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Abstract 

 In educational contexts, students often self-select into specific interventions (e.g., 

courses, majors, extracurricular programming). When students self-select into an 

intervention, systematic group differences may impact the validity of inferences made 

regarding the effect of the intervention. Propensity score methods are commonly used to 

reduce selection bias in estimates of treatment effects. In educational contexts, often a 

larger number of students receive a treatment than not. However, recommendations 

regarding the application of propensity score methods when the treatment group is larger 

than the comparison group have not been empirically examined. The current study 

examined the recommendation to recode the treatment and comparison groups (i.e., two 

types of treatment effect coding; Ho et al., 2007).  

 A simulation study was conducted to examine the performance of three 

propensity score methods (nearest neighbor matching, nearest neighbor matching with a 

0.20 SD caliper, and generalized boosted modeling), using two coding methods (ATT and 

ATC) when the treatment group was larger than the comparison group. Additionally, 

three treatment sample sizes (200, 600, 1,000), three treatment to comparison group ratios 

(2:1, 4:3, 1:4), and four true treatment effects (Cohen’s d of 0, 0.20, 0.50, 0.80) were 

simulated.  

 For nearest neighbor matching with a 0.20 SD caliper, adequate group covariate 

balance and low bias in the estimated treatment effect were observed across both coding 

methods regardless of which group was larger. In contrast, for generalized boosted 

modeling and nearest neighbor matching, group covariate balance and bias in the 

estimated treatment effect differed across coding method. When the treatment group was 
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larger than the comparison group, ATC coding resulted in better group covariate balance 

and lower bias than ATT coding. However, ideal balance was not obtained on all 

covariates, and bias in the estimated treatment effect was high for generalized boosted 

modeling and nearest neighbor matching. In sum, when the treatment group was larger 

than the comparison group, coding method did not matter for nearest neighbor matching 

with a 0.20 SD caliper. Conversely, for generalized boosted modeling, ATC coding 

performed better than ATT coding. Nearest neighbor matching did not perform well 

regardless of coding method.
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CHAPTER 1 

Introduction 

Although random assignment is often considered the gold standard when 

designing studies from which causal inferences are drawn, there are circumstances under 

which random assignment to groups is not justified (e.g., Austin, 2011; Shadish et al., 

2002). Consider the assessment specialist at a university who wishes to understand the 

effectiveness of general education writing courses on student learning. If desiring the 

ideal research design for making causal inferences about course effectiveness, students 

would be randomly assigned across general education writing courses (e.g., Shadish et 

al., 2002). However, realistically, it is typically not feasible to randomly assign students 

to a particular class.  

When students cannot be randomly assigned to classes, there may be systematic 

differences between students who choose one class over another. Perhaps students who 

have stronger writing skills choose a more difficult writing course than students who 

have weaker writing skills. Students who completed the more difficult writing class may 

have higher scores on an end-of-the-semester test of general education writing skills than 

students who completed another class, simply because the students who enroll in those 

classes may have stronger writing skills. Thus, the inference regarding the effect of 

taking one course over another may be biased due to self-selection into a particular class.  

Causal Inferences 

When group comparisons are made between those who have and have not 

received an intervention, researchers are often interested in making a causal claim about 

the effectiveness of that intervention. That is, if students who completed a general 
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education writing course scored higher on a writing prompt than students who did not 

complete a general education writing course, the general education faculty would be 

likely to claim that the curriculum of the writing course resulted in increased writing 

ability. Thus, the causal claim would be that the writing course increased students’ 

writing ability.  

To understand the causal effect of a treatment for a single individual, the outcome 

when treatment is implemented and when treatment is not implemented must be known 

(e.g., Rubin’s Causal Model, potential outcomes framework; Rubin, 1974). An 

approximation of the counterfactual, or what the outcome would have been for an 

individual under both treatment conditions, is necessary for making causal claims 

(Shadish et al., 2002). However, the counterfactual is unobservable at the individual level 

(because an individual cannot both receive and not receive treatment); instead, groups of 

individuals exposed (or not exposed) to treatment can be compared on the outcome of 

interest (Rubin, 1974; Shadish et al., 2002; Wainer, 2016). Thus, the treatment effect is 

the difference between the outcome when treatment is received and not received across 

all individuals (Rubin, 1974; Wainer, 2016).  

Random assignment to groups is essential for approximating the counterfactual 

(Rubin, 1974). When random assignment is employed, the treatment and comparison 

groups should not differ systematically. The groups are expected to be balanced on both 

known and unknown variables, thus there are no variables that are related to treatment 

selection (Pedhazur & Schmelkin, 1991b; Rubin, 1974). When random assignment is not 

feasible, groups may systematically differ on known and unknown variables related to 

treatment selection. Specifically, when individuals self-select or are not randomly 
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assigned to receive or not receive a treatment, there are likely to be variables related to 

self-selection. Systematic group differences due to self-selected or non-random 

participation threaten the internal validity of the inferences that are drawn regarding the 

treatment effect (Shadish et al., 2002). 

Internal Validity 

 Internal validity refers to whether the observed relation between treatment and 

outcome can be deemed causal as a result of study design (Shadish et al., 2002). That is, 

can an observed effect be attributed to the treatment that was implemented given the 

study design? Or, are there factors or confounds related to the treatment that could have 

led to the observed effect? When random assignment to treatment is not feasible, 

selection bias is a threat to the validity of the causal claims that can be made regarding 

the effect of receiving treatment.   

In non-randomized (quasi-experimental) studies, the estimated treatment effect 

could appear to be stronger or weaker than it is in the population due to the systematic 

group differences on variables related to treatment selection (Rosenbaum & Rubin, 

1983b; Rubin, 1973a, 1973b). However, when random assignment is not feasible, there 

are statistical methods that can be employed to reduce systematic differences between the 

groups, thus approximating random assignment to groups. By reducing systematic 

differences across the treatment and comparison groups, the researcher can reduce the 

impact of selection bias on the estimated treatment effect (Austin, 2011; Cochran & 

Rubin, 1973; Rosenbaum & Rubin, 1983b; Rubin, 1973a, 1973b, 1974; Shadish et al., 

2008). Propensity score methods are commonly used to balance treatment and 
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comparison groups on covariates to reduce systematic group differences (e.g., Austin, 

2011, 2013; Bai, 2011; Caliendo & Kopeinig, 2008; Stuart, 2010). 

Propensity Score Methods 

 Propensity score methods are one way to reduce systematic group differences, 

thus reducing bias in the estimated treatment effect (Austin, 2011; Caliendo & Kopeinig, 

2008; Rosenbaum & Rubin, 1983b, 1985; Stuart, 2010; Stuart & Rubin, 2008). 

Propensity for treatment is estimated (typically via logistic regression) from variables that 

relate to treatment selection, the outcome, or both treatment selection and the outcome 

(i.e., confounders; Austin, 2011; Bai, 2011; Caliendo & Kopeinig, 2008; Rosenbaum & 

Rubin, 1985). After propensity scores are estimated, they can be used to match 

comparison group members to similar treatment group members, or to weight individuals 

based on their propensity score (Austin, 2009, 2011; Caliendo & Kopeinig, 2008; 

Rosenbaum & Rubin, 1983b, 1985; Stuart, 2010). When groups are balanced on all 

confounding covariates, selection bias is no longer present in the estimated treatment 

effect (Rubin, 1973a, 1973b).   

When matching on the propensity score, there are various matching algorithms 

that can be used. With nearest neighbor matching (a greedy algorithm), a comparison 

group member is matched to a treatment group member with the closest propensity score 

value (Austin, 2011; Caliendo & Kopeinig, 2008; Rosenbaum & Rubin, 1983b, 1985; 

Stuart, 2010). Using this method, all treatment group members receive a match from the 

comparison pool. Nearest neighbor matching can also be implemented with a distance 

caliper. When a caliper is specified, the researcher defines the maximum difference on 

the propensity score that is allowable for a comparison group member to be matched to a 
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treatment group member (Austin, 2011; Caliendo & Kopeinig, 2008; Stuart, 2010). A 

typical caliper that is used is 0.20 standard deviations of the logit of the propensity score 

(Austin, 2009). When nearest neighbor matching is employed with a caliper, there is the 

potential for some treatment group members to not receive a match from the comparison 

pool (Austin, 2011; Caliendo & Kopeinig, 2008; Stuart, 2010). 

Propensity score methods work well to create balanced groups when certain key 

assumptions are not violated (Austin, 2011; Caliendo & Kopeinig, 2008; Ho et al., 2007). 

The first crucial assumption is that of strong ignorability (or no unmeasured 

confounders). The strong ignorability assumption means that conditional on the 

covariates, treatment assignment is not related to the outcome (Rosenbaum & Rubin, 

1983a; Stuart, 2010). Thus, if all sources of selection bias are included in the estimation 

of the propensity score, treatment assignment should not be related to the outcome. The 

second crucial assumption is that of common support (or sufficient overlap of propensity 

scores across treatment and comparison groups). Common support refers to the degree to 

which the propensity score distributions of each group overlap (Guo & Fraser, 2015). 

Sufficient overlap between groups is necessary for obtaining adequately balanced 

matched treatment and comparison groups. In contrast, if there is little overlap between 

the propensity score distributions of the groups, then obtaining good comparison pool 

matches for the treatment group members will be difficult. The third crucial assumption 

is that of stable unit treatment value. Stable unit treatment value refers to independence 

between the treatment of one individual and another individual (and thus, independence 

between the outcome of individuals; Stuart, 2010). In order to estimate the effect of the 
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treatment, comparison group members should receive no treatment and all treatment 

members should receive the intended degree of treatment.         

 The goal of propensity score matching is to construct a comparison group that 

does not systematically differ from the treatment group on variables related to treatment 

selection. Thus, in order to attain a match for every treatment group member, it is 

beneficial to have a comparison group that is larger than the treatment group (Pan & Bai, 

2015; Rosenbaum & Rubin, 1985; Rubin, 1979; Stuart, 2010; Stuart & Rubin, 2008). 

However, there may be situations in which the number of individuals who receive 

treatment is greater than the number of individuals in the comparison pool. For example, 

in higher education, it is desirable that all students complete general education courses. 

That is, all students should receive an intervention aimed at increasing their general 

education knowledge, skills, and abilities. If educational researchers are interested in 

comparing learning outcomes of students who have and have not completed coursework, 

it is possible that they might face a scenario in which there will be a larger number of 

students who received treatment than who did not. A larger treatment than comparison 

group might also be obtained if the desire is to compare learning outcomes across 

students who completed different general education courses within the same domain. 

More research is needed regarding the use of propensity score methods to reduce 

selection bias when there are more treatment group members than comparison group 

members.  

In the quasi-experimental literature, propensity score methods have been used 

with a larger treatment than comparison group; to compare two labor success programs 

(Lechner, 2000), to compare results obtained with different comparison to treatment 
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group ratios (Holzman & Horst, 2019), to compare survival rates of those who did and 

did not receive a smoking-cessation intervention (Austin & Cafri, 2020), to compare 

results obtained from different matching and coding methods (Perkins & Horst, 2020), 

and to compare math performance of students who completed traditional or new math 

curricula (Powell et al., 2020). Additionally, some guidance regarding how to implement 

propensity score methods when the treatment is larger than the comparison group has 

been provided; however, the recommendations lack empirical support (Ho et al., 2007; 

Stuart, 2010). These recommendations include using subclassification, full matching, 

weighting by the odds (Stuart, 2010), matching with replacement, or switching the coding 

of the treatment and comparison group (Ho et al., 2007).  

Current Study 

 The aim of the current study was to examine how well propensity score methods 

reduce systematic differences between groups when the treatment group is larger than the 

comparison group. Although methods for addressing a larger treatment than comparison 

group have been suggested in the literature, there is little evidence to support those 

suggestions. Thus, it is important to understand whether propensity score methods result 

in adequate balance between the treatment and comparison groups and accurate estimates 

of the treatment effect when the treatment group is larger than the comparison group. The 

aim of the current study was to examine bias in the estimated treatment effect, covariate 

balance after matching or weighting, loss of treatment group members, and the direction 

and magnitude of the estimated treatment effect across different propensity score 

methods. Therefore, a simulation study was used in order to specify the true treatment 

effect and examine the research questions under varying conditions (Feinberg & 
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Rubright, 2016). Given the lack of research on the use of propensity score methods when 

the treatment group is larger than the comparison group, three propensity score methods 

(i.e., nearest neighbor matching, nearest neighbor matching with a caliper, and 

generalized boosted modeling) were evaluated across different coding methods, treatment 

to comparison group ratios, treatment sample sizes, and true treatment effect sizes. The 

following research questions were specified:   

Research Question 1a: When the Treatment Group is Larger Than the Comparison 

Group, Can Propensity Score Methods Accurately Recover the True Treatment Effect?  

The first research question was crucial for providing guidance regarding the use 

of propensity score methods when the treatment group is larger than the comparison 

group. The goal of propensity score methods is to reduce bias in the estimated treatment 

effect that is due to systematic differences between the groups on confounding variables 

(Austin, 2011, 2013; Bai, 2011; Caliendo & Kopeinig, 2008; Rosenbaum & Rubin, 

1983b, 1985). Thus, information regarding the accuracy of propensity score methods 

under various conditions when the treatment group is larger than the comparison group 

can provide guidance to researchers.  

Research Question 1b: Does the Magnitude and Direction of the Estimated Treatment 

Effect Differ Across Propensity Score Methods Depending on Group Coding?  

The first research question also pertained to whether the magnitude and direction 

of the estimated treatment effect differed depending on the whether the treatment group 

was coded 1 or 0. In typical applications of propensity score methods, the treatment 

group is coded 1 and the comparison group is coded 0. This coding aligns with the 

estimation of the average treatment effect for the treated (ATT). One recommendation 
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when the treatment group is larger than the comparison group is to switch the coding of 

the treatment and comparison groups. In doing so, the comparison group will be coded 1 

and the treatment group coded 0. When the coding is reversed, a treatment group member 

match is selected for each comparison group member, with the goal of creating a 

treatment group that is similar to the comparison group on the covariates. This coding 

aligns with the estimation of the average treatment effect for the comparison group 

(ATC). In other words, ATC coding answers a different research question than ATT 

coding. There is little explanation of the ATC in the propensity score literature. 

Examination of the magnitude and direction of the treatment effect for the same 

propensity score method across different coding methods will expand the current 

understanding of the ATC. 

Research Question 2: When the Treatment Group is Larger Than the Comparison 

Group, Can Propensity Score Methods Achieve Adequate Group Balance on the 

Covariates? 

The second research question examined the extent to which balanced groups 

could be created when there is a comparison pool that is smaller than the treatment group. 

Adequate group balance on the covariates after matching or weighting indicates that 

selection bias due to the included covariates has been reduced or removed from the 

estimated treatment effect (Ho et al., 2007). Thus, the validity of the inferences made 

regarding an observed treatment effect is strengthened. Inadequate group balance after 

matching or weighting on the covariates indicates that the groups systematically differ 

and estimation of the treatment effect from the matched or weighted sample is not 

appropriate (Ho et al., 2007). Examination of group balance on the covariates after 
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matching or weighting will provide information regarding the quality of the matched or 

weighted samples. 

Research Question 3: When the Treatment Group is Larger Than the Comparison 

Group, Does the Loss of Treatment Group Members for Nearest Neighbor Matching 

With a Caliper Differ Across Coding Methods, Treatment to Comparison Ratios, and 

Treatment Sample Sizes? 

When the treatment group is larger than the comparison group and one-to-one 

matching is implemented, there will be treatment members who do not receive a match. 

Specifically, the number of treatment group members who receive a match can, at a 

maximum, equal the number of comparison group members. When nearest neighbor 

matching is used with a caliper, there can be a larger loss of treatment group members if 

there is no comparison group match within the specified caliper distance. Loss of 

treatment group members is undesirable because it leads to a loss of treatment 

representation and a decrease in the matched sample size (Jacovidis et al., 2017).   
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CHAPTER 2 

Review of the Literature 

Within educational research, random assignment of students to groups (e.g., 

courses, remediation programs, majors) is often outside of the researcher’s control. When 

random assignment to groups is not feasible, there are statistical methods that can be 

employed to reduce systematic group differences. Throughout the quasi-experimental 

literature, covariate adjustment (e.g., Cochran, 1953; Cochran & Rubin, 1973; Lord, 

1960; Pascarella et al., 2013; Pedhazur & Schmelkin, 1991a; Rubin, 1973b, 1974, 1979), 

stratification (Austin, 2011; Maxwell & Delaney, 2004; Rosenbaum & Rubin, 1983b; 

Stuart, 2010), matching (Rubin, 1973a, 1973b, 1979), and propensity score matching 

(Austin, 2011, 2013; Bai, 2011; Caliendo & Kopeinig, 2008; Rosenbaum & Rubin, 

1983b, 1985) are among the most frequently used methods for reducing systematic group 

differences when random assignment is not feasible. The goal of these methods is to 

control for variables that relate to group selection, thus reducing systematic differences 

between the groups.  

In this chapter, I review the literature on four common quasi-experimental 

methods that are used to reduce systematic group differences (covariate adjustment, 

stratification, matching, and propensity score matching). Next, I provide an in-depth 

description of the steps involved in propensity score matching. I then explain generalized 

boosted modeling (an extension of propensity score methods). Finally, I review the 

limited literature on propensity score matching when the treatment group is larger than 

the comparison group. 
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Covariate Adjustment 

Researchers refer to covariate adjustment by different names throughout the 

literature (e.g., analysis of covariance [ANCOVA], regression adjustment for background 

variables). In the traditional ANCOVA approach, group differences are estimated on a 

continuous outcome variable after controlling for covariates that are included in the 

model. Instead of estimating raw group mean differences on the outcome variable, the 

researcher is now examining differences in the group means of the outcome variable that 

have been adjusted based on how each groups’ means on the covariate(s) differ from the 

grand mean of the covariate(s). This technique is straightforward, as it is simply multiple 

regression with categorical and continuous predictors. However, there is conflicting 

empirical evidence regarding the ability of ANCOVA to accurately reduce selection bias 

in the estimated treatment effect. Some studies have shown that covariate adjustment did 

not adequately reduce selection bias (Rubin, 1973b, 1979); whereas, others have argued 

that covariate adjustment works just as well as, or better than matching methods (Cochran 

& Rubin, 1973; Pascarella et al., 2013).  

 In a study on liberal arts versus other 4-year universities’ impacts on students’ 

critical thinking skills, need for cognition, and positive attitudes toward literacy, 

Pascarella et al. (2013) examined differences between the use of covariate adjustment and 

propensity score matching. Twelve covariates (race, sex, parental education, ACT 

composite score, federal grant receipt, institutional grant receipt, precollege major intent, 

precollege political views, precollege purpose in life scores, precollege critical thinking 

scores, precollege need for cognition scores, and precollege attitude toward literacy 

scores) were identified as variables that were confounded with selection into attending a 
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liberal arts or 4-year university. For both propensity score matching and covariate 

adjustment, a model without the pretest as a covariate and a model with the pretest as a 

covariate were estimated. Baseline mean differences (unadjusted) on critical thinking 

skills, need for cognition, and positive attitudes toward literacy between those who 

attended a liberal university versus a 4-year university were statistically significant. The 

magnitude of each mean difference decreased from the baseline difference for all four 

models except for need for cognition scores using covariate adjustment with the pretest 

excluded. Pascarella et al. (2013) concluded that propensity score matching does not 

provide a substantial benefit over covariate adjustment. Additionally, Pascarella et al. 

(2013) concluded that both methods led to a substantial reduction in the amount of bias in 

the estimated mean difference between liberal and 4-year university student impact, and 

the models including the pretest as a covariate resulted in the largest reduction in bias.  

   The comparison of covariate adjustment to propensity score matching is useful 

to inform researchers’ selection between the two methods. However, the claims made by 

Pascarella et al. (2013) based on their study overreach. The researchers focused on how 

different models including covariates (both propensity score matching and covariate 

adjustment) reduced the amount of bias in the estimated treatment effect. Given that they 

used empirical data from an applied study, it was not possible to determine whether and 

to what extent bias was present in the estimated treatment effect. Pascarella et al. (2013) 

assumed that the unadjusted treatment effect was biased, and that any change to the 

estimated treatment effect was due solely to a reduction in bias.  

 A fundamental consideration when choosing an appropriate statistical method is 

how well the method aligns with the research questions and the data that were collected. 
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That is, statistical methods were developed to answer specific types of research questions.  

ANCOVA was developed to allow for the comparison of randomly assigned groups’ 

adjusted means, and, in particular, to reduce the error term, which results in a more 

powerful test of statistical significance (Pedhazur & Schmelkin, 1991a; 1991b). 

ANCOVA was intended for randomly assigned groups or groups for which there are no 

expected differences on a covariate, rather than quasi-experiments prone to self-selection 

bias. Although ANCOVA is a useful tool for understanding group differences while 

controlling for known covariates, it is not appropriate for accounting for self-selection 

into treatment unless the research question of interest is how groups differ on the 

outcome when both groups have equivalent means on the covariates (Pedhazur & 

Schmelkin, 1991b). 

Indeed, in two different simulation studies, Rubin (1973b, 1979) demonstrated 

that ANCOVA alone did not adequately reduce selection bias. ANCOVA only reduced 

bias well when there were equal numbers of treatment and comparison group members 

and equal group covariate variances. The exception was when there was a large ratio of 

comparison to treatment group members (at least 4:1; Rubin, 1973b). ANCOVA can also 

be conducted after creating treatment and comparison groups that are matched on 

covariates related to selection bias. Specifically, each treatment group member receives a 

comparison group member match with similar covariate values. Instead of conducting the 

ANCOVA on scores from the original, unbalanced sample, scores from the matched 

sample are used for the analysis. Thus, the matched sample approximates random 

assignment of participants to treatment and comparison groups (if the treatment and 

comparison group are balanced on the covariates in the matched sample). Researchers 
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might use ANCOVA on matched samples to understand group differences while 

controlling for known covariates.  

Extending his earlier work, Rubin (1979) showed that ANCOVA after matching 

worked consistently well because very few conditions resulted in increased bias. An 

alternative to samples matched on individual covariate values is to estimate propensity 

scores, and then conduct an ANCOVA using the propensity score as the covariate 

(Austin, 2011; Rubin, 1973b, 1979). ANCOVA used in conjunction with a matching 

procedure or with propensity scores has been shown to work reasonably well for reducing 

selection bias (Austin, 2011; Austin et al., 2007; Rubin, 1973b, 1979).  

When using ANCOVA, group differences on the outcome are adjusted as if both 

groups were the same on the covariates. In other methods that use covariates to reduce 

systematic group differences the covariates are used as a balancing score.  

Balancing Score  

In order to reduce the bias in the estimated treatment effect that is due to 

treatment selection, the treatment and comparison groups must be balanced on the 

variables related to treatment selection (Rosenbaum & Rubin, 1983b). Rosenbaum and 

Rubin (1983b) described balancing scores as scores that are used to aid in the creation of 

balanced treatment and comparison groups. Balancing scores range from fine to coarse, 

with the observed values on the covariates being the finest balancing score. Using the 

values of the covariates results in the finest balancing score because a treatment and 

comparison group member with the same balancing score will have the same values on 

each covariate. Conversely, the propensity score is the coarsest balancing score, because 

two individuals with the same propensity score do not necessarily have the exact same 
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values on all covariates used to estimate the propensity score (Rosenbaum & Rubin, 

1983b).  

The balancing score is sufficient for eliminating systematic differences between 

the treatment and comparison groups assuming that all relevant covariates have been 

included. Balancing scores can be used for stratification (strata are created based on the 

balancing score; Austin, 2011; Austin et al., 2007; Rosenbaum & Rubin, 1983b) and 

matching (Austin, 2011; Austin et al., 2007; Rosenbaum & Rubin, 1983b, 1985; Rubin, 

1973b, 1979).      

Stratification 

Another method for reducing systematic group differences is stratification. 

Stratifying (i.e., subclassifying, blocking) is the process of sorting the entire sample into 

blocks based on the covariate values. In doing so, treatment and comparison group 

members within each block should be relatively homogenous on the covariates that are 

related to treatment selection (Austin, 2011; Cochran, 1968; Guo & Fraser, 2015; 

Maxwell & Delaney, 2004). After creating strata, the treatment effect is estimated for 

each stratum, after which the individual estimates are pooled together (Austin, 2011; 

Cochran, 1968; Guo & Fraser, 2015). Pooling allows for each stratum to be weighted 

based on the number of treatment and comparison group members within each stratum 

(Austin, 2011; Cochran, 1968; Guo & Fraser, 2015).  

Five strata are recommended (Austin, 2011; Cochran, 1968), which resulted in a 

reduction of 90% to 95% of the bias in the treatment effect that was due to one covariate 

(Cochran, 1968). Stratification can be done using the actual values of the covariates 

(Cochran, 1968) or using the propensity score (Austin, 2011; Caliendo & Kopeinig, 
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2008; Guo & Fraser, 2015). Using too many strata can result in smaller reduction in bias 

in the treatment effect than using fewer strata (Cochran, 1968). Whereas stratification 

uses the balancing score to sort the entire sample into subsets (or strata), matching 

methods use the balancing score to create matched treatment and comparison groups that 

have similar covariate distributions.  

Matching  

Matching methods were introduced as a means of creating balanced treatment and 

comparison groups by matching on variables related to treatment selection (covariates; 

Rubin, 1973a). Matching methods involve selecting a portion of the comparison group 

sample that most similarly resembles the treatment group sample on the covariates 

(Rubin, 1973a). This matching can occur in different ways. Pair-matching (or exact 

matching) works by selecting a comparison group member as a match for a treatment 

group member if all values of the covariates match those of the treatment group member. 

Nearest pair-matching works in the same way except the values of the covariates do not 

have to match exactly. Rather, the comparison group member with the closest values on 

the covariates to the treatment group member is selected as the match. Mean-matching 

works by selecting a comparison group member match for the treatment group member 

that will result in balance between the two group means (Rubin, 1973a). 

 When all appropriate covariates are selected, matching methods will remove 

selection bias from the treatment effect conditional upon the covariates included in the 

model by balancing the groups on the covariates (Rubin, 1973a, 1973b). When bias in 

each covariate is reduced by the same amount, matching methods result in equal percent 

bias reduction (EPBR; Rosenbaum & Rubin, 1985). If a method is EPBR, then the 
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method is appropriate for reducing systematic group differences and bias in the estimated 

treatment effect (Rubin, 1979; Rosenbaum & Rubin, 1985). 

 Although the procedure used with matching is straightforward, the process of 

matching becomes increasingly complicated as the number of covariates increases 

(Rosenbaum & Rubin, 1985). First, to ease the matching process, researchers may make 

the decision to categorize continuous variables. When this is done, it can be easier to 

match individuals on the covariate; however, there is a substantial loss of information 

when a continuous variable is categorized (MacCallum et al., 2002). Due to the loss of 

information, categorization of continuous variables is typically not recommended, unless 

it makes sense to do so (MacCallum et al., 2002). Second, even if all covariates are 

categorical variables, the potential for unmatched treatment group individuals increases 

as the number of covariates increase. Rosenbaum and Rubin (1985) demonstrated this 

problem by considering a scenario where there are 20 covariates on which the treatment 

and comparison groups are matched. If each of the 20 variables were binary (only two 

response options), there would be over one million different possible response patterns 

across the 20 variables. Even with a very large sample, there will likely be many 

treatment group members for which there is no exact match from the comparison group 

pool. Thus, it may not be possible to find an appropriate comparison group member 

match for all treatment group members (Rosenbaum & Rubin, 1985). Propensity score 

matching was developed to reduce the complexity of matching on a large number of 

covariates while still creating matched treatment and comparison groups (Rosenbaum & 

Rubin, 1983b, 1985; Stuart & Rubin, 2008).   
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Propensity Score Methods 

Another method for reducing selection bias is through the estimation of 

propensity scores. Propensity score methods involve the estimation of the propensity for 

treatment for each individual in the sample, conditional upon researcher-identified 

covariates. The propensity score is estimated such that individuals with the same 

propensity score will have the same propensity for treatment, regardless of whether they 

belong to the treatment or comparison group (Rosenbaum & Rubin, 1983). When 

comparison group members are matched to treatment group members using the 

propensity score, the matched treatment and comparison groups should have similar 

covariate distributions. Thus, the propensity score is a balancing score conditional upon 

the covariates used to estimate the propensity score (Austin, 2011). After the propensity 

score is estimated, treatment group members can be matched to comparison group 

members with the same or similar propensity score (depending on the matching method 

implemented). Treatment assignment is said to be ignorable conditional upon the 

propensity score, because a treatment group member and a comparison group member 

with the same propensity score are, in theory, interchangeable even if their specific 

covariate values differ (Rosenbaum & Rubin, 1983b). By creating matched pairs of 

treatment and comparison group members, a comparison group is created that is similar 

to the treatment group on variables that are related to selection into treatment. Thus, 

systematic differences between the treatment and comparison group will be reduced or 

eliminated and the estimated treatment effect will not be biased due to self-selection.  

Matching on the balancing score results in groups that are balanced on the 

observed covariates. Any covariates on which the groups are unbalanced that are not 
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included when estimating the propensity score (whether these covariates are measured or 

not) will result in systematic group differences (Rosenbaum & Rubin, 1985). Thus, the 

estimated propensity scores are only as good as the model used to estimate them. That is, 

if relevant covariates are omitted or the functional form of the relation between the 

covariates and the propensity score is misspecified, the use of the propensity scores to 

create balanced groups may not effectively reduce systematic differences between the 

groups (Austin, 2009; Craig, 2020; Rosenbaum & Rubin, 1985). By matching treatment 

group members to comparison group members on the propensity score, the researcher can 

create groups that have the same distribution of propensity for treatment selection, 

conditional upon the covariates. Achieving this balance makes the examination of the 

treatment effect more reasonable when randomization is not feasible (Rosenbaum & 

Rubin, 1983b), strengthening the validity of the inferences made regarding the treatment 

effect. Without balancing the groups on the covariates, researchers have little evidence 

that any observed treatment effect is indeed attributable to the occurrence of the treatment 

(Cochran & Rubin, 1973; Rosenbaum & Rubin, 1983b, 1985; Rubin, 1973a, 1979; 

Shadish et al., 2002). Any magnitude of estimated treatment effect could reflect 

systematic group differences rather than the true treatment effect in the population. Thus, 

without reducing or removing systematic group differences, researchers can easily 

conclude that an ineffective treatment is indeed effective or that an effective treatment is 

ineffective (Rosenbaum & Rubin, 1983b, 1985; Rubin, 1973a, 1979).    

Assumptions of Propensity Score Matching 

Propensity score matching has key assumptions, which if not met, can impact the 

credibility and generalizability of the results (Austin, 2011; Caliendo & Kopeinig, 2008; 
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Ho et al., 2007; Rosenbaum & Rubin, 1983b). When the assumptions of propensity score 

matching hold for the data that are being analyzed, propensity score matching should 

reduce the effect of selection bias on the estimated treatment effect (Rosenbaum & 

Rubin, 1983b). Some assumptions are difficult to evidence with empirical data; however, 

researchers can examine these assumptions to some extent, providing evidence for the 

appropriateness of propensity score matching for their study.  

 Strong Ignorability. A key assumption that is two-fold is the strong ignorability 

assumption (Rosenbaum & Rubin, 1983b; Stuart, 2010). Strong ignorability means that 

the treatment selection is independent of the measured outcome, given the covariates. For 

example, with random assignment, treatment assignment is strongly ignorable. This is the 

case because the outcome is not dependent upon treatment assignment. When using 

propensity score matching, we are trying to mimic a similar situation. Thus, after 

balancing groups on the covariates, treatment selection is strongly ignorable if 

assignment or selection into treatment conditions is unrelated to the observed outcome. 

This assumption is important because if treatment selection is related to the outcome, 

then treatment selection is not independent of the outcome (i.e., treatment selection is a 

confound). When treatment selection is not independent of the outcome, the treatment 

and comparison groups should not be directly compared on the outcome of interest 

(Rosenbaum & Rubin, 1983b). Interwoven with strong ignorability is the assumption that 

all variables that relate to treatment selection are included in the estimation of the 

propensity score (i.e., no unmeasured confounders). If variables that are related to 

treatment selection are omitted from the propensity score model, the estimated treatment 

effect will be biased due to treatment selection. Moreover, any unmeasured covariates 
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will threaten the independence of treatment selection and the outcome. Although this 

assumption is not directly testable, researchers can guard against severe violations of this 

assumption by consulting theory and empirical studies to determine what variables are 

likely related to treatment selection (Austin, 2011; Rosenbaum & Rubin, 1983a; Steiner 

et al., 2010; Stuart, 2010; Stuart & Rubin, 2010). A lack of careful consideration of which 

variables to measure during the study design phase cannot be corrected for through 

statistical analyses. Careful thought and thorough review of the relevant literature is the 

best safeguard against violation of this key assumption (Steiner et al., 2010). Although 

there is no method to determine whether the strong ignorability assumption has been 

violated, sensitivity analysis can provide an indication as to whether the strong 

ignorability assumption has been violated (Austin, 2011; Steiner et al., 2010; Stuart, 

2010). If the estimated treatment effect differs with the inclusion of additional covariates, 

it is likely that the strong ignorability assumption has been violated (Stuart, 2010). 

 Common Support. Common support (or sufficient overlap of propensity scores) 

is related to the assumption of strong ignorability (Guo & Fraser, 2015). Common 

support refers to the amount of overlap between the propensity score distributions in the 

treatment and comparison group. If there is not sufficient overlap between the groups’ 

propensity score distributions, the strong ignorability assumption will not be met 

(Caliendo & Kopeinig, 2008). That is, if the propensity score distributions differ to a 

large degree, sufficient treatment and comparison group matched pairs cannot be found. 

Thus, groups will likely not be balanced on the covariates after matching. If there are 
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systematic differences between the groups after matching, selection bias is still present 

and the treatment assignment is not independent of the outcome.  

Stable Unit Treatment Value. The stable unit treatment value (SUTVA) 

assumption specifies that the treatment of one individual is not affected by the treatment 

of another individual (Stuart, 2010). The biggest threat to this assumption is interaction 

between treatment and comparison group members. For example, if a treatment group 

member shares details of the treatment with a comparison group member, the comparison 

group member’s outcome may be influenced by this information. Thus, rather than the 

comparison group member’s outcome score representing no treatment (and no treatment 

was intended), it is instead the outcome under receiving some treatment. If the intention is 

to understand the treatment effect by comparing treated and non-treated individuals, the 

inclusion of this comparison group member in the sample would threaten the validity of 

the estimated treatment effect. To determine whether this assumption holds, researchers 

should give careful consideration to potential interaction of group members during the 

study design phase. Additionally, during the treatment implementation, researchers 

should record any events that indicate that this assumption has been violated. 

Propensity Score Matching Steps 

When implementing propensity score matching, there are two general stages; the 

non-parametric, pre-processing stage and the treatment effect estimation stage (e.g., Ho et 

al., 2007). The first non-parametric, pre-processing stage can be further broken down into 

steps. Some of the steps may be combined or omitted in the propensity score matching 

literature (Austin, 2011; Bai, 2011; Caliendo & Kopeinig, 2008; Stuart, 2010; Stuart & 

Rubin, 2008). Nonetheless, the steps are the same and each step requires careful 
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consideration from the researcher (Austin, 2011; Caliendo & Kopeinig, 2008; Stuart, 

2010; Stuart & Rubin, 2008). The stages can be broken down as follows:  

1. Selection of covariates/estimation of propensity scores. 

2. Selection of matching method(s). 

3. Evaluation of common support. 

4. Evaluation of matching quality. 

5. Estimation of the treatment effect. 

6. Evaluation of sensitivity analysis. 

Steps one through four comprise the non-parametric, pre-processing stage; step 

five is the treatment effect estimation stage. Step six is a follow-up procedure to 

determine the potential impact of unmeasured covariates on the estimated treatment 

effect.  

Step 1: Selection of Covariates and Estimation of Propensity Scores. The first 

step (which is most often conducted during the study design phase) is the selection of 

relevant variables to include in the propensity score model and specification of the 

propensity score model. First, I will discuss important considerations for variable 

selection, then specification of the propensity score model.  

Variable Selection. Variable selection is important when specifying the 

propensity score model (Caliendo & Kopeinig, 2008; Dehejia & Wahba, 1999; Steiner et 

al., 2010). The goal of matching on the propensity score is to reduce systematic 

differences between the groups, which in turn will decrease the bias in the estimated 

treatment effect that is due to treatment selection. If relevant variables are omitted from 

the model, the estimated treatment effect may be more biased than if no matching was 
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implemented (Bai, 2011; Dehejia & Wahba, 1999; Rosenbaum & Rubin, 1983b; Stuart, 

2010). Some researchers caution that the inclusion of variables that are not meaningful 

for the estimation of the propensity (i.e., including all variables that a researcher has 

available to use) can be detrimental (Bai & Clark, 2019; Shadish et al., 2008), whereas 

others indicate that the inclusion of irrelevant variables does not bias the estimate of the 

treatment effect (Caliendo & Kopeinig, 2008). 

Due to the importance of variable selection, there is a wealth of literature that 

provides guidance for selecting variables to include in the propensity score model 

(Austin, 2011; Bai, 2011; Bai & Clark, 2019; Brookhart et al., 2006; Caliendo & 

Kopeinig, 2008; Ho et al., 2007; Steiner et al., 2010; Stuart, 2010; Stuart & Rubin, 2008). 

In general, theory and previous research should guide variable selection. A review of the 

relevant literature should reveal variables that are theoretically or empirically related to 

either treatment selection or the outcome of interest (Austin, 2011; Bai, 2011; Bai & 

Clark, 2019; Caliendo & Kopeinig, 2008; Ho et al., 2007; Stuart, 2010; Stuart & Rubin, 

2008). Bias is best reduced when the propensity score model includes covariates that 

relate to both treatment selection and the outcome of interest (Austin et al., 2007; Bai & 

Clark, 2019; Brookhart et al., 2006; Caliendo & Kopeinig, 2008; Ho et al., 2007; Stuart 

& Rubin, 2008). Variables that are only related to the outcome (and not treatment 

selection) should also be included to reduce bias in the estimated treatment effect (Bai & 

Clark, 2019; Brookhart et al., 2006). Including variables that are only related to treatment 

selection may be inefficient and provide no benefit in terms of bias reduction because the 

variables are not related to the outcome (Brookhart et al., 2006; Stuart & Rubin, 2008). 

Others state that in most settings researchers can likely include all available covariates 
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without risking severe consequences in the form of bias in the estimated treatment effect 

(Austin, 2011; Caliendo & Kopeinig, 2008).  

The covariates selected for the propensity score model should be measured prior 

to treatment implementation (Austin, 2011; Caliendo & Kopeinig, 2008; Stuart, 2010; 

Stuart & Rubin, 2008). That is, covariates that are affected by the treatment should not be 

included in the propensity score model. If it is not possible to measure certain covariates 

prior to treatment implementation, then they should not be included in the propensity 

score model. The only exception is variables that are constant over time (e.g., 

demographic variables that do not change, proxies for student ability, historical variables; 

Caliendo & Kopeinig, 2008). Because the propensity score model is predicting the 

probability of receiving treatment, the inclusion of a variable that is affected by treatment 

would result in propensity scores that are conflated with the treatment itself.   

Propensity Score Model. Once the covariates are selected and measured, the 

propensity score model is selected. When selecting the propensity score model, one 

consideration is the number of treatment options (Caliendo & Kopeinig, 2008). That is, 

how many different possible group membership variables are to be estimated? Typically, 

there are two treatment options (i.e., received treatment, did not receive treatment), which 

would indicate that a model that allows for the estimation of a binary outcome would be 

necessary. Although the logit model is used most frequently in the propensity score 

matching literature, any model that accommodates a binary outcome will work well 

(Caliendo & Kopeinig, 2008). If there are more than two treatment options (e.g., 
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comparing two different treatment methods and no treatment), a multinomial probit 

model or a series of binomial models may be appropriate (Caliendo & Kopeinig, 2008).  

Consideration must also be given to the functional form of the relation between 

the covariates and treatment selection (Rosenbaum & Rubin, 1985). The researcher 

should determine the appropriate form for the propensity score model. Rosenbaum and 

Rubin (1985) cautioned that estimated propensity scores from an incorrect model will not 

be useful for balancing the groups nor for reducing selection bias. However, propensity 

score methods have been shown to result in adequate balance even when the propensity 

score model is misspecified (Craig, 2020).  

