?  Results from the pilot study 

suggest that if correlated errors are present, they do not cause alpha to overestimate true 

reliability, so presumably the attenuation due to use of PPM correlations has a greater 

effect.   
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Chapter III: Methods 

Data Generation 

 A simulation study was used to test the hypotheses described above.  Observed 

score data sets were generated that vary on the number of categories and amount of skew, 

so as to simulate grouping and transformation error as described by Johnson and Creech 

(1983).  Correlated error elements were also added into scores to simulate 

misclassification error.  Several reliability estimates were calculated for each observed 

score data set to determine which performs best.   

Data was generated in SAS 9.4 IML.  A 1000 x 1 vector of normally distributed z-

scores was generated, and horizontally concatenated 10 times to create a 1000 x 10 

matrix of scores, such that each row has the same score repeated 10 times.  This matrix 

represents the underlying true continuous scores for 1000 test-takers on 10 variables; 

variables can be thought of as items on a parallel test.  These scores were weighted by a 

factor loading (γ) of either .4, .6, or .8, as is common in previous simulation work (e.g., 

Gu et al., 2013; Komaroff, 1997; Shelvin et al., 2000); all items within a condition had 

equal factor loadings.  At this point, data generation followed one of two paths, described 

below.  

The first path attempted to create all three types of error described by Johnson and 

Creech (1983).  After true scores were generated and weighted by the factor loading, a 

different 1000 x 10 matrix of normally distributed random z-scores were created to 

represent error scores, then weighted by  

:1 ' $� (16) 

such that this weight is inversely proportionate to the factor loading assigned to the true 

scores and the variance of the total (true score plus error) continuous scores is 1.0.  At 
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this point, data generation followed one of three conditions, which attempted to explore 

misclassification error.  Recall that Johnson and Creech (1983) define misclassification 

error as correlated error terms resulting from a continuous error element being large 

enough to “push” some number of scores into a higher or lower category.   In the first 

condition, errors were left as random and therefore uncorrelated; thus, they should not 

cause misclassification error to occur.  In the second condition, three error scores (i.e., the 

first three columns of the error score matrix) were made to correlate via the Cholesky 

method at 0.1 or 0.3.  The Cholesky method starts with the desired correlation matrix, 

and uses matrix decomposition to force that pattern in a matrix of raw scores (Fan, Sivo 

& Keenan, 2002, pp. 206-208).  In the third condition, five error scores were made to 

correlate, again at either 0.1 or 0.3, via the Cholsesky method.  These values of error 

correlation were selected because these are reasonable error correlation values intuitively, 

and are common in the literature (e.g., Gu et al., 2013; Raykov, 2001; Shelvin et al., 

2000).  This correlation can be thought of as resulting from item wording effects or testlet 

effects that cause test-takers to answer certain items in a systematically different way 

than they would answer other items on the test.  In all three conditions described 

previously, the resulting error scores were added to the true scores, creating a set of 

“observed” continuous scores.   

These “observed” continuous scores were then categorized in one of 18 ways (6 

levels of categories X 3 levels of skew, to create grouping and transformation error, 

respectively).  The scores were categorized into 2 through 7 categories, as these are 

common in practice and were used by Lissitz and Green (1975).  Additionally, scores 

were categorized such that the resulting distribution of categorical scores was either not 
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skewed (normally distributed), moderately skewed (skew values around 1.5), or severely 

skewed (skew values around 3).  As there has not been research conducted on 

transformation error, these values were selected somewhat arbitrarily; however the 

“extreme skew” value was selected specifically to be outside the range of what would be 

considered to be a normal distribution.  The categorization process was accomplished by 

establishing thresholds along the distribution of z-scores that will give the categorized 

data the properties described above. For example, to make a dataset with 3 categories that 

is normally distributed, the thresholds -.674 and .674 would be used; scores below -.674 

would be assigned a categorical score of 0, scores between -.674 and .674 would be 

assigned a score of 1, and scores over .674 would be assigned a score of 2.  Thresholds 

were determined using the cumulative probability density function for the normal curve. 

Recall that grouping error occurs when there are not enough categories to 

represent the underlying construct; thus, errors should become more correlated when 

there are fewer categories.  Transformation error occurs when the distribution of 

continuous and categorical scores do not match.  Therefore, more severe skew in the 

categorical data should create greater amounts of transformation error, and (subsequently, 

according to Johnson and Creech, 1983) increased numbers (and magnitude) of correlated 

error terms.  It should be noted, however, that when all items are categorized, an SEM 

model would not be able to discriminate between error correlations across all items and 

true factor loading levels.  Thus, the second path of data creation (described below) yields 

data sets with both categorical and continuous items, so as to be able to examine possible 

error correlations among the categorized items.   
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The second data generation path attempted to create grouping and transformation 

errors, but did not attempt to create misclassification error as described by Johnson and 

Creech (1983).  Once true scores were created, a random and appropriately weighted 

error component (Equation 16) was added to create continuous “observed scores.”  Then, 

3, or 5, items (columns) were categorized into one of 18 conditions using the same 

method as described above, whereas the remaining 7 or 5 items were left as continuous 

observed scores, resulting in data sets with both categorical and continuous items. 

This data creation and categorization process resulted in 316 different observed 

datasets for each set of normally distributed continuous true scores (see Figure 2).  This 

process was iterated 1500 times.   