Logistic Regression. Logistic regression is most frequently used to estimate 

propensity scores when there are two groups (e.g., treatment group, comparison group; 

Austin, 2011; Bai, 2011; Caliendo & Kopeinig, 2008, Rosenbaum & Rubin, 1985). When 

using logistic regression, the value predicted by the model is the logit of the propensity 

score. Thus, the predicted outcome (probability of receiving or not receiving treatment) is 

on the logit metric, which allows for the estimation of a linear relation between the 

covariates and treatment selection via the following model:  

𝑙𝑛 [
𝑃(𝑦𝑖=1|𝑿𝑖)

1−𝑃(𝑦𝑖=1|𝑿𝑖)
] = 𝐗𝑖𝛃     (1) 

where the logit is the natural log of the odds of treatment. The odds of treatment is 

represented as the probability of treatment (𝑦𝑖 = 1) conditional upon the vector of 

covariates (𝐗𝑖), divided by one minus the probability of treatment conditional upon the 

vector of covariates. The logit for person 𝑖 is equal to the product of 𝐗𝑖 (a vector of 

covariate values for person 𝑖) and 𝛃 (a vector of logistic regression coefficients; Guo & 

Fraser, 2015). The propensity score on the logit metric can also be transformed onto a 
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probability metric, resulting in the probability (or propensity) for treatment selection, 

conditional upon the covariates in the model.   

Logistic regression can accommodate categorical and continuous covariates as 

well as interactions and polynomial terms (Tabachnick & Fidell, 2013). Although logistic 

regression is often used as a parametric procedure (where the model parameters are tested 

for statistical significance), that is not the case when logistic regression is used to 

estimate the propensity scores. The regression parameters and model deviance from the 

propensity score model are not of primary interest. The interest is predicting the 

propensity for treatment in order to create matched treatment and comparison groups 

(Pan & Bai, 2015; Stuart, 2010).   

Step 2: Selection of Matching Method(s). There are a variety of matching 

methods from which to choose, and they can result in different matched treatment and 

comparison groups depending on the data. Thus, when selecting a matching method it is 

common practice to audition multiple matching methods (Austin, 2011; Caliendo & 

Kopeinig, 2008; Ho et al., 2007; Rubin, 1973a; Stuart & Rubin, 2008). After evaluating 

the quality of the matched sample resulting from each matching method, researchers are 

then able to champion one or multiple matching methods best suited to their study. 

Although all matching methods work well in general, this does not mean that they work 

well for all samples, under all circumstances (Caliendo & Kopeinig, 2008; Stuart & 

Rubin, 2008). The recommendation to implement multiple matching methods allows the 

researcher to evaluate the quality of matches for each method individually and compare 

the quality of matches across methods. Sometimes evaluation of the matching quality will 

illuminate that one method results in better group balance after matching than the other 
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methods. Other times, the results can be less clear. Caliendo and Kopeinig (2008) 

suggested that when the matching quality is similar across methods, then the choice of 

which method to champion matters less. That is, if all methods result in similar balance, 

then all methods should result in similar adjustment for selection bias in the eventual 

estimation of the treatment effect.  

The suggestion to audition multiple matching methods may seem daunting to 

researchers with little propensity score matching experience. It is important to point out 

that the researcher is not conducting a full analysis using each method (Stuart & Rubin, 

2008). Specifically, several matching methods are used to create different matched 

samples from the complete dataset. The quality of matches for each of the resulting 

matched datasets is evaluated using multiple criteria. The treatment effect is not 

estimated for each matching method (Stuart & Rubin, 2008). If a researcher estimated the 

treatment effect for matched samples from five different matching methods, there is the 

potential that different conclusions would be made regarding the treatment effect 

depending on which matching method the researcher championed. Indeed, when the 

quality of matches differed across methods, the magnitude and direction of the estimated 

treatment effect differed across matching methods (Austin, 2013; Austin et al., 2007; 

Jacovidis et al., 2017; Perkins & Horst, 2020). Therefore, researchers are cautioned 

against examining the treatment effect prior to the selection of which matching method 

results in the best balance for the study (Bai, 2011; Stuart & Rubin, 2008)  

 Matching algorithms can be categorized into optimal and greedy methods. 

Optimal methods are designed to select matches so as to optimize group balance on the 

covariates; whereas greedy methods are designed to select the closest match from the 
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remaining comparison group pool (Austin, 2011; Cochran & Rubin, 1973; Gu & 

Rosenbaum, 1993; Rubin, 1973a; Stuart, 2010).  

Optimal matching methods minimize the average propensity score difference 

across all matched pairs (Austin, 2013; Gu & Rosenbaum, 1993). The optimal algorithm 

works to ensure that these individual matches result in the lowest average within-pair 

difference on the propensity score. A nice feature of optimal matching methods is that 

they result in every single treatment member receiving a match. That is, there is no loss 

of treatment group representation when optimal matching is used (Austin, 2013; Gu & 

Rosenbaum, 1993).  

Greedy matching methods process through the treatment group members one by 

one and select the comparison group member with the closest propensity score to the 

treatment member (Austin, 2011; Gu & Rosenbaum, 1993). At first glance, greedy 

matching methods may sound identical to optimal matching methods, but there are 

certain distinctions between the two algorithms. Greedy matching methods differ from 

optimal matching methods in that with the greedy algorithm, there is no value that the 

method is trying to minimize. After a match is made, it is not re-evaluated. However, 

greedy matching methods tend to result in similar group balance to optimal matching 

methods, with generally the same comparison members selected from the comparison 

group pool (Gu & Rosenbaum, 1993). Although the same comparison group members 

were selected from the comparison pool, the matched treatment and comparison group 

pairs were not the same across greedy and optimal methods (Gu & Rosenbaum, 1993).  

Nearest Neighbor Matching. Nearest Neighbor (NN) matching is a greedy 

matching method (Rubin, 1973a). After the propensity score is estimated for treatment 
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and comparison group members, the treatment group members are ordered based on the 

estimated propensity score (Rubin, 1973a). Ordering of treatment member selection can 

be done from high to low, from low to high, or randomly (Rubin, 1973a). Random 

ordering of treatment members based on the propensity score in order to select matches 

tends to result in better matches and lower bias than high to low or low to high ordering 

(Austin, 2013).  

For each treatment member, the NN algorithm will select the comparison group 

member with the closest propensity score. After the treatment group member receives a 

comparison group member match, both participants are removed from the unmatched 

sample and are placed into the matched sample (unless matching with replacement, 

where the comparison group member would be returned to the comparison group pool 

and could be matched to additional treatment group members). As long as the comparison 

group is larger than the treatment group, all treatment group members will receive a 

comparison group member match, with only unmatched comparison group members 

excluded from the matched sample.  

If there are large differences in the distribution of the propensity score across the 

treatment and comparison groups, NN matching can result in poorer balance than other 

methods (Stuart, 2010). Importantly, greedy matching methods do not ensure that there 

will be a small difference between propensity scores for each match. For example, a 

treatment group member with a propensity score of 0.80 could be matched with a 

comparison group member with a propensity score of 0.50 because this comparison 

group member is indeed the closest match. If matched pairs differ to a large extent on the 

propensity score, there may still be systematic differences between the treatment and 
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comparison group even after matching. However, greedy matching methods have been 

shown to produce similar group balance to optimal matching methods (Gu & 

Rosenbaum, 1993). Like optimal matching, greedy matching methods result in every 

treatment member receiving a match (Austin, 2013).  

Nearest Neighbor Matching With Caliper. Calipers can be specified when using 

greedy matching methods to restrict the maximum distance between a matched treatment 

and comparison pair (Austin, 2011, 2013; Rosenbaum & Rubin, 1985). By employing a 

caliper method with propensity score matching, the researcher defines the maximum 

possible difference on the propensity score between a matched treatment and comparison 

pair (Austin, 2011; Caliendo & Kopeinig, 2008; Cochran & Rubin, 1973; Rosenbaum & 

Rubin, 1985; Stuart & Rubin, 2008). If there is no comparison group member with a 

propensity score within the specified caliper of the treatment member, no match is 

selected and the treatment member will not be included in the matched sample. Common 

calipers are 0.20 standard deviations of the logit of the propensity score or 0.02 or 0.03 

standard deviations of the propensity score (Austin, 2009).  

Compared to non-caliper methods, caliper matching can improve the balance on 

the covariates between the treatment and comparison group, but often comes at a cost to 

treatment group (and matched sample) size (Austin, 2009; Austin, 2011; Austin, 2013; 

Caliendo & Kopeinig, 2008; Jacovidis, 2017; Jacovidis et al., 2017; Stuart, 2010). Loss 

of treatment group members can be problematic for two reasons. First, there is a loss of 

treatment representation. That is, depending on the treatment and comparison group 

propensity score distributions, the loss of treatment members may result in decreased 

variance and restriction of range of the propensity score distribution (Caliendo & 
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Kopeinig, 2008). Second, loss of treatment members will decrease the matched sample 

size (Austin, 2009, 2011; Jacovidis et al., 2007). Although the original, unmatched 

sample size may have been adequate for the outcome analysis, loss of treatment members 

may lead to the matched sample no longer being of adequate size for the outcome 

analysis. Even if the matched sample size is sufficient for the outcome analysis, the 

results may be impacted by loss of power (Stuart, 2010). When using caliper matching 

methods, researchers need to be cognizant of the benefits and drawbacks of the method 

and use their best judgement as to whether the loss of treatment sample is concerning or 

acceptable (Jacovidis et al., 2007). If very few treatment group members are lost from the 

matched sample or there is a high degree of common support, the researcher may not 

have reason to be concerned about whether the estimated treatment effect is generalizable 

to the population.  

Additional Matching Considerations. When selecting the matching method, the 

researcher must also consider two additional matching specifications: matching with or 

without replacement and one-to-one or many-to-one matching (Austin, 2011; Caliendo & 

Kopeinig, 2008). Matching is typically implemented without replacement (Austin, 2009, 

2013). When using a greedy algorithm, such as nearest neighbor, once a comparison 

group member is matched to a treatment group member, the comparison group member is 

removed from the comparison pool and cannot be matched with any other treatment 

group members (even if the comparison group member is a good match for a subsequent 

treatment group member). Matching without replacement ensures that each matched 

individual is included in the matched sample only once (Austin, 2011, 2013; Caliendo & 

Kopeinig, 2008). When matching with replacement, after a comparison group member is 
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matched to a treatment group member, the comparison group member is returned to the 

comparison pool and can be matched with other treatment group members. Matching 

with replacement can result in better quality of matches than matching without 

replacement (because one comparison group member may be a good match for multiple 

treatment group members). However, matching with replacement can result in the same 

comparison group member being included in the matched sample multiple times (Austin, 

2011, 2013; Caliendo & Kopeinig, 2008). When matching with replacement is used, an 

outcome analysis that can account for the lack of independence within the comparison 

group must be used (Stuart, 2010). Moreover, matching with replacement resulted in a 

greater reduction in bias than other matching methods, however variance in the treatment 

effect and mean squared error were larger for matching with replacement than with other 

methods (Austin, 2013; Caliendo & Kopeinig, 2008).  

One-to-one matching is used more frequently than many-to-one matching within 

the PSM literature (Austin, 2009, 2011; Stuart & Rubin, 2008). With one-to-one 

matching, matched pairs consist of one treatment group member and one comparison 

group member. This will result in equal group sizes after matching, which is preferred for 

many outcome analyses. Many-to-one matching (ratio matching) allows multiple 

comparison group members to be matched to one treatment group member (Stuart, 2010; 

Stuart & Rubin, 2008). The researcher can specify the number of comparison group 

members to be matched with one treatment group member (e.g., 2 to 1) or the number of 

comparison group members matched to one treatment group member can be allowed to 

vary (Austin, 2011). Many-to-one matching might be preferred when the comparison 

group pool is much larger than the treatment group (Stuart, 2010; Stuart & Rubin, 2008). 
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In this situation, there may be multiple comparison group members who are a good match 

for each treatment group member. However, using many-to-one matching can increase 

bias in the estimated treatment effect (Caliendo & Kopeinig, 2008; Stuart, 2010; Stuart & 

Rubin, 2008). 

After matching method decisions are made and the matching methods are 

implemented, the quality of matches are examined. Doing so allows the researcher to 

determine which matching method is preferred for the study and whether the group 

balance after matching is adequate. Evaluation of matching quality is conducted using 

multiple criteria. Caliendo and Kopeinig (2008) separated this evaluation into two steps: 

evaluation of common support and evaluation of matching quality. 

Step 3: Evaluation of Common Support. Common support refers to the extent 

to which the distribution of the propensity scores for the treatment group overlaps with 

the distribution of the propensity scores for the comparison group (Austin, 2011; 

Caliendo & Kopeinig, 2008; Ho et al., 2007; Stuart, 2010; Stuart & Rubin, 2008). A high 

degree of common support indicates that the propensity score distributions of the two 

groups are similar, or at least overlapping, and that the quality of matches may be 

favorable. A low degree of common support indicates that the propensity score 

distribution of the two groups differ greatly, and that the quality of matches may not be 

adequate (Austin, 2011; Caliendo & Kopeinig, 2008).  

Common support is evaluated in two ways: visually checking the amount of 

overlap in the propensity score distributions and comparing the minimum and maximum 

propensity score across groups (Caliendo & Kopeinig, 2008; Ho et al., 2007; Stuart, 

2010). Visual checks of common support are often done by examining jitter plots. Each 
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group member’s propensity score is plotted, allowing the researcher to compare the 

propensity score distributions across groups (see Figure 1). Common support can also be 

examined by comparing the minimum and maximum propensity score values across 

groups (Caliendo & Kopeinig, 2008; Stuart, 2010). Any comparison group members with 

a propensity score that falls outside of the minimum or maximum in the treatment group 

can be removed, as these comparison group members are unlike the treatment group 

members in terms of their propensity for treatment selection (Caliendo & Kopeinig, 

2008). Differences in the minimum and maximum values of the groups’ propensity score 

distributions are not the only threat to common support. There could also be a range of 

propensity scores in which only treatment group members fall (and no comparison group 

members). Thus, lack of common support may result in a treatment group member being 

matched to a comparison group member who is qualitatively different on the covariates 

(depending on the matching method that is used; Caliendo & Kopeinig, 2008).  

A jitter plot can also be produced after matching has been implemented, with the 

propensity scores plotted for each of four categories: unmatched comparison group 

members, matched comparison group members, matched treatment group members, and 

unmatched treatment group members (see Figure 1). Evaluation of common support sets 

the stage for examination of matching quality. If the matched treatment and comparison 

group members have a similar distribution of propensity scores and there are few 

unmatched treatment group members, matching quality may be favorable. If the matched 

treatment and comparison group members do not have similar distributions of propensity 

scores, or if there are many unmatched treatment group members, matching quality may 

not be ideal or adequate (Austin, 2011; Stuart, 2010). Assessing common support after 
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matching can also be useful for understanding lack of propensity score and covariate 

balance after matching. For example, if a researcher found that a large proportion of 

treatment group members were not matched using a caliper matching method, the jitter 

plot would be a means of diagnosing whether there were comparison group members 

with similar propensity scores (e.g., Ho et al., 2007).  

The evaluation of common support allows the researcher to understand the 

propensity score distributions of the treatment and comparison groups (both before and 

after matching) and a researcher may be able to anticipate the matching quality they will 

observe based on the similarities or differences in the propensity score distributions. 

Direct evaluation of matching quality can provide a picture of how well each matching 

method worked, and which matching method worked the best for the study.        

Step 4: Evaluation of Matching Quality. After creating matched groups and 

evaluating common support, the next step is to evaluate match quality for each 

implemented matching method. After matching quality is deemed to be adequate for a 

method, the treatment effect can be estimated (step five). If matching quality is not 

acceptable, the researcher must consider reasons why (e.g., an important covariate was 

excluded, the model for estimating the propensity scores was wrong, there was little 

common support, etc.) and either address those reasons (if possible) or conclude that the 

employed matching methods did not work well for the data. Estimation of the treatment 

effect from the poorly matched sample would be inappropriate.  

Group Balance on the Covariates. Matching quality is evaluated by comparing 

the group balance on the covariates and propensity score before and after matching 

(Austin, 2011; Caliendo & Kopeinig, 2008). Group balance on each covariate and the 
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propensity score can be examined in multiple ways: examining raw and standardized 

mean differences on each covariate and the propensity score, examining the average 

standardized mean difference across all covariates, examining the ratio of the groups’ 

propensity score variances, and visually examining the distributions of each covariate and 

the propensity score in each group (Austin, 2011; Caliendo & Kopeinig, 2008; Stuart, 

2010).  

One of the easiest and most straightforward methods for examining matching 

quality is by comparing raw mean differences on each covariate before and after 

matching (Austin, 2011). If there were no systematic differences between the groups, the 

raw means should be equal. Any difference between the means needs to be considered in 

terms of the scale of the variable. When comparing raw means, it can be difficult to 

discern how large a difference indicates lack of balance. Similarly, the lack of balance 

cannot be compared across variables that are on different metrics. Therefore, 

standardized mean differences are often compared (Austin, 2011; Stuart, 2010).  

The standardized mean difference is computed for each continuous covariate by 

dividing the mean difference by either the standard deviation of the covariate in the 

treatment group, comparison group, or pooled across groups. Different researchers or 

matching programs use different standardizers. The standardized mean difference is a 

standardized effect size, allowing for the covariates to be compared in terms of any 

remaining lack of balance. There are different views regarding what value of 

standardized mean difference constitutes adequate balance. Some consider a standardized 

mean difference less than |0.25| (Rubin, 2001), |0.10| (Austin, 2009, 2011, 2013), or |0.05| 
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(What Works Clearinghouse, 2017) as an indication of adequate balance on a covariate or 

the propensity score.   

Variance Ratio. A ratio of the treatment group propensity score variance to the 

comparison group propensity score variance can provide information regarding the 

quality of balance for each method (Rubin, 2001; Stuart, 2010). A variance ratio close to 

1 indicates that the propensity score variances in each group are similar (Stuart & Rubin, 

2008). Equal propensity score variances in the treatment and comparison group (in 

tandem with adequate group covariate balance) indicate that the distributions of the 

propensity score overlap to a large degree, providing evidence in favor of common 

support (Rubin, 2001).  

Group Covariate Distributions. Visually examining the group distributions of 

each covariate can reveal areas of imbalance that might not have been revealed using 

other methods of examining balance (Austin, 2011). Balancing on the covariates is 

intended to remove all systematic differences between the groups on those covariates. 

When there are still systematic differences between the groups after matching, the 

estimated treatment effect may still be biased due to treatment selection.  

Evaluation of matching quality may reveal that all auditioned matching methods 

worked equally well (e.g., Gu & Rosenbaum, 1993). When this occurs, the choice of 

matching method to champion does not matter (Caliendo & Kopeinig, 2008). If the 

standardized mean difference across all covariates after matching is similar across all 

methods, then the variance ratio of the propensity scores, or amount of treatment sample 

loss (with caliper methods) could potentially guide the selection of which matching 

method to champion.  
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Evaluation of matching quality may reveal that some matching methods worked 

better than others (Caliendo & Kopeinig, 2008; Stuart & Rubin, 2008). When this occurs, 

the choice of which matching method to champion may be more easily made than when 

the results from all methods are similar (Caliendo & Kopeinig, 2008).  

Evaluation of matching quality may reveal that none of the auditioned matching 

methods work well. When this occurs, additional evaluation of the included covariates or 

propensity score model is necessary (Bai, 2011; Caliendo & Kopeinig, 2008; Stuart, 

2010). If adequate balance is not achieved (i.e., groups are still unbalanced on the 

covariates), it is not appropriate to estimate the treatment effect because selection bias 

will still be present (Ho et al., 2007). If the groups are not balanced after matching, then 

the goal of matching was not achieved, and the researcher should specify a different 

propensity score model (Ho et al., 2007; Steiner et al., 2010; Stuart, 2010).   

Step 5: Estimation of the Treatment Effect. When matching quality is good, a 

researcher should select the matching method that results in the best group balance on the 

covariates. After doing so, the researcher is able to use outcome scores from the resulting 

matched sample to estimate the treatment effect (Bai, 2011; Stuart & Rubin, 2008). If 

group means on the covariates are equal after matching, all of the selection bias will be 

removed from the treatment effect for the covariates that were included in the model 

(Rubin, 1973a; 1973b). In contrast, when matching does not work well (i.e., groups are 

still unbalanced on the covariates), little to no selection bias will be removed from the 

estimated treatment effect, or the direction of the bias may shift (Rubin, 1973a; 1973b). 

When propensity score matching is conducted, there are three commonly 

estimated treatment effects that researchers can choose from depending on the population 
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to which they wish to make inferences. The choice between estimating the average 

treatment effect (ATE), average treatment effect for the treated (ATT), or average 

treatment effect for the control (ATC) is determined by which is most appropriate to 

answer the research question (Austin, 2011; Ho et al., 2007; Pan & Bai, 2015; Stuart, 

2010). The treatment effect that is estimated (i.e., ATE, ATT, or ATC) can be specified 

via dummy coding of the groups, application of weights, or through research design and 

randomization.   

Average Treatment Effect. The average treatment effect (ATE) provides an 

estimated treatment effect that would be observed if every individual in the population 

both did and did not receive treatment (Austin, 2011; Ho et al., 2007; Pan & Bai, 2015). 

The ATE is the treatment effect that is estimated when attempting to understand the 

counterfactual in a randomized control trial (Rosenbaum & Rubin, 1983). Thus, 

estimation of the ATE allows for the generalization of the treatment effect to the entire 

population.  

Average Treatment Effect for the Treated. The average treatment effect for the 

treated (ATT) provides an estimated treatment effect only for those who received 

treatment (Austin, 2011; Ho et al., 2007; Pan & Bai, 2015). The ATT is the treatment 

effect that is estimated when attempting to understand the counterfactual for those who 

received treatment. Thus, estimation of the ATT allows for the generalization of the 

treatment effect to the treatment population. The ATT is frequently the treatment effect of 
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interest in quasi-experimental studies, such as propensity score matching (Austin, 2011; 

Cochran & Rubin, 1973; Ho et al., 2007; Rubin, 1973a, 1973b; Stuart, 2010). 

Average Treatment Effect for the Control. The average treatment effect for the 

control (ATC) provides an estimated treatment effect only for those who did not receive 

treatment (comparison group members; Guo & Fraser, 2015; Pan & Bai, 2015). The ATC 

is the treatment effect that is estimated when attempting to understand the counterfactual 

for those who did not receive treatment. Thus, estimation of the ATC allows for the 

generalization of the treatment effect to the comparison population. The ATC is rarely the 

treatment effect of interest in quasi-experimental studies (Pan & Bai, 2015). The ATC 

may be of interest when there are fewer comparison group members than treatment group 

members; however, studies of this nature are infrequent (Pan & Bai, 2015).  

Once matched treatment and comparison groups are created, the desired treatment 

effect can be estimated using whatever statistical analysis is most appropriate to answer 

the research question (Austin, 2011; Caliendo & Kopeinig, 2008; Stuart, 2010; Stuart & 

Rubin, 2008). Estimation of treatment effects is conducted in the same way as 

randomized control studies or other observational studies where propensity score 

matching methods are not used (Austin, 2011). The only difference is that the treatment 

effect is estimated on the matched sample rather than the original sample. When there are 

two groups (e.g., treatment group, comparison group), the estimated treatment effect is 

often a comparison of group mean differences on the outcome of interest (Austin, 2011). 

One consideration is whether the matched sample is an independent or dependent 

sample; the answer to which guides the selection of either an independent or dependent 

samples analysis. The matched sample may be considered a dependent sample because 
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the groups were created by matching on the covariates. Because the covariates relate to 

the outcome, it stands to reason that groups that are more similar on the covariates will 

also be more similar on the outcome (Austin, 2011). When a matched sample is not 

created (e.g., treatment assignment is randomized), the groups should be independent of 

one another. In contrast, the matched sample may be considered an independent sample 

because there should still be random differences between the distributions of the 

covariates in both groups. Thus, the outcomes of two matched individuals should not be 

related simply because the individuals are similar on the covariates (Schafer & Kang, 

2008). Consideration must be given to whether the matched sample consists of 

independent or dependent groups to guide the selection of an appropriate outcome 

analysis model. 

Many applications of matching methods in applied studies stop at this step 

(estimation of the treatment effect; Caliendo & Kopeinig, 2008; Stuart, 2010; Stuart & 

Rubin, 2008). That is, the researcher estimates the treatment effect according to the 

research question that is being examined, then reports the results and moves on to a 

discussion of the results. However, there is an additional step that provides validity 

evidence for the claims regarding the estimated treatment effect. Sensitivity analysis is 

used to determine the range of possible conclusions that could be made from a quasi-

experimental study (Rosenbaum & Rubin, 1983a). Specifically, sensitivity analysis is 

focused on how the estimated treatment effect would differ due to potential unmeasured 

(and thus, not included in the propensity score model) covariates.  

Step 6: Evaluation of Sensitivity Analysis. Sensitivity analysis was introduced 

by Rosenbaum and Rubin (1983a) to determine how the treatment effect estimate is 
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impacted by potentially unmeasured covariates. Sensitivity analysis allows the researcher 

to speculate about what the estimated treatment effect would have been if there were any 

unmeasured covariates that should have been included in the propensity score model. If 

sensitivity analysis reveals that the estimated treatment effect would not differ with the 

addition of unmeasured covariates, then there is additional evidence that the matching 

method reduced the impact of selection bias (Rosenbaum & Rubin, 1983a). Although a 

researcher can never be certain that all selection bias was removed, favorable sensitivity 

analysis results strengthen the claims made regarding the outcome of interest (Caliendo & 

Kopeinig, 2008; Rosenbaum & Rubin, 1983a; Stuart, 2010).   

Generalized Boosted Modeling 

Generalized Boosted Modeling (GBM) is a propensity score method that does not 

require the creation of matched treatment and comparison groups. GBM is an iterative 

method that builds off of classification and regression trees (McCaffrey et al., 2004). The 

process of predicting the propensity scores is automated and data driven (Burgette et al., 

2015). As statistical programming software packages have become more robust over 

time, GBM has become relatively simple to implement, with many models taking very 

little time to iterate over thousands of replications (Sinharay, 2016).  

Classification and Regression Trees. The goal of classification and regression 

trees (CART) is to accurately predict a categorical (classification) or continuous 

(regression) outcome by optimizing the use of predictor variables. Specifically, when a 

binary variable is the outcome (e.g., treatment assignment), the variables that are most 

useful for predicting the outcome are selected through a series of splits on the data. 

Beginning with the full sample, the data are split into two subsets based on one variable. 
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The split occurs at a single value of the variable and maximizes the subsets’ difference on 

the outcome (McCaffrey et al., 2004). After the first split, each subset is split again on the 

variable that again maximizes the subsets’ difference on the outcome. Each split can 

either use a previously used variable (with the split occurring at a different value) or a 

variable that was not previously used. The splitting process continues until the maximum 

tree depth is reached (Burgette et al., 2015; McCaffrey et al., 2004). The maximum tree 

depth is set by the researcher and specifies the maximum number of interactions or 

largest polynomial terms that can be included in the model (Burgette et al., 2015; 

McCaffrey et al., 2004; Sinharay, 2016). For example, a tree depth of 3 will allow for the 

inclusion of 2-way interactions between variables, 3-way interactions between variables, 

quadratic effects, and cubic effects in the model predicting treatment assignment. Thus, 

the larger the specified tree depth, the more complex the model.  

The classification tree is built using data from all participants. After the tree is 

built, the predicted treatment assignment (0/1) can be determined for each individual by 

starting at the top of the tree and following the splits based on the individual’s values on 

the variables included in the tree (Burgette et al., 2015). Thus, a predicted treatment 

assignment value will be estimated for each participant in the sample. 

Boosting. Boosting is a procedure that combines information from multiple 

CART models to improve prediction of the outcome variable (Burgette et al., 2015). 

When boosting is added to a CART model, the first tree that is fit is a poorly fitting 

model (i.e., classification error is only slightly smaller than chance classification). That 

is, the first model performs marginally better at predicting treatment assignment than if 

guessing was used to predict treatment assignment. After fitting the first classification 
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tree, another tree is built on the residuals from the previous tree, with individuals who 

were misclassified by the previous tree receiving a “boost” or larger weight (Burgette et 

al., 2015; Guo & Fraser, 2015; McCaffrey et al., 2004). By boosting misclassified 

individuals, there is a greater chance that misclassified individuals will be correctly 

classified by the next tree (Sinharay, 2016).  

Trees are successively built, boosting on the misclassified observations from the 

previous tree until the algorithm reaches the optimal iteration (Guo & Fraser, 2015; 

McCaffrey et al., 2004). When generalized boosted modeling is used to estimate 

propensity scores, the optimal iteration is the one that results in the best covariate balance 

between the treatment and comparison group. Two different stopping rules can be used to 

determine which iteration results in the best covariate balance; the effect size stopping 

rule or the Kolmogorov-Smirnov stopping rule (Burgette et al., 2015; McCaffrey et al., 

2004). The effect size stopping rule selects the best iteration as the one that minimizes the 

standardized group differences across covariates. The Kolmogorov-Smirnov stopping 

rule selects the best iteration as the one that maximizes the Kolmogorov-Smirnov 

statistic. Propensity scores are estimated for all participants using the boosted iteration 

that is determined to be the optimal iteration (based on the stopping rule; Burgette et al., 

2015; McCaffrey et al., 2004).  

In summary, when generalized boosted modeling is used to estimate propensity 

scores a series of regression trees are fit to the data. The residuals from each tree inform 

the successive tree, with misclassified individuals receiving additional weight. Trees are 

fit until the best covariate balance is reached between the treatment and comparison 
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groups. The iteration that results in the best covariate balance between groups is used to 

estimate the log odds of receiving treatment for each participant.   

Treatment Effect Estimate Weighting. Instead of matching on the propensity 

scores, in generalized boosted modeling, the propensity score is used to weight each 

participants’ outcome score in the estimation of the treatment effect. The way in which 

the propensity score is used to weight a participant’s outcome score depends on whether 

the ATE or ATT is estimated. When the ATE is estimated, each comparison group 

member is weighted by their propensity score and each treatment group member is 

weighted by one divided by their propensity score (Ridgeway et al., 2015). When the 

ATT is estimated, each comparison group member is weighted by their propensity score 

divided by one minus their propensity score (their odds for treatment group assignment) 

and each treatment group member receives a weight of 1 (Ridgeway et al., 2015). When 

ATC coding is used, each treatment group member is weighted by their propensity score 

divided by one minus their propensity score (their odds for comparison group 

assignment) and each comparison group member receives a weight of 1. Thus, 

information from all treatment and comparison group members is included in the 

estimation of the treatment effect (McCaffrey et al., 2004).     

Generalized boosted modeling is advantageous over traditional matching methods 

because generalized boosted models can support a large number of covariates and can 

model linear, nonlinear, and interaction effects when estimating the propensity score 

(Guo & Fraser, 2015; McCaffrey et al., 2004). The propensity score model is less prone 

to model misspecification when generalized boosted modeling is used (compared to 

traditional regression models) because information from many CART models is 
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combined to create the optimal propensity score model (McCaffrey et al., 2004). 

Boosting on the misclassified individuals results in better final estimated propensity 

scores than those estimated using a single regression model (McCaffrey et al., 2004). 

Generalized boosted modelling is also advantageous over traditional matching methods 

because the outcome analysis is conducted on the entire sample rather than on the 

reduced, matched sample.  

The Role of Comparison Group Size in Propensity Score Matching  

A common feature of propensity score matching is a comparison pool that is 

substantially larger than the treatment group sample. A large comparison group pool with 

common support can ensure adequate matches and reduce or eliminate loss of treatment 

group members (Pan & Bai, 2015; Rubin, 1979; Stuart, 2010; Stuart & Rubin, 2008). In 

one of the seminal PSM articles, Rosenbaum and Rubin (1985) stated “In many 

observational studies, there is a relatively small group of subjects exposed to a treatment 

and a much larger group of control subjects not exposed.” (p. 33). When implementing a 

treatment (e.g., a drug to treat cancer, rehabilitation services, drug/alcohol cessation 

programs, etc.) the number of individuals who can receive treatment is often specified 

during the study design phase because the treatment requires significant resources. Thus, 

the researcher can at the same time determine how large a comparison pool from which 

to collect data. However, within educational contexts, for example, the number of 

students who take a class (i.e., receive treatment or an intervention) and who do not take 

a class (i.e., do not receive treatment or an intervention) may be outside of the 

researcher’s control. 
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Specifically, in higher education, assessment practitioners and educational 

researchers are interested in the extent to which students achieve student learning 

outcomes. General education learning outcomes are of interest to multiple stakeholders 

(e.g., students, university administration, accrediting bodies). Often researchers are 

interested in comparing student knowledge in general education subject areas across 

different course completion conditions. In these situations, the researcher is unable to 

assign students to specific treatment conditions. In many instances, it would be unethical 

to assign certain students to complete certain courses. Thus, researchers may find 

themselves in the situation where they have a larger sample of individuals who received a 

treatment than the sample of those who did not. One might wonder, “Why would the 

researcher consider using propensity score methods in this scenario?” When there are 

systematic group differences between students who have and have not completed certain 

courses (which, there likely are), then statistical analyses that were designed for use with 

randomly assigned groups would not be appropriate. One seemingly obvious solution is 

to simply increase the comparison pool size by administering the assessment to students 

who have not completed certain courses. However, this may not always be feasible 

within higher education.   

Lacking from the propensity score methods literature is empirically supported 

advice for whether propensity score methods should be used when the treatment group is 

larger than the comparison group. Some warnings against using propensity score methods 

when the treatment group is larger than the comparison group can be found. Stuart (2010) 

stated “If estimating the ATT and there are not (or not many) more control than treated 

individuals, appropriate choices are generally subclassification, full matching, and 
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weighting by the odds” (p. 19). Ho et al. (2007) provided two options when the treatment 

group is larger than the comparison group: match with replacement or recode the 

treatment and comparison groups.  

Recoding of the groups (e.g., treatment group = 1 versus treatment group = 0, and 

vice versa for the comparison group) changes the effect that is estimated. When the 

treatment group is coded 1, the ATT is the estimated treatment effect of interest. In 

contrast, when recoded (treatment group = 0 and comparison group = 1), the actual 

estimated treatment effect will be the ATC (i.e., the average treatment effect for the 

comparison group; Ho et al., 2007). When the coding of the groups is switched from 

reflecting ATT coding to reflecting ATC coding, propensity score matching will result in 

a treatment group that is similar to the comparison group on the covariates. Thus, the 

ATC is the treatment effect for those who did not receive treatment relative to those who 

did receive treatment, which may not be of interest to educational researchers. Said 

another way, estimation of the ATC answers the question “what is the effect of receiving 

the treatment for those who did not receive the treatment?”  

In an applied study using empirical data, Perkins and Horst (2020) compared 

results using ATT and ATC coding across nearest neighbor matching (with and without a 

0.20 SD caliper) and generalized boosted modeling when the treatment group was larger 

than the comparison group. For each method, there were differences in the magnitude and 

direction of the estimated treatment effect between ATT and ATC coding. Specifically, 

across all methods, the magnitude of the estimated treatment effect was larger for ATT 

coding than for ATC coding. For nearest neighbor matching, the estimated treatment 

effect was negative for ATT coding (indicating that the mean outcome score of the 
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treatment group was less than the mean outcome score of the comparison group) and 

positive for ATC coding. For nearest neighbor matching with a caliper and generalized 

boosted modeling, the estimated treatment effect was positive for ATT coding (indicating 

that the mean outcome score of the comparison group was less than the mean outcome 

score of the treatment group) and negative for ATC coding. Moreover, there was 

substantial treatment group member loss with nearest neighbor matching with a 0.20 

caliper and ATT coding (Perkins & Horst, 2020).   

Using a simulation study, Holzman and Horst (2019) examined the ATT with 

varying treatment to comparison group ratios for nearest neighbor matching and nearest 

neighbor matching with a 0.20 caliper. When the treatment group was larger than the 

comparison group, there was weaker common support, greater loss of treatment 

members, and poorer estimation of the treatment effect than when the comparison group 

was larger than the treatment effect (Holzman & Horst, 2019).  

The lack of supported guidance regarding how to conduct propensity score 

matching when the treatment group is larger than the comparison group is a gap in the 

quasi-experimental literature that must be filled. An understanding of whether propensity 

score methods result in accurate treatment effect estimates and inferences when the 

treatment group is larger than the comparison group is needed. 

Purpose of the Current Study 

As noted, there is limited research and guidance regarding what quasi-

experimental methods work best for reducing selection bias when the treatment group is 

larger than the comparison group. Therefore, the aim of this study is to examine how 

quasi-experimental methods perform when the treatment group is larger than the 



52 
 

 
 

comparison group. Specifically, a simulation study was conducted because the population 

treatment effect can be defined, and the ability of each method to recover the population 

treatment effect can be examined. In order to provide recommendations regarding the use 

of propensity score methods when the treatment group is larger than the comparison 

group, three research questions were examined. 

1a. When the treatment group is larger than the comparison group, are there 

differences in the bias in the estimated treatment effect for different coding 

methods (e.g., ATT, ATC), different treatment to comparison ratios (e.g., 2:1, 

4:3, 1:4), different treatment sample sizes (e.g., 200, 600, 1,000), and different 

treatment effect sizes (e.g., Cohen’s d of 0, 0.20, 0.50,  0.80) across propensity 

score methods (e.g., nearest neighbor matching, nearest neighbor matching 

with a 0.20 SD caliper, generalized boosted modeling)? 

1b. When the treatment group is larger than the comparison group, are there 

differences in the estimated treatment effect inferences for different coding 

methods (e.g., ATT, ATC) across propensity score methods (e.g., nearest 

neighbor matching, nearest neighbor matching with a 0.20 SD caliper, 

generalized boosted modeling)? 

2. When the treatment group is larger than the comparison group, are there 

differences in the covariate balance after matching or weighting for different 

coding methods (e.g., ATT, ATC), different treatment to comparison ratios 

(e.g., 2:1, 4:3, 1:4), different treatment sample sizes (e.g., 200, 600, 1,000), 

and different levels of initial covariate balance (e.g., SMD of 0, 0.20, 0.50, 

0.80, 1.20) across propensity score methods (e.g., nearest neighbor matching, 
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nearest neighbor matching with a 0.20 SD caliper, generalized boosted 

modeling)? 

3. When the treatment group is larger than the comparison group, are there 

differences in the loss of treatment group members for different coding 

methods (e.g., ATT, ATC), different treatment to comparison ratios (e.g., 2:1, 

4:3, 1:4), and different treatment sample sizes (e.g., 200, 600, 1,000) for 

nearest neighbor matching with a 0.20 SD caliper? Do conditions in which 

there is loss of treatment group members also show greater bias in the 

estimated treatment effect? 

  



54 
 

 
 

CHAPTER 3 

Method 

 The goal of the current study was to examine how well propensity score methods 

reduce systematic differences between groups when the treatment group is larger than the 

comparison group. Across various conditions, I evaluated bias in the estimated treatment 

effect, balance obtained after matching/weighting, treatment sample loss, and whether 

inferences regarding the treatment effect differed. The following conditions were varied: 

coding of the treatment and comparison group (i.e., ATT vs. ATC coding), magnitude of 

the treatment effect (i.e., no effect to large effect), treatment to comparison group ratio 

(i.e., 1:4, 2:1, and 4:3), and treatment group sample size (i.e., 200, 600, and 1000; see 

Table 1).  

Conditions 

Treatment Group Sample Size  

Treatment group sample size varied across three levels: 200, 600, and 1,000. 

Treatment group sample size was manipulated to mimic realistic treatment group sample 

sizes that might be observed in educational research (e.g., Fan & Nowell, 2011; Jacovidis 

et al., 2017; Powell et al., 2020). Propensity score methods have been applied to varying-

sized treatment groups in educational contexts (e.g., Fan & Nowell, 2011; Jacovidis et al., 

2017; Perkins & Horst, 2020; Powell et al., 2020; Stone & Tang, 2013). The large 

treatment group sample sizes (i.e., 1,000) were included to mimic the situation where an 

educational researcher combines data collected from multiple cohorts (e.g., Perkins & 

Horst, 2020). 
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Treatment to Comparison Group Ratio 

When the comparison group is larger than the treatment group, the overarching 

recommendation is that the comparison group be much larger than the treatment group 

(Bai & Clark, 2019; Rubin, 1979). By having a large ratio of comparison group members 

from which to select matches for treatment group members, there is a better chance of 

finding good matches for each treatment group member than otherwise. A commonly 

suggested treatment to comparison ratio is 1:4 (Bai & Clark, 2019; Rubin, 1979). There is 

no guidance regarding treatment to comparison group ratio when the treatment group is 

larger than the comparison group. However, the 2:1 treatment to comparison group ratio 

was examined in one simulation study (Holzman & Horst, 2019). The lack of guidance 

may be due to concerns about only capturing treatment effects for the overlap between 

the treatment and comparison groups or not capturing heterogeneous treatment effects 

within the range of overlap between the treatment and comparison groups. That is, if only 

a sample of treatment group members are examined, there may be a loss of information 

regarding the treatment effect. 

When matching with a larger comparison group than treatment group, the 

maximum number of matched pairs possible for any method is the size of the treatment 

group (unless using one-to-many matching). For example, if there were 400 comparison 

group members and 100 treatment group members, then the maximum number of 

matched pairs would be 100 (i.e., the size of the treatment group). Conversely, when the 

treatment group is larger than the comparison group, the maximum number of matched 

pairs possible is the size of the comparison group (unless matching with replacement). 

For example, if there were 400 treatment group members and 100 comparison group 
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members, then the maximum number of matched pairs would again be 100 (i.e., the size 

of the comparison group). Thus, when the treatment group is larger than the comparison 

group and matching is done without replacement, there will always be a loss of treatment 

group members. In sum, with one-to-one matching without replacement, the number of 

matched pairs can only be as many as the smallest group sample size.  

If the typically recommended treatment to comparison group ratio (i.e., 1:4) were 

reversed (i.e., a treatment to comparison ratio of 4:1), a maximum of 25% of the 

treatment group will be retained in the matched sample. Thus, when the treatment group 

is larger than the comparison group, there will always be a loss of treatment group 

members. Treatment to comparison group ratios of 2:1 and 4:3, allow for a maximum of 

50% or 75% of treatment group members to be retained in the matched sample, 

respectively. In the current study, the treatment to comparison group ratio varied across 

three levels: 2:1, 4:3, and 1:4. Treatment sample size was fully crossed with treatment to 

comparison group ratio, which resulted in nine configurations (see Table 2). Total sample 

size ranged from 300 to 5,000 depending on the treatment group sample size and 

treatment to comparison group ratio. 

Treatment Effect Size 

Treatment effect size in the population varied across four levels: Cohen’s d of 0, 

0.20, 0.50, and 0.80. The selected levels align with no, small, medium, and large effects, 

respectively (Cohen, 1988). Although very large effect sizes (i.e., Cohen’s d greater than 

1) were not included as a condition, small to moderate effect sizes have been shown to be 

typical within educational research (Cheung & Slavin, 2016; Hill et al., 2008; Kraft, 

2020). 
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Group Dummy Coding 

Coding varied based on the recommendation to switch the coding of the treatment 

and comparison group when the treatment group is larger than the comparison group (Ho 

et al., 2007), which has also been used empirically (e.g., Perkins & Horst, 2020). Coding 

of the treatment and comparison groups varied across two levels: the first coding was 

treatment group coded 1 and comparison group coded 0, and the second coding was 

treatment group coded 0 and comparison group coded 1. When the treatment group is 

coded as 1, the ATT reflects the average treatment effect of those who received treatment 

because comparison group members are selected if they resemble treatment group 

members on the covariates. This results in a comparison group sample that is similar to 

the treatment group sample on the covariates. Calling back to the counterfactual, the ATT 

reflects whether comparison group members with propensity scores similar to treatment 

group members score the same on the outcome.  

In contrast, when the comparison group is coded as 1, the comparison group is 

essentially being treated how we typically think of the treatment group, and vice versa. 

Propensity scores are now the probability of comparison group assignment, conditional 

upon the covariates in the model. As a result of coding the treatment group 0, there will 

be a larger pool from which to select matches for each comparison group member 

because the original treatment group is now considered to be the comparison group. 

Accordingly, the coding will result in estimation of the ATC, reflecting the average 

treatment effect of those who did not receive treatment. Thus, treatment group members 

are selected if they resemble comparison group members on the covariates, resulting in a 

treatment group sample that is similar to the comparison group on the covariates. Calling 
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back to the counterfactual, the ATC reflects whether treatment group members with 

propensity scores similar to comparison group members score the same on the outcome. 

Simulation of Data 

 Data were simulated and analyzed using RStudio version 3.6.1 (RStudio Team, 

2018). Using the mvtnorm package (Genz et al., 2019), data were simulated for nine 

configurations of treatment sample size and treatment to comparison group ratio (see 

Table 2 and Appendix) across 1,000 replications. Total simulees for which data were 

generated ranged from 300 (Configuration A) to 5,000 (Configuration I; see Table 2). 

Data for each configuration were simulated via four steps, following the simulation 

process used by Harris (2018), 

1. Generate values for five continuous covariates from a random multivariate 

normal distribution with means of zero and standard deviations of one. 

2. Calculate true propensity scores for each simulee from the values of the 

covariates. True propensity scores were first calculated on the probit metric, 

then centered according to the treatment to comparison group ratio, and finally 

converted to the probability metric.  

3. Assign simulees to the treatment or comparison group based on whether the 

value of a random draw between zero and one was greater than or less than 

their true propensity score.  

4. Simulate outcome scores based on a linear combination of treatment 

assignment and the covariates (plus a random error term). Four outcome 

scores were generated for each sample in order to vary the magnitude of the 

true treatment effect (Cohen’s d of 0, 0.20, 0.50, and 0.80). 
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First, values for X1-X5 (the continuous covariates) were generated from a 

multivariate normal distribution (M = 0, SD = 1). The correlations between the five 

continuous covariates ranged from 0.10 to 0.65 (see Table 3) to reflect the relations 

typically seen between variables in educational psychology (Osbourne, 2002). The 

covariates were also differentially related to treatment assignment to reflect different 

levels of baseline balance between the groups on the covariates. The following 

correlations were specified between the propensity score and each covariate (rX1 = -0.02, 

rX2 = 0.15, rX3 = 0.40, rX4 = 0.70, rX5 = 0.90) in order to set specific group balance on the 

covariates prior to matching or weighting (SMDX1 = 0, SMDX2 = 0.20, SMDX3 = 0.50, 

SMDX4 = 0.80, SMDX5 = 1.20), respectively.  

Second, true propensity scores were calculated for each simulee using matrix 

algebra. A vector of weights (B) was calculated via:  

𝑩 = (𝑿′𝑿)−1𝑿′𝒀̂𝑔𝑟𝑜𝑢𝑝    (2) 

where 𝑿 is a matrix of correlations between the covariates, 𝑿′𝒀̂𝑔𝑟𝑜𝑢𝑝 is a vector of the 

correlations between each covariate and propensity for treatment. The vector of weights 

(B) was then multiplied by the simulated covariate values (X1 through X5) for each 

simulee, which were summed to produce a predicted Y score for each simulee on the 

probit metric (𝒀̂𝑔𝑟𝑜𝑢𝑝). To set each specific treatment to comparison group ratio, the 

predicted Y probit scores were rescaled by subtracting the intercept from each predicted 

Y probit scores (a linear transformation). The probit intercept was calculated via: 

𝑧

√(1−(
𝑩′𝑹𝑩

𝑩′𝑹𝑩+1
))

      (3) 

were 𝑧 is value from a standard, normal distribution corresponding to one minus the 

proportion of each sample that received treatment (i.e., 1 − 0.667, 1 − 0.571, and 1 −
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0.200 for 2:1, 4:3, and 1:4 treatment to comparison group ratios, respectively) and 
𝑩′𝑹𝑩

𝑩′𝑹𝑩+1
 

is the variance explained in propensity for treatment by the covariates (where 𝑹 is the 

matrix of correlations between the covariates). After rescaling, the propensity scores were 

transformed from the probit metric to the probability metric. For each simulee, the 

proportion of scores that fell at or below the rescaled value of 𝒀𝑔𝑟𝑜𝑢𝑝
′  on a normal curve 

with 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝑩′𝑹𝑩 + 1  indicated the true propensity for treatment on the 

probability metric (0 to 1).  

Third, each simulee was assigned a random value from 0 to 1 from a uniform 

distribution. To assign treatment membership to each simulee, their random value was 

compared to their true propensity score. If the random value was less than or equal to the 

true propensity score, the simulee was assigned to the comparison group (group = 0). 

Conversely, if the random value was greater than the true propensity score, the simulee 

was assigned to the treatment group (group = 1). Due to the rescaling of the propensity 

scores, treatment membership was assigned for each sample according to the specified 

treatment to comparison group ratio.   

 Fourth, in order to vary the magnitude of the treatment effect, values for four 

outcome variables were generated for each simulee via linear regression: 

𝑌1 = 0(𝑔𝑟𝑜𝑢𝑝) + 0.05𝑋1 + 0.05𝑋2 + 0.05𝑋3 + 0.05𝑋4 + 0.05𝑋5 + 𝑣  (4) 

𝑌2 = 0.11(𝑔𝑟𝑜𝑢𝑝) + 0.05𝑋1 + 0.05𝑋2 + 0.05𝑋3 + 0.05𝑋4 + 0.05𝑋5 + 𝑣 (5) 

𝑌3 = 0.28(𝑔𝑟𝑜𝑢𝑝) + 0.05𝑋1 + 0.05𝑋2 + 0.05𝑋3 + 0.05𝑋4 + 0.05𝑋5 + 𝑣 (6) 

𝑌4 = 0.45(𝑔𝑟𝑜𝑢𝑝) + 0.05𝑋1 + 0.05𝑋2 + 0.05𝑋3 + 0.05𝑋4 + 0.05𝑋5 + 𝑣 (7) 

where the magnitude of the treatment effect varied across the four outcome variables (𝑌1 

through 𝑌4). To introduce random error into each outcome variable, a random error term 
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(𝑣) was generated for each simulee from a normal distribution with a mean of 0 and 

standard deviation of 0.5. To specify the magnitude of the treatment effect when there are 

no systematic group differences on the covariates, the regression weight for the grouping 

variable was set as follows; 𝑏1 = 0, 𝑏2 = 0.11, 𝑏3 = 0.28, 𝑏4 = 0.45. Specifically, if 

every simulee were the same on the covariates (X1 through X5), the estimated treatment 

effect (on a Cohen’s d metric) for the simulated Y scores should be; 𝑑1 = 0, 𝑑2 = 0.20, 

𝑑3 = 0.50, 𝑑4 = 0.80. The regression weights for each covariate resulted in correlations 

between the covariates and each outcome variable that ranged from 0.15 to 0.45, which is 

typical within educational contexts (Osbourne, 2002). Each of the four true treatment 

effects were simulated to be homogeneous across levels of the propensity score. Thus, the 

magnitude of the true treatment effect was the same across ATT, ATC, and ATE coding. 

 Following the simulation of data, propensity score matching (nearest neighbor 

and nearest neighbor with a 0.20 SD caliper) and generalized boosted modeling were 

conducted for each of the 1,000 replications across 8 combinations of group coding and 

true treatment effect size (2 coding schemes * 4 true treatment effect sizes). All 

conditions were fully crossed (see Table 1), resulting in 216 unique combinations of 3 

treatment sample sizes, 3 treatment to comparison group ratios, 4 true treatment effect 

sizes, 3 propensity score methods, and 2 group coding schemes (3 ∗ 3 ∗ 4 ∗ 3 ∗ 2 = 216).  

Propensity Score Matching 

 For nearest neighbor matching and nearest neighbor matching with a 0.20 SD 

caliper, propensity scores were estimated using the MatchIt package in R (Ho et al., 

2011). Propensity scores were estimated via a logistic regression model with the five 

covariates (X1, X2, X3, X4, and X5) as predictors of treatment assignment (0, 1). When 
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the treatment group is larger than the comparison group, the matchit function sorts the 

treatment group members by the propensity score from largest to smallest by default. 

However, random ordering of treatment group members by the propensity score resulted 

in better matches than high to low or low to high ordering (Austin, 2013). Thus, treatment 

group member ordering was specified to be random prior to matching. Nearest neighbor 

matching and nearest neighbor matching with a 0.20 SD caliper were selected, as these 

matching methods are frequently employed in the propensity score matching literature 

(e.g., Austin, 2011, 2013; Caliendo & Kopeinig, 2008; Cochran & Rubin, 1973; Stuart, 

2010; Stuart & Rubin, 2008). Additionally, both nearest neighbor and nearest neighbor 

with a SD caliper have been used in the limited simulation (Austin & Cafri, 2020; 

Holzman & Horst, 2019) and empirical studies (Lechner, 2000; Perkins & Horst, 2020) 

where the treatment group was larger than the comparison group.  

Generalized Boosted Modeling 

 Generalized boosted modeling was conducted using the Twang package in R 

(Ridgeway et al., 2020). Propensity scores were estimated via a logistic regression model 

with the five covariates (X1, X2, X3, X4, and X5) as predictors of treatment assignment 

(0, 1).  

 For each replication, the following tuning parameters were selected: 10,000 trees,  

interaction depth of 3, and shrinkage of .01. These values were selected based on the 

recommendations by Ridgeway et al. (2020). To ensure that the optimal iteration was not 

too close to the specified number of trees, 10,000 trees were specified (Ridgeway et al., 

2020). The optimal iteration was identified as the iteration that resulted in the smallest 

mean standardized effect size across the five covariates. After generalized boosted 
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modeling was performed, the ATT weights were estimated using the Twang package 

(Ridgeway et al., 2020). 

Treatment Effect Estimation 

 For nearest neighbor and nearest neighbor with a 0.20 SD caliper, the treatment 

effect was estimated from the matched group samples via linear regression:  

𝑌𝑖 = 𝑏0 + 𝑏1(𝑔𝑟𝑜𝑢𝑝) + 𝑒𝑖     (8) 

where 𝑏1 indicates the treatment effect, 𝑏0 is the comparison group mean on the outcome 

variable, and 𝑒𝑖 is the error term, estimated for each of the four simulated outcome 

variables (𝑖 = 1 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 4). For generalized boosted modeling, the ATT weights were 

applied during treatment effect estimation. The effect size (Cohen’s d) of the mean 

difference between the treatment and comparison group was calculated for each 

replication by dividing the mean difference between groups by the SD pooled across both 

groups.    

Criteria for Evaluating Research Questions 

 A summary of the values that were saved from the simulated data is provided in 

Table 4. Each research question was evaluated over a different number of combinations 

of the simulation conditions. Specifically research questions 1, 2, and 3 were evaluated 

over 216, 270, and 36 combinations of conditions, respectively. After collapsing across 

replications, bias in the estimated treatment effect, balance after matching or weighting, 

loss of treatment group members, and the estimated treatment effect inference were 

examined. 
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Research Question 1a: When the Treatment Group is Larger Than the Comparison 

Group, Can Propensity Score Methods Accurately Recover the True Treatment Effect? 

To answer this research question, bias in the estimated treatment effect was 

examined. Bias in the estimated treatment effect is the extent to which the estimated 

treatment effect differs from the population treatment effect (Feinberg & Rubright, 2016). 

If the estimated treatment effect is unbiased, across repeated sampling, there should be 

little to no deviation from the population treatment effect (Feinberg & Rubright, 2016). 

Values different than zero indicate that the estimated treatment effect is biased, with large 

values indicating large bias. Bias was calculated as: 

𝐵𝑖𝑎𝑠 =
∑ (𝜃𝑖̂−𝜃𝑇𝑟𝑢𝑒)𝑛

𝑖=1

𝑛
     (9) 

where the numerator is the sum of the deviation between the estimated treatment effect 

(𝜃) from the population treatment effect (𝜃𝑇𝑟𝑢𝑒) for each replication (𝑖), averaged across 

𝑛 replications (Feinberg & Rubright, 2016). The summed deviations were then averaged 

by dividing the numerator by the number of replications (𝑛). Bias in the estimated 

treatment effect (on the Cohen’s d standardized effect size metric) was evaluated for each 

propensity score method across coding methods, treatment to comparison ratios, 

treatment sample sizes, and true treatment effect sizes via a 3x2x3x3x4 ANOVA.   

Research Question 1b: Does the Magnitude and Direction of the Estimated Treatment 

Effect Differ Across Propensity Score Methods Depending on Group Coding? 

The magnitude and direction of the estimated treatment effect using ATC coding 

was compared to the magnitude and direction of the estimated treatment effect using 

ATT coding. If the magnitude and/or direction of the treatment effect differed across 

conditions, the inference made regarding treatment effectiveness differed. The magnitude 
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and direction of the estimated treatment effect using different coding methods was 

examined across treatment to comparison ratios, treatment sample sizes, and true 

treatment effect sizes. 

Research Question 2: When the Treatment Group is Larger Than the Comparison 

Group, Can Propensity Score Methods Achieve Adequate Group Balance on the 

Covariates? 

Balance after matching or weighting was examined numerically by obtaining the 

standardized mean difference and percent in bias reduction for each covariate and the 

propensity score. Examining group balance on the covariates after matching or weighting 

provides an indication of how well each method works at reducing systematic group 

differences on the covariates. Additionally, the ratio of treatment group propensity score 

variance to comparison group propensity score variance was evaluated to examine group 

balance.  

Standardized mean differences are an effect size for the lack of balance between 

groups, with a zero value indicating no mean difference between the groups on the 

covariate (Austin, 2011; Caliendo & Kopeinig, 2008; Stuart, 2010; Stuart & Rubin, 

2008). Guidelines have been provided for what standardized mean difference value 

indicates acceptable group balance, ranging from 0.05 (What Works Clearinghouse, 

2017) to 0.25 (Rubin, 2001). For this study, the standardized mean differences will be 

reported, and values ≤ |0.10| will indicate that the groups are adequately balanced after 

matching or weighting. This value was chosen as it is not too stringent or lenient and has 

been used as a guideline for group balance in other simulation studies (Austin 2009, 

2011, 2013).   
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Percent in bias reduction quantifies the extent to which bias in each covariate is 

reduced relative to initial balance (Pan & Bai, 2015). A percent in bias reduction of 100 

would indicate that group means on the covariate were equal after matching or weighting, 

and that 100% of the original covariate imbalance was corrected. For this study, the 

percent in bias reduction was reported, and values ≥ 80% indicated that the groups were 

adequately balanced after matching or weighting (Pan & Bai, 2015)  

The ratio of the groups’ propensity score variance provides an indication of the 

quality of balance for matching methods (Rubin, 2001; Stuart, 2010). Ratios close to 1 

indicate that the variance of the propensity score is similar across the treatment and 

comparison group. 

Visual examination of group balance on the propensity score is important for 

evaluating common support, or the extent to which the group distributions of the 

propensity score are similar. Typically, when using propensity score methods, balance is 

evaluated visually using jitter plots and histograms (Austin, 2011; Ho et al., 2007; Stuart, 

2010). Examination of jitter plots for each replication of each condition is not feasible, 

thus, jitter plots were examined for validation datasets. In sum, for research question two, 

group balance on the covariates and the propensity score after matching or weighting was 

evaluated via standardized mean differences and percentage in bias reduction for each 

propensity score method across coding methods, treatment to comparison ratios, 

treatment sample sizes, and initial covariate balance between the groups. 
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Research Question 3: When the Treatment Group is Larger Than the Comparison 

Group, Does the Loss of Treatment Group Members Differ Across Conditions? 

Loss of treatment group members was examined for nearest neighbor and nearest 

neighbor with a caliper across coding methods, treatment to comparison ratios, and 

treatment sample sizes. Loss of treatment group members was quantified as the percent of 

treatment group members not retained in the matched sample (for nearest neighbor and 

nearest neighbor with 0.20 SD caliper). For generalized boosted modeling, there is no 

loss of treatment group members because when estimating the treatment effect, the full 

treatment and comparison group samples are retained, and each individual receives a 

weight based on their propensity score. In addition to examination of sample size, the 

average propensity score for matched and unmatched treatment group members were 

compared to determine whether the unmatched treatment group members qualitatively 

differed from the matched treatment group members.  

Summary 

In summary, each research question was answered using a different criterion. By 

examining bias in the estimated treatment effect (RQ1a), the estimated treatment effect 

inference (RQ1b), balance after matching or weighting (RQ2), and loss of treatment 

group members (RQ3) across the varied conditions, this study will expand the current 

understanding of whether propensity score methods are appropriate to use when the 

treatment group is larger than the comparison group.  

Validation Data Sets 

 To evaluate whether the data were simulated correctly, one replication was 

examined for each configuration (samples A through I). First, the relations among the 
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covariates, propensity score, and treatment assignment, and initial covariate balance 

between the groups were examined to evaluate whether the data were correctly simulated. 

Next, the treatment group sample size and treatment to comparison group ratio were 

examined to evaluate whether treatment assignment was correctly simulated. Finally, the 

true treatment effect for each of the four outcome variables was examined to evaluate the 

magnitude of the treatment effect if groups were not systematically different on the 

covariates. The validation data sets also allowed for the visual examination of the overlap 

between the treatment and comparison group propensity score distributions (before 

matching or weighting) via jitter plots.  

Validation of Covariate Values 

The standardized group mean differences and correlations between the covariates 

and latent propensity for treatment were evaluated for samples A through I. The results 

for each validation sample were compared to Table 3 to evaluate whether the values of 

the simulated data matched the specified values. 

Across all nine validation samples, the standardized group mean differences and 

correlations between the covariates and latent propensity for treatment were consistent 

with the values that were specified (see Table 5). Of note, for validation sample D, the 

correlation between X1 and X2 was inflated. Additionally, the correlations between X1 

and treatment selection and X1 and propensity scores were stronger than specified. Not 

surprisingly, the standardized mean difference for X1 was larger than specified (-0.21 

instead of 0). These values were considered a product of sampling variability, yet 

maintained the patterns specified in the simulation. 



69 
 

 
 

Validation of Treatment Assignment and True Treatment Effect 

Group sample sizes and treatment to comparison group ratio were examined for 

samples A through I to evaluate whether treatment assignment was correctly specified. 

The group sample sizes for each validation sample were compared to Table 2 to 

determine accuracy. The magnitude of the true treatment effect (e.g., the group difference 

on the outcome if there were no group imbalance on the covariates) was examined in 

each sample to evaluate whether the values for the outcome variables were simulated 

correctly.  

Across all nine validation samples, the group sample sizes, the treatment to 

comparison group ratio, and the true treatment effect were consistent with the specified 

values (see Table 6). Of note, the treatment group was slightly larger than intended in 

validation sample A, however the true treatment effect was simulated well. For validation 

sample G, the true treatment effect was stronger than specified across all four outcome 

variables. These minor deviations were considered a product of sampling variability, yet 

maintained the patterns specified in the simulation. 

Evaluation of Common Support 

Examination of the overlap between the groups’ propensity score distributions 

provided an indication of whether there was common support between the groups on the 

propensity scores. Across all nine validation samples, there appeared to be adequate 

common support between the treatment and comparison groups on the propensity scores 

(see Figure 2). For samples where the treatment group was larger than the comparison 

group (samples A through F), the propensity score distribution was more dense at higher 

propensity score values for the treatment group. Conversely, for samples where the 
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comparison group was larger than the treatment group (samples G through I), the 

propensity score distribution was denser at lower propensity score values for the 

comparison group. 

In summary, the results from the nine validation samples indicated that the data 

were simulated as specified. 
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CHAPTER 4 

Results 

Evaluation of Simulated Data 

 Simulated covariate and true propensity score means and standard deviations for 

each scenario are presented in Table 7. Means and standard deviations for each covariate, 

collapsed across treatment and comparison groups, were approximately 0 and 1, 

respectively. Additionally, the small standard errors for the means and standard 

deviations for each covariate indicated that there was a small amount of variability in 

these values across the 1,000 replications for each scenario. The mean true propensity 

score, prior to matching or weighting, collapsed across treatment and comparison groups, 

matched the proportion of individuals assigned to the treatment group as specified by the 

treatment to comparison group ratio set for each scenario. For all scenarios, the treatment 

group had a higher mean propensity score than the comparison group, indicating a higher 

propensity for treatment.  

 Average correlations between covariates and the true propensity score for each 

scenario are presented in Table 8. All values aligned with those in the simulation code, 

indicating that the relations between the covariates and true propensity score were 

simulated well across the 1,000 replications for each scenario.  

 Simulated treatment and comparison group outcome means and standard 

deviations for each scenario are presented in Table 9. For all four outcome variables 

(representing different true treatment effects; Cohen’s d of Y1 = 0, Y2 = 0.20, Y3 = 0.50, 

and Y4 = 0.80), the treatment group had a higher mean outcome score than the 

comparison group. As intended, there was a difference in the average outcome between 
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treatment and comparison groups prior to applying propensity score methods to reduce 

systematic group differences, allowing for the examination of research question one 

across different true treatment effects.  

 Cohen’s d effect sizes for each average true treatment effect are presented by 

scenario and coding method in Table 10. First, across all scenarios, the true treatment 

effect aligned with the values specified in the simulation. Specifically, on average, the 

simulated true treatment effect sizes approached the specified Cohen’s d effect sizes of 0, 

0.20, 0.50, and 0.80 for Y1, Y2, Y3, and Y4, respectively. As would be expected, for 

scenarios with smaller sample sizes (i.e., scenarios A, D, and G), the standard errors of 

the mean true treatment effect were larger than for scenarios with larger sample sizes 

(i.e., scenarios B, C, E, F, H, and I). Note that for each scenario, each true treatment 

effect was of the same magnitude for ATT and ATC coding. However, the direction of 

the effect differed across ATT and ATC coding. That is, if the true treatment effect was 

positive for ATT coding, the true treatment effect was negative for ATC coding. This 

indicated that regardless of coding method, the magnitude of the estimated treatment 

effect was the same, with only a directional difference. The results presented in Tables 8, 

9, and 10, together indicated that the data were simulated as specified.   

 To evaluate convergence of the generalized boosted models, the mean, median, 

minimum, and maximum optimal iterations are presented in Table 11. Overall, the 

models reached the optimal iteration with relatively few iterations. For scenarios B 

through F, in which the treatment group was larger than the comparison group, 

generalized boosted modeling required more iterations to achieve the optimal iteration for 

ATT coding than for ATC coding. For scenarios G through I, in which the comparison 
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group was larger than the treatment group, generalized boosted modeling took more 

iterations to achieve the optimal iteration for ATC coding than for ATT coding. Thus, 

when the group coded “1” was larger than the group coded “0” (except for scenario A, 

which had the smallest total sample size), on average it took more iterations to achieve 

the optimal iteration.   

Evaluation of Research Questions 

 Given that the data were simulated as intended and that generalized boosted 

models converged in fewer iterations than the maximum number of specific iterations, 

the research questions could be evaluated. Results are presented by research question.  

Research Question 1 

The first research question focused on the ability of each propensity score method 

to accurately recover the true treatment effect across coding methods, treatment to 

comparison ratios, treatment sample sizes, and true treatment effect sizes. Bias in the 

estimated treatment effect was evaluated for each replication for each scenario, then 

averaged across the 1,000 replications for each scenario. Bias values other than 0 

indicated that the true treatment effect was not accurately recovered. Additionally, bias 

was evaluated via a 3x2x3x3x4 ANOVA. Given the large number of replications, 

statistical significance tests were overpowered. Thus, more weight was given to practical 

significance (partial eta squared) to determine whether there were significant effects for 

the five conditions and all interactions among conditions.  

 The average Cohen’s d effect size, average bias, and standard errors are presented 

for each true treatment effect (Y1 through Y4) in Table 12. First, the baseline values 

show the amount of bias in the estimated treatment effect for the unmatched or 
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unweighted sample. Across all scenarios, the amount of bias in each baseline estimated 

treatment effect was fairly consistent, with the amount of bias increasing slightly as the 

true treatment effect increased. Looking at the bolded values in Table 12, three noticeable 

patterns emerge.  

First, notice that for scenarios where the treatment group was larger than the 

comparison group (scenarios A through F), nearest neighbor matching always resulted in 

a large amount of bias in the estimated treatment effect. For ATT coding, the estimated 

treatment effect after nearest neighbor matching differed very little from the baseline 

treatment effect. Although there was a reduction in bias in the estimated treatment effect 

from baseline after nearest neighbor matching for ATC coding, a non-negligible amount 

of bias remained. Conversely, when the treatment group was smaller than the comparison 

group (scenarios G through I), nearest neighbor matching using ATT coding resulted in 

substantially less bias for Y1, Y2, and Y3 than when the treatment group was larger than 

the comparison group. For scenarios G through I, nearest neighbor matching using ATC 

coding (which, because of the 1:4 ratio, resulted in the group that was coded 0 being 

smaller than the group that was coded as 1) resulted in substantially more bias than for 

ATT coding. In fact, for scenarios G through I, the bias in the estimated treatment effect 

for ATC coding was very similar to the baseline bias in the estimated treatment effect. 

Thus, for nearest neighbor matching, using a coding scheme in which the largest group 

was coded “1” resulted in very little to no difference in the estimated treatment effect 

when compared to the baseline treatment effect.  

Second, notice that for nearest neighbor matching with a 0.20 SD caliper, the 

amount of bias in estimated treatment effect was small for all scenarios, all true treatment 
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effects, and all coding methods. Across all scenarios and coding methods, the amount of 

bias in the estimated treatment effect increased as the true treatment effect increased. 

That is, although there was little bias in the estimated treatment effect for Y1 and Y2 

(true treatment effect sizes of 0 and 0.20, respectively), there was a larger, but still 

relatively small, amount of bias in the estimated treatment effect for Y3 and Y4 (true 

treatment effect sizes of 0.50 and 0.80, respectively). These results suggested that nearest 

neighbor with a 0.20 caliper resulted in a generally unbiased estimate of the treatment 

effect when the treatment group was larger than the comparison group. 

Third, for generalized boosted modeling, the amount of bias in the estimated 

treatment effect was relatively small for all scenarios and all coding methods for Y1 and 

Y2. For Y3 and Y4, bias in the estimated treatment effect after generalized boosted 

modeling was larger than for Y1 and Y2. Additionally for all true treatment effects, bias 

after generalized boosted modeling was larger than after nearest neighbor matching with 

a caliper, except for Y2 (scenarios A, D, and H with ATT coding, and B, C, and D with 

ATC coding) and Y3 (scenarios D with ATC coding, and G with ATT coding). Thus, it 

appeared that generalized boosted modeling using either ATT or ATC coding resulted in 

a larger amount of bias in the estimated treatment effect than nearest neighbor matching 

with a caliper and a substantially smaller amount of bias in the estimated treatment effect 

than nearest neighbor matching. 

Additionally, across all scenarios, when comparing bias across ATT and ATC 

coding, the direction of the bias differed consistently. That is, if the average bias was 

positive for ATT coding, it was negative for ATC coding, and vice versa. This pattern 

was not surprising given that the true treatment effect differed in sign across ATT and 
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ATC coding. However, the pattern of differences in the magnitude of bias was less clear-

cut than the pattern of directional differences and did not solely differ across coding 

method.  

To better understand differences in the amount of bias in the estimated treatment 

effect across propensity score method, coding method, treatment to comparison ratios, 

treatment sample sizes, and true treatment effect sizes a 3x2x3x3x4 ANOVA was 

conducted1. Given the large sample size due to the large number of replications for each 

scenario, statistical significance was reported and effects that were practically significant 

were interpreted. Meaningful practically significant effects were identified as those that 

explained greater than or equal to 2% of the variance in bias. That is, partial-eta squared 

values greater than or equal to .02 indicated a small meaningful effect (Cohen, 1988). 

ANOVA results are presented in Table 13. Four effects were both statistically significant 

and accounted for greater than or equal to 2% of the variance in bias: propensity score 

method (ηp
2 = 0.551), the interaction between propensity score method and effect size 

(ηp
2 = 0.187), the interaction between coding method and treatment to comparison ratio 

(ηp
2 = 0.024), and the interaction between propensity score method, coding method, and 

treatment to comparison ratio (ηp
2 = 0.159). As is standard practice, main effects were not 

                                                             
 

1 Given that the direction of bias differed consistently across ATT and ATC coding, the 

direction of bias observed for ATC coding was reversed prior to conducting the ANOVA. 

That is, if the ATC bias value was negative, it was made to be positive and if the ATC 

bias value was positive, it was made to be negative. The difference in sign across ATT 

and ATC coding accurately reflects that the original treatment group outcome mean was 

higher than the original comparison group outcome mean. Reversing the sign for only 

ATC coding retained information regarding the magnitude of bias in the estimated 

treatment effect, allowing for examination of differences in the magnitude of bias in the 

estimated treatment effect via statistical significance tests and effect sizes.    
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interpreted for conditions for which there was a statistically significant and meaningful 

interaction (Cohen, 2013). Therefore, because there was a statistically significant and 

meaningful three-way interaction between propensity score method, coding method, and 

treatment to comparison ratio, the main effect for propensity score method and the two-

way interaction between coding method and treatment to comparison ratio were not 

interpreted.  

The three-way interaction between propensity score method, coding method, and 

treatment to comparison ratio accounted for 15.90% of the variance in bias. Mean bias for 

each combination of propensity score method, coding method, and treatment to 

comparison group ratio are presented in Table 14. Generalized boosted modeling with 

ATT coding and a 1:4 ratio, generalized boosted modeling with ATC coding and a 2:1 or 

4:3 ratio, and nearest neighbor matching with a caliper (for all coding methods and all 

ratios) had the lowest mean bias. The observation of low bias in the estimated treatment 

effect for generalized boosted modeling and nearest neighbor matching with a caliper 

with ATT coding and a 1:4 ratio were not surprising given that these conditions replicate 

previous research recommendations (e.g., Rubin, 1979).  

The statistically significant and meaningful three-way interaction between 

propensity score method, coding method, and treatment to comparison ratio indicated that 

the interaction between coding method and treatment to comparison ratio depended on 

propensity score method. Said another way, there was a different pattern of interaction 

between coding method and treatment to comparison ratio for each propensity score 

method. To better understand this effect, three two-way interaction models between 
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coding method and treatment to comparison ratio were examined (one for each 

propensity score method).  

 The interaction between coding method and treatment to comparison ratio was 

statistically significant and meaningful for nearest neighbor matching (F(2, 71994) = 

22436.553, p < .001, partial η2 = .384) and generalized boosted modeling (F(2, 71994) = 

1912.556, p < .001, partial η2 = .050). However, for nearest neighbor matching with a 

caliper, the interaction between coding method and treatment to comparison ratio was 

statistically significant but not meaningful (F(2, 71994) = 13.052, p = <.001, partial η2 < 

.001). The statistically significant and meaningful interactions between coding method 

and treatment to comparison ratio were further examined for nearest neighbor matching 

and generalized boosted modeling.  

 For both nearest neighbor matching and generalized boosted modeling, there were 

statistically significant and meaningful differences in bias between ATT coding and ATC 

coding for each treatment to comparison ratio (see Table 14 and Figure 3). For both 

nearest neighbor matching and generalized boosted modeling with a treatment to 

comparison ratio of 1:4, bias in the estimated treatment effect was larger in magnitude for 

ATC coding than for ATT coding. Conversely for both nearest neighbor matching and 

generalized boosted modeling with a treatment to comparison ratio of 2:1 or 4:3, bias in 

the estimated treatment effect was larger in magnitude for ATT coding than for ATC 

coding. Overall, generalized boosted modeling resulted in a lower magnitude of bias 

across all coding methods and treatment to comparison group ratios than nearest neighbor 

matching. Additionally, generalized boosted modeling overcorrected bias in the estimated 
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treatment effect as evidenced by the negative average bias values for all coding methods 

and treatment to comparison group ratios.  

 For nearest neighbor matching with a caliper, average bias was consistently low 

across coding method and treatment to comparison group ratio. Thus, there was no effect 

for coding method or treatment to comparison group ratio on bias in the estimated 

treatment effect after nearest neighbor matching with a 0.20 SD caliper.  

After accounting for the three-way interaction, there was a statistically significant 

and meaningful two-way interaction between propensity score method and true treatment 

effect size. The two-way interaction between propensity score method and true treatment 

effect size accounted for an additional 18.70% of the variance in bias.   

Further examination of the two-way interaction between propensity score method 

and true treatment effect size revealed that for all true treatment effect sizes, there were 

statistically significant and meaningful differences in bias in the estimated treatment 

effect across propensity score methods (see Table 15 and Figure 4). The lowest 

magnitude of mean bias was observed when there was no true treatment effect (i.e., Y1, 

SMD = 0) or when the true treatment effect was small (i.e., Y2, SMD = 0.20), for both 

nearest neighbor matching with a caliper and generalized boosted modeling. Nearest 

neighbor matching with a caliper was the only method that resulted in average bias less 

than |0.10| for all four true treatment effect sizes. Across all four true treatment effect 

sizes nearest neighbor matching (with no caliper) resulted in the highest levels of average 

bias compared to nearest neighbor matching and generalized boosted modeling.  

 For all true treatment effects, the magnitude of bias in the estimated treatment 

effect was largest for nearest neighbor matching, followed by generalized boosted 
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modeling, with the least bias observed for nearest neighbor matching with a caliper. All 

three propensity score methods resulted in a reduction in bias from that observed at 

baseline, however bias remained large after nearest neighbor matching (for all true 

treatment effects) and generalized boosted modeling (for treatment effects of 0.50 and 

0.80). 

The smallest differences in bias (although still statistically significant and 

meaningful) were observed between nearest neighbor matching with a caliper and 

generalized boosted modeling for no true treatment effect and a small true treatment 

effect. The magnitude of differences in bias between nearest neighbor matching with a 

caliper and generalized boosted modeling increased for a medium and large true 

treatment effect. That is, for Y3 and Y4, generalized boosted modeling resulted in a 

higher average magnitude of bias than nearest neighbor matching with a caliper, and 

there was a larger difference in bias between the two propensity score methods than was 

observed for Y1 and Y2.  

In summary, bias in the estimated treatment effect did not differ much between 

generalized boosted modeling and nearest neighbor matching with a caliper when the true 

treatment effect was 0 or 0.20 (Y1 and Y2, respectively). In these instances, nearest 

neighbor matching with a caliper performed the best, followed by generalized boosted 

modeling. There was substantially more bias for generalized boosted modeling when the 

true treatment effect was 0.50 or 0.80 (Y3 and Y4, respectively). Across all true treatment 

effect sizes, nearest neighbor matching had the highest bias in the estimated treatment 

effect.  
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Research Question 2 

The second research question focused on the extent to which group balance was 

achieved on the covariates across propensity score method, coding method, treatment to 

comparison ratio, treatment sample size, and initial covariate balance between the groups. 

Balance was evaluated via the standardized mean difference (values ≤ |0.10| indicated 

adequate balance; Austin, 2009, 2011, 2013), percentage in bias reduction (values ≥ 

80.00 indicated adequate reduction in bias; Pan & Bai, 2015), and the propensity score 

variance ratio (values close to 1.00 indicated similar variances; Rubin, 2001).   

Average (mean) standardized mean differences and median percentage in bias 

reduction for each covariate and the estimated propensity scores are presented by 

scenario in Table 16. The baseline standardized mean differences for each of the five 

covariates were consistent across all scenarios and coding methods. The baseline 

standardized mean differences aligned with the values specified of 0, 0.20, 0.50, 0.80, 

and 1.20 for X1, X2, X3, X4, and X5, respectively. Thus, each covariate had a different 

level of baseline group balance, which allowed for the examination of balance obtained 

across different initial levels of baseline covariate balance. Additionally, across coding 

method (i.e., ATT or ATC), initial covariate balance differed in sign, with small 

differences in magnitude for all scenarios. Examination of Table 16 revealed three main 

patterns for the average standardized mean difference.  

First, notice that for nearest neighbor matching, the only covariate that was 

adequately balanced across all coding methods and scenarios was X1. This covariate was 

balanced in the baseline sample, so nearest neighbor matching did not improve this 

balance, but also did not result in a larger imbalance. For scenarios A, B, and C with 
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ATC coding, nearest neighbor matching also resulted in adequate group balance on X2. 

Conversely, for scenarios G, H, and I with ATT coding, nearest neighbor matching 

resulted in adequate group balance on X2 and X3. These results indicated that nearest 

neighbor worked well to create adequate group balance on covariates with small and 

medium magnitudes of initial lack of balance when the treatment to comparison ratio was 

2:1 and ATC coding was used (scenarios A, B, C) or when the treatment to comparison 

ratio was 1:4 and ATT coding was used (scenarios G, H, I).  

Second, nearest neighbor matching with a 0.20 SD caliper resulted in the best 

group balance on all five covariates and the propensity score for both ATT and ATC 

coding across all nine scenarios. Adequate balance was obtained on all covariates and the 

propensity score for nearest neighbor matching with a caliper, indicating that when the 

treatment group was larger than the comparison group, nearest neighbor matching with a 

caliper worked well at creating treatment and comparison groups that were balanced on 

the covariates, across five magnitudes of initial imbalance.   