Analyses 

Analysis of correlated error terms. 

A one-factor CFA model was fit to each data set using maximum likelihood 

estimation, and the parameter estimates were analyzed to determine the extent to which 

correlated errors were present.  These analyses were conducted in Mplus version 6 

(Muthén & Muthén, 2011). Categorized scores were treated as continuous in order to 

obtain error estimates and correlations among these errors.  In the models that were 

expected to have correlated errors due to the mechanisms proposed by Johnson and 

Creech (1983), the model allowed for correlated error terms. 

To evaluate misclassification error, the all-categorical data sets were analyzed.  

Recall that these data sets had error elements that were either uncorrelated, or correlated 

at 0.1 or 0.3 across 3 or 5 items.  In the models with 3 or 5 correlated error elements, the 

CFA model allowed for correlated errors across those items.   The error correlations were 
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examined across these conditions to determine if adding systematic error as Johnson and 

Creech (1983) predicted did in fact cause correlated error terms.   

To evaluate transformation and grouping errors, the data sets with both 

categorical and continuous data were analyzed.  Specifically, in these data sets, the 

categorical items had error elements that were allowed to correlate, but did not correlate 

with the error elements from the continuous items.  If transformation error is occurring, 

then the error correlations should increase with increased skew in the observed score data 

sets.  If grouping error is occurring, then the error correlations should increase with fewer 

categories.  

Evaluation of reliability estimates. 

For each of the datasets created using the process described above, a number of 

reliability estimates were calculated.  Specifically, the following were computed: 1) true 

reliability defined by the squared correlation between the observed scores and the true 

continuous scores, 2) true reliability as defined by the squared correlation between the 

observed scores and the true scores categorized the same way as the observed data (but 

categorized without error), 3) true reliability of the continuous data using Formula 14, 

and 4) coefficient alpha. This first estimate is the value for true reliability that Lissitz and 

Green (1975) used in their work.  The first value is appropriate because it would equal 

one if error had no effect on the observed scores, so if reliability estimates deviate from 

one, it would indicate a lack of reliability.  In other ways, however, it is an inappropriate 

true reliability coefficient because it represents the proportion of variance in the 

continuous true scores (which are actually what we want to compare scores to) that are 

explained by the categorical observed scores; however this coefficient will never equal 
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one, even under a situation where no continuous error element was added.   This estimate 

will always be lower than the third true reliability estimate.  The second value is 

appropriate because it would equal one if error had no effect on the observed scores, so if 

reliability estimates deviate from one, it would indicate a lack of reliability.  This was the 

estimate I used in my pilot study.  The third estimate indicates reliability of the 

continuous data using coefficient omega (McDonald, 1999).  Although this represents the 

true reliability of the continuous data, it does not capture information about the 

categorization process.  Therefore, all “true reliability” coefficients were calculated and 

interpreted. but I focus on the first two in analyses.   

Because true reliabilities were calculated directly, coefficients’ performance was 

compared directly to each true reliability estimate under each of the conditions of data. 

Specifically, a series of repeated-measures ANOVAs was conducted to examine the 

extent to which the independent variables (number of categories, skew, loadings, number 

of correlated error terms, and magnitude of correlated errors) affect the difference 

between true reliability and each of the reliability estimates. 
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Chapter IV: Results 

I will discuss the results in two sections; first the results from the datasets that 

contain only categorized items, then the datasets that have results from both categorical 

and continuous data.  Note that I interpret effect sizes (η
2
) in all analyses because the 

statistics are overpowered, as the sample size is 323,930 in the first group of data and 

162,000 in the second group of data.  I only consider small effect sizes (η
2 

> .1) and 

larger as meaningful.  In the first dataset, the results from the situation in which all items 

are categorized, there should have been 324,000 rows in the results files; however, in two 

conditions (those at in which factor loadings were set to .4, there were 2 categories and 

severe skew, and error correlations were set at .1 or .3 across 5 items), 5 and 9 iterations 

(respectively) had errors because MPlus was unable to estimate several parameters. It is 

likely that the model did not converge due to a lack of sufficient variance to estimate both 

the error correlations and residual variances.  These rows of data were deleted, leaving 

323,986 records.  In the second set of data, the results from the partially categorized 

datasets, there were 162,000 lines of data, as was expected.   

Prior to all analyses, I compared all error correlation estimates to one another 

across all conditions (within each dataset).  I wanted to ensure that examining the average 

of all estimated error correlations within a replication would be appropriate; if the 

estimated error correlations show the same pattern across conditions, then analyzing an 

average would be preferable over analyzing each individual estimate.  That is to say, I 

compared the error correlation estimate between x1 and x2 to the error correlation of x1 

and x3, x2 and x3, and every other pairwise comparison between present error 
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correlations to ensure that all estimates were roughly equal within conditions.  Visual 

inspection revealed that all estimates within a condition were approximately equal (only 

different at the third decimal place or later).  Thus, I only analyzed the mean of estimated 

error correlations in subsequent analyses regarding the Pearson underestimation.  

Similarly, I compared the standard errors for the estimated error correlations across all 

present error correlations, and they were also found not to differ between estimates within 

a condition.   

Additionally, I calculated true reliability as a function of factor loadings using 

Equation 14.   When factor loadings were set at .4, .6, and .8, true reliability equals .656, 

.849, and .947, respectively.    