Third, notice that generalized boosted modeling resulted in adequate group 

balance on X1 and X2 (i.e., covariates with the best balance at baseline) across all coding 

methods and scenarios, and on X3 across all coding methods for scenarios C, E, F, H, and 

I. Generalized boosted modeling did not result in adequate balance on X4 or X5 (i.e., 

covariates with the worst balance at baseline) for any coding method or scenario, 

however balance was improved over baseline. These results indicated that when the 

treatment group was larger than comparison group, generalized boosted modeling 

resulted in adequate balance for covariates that had low baseline standardized mean 

differences. For the covariate with a medium standardized mean difference (X3, SMD = 
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0.50), generalized boosted modeling resulted in adequate balance in scenarios with a 

large treatment sample size (600 or 1,000).  

To better understand the standardized mean difference across all conditions, the 

average absolute value of standardized mean difference was graphed for each covariate 

by propensity score method, coding method, and treatment to comparison ratio (see 

Figure 5). The average standardized mean difference was low for all covariates and the 

propensity score after nearest neighbor matching with a caliper. Even the covariates that 

were unbalanced at baseline (X3, X4, and X5) were well balanced after nearest neighbor 

matching with a caliper. This suggested that nearest neighbor matching with a caliper 

resulted in adequate group balance on the covariates regardless of the initial balance on 

the covariate. Additionally, for nearest neighbor matching with a caliper, there were 

minimal differences in average standardized mean difference for each covariate across 

coding methods and treatment to comparison ratio.   

After generalized boosted modeling, there was a slightly different pattern. The 

average standardized mean difference was low for X1 and X2 after weighting, however, 

the average standardized mean difference was higher as the covariate’s baseline 

standardized mean difference was higher (i.e., X3, X4, and X5). Although the average 

standardized mean difference was not ideal for X3, X4, and X5, generalized boosted 

modeling always resulted in a reduction in average standardized mean difference when 

compared to the baseline standardized mean difference. Additionally, for generalized 

boosted modeling, there were minimal differences in the average standardized mean 

difference for each covariate across coding methods and treatment to comparison ratio. 
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A noticeably different pattern emerged for nearest neighbor matching. When the 

baseline standardized mean difference was 0 (X1), the average standardized mean 

difference after nearest neighbor matching was low, and minimally differed across coding 

methods and treatment to comparison ratio. As the baseline standardized mean difference 

increased across covariates, the average standardized mean difference increased. That is, 

covariates with large initial standardized mean differences (large initial group imbalance) 

had larger standardized mean differences after nearest neighbor matching, relative to 

covariates with smaller initial standardized mean differences. Additionally, for nearest 

neighbor matching, there were noticeable differences in the average standardized mean 

difference for each covariate across coding method and treatment to comparison ratio. 

For X2, X3, X4, and X5, when the treatment group was larger than the comparison group 

(ATT coding with a ratio of 2:1 or 4:3 and ATC coding with a ratio of 1:4), the average 

standardized mean difference after nearest neighbor matching was similar to the baseline 

average standardized mean difference. For example, note that for X4, the average 

standardized mean difference after nearest neighbor matching with ATT coding for the 

treatment to comparison ratio of 4:3 is close to the initial standardized mean difference of 

0.80. When coding was reversed (ATC coding with a ratio of 2:1 or 4:3 and ATT coding 

with a ratio of 1:4), the average standardized mean difference after nearest neighbor 

matching was smaller than the baseline standardized mean difference. In other words, 

when the treatment group was larger than the comparison group, balance was improved 

over that at baseline when nearest neighbor matching was used with ATC coding. In the 

typical scenario where the comparison group was larger than the treatment group (ratio of 

1:4 with ATT coding), balance was improved over baseline when nearest neighbor 



85 
 

 
 

matching was used. Although nearest neighbor matching with a 1:4 ratio and ATT coding 

and nearest neighbor matching with a 2:1 or 4:3 ratio and ATC coding was more 

balanced than the other nearest neighbor matching conditions, balance was not ideal.  

In addition to the standardized mean difference as an indicator of covariate and 

propensity score group balance, percentage in bias reduction was evaluated. The median 

percentage in bias reduction values indicated the extent to which balance was improved 

(or worsened, as indicated by negative values) when compared to the baseline group 

balance for each covariate and the propensity score (see Table 16). Thus, for covariates 

that were well balanced initially, there was little to no room for improvement. Although 

values greater than or equal to 80.00 can be used to indicate adequate reduction in initial 

imbalance, the percentage in bias reduction value must be evaluated in light of the initial 

group balance for each covariate (Pan & Bai, 2015).  

The majority of the median percentage in bias reduction values were greater than 

60.00, indicating that in general, balance improved after matching or weighting compared 

to baseline balance for initially unbalanced covariates (X2, X3, X4, X5, and the 

propensity score). When the treatment group was larger than the comparison group 

(scenarios A through F), nearest neighbor matching with ATT coding resulted in group 

balance on the covariates that did not differ from baseline covariate balance (i.e., low 

PBR values, ranging from -13.15 to 0.89). The same pattern was observed for nearest 

neighbor matching with ATC coding for scenarios G through I (which resulted in the 

group coded 0 being smaller than the group coded 1). Thus, nearest neighbor matching 

did not improve group balance when the treatment group was larger than the comparison 

group. Conversely, when ATC coding was used for scenarios A through F and ATT 
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coding for scenarios G through I, group balance on the covariates was improved after 

nearest neighbor matching compared to baseline (i.e., values ranging from 19.16 to 

80.84).  

 The propensity score variance ratios are presented in Table 16. For all scenarios 

and coding methods, nearest neighbor matching with a 0.20 SD caliper resulted in 

average propensity score variance ratios close to 1.00. Nearest neighbor matching either 

resulted in no change relative to baseline in the propensity score variance ratio (ATT 

coding for scenarios A through F, and ATC coding for scenarios G through I), a small 

improvement relative to baseline in the propensity score variance ratio (ATT coding for 

scenarios G through I), or a propensity score variance ratio that was farther away from 

1.00 than at baseline (ATC coding for scenarios A through F).  

Research Question 3 

The third research question focused on the loss of treatment group members for 

nearest neighbor matching and nearest neighbor matching with a caliper across coding 

methods, treatment to comparison ratios, and treatment sample sizes. Loss of treatment 

group sample size was quantified as the percentage of treatment group members (i.e., 

simulees) not retained in the matched sample (unmatched). Additionally, the average 

propensity score for the matched and unmatched treatment groups were compared to the 

average propensity score for the baseline treatment group to determine if the matched 

treatment group was similar to the baseline treatment group.  

 Group sample sizes for baseline, matched, and unmatched treatment and 

comparison groups, mean propensity score by group, and treatment loss for each scenario 

are presented in Table 17. The treatment loss percentages for nearest neighbor matching 
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aligned with the expected values given the treatment to comparison ratio. That is, when 

the treatment group was larger than the comparison group, nearest neighbor matching 

resulted in a loss of treatment sample of approximately 50% for a ratio of 2:1 (scenarios 

A through C) and 25% for a ratio of 4:3 (scenarios D through F). For the ratio of 1:4, 

there was no treatment sample loss because there were more comparison group members 

than treatment group members.  

After nearest neighbor matching with a caliper, treatment sample loss was larger 

than that after nearest neighbor matching. With a ratio of 2:1 (scenarios A through C), 

treatment sample loss ranged from 66.76% to 67.92%, with no differences across coding 

method. With a ratio of 4:3 (scenarios D through F), treatment sample loss ranged from 

56.78% to 58.05%, with no differences across coding method. With a ratio of 1:4 

(scenarios G through H), treatment sample loss ranged from 19.43% to 21.12%, with no 

differences across coding method.  

To better understand whether the matched treatment group had similar average 

propensity scores as the baseline treatment group, average propensity score was graphed 

by propensity score method, coding method, and treatment to comparison ratio (see 

Figure 6). Note that the treatment group’s baseline average propensity score was higher 

than the comparison group’s for ATT coding. For ATC coding, this pattern was reversed 

such that the treatment group’s baseline average propensity score was lower than the 

comparison group’s. 

When the treatment group was larger than the comparison group (treatment to 

comparison ratios of 2:1 and 4:3), there were different patterns observed between ATT 

and ATC coding. Specifically, nearest neighbor matching resulted in a matched treatment 
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group with the same propensity score mean as the baseline treatment group (and the same 

for the comparison group mean). Conversely, nearest neighbor matching with a caliper 

resulted in a matched treatment group propensity score mean that was lower than the 

baseline treatment group mean, but also a matched comparison group mean that was 

higher than the baseline comparison group mean. In other words, the matched treatment 

and comparison group met in roughly the middle of the propensity score range. For ATC 

coding, nearest neighbor matching with a caliper also resulted in matched treatment and 

comparison group means that were similar to each other (with a higher matched treatment 

group mean than baseline treatment group mean and a lower matched comparison group 

mean than baseline comparison group mean). For nearest neighbor matching, the 

matched treatment group mean was higher than the baseline treatment group mean, 

however, there was no difference between the matched comparison group mean and the 

baseline comparison group mean. 

When the comparison group was larger than the treatment group (treatment to 

comparison ratio of 1:4), nearest neighbor matching with ATT coding resulted in no 

difference between the matched treatment group propensity score mean and the baseline 

treatment group propensity score mean. The matched comparison group mean was higher 

than the baseline comparison group mean (and similar to the baseline treatment group 

mean). For nearest neighbor matching with a caliper with ATT coding, the matched 

treatment group mean was lower than the baseline treatment group mean, but more 

similar to the baseline treatment group mean than to the baseline comparison group mean. 

Additionally, the matched treatment and comparison group means were nearly identical 

for nearest neighbor matching with a caliper, whereas with nearest neighbor matching the 
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matched treatment group mean was still higher than the matched comparison group 

mean.  

When nearest neighbor matching with ATC coding was used, there was no 

difference between the matched treatment group mean and baseline treatment group 

mean. Likewise, there was no difference between the matched comparison group mean 

and baseline comparison group mean. For nearest neighbor matching with a caliper with 

ATC coding, the matched treatment group mean was higher than the baseline treatment 

group mean and the matched comparison group mean was lower than the baseline 

comparison group mean.  Additionally, the matched treatment and comparison group 

propensity score means were nearly identical for nearest neighbor matching with a 

caliper, whereas with nearest neighbor matching the matched treatment group propensity 

score mean was still lower than the matched comparison group propensity score mean. In 

sum, for nearest neighbor matching, coding method determined whether the matched 

treatment group resembled the original treatment or original comparison group. For 

nearest neighbor matching with a caliper, the matched treatment group always resembled 

the matched comparison group, regardless of coding method. 
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CHAPTER 5 

Discussion 

 The performance of three propensity score methods when the treatment group was 

larger than the comparison group was evaluated in the current study. Several conditions 

were simulated to examine the function of each propensity score method under different 

situations that researchers may encounter. Specifically, two coding methods, four true 

treatment effects, three treatment sample sizes, three treatment to comparison group 

ratios, and five levels of baseline covariate balance were simulated.  

 Data were simulated for nine scenarios with 1,000 replications per scenario. Each 

scenario represented a unique combination of treatment sample size and treatment to 

comparison group ratio2. Across all scenarios, covariate baseline imbalance was varied 

by specifying a different amount of imbalance (SMD) for each of the five covariates 

(SMD for X1 = 0, X2 = 0.20, X3 = 0.50, X4 = 0.80, X5 = 1.20). Additionally, for all 

scenarios, four true treatment effect sizes were simulated (Cohen’s d for Y1 = 0, Y2 = 

0.20, Y3 = 0.50, and Y4 = 0.80). After data were simulated for each scenario, three 

propensity score methods were evaluated (nearest neighbor matching, nearest neighbor 

matching with a 0.20 SD caliper, and generalized boosted modeling) using two coding 

methods (ATT coding and ATC coding) for each true treatment effect.  

                                                             
 

2 Each scenario represented a unique combination of treatment sample size and treatment 

to comparison group ratio as follows: scenario A (NTreatment = 200, T:C = 2:1), scenario B 

(NTreatment = 600, T:C = 2:1), scenario C (NTreatment = 1,000, T:C = 2:1), scenario D 

(NTreatment = 200, T:C = 4:3), scenario E (NTreatment = 600, T:C = 4:3), scenario F (NTreatment 

= 1,000, T:C = 4:3), scenario G (NTreatment = 200, T:C = 1:4), scenario H (NTreatment = 600, 

T:C = 1:4), and scenario I (NTreatment = 1,000, T:C = 1:4). 
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When the treatment group is larger than the comparison group, one 

recommendation is to use ATC coding (instead of ATT coding; Ho et al., 2007). Using 

ATC coding when the treatment group is larger than the comparison group results in 

coding that is equivalent to using ATT coding when the treatment group is smaller than 

the comparison group. That is, ATC coding when the treatment group is larger than the 

comparison group results in the more ideal situation where the group coded “1” is smaller 

than the group coded “0” (i.e., a smaller “treatment” group than “comparison” group). 

The current study is the first simulation study (to my knowledge) to examine the effect of 

coding method on bias when the treatment group is larger than the comparison group. 

Specifically, three research questions were examined to evaluate the performance of 

propensity score methods when the treatment group was larger than the comparison 

group. 

Bias in Estimated Treatment Effect: Research Question 1 

The first research question regarded the magnitude and direction of bias in the 

estimated treatment effect across propensity score methods, coding methods, true 

treatment effect size, treatment sample size, and treatment to comparison group ratio. 

Specifically, the first research question was two-fold: 1a. When the treatment group is 

larger than the comparison group, can propensity score methods accurately recover the 

true treatment effect and 1b. Does the magnitude and direction of the estimated treatment 

effect differ across propensity score methods depending on group coding? Bias in the 

estimated treatment effect was quantified as the average deviation from the true treatment 

effect across 1,000 replications. Additionally, a 3x2x3x3x4 ANOVA was conducted to 

determine whether there were statistically significant and practically meaningful 
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differences in bias across conditions (i.e., propensity score method, coding method, 

treatment to comparison group ratio, treatment sample size, and true treatment effect 

size). The magnitude and direction of the estimated treatment effect (averaged across 

1,000 replications) was compared across propensity score method, treatment to 

comparison group ratio, treatment sample size, and true treatment effect size for both 

coding methods (i.e., ATT and ATC coding). In sum, bias depended on two effects: the 

three-way interaction between propensity score method, coding method, and treatment to 

comparison group ratio and the two-way interaction between propensity score method 

and true treatment effect size. 

To facilitate understanding, the three-way interaction will be discussed in two 

sections: the “typical” scenario (i.e., treatment group smaller than the comparison group) 

and the “atypical” scenario (i.e., treatment group larger than the comparison group). 

Within each section, differences in bias across propensity score methods and coding 

methods are explored.  

Treatment Group Smaller Than Comparison Group: Traditional 1:4 Ratio 

Under traditional conditions where the treatment group is smaller than the 

comparison group, propensity score methods have been shown to result in minimally 

biased estimates of the treatment effect (e.g., Rubin, 1973a, 1973b, 1979). For nearest 

neighbor matching and generalized boosted modeling, bias was lower for ATT coding 

than for ATC coding when the treatment to comparison group ratio was 1:4. However, 

when comparing across the two methods, bias was higher for nearest neighbor matching 

than for generalized boosted modeling. In sum, for conditions that simulated the “typical” 

propensity score scenario, using ATT coding replicated previous findings of minimally 
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biased treatment effect estimates for generalized boosted modeling. In contrast, when 

using ATC coding, bias was high for both nearest neighbor matching and generalized 

boosted modeling. Thus, when the “typical” scenario was reversed (via the use of ATC 

coding) so that group coded “1” was larger than the group coded “0”, nearest neighbor 

matching and generalized boosted modeling did not result in a minimally biased 

treatment effect estimate. 

Unlike the other two methods, nearest neighbor matching with a caliper did result 

in minimally biased treatment effect estimates for both ATT and ATC coding. Moreover, 

for ATT coding, nearest neighbor matching with a caliper resulted in substantially lower 

bias than nearest neighbor matching and slightly lower bias than generalized boosted 

modeling. For ATC coding, however, nearest neighbor matching with a caliper resulted 

in substantially lower bias than both nearest neighbor matching or generalized boosted 

modeling. In the current study, coding did not matter for nearest neighbor matching with 

a caliper under the “typical” scenario where the comparison group was larger than the 

treatment group.   

Treatment Group Larger Than Comparison Group: 2:1 and 4:3 Ratios 

 Under conditions where the treatment group is larger than the comparison group, 

the use of ATC coding is one recommendation (Ho et al., 2007). Indeed, for nearest 

neighbor matching and generalized boosted modeling, bias was lower for ATC coding 

than for ATT coding when the treatment to comparison group ratio was 2:1 or 4:3. 

However, like the 1:4 ratio findings, bias was higher for nearest neighbor matching than 

for generalized boosted. In contrast, for nearest neighbor matching and generalized 

boosted modeling, bias was highest for ATT coding. Like the ATC coding findings, bias 
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was higher for nearest neighbor matching than for generalized boosted modeling. Thus, 

for nearest neighbor matching and generalized boosted modeling in the “atypical” 

scenario, the current study findings support the Ho et al. (2007) recommendation to use 

ATC coding. 

Unlike the other two methods, nearest neighbor matching with a caliper resulted 

in low bias for both ATT and ATC coding. The observation of low bias for nearest 

neighbor matching with a 0.20 SD caliper and ATT coding when the treatment group was 

larger than the comparison group provides new information regarding the application of 

propensity score methods. In the current study, coding did not matter for nearest neighbor 

matching with a caliper under the “atypical” scenario where the treatment group was 

larger than the comparison group. Thus, the recommendation to reverse the coding when 

the treatment group is larger than the comparison group (Ho et al., 2007) may not be 

necessary when nearest neighbor matching with a caliper is implemented. Therefore, 

researchers interested in examining the effect of the treatment on those who received 

treatment (ATT), may not need to alter the question of interest if the treatment group is 

larger than the comparison group. 

Not only did bias differ by propensity score method, coding method, and 

treatment to comparison group ratio, bias also differed by propensity score method and 

true treatment effect size. Averaging across coding method and treatment to comparison 

group ratio, nearest neighbor matching with a caliper resulted in low bias for all four true 

treatment effect sizes. Generalized boosted modeling resulted in low bias when there was 

no true treatment effect or a small true treatment effect. Nearest neighbor matching, 

however, resulted in high bias for all four true treatment effects. Thus, recovery of the 
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true treatment effect depended on the true treatment effect size to a greater extent for 

generalized boosted modeling than for nearest neighbor matching with a caliper or 

nearest neighbor matching.  

 Averaging across coding method and treatment to comparison group ratio, all 

three propensity score methods resulted in a reduction in bias over baseline bias. This 

was not surprising, as propensity score methods aim to reduce bias by reducing 

systematic group differences (Austin, 2011; Cochran & Rubin, 1973; Ho et al., 2007; 

Rosenbaum & Rubin, 1983b; Rubin, 1973a, 1973b, 1974; Shadish et al., 2008). However, 

the three propensity score methods did not reduce bias in the estimated treatment effect to 

the same extent. Nearest neighbor matching resulted in bias in the estimated treatment 

effect that was not largely different from initial, unmatched baseline bias. Generalized 

boosted modeling reduced bias but resulted in an overcorrection, in which the estimated 

treatment effect was less than the true treatment effect. Nearest neighbor matching with a 

caliper reduced bias to the greatest extent and resulted in lowest bias in the estimated 

treatment effect.  

Direction and Magnitude of Bias 

For each scenario (i.e., each unique combination of treatment to comparison 

group ratio and treatment sample size), the direction of bias consistently differed across 

ATT and ATC coding. As might be expected, if the estimated treatment effect for a 

certain propensity score method was positive for ATT coding it was negative for the 

same propensity score method for ATC coding (and vice versa).   

When the treatment group was larger than the comparison group, the magnitude 

of bias across ATT and ATC coding method differed for each propensity score method. 
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For nearest neighbor matching, the magnitude of bias for ATC coding was consistently 

smaller than for ATT coding. For generalized boosted modeling, the magnitude of bias in 

the estimated treatment effect for ATC coding was similar to or smaller than that for ATT 

coding. For nearest neighbor matching with a caliper, the magnitude of bias in the 

estimated treatment effect did not meaningfully differ across ATT and ATC coding. In 

sum, nearest neighbor matching with a caliper resulted in the least amount of bias of the 

three methods, and resulted in low bias for both ATT and ATC coding regardless of 

which group was larger (i.e., treatment or comparison group) for all true treatment effect 

sizes. 

Covariate Balance: Research Question 2 

The second research question regarded covariate balance obtained across 

propensity score methods, coding methods, treatment sample size, treatment to 

comparison group ratio, and baseline covariate balance: When the treatment group is 

larger than the comparison group, can propensity score methods achieve adequate group 

balance on the covariates? Balance on the covariates after the application of propensity 

score matching was quantified as the standardized mean difference between the treatment 

and comparison groups on each covariate. Additionally, the percentage in bias reduction 

was examined to supplement the information provided by the standardized mean 

difference. Each of the five covariates had a different level of baseline balance (SMD X1 

= 0, X2 = 0.20, X3 = 0.50, X4 = 0.80, and X5 = 1.20), which allowed for the comparison 

of each propensity score method across differing levels of baseline group covariate 

balance. In sum, balance differed depending on propensity score method and initial 
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covariate balance. Balance also differed depending on coding method for nearest 

neighbor matching.  

The three propensity score methods differed in terms of covariate balance after 

matching or weighting. Across all five covariates and the propensity score, nearest 

neighbor matching with a caliper resulted in the lowest standardized mean differences. 

Even for covariates with large baseline standardized mean differences (X4 and X5), 

nearest neighbor matching with a caliper resulted in low standardized mean differences. 

Recall that nearest neighbor matching with a caliper was also the method that resulted in 

the least bias in the treatment effect. That is, nearest neighbor matching with a caliper 

achieved both the best balance and least bias of the three propensity score methods.  

Generalized boosted modeling resulted in low standardized mean differences for 

covariates that had medium, low, or no baseline standardized mean differences (X3, X2, 

and X1, respectively). For covariates with large standardized mean differences (X4 and 

X5), generalized boosted modeling resulted in a reduction in the standardized mean 

difference from that at baseline; however, systematic group differences remained on these 

covariates. Recall that generalized boosted modeling resulted in slightly larger bias than 

nearest neighbor matching with a caliper. That is, slight bias in the estimated treatment 

effect remained likely because ideal covariate balance was not achieved for all covariates. 

Nearest neighbor matching, on the other hand, had the most imbalance, with the 

exception of the covariate that was balanced at baseline (X1). Recall that nearest 

neighbor matching consistently resulted in the highest bias. That is, nearest neighbor 

matching resulted in the least reduction of systematic group differences on the covariates 

and had the highest bias of the three propensity score methods. 
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For nearest neighbor matching with a caliper and generalized boosted modeling, 

there were no meaningful differences in covariate balance across coding method. 

Conversely, for nearest neighbor matching, coding method mattered. When coding 

resulted in a larger comparison group than treatment group, after nearest neighbor 

matching there was a reduction in standardized mean differences from that at baseline for 

X2, X3, X4, and X5. However, when coding resulted in a larger treatment group than 

comparison group, there was no change in the standardized mean difference from that at 

baseline for X2, X3, X4, and X5. That is, the covariates remained imbalanced, and 

selection bias was still present. 

The removal of systematic group differences results in the reduction of bias in the 

estimated treatment effect (Austin, 2011; Cochran & Rubin, 1973; Ho et al., 2007; 

Rosenbaum & Rubin, 1983b; Rubin, 1973a, 1973b, 1974; Shadish et al., 2008). Thus, it 

was not surprising that the propensity score methods that resulted in low standardized 

mean differences also resulted in low bias in the estimated treatment effect. 

Treatment Group Loss: Research Question 3 

The third research question regarded similarity between the matched and baseline 

treatment groups for matching methods (i.e., nearest neighbor matching and nearest 

neighbor matching with a caliper): When the treatment group is larger than the 

comparison group, does the loss of treatment group members differ across conditions? 

Loss of treatment group members was quantified as the percentage of treatment group 

members not retained in the matched sample. Additionally, the average propensity scores 

were compared for baseline and matched treatment and comparison groups to determine 

similarity between the matched and baseline treatment groups. The percent of treatment 
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group loss differed across nearest neighbor matching and nearest neighbor matching with 

a caliper. Additionally, for nearest neighbor matching, whether the average matched 

treatment group propensity score resembled the average baseline treatment group 

propensity score differed across coding method.   

Nearest Neighbor Matching 

For nearest neighbor matching, the percentage of unmatched treatment group 

members aligned with expectations. That is, when using one-to-one matching with a 

larger treatment group than comparison group, the maximum number of retained 

treatment group members is the number of comparison group members. When the 

comparison group was larger than the treatment group, there was no loss of treatment 

group members. However, the matched treatment group did not always resemble the 

baseline treatment group with regards to the propensity score.   

After nearest neighbor matching when the treatment group was larger than the 

comparison group with ATT coding, there was no change in the average propensity score 

compared to baseline. However, recall that nearest neighbor matching with ATT coding 

always resulted in the largest bias in the estimated treatment effect and worst covariate 

balance. When the treatment group was larger than the comparison group and ATC 

coding was used, the average matched treatment group propensity score was similar to 

the average baseline comparison group propensity score. Recall that nearest neighbor 

matching with ATC coding resulted in small improvements in covariate balance over that 

at baseline and slightly less bias in the estimated treatment effect than at baseline. 

Although there was minimal loss of treatment group members, selection bias remained 
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after nearest neighbor matching when the treatment group was larger than the comparison 

group for both ATT and ATC coding.  

Conversely, after nearest neighbor matching when the comparison group was 

larger than the treatment group with ATT coding (i.e., the typical scenario where the 

comparison group is larger than the treatment group), the matched comparison group was 

selected to resemble the baseline (and matched) treatment group. When ATC coding was 

used, there was no change in the average propensity score compared to baseline. In short, 

matched propensity scores resembled whichever group was coded “1”, yet initial 

selection bias remained.   

Nearest Neighbor Matching With a 0.20 SD Caliper 

For nearest neighbor matching, the percentage of unmatched treatment group 

members was slightly larger than for nearest neighbor matching. For nearest neighbor 

matching with a caliper, when the treatment group was larger than the comparison group, 

the matched treatment group and matched comparison group resembled neither the 

baseline treatment group nor the baseline comparison group regardless of coding method. 

In these cases, the propensity scores of the matched groups met midway between the 

baseline propensity scores of the two groups. Conversely, when the treatment group was 

smaller than the comparison group, there was little change in the average treatment group 

propensity score after matching regardless of coding method. Under the “typical” 

scenario, the matched comparison group was created to resemble the original treatment 

group.  

Despite the lack of similarity between the matched and baseline treatment group 

propensity scores for nearest neighbor matching with a caliper, adequate group balance 
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was achieved on all covariates and bias in the estimated treatment effect was lowest. Loss 

of treatment representation and the smaller matched sample size that occurred after 

nearest neighbor matching with a caliper did not impact recovery of the true treatment 

effect, contrary to the suggestion by Jacovidis et al. (2017). Despite a loss of treatment 

group sample of 19-68%, nearest neighbor matching with a caliper resulted in adequate 

group balance on the covariates and low bias in all four estimated treatment effects. 

Although loss of treatment representation did not impact recovery of the true 

treatment effect for nearest neighbor matching with a caliper, there may be additional 

concerns regarding loss of representativeness of the matched treatment group in terms of 

diversity and equity. Thus, if the matched treatment group differs from the baseline 

treatment group, researchers may have additional concerns regarding treatment group 

representation for the matched treatment group.  

Future Research and Limitations 

 There are several limitations to the current study worth noting. These limitations 

center around the limited number of conditions examined and the well-known 

disadvantage that simulation studies may not represent applied practice. 

 First, the aim of the current study was to examine commonly used propensity 

score methods under varying, realistic conditions. However, without examination of 

additional methods it is difficult to make broad recommendations regarding the reduction 

of selection bias when the treatment group is larger than the comparison group. 

Additional recommendations when the treatment group is larger than the comparison 

group include subclassification, full matching, weighting by the odds (Stuart, 2010), and 

matching with replacement (Ho et al., 2007). The current study focused on the 
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recommendation to switch the coding of the treatment and comparison group (Ho et al., 

2007). Although bias was the lowest for nearest neighbor matching with a caliper (for 

both ATT and ATC coding), bias was not always zero. That is, a minimal amount of bias 

remained in the estimated treatment effect for the best performing method in the current 

study. Examination of subclassification, full matching, weighting by the odds, and 

matching with replacement is necessary to provide comprehensive guidance to 

researchers. 

 Second, each of the four true treatment effects were simulated to be homogeneous 

across all levels of the propensity score. Thus, the magnitude of the true treatment effect 

was the same across ATT, ATC, and ATE coding. In applied practice, treatment effects 

are likely to be heterogeneous. That is, some participants may be more responsive to an 

intervention than others. In this case, the true treatment effect will not be the same across 

ATT, ATC, and ATE coding. When treatment effects are heterogeneous across levels of 

the propensity score, subclassification may be preferred over the methods examined in 

the current study.   

 Third, for nearest neighbor matching and nearest neighbor matching with a 

caliper, treatment group members were randomly ordered by propensity score before 

selecting matches. Although random ordering is recommended over high to low or low to 

high ordering (Austin, 2013) the default ordering for the MatchIt package in R is high to 

low. The order in which comparison group members are selected for treatment group 

members can impact balance between the matched groups. Although random ordering is 

recommended when using matching methods, ordering of treatment group members has 

not been examined when the treatment group is larger than the comparison group. The 
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current study demonstrated that adequate group balance was obtained after nearest 

neighbor matching with a 0.20 SD caliper with random ordering. However, multiple 

ordering methods were not examined. Future studies should examine balance obtained 

and bias in the estimated treatment effect after matching using different methods for 

ordering treatment group members when the treatment group is larger than the 

comparison group.  

 Fourth, only one caliper width was employed with nearest matching (SD of 0.20). 

Although this is a recommended caliper width (Austin, 2009), the results from this study 

may not extend to nearest neighbor matching using different caliper widths. That is, 

although the best group balance and lowest bias was observed for nearest neighbor 

matching with a 0.20 SD caliper, the same might or might not be true for nearest neighbor 

matching using other caliper widths. Future studies should examine whether performance 

differs depending on the selected caliper.  

 Fifth, there is a lack of sample size guidelines for the use of propensity score 

methods when the treatment group is larger than the comparison group. In the current 

study, three treatment group sample sizes were examined (treatment group sample size of 

200, 600, and 1,000), however these sample sizes do not represent all possible treatment 

group sample sizes that may occur in applied research. In the current study, sample size 

did not relate to bias in the estimated treatment effect or balance obtained after matching 

or weighting. Thus, future research regarding the performance of propensity score 

matching when the treatment group is larger than the comparison group using different 

sample sizes would fill a gap in the literature. 
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 Sixth, a small number of covariates (5) were simulated in the current study, all of 

which were continuous covariates. In applied research, more than five covariates is 

typical, and the covariates may be a mix of categorical and continuous variables. Future 

studies should examine the performance of propensity score methods when the treatment 

group is larger than the comparison group using different numbers of covariates and both 

categorical and continuous covariates.   

 Finally, there is always a trade-off between applied and simulation studies. 

Simulation studies allow for the specification of “truth”; however, it may not be clear 

whether that truth is realistic. Although applied studies allow for the examination of 

research questions under realistic circumstances, “truth” cannot be known. In the current 

study, conditions were selected to represent realistic scenarios; however, all possible 

scenarios cannot be examined in a single study.  

Practical Implications 

The recommendation to reverse the coding of the groups when the treatment 

group is larger than the comparison group (Ho et al., 2007) may not be necessary for all 

propensity score methods. For nearest neighbor matching with a caliper, there was little 

difference in the estimated treatment effect between ATT and ATC coding when the 

treatment group was larger than the comparison group. When nearest neighbor matching 

with a caliper was used, both ATT and ATC coding resulted in estimated treatment 

effects of similar magnitude, differing only in direction. Simply put, coding method did 

not matter for nearest neighbor matching with a caliper.  

For generalized boosted modeling and nearest neighbor matching, coding 

mattered depending on the treatment to comparison group ratio. Specifically, when the 
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treatment to comparison group ratio was 1:4 (i.e., comparison group larger than the 

treatment group), bias in the estimated treatment effect was lower for ATT coding than 

for ATC coding. Conversely, when the treatment to comparison group ratio was 2:1 or 

4:3 (i.e., treatment group larger than the comparison group), bias in the estimated 

treatment effect was lower for ATC coding than for ATT coding. Nearest neighbor 

matching differed from generalized boosted modeling in that a high amount of bias was 

observed for all coding methods and ratios (except for ATT coding when the treatment to 

comparison group ratio was 1:4). Thus, when the treatment group is larger than the 

comparison group, reversing the coding may not be necessary if using nearest neighbor 

matching with a 0.20 SD caliper but should be considered for other methods. 

The differences in bias that were observed across propensity score methods for 

the simulated true treatment effect sizes also provide meaningful information for practice 

when the treatment group is larger than the comparison group. Although researchers 

never know the true treatment effect when conducting applied research, two 

recommendations emerge from this study. First, if prior research indicates that a small 

treatment effect is expected, nearest neighbor matching with a caliper and generalized 

boosted modeling with ATT coding may be methods to consider. Second, if prior 

research indicates that a medium or large treatment effect is expected, nearest neighbor 

matching with a caliper with ATT coding may be a method to consider. For larger true 

treatment effects, generalized boosted modeling overcorrected, resulting in a lower 

estimated treatment effect than true treatment effect. This overcorrection was most likely 

observed because the covariates that were most unbalanced at baseline had the strongest 

relation with latent propensity for treatment and with one another. For all true treatment 
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effects, nearest neighbor matching is not recommended when the treatment group is 

larger than the comparison group. Nearest neighbor matching resulted in a reduction in 

bias over that at baseline; however, the bias in the estimated treatment effect was still 

large. Thus, consulting prior research could provide guidance for which propensity score 

methods to audition when the treatment group is larger than the comparison group.  

Propensity score methods that resulted in the best balance were those that resulted 

in the least bias in the estimated treatment effect. Thus, when the treatment group was 

larger than the comparison group, examination of group balance after matching or 

weighting provided useful information regarding potential reduction in bias in the 

estimated treatment effect. Researchers who wish to employ propensity score matching 

when the treatment group is larger than the comparison group should use the balance 

checking methods that are recommended in the propensity score literature to determine 

whether systematic group differences are reduced and whether treatment effects should 

be estimated using the matched or weighted data. However, researchers are cautioned 

against equating adequate covariate balance on all covariates with the complete removal 

of selection bias. Given the use of a simulation study, the current study was conducted 

under ideal conditions. That is, all covariates related to treatment selection were used for 

the estimation of the propensity score and creation of matched groups. Thus, the 

assumption of no unmeasured confounders has been met. However, in practice, there may 

be covariates related to selection bias that are not measured. If there are unmeasured 

confounders, all selection bias may not be removed from the estimated treatment effect 

even if adequate balance is obtained on all covariates. 
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As illustrated by the findings, nearest neighbor matching with a caliper can result 

in a larger loss of treatment group representation than nearest neighbor matching. Of 

particular interest was whether loss of treatment representation related to recovery of the 

true treatment effect. Loss of treatment representation (due to the inclusion of a caliper 

for nearest neighbor matching) did not impact the recovery of the true treatment effect. 

Conversely, nearest neighbor matching (which resulted in less loss of treatment 

representation than nearest neighbor matching with a caliper) resulted in poor recovery of 

the true treatment effect. Nearest neighbor matching was not able to obtain adequate 

group balance on the covariates (except for the covariate for which groups were balanced 

at baseline). Additionally, there was a large amount of bias in the estimated treatment 

effect despite the matched treatment group resembling the baseline treatment group. 

Thus, covariate balance after matching or weighting was a better indicator of bias 

reduction than was the similarity between the matched and baseline treatment group 

propensity scores. 

Conclusion 

To draw appropriate causal inferences from quasi-experimental studies, 

researchers must be cognizant of and account for selection bias. Although additional 

research is needed to understand how to best reduce selection bias when the treatment 

group is larger than the comparison group, the current study adds to the limited existing 

research. In educational research, if selection bias is present, practitioners have little 

evidence for causal claims. However, reducing selection bias strengthens the validity of 

inferences made regarding the treatment effect when random assignment is not feasible. 
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Table 1 

Simulation Conditions (Repeated Across Nearest Neighbor Matching, Nearest Neighbor 

Matching with 0.20 SD Caliper, and Generalized Boosted Modeling) 

ATT Coding (Treatment = 1)   ATC Coding (Treatment = 0) 

T:C 

Ratio NT/NC 

True Treatment 

Effect (Cohen's d)   

T:C 

Ratio NT/NC 

True Treatment 

Effect (Cohen's d) 

2:1 200/100 0  2:1 200/100 0 

  0.20    0.20 

  0.50    0.50 

  0.80    0.80 

 600/300 0   600/300 0 

  0.20    0.20 

  0.50    0.50 

  0.80    0.80 

 1000/500 0   1000/500 0 

  0.20    0.20 

  0.50    0.50 

  0.80    0.80 

4:3 200/150 0  4:3 200/150 0 

  0.20    0.20 

  0.50    0.50 

  0.80    0.80 

 600/450 0   600/450 0 

  0.20    0.20 

  0.50    0.50 

  0.80    0.80 

 1000/750 0   1000/750 0 

  0.20    0.20 

  0.50    0.50 

  0.80    0.80 

1:4 200/800 0  1:4 200/800 0 

  0.20    0.20 

  0.50    0.50 

  0.80    0.80 

 600/2400 0   600/2400 0 

  0.20    0.20 

  0.50    0.50 

  0.80    0.80 

 1000/4000 0   1000/4000 0 

  0.20    0.20 

  0.50    0.50 

   0.80       0.80 
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Table 2 

Treatment Group, Comparison Group, and Total Sample Sizes for 

Configurations A through I 

Sample T:C Ratio Treatment N Comparison N Total N 

Configuration A 2:1 200 100 300 

Configuration B 2:1 600 300 900 

Configuration C 2:1 1000 500 1500 

Configuration D 4:3 200 150 350 

Configuration E 4:3 600 450 1050 

Configuration F 4:3 1000 750 1750 

Configuration G 1:4 200 800 1000 

Configuration H 1:4 600 2400 3000 

Configuration I 1:4 1000 4000 5000 
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Table 3 

Specified Standardized Group Mean Differences and 

Correlations between Covariates and Latent Propensity Scores 

Variable  X1 X2 X3 X4 X5 

X1 1.00     
X2 0.10 1.00    
X3 0.20 0.30 1.00   
X4 0.30 0.30 0.30 1.00  
X5 0.30 0.35 0.45 0.65 1.00 

Latent Propensity -0.02 0.15 0.40 0.70 0.90 

SMD 0.00 0.20 0.50 0.80 1.20 



 
 

 
 

1
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Table 4 

Method of Evaluation, Conditions Examined, and Values Saved from Simulated Data for Each Research Question 

Research Question Method of Evaluation Conditions Examined Values Saved from Simulated Data 

RQ1a: When the treatment group is 

larger than the comparison group, can 

propensity score methods accurately 

recover the true treatment effect? 

 Bias - the extent to which the 

estimated treatment effect 

differs from the population (or 

specified) treatment effect. 

 Treatment sample size (3) 

 T:C ratio (3) 

 True treatment effect size (4) 

 Propensity score methods (3) 

 Coding methods (2) 

 Intercept (mean outcome for group coded 

"0") 

 Regression coefficient for grouping 

variable (estimated treatment effect) 

RQ1b: Does the magnitude and 

direction of the estimated treatment 

effect differ across propensity score 

methods depending on group coding? 

 Magnitude of effect - Cohen's 

d effect size 

 Direction of effect - sign of the 

regression coefficient for 

grouping variable 

 Treatment sample size (3) 

 T:C ratio (3) 

 True treatment effect size (4) 

 Propensity score methods (3) 

 Coding methods (2) 

 t-value for regression coefficient (to 

compute Cohen's d effect size) 

 Regression coefficient for grouping 

variable (estimated treatment effect) 

RQ2: When the treatment group is 

larger than the comparison group, can 

propensity score methods achieve 

adequate group balance on the 

covariates? 

 Standardized mean difference 

(SMD) on each covariate and 

propensity score 

 Percentage in bias reduction 

for each covariate and 

propensity score 

 Propensity score variance ratio 

 Treatment sample size (3) 

 T:C ratio (3) 

 Propensity score methods (3) 

 Coding methods (2) 

 Initial covariate balance (5)   

 Matched & unmatched sample sizes 

 SMD for covariates and propensity score 

(before and after matching/weighting) 

 Percentage in bias reduction (after 

matching/weighting) 

 Propensity score variance ratio (after 

matching/weighting)  

RQ3: When the treatment group is 

larger than the comparison group, does 

the loss of treatment group members 

differ across conditions? 

 Percent of unmatched 

treatment group members 

 Average group propensity 

score 

 Treatment sample size (3) 

 T:C ratio (3) 

 Propensity score methods (2) 

 Coding methods (2)            

 Matched & unmatched sample sizes 

 Propensity score variance ratio (after 

matching/weighting) 

 Group propensity score averages (for 

matched and unmatched simulees) 

Note. RQ3 was evaluated over 2 of the 3 propensity score methods (nearest neighbor matching and nearest neighbor 

matching with a 0.20 SD caliper). RQ3 was not evaluated for generalized boosted modeling because there would be no loss 

of treatment group members. 
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Table 5 

Standardized Group Mean Differences and Correlations between Covariates 

and Latent Propensity Scores by Validation Sample 

Variable  SMD 

Latent 

Propensity X1 X2 X3 X4 X5 

Sample A        
     X1 -0.01 -0.01 1.00     
     X2 0.17 0.13 0.28 1.00    
     X3 0.62 0.48 0.23 0.30 1.00   
     X4 0.80 0.64 0.33 0.30 0.36 1.00  
     X5 1.14 0.83 0.37 0.41 0.42 0.65 1.00 

Sample B        
     X1 0.07 0.06 1.00     
     X2 0.23 0.19 0.12 1.00    
     X3 0.54 0.43 0.22 0.31 1.00   
     X4 0.76 0.62 0.32 0.28 0.30 1.00  
     X5 1.18 0.89 0.36 0.37 0.42 0.63 1.00 

Sample C        
     X1 0.06 0.05 1.00     
     X2 0.22 0.18 0.14 1.00    
     X3 0.48 0.39 0.20 0.30 1.00   
     X4 0.89 0.68 0.33 0.31 0.29 1.00  
     X5 1.22 0.88 0.33 0.36 0.43 0.64 1.00 

Sample D        
     X1 -0.21 -0.18 1.00     
     X2 0.17 0.13 0.23 1.00    
     X3 0.46 0.36 0.26 0.31 1.00   
     X4 0.75 0.55 0.36 0.28 0.37 1.00  
     X5 1.13 0.79 0.38 0.37 0.43 0.64 1.00 

Sample E        
     X1 0.02 0.01 1.00     
     X2 0.21 0.18 0.13 1.00    
     X3 0.46 0.38 0.20 0.31 1.00   
     X4 0.81 0.65 0.32 0.30 0.30 1.00  
     X5 1.20 0.89 0.35 0.37 0.43 0.64 1.00 

Sample F        
     X1 0.00 0.00 1.00     
     X2 0.26 0.21 0.14 1.00    
     X3 0.46 0.37 0.21 0.30 1.00   
     X4 0.91 0.68 0.33 0.31 0.31 1.00  
     X5 1.26 0.89 0.33 0.37 0.44 0.64 1.00 
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Table 5 Cont. 

Variable SMD 

Latent 

Propensity X1 X2 X3 X4 X5 

Sample G        
     X1 -0.02 -0.01 1.00     
     X2 0.21 0.16 0.13 1.00    
     X3 0.52 0.37 0.21 0.32 1.00   
     X4 0.88 0.62 0.33 0.30 0.29 1.00  
     X5 1.19 0.80 0.36 0.38 0.43 0.64 1.00 

Sample H        
     X1 -0.05 -0.03 1.00     
     X2 0.21 0.15 0.10 1.00    
     X3 0.59 0.40 0.20 0.29 1.00   
     X4 0.99 0.64 0.31 0.31 0.31 1.00  
     X5 1.29 0.80 0.31 0.35 0.46 0.64 1.00 

Sample I        
     X1 -0.01 0.00 1.00     
     X2 0.17 0.12 0.10 1.00    
     X3 0.47 0.34 0.21 0.28 1.00   
     X4 1.00 0.64 0.29 0.30 0.31 1.00  
     X5 1.36 0.82 0.30 0.35 0.44 0.65 1.00 
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Table 6 

Treatment and Comparison Group Size, Treatment to Comparison Ratio, and True 

Treatment Effect by Validation Sample 

  Treatment 

N 

Comparison 

N 

T:C 

Ratio 

True Treatment Effect 

Sample Y1 Y2 Y3 Y4 

Sample A 212 88 0.707 -0.01 0.18 0.48 0.78 

Sample B 609 291 0.677 0.00 0.19 0.49 0.79 

Sample C 1004 496 0.669 0.10 0.28 0.56 0.84 

Sample D 203 147 0.580 -0.02 0.16 0.44 0.73 

Sample E 600 450 0.571 0.02 0.20 0.49 0.77 

Sample F 995 755 0.569 -0.04 0.14 0.41 0.69 

Sample G 187 813 0.187 0.15 0.34 0.63 0.91 

Sample H 597 2403 0.199 0.02 0.21 0.50 0.79 

Sample I 1009 3991 0.202 0.02 0.21 0.50 0.79 

Note. T:C Ratio was set as follows: samples A-C, .667 (ratio of 2:1); samples D-F, 

.571 (ratio of 4:3); samples G-I, .200 (ratio of 1:4). For all samples, true treatment 

effect was set as follows: Y1, 0; Y2, 0.20; Y3, 0.50; Y4, 0.80. 
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Note. Covariate means and standard deviations are averaged across 1,000 replications for each scenario. Standard errors indicate the 

variability in each parameter across the 1,000 replications. Each scenario represents a unique combination of treatment sample size 

and treatment to comparison group ratio as follows: scenario A (NTreatment = 200, T:C = 2:1), scenario B (NTreatment = 600, T:C = 2:1), 

scenario C (NTreatment = 1,000, T:C = 2:1), scenario D (NTreatment = 200, T:C = 4:3), scenario E (NTreatment = 600, T:C = 4:3), scenario F 

(NTreatment = 1,000, T:C = 4:3), scenario G (NTreatment = 200, T:C = 1:4), scenario H (NTreatment = 600, T:C = 1:4), and scenario I (NTreatment 

= 1,000, T:C = 1:4).
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Table 8  

Average Simulated Correlations between Covariates and True Propensity Scores 

by Scenario 

Scenario  True Propensity Scores X1 X2 X3 X4 X5 

Scenario A       
     X1 -0.02 1.00     
     X2 0.14 0.10 1.00    
     X3 0.38 0.20 0.30 1.00   
     X4 0.66 0.30 0.30 0.30 1.00  
     X5 0.85 0.30 0.35 0.45 0.65 1.00 

Scenario B       
     X1 -0.02 1.00     
     X2 0.14 0.10 1.00    
     X3 0.38 0.20 0.30 1.00   
     X4 0.67 0.30 0.30 0.30 1.00  
     X5 0.86 0.30 0.35 0.45 0.65 1.00 

Scenario C       
     X1 -0.02 1.00     
     X2 0.14 0.10 1.00    
     X3 0.38 0.20 0.30 1.00   
     X4 0.67 0.30 0.30 0.30 1.00  
     X5 0.86 0.30 0.35 0.45 0.65 1.00 

Scenario D       
     X1 -0.02 1.00     
     X2 0.15 0.10 1.00    
     X3 0.39 0.20 0.30 1.00   
     X4 0.68 0.30 0.30 0.30 1.00  
     X5 0.87 0.30 0.35 0.45 0.65 1.00 

Scenario E       
     X1 -0.02 1.00     
     X2 0.14 0.10 1.00    
     X3 0.39 0.20 0.30 1.00   
     X4 0.68 0.30 0.30 0.30 1.00  
     X5 0.88 0.30 0.35 0.45 0.65 1.00 

Scenario F       
     X1 -0.02 1.00     
     X2 0.15 0.10 1.00    
     X3 0.39 0.20 0.30 1.00   
     X4 0.68 0.30 0.30 0.30 1.00  
     X5 0.88 0.30 0.35 0.45 0.65 1.00 
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Table 8 Cont. 

 Scenario True Propensity Scores X1 X2 X3 X4 X5 

Scenario G       
     X1 -0.02 1.00     
     X2 0.14 0.10 1.00    
     X3 0.36 0.20 0.30 1.00   
     X4 0.63 0.30 0.30 0.30 1.00  
     X5 0.81 0.30 0.35 0.45 0.65 1.00 

Scenario H       
     X1 -0.02 1.00     
     X2 0.13 0.10 1.00    
     X3 0.36 0.20 0.30 1.00   
     X4 0.63 0.30 0.30 0.30 1.00  
     X5 0.82 0.30 0.35 0.45 0.65 1.00 

Scenario I       
     X1 -0.02 1.00     
     X2 0.14 0.10 1.00    
     X3 0.36 0.20 0.30 1.00   
     X4 0.64 0.30 0.30 0.30 1.00  
     X5 0.82 0.30 0.35 0.45 0.65 1.00 

Note. Correlations are averaged across 1,000 replications for each scenario. Each 

scenario represents a unique combination of treatment sample size and treatment 

to comparison group ratio as follows: scenario A (NTreatment = 200, T:C = 2:1), 

scenario B (NTreatment = 600, T:C = 2:1), scenario C (NTreatment = 1,000, T:C = 2:1), 

scenario D (NTreatment = 200, T:C = 4:3), scenario E (NTreatment = 600, T:C = 4:3), 

scenario F (NTreatment = 1,000, T:C = 4:3), scenario G (NTreatment = 200, T:C = 1:4), 

scenario H (NTreatment = 600, T:C = 1:4), and scenario I (NTreatment = 1,000, T:C = 

1:4). 
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Note. Outcome variable (Y1 through Y4) means and standard deviations are averaged across 1,000 replications for 

each scenario. Standard errors indicate the variability in each parameter across the 1,000 replications. Each scenario 

represents a unique combination of treatment sample size and treatment to comparison group ratio as follows: scenario 

A (NTreatment = 200, T:C = 2:1), scenario B (NTreatment = 600, T:C = 2:1), scenario C (NTreatment = 1,000, T:C = 2:1), 

scenario D (NTreatment = 200, T:C = 4:3), scenario E (NTreatment = 600, T:C = 4:3), scenario F (NTreatment = 1,000, T:C = 

4:3), scenario G (NTreatment = 200, T:C = 1:4), scenario H (NTreatment = 600, T:C = 1:4), and scenario I (NTreatment = 1,000, 

T:C = 1:4).
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Table 10 

Average Simulated True Treatment Effect for Each Outcome Variable by Scenario and 

Coding Method 

  Y1 Y2 Y3 Y4 

Scenario M SE M SE M SE M SE 

Scenario A         
  ATT 0.00 0.12  0.18 0.12  0.46 0.13  0.75 0.13 

  ATC 0.00 0.12 -0.18 0.12 -0.46 0.13 -0.75 0.13 

Scenario B         
  ATT 0.00 0.07  0.19 0.07  0.47 0.07  0.76 0.07 

  ATC 0.00 0.07 -0.19 0.07 -0.47 0.07 -0.76 0.07 

Scenario C         
  ATT 0.00 0.06  0.18 0.06  0.47 0.06  0.75 0.06 

  ATC 0.00 0.06 -0.18 0.06 -0.47 0.06 -0.75 0.06 

Scenario D         
  ATT 0.00 0.11  0.18 0.11  0.46 0.11  0.74 0.11 

  ATC 0.00 0.11 -0.18 0.11 -0.46 0.11 -0.74 0.11 

Scenario E         
  ATT 0.00 0.06  0.18 0.06  0.47 0.06  0.75 0.06 

  ATC 0.00 0.06 -0.18 0.06 -0.47 0.06 -0.75 0.06 

Scenario F         
  ATT 0.00 0.05  0.18 0.05  0.46 0.05  0.75 0.05 

  ATC 0.00 0.05 -0.18 0.05 -0.46 0.05 -0.75 0.05 

Scenario G         
  ATT 0.00 0.08  0.19 0.08  0.49 0.08  0.78 0.08 

  ATC 0.00 0.08 -0.19 0.08 -0.49 0.08 -0.78 0.08 

Scenario H         
  ATT 0.00 0.05  0.19 0.05  0.49 0.05  0.79 0.05 

  ATC 0.00 0.05 -0.19 0.05 -0.49 0.05 -0.79 0.05 

Scenario I         
  ATT 0.00 0.04  0.19 0.04  0.49 0.04  0.78 0.04 

  ATC 0.00 0.04 -0.19 0.04 -0.49 0.04 -0.78 0.04 

Note. The presented means for each Y outcome variable are averaged across 1,000 

replications for each scenario. Standard errors indicate the variability in each parameter 

across the 1,000 replications. Each scenario represents a unique combination of treatment 

sample size and treatment to comparison group ratio as follows: scenario A (NTreatment = 

200, T:C = 2:1), scenario B (NTreatment = 600, T:C = 2:1), scenario C (NTreatment = 1,000, 

T:C = 2:1), scenario D (NTreatment = 200, T:C = 4:3), scenario E (NTreatment = 600, T:C = 
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4:3), scenario F (NTreatment = 1,000, T:C = 4:3), scenario G (NTreatment = 200, T:C = 1:4), 

scenario H (NTreatment = 600, T:C = 1:4), and scenario I (NTreatment = 1,000, T:C = 1:4).
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Table 11 

Mean, Median, Minimum, and Maximum Optimal Iterations for Generalized Boosted 

Models by Scenario and Coding Method 

Scenario Mean Median Min Max 

Scenario A     

  ATT Coding 683.59 586.00 219.00 2675.00 

  ATC Coding 709.93 641.00 265.00 2342.00 

Scenario B     

  ATT Coding 1217.34 1040.00 382.00 7595.00 

  ATC Coding 998.90 933.00 435.00 2757.00 

Scenario C     

  ATT Coding 1617.80 1360.00 476.00 6575.00 

  ATC Coding 1180.18 1137.50 488.00 3434.00 

Scenario D     

  ATT Coding 762.44 660.50 251.00 3019.00 

  ATC Coding 745.76 689.00 244.00 2572.00 

Scenario E     

  ATT Coding 1212.78 1088.00 470.00 4443.00 

  ATC Coding 1102.21 1037.50 449.00 5925.00 

Scenario F     

  ATT Coding 1500.39 1349.50 537.00 9904.00 

  ATC Coding 1338.18 1235.00 545.00 8261.00 

Scenario G     

  ATT Coding 956.14 925.00 423.00 2599.00 

  ATC Coding 1423.77 1154.00 310.00 6737.00 

Scenario H     

  ATT Coding 1347.55 1315.00 712.00 2650.00 

  ATC Coding 2986.81 2540.50 622.00 9997.00 

Scenario I     

  ATT Coding 1544.35 1508.50 851.00 2827.00 

  ATC Coding 4128.92 3452.00 954.00 9992.00 

Note. Each summary statistic is averaged across 1,000 replications for each scenario. 

Each scenario represents a unique combination of treatment sample size and 

treatment to comparison group ratio as follows: scenario A (NTreatment = 200, T:C = 

2:1), scenario B (NTreatment = 600, T:C = 2:1), scenario C (NTreatment = 1,000, T:C = 
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2:1), scenario D (NTreatment = 200, T:C = 4:3), scenario E (NTreatment = 600, T:C = 4:3), 

scenario F (NTreatment = 1,000, T:C = 4:3), scenario G (NTreatment = 200, T:C = 1:4), 

scenario H (NTreatment = 600, T:C = 1:4), and scenario I (NTreatment = 1,000, T:C = 1:4). 

For all scenarios, the maximum number of iterations allowed for generalized boosted 

modeling was 10,000.  
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Table 12 

Average Cohen’s D Estimated Treatment Effect, Average Bias in Estimated Treatment Effect, and Standard Errors by 

Propensity Score Method and Coding Method 

  Cohen's D Y1  Cohen's D Y2  Cohen's D Y3  Cohen's D Y4 

Method M SE M Bias SE  M SE M Bias SE  M SE M Bias SE  M SE M Bias SE 

Scenario A 

ATT Coding                    
  Baseline  0.234 0.122  0.234 0.122   0.444 0.123  0.244 0.123   0.768 0.126  0.268 0.126   1.093 0.130  0.293 0.130 

  NN   0.232 0.142  0.232 0.142   0.443 0.143  0.243 0.143   0.769 0.147  0.269 0.147   1.095 0.152  0.295 0.152 

  NN Cal  0.000 0.176  0.000 0.176   0.212 0.176  0.012 0.176   0.540 0.179  0.040 0.179   0.868 0.183  0.068 0.183 

  GBM   0.045 0.133  0.045 0.133   0.198 0.142 -0.002 0.142   0.434 0.167 -0.066 0.167   0.671 0.200 -0.129 0.200 

ATC Coding                    
  Baseline  -0.234 0.122 -0.234 0.122  -0.444 0.123 -0.244 0.123  -0.768 0.126 -0.268 0.126  -1.093 0.130 -0.293 0.130 

  NN -0.106 0.141 -0.106 0.141  -0.317 0.142 -0.117 0.142  -0.644 0.145 -0.144 0.145  -0.971 0.151 -0.171 0.151 

  NN Cal   0.008 0.174  0.008 0.174  -0.205 0.174 -0.005 0.174  -0.534 0.177 -0.034 0.177  -0.862 0.182 -0.062 0.182 

  GBM -0.044 0.124 -0.044 0.124  -0.210 0.130 -0.010 0.130  -0.467 0.143  0.033 0.143  -0.724 0.162  0.076 0.162 

Scenario B 

ATT Coding                    
  Baseline  0.238 0.071  0.238 0.071   0.448 0.072  0.248 0.072   0.772 0.074  0.272 0.074   1.097 0.077  0.297 0.077 

  NN   0.240 0.082  0.240 0.082   0.451 0.083  0.251 0.083   0.776 0.085  0.276 0.085   1.101 0.088  0.301 0.088 

  NN Cal  0.002 0.098  0.002 0.098   0.213 0.098  0.013 0.098   0.540 0.100  0.040 0.100   0.866 0.102  0.066 0.102 

  GBM   0.033 0.072  0.033 0.072   0.171 0.081 -0.029 0.081   0.384 0.103 -0.116 0.103   0.597 0.131 -0.203 0.131 

ATC Coding                    
  Baseline  -0.238 0.071 -0.238 0.071  -0.448 0.072 -0.248 0.072  -0.772 0.074 -0.272 0.074  -1.097 0.077 -0.297 0.077 

  NN -0.106 0.082 -0.106 0.082  -0.317 0.083 -0.117 0.083  -0.643 0.085 -0.143 0.085  -0.970 0.088 -0.170 0.088 

  NN Cal   0.001 0.097  0.001 0.097  -0.210 0.097 -0.010 0.097  -0.537 0.099 -0.037 0.099  -0.863 0.101 -0.063 0.101 

  GBM -0.037 0.070 -0.037 0.070  -0.198 0.073  0.002 0.073  -0.447 0.082  0.053 0.082  -0.695 0.096  0.105 0.096 
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Table 12 Cont. 

  Cohen's D Y1  Cohen's D Y2  Cohen's D Y3  Cohen's D Y4 

Method M SE M Bias SE  M SE M Bias SE  M SE M Bias SE  M SE M Bias SE 

Scenario C 

ATT Coding                    
  Baseline  0.235 0.058  0.235 0.058   0.445 0.058  0.245 0.058   0.769 0.059  0.269 0.059   1.092 0.061  0.292 0.061 

  NN   0.235 0.068  0.235 0.068   0.445 0.068  0.245 0.068   0.769 0.070  0.269 0.070   1.093 0.072  0.293 0.072 

  NN Cal  0.007 0.076  0.007 0.076   0.218 0.076  0.018 0.076   0.544 0.077  0.044 0.077   0.871 0.078  0.071 0.078 

  GBM   0.031 0.055  0.031 0.055   0.164 0.063 -0.036 0.063   0.370 0.083 -0.130 0.083   0.575 0.108 -0.225 0.108 

ATC Coding                    
  Baseline  -0.235 0.058 -0.235 0.058  -0.445 0.058 -0.245 0.058  -0.769 0.059 -0.269 0.059  -1.092 0.061 -0.292 0.061 

  NN -0.102 0.066 -0.102 0.066  -0.313 0.066 -0.113 0.066  -0.639 0.067 -0.139 0.067  -0.964 0.069 -0.164 0.069 

  NN Cal  -0.005 0.075 -0.005 0.075  -0.216 0.075 -0.016 0.075  -0.543 0.076 -0.043 0.076  -0.869 0.078 -0.069 0.078 

  GBM -0.030 0.055 -0.030 0.055  -0.187 0.058  0.013 0.058  -0.430 0.067  0.070 0.067  -0.673 0.079  0.127 0.079 

Scenario D 

ATT Coding                    
  Baseline  0.227 0.108  0.227 0.108   0.438 0.109  0.238 0.109   0.762 0.111  0.262 0.111   1.087 0.115  0.287 0.115 

  NN   0.226 0.117  0.226 0.117   0.436 0.118  0.236 0.118   0.761 0.121  0.261 0.121   1.086 0.125  0.286 0.125 

  NN Cal  0.008 0.149  0.008 0.149   0.221 0.149  0.021 0.149   0.549 0.152  0.049 0.152   0.877 0.156  0.077 0.156 

  GBM   0.040 0.111  0.040 0.111   0.194 0.118 -0.006 0.118   0.433 0.137 -0.067 0.137   0.672 0.163 -0.128 0.163 

ATC Coding                    
  Baseline  -0.227 0.108 -0.227 0.108  -0.438 0.109 -0.238 0.109  -0.762 0.111 -0.262 0.111  -1.087 0.115 -0.287 0.115 

  NN -0.157 0.115 -0.157 0.115  -0.368 0.116 -0.168 0.116  -0.695 0.118 -0.195 0.118  -1.021 0.121 -0.221 0.121 

  NN Cal  -0.010 0.149 -0.010 0.149  -0.222 0.149 -0.022 0.149  -0.550 0.150 -0.050 0.150  -0.878 0.154 -0.078 0.154 

  GBM -0.041 0.109 -0.041 0.109  -0.203 0.114 -0.003 0.114  -0.453 0.129  0.047 0.129  -0.703 0.150  0.097 0.150 

Scenario E 

ATT Coding                    

  Baseline  0.232 0.061  0.232 0.061   0.442 0.061  0.242 0.061   0.766 0.063  0.266 0.063   1.090 0.065  0.290 0.065 

  NN   0.233 0.065  0.233 0.065   0.443 0.065  0.243 0.065   0.767 0.067  0.267 0.067   1.092 0.069  0.292 0.069 

  NN Cal  0.003 0.089  0.003 0.089   0.214 0.089  0.014 0.089   0.540 0.090  0.040 0.090   0.867 0.093  0.067 0.093 

  GBM   0.034 0.063  0.034 0.063   0.178 0.069 -0.022 0.069   0.399 0.085 -0.101 0.085   0.621 0.106 -0.179 0.106 

ATC Coding                    
  Baseline  -0.232 0.061 -0.232 0.061  -0.442 0.061 -0.242 0.061  -0.766 0.063 -0.266 0.063  -1.090 0.065 -0.290 0.065 

  NN -0.160 0.065 -0.160 0.065  -0.371 0.066 -0.171 0.066  -0.697 0.067 -0.197 0.067  -1.023 0.069 -0.223 0.069 

  NN Cal  -0.002 0.089 -0.002 0.089  -0.213 0.089 -0.013 0.089  -0.540 0.091 -0.040 0.091  -0.866 0.093 -0.066 0.093 

  GBM -0.031 0.061 -0.031 0.061  -0.183 0.066  0.017 0.066  -0.418 0.079  0.082 0.079  -0.653 0.097  0.147 0.097 
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Table 12 Cont. 

  Cohen's D Y1  Cohen's D Y2  Cohen's D Y3  Cohen's D Y4 

Method M SE M Bias SE  M SE M Bias SE  M SE M Bias SE  M SE M Bias SE 

Scenario F 

ATT Coding                    
  Baseline  0.232 0.048  0.232 0.048   0.442 0.048  0.242 0.048   0.767 0.050  0.267 0.050   1.091 0.051  0.291 0.051 

  NN   0.233 0.051  0.233 0.051   0.443 0.052  0.243 0.052   0.767 0.053  0.267 0.053   1.092 0.055  0.292 0.055 

  NN Cal  0.007 0.066  0.007 0.066   0.218 0.066  0.018 0.066   0.544 0.067  0.044 0.067    0.870 0.069  0.070 0.069 

  GBM   0.029 0.049  0.029 0.049   0.168 0.054 -0.032 0.054   0.383 0.069 -0.117 0.069   0.599 0.088 -0.201 0.088 

ATC Coding                     
  Baseline  -0.232 0.048 -0.232 0.048  -0.442 0.048 -0.242 0.048  -0.767 0.050 -0.267 0.050  -1.091 0.051 -0.291 0.051 

  NN -0.162 0.050 -0.162 0.050  -0.372 0.051 -0.172 0.051  -0.698 0.052 -0.198 0.052  -1.024 0.054 -0.224 0.054 

  NN Cal  -0.005 0.067 -0.005 0.067  -0.216 0.067 -0.016 0.067  -0.543 0.068 -0.043 0.068  -0.869 0.070 -0.069 0.070 

  GBM -0.030 0.047 -0.030 0.047  -0.179 0.052  0.021 0.052  -0.410 0.064  0.090 0.064  -0.641 0.080  0.159 0.080 

Scenario G 

ATT Coding                    
  Baseline  0.252 0.077  0.252 0.077   0.462 0.077  0.262 0.077   0.785 0.078  0.285 0.078   1.109 0.080  0.309 0.080 

  NN   0.051 0.100  0.051 0.100   0.262 0.100  0.062 0.100   0.589 0.102  0.089 0.102   0.915 0.104  0.115 0.104 

  NN Cal -0.002 0.113 -0.002 0.113   0.209 0.113  0.009 0.113   0.536 0.115  0.036 0.115   0.863 0.118  0.063 0.118 

  GBM   0.039 0.080  0.039 0.080   0.209 0.083  0.009 0.083   0.471 0.093 -0.029 0.093   0.734 0.106 -0.066 0.106 

ATC Coding                    
  Baseline  -0.252 0.077 -0.252 0.077  -0.462 0.077 -0.262 0.077  -0.785 0.078 -0.285 0.078  -1.109 0.080 -0.309 0.080 

  NN -0.256 0.096 -0.256 0.096  -0.466 0.097 -0.266 0.097  -0.790 0.100 -0.290 0.100  -1.115 0.105 -0.315 0.105 

  NN Cal  -0.004 0.110 -0.004 0.110  -0.215 0.110 -0.015 0.110  -0.541 0.111 -0.041 0.111  -0.867 0.114 -0.067 0.114 

  GBM -0.036 0.084 -0.036 0.084  -0.161 0.095  0.039 0.095  -0.355 0.124  0.145 0.124  -0.549 0.159  0.251 0.159 

Scenario H 

ATT Coding                    
  Baseline  0.253 0.044  0.253 0.044   0.462 0.044  0.262 0.044   0.786 0.045  0.286 0.045   1.110 0.046  0.310 0.046 

  NN   0.051 0.056  0.051 0.056   0.262 0.056  0.062 0.056   0.588 0.057  0.088 0.057   0.914 0.059  0.114 0.059 

  NN Cal  0.005 0.063  0.005 0.063   0.216 0.063  0.016 0.063   0.543 0.064  0.043 0.064   0.869 0.066  0.069 0.066 

  GBM   0.027 0.045  0.027 0.045   0.192 0.047 -0.008 0.047   0.447 0.054 -0.053 0.054   0.702 0.063 -0.098 0.063 

ATC Coding                    
  Baseline  -0.253 0.044 -0.253 0.044  -0.462 0.044 -0.262 0.044  -0.786 0.045 -0.286 0.045  -1.110 0.046 -0.310 0.046 

  NN -0.253 0.056 -0.253 0.056  -0.463 0.056 -0.263 0.056  -0.787 0.058 -0.287 0.058  -1.112 0.060 -0.312 0.060 

  NN Cal  -0.012 0.062 -0.012 0.062  -0.223 0.063 -0.023 0.063  -0.549 0.064 -0.049 0.064  -0.876 0.066 -0.076 0.066 

  GBM -0.030 0.047 -0.030 0.047  -0.144 0.057  0.056 0.057  -0.321 0.080  0.179 0.080  -0.497 0.108  0.303 0.108 
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Table 12 Cont. 

  Cohen's D Y1  Cohen's D Y2  Cohen's D Y3  Cohen's D Y4 

Method M SE M Bias SE  M SE M Bias SE  M SE M Bias SE  M SE M Bias SE 

Scenario I 

ATT Coding                    
  Baseline  0.253 0.036  0.253 0.036   0.462 0.036  0.262 0.036   0.786 0.037  0.286 0.037   1.110 0.037  0.310 0.037 

  NN   0.049 0.046  0.049 0.046   0.260 0.046  0.060 0.046   0.586 0.047  0.086 0.047   0.912 0.048  0.112 0.048 

  NN Cal  0.001 0.048  0.001 0.048   0.212 0.048  0.012 0.048   0.538 0.049  0.038 0.049   0.864 0.050  0.064 0.050 

  GBM   0.021 0.036  0.021 0.036   0.183 0.038 -0.017 0.038   0.434 0.044 -0.066 0.044   0.684 0.052 -0.116 0.052 

ATC Coding                    
  Baseline  -0.253 0.036 -0.253 0.036  -0.462 0.036 -0.262 0.036  -0.786 0.037 -0.286 0.037  -1.110 0.037 -0.310 0.037 

  NN -0.253 0.046 -0.253 0.046  -0.463 0.046 -0.263 0.046  -0.787 0.047 -0.287 0.047  -1.112 0.048 -0.312 0.048 

  NN Cal  -0.007 0.048 -0.007 0.048  -0.218 0.048 -0.018 0.048  -0.544 0.049 -0.044 0.049  -0.870 0.050 -0.070 0.050 

  GBM -0.025 0.037 -0.025 0.037  -0.134 0.046  0.066 0.046  -0.302 0.067  0.198 0.067  -0.470 0.093  0.330 0.093 

Note. Each scenario represents a unique combination of treatment sample size and treatment to comparison group ratio as 

follows: scenario A (NTreatment = 200, T:C = 2:1), scenario B (NTreatment = 600, T:C = 2:1), scenario C (NTreatment = 1,000, T:C = 

2:1), scenario D (NTreatment = 200, T:C = 4:3), scenario E (NTreatment = 600, T:C = 4:3), scenario F (NTreatment = 1,000, T:C = 

4:3), scenario G (NTreatment = 200, T:C = 1:4), scenario H (NTreatment = 600, T:C = 1:4), and scenario I (NTreatment = 1,000, T:C = 

1:4). Mean bias values ≤ |0.10| are bolded. 
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Table 13 

ANOVA Results for Bias in the Estimated Treatment Effect 

Source df SS MS F Value p 

Partial 

η2 

Method 2 2491.966 1245.983 132231.000 <.001 0.551 

Coding 1 0.742 0.742 78.770 <.001 0.000 

Ratio 2 18.461 9.230 979.580 <.001 0.009 

Size 2 5.796 2.898 307.560 <.001 0.003 

EffSize 3 16.278 5.426 575.830 <.001 0.008 

Method*Coding 2 2.144 1.072 113.770 <.001 0.001 

Method*Ratio 4 13.860 3.465 367.720 <.001 0.007 

Method*Size 4 13.355 3.339 354.320 <.001 0.007 

Method*EffSize 6 466.586 77.764 8252.800 <.001 0.187 

Coding*Ratio 2 48.995 24.497 2599.800 <.001 0.024 

Coding*Size 2 0.010 0.005 0.530 0.589 0.000 

Coding*EffSize 3 0.641 0.214 22.680 <.001 0.000 

Ratio*Size 4 0.174 0.043 4.610 0.001 0.000 

Ratio*EffSize 6 1.392 0.232 24.620 <.001 0.001 

Size*EffSize 6 2.259 0.377 39.960 <.001 0.001 

Method*Coding*Ratio 4 384.535 96.134 10202.300 <.001 0.159 

Method*Coding*Size 4 0.164 0.041 4.360 0.002 0.000 

Method*Coding*EffSize 6 1.412 0.235 24.980 <.001 0.001 

Method*Ratio*Size 8 0.864 0.108 11.460 <.001 0.000 

Method*Ratio*EffSize 12 2.359 0.197 20.860 <.001 0.001 

Method*Size*EffSize 12 3.377 0.281 29.860 <.001 0.002 

Coding*Ratio*Size 4 0.247 0.062 6.550 <.001 0.000 

Coding*Ratio*EffSize 6 14.391 2.399 254.550 <.001 0.007 

Coding*Size*EffSize 6 0.011 0.002 0.190 0.981 0.000 

Ratio*Size*EffSize 12 0.034 0.003 0.300 0.990 0.000 

Method*Coding*Ratio*Size 8 0.542 0.068 7.190 <.001 0.000 

Method*Coding*Ratio*EffSize 12 25.852 2.154 228.630 <.001 0.013 

Method*Coding*Size*EffSize 12 0.014 0.001 0.130 1.000 0.000 

Method*Ratio*Size*EffSize 24 0.013 0.001 0.060 1.000 0.000 

Coding*Ratio*Size*EffSize 12 0.160 0.013 1.410 0.152 0.000 

Method*Coding*Ratio*Size*EffSize 24 0.369 0.015 1.630 0.027 0.000 

Method*Coding*Ratio*Size*EffSize 24 0.981 0.041 7.400 <.001 0.001 

Note. Method refers to propensity score method, coding refers to ATT or ATC coding, 

size refers to treatment sample size, and effSize refers to true treatment effect size. 

Effects that were statistically significant and meaningful (partial η2  ≥ 0.02) are bolded.  
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Table 14 

Bias Means, Standard deviations, and Differences for ATC Coding and ATT Coding by 

Treatment to Comparison Ratio for Each Propensity Score Method 

  ATC Coding   ATT Coding       

Ratio M SD   M SD Difference p Cohen's d 

NN 
     

 

 

 
  1:4 0.280 0.075 

 
0.078 0.076 0.201 <.001 1.878 

  2:1 0.133 0.107 
 

0.263 0.108 -0.130 <.001 -0.855 

  4:3 0.187 0.087 
 

0.257 0.088 -0.069 <.001 -0.560 

GBM 
     

 

 

 
  1:4 -0.123 0.153 

 
-0.030 0.081 -0.093 <.001 -0.537 

  2:1 -0.030 0.115 
 

-0.069 0.148 0.039 <.001 0.209 

  4:3 -0.046 0.114 
 

-0.062 0.126 0.016 <.001 0.095 

NN Cal 
     

 

 

 
  1:4 0.036 0.083 

 
0.029 0.085 0.006 <.001 0.053 

  2:1 0.028 0.127 
 

0.032 0.129 -0.004 0.007 -0.021 

  4:3 0.035 0.112   0.035 0.112 0.000 0.919 -0.001 

Note. Because the direction of bias differed consistently across ATT and ATC coding, 

the sign was reversed for all bias values for ATC coding prior to conducting the 

ANOVA. 
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Table 15 

Bias Means, Standard deviations, and Differences for Nearest Neighbor Matching, Nearest Neighbor Matching with a 

Caliper, and Generalized Boosted Modeling by True Treatment Effect Size 

True Treatment 

Effect Size 

NN   NN Cal   GBM   NN with NN Cal   NN with GBM   NN Cal with GBM 

M SD   M SD   M SD   Difference p Cohen's d   Difference p Cohen's d   Difference p Cohen's d 

None (0) 0.173 0.114 
 

0.004 0.105 
 
 0.033 0.077  0.169 <.001 1.090  0.139 <.001 1.012  -0.030 <.001 -0.229 

Small (0.20) 0.183 0.114 
 

0.015 0.105 
 
-0.019 0.085  0.168 <.001 1.083  0.202 <.001 1.420   0.034 <.001  0.253 

Medium (0.50) 0.208 0.115 
 

0.042 0.107 
 
-0.091 0.109  0.167 <.001 1.062  0.300 <.001 1.890   0.133 <.001  0.873 

Large (0.80) 0.234 0.117   0.069 0.109   -0.163 0.140   0.165 <.001 1.031   0.397 <.001 2.173    0.232 <.001  1.303 

Note. Due to the negative average bias values for generalized boosted modeling (for small, medium, and large true treatment 

effect sizes), the magnitude of the differences (absolute value) in bias between generalized boosted modeling and nearest 

neighbor matching or nearest neighbor matching with a caliper are slightly inflated. Comparison of the magnitude (absolute 

value) of differences between nearest neighbor matching and generalized boosted modeling resulted in DifferenceSmall = 

0.164, Cohen’s dSmall = 1.153, DifferenceMedium = 0.117, Cohen’s dMedium = 0.741, and DifferenceLarge = 0.071, Cohen’s dLarge = 

0.388. Comparison of the magnitude (absolute value) of differences between nearest neighbor matching with a caliper and 

generalized boosted modeling resulted in DifferenceSmall = -0.004, Cohen’s dSmall = -0.029, DifferenceMedium = -0.049, Cohen’s 

dMedium = -0.322, and DifferenceLarge = -0.094, Cohen’s dLarge = -0.530. 
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Table 16 

Standardized Mean Differences and Percentage in Bias Reduction for Covariates and Estimated Propensity Scores 

  X1   X2   X3   X4   X5   Propensity Score 

Method SMD 

 Median 

PBR   SMD 

 Median 

PBR   SMD 

 Median 

PBR   SMD 

 Median 

PBR   SMD 

 Median 

PBR   SMD 

 Median 

PBR 

Variance 

Ratio 

Scenario A 

ATT Coding                 
  Baseline -0.03 -   0.18 -   0.48 -   0.88 -   1.19 -  1.66 - 0.64 

  NN  -0.03 -12.61   0.18 -6.27   0.48   0.89   0.88 -0.23   1.19   0.03  1.66 -0.07 0.64 

  NN Cal  0.00  25.60   0.01 64.12   0.01 87.06   0.02 94.34   0.03 96.92  0.03 98.39 1.04 

  GBM  -0.09    0.00  -0.01 65.31   0.13 72.05   0.28 67.81   0.40 66.25  - - - 

ATC Coding                 
  Baseline   0.03 -  -0.18 -  -0.49 -  -0.91 -  -1.26 -  1.32 - 0.64 

  NN  0.01  32.93  -0.08 48.29  -0.22 55.02  -0.41 55.01  -0.56 55.29  0.74 44.40 0.57 

  NN Cal   0.01  22.20   0.00 64.78   0.00 87.89   0.00 94.48  -0.01 97.53  0.01 99.18 0.98 

  GBM  0.06  25.00   0.00 73.75  -0.12 74.41  -0.25 72.22  -0.37 70.53  - - - 

Scenario B 

ATT Coding                
  Baseline -0.02 -   0.17 -   0.47 -   0.87 -   1.18 -  1.60 - 0.64 

  NN  -0.03 -13.15   0.17   0.07   0.47   0.54   0.87   0.10   1.18 -0.07  1.60 -0.01 0.64 

  NN Cal  0.00  33.86   0.01 79.05   0.01 92.84   0.02 96.67   0.03 97.64  0.03 98.33 1.04 

  GBM  -0.06  -1.74  -0.01 82.87   0.11 76.69   0.22 74.07   0.31 73.08  - - - 

ATC Coding                
  Baseline   0.02 -  -0.17 -  -0.48 -  -0.90 -  -1.25 -  1.28 - 0.64 

  NN  0.01 39.66  -0.08 54.94  -0.21 55.68  -0.39 56.21  -0.55 56.24  0.69 45.72 0.55 

  NN Cal   0.00 28.57   0.00 79.38   0.00 92.85  -0.01 96.88  -0.01 98.50  0.01 99.21 0.98 

  GBM  0.04 28.57   0.00 88.06  -0.10 79.12  -0.20 77.92  -0.28 77.95  - - - 
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Table 16 Cont. 