Data Checks 

 Prior to analyses, a number of aspects of the data were checked to ensure that it 

was generated correctly.  First, factor loadings were checked. On average, factor loadings 

aligned with the values to which they were set, although slightly underestimated (most 

likely due to the Pearson attenuation, which is explored further below).  Additionally, 

estimated error correlations were examined.  These also aligned with the population 

values, although they were slightly underestimated.  See Table 1 for means, standard 

deviations, minimums and maximums of estimated parameters.  Skew and kurtosis levels 

were also examined for a random subset of 32,562 data sets.  Generally, the skew value 

was smaller than the value at which it was intended, but there were still notable and 

practical differences between levels of skew.  See Table 2 for means, and standard 

deviations, of skew and kurtosis values by number of categories.   
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All Categorical Data 

Misclassification error. 

The first research question I addressed was whether misclassification error caused 

the data to have correlated error terms.  Recall that misclassification error occurs when 

continuous and correlated error elements are introduced into true scores prior to 

categorization. In the present study, I introduced misclassification error by adding error 

terms across either 3 or 5 items correlated at either 0.1 or 0.3 to true continuous scores.  If 

misclassification error occurs, as Johnson and Creech (1983) would predict, errors for 

pairs of categorical items will become more correlated when the correlation between the 

continuous error elements increases.  When 3 items had correlated errors, error 

correlations did arise.  When errors were set to correlate at 0.1, average error correlations 

were approximately .068 (SD = .05).  When errors were set to correlate at 0.3, average 

error correlations were approximately .21 (SD = .06).  The average of the estimated 

standard errors for these error correlation estimates was .05 (SD = .02), for both levels of 

error correlation.  Correlated errors were also present when 5 items had correlated errors.  

When error correlations were set at 0.1 across 5 items, the average estimated error 

correlations were approximately 0.07 (SD = .06).  The estimated average standard error 

for these error correlation estimates was .05 (SD = .02).  When error correlations were set 

at 0.3 across the 5 items, the average estimated error correlations were approximately 

0.21 (SD = .07).  The estimated average standard error for these error correlation 

estimates was .02 (SD < .001).  This pattern was practically the same across the three 

levels of factor loadings; the interaction between loadings and estimated error 

correlations had a negligible effect size (Table 3).  This finding supports the idea that 
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misclassification error occurs.  Furthermore, and as demonstrated above, average 

estimated error correlations were the same regardless of the number of items set to have 

correlated errors.   

The estimated error correlations were lower than the values at which they were set 

in the continuous data, and this is likely a result of the fact that this categorical observed 

data was analyzed as continuous; that is, the Pearson correlations were underestimated 

due to the ordinal nature of the data.  If this is true, then the estimated Pearson 

correlations will be closer to the true correlations (that is, the correlations I set) as the 

number of categories increases and as the observed categorical data is more normal 

(given that the continuous “observed” scores are normally distributed).   

I ran a between-subjects ANOVA to determine the influence of skew and number 

of categories on estimation of error correlations (Table 4).  The two-way interaction 

between skew and number of categories was significant but the effect size was very small 

(η
2 

= .008).  The main effects of skew and categories were both significant and had effect 

sizes of η
2 

= .004 and η
2 
= .015, respectively. Generally, as the number of categories 

increased, the estimate of the error correlation increased (i.e., became closer to the value 

at which it was set; see Table 5 and Figure 4).  Similarly, when less skew was present, 

error correlation estimations increased.  When there were five categories, however, this 

pattern did not hold, and all estimates of error correlations were roughly equal across 

levels of skewness.  It is possible that this effect is due to the fact that skewness in the 5 

category condition was notably different that the 4 and 6 category conditions (Table 2).  

The pattern of increased estimated error correlations with increased skew was true 
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regardless of whether error correlations were set at 0.1 or 0.3.  These results indicate that 

underestimated error correlations are likely due to the use of Pearson correlations.   

Effects on alpha. 

The second research question I addressed was whether these correlated errors 

caused alpha to overestimate true reliability.  Specifically, alpha should overestimate true 

reliability to a greater extent when more items have correlated errors and when those 

correlations are greater in (positive) magnitude.  I ran a 3 x 2 mixed ANOVA using 

difference contrasts (comparing alpha to each reliability value) to examine this 

hypothesis (Table 6).  Both estimates of true reliability were always lower than alpha, and 

the first true reliability estimate, the squared correlation between observed categorical 

scores with categorized true scores, was always lower than the second reliability estimate, 

the squared correlation between observed categorical scores and true continuous scores 

(see Table 7 and Figure 4).  Furthermore, both true reliability estimates were greater in 

magnitude when only three items had correlated errors, but alpha was higher when there 

were five correlated error terms.  Additionally, both true reliability estimates decreased 

when errors were more strongly correlated, but alpha increased when errors were more 

highly correlated.  Despite the small effect sizes, these results align with the hypothesis 

that alpha would overestimate true reliability when there were more items with correlated 

errors and the magnitude of the correlations was greater.  Keep in mind that the actual 

estimated error correlations depended on the level of skew and the number of categories, 

and Figure 4 is based on the means of estimated error correlations across level of skew 

and number of categories.  To see a graphical demonstration of how skew and categories 

affect alpha and reliability coefficients, see Figure 5, and see Table 7 for means.     
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These analyses also revealed that alpha and true reliability estimates significantly 

differ as a function of loadings (see Table 8 for means).  Alpha and both true reliability 

estimates increase with higher factor loadings.    