  X1   X2   X3   X4   X5   Propensity Score 

Method SMD 

 Median 

PBR   SMD 

 Median 

PBR   SMD 

 Median 

PBR   SMD 

 Median 

PBR   SMD 

 Median 

PBR   SMD 

 Median 

PBR 

Variance 

Ratio 

Scenario C 

ATT Coding                 
  Baseline -0.03 -   0.17 -   0.47 -   0.87 -   1.18 -  1.59 - 0.64 

  NN  -0.03  -8.42   0.18 -1.37   0.47 -0.34   0.87   0.10   1.18 -0.22  1.59 -0.16 0.64 

  NN Cal  0.00  30.14   0.00 84.92   0.01 94.72   0.02 97.28   0.03 97.67  0.03 98.32 1.04 

  GBM  -0.05 -15.52   0.00 87.76   0.10 78.44   0.20 76.23   0.28 76.03  - - - 

ATC Coding                 
  Baseline   0.03 -  -0.17 -  -0.48 -  -0.90 -  -1.25 -  1.27 - 0.64 

  NN  0.01  38.64  -0.08 55.81  -0.21 56.79  -0.39 56.68  -0.54 56.68  0.68 46.35 0.55 

  NN Cal   0.00  36.45   0.00 83.92   0.00 94.58  -0.01 97.74  -0.01 98.77  0.01 99.21 0.97 

  GBM  0.03  31.37   0.00 91.52  -0.09 81.84  -0.17 81.28  -0.23 81.44  - - - 

Scenario D 

ATT Coding                
  Baseline -0.02 -   0.17 -   0.47 -   0.87 -   1.18 -  1.51 - 0.84 

  NN  -0.02 -3.87   0.17   0.38   0.46   0.61   0.87   0.41   1.18   0.29  1.50   0.31 0.84 

  NN Cal  0.00 29.75   0.00 66.04   0.01 89.53   0.01 95.00   0.02 97.27  0.02 98.52 1.04 

  GBM  -0.07   7.67  -0.01 74.20   0.12 74.35   0.25 70.83   0.36 69.36  - - - 

ATC Coding                 
  Baseline   0.02 -  -0.17 -  -0.47 -  -0.88 -  -1.21 -  1.37 - 0.84 

  NN  0.01 19.16  -0.12 26.73  -0.33 29.74  -0.61 30.36  -0.84 30.71  1.07 22.45 0.73 

  NN Cal   0.00 26.49   0.00 66.93   0.00 89.78  -0.01 95.08  -0.01 97.64  0.02 98.95 0.97 

  GBM  0.06 21.57   0.00 74.11  -0.12 75.31  -0.25 71.52  -0.35 70.69  - - - 
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Table 16 Cont. 

  X1   X2   X3   X4   X5   Propensity Score 

Method SMD 

 Median 

PBR   SMD 

 Median 

PBR   SMD 

 Median 

PBR   SMD 

 Median 

PBR   SMD 

 Median 

PBR   SMD 

 Median 

PBR 

Variance 

Ratio 

Scenario E 

ATT Coding                 
  Baseline -0.02 -   0.17 -   0.47 -   0.86 -   1.18 -  1.49 - 0.83 

  NN  -0.02 -4.72   0.17 -0.14   0.47 -0.01   0.86   0.18   1.18   0.12  1.49   0.16 0.83 

  NN Cal  0.00 32.58   0.00 80.73   0.01 93.74   0.02 96.90   0.02 98.13  0.02 98.50 1.04 

  GBM  -0.05   2.67   0.00 85.77   0.10 77.92   0.20 76.32   0.29 75.77  - - - 

ATC Coding                  
  Baseline   0.02 -  -0.17 -  -0.47 -  -0.87 -  -1.20 -  1.36 - 0.83 

  NN  0.01 21.29  -0.12 30.33  -0.32 30.89  -0.60 31.14  -0.83 31.25  1.04 23.18 0.72 

  NN Cal   0.00 30.32   0.00 80.39  -0.01 93.91  -0.01 97.23  -0.01 98.47  0.01 98.90 0.97 

  GBM  0.04 27.27   0.00 89.05  -0.09 80.19  -0.19 78.01  -0.26 77.83  - - - 

Scenario F 

ATT Coding                
  Baseline -0.02 -   0.17 -   0.47 -   0.87 -   1.18 -  1.48 - 0.83 

  NN  -0.02  -6.14   0.17  -0.17   0.47   0.05   0.86   0.09   1.18   0.04  1.48 -0.01 0.83 

  NN Cal  0.00  36.76   0.00 85.68   0.01 95.13   0.01 97.61   0.02 98.22  0.02 98.50 1.04 

  GBM  -0.04    0.00   0.00 91.20   0.09 80.40   0.18 79.06   0.25 78.65  - - - 

ATC Coding                
  Baseline   0.02 -  -0.17 -  -0.47 -  -0.87 -  -1.20 -  1.35 - 0.83 

  NN  0.01  22.57  -0.12 29.93  -0.32 30.77  -0.60 30.88  -0.83 30.96  1.04 22.96 0.71 

  NN Cal   0.00  40.11   0.00 86.36   0.00 95.64  -0.01 97.84  -0.01 98.73  0.01 98.90 0.97 

  GBM  0.03  26.56   0.00 92.31  -0.08 81.80  -0.17 80.63  -0.23 80.82  - - - 
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Table 16 Cont. 

  X1   X2   X3   X4   X5   Propensity Score 

Method SMD 

 Median 

PBR   SMD 

 Median 

PBR   SMD 

 Median 

PBR   SMD 

 Median 

PBR   SMD 

 Median 

PBR   SMD 

 Median 

PBR 

Variance 

Ratio 

Scenario G 

ATT Coding                 
  Baseline -0.02 -   0.19 -   0.51 -   0.98 -   1.36 -  1.17 - 2.52 

  NN  -0.01  34.88   0.04 72.56   0.10 79.66   0.19 80.17   0.27 80.24  0.36 69.67 1.90 

  NN Cal  0.00  25.55   0.00 75.96   0.00 92.09   0.00 96.49   0.00 98.41  0.00 99.63 1.01 

  GBM  -0.04  35.00   0.00 89.40   0.10 80.07   0.20 78.94   0.29 79.13  - - - 

ATC Coding                 
  Baseline   0.02 -  -0.19 -  -0.50 -  -0.92 -  -1.23 -  1.86 - 2.52 

  NN  0.02 -25.74  -0.19 -2.19  -0.51   0.06  -0.93  -0.19  -1.23   0.00  1.86 -0.10 2.59 

  NN Cal   0.00  21.98   0.00 76.58  -0.02 91.61  -0.03 95.74  -0.04 96.82  0.03 98.28 0.97 

  GBM  0.08 -25.90   0.02 77.22  -0.11 77.67  -0.25 71.70  -0.36 70.26  - - - 

Scenario H 

ATT Coding                
  Baseline -0.02 -   0.18 -   0.51 -   0.97 -   1.35 -  1.16 - 2.48 

  NN   0.00  42.31   0.03 79.61   0.10 80.84   0.18 80.84   0.26 80.84  0.34 70.50 1.88 

  NN Cal  0.00  28.38   0.00 86.87   0.00 95.42   0.00 98.06   0.00 99.06  0.00 99.64 1.01 

  GBM  -0.02  49.18   0.00 95.79   0.08 84.94   0.14 85.46   0.19 85.89  - - - 

ATC Coding                
  Baseline   0.02 -  -0.18 -  -0.50 -  -0.92 -  -1.22 -  1.83 - 2.48 

  NN  0.03 -22.11  -0.18   0.19  -0.50   0.06  -0.92   0.02  -1.23 -0.02  1.83   0.02 2.49 

  NN Cal   0.00  31.82  -0.01 86.47  -0.02 94.83  -0.03 96.73  -0.04 96.93  0.03 98.24 0.96 

  GBM  0.07 -75.00   0.01 86.89  -0.10 79.48  -0.21 76.33  -0.30 75.03  - - - 
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Table 16 Cont. 

  X1   X2   X3   X4   X5   Propensity Score 

Method SMD 

 Median 

PBR   SMD 

 Median 

PBR   SMD 

 Median 

PBR   SMD 

 Median 

PBR   SMD 

 Median 

PBR   SMD 

 Median 

PBR 

Variance 

Ratio 

Scenario I 

ATT Coding                 
  Baseline -0.02 -   0.19 -   0.52 -   0.97 -   1.36 -  1.16 - 2.49 

  NN   0.00  44.95   0.04 80.79   0.10 81.22   0.19 80.80   0.26 80.77  0.34 70.40 1.89 

  NN Cal  0.00  41.28   0.00 89.58   0.00 96.78   0.00 98.49   0.00 99.29  0.00 99.64 1.01 

  GBM  -0.01  57.66   0.01 96.61   0.07 87.17   0.12 88.01   0.16 88.28  - - - 

ATC Coding                  
  Baseline   0.02 -  -0.19 -  -0.51 -  -0.92 -  -1.23 -  1.83 - 2.49 

  NN  0.02 -23.11  -0.19   0.90  -0.51   0.03  -0.92 -0.05  -1.23 -0.08  1.83 -0.01 2.51 

  NN Cal   0.00  37.60  -0.01 90.28  -0.02 95.95  -0.03 96.93  -0.04 96.97  0.03 98.24 0.96 

  GBM  0.06 -82.66    0.00 90.30   -0.09 81.03   -0.20 77.73   -0.28 76.93   - - - 

Note. Each scenario represents a unique combination of treatment sample size and treatment to comparison group ratio as follows: 

scenario A (NTreatment = 200, T:C = 2:1), scenario B (NTreatment = 600, T:C = 2:1), scenario C (NTreatment = 1,000, T:C = 2:1), scenario 

D (NTreatment = 200, T:C = 4:3), scenario E (NTreatment = 600, T:C = 4:3), scenario F (NTreatment = 1,000, T:C = 4:3), scenario G 

(NTreatment = 200, T:C = 1:4), scenario H (NTreatment = 600, T:C = 1:4), and scenario I (NTreatment = 1,000, T:C = 1:4). Each covariate 

(X1 through X5) represented a different magnitude of standardized mean difference at baseline (i.e., baseline imbalance) as 

follows: X1 = 0, X2 = 0.20, X3 = 0.50, X4 = 0.80, X5 = 1.20. Standardized mean differences, percentages in bias reduction, and 

propensity score variance ratios are not provided for generalized boosted modeling (for all scenarios) because outcome variables 

are weighted by the propensity score based on group membership (i.e., treatment or comparison group). Thus, there was no change 
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to the sample that was used in the outcome analysis, and no change in the group balance on the propensity score or propensity score 

variance ratio over that at baseline. SMD values ≤ |0.10| and PBR values ≥ 80.00 are bolded. 
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Table 17 

Baseline, Matched, and Unmatched Treatment and Comparison Group Sizes and Average Propensity Scores by Matching 

Method and Coding Method 

  

Baseline 

Treatment   

Baseline 

Comparison   

Matched 

Treatment   

Unmatched 

Treatment   

Matched 

Comparison   

Unmatched 

Comparison   

Method N 

Mean 

PS  N 

Mean 

PS  N 

Mean 

PS  N 

Mean 

PS  N 

Mean 

PS  N 

Mean 

PS Treatment Loss 

Scenario A 

ATT Coding                   
  NN  200.378 0.781  99.622 0.441  99.622 0.781  100.756 0.781  99.622 0.441  0.000 - 50.28% 

  NN Cal 200.378 0.781  99.622 0.441  64.290 0.582  136.088 0.873  64.290 0.576  35.332 0.203 67.92% 

ATC Coding  
                

 
  NN 200.378 0.219  99.622 0.559  99.622 0.368  100.756 0.070  99.622 0.559  0.000 - 50.28% 

  NN Cal  200.378 0.219  99.622 0.559  64.316 0.423  136.062 0.125  64.316 0.425  35.306 0.794 67.90% 

Scenario B 

ATT Coding  
     

            
  NN  600.219 0.776  299.781 0.449  299.781 0.776  300.438 0.776  299.781 0.449  0.000 - 50.05% 

  NN Cal 600.219 0.776  299.781 0.449  199.505 0.580  400.714 0.873  199.505 0.575  100.276 0.201 66.76% 

ATC Coding  
                

 
  NN 600.219 0.224  299.781 0.551  299.781 0.373  300.438 0.075  299.781 0.551  0.000 - 50.05% 

  NN Cal  600.219 0.224  299.781 0.551  199.445 0.425  400.774 0.125  199.445 0.427  100.336 0.796 66.77% 

Scenario C 

ATT Coding  
     

            
  NN  1000.800 0.775  499.196 0.452  499.196 0.775  501.604 0.775  499.196 0.452  0.000 - 50.12% 

  NN Cal 1000.800 0.775  499.196 0.452  333.474 0.581  667.326 0.873  333.474 0.575  165.722 0.198 66.68% 

ATC Coding  
                

 
  NN 1000.800 0.225  499.196 0.548  499.196 0.375  501.604 0.076  499.196 0.548  0.000 - 50.12% 

  NN Cal  1000.800 0.225  499.196 0.548  333.382 0.424  667.418 0.125  333.382 0.426  165.814 0.798 66.69% 
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Table 17 Cont. 

  

Baseline 

Treatment   

Baseline 

Comparison   

Matched 

Treatment   

Unmatched 

Treatment   

Matched 

Comparison   

Unmatched 

Comparison   

Method N 

Mean 

PS  N 

Mean 

PS  N 

Mean 

PS  N 

Mean 

PS  N 

Mean 

PS  N 

Mean 

PS Treatment Loss 

Scenario D 

ATT Coding  
     

            
  NN  199.827 0.717   150.173 0.377  150.163 0.716    49.664 0.719  150.163 0.377       0.010 - 24.85% 

  NN Cal 199.827 0.717   150.173 0.377    83.825 0.536  116.002 0.848    83.825 0.531     66.348 0.018 58.05% 

ATC Coding  
                

 
  NN 199.827 0.283   150.173 0.623  150.163 0.358    49.664 0.052  150.163 0.623       0.010 - 24.85% 

  NN Cal  199.827 0.283   150.173 0.623    83.824 0.468  116.003 0.149    83.824 0.471     66.349 0.560 58.05% 

Scenario E 

ATT Coding  
                

 
  NN  600.046 0.715   449.954 0.381  449.954 0.714  150.092 0.715  449.954 0.381       0.000 - 25.01% 

  NN Cal 600.046 0.715   449.954 0.381  258.109 0.536  341.937 0.848  258.109 0.531   191.845 0.180 56.99% 

ATC Coding  
                

 
  NN 600.046 0.285   449.954 0.619  449.954 0.362  150.092 0.054  449.954 0.619       0.000 - 25.01% 

  NN Cal  600.046 0.285   449.954 0.619  257.973 0.468  342.073 0.149  257.973 0.472   191.981 0.817 57.01% 

Scenario F 

ATT Coding  
                

 
  NN  999.427 0.714   750.573 0.381  750.573 0.714  248.854 0.714  750.573 0.381       0.000 - 24.90% 

  NN Cal 999.427 0.714   750.573 0.381  431.941 0.536  567.486 0.849  431.941 0.531   318.632 0.179 56.78% 

ATC Coding  
                

 
  NN 999.427 0.286   750.573 0.619  750.573 0.363  248.854 0.054  750.573 0.619       0.000 - 24.90% 

  NN Cal  999.427 0.286   750.573 0.619  431.833 0.468  567.594 0.148  431.833 0.472   318.740 0.817 56.79% 

Scenario G 

ATT Coding  
                

 
  NN  200.040 0.441   799.960 0.140  200.040 0.441      0.000 -  200.040 0.348   599.920 0.070   0.00% 

  NN Cal 200.040 0.441   799.960 0.140  157.791 0.352    42.249 0.767  157.791 0.351   642.169 0.088 21.12% 

ATC Coding  
                

 
  NN 200.040 0.559   799.960 0.860  200.040 0.559      0.000 -  200.040 0.861   599.920 0.860   0.00% 

  NN Cal  200.040 0.559   799.960 0.860  157.868 0.649    42.172 0.230  157.868 0.654   642.092 0.911 21.08% 
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Table 17 Cont. 

  

Baseline 

Treatment   

Baseline 

Comparison   

Matched 

Treatment   

Unmatched 

Treatment   

Matched 

Comparison   

Unmatched 

Comparison   

Method N 

Mean 

PS  N 

Mean 

PS  N 

Mean 

PS  N 

Mean 

PS  N 

Mean 

PS  N 

Mean 

PS Treatment Loss 

Scenario H 

ATT Coding  
                

 
  NN  599.374 0.436  2400.630 0.141  599.374 0.436      0.000 -  599.374 0.349  1801.256 0.071   0.00% 

  NN Cal 599.374 0.436  2400.630 0.141  481.147 0.354  118.227 0.775  481.147 0.353  1919.483 0.088 19.73% 

ATC Coding  
                

 
  NN 599.374 0.564  2400.630 0.859  599.374 0.564      0.000 -  599.374 0.859  1801.256 0.859   0.00% 

  NN Cal  599.374 0.564  2400.630 0.859  481.205 0.647  118.169 0.222  481.205 0.652  1919.425 0.911 19.72% 

Scenario I 

ATT Coding  
                

 
  NN  997.619 0.437  4002.380 0.140  997.619 0.437      0.000 -  997.619 0.349  3004.761 0.071   0.00% 

  NN Cal 997.619 0.437  4002.380 0.140  803.472 0.354  194.147 0.775  803.472 0.353  3198.908 0.087 19.46% 

ATC Coding  
                

 
  NN 997.619 0.563  4002.380 0.860  997.619 0.563      0.000 -  997.619 0.860  3004.761 0.860   0.00% 

  NN Cal  997.619 0.563   4002.380 0.860   803.735 0.647   193.884 0.221   803.735 0.652   3198.645 0.911 19.43% 

Note. Each scenario represents a unique combination of treatment sample size and treatment to comparison group ratio as 

follows: scenario A (NTreatment = 200, T:C = 2:1), scenario B (NTreatment = 600, T:C = 2:1), scenario C (NTreatment = 1,000, T:C = 

2:1), scenario D (NTreatment = 200, T:C = 4:3), scenario E (NTreatment = 600, T:C = 4:3), scenario F (NTreatment = 1,000, T:C = 

4:3), scenario G (NTreatment = 200, T:C = 1:4), scenario H (NTreatment = 600, T:C = 1:4), and scenario I (NTreatment = 1,000, T:C = 

1:4). Scenario D shows a fraction of an unmatched comparison group member after nearest neighbor matching, for both 

ATT and ATC coding. One replication (out of 1,000) in scenario D had a comparison group that was larger than the 

treatment group. Thus, for the one replication, there were a few unmatched comparison group members. 
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Figure 1 

Example Jitter Plot after Matching on the Propensity Score  

 

Note. Example jitter plot produced after matching treatment and comparison 

group members on the propensity score (Perkins & Horst, 2020). Jitter plots 

allow for the examination of the propensity score distributions of each group.  
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Figure 2 

Jitter Plots Demonstrating Group Propensity Score Distributions Prior to Matching or Weighting 
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Note. Jitter plots demonstrating group propensity score distributions prior to matching or weighting. Samples A through C have a 

treatment to comparison ratio of 2:1 (treatment N = 200, 600, and 1,000 from left to right). Samples D through F have a treatment 

to comparison ration of 4:3 (treatment N = 200, 600, and 1,000 from left to right). Samples G through I have a treatment to 

comparison ratio of 1:4 (treatment N = 200, 600, and 1,000 from left to right). All validation samples have adequate common 

support between treatment and comparison group propensity score distributions. 
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Figure 3 

Average Bias for the Interaction between Coding Method and Treatment to Comparison Ratio for Each Propensity Score Method 

 

Note. Line graph of the interaction between coding method and treatment to comparison ratio for each propensity score method. A 1:4 

treatment to comparison ratio is indicated by orange, circles, and a solid line. A 2:1 treatment to comparison ratio is indicated by 

green, triangles, and a short, dashed line. A 4:3 treatment to comparison ratio is indicated by purple, squares, and a long, dashed line. 

The solid black line indicates bias of zero (the ideal average bias over a large number of replications). 
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Figure 4 

Average Bias for the Interaction between Propensity Score Method and True 

Treatment Effect Size 

 

Note. Line graph of the average magnitude of bias (absolute value) in the estimated 

treatment effect for the two-way interaction between propensity score method and true 

treatment effect size. True treatment effect sizes were Y1 = 0, Y2 = 0.20, Y3 = 0.40, 

and Y4 = 0.80. Nearest neighbor matching is indicated by orange, circles, and a solid 

line. Nearest neighbor matching with a caliper is indicated by green, triangles, and a 

dash-dot line. Generalized boosted modeling is indicated by purple, squares, and a 

long, dashed line. Bias in the estimated treatment effect at baseline (prior to matching 

or weighting) is indicated by black, crosses, and a short, dashed line.    
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Figure 5 

Average Standardized Mean Difference for Covariates and Propensity Score across Propensity Score Method, Coding Method, and 

Treatment to Comparison Ratio 
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Note. The standardized mean difference before matching or weighting is noted by the horizontal line for each covariate (X1 = 0, X2 = 

0.20, X3 = 0.50, X4 = 0.80, and X5 = 1.20). Standardized mean difference for the propensity score is not presented for GBM because 

the full sample is retained, and there is no change to the distribution of the propensity score. PS stands for propensity score. ATC 

coding is indicated in orange and ATT coding is indicated in green. For each coding method, each treatment to comparison ratio is 

indicated by a lighter shading (ratio of 1:4), medium shading (ratio of 2:1), and darker shading (ratio of 4:3) of each respective color.  
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Figure 6 

Average Propensity Score for Baseline and Matched Treatment and Comparison Groups across Matching Method, 

Coding Method, and Treatment to Comparison Ratio 
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Note. For each coding method, the baseline treatment and comparison group means did not differ across matching 

method (as shown by the overlapping symbols for both methods at baseline). Comparison group means are indicated by 

circles and treatment group means are indicated by triangle. Orange, solid lines and shapes indicate means associated 

with nearest neighbor matching and green, dashed lines and shapes indicate means associated with nearest neighbor 

matching with a caliper. Results were not included for generalized boosted modeling because there is no matched 

treatment or comparison group. That is, the original sample is retained and average propensity scores for each group do 

not differ from baseline.  
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Appendix 

 Simulation code for Configuration A (adapted from simulation code used by 

Harris, 2018). The following code was adapted for each configuration by changing the 

proportion of the sample receiving treatment (TreatP) and the total sample size 

(Nexaminee). For each configuration, the following values were substituted: 

Configuration TreatP Nexaminee 

A .667 300 

B .667 900 

C .667 1500 

D .571 350 

E .571 1050 

F .571 1750 

G .200 1000 

H .200 3000 

I .200 5000 
 

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

# ~~~~~~~~~~~~~~~~            Dissertation Code         ~~~~~~~~~~~~~~~ 

# ~~~~~~~~~~~~~~~~               Beth Perkins           ~~~~~~~~~~~~~~~ 

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

#Set working directory for saving simulated data 

setwd("C:/Users/perkinba/Desktop/Dissertation/Chapter 4 - Results") 

getwd() 

 

install.packages("permute") 

install.packages("mvtnorm") 

install.packages("MatchIt") 

install.packages("reshape2") 

install.packages("twang") 

install.packages("psych") 

install.packages("writexl") 

 

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

#                     CREATING THE SAVE-OUT VALUES. 

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

# A denotes elements of Scenario A (2:1 ratio, T=200,C=100) before 

matching/weighting 

 

AvgX1TreatA     <-  rep(NA, 1000) 

AvgX2TreatA     <-  rep(NA, 1000) 

AvgX3TreatA     <-  rep(NA, 1000) 

AvgX4TreatA     <-  rep(NA, 1000) 

AvgX5TreatA     <-  rep(NA, 1000) 

AvgYA1TreatA    <-  rep(NA, 1000) 

AvgYA2TreatA    <-  rep(NA, 1000) 

AvgYA3TreatA    <-  rep(NA, 1000) 

AvgYA4TreatA    <-  rep(NA, 1000) 

AvgPSTreatA     <-  rep(NA, 1000) 

AvgX1CompA      <-  rep(NA, 1000) 

AvgX2CompA      <-  rep(NA, 1000) 
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AvgX3CompA      <-  rep(NA, 1000) 

AvgX4CompA      <-  rep(NA, 1000) 

AvgX5CompA      <-  rep(NA, 1000) 

AvgYA1CompA     <-  rep(NA, 1000) 

AvgYA2CompA     <-  rep(NA, 1000) 

AvgYA3CompA     <-  rep(NA, 1000) 

AvgYA4CompA     <-  rep(NA, 1000) 

AvgPSCompA      <-  rep(NA, 1000) 

SDX1TreatA      <-  rep(NA, 1000) 

SDX2TreatA      <-  rep(NA, 1000) 

SDX3TreatA      <-  rep(NA, 1000) 

SDX4TreatA      <-  rep(NA, 1000) 

SDX5TreatA      <-  rep(NA, 1000) 

SDYA1TreatA     <-  rep(NA, 1000) 

SDYA2TreatA     <-  rep(NA, 1000) 

SDYA3TreatA     <-  rep(NA, 1000) 

SDYA4TreatA     <-  rep(NA, 1000) 

SDPSTreatA      <-  rep(NA, 1000) 

SDX1CompA       <-  rep(NA, 1000) 

SDX2CompA       <-  rep(NA, 1000) 

SDX3CompA       <-  rep(NA, 1000) 

SDX4CompA       <-  rep(NA, 1000) 

SDX5CompA       <-  rep(NA, 1000) 

SDYA1CompA      <-  rep(NA, 1000) 

SDYA2CompA      <-  rep(NA, 1000) 

SDYA3CompA      <-  rep(NA, 1000) 

SDYA4CompA      <-  rep(NA, 1000) 

SDPSCompA       <-  rep(NA, 1000) 

SMD_X1_All      <-  rep(NA, 1000) 

SMD_X2_All      <-  rep(NA, 1000) 

SMD_X3_All      <-  rep(NA, 1000) 

SMD_X4_All      <-  rep(NA, 1000) 

SMD_X5_All      <-  rep(NA, 1000) 

SMD_PS_All      <-  rep(NA, 1000) 

SMD_X1_AllATC   <-  rep(NA, 1000) 

SMD_X2_AllATC   <-  rep(NA, 1000) 

SMD_X3_AllATC   <-  rep(NA, 1000) 

SMD_X4_AllATC   <-  rep(NA, 1000) 

SMD_X5_AllATC   <-  rep(NA, 1000) 

SMD_PS_AllATC   <-  rep(NA, 1000) 

Cor_X1.X2_A     <-  rep(NA, 1000) 

Cor_X1.X3_A     <-  rep(NA, 1000) 

Cor_X1.X4_A     <-  rep(NA, 1000) 

Cor_X1.X5_A     <-  rep(NA, 1000) 

Cor_X2.X3_A     <-  rep(NA, 1000) 

Cor_X2.X4_A     <-  rep(NA, 1000) 

Cor_X2.X5_A     <-  rep(NA, 1000) 

Cor_X3.X4_A     <-  rep(NA, 1000) 

Cor_X3.X5_A     <-  rep(NA, 1000) 

Cor_X4.X5_A     <-  rep(NA, 1000) 

Cor_X1.PS_A     <-  rep(NA, 1000) 

Cor_X2.PS_A     <-  rep(NA, 1000) 

Cor_X3.PS_A     <-  rep(NA, 1000) 

Cor_X4.PS_A     <-  rep(NA, 1000) 

Cor_X5.PS_A     <-  rep(NA, 1000) 

Cor_X1.Y1_A     <-  rep(NA, 1000) 

Cor_X2.Y1_A     <-  rep(NA, 1000) 
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Cor_X3.Y1_A     <-  rep(NA, 1000) 

Cor_X4.Y1_A     <-  rep(NA, 1000) 

Cor_X5.Y1_A     <-  rep(NA, 1000) 

Cor_X1.Y2_A     <-  rep(NA, 1000) 

Cor_X2.Y2_A     <-  rep(NA, 1000) 

Cor_X3.Y2_A     <-  rep(NA, 1000) 

Cor_X4.Y2_A     <-  rep(NA, 1000) 

Cor_X5.Y2_A     <-  rep(NA, 1000) 

Cor_X1.Y3_A     <-  rep(NA, 1000) 

Cor_X2.Y3_A     <-  rep(NA, 1000) 

Cor_X3.Y3_A     <-  rep(NA, 1000) 

Cor_X4.Y3_A     <-  rep(NA, 1000) 

Cor_X5.Y3_A     <-  rep(NA, 1000) 

Cor_X1.Y4_A     <-  rep(NA, 1000) 

Cor_X2.Y4_A     <-  rep(NA, 1000) 

Cor_X3.Y4_A     <-  rep(NA, 1000) 

Cor_X4.Y4_A     <-  rep(NA, 1000) 

Cor_X5.Y4_A     <-  rep(NA, 1000) 

Cor_G.Y1_A      <-  rep(NA, 1000) 

Cor_G.Y2_A      <-  rep(NA, 1000) 

Cor_G.Y3_A      <-  rep(NA, 1000) 

Cor_G.Y4_A      <-  rep(NA, 1000) 

PopY1A          <-  rep(NA, 1000) 

PopY2A          <-  rep(NA, 1000) 

PopY3A          <-  rep(NA, 1000) 

PopY4A          <-  rep(NA, 1000) 

tPopY1A         <-  rep(NA, 1000) 

tPopY2A         <-  rep(NA, 1000) 

tPopY3A         <-  rep(NA, 1000) 

tPopY4A         <-  rep(NA, 1000) 

treatPopNA      <-  rep(NA, 1000) 

compPopNA       <-  rep(NA, 1000) 

PopCohenY1A     <-  rep(NA, 1000) 

PopCohenY2A     <-  rep(NA, 1000) 

PopCohenY3A     <-  rep(NA, 1000) 

PopCohenY4A     <-  rep(NA, 1000) 

BaseY1A         <-  rep(NA, 1000) 

BaseY2A         <-  rep(NA, 1000) 

BaseY3A         <-  rep(NA, 1000) 

BaseY4A         <-  rep(NA, 1000) 

tBaseY1A        <-  rep(NA, 1000) 

tBaseY2A        <-  rep(NA, 1000) 

tBaseY3A        <-  rep(NA, 1000) 

tBaseY4A        <-  rep(NA, 1000) 

treatBaseNA     <-  rep(NA, 1000) 

compBaseNA      <-  rep(NA, 1000) 

BaseCohenY1A    <-  rep(NA, 1000) 

BaseCohenY2A    <-  rep(NA, 1000) 

BaseCohenY3A    <-  rep(NA, 1000) 

BaseCohenY4A    <-  rep(NA, 1000) 

PopATCY1A       <-  rep(NA, 1000) 

PopATCY2A       <-  rep(NA, 1000) 

PopATCY3A       <-  rep(NA, 1000) 

PopATCY4A       <-  rep(NA, 1000) 

tPopATCY1A      <-  rep(NA, 1000) 

tPopATCY2A      <-  rep(NA, 1000) 

tPopATCY3A      <-  rep(NA, 1000) 
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tPopATCY4A      <-  rep(NA, 1000) 

treatPopNAATC   <-  rep(NA, 1000) 

compPopNAATC    <-  rep(NA, 1000) 

PopCohenATCY1A  <-  rep(NA, 1000) 

PopCohenATCY2A  <-  rep(NA, 1000) 

PopCohenATCY3A  <-  rep(NA, 1000) 

PopCohenATCY4A  <-  rep(NA, 1000) 

BaseATCY1A      <-  rep(NA, 1000) 

BaseATCY2A      <-  rep(NA, 1000) 

BaseATCY3A      <-  rep(NA, 1000) 

BaseATCY4A      <-  rep(NA, 1000) 

tBaseATCY1A     <-  rep(NA, 1000) 

tBaseATCY2A     <-  rep(NA, 1000) 

tBaseATCY3A     <-  rep(NA, 1000) 

tBaseATCY4A     <-  rep(NA, 1000) 

treatBaseNAATC  <-  rep(NA, 1000) 

compBaseNAATC   <-  rep(NA, 1000) 

BaseCohenATCY1A <-  rep(NA, 1000) 

BaseCohenATCY2A <-  rep(NA, 1000) 

BaseCohenATCY3A <-  rep(NA, 1000) 

BaseCohenATCY4A <-  rep(NA, 1000) 

VRB             <-  rep(NA, 1000) 

VRBATC          <-  rep(NA, 1000) 

AvgX1TreatANN   <-  rep(NA, 1000) 

AvgX2TreatANN   <-  rep(NA, 1000) 

AvgX3TreatANN   <-  rep(NA, 1000) 

AvgX4TreatANN   <-  rep(NA, 1000) 

AvgX5TreatANN   <-  rep(NA, 1000) 

AvgYA1TreatANN  <-  rep(NA, 1000) 

AvgYA2TreatANN  <-  rep(NA, 1000) 

AvgYA3TreatANN  <-  rep(NA, 1000) 

AvgYA4TreatANN  <-  rep(NA, 1000) 

AvgPSTreatANN   <-  rep(NA, 1000) 

AvgX1CompANN    <-  rep(NA, 1000) 

AvgX2CompANN    <-  rep(NA, 1000) 

AvgX3CompANN    <-  rep(NA, 1000) 

AvgX4CompANN    <-  rep(NA, 1000) 

AvgX5CompANN    <-  rep(NA, 1000) 

AvgYA1CompANN   <-  rep(NA, 1000) 

AvgYA2CompANN   <-  rep(NA, 1000) 

AvgYA3CompANN   <-  rep(NA, 1000) 

AvgYA4CompANN   <-  rep(NA, 1000) 

AvgPSCompANN    <-  rep(NA, 1000) 

SDX1TreatANN    <-  rep(NA, 1000) 

SDX2TreatANN    <-  rep(NA, 1000) 

SDX3TreatANN    <-  rep(NA, 1000) 

SDX4TreatANN    <-  rep(NA, 1000) 

SDX5TreatANN    <-  rep(NA, 1000) 

SDYA1TreatANN   <-  rep(NA, 1000) 

SDYA2TreatANN   <-  rep(NA, 1000) 

SDYA3TreatANN   <-  rep(NA, 1000) 

SDYA4TreatANN   <-  rep(NA, 1000) 

SDPSTreatANN    <-  rep(NA, 1000) 

SDX1CompANN     <-  rep(NA, 1000) 

SDX2CompANN     <-  rep(NA, 1000) 

SDX3CompANN     <-  rep(NA, 1000) 

SDX4CompANN     <-  rep(NA, 1000) 
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SDX5CompANN     <-  rep(NA, 1000) 

SDYA1CompANN    <-  rep(NA, 1000) 

SDYA2CompANN    <-  rep(NA, 1000) 

SDYA3CompANN    <-  rep(NA, 1000) 

SDYA4CompANN    <-  rep(NA, 1000) 

SDPSCompANN     <-  rep(NA, 1000) 

SMD_X1_ANN      <-  rep(NA, 1000) 

SMD_X2_ANN      <-  rep(NA, 1000) 

SMD_X3_ANN      <-  rep(NA, 1000) 

SMD_X4_ANN      <-  rep(NA, 1000) 

SMD_X5_ANN      <-  rep(NA, 1000) 

SMD_PS_ANN      <-  rep(NA, 1000) 

PBR_X1_ANN      <-  rep(NA, 1000) 

PBR_X2_ANN      <-  rep(NA, 1000) 

PBR_X3_ANN      <-  rep(NA, 1000) 

PBR_X4_ANN      <-  rep(NA, 1000) 

PBR_X5_ANN      <-  rep(NA, 1000) 

PBR_PS_ANN      <-  rep(NA, 1000) 

Y1ANN           <-  rep(NA, 1000) 

Y2ANN           <-  rep(NA, 1000) 

Y3ANN           <-  rep(NA, 1000) 

Y4ANN           <-  rep(NA, 1000) 

tNNY1A          <-  rep(NA, 1000) 

tNNY2A          <-  rep(NA, 1000) 

tNNY3A          <-  rep(NA, 1000) 

tNNY4A          <-  rep(NA, 1000) 

NNtreatNA       <-  rep(NA, 1000) 

NNcompNA        <-  rep(NA, 1000) 

NNCohenY1A      <-  rep(NA, 1000) 

NNCohenY2A      <-  rep(NA, 1000) 

NNCohenY3A      <-  rep(NA, 1000) 

NNCohenY4A      <-  rep(NA, 1000) 

PSMeanMatchedTreatANN      <-  rep(NA, 1000)  

PSMeanMatchedCompANN       <-  rep(NA, 1000)    

PSMeanUnMatchedTreatANN    <-  rep(NA, 1000)  

PSMeanUnMatchedCompANN     <-  rep(NA, 1000)   

PSMedMatchedTreatANN       <-  rep(NA, 1000)    

PSMedMatchedCompANN        <-  rep(NA, 1000)    

PSMedUnMatchedTreatANN     <-  rep(NA, 1000)   

PSMedUnMatchedCompANN      <-  rep(NA, 1000)   

PSsdMatchedTreatANN        <-  rep(NA, 1000)   

PSsdMatchedCompANN         <-  rep(NA, 1000)    

PSsdUnMatchedTreatANN      <-  rep(NA, 1000)   

PSsdUnMatchedCompANN       <-  rep(NA, 1000)    

VRANN                <-  rep(NA, 1000) 

AvgX1TreatANNATC     <-  rep(NA, 1000) 

AvgX2TreatANNATC     <-  rep(NA, 1000) 

AvgX3TreatANNATC     <-  rep(NA, 1000) 

AvgX4TreatANNATC     <-  rep(NA, 1000) 

AvgX5TreatANNATC     <-  rep(NA, 1000) 

AvgYA1TreatANNATC    <-  rep(NA, 1000) 

AvgYA2TreatANNATC    <-  rep(NA, 1000) 

AvgYA3TreatANNATC    <-  rep(NA, 1000) 

AvgYA4TreatANNATC    <-  rep(NA, 1000) 

AvgPSTreatANNATC     <-  rep(NA, 1000) 

AvgX1CompANNATC      <-  rep(NA, 1000) 

AvgX2CompANNATC      <-  rep(NA, 1000) 
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AvgX3CompANNATC      <-  rep(NA, 1000) 

AvgX4CompANNATC      <-  rep(NA, 1000) 

AvgX5CompANNATC      <-  rep(NA, 1000) 

AvgYA1CompANNATC     <-  rep(NA, 1000) 

AvgYA2CompANNATC     <-  rep(NA, 1000) 

AvgYA3CompANNATC     <-  rep(NA, 1000) 

AvgYA4CompANNATC     <-  rep(NA, 1000) 

AvgPSCompANNATC      <-  rep(NA, 1000) 

SDX1TreatANNATC      <-  rep(NA, 1000) 

SDX2TreatANNATC      <-  rep(NA, 1000) 

SDX3TreatANNATC      <-  rep(NA, 1000) 

SDX4TreatANNATC      <-  rep(NA, 1000) 

SDX5TreatANNATC      <-  rep(NA, 1000) 

SDYA1TreatANNATC     <-  rep(NA, 1000) 

SDYA2TreatANNATC     <-  rep(NA, 1000) 

SDYA3TreatANNATC     <-  rep(NA, 1000) 

SDYA4TreatANNATC     <-  rep(NA, 1000) 

SDPSTreatANNATC      <-  rep(NA, 1000) 

SDX1CompANNATC       <-  rep(NA, 1000) 

SDX2CompANNATC       <-  rep(NA, 1000) 

SDX3CompANNATC       <-  rep(NA, 1000) 

SDX4CompANNATC       <-  rep(NA, 1000) 

SDX5CompANNATC      <-  rep(NA, 1000) 

SDYA1CompANNATC     <-  rep(NA, 1000) 

SDYA2CompANNATC     <-  rep(NA, 1000) 

SDYA3CompANNATC     <-  rep(NA, 1000) 

SDYA4CompANNATC     <-  rep(NA, 1000) 

SDPSCompANNATC      <-  rep(NA, 1000) 

SMD_X1_ANNATC       <-  rep(NA, 1000) 

SMD_X2_ANNATC       <-  rep(NA, 1000) 

SMD_X3_ANNATC       <-  rep(NA, 1000) 

SMD_X4_ANNATC       <-  rep(NA, 1000) 

SMD_X5_ANNATC       <-  rep(NA, 1000) 

SMD_PS_ANNATC       <-  rep(NA, 1000) 

PBR_X1_ANNATC       <-  rep(NA, 1000) 

PBR_X2_ANNATC       <-  rep(NA, 1000) 

PBR_X3_ANNATC       <-  rep(NA, 1000) 

PBR_X4_ANNATC       <-  rep(NA, 1000) 

PBR_X5_ANNATC       <-  rep(NA, 1000) 

PBR_PS_ANNATC       <-  rep(NA, 1000) 

Y1ANNATC            <-  rep(NA, 1000) 

Y2ANNATC            <-  rep(NA, 1000) 

Y3ANNATC            <-  rep(NA, 1000) 

Y4ANNATC            <-  rep(NA, 1000) 

tNNATCY1A           <-  rep(NA, 1000) 

tNNATCY2A           <-  rep(NA, 1000) 

tNNATCY3A           <-  rep(NA, 1000) 

tNNATCY4A           <-  rep(NA, 1000) 

NNATCtreatNA        <-  rep(NA, 1000) 

NNATCcompNA         <-  rep(NA, 1000) 

NNATCCohenY1A       <-  rep(NA, 1000) 

NNATCCohenY2A       <-  rep(NA, 1000) 

NNATCCohenY3A       <-  rep(NA, 1000) 

NNATCCohenY4A       <-  rep(NA, 1000) 

PSMeanMatchedTreatANNATC       <-  rep(NA, 1000)   

PSMeanMatchedCompANNATC        <-  rep(NA, 1000)    

PSMeanUnMatchedTreatANNATC     <-  rep(NA, 1000)    
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PSMeanUnMatchedCompANNATC      <-  rep(NA, 1000)   

PSMedMatchedTreatANNATC        <-  rep(NA, 1000)    

PSMedMatchedCompANNATC         <-  rep(NA, 1000)    

PSMedUnMatchedTreatANNATC      <-  rep(NA, 1000)   

PSMedUnMatchedCompANNATC       <-  rep(NA, 1000)   

PSsdMatchedTreatANNATC         <-  rep(NA, 1000)   

PSsdMatchedCompANNATC          <-  rep(NA, 1000)   

PSsdUnMatchedTreatANNATC       <-  rep(NA, 1000)   

PSsdUnMatchedCompANNATC        <-  rep(NA, 1000)   

VRANNATC                 <-  rep(NA, 1000) 

AvgX1TreatANNCal         <-  rep(NA, 1000) 

AvgX2TreatANNCal         <-  rep(NA, 1000) 

AvgX3TreatANNCal         <-  rep(NA, 1000) 

AvgX4TreatANNCal         <-  rep(NA, 1000) 

AvgX5TreatANNCal         <-  rep(NA, 1000) 

AvgYA1TreatANNCal        <-  rep(NA, 1000) 

AvgYA2TreatANNCal        <-  rep(NA, 1000) 

AvgYA3TreatANNCal        <-  rep(NA, 1000) 

AvgYA4TreatANNCal        <-  rep(NA, 1000) 

AvgPSTreatANNCal         <-  rep(NA, 1000) 

AvgX1CompANNCal          <-  rep(NA, 1000) 

AvgX2CompANNCal          <-  rep(NA, 1000) 

AvgX3CompANNCal      <-  rep(NA, 1000) 

AvgX4CompANNCal      <-  rep(NA, 1000) 

AvgX5CompANNCal      <-  rep(NA, 1000) 

AvgYA1CompANNCal     <-  rep(NA, 1000) 

AvgYA2CompANNCal     <-  rep(NA, 1000) 

AvgYA3CompANNCal     <-  rep(NA, 1000) 

AvgYA4CompANNCal     <-  rep(NA, 1000) 

AvgPSCompANNCal      <-  rep(NA, 1000) 

SDX1TreatANNCal      <-  rep(NA, 1000) 

SDX2TreatANNCal      <-  rep(NA, 1000) 

SDX3TreatANNCal      <-  rep(NA, 1000) 

SDX4TreatANNCal      <-  rep(NA, 1000) 

SDX5TreatANNCal      <-  rep(NA, 1000) 

SDYA1TreatANNCal     <-  rep(NA, 1000) 

SDYA2TreatANNCal     <-  rep(NA, 1000) 

SDYA3TreatANNCal     <-  rep(NA, 1000) 

SDYA4TreatANNCal     <-  rep(NA, 1000) 

SDPSTreatANNCal      <-  rep(NA, 1000) 

SDX1CompANNCal       <-  rep(NA, 1000) 

SDX2CompANNCal       <-  rep(NA, 1000) 

SDX3CompANNCal       <-  rep(NA, 1000) 

SDX4CompANNCal       <-  rep(NA, 1000) 

SDX5CompANNCal       <-  rep(NA, 1000) 

SDYA1CompANNCal      <-  rep(NA, 1000) 

SDYA2CompANNCal      <-  rep(NA, 1000) 

SDYA3CompANNCal      <-  rep(NA, 1000) 

SDYA4CompANNCal      <-  rep(NA, 1000) 

SDPSCompANNCal       <-  rep(NA, 1000) 

SMD_X1_ANNCal        <-  rep(NA, 1000) 

SMD_X2_ANNCal        <-  rep(NA, 1000) 

SMD_X3_ANNCal        <-  rep(NA, 1000) 

SMD_X4_ANNCal        <-  rep(NA, 1000) 

SMD_X5_ANNCal        <-  rep(NA, 1000) 

SMD_PS_ANNCal        <-  rep(NA, 1000) 

PBR_X1_ANNCal        <-  rep(NA, 1000) 
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PBR_X2_ANNCal        <-  rep(NA, 1000) 

PBR_X3_ANNCal        <-  rep(NA, 1000) 

PBR_X4_ANNCal        <-  rep(NA, 1000) 

PBR_X5_ANNCal        <-  rep(NA, 1000) 

PBR_PS_ANNCal        <-  rep(NA, 1000) 

Y1ANNCal             <-  rep(NA, 1000) 

Y2ANNCal             <-  rep(NA, 1000) 

Y3ANNCal             <-  rep(NA, 1000) 

Y4ANNCal             <-  rep(NA, 1000) 

tNNCalY1A            <-  rep(NA, 1000) 

tNNCalY2A            <-  rep(NA, 1000) 

tNNCalY3A            <-  rep(NA, 1000) 

tNNCalY4A            <-  rep(NA, 1000) 

NNCaltreatNA         <-  rep(NA, 1000) 

NNCalcompNA          <-  rep(NA, 1000) 

NNCalCohenY1A        <-  rep(NA, 1000) 

NNCalCohenY2A        <-  rep(NA, 1000) 

NNCalCohenY3A        <-  rep(NA, 1000) 

NNCalCohenY4A        <-  rep(NA, 1000) 

PSMeanMatchedTreatANNCal      <-  rep(NA, 1000)  

PSMeanMatchedCompANNCal       <-  rep(NA, 1000)   

PSMeanUnMatchedTreatANNCal    <-  rep(NA, 1000)  

PSMeanUnMatchedCompANNCal     <-  rep(NA, 1000)   

PSMedMatchedTreatANNCal       <-  rep(NA, 1000)    

PSMedMatchedCompANNCal        <-  rep(NA, 1000)   

PSMedUnMatchedTreatANNCal     <-  rep(NA, 1000)  

PSMedUnMatchedCompANNCal      <-  rep(NA, 1000)   

PSsdMatchedTreatANNCal        <-  rep(NA, 1000)   

PSsdMatchedCompANNCal         <-  rep(NA, 1000)    

PSsdUnMatchedTreatANNCal      <-  rep(NA, 1000)    

PSsdUnMatchedCompANNCal       <-  rep(NA, 1000)   

VRANNCal                <-  rep(NA, 1000)  

AvgX1TreatANNCalATC     <-  rep(NA, 1000) 

AvgX2TreatANNCalATC     <-  rep(NA, 1000) 

AvgX3TreatANNCalATC     <-  rep(NA, 1000) 

AvgX4TreatANNCalATC     <-  rep(NA, 1000) 

AvgX5TreatANNCalATC     <-  rep(NA, 1000) 

AvgYA1TreatANNCalATC    <-  rep(NA, 1000) 

AvgYA2TreatANNCalATC    <-  rep(NA, 1000) 

AvgYA3TreatANNCalATC    <-  rep(NA, 1000) 

AvgYA4TreatANNCalATC    <-  rep(NA, 1000) 

AvgPSTreatANNCalATC     <-  rep(NA, 1000) 

AvgX1CompANNCalATC      <-  rep(NA, 1000) 

AvgX2CompANNCalATC      <-  rep(NA, 1000) 

AvgX3CompANNCalATC      <-  rep(NA, 1000) 

AvgX4CompANNCalATC      <-  rep(NA, 1000) 

AvgX5CompANNCalATC      <-  rep(NA, 1000) 

AvgYA1CompANNCalATC     <-  rep(NA, 1000) 

AvgYA2CompANNCalATC     <-  rep(NA, 1000) 

AvgYA3CompANNCalATC     <-  rep(NA, 1000) 

AvgYA4CompANNCalATC     <-  rep(NA, 1000) 

AvgPSCompANNCalATC      <-  rep(NA, 1000) 

SDX1TreatANNCalATC      <-  rep(NA, 1000) 

SDX2TreatANNCalATC      <-  rep(NA, 1000) 

SDX3TreatANNCalATC      <-  rep(NA, 1000) 

SDX4TreatANNCalATC      <-  rep(NA, 1000) 

SDX5TreatANNCalATC      <-  rep(NA, 1000) 
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SDYA1TreatANNCalATC     <-  rep(NA, 1000) 

SDYA2TreatANNCalATC     <-  rep(NA, 1000) 

SDYA3TreatANNCalATC     <-  rep(NA, 1000) 

SDYA4TreatANNCalATC     <-  rep(NA, 1000) 

SDPSTreatANNCalATC      <-  rep(NA, 1000) 

SDX1CompANNCalATC       <-  rep(NA, 1000) 

SDX2CompANNCalATC       <-  rep(NA, 1000) 

SDX3CompANNCalATC       <-  rep(NA, 1000) 

SDX4CompANNCalATC       <-  rep(NA, 1000) 

SDX5CompANNCalATC       <-  rep(NA, 1000) 

SDYA1CompANNCalATC      <-  rep(NA, 1000) 

SDYA2CompANNCalATC      <-  rep(NA, 1000) 

SDYA3CompANNCalATC      <-  rep(NA, 1000) 

SDYA4CompANNCalATC      <-  rep(NA, 1000) 

SDPSCompANNCalATC       <-  rep(NA, 1000) 

SMD_X1_ANNCalATC        <-  rep(NA, 1000) 

SMD_X2_ANNCalATC        <-  rep(NA, 1000) 

SMD_X3_ANNCalATC        <-  rep(NA, 1000) 

SMD_X4_ANNCalATC        <-  rep(NA, 1000) 

SMD_X5_ANNCalATC        <-  rep(NA, 1000) 

SMD_PS_ANNCalATC        <-  rep(NA, 1000) 

PBR_X1_ANNCalATC        <-  rep(NA, 1000) 

PBR_X2_ANNCalATC     <-  rep(NA, 1000) 

PBR_X3_ANNCalATC     <-  rep(NA, 1000) 

PBR_X4_ANNCalATC     <-  rep(NA, 1000) 

PBR_X5_ANNCalATC     <-  rep(NA, 1000) 

PBR_PS_ANNCalATC     <-  rep(NA, 1000) 

Y1ANNCalATC          <-  rep(NA, 1000) 

Y2ANNCalATC          <-  rep(NA, 1000) 

Y3ANNCalATC          <-  rep(NA, 1000) 

Y4ANNCalATC          <-  rep(NA, 1000) 

tNNCalATCY1A         <-  rep(NA, 1000) 

tNNCalATCY2A         <-  rep(NA, 1000) 

tNNCalATCY3A         <-  rep(NA, 1000) 

tNNCalATCY4A         <-  rep(NA, 1000) 

NNCalATCtreatNA      <-  rep(NA, 1000) 

NNCalATCcompNA       <-  rep(NA, 1000) 

NNCalATCCohenY1A     <-  rep(NA, 1000) 

NNCalATCCohenY2A     <-  rep(NA, 1000) 

NNCalATCCohenY3A     <-  rep(NA, 1000) 

NNCalATCCohenY4A     <-  rep(NA, 1000) 

PSMeanMatchedTreatANNCalATC      <-  rep(NA, 1000)   

PSMeanMatchedCompANNCalATC       <-  rep(NA, 1000)   

PSMeanUnMatchedTreatANNCalATC    <-  rep(NA, 1000)    

PSMeanUnMatchedCompANNCalATC     <-  rep(NA, 1000)    

PSMedMatchedTreatANNCalATC       <-  rep(NA, 1000)    

PSMedMatchedCompANNCalATC        <-  rep(NA, 1000)   

PSMedUnMatchedTreatANNCalATC     <-  rep(NA, 1000)   

PSMedUnMatchedCompANNCalATC      <-  rep(NA, 1000)   

PSsdMatchedTreatANNCalATC        <-  rep(NA, 1000)    

PSsdMatchedCompANNCalATC         <-  rep(NA, 1000)   

PSsdUnMatchedTreatANNCalATC      <-  rep(NA, 1000)    

PSsdUnMatchedCompANNCalATC       <-  rep(NA, 1000)   

VRANNCalATC          <-  rep(NA, 1000) 

AvgX1TreatAGBM       <-  rep(NA, 1000) 

AvgX2TreatAGBM       <-  rep(NA, 1000) 

AvgX3TreatAGBM       <-  rep(NA, 1000) 
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AvgX4TreatAGBM       <-  rep(NA, 1000) 

AvgX5TreatAGBM       <-  rep(NA, 1000) 

AvgX1CompAGBM        <-  rep(NA, 1000) 

AvgX2CompAGBM        <-  rep(NA, 1000) 

AvgX3CompAGBM        <-  rep(NA, 1000) 

AvgX4CompAGBM        <-  rep(NA, 1000) 

AvgX5CompAGBM        <-  rep(NA, 1000) 

SDX1TreatAGBM        <-  rep(NA, 1000) 

SDX2TreatAGBM        <-  rep(NA, 1000) 

SDX3TreatAGBM        <-  rep(NA, 1000) 

SDX4TreatAGBM        <-  rep(NA, 1000) 

SDX5TreatAGBM        <-  rep(NA, 1000) 

SDX1CompAGBM         <-  rep(NA, 1000) 

SDX2CompAGBM         <-  rep(NA, 1000) 

SDX3CompAGBM         <-  rep(NA, 1000) 

SDX4CompAGBM         <-  rep(NA, 1000) 

SDX5CompAGBM         <-  rep(NA, 1000) 

SMD_X1_AGBM          <-  rep(NA, 1000) 

SMD_X2_AGBM          <-  rep(NA, 1000) 

SMD_X3_AGBM          <-  rep(NA, 1000) 

SMD_X4_AGBM          <-  rep(NA, 1000) 

SMD_X5_AGBM          <-  rep(NA, 1000) 

PBR_X1_AGBM          <-  rep(NA, 1000) 

PBR_X2_AGBM          <-  rep(NA, 1000) 

PBR_X3_AGBM          <-  rep(NA, 1000) 

PBR_X4_AGBM          <-  rep(NA, 1000) 

PBR_X5_AGBM          <-  rep(NA, 1000) 

Y1AGBM               <-  rep(NA, 1000) 

Y2AGBM               <-  rep(NA, 1000) 

Y3AGBM               <-  rep(NA, 1000) 

Y4AGBM               <-  rep(NA, 1000) 

tGBMY1A              <-  rep(NA, 1000) 

tGBMY2A              <-  rep(NA, 1000) 

tGBMY3A              <-  rep(NA, 1000) 

tGBMY4A              <-  rep(NA, 1000) 

GBMtreatNA           <-  rep(NA, 1000) 

GBMcompNA            <-  rep(NA, 1000) 

GBMCohenY1A          <-  rep(NA, 1000) 

GBMCohenY2A          <-  rep(NA, 1000) 

GBMCohenY3A          <-  rep(NA, 1000) 

GBMCohenY4A          <-  rep(NA, 1000) 

AvgX1TreatAGBMATC    <-  rep(NA, 1000) 

AvgX2TreatAGBMATC    <-  rep(NA, 1000) 

AvgX3TreatAGBMATC    <-  rep(NA, 1000) 

AvgX4TreatAGBMATC    <-  rep(NA, 1000) 

AvgX5TreatAGBMATC    <-  rep(NA, 1000) 

AvgX1CompAGBMATC     <-  rep(NA, 1000) 

AvgX2CompAGBMATC     <-  rep(NA, 1000) 

AvgX3CompAGBMATC     <-  rep(NA, 1000) 

AvgX4CompAGBMATC     <-  rep(NA, 1000) 

AvgX5CompAGBMATC     <-  rep(NA, 1000) 

SDX1TreatAGBMATC     <-  rep(NA, 1000) 

SDX2TreatAGBMATC     <-  rep(NA, 1000) 

SDX3TreatAGBMATC     <-  rep(NA, 1000) 

SDX4TreatAGBMATC     <-  rep(NA, 1000) 

SDX5TreatAGBMATC     <-  rep(NA, 1000) 

SDX1CompAGBMATC      <-  rep(NA, 1000) 
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SDX2CompAGBMATC      <-  rep(NA, 1000) 

SDX3CompAGBMATC      <-  rep(NA, 1000) 

SDX4CompAGBMATC      <-  rep(NA, 1000) 

SDX5CompAGBMATC      <-  rep(NA, 1000) 

SMD_X1_AGBMATC       <-  rep(NA, 1000) 

SMD_X2_AGBMATC       <-  rep(NA, 1000) 

SMD_X3_AGBMATC       <-  rep(NA, 1000) 

SMD_X4_AGBMATC       <-  rep(NA, 1000) 

SMD_X5_AGBMATC       <-  rep(NA, 1000) 

PBR_X1_AGBMATC       <-  rep(NA, 1000) 

PBR_X2_AGBMATC       <-  rep(NA, 1000) 

PBR_X3_AGBMATC       <-  rep(NA, 1000) 

PBR_X4_AGBMATC       <-  rep(NA, 1000) 

PBR_X5_AGBMATC       <-  rep(NA, 1000) 

Y1AGBMATC            <-  rep(NA, 1000) 

Y2AGBMATC            <-  rep(NA, 1000) 

Y3AGBMATC            <-  rep(NA, 1000) 

Y4AGBMATC            <-  rep(NA, 1000) 

tGBMATCY1A           <-  rep(NA, 1000) 

tGBMATCY2A           <-  rep(NA, 1000) 

tGBMATCY3A           <-  rep(NA, 1000) 

tGBMATCY4A           <-  rep(NA, 1000) 

GBMATCtreatNA        <-  rep(NA, 1000) 

GBMATCcompNA         <-  rep(NA, 1000) 

GBMATCCohenY1A       <-  rep(NA, 1000) 

GBMATCCohenY2A       <-  rep(NA, 1000) 

GBMATCCohenY3A       <-  rep(NA, 1000) 

GBMATCCohenY4A       <-  rep(NA, 1000) 

ESS_CompGBM          <-  rep(NA, 1000) 

mean.esGBM           <-  rep(NA, 1000) 

iterGBM              <-  rep(NA, 1000) 

ESS_CompGBMATC       <-  rep(NA, 1000) 

mean.esGBMATC        <-  rep(NA, 1000) 

iterGBMATC           <-  rep(NA, 1000) 

 

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

#                             BEGIN LOOP 

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

set.seed(27) 

for(i in 1:1000){ 

 

##Set treatment/comparison group ratio 

#******SET RATIO 

TreatP=.667         

mycut=qnorm(1-TreatP) # threshold 

#mycut 

 

##initial correlation matrix 

corrX=matrix(c(1,.1,.2,.3,.3, 

               .1,1,.3,.3,.35, 

               .2,.3,1,.3,.45, 

               .3,.3,.3,1,.65, 

               .3,.35,.45,.65,1),5,5) 

 

##call these programs for simulating data (mvtnorm) & screening (psych) 

library(mvtnorm) 

library(psych) 
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library(permute) 

 

##Set number of examinees 

Nexaminee=300    #*******TOTAL SAMPLE SIZE 

Nrep=1000   ##used for grouping using the PS 

 

##Simulating the five original covariates 

X=rmvnorm(Nexaminee, rep(0,5), corrX, method="chol") 

##Coerce into a data frame, so can use it more easily 

X <-as.data.frame(X)     

 

#Correlation between covariates and latent propensity  

#Note  - we may want to fiddle with the strength of these 

relationships. 

#Will specify group balance on covariates. Tried transforming cohens d 

to correlation, but did not result in large 

#enough baseline SMD for X4 and X5. Played with values till SMD were 

consistently what I wanted them to be. 

corrXp = c(-.02,.15,.40,.70,.90)   

 

##calculate regression coefficients 

#install.packages("reshape2") 

library(reshape2) 

 

##Use the above correlation matrix to calculate the regression 

coefficients 

##These are coefficients for the PS model (not the outcome model) 

PcoefA=solve(corrX) %*% corrXp 

 

##Variance explained for model 

##Creating a temporary matrix of squared values (jh) 

##This will be used to create overall R-squared for model 

##this is the variance in the latent propensity explained by covariates 

tempA=PcoefA %*% t(PcoefA)*corrX 

 

varExpPA=sum(tempA) #Summing everyting in temp  

#varExpPA 

 

xnew=as.matrix.data.frame(X) 

 

###############################Propensity 

scores######################## 

##This is like the sum of bx for each person  (i.e., their y' predicted 

scores) 

noErrA=as.vector(xnew %*% PcoefA)    

#describe(noErrA) 

 

#plot(noErrA) 

 

##Variance explained in propensity score by X1-X5 

RsqA=varExpPA/(1+varExpPA) #because the error variance of a probit is 1 

 

##Rescale around the threshold to ensure the correct treatment to 

comparison group ratio 

distA=noErrA-(mycut/sqrt(1-RsqA))  

 

##Finding the probability density  
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##(help page says 'vector of probabilities') 

##Assumes a normal distribution 

truepropA=pnorm(distA)   

 

##Randomly assign a random draw to each person Nrep times 

randraw=matrix(runif(Nexaminee*Nrep),nrow=Nexaminee,ncol=Nrep) 

options(scipen=999) 

str(randraw) 

 

##If propensity score is greater than the random draw,then assign to 

treatment 

##Otherwise, assign to comparison group 

groupA=ifelse(truepropA>randraw,1,0) 

 

##Creating a data frame with X1-X5, grouping variable, and true 

propensity score 

dataA=data.frame(X,groupA[,1]) 

 

##Assign variable names 

library(reshape2) 

names(dataA) <- c("x1","x2","x3","x4","x5","group") 

 

##Calculate true propensity scores from logistic regression to obtain 

logistic regression coefficients 

dataA <- as.data.frame(dataA) 

PbA=glm(formula= group ~ x1+x2+x3+x4+x5, data=dataA,  family=binomial) 

#PbA 

 

##True propensity scores 

dataA$TRUEprop<-predict(PbA, type="response")  

#plot(dataA$TRUEprop) 

#plot(dataA$TRUEprop, dataA$group) 

 

##Outcome model 

##Random error in the model 

v <- rnorm(Nexaminee, mean=0, sd=0.5) 

v <- as.data.frame(v)  #coerce to data frame 

 

##Each person's Y for the outcome model - would I create 4 different 

models, one for each treatment effect size? 

 

YA1 = 0 + 0*dataA$group + .05*dataA$x1 + .05*dataA$x2 + .05*dataA$x3 + 

.05*dataA$x4 + .05*dataA$x5 + v 

YA2 = 0 + .11*dataA$group + .05*dataA$x1 + .05*dataA$x2 + .05*dataA$x3 

+ .05*dataA$x4 + .05*dataA$x5 + v 

YA3 = 0 + .28*dataA$group + .05*dataA$x1 + .05*dataA$x2 + .05*dataA$x3 

+ .05*dataA$x4 + .05*dataA$x5 + v 

YA4 = 0 + .45*dataA$group + .05*dataA$x1 + .05*dataA$x2 + .05*dataA$x3 

+ .05*dataA$x4 + .05*dataA$x5 + v 

 

#describe(YA1) 

#describe(YA2) 

#describe(YA3) 

#describe(YA4) 

describe(dataA$group) 

 

ATCgroup<-ifelse(dataA$group==0, 1, ifelse(dataA$group==1, 0, -1 )) 
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ATCgroup 

 

 

finalDataA<-cbind(dataA,YA1,YA2,YA3,YA4,ATCgroup) 

finalDataA<-as.data.frame(finalDataA) 

 

#head(finalDataA) 

describe(finalDataA) 

#describeBy(finalDataA, finalDataA$group) 

#cor(finalDataA) 

 

library(reshape2) 

names(finalDataA) <- c("x1","x2","x3","x4","x5","group", "PS", 

"YA1","YA2","YA3","YA4", "ATCgroup") 

 

#What should the coefficient be - if treatment and comparison group 

members differ on the outcome by the specified size of treatment effect 

#We want to recover these values after matching/weighting 

require(MatchIt) 

 

PopY1=lm(YA1~group+x1+x2+x3+x4+x5, data=finalDataA) 

#PopY1 

PopY2=lm(YA2~group+x1+x2+x3+x4+x5, data=finalDataA) 

#PopY2 

PopY3=lm(YA3~group+x1+x2+x3+x4+x5, data=finalDataA) 

#PopY3 

PopY4=lm(YA4~group+x1+x2+x3+x4+x5, data=finalDataA) 

#PopY4 

 

ATCPopY1=lm(YA1~ATCgroup+x1+x2+x3+x4+x5, data=finalDataA) 

#ATCPopY1 

ATCPopY2=lm(YA2~ATCgroup+x1+x2+x3+x4+x5, data=finalDataA) 

#ATCPopY2 

ATCPopY3=lm(YA3~ATCgroup+x1+x2+x3+x4+x5, data=finalDataA) 

#ATCPopY3 

ATCPopY4=lm(YA4~ATCgroup+x1+x2+x3+x4+x5, data=finalDataA) 

#ATCPopY4 

 

#Use these values to transform t to d to make sure the treatment effect 

is what we want it to be 

#summary(PopY1) 

#summary(PopY2) 

#summary(PopY3) 

#summary(PopY4) 

#summary(ATCPopY1) 

#summary(ATCPopY2) 

#summary(ATCPopY3) 

#summary(ATCPopY4) 

 

#Computing Cohen's D for Population Treatment effect 

tPopY1<-summary(PopY1)$coef[2, 3] 

tPopY2<-summary(PopY2)$coef[2, 3] 

tPopY3<-summary(PopY3)$coef[2, 3] 

tPopY4<-summary(PopY4)$coef[2, 3] 

treatn<-nobs(finalDataA$group[finalDataA$group==1]) 

compn<-nobs(finalDataA$group[finalDataA$group==0])                                                                                                       
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cohenPopY1 <-(tPopY1)*(((1/(treatn))+(1/(compn)))^0.5) 

cohenPopY2 <-(tPopY2)*(((1/(treatn))+(1/(compn)))^0.5) 

cohenPopY3 <-(tPopY3)*(((1/(treatn))+(1/(compn)))^0.5) 

cohenPopY4 <-(tPopY4)*(((1/(treatn))+(1/(compn)))^0.5) 

 

tPopATCY1<-summary(ATCPopY1)$coef[2, 3] 

tPopATCY2<-summary(ATCPopY2)$coef[2, 3] 

tPopATCY3<-summary(ATCPopY3)$coef[2, 3] 

tPopATCY4<-summary(ATCPopY4)$coef[2, 3] 

treatnATC<-nobs(finalDataA$ATCgroup[finalDataA$ATCgroup==0]) 

compnATC<-nobs(finalDataA$ATCgroup[finalDataA$ATCgroup==1])                                                                                                       

 

cohenPopATCY1 <-(tPopATCY1)*(((1/(treatnATC))+(1/(compnATC)))^0.5) 

cohenPopATCY2 <-(tPopATCY2)*(((1/(treatnATC))+(1/(compnATC)))^0.5) 

cohenPopATCY3 <-(tPopATCY3)*(((1/(treatnATC))+(1/(compnATC)))^0.5) 

cohenPopATCY4 <-(tPopATCY4)*(((1/(treatnATC))+(1/(compnATC)))^0.5) 

 

#Baseline group differences on outcome - deviation from PopY1-PopY4 

indicate bias in the estimated treatment effect 

baseout1=lm(YA1~group, data=finalDataA) 

baseout2=lm(YA2~group, data=finalDataA) 

baseout3=lm(YA3~group, data=finalDataA) 

baseout4=lm(YA4~group, data=finalDataA) 

 

ATCbaseout1=lm(YA1~ATCgroup, data=finalDataA) 

ATCbaseout2=lm(YA2~ATCgroup, data=finalDataA) 

ATCbaseout3=lm(YA3~ATCgroup, data=finalDataA) 

ATCbaseout4=lm(YA4~ATCgroup, data=finalDataA) 

 

#Computing Cohen's D for Baseline Treatment effect 

tBaseY1<-summary(baseout1)$coef[2, 3] 

tBaseY2<-summary(baseout2)$coef[2, 3] 

tBaseY3<-summary(baseout3)$coef[2, 3] 

tBaseY4<-summary(baseout4)$coef[2, 3] 

 

cohenBaseY1 <-(tBaseY1)*(((1/(treatn))+(1/(compn)))^0.5) 

cohenBaseY2 <-(tBaseY2)*(((1/(treatn))+(1/(compn)))^0.5) 

cohenBaseY3 <-(tBaseY3)*(((1/(treatn))+(1/(compn)))^0.5) 

cohenBaseY4 <-(tBaseY4)*(((1/(treatn))+(1/(compn)))^0.5) 

 

#Computing Cohen's D for Baseline Treatment effect, ATC 

tBaseATCY1<-summary(ATCbaseout1)$coef[2, 3] 

tBaseATCY2<-summary(ATCbaseout2)$coef[2, 3] 

tBaseATCY3<-summary(ATCbaseout3)$coef[2, 3] 

tBaseATCY4<-summary(ATCbaseout4)$coef[2, 3] 

 

cohenBaseATCY1 <-(tBaseATCY1)*(((1/(treatnATC))+(1/(compnATC)))^0.5) 

cohenBaseATCY2 <-(tBaseATCY2)*(((1/(treatnATC))+(1/(compnATC)))^0.5) 

cohenBaseATCY3 <-(tBaseATCY3)*(((1/(treatnATC))+(1/(compnATC)))^0.5) 

cohenBaseATCY4 <-(tBaseATCY4)*(((1/(treatnATC))+(1/(compnATC)))^0.5) 

 

#Baseline group differences on outcome - deviation from PopY1-PopY4 

indicate bias in the estimated treatment effect 

#baseout1 

#baseout2 

#baseout3 

#baseout4 
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#summary(baseout1) 

#summary(baseout2) 

#summary(baseout3) 

#summary(baseout4) 

#summary(ATCbaseout1) 

#summary(ATCbaseout2) 

#summary(ATCbaseout3) 

#summary(ATCbaseout4) 

 

#describeBy(finalDataA, finalDataA$group) 

 

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

#~~~~~~~~~~~~~~~~~~~        Matching/Weighting:       ~~~~~~~~~~~~~~~~~ 

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

#~~~~~~                      Nearest Neighbor                     ~~~~~ 

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

#NN - ATT Coding 

require(MatchIt) 

m.outANN = 

matchit(finalDataA$group~finalDataA$x1+finalDataA$x2+finalDataA$x3+fina

lDataA$x4+finalDataA$x5,data=finalDataA, method="nearest", 

m.order="random", ratio=1) 

 

m.outANN 

 

MANN <- summary(m.outANN, standardize = TRUE) 

 

ANN <- match.data(m.outANN, group="all") 

 

FullANN<-match.data(m.outANN, group="all", drop.unmatched = FALSE) 

 

#NN - ATC Coding 

require(MatchIt) 

m.outANNATC = 

matchit(finalDataA$ATCgroup~finalDataA$x1+finalDataA$x2+finalDataA$x3+f

inalDataA$x4+finalDataA$x5, data=finalDataA, method="nearest", 

m.order="random", ratio=1) 

 

m.outANNATC 

 

MANNATC <- summary(m.outANNATC, standardize = TRUE) 

 

ANNATC <- match.data(m.outANNATC, group="all") 

 

FullANNATC<-match.data(m.outANNATC, group="all", drop.unmatched = 

FALSE) 

 

#~~~~~~~~~~~ESTIMATED TREATMENT EFFECT~~~~~~~~~~~~~~~~~~ 

OutcomeA.1NN <- lm(YA1 ~ group, data = ANN) 

OutcomeA.2NN <- lm(YA2 ~ group, data = ANN) 

OutcomeA.3NN <- lm(YA3 ~ group, data = ANN) 

OutcomeA.4NN <- lm(YA4 ~ group, data = ANN) 

OutcomeA.1NNATC <- lm(YA1 ~ ATCgroup, data = ANNATC) 

OutcomeA.2NNATC <- lm(YA2 ~ ATCgroup, data = ANNATC) 
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OutcomeA.3NNATC <- lm(YA3 ~ ATCgroup, data = ANNATC) 

OutcomeA.4NNATC <- lm(YA4 ~ ATCgroup, data = ANNATC) 

 

#Cohen's D for estimated treatment effect 

tANNY1<-summary(OutcomeA.1NN)$coef[2, 3] 

tANNY2<-summary(OutcomeA.2NN)$coef[2, 3] 

tANNY3<-summary(OutcomeA.3NN)$coef[2, 3] 

tANNY4<-summary(OutcomeA.4NN)$coef[2, 3] 

treatnANN<-nobs(ANN$group[ANN$group==1]) 

compnANN<-nobs(ANN$group[ANN$group==0])                                                                                                       

 

cohenANNY1 <-(tANNY1)*(((1/(treatnANN))+(1/(compnANN)))^0.5) 

cohenANNY2 <-(tANNY2)*(((1/(treatnANN))+(1/(compnANN)))^0.5) 

cohenANNY3 <-(tANNY3)*(((1/(treatnANN))+(1/(compnANN)))^0.5) 

cohenANNY4 <-(tANNY4)*(((1/(treatnANN))+(1/(compnANN)))^0.5) 

 

#Cohen's D for estimated treatment effect, ATC coding 

tANNATCY1<-summary(OutcomeA.1NNATC)$coef[2, 3] 

tANNATCY2<-summary(OutcomeA.2NNATC)$coef[2, 3] 

tANNATCY3<-summary(OutcomeA.3NNATC)$coef[2, 3] 

tANNATCY4<-summary(OutcomeA.4NNATC)$coef[2, 3] 

treatnANNATC<-nobs(ANN$ATCgroup[ANN$ATCgroup==0]) 

compnANNATC<-nobs(ANN$ATCgroup[ANN$ATCgroup==1])                                                                                                       

 

cohenANNATCY1 <-

(tANNATCY1)*(((1/(treatnANNATC))+(1/(compnANNATC)))^0.5) 

cohenANNATCY2 <-

(tANNATCY2)*(((1/(treatnANNATC))+(1/(compnANNATC)))^0.5) 

cohenANNATCY3 <-

(tANNATCY3)*(((1/(treatnANNATC))+(1/(compnANNATC)))^0.5) 

cohenANNATCY4 <-

(tANNATCY4)*(((1/(treatnANNATC))+(1/(compnANNATC)))^0.5) 

 

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

#~~~~~~                   NN, 0.20 SD Caliper                     ~~~~~ 

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

#NN with 0.20 Caliper - ATT Coding 

require(MatchIt) 

m.outANNCal = 

matchit(finalDataA$group~finalDataA$x1+finalDataA$x2+finalDataA$x3+fina

lDataA$x4+finalDataA$x5, data=finalDataA, method="nearest", 

caliper=0.20, m.order="random", ratio=1) 

 

m.outANNCal 

 

MANNCal <- summary(m.outANNCal, standardize = TRUE) 

 

ANNCal <- match.data(m.outANNCal, group="all") 

 

FullANNCal<-match.data(m.outANNCal, group="all", drop.unmatched = 

FALSE) 

 

#NN with 0.20 Caliper - ATC Coding 

require(MatchIt) 

m.outANNCalATC = 

matchit(finalDataA$ATCgroup~finalDataA$x1+finalDataA$x2+finalDataA$x3+f
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inalDataA$x4+finalDataA$x5, data=finalDataA, method="nearest", 

caliper=0.20, m.order="random", ratio=1) 

 

m.outANNCalATC 

 

MANNCalATC <- summary(m.outANNCalATC, standardize = TRUE) 

 

ANNCalATC <- match.data(m.outANNCalATC, group="all") 

 

FullANNCalATC<-match.data(m.outANNCalATC, group="all", drop.unmatched = 

FALSE) 

 

#~~~~~~~~~~~ESTIMATED TREATMENT EFFECT~~~~~~~~~~~~~~~~~~ 

OutcomeA.1NNCal <- lm(YA1 ~ group, data = ANNCal) 

OutcomeA.2NNCal <- lm(YA2 ~ group, data = ANNCal) 

OutcomeA.3NNCal <- lm(YA3 ~ group, data = ANNCal) 

OutcomeA.4NNCal <- lm(YA4 ~ group, data = ANNCal) 

OutcomeA.1NNCalATC <- lm(YA1 ~ ATCgroup, data = ANNCalATC) 

OutcomeA.2NNCalATC <- lm(YA2 ~ ATCgroup, data = ANNCalATC) 

OutcomeA.3NNCalATC <- lm(YA3 ~ ATCgroup, data = ANNCalATC) 

OutcomeA.4NNCalATC <- lm(YA4 ~ ATCgroup, data = ANNCalATC) 

 

#Cohen's D for estimated treatment effect 

tANNCalY1<-summary(OutcomeA.1NNCal)$coef[2, 3] 

tANNCalY2<-summary(OutcomeA.2NNCal)$coef[2, 3] 

tANNCalY3<-summary(OutcomeA.3NNCal)$coef[2, 3] 

tANNCalY4<-summary(OutcomeA.4NNCal)$coef[2, 3] 

treatnANNCal<-nobs(ANNCal$group[ANNCal$group==1]) 

compnANNCal<-nobs(ANNCal$group[ANNCal$group==0])                                                                                                       

 

cohenANNCalY1 <-

(tANNCalY1)*(((1/(treatnANNCal))+(1/(compnANNCal)))^0.5) 

cohenANNCalY2 <-

(tANNCalY2)*(((1/(treatnANNCal))+(1/(compnANNCal)))^0.5) 

cohenANNCalY3 <-

(tANNCalY3)*(((1/(treatnANNCal))+(1/(compnANNCal)))^0.5) 

cohenANNCalY4 <-

(tANNCalY4)*(((1/(treatnANNCal))+(1/(compnANNCal)))^0.5) 

 

#Cohen's D for estimated treatment effect, ATC coding 

tANNCalATCY1<-summary(OutcomeA.1NNCalATC)$coef[2, 3] 

tANNCalATCY2<-summary(OutcomeA.2NNCalATC)$coef[2, 3] 

tANNCalATCY3<-summary(OutcomeA.3NNCalATC)$coef[2, 3] 

tANNCalATCY4<-summary(OutcomeA.4NNCalATC)$coef[2, 3] 

treatnANNCalATC<-nobs(ANNCalATC$ATCgroup[ANNCalATC$ATCgroup==0]) 

compnANNCalATC<-nobs(ANNCalATC$ATCgroup[ANNCalATC$ATCgroup==1])                                                                                                       

 

cohenANNCalATCY1 <-

(tANNCalATCY1)*(((1/(treatnANNCalATC))+(1/(compnANNCalATC)))^0.5) 

cohenANNCalATCY2 <-

(tANNCalATCY2)*(((1/(treatnANNCalATC))+(1/(compnANNCalATC)))^0.5) 

cohenANNCalATCY3 <-

(tANNCalATCY3)*(((1/(treatnANNCalATC))+(1/(compnANNCalATC)))^0.5) 

cohenANNCalATCY4 <-

(tANNCalATCY4)*(((1/(treatnANNCalATC))+(1/(compnANNCalATC)))^0.5) 

 

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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#~~~~~~               Genearlized Boosted Modeling                ~~~~~ 

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

#GBM - ATT Coding 

require(twang) 

ps.AGBM <- ps (group~x1+x2+x3+x4+x5, 

               data = finalDataA, 

               n.trees=10000,         ## Max #iterations (from 1 to n) 

               interaction.depth=3,   ## Level of interactions (default 

= 3) 

               shrinkage=0.01,        ## Allowable level of shrinkage 

               stop.method=c("es.mean"),   ## Other options are es.max 

or ks.mean 

               estimand="ATT",   ## Other option is ATE 

               verbose=FALSE)    ## Do you want a ton of information? 