Partially Categorized Data 

 Grouping and transformation error. 

 The first research question is whether the categorization process caused correlated 

errors.  Johnson and Creech (1983) would predict that in the categorized items, error 

correlations would be present and would increase in magnitude with fewer categories 

(grouping error) and more skewed observed data (transformation error: assuming 

normally distributed true score data, which is the case in the present paper).   

I ran a three-way between-measures ANOVA to determine if the average 

estimated error correlations differed as a function of the loadings, number of categories, 

and skew in the observed data (see Tables 9 and 10).  The most meaningful result from 

this ANOVA was the significant interaction between skew and loadings on the estimated 

value of error correlations, η
2
 = .10.  When factor loadings were low, skew did not have 

much of an effect on estimated error correlations, but as loadings increased, the effect of 

skew on estimated error correlations became more pronounced; this finding is explored 

further in the discussion section.  Estimated standard errors for error correlations were .04 

for all conditions.  See Figure 6 for a graphical representation of these results.  These 

results support the presence of transformation error; but the extent to which 

transformation error occurs depends on the amount of skew.  The results do not support 

the presence of grouping error because had grouping error been present, error correlations 
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would have been present and increasing in magnitude as there were fewer categories, and 

this pattern did not occur. 

Effects on alpha. 

As correlated errors were present, I examined if the correlated errors would cause 

alpha to overestimate reliability.  To do this, I ran a 2 x 3 mixed ANOVA that compared 

alpha and the first reliability value as a function of skew, loadings, and categories (Table 

12).  In this case, I only analyzed the first true reliability estimate because the data were 

only partially categorized, so it would have been inappropriate to correlate these scores 

with entirely categorical true scores.  .The results of the ANOVA revealed that there was 

a significant between-measures main effect of factor loadings; all estimates increased as 

factor loadings increased.  Interestingly, despite the fact that correlated errors were 

present due to skew (as described above), alpha only very slightly overestimated the first 

true reliability estimate in the conditions of moderate and severe skew.  See Figure 7 for a 

graphical depiction of these results.    
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Chapter V: Discussion 

 These results partially support the mechanisms proposed by Johnson and Creech 

(1983).  Specifically, misclassification error and transformation error were found to 

produce correlated errors, but not grouping error.  Moreover, the magnitude of correlated 

errors affected alpha’s value, such that alpha was greater when there were higher 

correlated errors; however the correlated errors were only large enough to cause alpha to 

overestimate true reliability in certain conditions.  I discuss each of the mechanisms 

proposed by Johnson and Creech (1983) in turn, as well as their effects on alpha in 

relation to true reliability.   

Misclassification Error 

Recall that misclassification error was defined as error correlations resulting from 

measurement error, which systematically places people in a higher or lower category than 

their true score would dictate.  According to Johnson and Creech (1983), correlated errors 

should arise in observed categorical data to the extent that systematic error measurement 

occurs.  That is, when systematic measurement error causes relatively higher correlations 

across a subset of items, the error correlations in the observed data should increase 

commensurately.  The results support the presence of misclassification error.  When 

continuous measurement error was made to correlate at a lower value, the estimated error 

correlations were relatively low, and when continuous measurement error increased, the 

estimated error correlations increased as well.  Furthermore, alpha was found to 

overestimate true reliability to the extent that errors were correlated; alpha overestimated 

true reliability to a greater extent when there were more items with correlated errors and 

those errors were greater in positive magnitude.  This supports much of the previous 
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research, including that by Zimmerman et al. (1993), Komaroff (1997), and Shelvin et al. 

(2000).  Notably, both true reliability estimates decreased with larger and more error 

correlations.  This makes sense because these values do not conflate error covariance 

with true score covariance (as alpha does).  Recall that alpha assumes error covariances 

to be zero, and increases to the extent that error correlations are increasingly positive.  

Thus, misclassification error is something researchers should be aware of when 

computing alpha with categorical data.   

Transformation Error 

Johnsons and Creech (1983) define transformation error as error correlations 

arising due to a nonlinear transformation of continuous scores to observed categorical 

scores.  In the present study, I introduced transformation error by categorizing the 

normally distributed continuous “observed” score data in a way to force skewness.  

Correlated errors did arise when observed data were skewed, and they were of greater 

magnitude when data were more severely skewed.  This finding supports the presence of 

transformation error.  When there was no skew present (and therefore no or very small 

correlated errors) or factor loadings were .4 or .6, alpha was equal to the first true 

reliability estimate.  Recall that the first true reliability estimate is the squared correlation 

between continuous true scores and observed categorized scores.  When skew was 

present and there were high factor loadings (the condition under which correlated errors 

were highest), alpha did slightly overestimate the first true reliability estimate.  

Surprisingly, alpha overestimated the first true reliability estimate to a greater extent 

when there was moderate skew than when there was severe skew (only in the highest 

factor loading condition).   



43 

 

 

 

There is evidence that the Pearson attenuation problem occurred as well in 

relation to transformation error.  As would be expected, alpha was lower when the data 

were more severely skewed.  This is likely a result of the fact that Pearson correlations 

underestimate relationships to a greater extent when data are more skewed (Bollen & 

Barb, 1981).  This effect may explain why alpha overestimated the second true reliability 

estimate to a greater extent when there was moderate skew as opposed to severe skew.  It 

may be that the Pearson attenuation effect had a relatively larger effect on the severely 

skewed items than on the moderately skewed items.  That is, the Pearson attenuation 

effect balanced out the overestimation due to correlated errors in the condition of high 

skew to a greater extent than it did in the condition of moderate skew.   

There was also one surprising result in regard to transformation error.  As shown 

in Figure 4, the effect of skew on estimated error correlations increases when factor 

loadings are higher, which replicates a result from Johnson and Creech (1983). This is 

possibly due to the fact that SEM models imply a linear relationship between factor 

scores and the probability of responding to an item a certain way.  Probabilities should be 

modeled with an s-shaped curve with asymptotes at 0 and 1 (as is done in Item Response 

Theory).  When factor loadings are relatively higher, the curvature of that s-shaped curve 

becomes more extreme and looks less linear.  Thus, the SEM linear model becomes more 

inappropriate.  The residuals around the line are skewed to the extent that the line is an 

inappropriate model.  Thus, the correlations of the residuals (i.e., the error correlations) 

increase due to the fact that they have more skewed distributions.   

Grouping Error 
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According to Johnson and Creech (1983), grouping error occurs when correlated 

errors arise from there being too few categories to represent the construct.  They 

hypothesize that error correlations would increase as the number of categories in the 

observed categorical data decrease.  In the present study, I attempted to introduce 

grouping error by varying the number of categories from two through seven to see if 

correlated errors would arise and increase in magnitude with fewer categories present.  

Grouping error did not cause errors to be correlated, as Johnson and Creech (1983) 

hypothesized.  The number of categories in the observed data set did not systematically 

cause estimates of correlated errors to be higher when data had fewer categories.  In fact, 

estimated error correlations were generally highest when six categories were present in 

the data, and lowest when data only had two categories.  This is likely a result of 

attenuation of Pearson correlations, which would dictate that Pearson correlations are 

smaller when there are fewer categories (Bollen & Barb, 1981).  The data follow this 

pattern more closely than the grouping error pattern that Johnson and Creech (1983) 

predicted, which dictates the opposite pattern. The effects of the number of categories 

present in the data were small overall, indicating that the two opposing forces (error 

covariation and attenuation) may have, for the large part, cancelled one another out.   

Limitations and Future Research 

There are several limitations in this study.  First, the conditions of skew were 

somewhat arbitrarily decided, and were not very severe (even the condition with the most 

severe skew has an average skew level of 2.78).  Further research should examine the 

effects of more severe skew, although I expect the same patterns found in the present 

paper will continue to be present.  Additionally, the levels of skew were not consistent 
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across the number of categories.  Although the average skew level across categories was 

appropriate, some categories had markedly less skew than others within a condition of 

skew (Table 2).   

The study also sacrificed some generalizability in favor of being able to more 

directly assess the mechanisms proposed by Johnson and Creech (1983).  First, the data I 

generated met some strict assumptions.  For example, the generated true score data were 

made to be parallel, which is a strict assumption, and is also an assumption of alpha. 

Future research may examine the joint effects of non-tau-equivalence and error 

correlations.  Additionally, like much of the current research on alpha and internal 

reliability, this study only examined items with a unidimensional structure.  Some work 

has been conducted to determine SEM-based reliability estimates in the case of 

multidimensional tests (Green & Yang 2009a), but the effects on alpha specifically have 

not been thoroughly examined.  Also, for the sake of identifying grouping error and 

transformation error, I created data that contained both categorical and continuous items.  

This type of data is unlikely to occur in practice, as most scales have a consistent 

response scale.  Thus, effects from grouping or transformation error may be hard to 

disentangle from true score variance in practice. 

Relatedly, this study only analyzed coefficient alpha, whereas there are many 

other reliability estimates.  It would be beneficial to examine the performance of other 

reliability estimates when correlated errors are present; most notably, McDonald’s (1999) 

omega under conditions of non-tau-equivalence, and Gu et al.’s (2013) non-linear omega.  

Summary 
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 Taking these limitations into account, there are still several important implications 

from this research.  Most notably, error correlations in the observed data can arise when 

measurement errors (in the CTT sense) are correlated.  Error correlations can also arise 

when observed data do not match the distribution of true scores.  Furthermore, error 

correlations do cause alpha to overestimate true reliability.  When observed data are 

ordinal, this overestimation can be attenuated or negated by the use of Pearson product-

moment correlations.  According to the results of the present study, correlated errors 

caused by misclassification error (i.e., correlated measurement error) are large enough 

that alpha always overestimates true reliability.  When alpha is computed from skewed 

data, it also has the potential to overestimate true reliability, although this effect is 

exaggerated with higher factor loadings.  Overall, the results suggest that alpha is only 

appropriate with ordinal data when data are not skewed and do not have systematic 

measurement error; however it appears to be appropriate with any number of categories.  

Additionally, the number of categories does not interact with loadings, skew or 

measurement error; these effects do not become more or less present with different 

numbers of categories.  
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Chapter VI: Conclusions 

 This study addressed some proposed mechanisms by which errors become 

correlated in ordered categorical data.  Specifically, I simulated misclassification error, 

grouping error, and transformation error, as described by Johnson and Creech (1983).  In 

short, I found support for the occurrence of misclassification and transformation error, 

but not for grouping error.  That is, correlated errors arose when correlated measurement 

error was present and when observed data did not match the underlying normal 

distribution; however correlated errors were not strongly affected by the number of 

categories. 

Given the results of the current study, researchers should be especially cautious in 

using alpha if their data are skewed when a normal underlying continuum is assumed; for 

example, with a scale measuring psychological constructs such as ability given in a gifted 

class, such that data are negatively skewed.  Researchers should also be especially careful 

if they have reason to believe that some items may be sharing extra variance, due to 

properties of the test or items.  Using alpha when the assumption of correlated errors is 

not met and data are ordinal in nature may lead researchers to come to inappropriate 

conclusions about the reliability of their scale.  Based on the current literature (including 

the results of this study), it is not always the case that alpha is a lower or upper bound for 

true reliability.  Thus, researchers need to take caution when reporting alpha and note 

possible violations of assumptions.   

 Coefficient alpha is an extremely popular measure of internal reliability, and is 

reported in many test manuals and journals.  Additionally, many scales and tests yield 

ordinal data, either in dichotomous or a Likert-type format.  Therefore, researchers 
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should be aware of alpha’s potential for inaccuracy in these situations. In particular, alpha 

is often applied to ordinal data, and such data are subject to the joint effects of attenuated 

inter-item correlations, resulting in lower values of alpha, as well as correlated errors, 

resulting in higher values of alpha.  It is impossible to tell if alpha is over- or 

underestimating reliability from a single alpha value.  Additionally, it is common belief 

that a test must show reliability before it can be shown to have validity (Crocker & 

Algina 1986, p. 217).  If researchers base their decisions about a scale’s reliability on 

alpha’s value alone, they risk misinterpreting the validity of that scale as well.   

As Sijtsma (2009a) mentioned, SEM software and knowledge is becoming more 

readily available to applied researchers.  I recommend that researchers conduct SEM 

analyses on their data using the appropriate model for their data (i.e., with appropriately 

defined parameters and appropriate estimation methods for the type of data) to ensure 

that the assumption of uncorrelated errors is met.  If the assumption is not met, I 

recommend using a different reliability estimate.  Although it has not been thoroughly 

researched or used in practice yet, the non-linear omega developed by Gu et al. (2013) 

shows promise as an accurate reliability estimate for use with ordered categorical data 

that assumes an underlying continuum.   

Understanding that SEM estimates are not an option for many applied researchers, 

I (again) recommend that researchers who do report alpha also note possible violations of 

assumptions, even if they cannot be explicitly tested.  As I demonstrated in the current 

study, and has been demonstrated in previous research, alpha has potential to over- or 

underestimate true reliability in the presence of correlated measurement error and skew in 
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observed ordered categorical data.  Thus, researchers should always be skeptical of 

alpha’s value as an appropriate estimate of internal reliability.  
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Table 1 

 

Estimated Parameter Descriptives 

      M SD minimum maximum n 

Fully 

categorized 

data 

Loadings 

0.4 0.329 0.179 -0.36 0.72 107986 

0.6 0.495 0.183 -0.51 0.76 108000 

0.8 0.706 0.089 -0.64 0.83 108000 

Error correlations 
0.1 0.068 0.037 -0.72 0.40 161991 

0.3 0.212 0.051 -0.100 0.48 161995 

        

Partially 

categorized 

data 

Loadings 

0.4 0.344 0.080 -0.3 0.44 80999 

0.6 0.523 0.106 -0.5 0.63 80994 

0.8 0.720 0.057 -0.61 0.81 80947 

Error correlations 0.061 0.081 -0.080 0.370 161965 
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Table 2 

 

Skew and Kurtosis Values by Number of Categories and Intended Level of Skew 

Number of 

categories   No skew Moderate skew Severe skew 

 

2 

skew 
M 0.001 2.134 3.496  

SD 0.037 0.075 0.129  

kurtosis 
M     -2.000 2.578 10.311  

SD 0.000 0.321 0.918  

      
 

3 

skew 
M 0.001 2.085 3.549  

SD 0.020 0.059 0.117  

kurtosis 
M   -0.990 3.504 12.132  

SD 0.024 0.278 0.929  

      
 

4 

skew 
M   -0.001 1.280 2.089  

SD 0.023 0.043 0.062  

kurtosis 
M   -1.102 0.321 3.446  

SD 0.016 0.131 0.298  

      
 

5 

skew 
M 0.001 2.064 3.353  

SD 0.017 0.045 0.093  

kurtosis 
M   -0.506 4.365 12.296  

SD 0.030 0.259 0.788  

      
 

6 

skew 
M 0.000 2.077 2.134  

SD 0.028 0.057 0.053  

kurtosis 
M   -1.400 3.584 4.760  

SD 0.003 0.287 0.304  

      
 

7 

skew 
M   -0.001 1.482 2.055  

SD 0.031 0.041 0.056  

kurtosis 
M   -1.598 1.377 3.713  

SD 0.015 0.151 0.284  
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Table 3   

Eta-squared Values for the Effects of Magnitude of Error Correlations and the Number 

of Items with Correlated Errors on the Estimate of Correlated Errors 

 
Sum of Squares η

2  

Magnitude of error correlations 1696.216 0.195  

Number of items with correlated errors 0.019 0.000  

Magnitude*Number of items 0.002 0.000  

Error 651.243 
 

 

Total 8687.832 
 

 

 

 

 

 

 

Table 4 

Eta-squared Values for the Effects of Number of Categories, Skewness, and Factor 

Loadings on the Estimate of Correlated Errors 

 

Sum of 

Squares 
η

2  

Number of categories 128.159 0.0148  

Skewness 35.473 0.0041  

Factor loading 1.733 0.0002  

Categories*Skew 16.619 0.0019  

Categories*Loading 0.86 0.0001  

Skew*Loadings 11.452 0.0013  

Categories*Skew*Loadings 1.867 0.0002  

Error 2151.262 
 

 

Total 8687.832 
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Table 5 

Average Estimated Error Correlations by Skew and Number of Categories in Entirely 

Categorical Data Sets 

Number of 

Categories Skew M SD n 

  

2 

none .118 .067 1800   

moderate .101 .063 18000   

severe .086 .064 17986   

average
a 

.102 .066 53946   

       

3 

none .146 .079 18000   

moderate .126 .074 18000   

severe .108 .072 18000   

average .127 .077 54000   

       

4 

none .167 .087 18000   

moderate .150 .082 18000   

severe .135 .077 18000   

average .151 .084 54000   

       

5 

none .173 .090 18000   

moderate .150 .084 18000   

severe .130 .082 18000   

average .151 .087 54000   

       

6 

none .143 .078 18000   

moderate .147 .100 18000   

severe .153 .096 18000   

average .148 .092 54000   

       

7 

none .171 .090 18000   

moderate .160 .087 18000   

severe .152 .086 18000   

average .161 .088 54000   
a
Average across all levels of skew. 
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Table 6 

Eta-squared Values for the Effects of Number of Items with Correlated Errors and 

Magnitude of Correlated Errors on the Difference between Alpha and True Reliability 

Estimates 

Sum of Squares η
2
  

Repeated-measures effects  

Reliability
a 

6574.933 0.403  

Reliability*Number of items with correlated errors 79.087 0.005  

Reliability*Magnitude of correlated errors 73.536 0.005  

Reliability*Magnitude*Number of items 17.806 0.001  

Error 4060.671 
 

 

 
Total 10806.033 

 
 

Between-measures effects  

 
Number of items with correlated errors 3.830 0.000  

 
Magnitude of correlated errors 3.703 0.000  

 
Magnitude*Number of items .860 0.000  

 
Error 5484.313 

 
 

 
Total 5492.706 

 
 

Overall Total 16298.74 
 

 
a
Repeated-measures effect of the difference between alpha and true reliability estimates 1 and 2.

 

 

 

 

 

 

 

 

 

 

Table 7 
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Alpha and True Reliabilities by Item Correlations and Number of Correlated Items for 

Entirely Categorical Data Sets 

      
 

Alpha  

True reliability 

1
a 

 

True Reliability 

2
b 

Correlation 

Number of 

items n 

 

M SD M SD M SD 

.1 

3 80173  .758 
 

.161 
 

0.484 
 

0.232 
 

0.610 
 

0.164 

5 80172  .767 
 

.152 
 

0.477 
 

0.230 
 

0.597 
 

0.164 

  
 

           

.3 
3 80167  .767 

 
.153 

 
0.478 

 
0.230 

 
0.598 

 
0.164 

5 80176  .793 
 

.130 
 

0.460 
 

0.225 
 

0.564 
 

0.167 
a
The squared correlation between true continuous scores and final observed scores. 

b
The squared correlation between categorized true scores and final observed scores. 

 

 

 

 

 

Table 8 

Alpha and True Reliabilities by Factor Loadings for Entirely Categorical Data Sets 

  
Alpha 

 
True reliability 1

a 

 
True Reliability 2

b 

Factor loading 
 

M 
 

SD 
 

M 
 

SD 
 

M 
 

SD 

.4 
 

.603 
 

.130 
 

.273 
 

.177 
 

.448 
 

.105 

.6 
 

.789 
 

.072 
 

.463 
 

.174 
 

.628 
 

.130 

.8 
 

.910 
 

.031 
 

.681 
 

.116 
 

.692 
 

.156 

Note: The third true reliability estimate equals .656, .849, and .947 for factor loadings of .4, .6, 

and .8, respectively.   
a
The squared correlation between true continuous scores and final observed scores.

 

b
The squared correlation between categorized true scores and final observed scores. 
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Table 9 

Estimated Error Correlations by Number of Categories, Skew, and Factor Loadings for 

Partially Categorized Data Sets 

  

 
No skew  

Moderate 

Skew 
 Severe Skew 

 

Number of 

categories 

Factor 

loadings  
M 

 
SD 

 
M 

 
SD 

 
M 

 
SD 

 

2 

0.4 .000 
 

.018 
 

.006 
 

.019 
 

.008 
 

.020  

0.6 .007 
 

.019 
 

.040 
 

.021 
 

.048 
 

.025  

0.8 .059 
 

.020 
 

.158 
 

.026 
 

.186 
 

.034  

Average
a 

.022 
 

.032 
 

.068 
 

.069 
 

.081 
 

.081  

  
 

           
 

3 

0.4 .000 
 

.020 
 

.007 
 

.020 
 

.009 
 

.021  

0.6 .002 
 

.021 
 

.047 
 

.022 
 

.058 
 

.026  

0.8 .022 
 

.020 
 

.192 
 

.027 
 

.230 
 

.036  

Average .008 
 

.022 
 

.082 
 

.083 
 

.099 
 

.099  

  
 

           
 

4 

0.4  .000  .021  .003  .020  .008  .020  

0.6  .003  .021  .028  .021  .050  .022  

0.8  .030  .020  .141  .024  .206  .027  

Average  .011  .025  .058  .064  .088  .088  

               

5 

0.4  .000  .021  .006  .021  .011  .021  

0.6  -.001  .020  .045  .023  .065  .027  

0.8  .008  .021  .190  .027  .254  .036  

Average  .002  .021  .080  .083  .110  .108  

               

6 

0.4  .000  .021  .008  .020  .008  .021  

0.6  .004  .021  .052  .023  .049  .023  

0.8  .042  .022  .216  .028  .209  .028  

Average  .015  .029  .092  .092  .089  .090  

               

7 

0.4  .000  .020  .005  .021  .009  .020  

0.6  .006  .021  .038  .021  .052  .024  

0.8  .051  .022  .171  .024  .216  .028  

Average  .019  .031  .072  .075  .092  .093  

Note.  n=16200, 3000 per condition. 
a
Average across factor loadings. 
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Table 10 

Eta-squared Values for the Effects of Number of Categories, Skewness, and Factor 

Loadings on the Estimate of Correlated Errors 

 

Sum of 

Squares 
η

2  

Number of categories 3.374 .002  

Skewness 191.403 .117  

Factor loading 579.388 .354  

Categories*Skew 10.247 .006  

Categories*Loading 2.780 .002  

Skew*Loadings 163.864 .100  

Categories*Skew*Loadings 9.505 .006  

Error 86.421    

Total 1637.604    
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Table 11 

Alpha and True Reliability by Skew and Factor Loadings for Partially Categorized Data 

Sets 

   
Alpha  True Reliability 1

a
 

Skew  Loading M SD  M  SD 

None 0.4  .616   .028  .616  .025 
 

0.6  .820   .019  .822  .016 
 

0.8  .928   .012  .930  .010 
 

Average
a  .788   .131  .790  .131 

 
 

 
 

   
    

 
Moderate 0.4  .590   .032  .589  .027 

 
0.6  .801   .023  .796  .021 

 
0.8  .916   .016  .901  .024 

 
average  .769   .137  .762  .132 

 
 

 
 

   
    

 
Severe 0.4  .573   .040  .576  .033 

 
0.6  .787   .031  .787  .024 

 
0.8  .906   .023  .898  .025 

 
average  .755   .141  .754  .136 

 
 

 
 

   
    

 
Average

b 
0.4  .593   .038  .594  .033 

 
0.6  .803   .028  .802  .025 

 
0.8  .916   .020  .910  .025 

 
average  .771   .137  .768  .134 

 
Note: n = 54000, 18000 for each condition. 

Note: The third true reliability estimate equals .656, .849, and .947 for factor loadings of .4, .6, 

and .8, respectively.    
a
The squared correlation between categorized true scores and final observed scores. 
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Table 12 

Eta-squared Values for the Effects of Skew, Factor Loadings, and Number of Categories 

on the Difference between Alpha and True Reliability Estimate 1 

  
Sum of Squares η

2
  

Repeated-measures effects 
 

 

 
Reliability

a 765.987 0.033  

 
Reliability*Skew 85.600 0.004  

 
Reliability*Loading 206.595 0.009  

 Reliability*Categories 75.870 0.003  

 
Reliability*Skew*Loading 56.708 0.002  

 Reliability*Skew*Categories 109.062 0.005  

 Reliability*Loading*Categories 74.658 0.003  

 Reliability*Skew*Loading*Categories 57.828 0.002  

 
Error 2027.303 

 
 

 
Total 3459.611 

 
 

Between-measures effects 
 

 

 
Skew 746.210 0.032  

 
Loading 13477.125 0.577  

 
Skew*Loading 520.684 0.022  

 Skew*Categories 14.510 0.001  

 Loading*Categories 129.770 0.006  

 Skew*Loading*Categories 52.964 0.002  

 
Error 25.846 

 
 

 
Total 4932.120 

 
 

Overall Total 23358.842 
 

 
a
Repeated-measures effect of the difference between alpha and both true reliability estimates.
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Figure 1. Illustration of misclassification error.  True scores (tx) should be categorized 

into a specific category; however the error component (ex) causes the score to be 

classified differently.   
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Figure 2.  Data generation design. 
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Figure 3.  Average estimated error correlations as a function of skew and number of 

categories.   
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Figure 4.  Alpha and true reliability as a function of the number of items with correlated 

errors and the magnitude of the correlated errors.  
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Figure 5.  Alpha and true reliability as a function of skew and the number of categories. 
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Figure 6.  Average estimated error correlations by skew and factor loadings. 
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Figure 7.  Alpha and true reliabilities as a function of loadings and skew.  Note the 

change in y-axis range.   
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