(TRUE) 

 

MAGBM <- summary(ps.AGBM) 

MAGBM 

BalAGBM <- bal.table(ps.AGBM) 

BalAGBM 

 

finalDataA$w <- get.weights(ps.AGBM, stop.method="es.mean")  

options(scipen=999)                     

 

designA.ps <- svydesign (ids = ~1, weights = ~w, data = finalDataA) 

 

#GBM - ATC Coding 

require(twang) 

ps.AGBMATC <- ps (ATCgroup~x1+x2+x3+x4+x5, 

               data = finalDataA, 

               n.trees=10000,         ## Max #iterations (from 1 to n) 

               interaction.depth=3,   ## Level of interactions (default 

= 3) 

               shrinkage=0.01,        ## Allowable level of shrinkage 

               stop.method=c("es.mean"),  ## Other options are es.max 

or ks.mean 

               estimand="ATT",   ##Technically ATC b/c of the 

grouping variable that is being used 

               verbose=FALSE)    ## Do you want a ton of information? 

(TRUE) 

 

MAGBMATC <- summary(ps.AGBMATC) 

 

BalAGBMATC <- bal.table(ps.AGBMATC) 

 

finalDataA$wATC <- get.weights(ps.AGBMATC, stop.method="es.mean")  

options(scipen=999)                     

 

designAATC.ps <- svydesign (ids = ~1, weights = ~wATC, data = 

finalDataA) 

 

#~~~~~~~~~~~ESTIMATED TREATMENT EFFECT~~~~~~~~~~~~~~~~~~ 

OutcomeA.1GBM <- svyglm(YA1 ~ group, design = designA.ps) 

OutcomeA.2GBM <- svyglm(YA2 ~ group, design = designA.ps) 

OutcomeA.3GBM <- svyglm(YA3 ~ group, design = designA.ps) 

OutcomeA.4GBM <- svyglm(YA4 ~ group, design = designA.ps) 

OutcomeA.1GBMATC <- svyglm(YA1 ~ ATCgroup, design = designAATC.ps) 



169 
 

 
 

OutcomeA.2GBMATC <- svyglm(YA2 ~ ATCgroup, design = designAATC.ps) 

OutcomeA.3GBMATC <- svyglm(YA3 ~ ATCgroup, design = designAATC.ps) 

OutcomeA.4GBMATC <- svyglm(YA4 ~ ATCgroup, design = designAATC.ps) 

 

#Cohen's D for estimated treatment effect 

tAGBMY1<-summary(OutcomeA.1GBM)$coef[2, 3] 

tAGBMY2<-summary(OutcomeA.2GBM)$coef[2, 3] 

tAGBMY3<-summary(OutcomeA.3GBM)$coef[2, 3] 

tAGBMY4<-summary(OutcomeA.4GBM)$coef[2, 3] 

treatnAGBM<-nobs(finalDataA$group[finalDataA$group==1]) 

compnAGBM<-nobs(finalDataA$group[finalDataA$group==0])                                                                                                       

 

cohenAGBMY1 <-(tAGBMY1)*(((1/(treatnAGBM))+(1/(compnAGBM)))^0.5) 

cohenAGBMY2 <-(tAGBMY2)*(((1/(treatnAGBM))+(1/(compnAGBM)))^0.5) 

cohenAGBMY3 <-(tAGBMY3)*(((1/(treatnAGBM))+(1/(compnAGBM)))^0.5) 

cohenAGBMY4 <-(tAGBMY4)*(((1/(treatnAGBM))+(1/(compnAGBM)))^0.5) 

 

#Cohen's D for estimated treatment effect, ATC coding 

tAGBMATCY1<-summary(OutcomeA.1GBMATC)$coef[2, 3] 

tAGBMATCY2<-summary(OutcomeA.2GBMATC)$coef[2, 3] 

tAGBMATCY3<-summary(OutcomeA.3GBMATC)$coef[2, 3] 

tAGBMATCY4<-summary(OutcomeA.4GBMATC)$coef[2, 3] 

treatnAGBMATC<-nobs(finalDataA$ATCgroup[finalDataA$ATCgroup==0]) 

compnAGBMATC<-nobs(finalDataA$ATCgroup[finalDataA$ATCgroup==1])                                                                                                       

 

cohenAGBMATCY1 <-

(tAGBMATCY1)*(((1/(treatnAGBMATC))+(1/(compnAGBMATC)))^0.5) 

cohenAGBMATCY2 <-

(tAGBMATCY2)*(((1/(treatnAGBMATC))+(1/(compnAGBMATC)))^0.5) 

cohenAGBMATCY3 <-

(tAGBMATCY3)*(((1/(treatnAGBMATC))+(1/(compnAGBMATC)))^0.5) 

cohenAGBMATCY4 <-

(tAGBMATCY4)*(((1/(treatnAGBMATC))+(1/(compnAGBMATC)))^0.5) 

 

#~~~~~~~~~~~~~~~~~COMPUTING PBR FOR GBM~~~~~~~~~~~~~~~~~~~ 

X1TreatABef   <-BalAGBM$unw$`tx.mn`[1] 

X2TreatABef   <-BalAGBM$unw$`tx.mn`[2] 

X3TreatABef   <-BalAGBM$unw$`tx.mn`[3] 

X4TreatABef   <-BalAGBM$unw$`tx.mn`[4] 

X5TreatABef   <-BalAGBM$unw$`tx.mn`[5] 

 

X1CompABef   <-BalAGBM$unw$`ct.mn`[1] 

X2CompABef   <-BalAGBM$unw$`ct.mn`[2] 

X3CompABef   <-BalAGBM$unw$`ct.mn`[3] 

X4CompABef   <-BalAGBM$unw$`ct.mn`[4] 

X5CompABef   <-BalAGBM$unw$`ct.mn`[5] 

 

X1TreatAAft   <-BalAGBM$es.mean.ATT$`tx.mn`[1] 

X2TreatAAft   <-BalAGBM$es.mean.ATT$`tx.mn`[2] 

X3TreatAAft   <-BalAGBM$es.mean.ATT$`tx.mn`[3] 

X4TreatAAft   <-BalAGBM$es.mean.ATT$`tx.mn`[4] 

X5TreatAAft   <-BalAGBM$es.mean.ATT$`tx.mn`[5] 

 

X1CompAAft   <-BalAGBM$es.mean.ATT$`ct.mn`[1] 

X2CompAAft   <-BalAGBM$es.mean.ATT$`ct.mn`[2] 

X3CompAAft   <-BalAGBM$es.mean.ATT$`ct.mn`[3] 

X4CompAAft   <-BalAGBM$es.mean.ATT$`ct.mn`[4] 
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X5CompAAft   <-BalAGBM$es.mean.ATT$`ct.mn`[5] 

 

PBRX1GBM   <-100*((abs(X1TreatABef-X1CompABef)-abs(X1TreatAAft-

X1CompAAft))/abs(X1TreatABef-X1CompABef)) 

PBRX2GBM   <-100*((abs(X2TreatABef-X2CompABef)-abs(X2TreatAAft-

X2CompAAft))/abs(X2TreatABef-X2CompABef)) 

PBRX3GBM   <-100*((abs(X3TreatABef-X3CompABef)-abs(X3TreatAAft-

X3CompAAft))/abs(X3TreatABef-X3CompABef)) 

PBRX4GBM   <-100*((abs(X4TreatABef-X4CompABef)-abs(X4TreatAAft-

X4CompAAft))/abs(X4TreatABef-X4CompABef)) 

PBRX5GBM   <-100*((abs(X5TreatABef-X5CompABef)-abs(X5TreatAAft-

X5CompAAft))/abs(X5TreatABef-X5CompABef)) 

 

#ATC Coding 

X1TreatABefATC   <-BalAGBMATC$unw$`tx.mn`[1] 

X2TreatABefATC   <-BalAGBMATC$unw$`tx.mn`[2] 

X3TreatABefATC   <-BalAGBMATC$unw$`tx.mn`[3] 

X4TreatABefATC   <-BalAGBMATC$unw$`tx.mn`[4] 

X5TreatABefATC   <-BalAGBMATC$unw$`tx.mn`[5] 

 

X1CompABefATC   <-BalAGBMATC$unw$`ct.mn`[1] 

X2CompABefATC   <-BalAGBMATC$unw$`ct.mn`[2] 

X3CompABefATC   <-BalAGBMATC$unw$`ct.mn`[3] 

X4CompABefATC   <-BalAGBMATC$unw$`ct.mn`[4] 

X5CompABefATC   <-BalAGBMATC$unw$`ct.mn`[5] 

 

X1TreatAAftATC   <-BalAGBMATC$es.mean.ATT$`tx.mn`[1] 

X2TreatAAftATC   <-BalAGBMATC$es.mean.ATT$`tx.mn`[2] 

X3TreatAAftATC   <-BalAGBMATC$es.mean.ATT$`tx.mn`[3] 

X4TreatAAftATC   <-BalAGBMATC$es.mean.ATT$`tx.mn`[4] 

X5TreatAAftATC   <-BalAGBMATC$es.mean.ATT$`tx.mn`[5] 

 

X1CompAAftATC   <-BalAGBMATC$es.mean.ATT$`ct.mn`[1] 

X2CompAAftATC   <-BalAGBMATC$es.mean.ATT$`ct.mn`[2] 

X3CompAAftATC   <-BalAGBMATC$es.mean.ATT$`ct.mn`[3] 

X4CompAAftATC   <-BalAGBMATC$es.mean.ATT$`ct.mn`[4] 

X5CompAAftATC   <-BalAGBMATC$es.mean.ATT$`ct.mn`[5] 

 

PBRX1GBMATC   <-100*((abs(X1TreatABefATC-X1CompABefATC)-

abs(X1TreatAAftATC-X1CompAAftATC))/abs(X1TreatABefATC-X1CompABefATC)) 

PBRX2GBMATC   <-100*((abs(X2TreatABefATC-X2CompABefATC)-

abs(X2TreatAAftATC-X2CompAAftATC))/abs(X2TreatABefATC-X2CompABefATC)) 

PBRX3GBMATC   <-100*((abs(X3TreatABefATC-X3CompABefATC)-

abs(X3TreatAAftATC-X3CompAAftATC))/abs(X3TreatABefATC-X3CompABefATC)) 

PBRX4GBMATC   <-100*((abs(X4TreatABefATC-X4CompABefATC)-

abs(X4TreatAAftATC-X4CompAAftATC))/abs(X4TreatABefATC-X4CompABefATC)) 

PBRX5GBMATC   <-100*((abs(X5TreatABefATC-X5CompABefATC)-

abs(X5TreatAAftATC-X5CompAAftATC))/abs(X5TreatABefATC-X5CompABefATC)) 

 

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

#~~~~~~~~~~~~~~~~~         Saving Out Diagnostics       ~~~~~~~~~~~~~~~ 

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

#All variables BEFORE matching/weighting 

AvgX1TreatA[i]   <-  mean(finalDataA$x1[finalDataA$group==1]) 

AvgX2TreatA[i]   <-  mean(finalDataA$x2[finalDataA$group==1]) 

AvgX3TreatA[i]   <-  mean(finalDataA$x3[finalDataA$group==1]) 
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AvgX4TreatA[i]   <-  mean(finalDataA$x4[finalDataA$group==1]) 

AvgX5TreatA[i]   <-  mean(finalDataA$x5[finalDataA$group==1]) 

AvgYA1TreatA[i]    <-  mean(finalDataA$YA1[finalDataA$group==1]) 

AvgYA2TreatA[i]    <-  mean(finalDataA$YA2[finalDataA$group==1]) 

AvgYA3TreatA[i]    <-  mean(finalDataA$YA3[finalDataA$group==1]) 

AvgYA4TreatA[i]    <-  mean(finalDataA$YA4[finalDataA$group==1]) 

AvgPSTreatA[i]     <-  mean(finalDataA$PS[finalDataA$group==1]) 

 

AvgX1CompA[i]   <-  mean(finalDataA$x1[finalDataA$group==0]) 

AvgX2CompA[i]   <-  mean(finalDataA$x2[finalDataA$group==0]) 

AvgX3CompA[i]   <-  mean(finalDataA$x3[finalDataA$group==0]) 

AvgX4CompA[i]   <-  mean(finalDataA$x4[finalDataA$group==0]) 

AvgX5CompA[i]   <-  mean(finalDataA$x5[finalDataA$group==0]) 

AvgYA1CompA[i]    <-  mean(finalDataA$YA1[finalDataA$group==0]) 

AvgYA2CompA[i]    <-  mean(finalDataA$YA2[finalDataA$group==0]) 

AvgYA3CompA[i]    <-  mean(finalDataA$YA3[finalDataA$group==0]) 

AvgYA4CompA[i]    <-  mean(finalDataA$YA4[finalDataA$group==0]) 

AvgPSCompA[i]     <-  mean(finalDataA$PS[finalDataA$group==0]) 

 

SDX1TreatA[i]   <-  sd(finalDataA$x1[finalDataA$group==1]) 

SDX2TreatA[i]   <-  sd(finalDataA$x2[finalDataA$group==1]) 

SDX3TreatA[i]   <-  sd(finalDataA$x3[finalDataA$group==1]) 

SDX4TreatA[i]   <-  sd(finalDataA$x4[finalDataA$group==1]) 

SDX5TreatA[i]   <-  sd(finalDataA$x5[finalDataA$group==1]) 

SDYA1TreatA[i]    <-  sd(finalDataA$YA1[finalDataA$group==1]) 

SDYA2TreatA[i]    <-  sd(finalDataA$YA2[finalDataA$group==1]) 

SDYA3TreatA[i]    <-  sd(finalDataA$YA3[finalDataA$group==1]) 

SDYA4TreatA[i]    <-  sd(finalDataA$YA4[finalDataA$group==1]) 

SDPSTreatA[i]     <-  sd(finalDataA$PS[finalDataA$group==1]) 

 

SDX1CompA[i]   <-  sd(finalDataA$x1[finalDataA$group==0]) 

SDX2CompA[i]   <-  sd(finalDataA$x2[finalDataA$group==0]) 

SDX3CompA[i]   <-  sd(finalDataA$x3[finalDataA$group==0]) 

SDX4CompA[i]   <-  sd(finalDataA$x4[finalDataA$group==0]) 

SDX5CompA[i]   <-  sd(finalDataA$x5[finalDataA$group==0]) 

SDYA1CompA[i]    <-  sd(finalDataA$YA1[finalDataA$group==0]) 

SDYA2CompA[i]    <-  sd(finalDataA$YA2[finalDataA$group==0]) 

SDYA3CompA[i]    <-  sd(finalDataA$YA3[finalDataA$group==0]) 

SDYA4CompA[i]    <-  sd(finalDataA$YA4[finalDataA$group==0]) 

SDPSCompA[i]     <-  sd(finalDataA$PS[finalDataA$group==0]) 

 

#Standardized mean differences before matching, ATT Coding 

SMD_X1_All[i] <-  MANN$sum.all[c(14)] 

SMD_X2_All[i] <-  MANN$sum.all[c(15)] 

SMD_X3_All[i] <-  MANN$sum.all[c(16)] 

SMD_X4_All[i] <-  MANN$sum.all[c(17)] 

SMD_X5_All[i] <-  MANN$sum.all[c(18)] 

SMD_PS_All[i] <-  MANN$sum.all[c(13)] 

 

#Standardized mean differences before matching, ATC Coding 

SMD_X1_AllATC[i] <-  MANNATC$sum.all[c(14)] 

SMD_X2_AllATC[i] <-  MANNATC$sum.all[c(15)] 

SMD_X3_AllATC[i] <-  MANNATC$sum.all[c(16)] 

SMD_X4_AllATC[i] <-  MANNATC$sum.all[c(17)] 

SMD_X5_AllATC[i] <-  MANNATC$sum.all[c(18)] 

SMD_PS_AllATC[i] <-  MANNATC$sum.all[c(13)] 
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#Correlations 

Cor_X1.X2_A[i]     <-  cor(finalDataA$x1, finalDataA$x2) 

Cor_X1.X3_A[i]     <-  cor(finalDataA$x1, finalDataA$x3) 

Cor_X1.X4_A[i]     <-  cor(finalDataA$x1, finalDataA$x4) 

Cor_X1.X5_A[i]     <-  cor(finalDataA$x1, finalDataA$x5) 

Cor_X2.X3_A[i]     <-  cor(finalDataA$x2, finalDataA$x3) 

Cor_X2.X4_A[i]     <-  cor(finalDataA$x2, finalDataA$x4) 

Cor_X2.X5_A[i]     <-  cor(finalDataA$x2, finalDataA$x5) 

Cor_X3.X4_A[i]     <-  cor(finalDataA$x3, finalDataA$x4) 

Cor_X3.X5_A[i]     <-  cor(finalDataA$x3, finalDataA$x5) 

Cor_X4.X5_A[i]     <-  cor(finalDataA$x4, finalDataA$x5) 

Cor_X1.PS_A[i]     <-  cor(finalDataA$x1, finalDataA$PS) 

Cor_X2.PS_A[i]     <-  cor(finalDataA$x2, finalDataA$PS) 

Cor_X3.PS_A[i]     <-  cor(finalDataA$x3, finalDataA$PS) 

Cor_X4.PS_A[i]     <-  cor(finalDataA$x4, finalDataA$PS) 

Cor_X5.PS_A[i]     <-  cor(finalDataA$x5, finalDataA$PS) 

Cor_X1.Y1_A[i]     <-  cor(finalDataA$x1, finalDataA$YA1) 

Cor_X2.Y1_A[i]     <-  cor(finalDataA$x2, finalDataA$YA1) 

Cor_X3.Y1_A[i]     <-  cor(finalDataA$x3, finalDataA$YA1) 

Cor_X4.Y1_A[i]     <-  cor(finalDataA$x4, finalDataA$YA1) 

Cor_X5.Y1_A[i]     <-  cor(finalDataA$x5, finalDataA$YA1) 

Cor_X1.Y2_A[i]     <-  cor(finalDataA$x1, finalDataA$YA2) 

Cor_X2.Y2_A[i]     <-  cor(finalDataA$x2, finalDataA$YA2) 

Cor_X3.Y2_A[i]     <-  cor(finalDataA$x3, finalDataA$YA2) 

Cor_X4.Y2_A[i]     <-  cor(finalDataA$x4, finalDataA$YA2) 

Cor_X5.Y2_A[i]     <-  cor(finalDataA$x5, finalDataA$YA2) 

Cor_X1.Y3_A[i]     <-  cor(finalDataA$x1, finalDataA$YA3) 

Cor_X2.Y3_A[i]     <-  cor(finalDataA$x2, finalDataA$YA3) 

Cor_X3.Y3_A[i]     <-  cor(finalDataA$x3, finalDataA$YA3) 

Cor_X4.Y3_A[i]     <-  cor(finalDataA$x4, finalDataA$YA3) 

Cor_X5.Y3_A[i]     <-  cor(finalDataA$x5, finalDataA$YA3) 

Cor_X1.Y4_A[i]     <-  cor(finalDataA$x1, finalDataA$YA4) 

Cor_X2.Y4_A[i]     <-  cor(finalDataA$x2, finalDataA$YA4) 

Cor_X3.Y4_A[i]     <-  cor(finalDataA$x3, finalDataA$YA4) 

Cor_X4.Y4_A[i]     <-  cor(finalDataA$x4, finalDataA$YA4) 

Cor_X5.Y4_A[i]     <-  cor(finalDataA$x5, finalDataA$YA4) 

Cor_G.Y1_A[i]      <-  cor(finalDataA$group, finalDataA$YA1) 

Cor_G.Y2_A[i]      <-  cor(finalDataA$group, finalDataA$YA2) 

Cor_G.Y3_A[i]      <-  cor(finalDataA$group, finalDataA$YA3) 

Cor_G.Y4_A[i]      <-  cor(finalDataA$group, finalDataA$YA4) 

#Population Group Regression Coefficient 

PopY1A[i]          <- as.numeric(PopY1$coef[2]) 

PopY2A[i]          <- as.numeric(PopY2$coef[2]) 

PopY3A[i]          <- as.numeric(PopY3$coef[2]) 

PopY4A[i]          <- as.numeric(PopY4$coef[2]) 

#Population Group t-value for each regression coefficient 

tPopY1A[i]             <-summary(PopY1)$coef[2, 3] 

tPopY2A[i]             <-summary(PopY2)$coef[2, 3] 

tPopY3A[i]             <-summary(PopY3)$coef[2, 3] 

tPopY4A[i]             <-summary(PopY4)$coef[2, 3] 

#Treatment Group N (before matching) 

treatPopNA[i]          <-nobs(finalDataA$group[finalDataA$group==1]) 

#Comparison Group N (before matching) 

compPopNA[i]           <-nobs(finalDataA$group[finalDataA$group==0]) 

#Population Cohen's D for Treatment Effect 

PopCohenY1A[i]          <-cohenPopY1 

PopCohenY2A[i]          <-cohenPopY2 
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PopCohenY3A[i]          <-cohenPopY3 

PopCohenY4A[i]          <-cohenPopY4 

#Baseline Group Regression Coefficient 

BaseY1A[i]          <- as.numeric(baseout1$coef[2]) 

BaseY2A[i]          <- as.numeric(baseout2$coef[2]) 

BaseY3A[i]          <- as.numeric(baseout3$coef[2]) 

BaseY4A[i]          <- as.numeric(baseout4$coef[2]) 

#Baseline Group t-value for each regression coefficient 

tBaseY1A[i]             <-summary(baseout1)$coef[2, 3] 

tBaseY2A[i]             <-summary(baseout2)$coef[2, 3] 

tBaseY3A[i]             <-summary(baseout3)$coef[2, 3] 

tBaseY4A[i]             <-summary(baseout4)$coef[2, 3] 

#Treatment Group N (before matching) 

treatBaseNA[i]          <-nobs(finalDataA$group[finalDataA$group==1]) 

#Comparison Group N (before matching) 

compBaseNA[i]           <-nobs(finalDataA$group[finalDataA$group==0]) 

#Baseline Cohen's D for Treatment Effect 

BaseCohenY1A[i]          <-cohenBaseY1 

BaseCohenY2A[i]          <-cohenBaseY2 

BaseCohenY3A[i]          <-cohenBaseY3 

BaseCohenY4A[i]          <-cohenBaseY4 

#Population Group Regression Coefficient, ATC coding 

PopATCY1A[i]          <- as.numeric(ATCPopY1$coef[2]) 

PopATCY2A[i]          <- as.numeric(ATCPopY2$coef[2]) 

PopATCY3A[i]          <- as.numeric(ATCPopY3$coef[2]) 

PopATCY4A[i]          <- as.numeric(ATCPopY4$coef[2]) 

#Population Group t-value for each regression coefficient, ATC coding 

tPopATCY1A[i]             <-summary(ATCPopY1)$coef[2, 3] 

tPopATCY2A[i]             <-summary(ATCPopY2)$coef[2, 3] 

tPopATCY3A[i]             <-summary(ATCPopY3)$coef[2, 3] 

tPopATCY4A[i]             <-summary(ATCPopY4)$coef[2, 3] 

#Treatment Group N (before matching), ATC coding 

treatPopNAATC[i]          <-

nobs(finalDataA$ATCgroup[finalDataA$ATCgroup==0]) 

#Comparison Group N (before matching), ATC coding 

compPopNAATC[i]           <-

nobs(finalDataA$ATCgroup[finalDataA$ATCgroup==1]) 

#Population Cohen's D for Treatment Effect, ATC coding 

PopCohenATCY1A[i]          <-cohenPopATCY1 

PopCohenATCY2A[i]          <-cohenPopATCY2 

PopCohenATCY3A[i]          <-cohenPopATCY3 

PopCohenATCY4A[i]          <-cohenPopATCY4 

#Baseline Group Regression Coefficient, ATC coding 

BaseATCY1A[i]          <- as.numeric(ATCbaseout1$coef[2]) 

BaseATCY2A[i]          <- as.numeric(ATCbaseout2$coef[2]) 

BaseATCY3A[i]          <- as.numeric(ATCbaseout3$coef[2]) 

BaseATCY4A[i]          <- as.numeric(ATCbaseout4$coef[2]) 

#Baseline Group t-value for each regression coefficient, ATC coding 

tBaseATCY1A[i]             <-summary(ATCbaseout1)$coef[2, 3] 

tBaseATCY2A[i]             <-summary(ATCbaseout2)$coef[2, 3] 

tBaseATCY3A[i]             <-summary(ATCbaseout3)$coef[2, 3] 

tBaseATCY4A[i]             <-summary(ATCbaseout4)$coef[2, 3] 

#Treatment Group N (before matching), ATC coding 

treatBaseNAATC[i]          <-

nobs(finalDataA$ATCgroup[finalDataA$ATCgroup==0]) 

#Comparison Group N (before matching), ATC coding 
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compBaseNAATC[i]           <-

nobs(finalDataA$ATCgroup[finalDataA$ATCgroup==1]) 

#Baseline Cohen's D for Treatment Effect, ATC coding 

BaseCohenATCY1A[i]          <-cohenBaseATCY1 

BaseCohenATCY2A[i]          <-cohenBaseATCY2 

BaseCohenATCY3A[i]          <-cohenBaseATCY3 

BaseCohenATCY4A[i]          <-cohenBaseATCY4 

#Variance Ratio for unmatched groups (baseline data 

VRB[i] <- 

var(finalDataA$PS[finalDataA$group==1])/var(finalDataA$PS[finalDataA$gr

oup==0]) 

VRBATC[i] <- 

var(finalDataA$PS[finalDataA$ATCgroup==0])/var(finalDataA$PS[finalDataA

$ATCgroup==1]) 

 

#All variables AFTER Nearest Neighbor Matching, ATT Coding 

AvgX1TreatANN[i]   <-  mean(ANN$x1[ANN$group==1]) 

AvgX2TreatANN[i]   <-  mean(ANN$x2[ANN$group==1]) 

AvgX3TreatANN[i]   <-  mean(ANN$x3[ANN$group==1]) 

AvgX4TreatANN[i]   <-  mean(ANN$x4[ANN$group==1]) 

AvgX5TreatANN[i]   <-  mean(ANN$x5[ANN$group==1]) 

AvgYA1TreatANN[i]   <-  mean(ANN$YA1[ANN$group==1]) 

AvgYA2TreatANN[i]   <-  mean(ANN$YA2[ANN$group==1]) 

AvgYA3TreatANN[i]   <-  mean(ANN$YA3[ANN$group==1]) 

AvgYA4TreatANN[i]   <-  mean(ANN$YA4[ANN$group==1]) 

AvgPSTreatANN[i]    <-  mean(ANN$PS[ANN$group==1]) 

 

AvgX1CompANN[i]   <-  mean(ANN$x1[ANN$group==0]) 

AvgX2CompANN[i]   <-  mean(ANN$x2[ANN$group==0]) 

AvgX3CompANN[i]   <-  mean(ANN$x3[ANN$group==0]) 

AvgX4CompANN[i]   <-  mean(ANN$x4[ANN$group==0]) 

AvgX5CompANN[i]   <-  mean(ANN$x5[ANN$group==0]) 

AvgYA1CompANN[i]   <-  mean(ANN$YA1[ANN$group==0]) 

AvgYA2CompANN[i]   <-  mean(ANN$YA2[ANN$group==0]) 

AvgYA3CompANN[i]   <-  mean(ANN$YA3[ANN$group==0]) 

AvgYA4CompANN[i]   <-  mean(ANN$YA4[ANN$group==0]) 

AvgPSCompANN[i]    <-  mean(ANN$PS[ANN$group==0]) 

 

SDX1TreatANN[i]   <-  sd(ANN$x1[ANN$group==1]) 

SDX2TreatANN[i]   <-  sd(ANN$x2[ANN$group==1]) 

SDX3TreatANN[i]   <-  sd(ANN$x3[ANN$group==1]) 

SDX4TreatANN[i]   <-  sd(ANN$x4[ANN$group==1]) 

SDX5TreatANN[i]   <-  sd(ANN$x5[ANN$group==1]) 

SDYA1TreatANN[i]   <-  sd(ANN$YA1[ANN$group==1]) 

SDYA2TreatANN[i]   <-  sd(ANN$YA2[ANN$group==1]) 

SDYA3TreatANN[i]   <-  sd(ANN$YA3[ANN$group==1]) 

SDYA4TreatANN[i]   <-  sd(ANN$YA4[ANN$group==1]) 

SDPSTreatANN[i]    <-  sd(ANN$PS[ANN$group==1]) 

 

SDX1CompANN[i]   <-  sd(ANN$x1[ANN$group==0]) 

SDX2CompANN[i]   <-  sd(ANN$x2[ANN$group==0]) 

SDX3CompANN[i]   <-  sd(ANN$x3[ANN$group==0]) 

SDX4CompANN[i]   <-  sd(ANN$x4[ANN$group==0]) 

SDX5CompANN[i]   <-  sd(ANN$x5[ANN$group==0]) 

SDYA1CompANN[i]   <-  sd(ANN$YA1[ANN$group==0]) 

SDYA2CompANN[i]   <-  sd(ANN$YA2[ANN$group==0]) 

SDYA3CompANN[i]   <-  sd(ANN$YA3[ANN$group==0]) 
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SDYA4CompANN[i]   <-  sd(ANN$YA4[ANN$group==0]) 

SDPSCompANN[i]    <-  sd(ANN$PS[ANN$group==0]) 

 

#Standardized Mean Difference after NN matching 

SMD_X1_ANN[i] <-  MANN$sum.matched[c(14)] 

SMD_X2_ANN[i] <-  MANN$sum.matched[c(15)] 

SMD_X3_ANN[i] <-  MANN$sum.matched[c(16)] 

SMD_X4_ANN[i] <-  MANN$sum.matched[c(17)] 

SMD_X5_ANN[i] <-  MANN$sum.matched[c(18)] 

SMD_PS_ANN[i] <-  MANN$sum.matched[c(13)] 

 

#Percent Bias Reduction after NN matching 

PBR_X1_ANN[i]  <- MANN$reduction[c(2)] 

PBR_X2_ANN[i]  <- MANN$reduction[c(3)] 

PBR_X3_ANN[i]  <- MANN$reduction[c(4)] 

PBR_X4_ANN[i]  <- MANN$reduction[c(5)] 

PBR_X5_ANN[i]  <- MANN$reduction[c(6)] 

PBR_PS_ANN[i]  <- MANN$reduction[c(1)] 

 

#Group Regression Coefficient after NN matching 

Y1ANN[i]          <- as.numeric(OutcomeA.1NN$coef[2]) 

Y2ANN[i]          <- as.numeric(OutcomeA.2NN$coef[2]) 

Y3ANN[i]          <- as.numeric(OutcomeA.3NN$coef[2]) 

Y4ANN[i]          <- as.numeric(OutcomeA.4NN$coef[2]) 

#Group t-value for each regression coefficient after NN matching 

tNNY1A[i]             <-summary(OutcomeA.1NN)$coef[2, 3] 

tNNY2A[i]             <-summary(OutcomeA.2NN)$coef[2, 3] 

tNNY3A[i]             <-summary(OutcomeA.3NN)$coef[2, 3] 

tNNY4A[i]             <-summary(OutcomeA.4NN)$coef[2, 3] 

#Treatment Group N (after NN matching) 

NNtreatNA[i]          <-nobs(ANN$group[ANN$group==1]) 

#Comparison Group N (after NN matching) 

NNcompNA[i]           <-nobs(ANN$group[ANN$group==0]) 

#Cohen's D for Treatment Effect after NN matching 

NNCohenY1A[i]          <-cohenANNY1 

NNCohenY2A[i]          <-cohenANNY2 

NNCohenY3A[i]          <-cohenANNY3 

NNCohenY4A[i]          <-cohenANNY4 

 

#Matched & Unmatched PS mean, median, and sd after NN matching 

PSMeanMatchedTreatANN[i]   <-  mean(FullANN$distance[FullANN$group==1 & 

FullANN$weights==1]) 

PSMeanMatchedCompANN[i]   <-  mean(FullANN$distance[FullANN$group==0 & 

FullANN$weights==1]) 

PSMeanUnMatchedTreatANN[i]   <-  mean(FullANN$distance[FullANN$group==1 

& FullANN$weights==0]) 

PSMeanUnMatchedCompANN[i]   <-  mean(FullANN$distance[FullANN$group==0 

& FullANN$weights==0]) 

 

PSMedMatchedTreatANN[i]   <-  median(FullANN$distance[FullANN$group==1 

& FullANN$weights==1]) 

PSMedMatchedCompANN[i]   <-  median(FullANN$distance[FullANN$group==0 & 

FullANN$weights==1]) 

PSMedUnMatchedTreatANN[i]   <-  

median(FullANN$distance[FullANN$group==1 & FullANN$weights==0]) 

PSMedUnMatchedCompANN[i]   <-  median(FullANN$distance[FullANN$group==0 

& FullANN$weights==0]) 
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PSsdMatchedTreatANN[i]   <-  sd(FullANN$distance[FullANN$group==1 & 

FullANN$weights==1]) 

PSsdMatchedCompANN[i]   <-  sd(FullANN$distance[FullANN$group==0 & 

FullANN$weights==1]) 

PSsdUnMatchedTreatANN[i]   <-  sd(FullANN$distance[FullANN$group==1 & 

FullANN$weights==0]) 

PSsdUnMatchedCompANN[i]   <-  sd(FullANN$distance[FullANN$group==0 & 

FullANN$weights==0]) 

 

#Variance Ratio for matched groups, after NN Matching 

VRANN[i] <- 

var(ANN$distance[ANN$group==1])/var(ANN$distance[ANN$group==0]) 

 

#All variables AFTER Nearest Neighbor Matching, ATC Coding 

AvgX1TreatANNATC[i]   <-  mean(ANNATC$x1[ANNATC$ATCgroup==0]) 

AvgX2TreatANNATC[i]   <-  mean(ANNATC$x2[ANNATC$ATCgroup==0]) 

AvgX3TreatANNATC[i]   <-  mean(ANNATC$x3[ANNATC$ATCgroup==0]) 

AvgX4TreatANNATC[i]   <-  mean(ANNATC$x4[ANNATC$ATCgroup==0]) 

AvgX5TreatANNATC[i]   <-  mean(ANNATC$x5[ANNATC$ATCgroup==0]) 

AvgYA1TreatANNATC[i]   <-  mean(ANNATC$YA1[ANNATC$ATCgroup==0]) 

AvgYA2TreatANNATC[i]   <-  mean(ANNATC$YA2[ANNATC$ATCgroup==0]) 

AvgYA3TreatANNATC[i]   <-  mean(ANNATC$YA3[ANNATC$ATCgroup==0]) 

AvgYA4TreatANNATC[i]   <-  mean(ANNATC$YA4[ANNATC$ATCgroup==0]) 

AvgPSTreatANNATC[i]    <-  mean(ANNATC$PS[ANNATC$ATCgroup==0]) 

 

AvgX1CompANNATC[i]   <-  mean(ANNATC$x1[ANNATC$ATCgroup==1]) 

AvgX2CompANNATC[i]   <-  mean(ANNATC$x2[ANNATC$ATCgroup==1]) 

AvgX3CompANNATC[i]   <-  mean(ANNATC$x3[ANNATC$ATCgroup==1]) 

AvgX4CompANNATC[i]   <-  mean(ANNATC$x4[ANNATC$ATCgroup==1]) 

AvgX5CompANNATC[i]   <-  mean(ANNATC$x5[ANNATC$ATCgroup==1]) 

AvgYA1CompANNATC[i]   <-  mean(ANNATC$YA1[ANNATC$ATCgroup==1]) 

AvgYA2CompANNATC[i]   <-  mean(ANNATC$YA2[ANNATC$ATCgroup==1]) 

AvgYA3CompANNATC[i]   <-  mean(ANNATC$YA3[ANNATC$ATCgroup==1]) 

AvgYA4CompANNATC[i]   <-  mean(ANNATC$YA4[ANNATC$ATCgroup==1]) 

AvgPSCompANNATC[i]    <-  mean(ANNATC$PS[ANNATC$ATCgroup==1]) 

 

SDX1TreatANNATC[i]   <-  sd(ANNATC$x1[ANNATC$ATCgroup==0]) 

SDX2TreatANNATC[i]   <-  sd(ANNATC$x2[ANNATC$ATCgroup==0]) 

SDX3TreatANNATC[i]   <-  sd(ANNATC$x3[ANNATC$ATCgroup==0]) 

SDX4TreatANNATC[i]   <-  sd(ANNATC$x4[ANNATC$ATCgroup==0]) 

SDX5TreatANNATC[i]   <-  sd(ANNATC$x5[ANNATC$ATCgroup==0]) 

SDYA1TreatANNATC[i]   <-  sd(ANNATC$YA1[ANNATC$ATCgroup==0]) 

SDYA2TreatANNATC[i]   <-  sd(ANNATC$YA2[ANNATC$ATCgroup==0]) 

SDYA3TreatANNATC[i]   <-  sd(ANNATC$YA3[ANNATC$ATCgroup==0]) 

SDYA4TreatANNATC[i]   <-  sd(ANNATC$YA4[ANNATC$ATCgroup==0]) 

SDPSTreatANNATC[i]    <-  sd(ANNATC$PS[ANNATC$ATCgroup==0]) 

 

SDX1CompANNATC[i]   <-  sd(ANNATC$x1[ANNATC$ATCgroup==1]) 

SDX2CompANNATC[i]   <-  sd(ANNATC$x2[ANNATC$ATCgroup==1]) 

SDX3CompANNATC[i]   <-  sd(ANNATC$x3[ANNATC$ATCgroup==1]) 

SDX4CompANNATC[i]   <-  sd(ANNATC$x4[ANNATC$ATCgroup==1]) 

SDX5CompANNATC[i]   <-  sd(ANNATC$x5[ANNATC$ATCgroup==1]) 

SDYA1CompANNATC[i]   <-  sd(ANNATC$YA1[ANNATC$ATCgroup==1]) 

SDYA2CompANNATC[i]   <-  sd(ANNATC$YA2[ANNATC$ATCgroup==1]) 

SDYA3CompANNATC[i]   <-  sd(ANNATC$YA3[ANNATC$ATCgroup==1]) 

SDYA4CompANNATC[i]   <-  sd(ANNATC$YA4[ANNATC$ATCgroup==1]) 
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SDPSCompANNATC[i]    <-  sd(ANNATC$PS[ANNATC$ATCgroup==1]) 

 

#Standardized Mean Difference after NN matching, ATC coding 

SMD_X1_ANNATC[i] <-  MANNATC$sum.matched[c(14)] 

SMD_X2_ANNATC[i] <-  MANNATC$sum.matched[c(15)] 

SMD_X3_ANNATC[i] <-  MANNATC$sum.matched[c(16)] 

SMD_X4_ANNATC[i] <-  MANNATC$sum.matched[c(17)] 

SMD_X5_ANNATC[i] <-  MANNATC$sum.matched[c(18)] 

SMD_PS_ANNATC[i] <-  MANNATC$sum.matched[c(13)] 

 

#Percent Bias Reduction after NN matching, ATC coding 

PBR_X1_ANNATC[i]  <- MANNATC$reduction[c(2)] 

PBR_X2_ANNATC[i]  <- MANNATC$reduction[c(3)] 

PBR_X3_ANNATC[i]  <- MANNATC$reduction[c(4)] 

PBR_X4_ANNATC[i]  <- MANNATC$reduction[c(5)] 

PBR_X5_ANNATC[i]  <- MANNATC$reduction[c(6)] 

PBR_PS_ANNATC[i]  <- MANNATC$reduction[c(1)] 

 

#Group Regression Coefficient after NN matching, ATC coding 

Y1ANNATC[i]          <- as.numeric(OutcomeA.1NNATC$coef[2]) 

Y2ANNATC[i]          <- as.numeric(OutcomeA.2NNATC$coef[2]) 

Y3ANNATC[i]          <- as.numeric(OutcomeA.3NNATC$coef[2]) 

Y4ANNATC[i]          <- as.numeric(OutcomeA.4NNATC$coef[2]) 

#Group t-value for each regression coefficient after NN matching, ATC 

coding 

tNNATCY1A[i]             <-summary(OutcomeA.1NNATC)$coef[2, 3] 

tNNATCY2A[i]             <-summary(OutcomeA.2NNATC)$coef[2, 3] 

tNNATCY3A[i]             <-summary(OutcomeA.3NNATC)$coef[2, 3] 

tNNATCY4A[i]             <-summary(OutcomeA.4NNATC)$coef[2, 3] 

#Treatment Group N (after NN matching), ATC coding 

NNATCtreatNA[i]          <-nobs(ANNATC$group[ANNATC$group==0]) 

#Comparison Group N (after NN matching) 

NNATCcompNA[i]           <-nobs(ANNATC$group[ANNATC$group==1]) 

#Cohen's D for Treatment Effect after NN matching, ATC coding 

NNATCCohenY1A[i]          <-cohenANNATCY1 

NNATCCohenY2A[i]          <-cohenANNATCY2 

NNATCCohenY3A[i]          <-cohenANNATCY3 

NNATCCohenY4A[i]          <-cohenANNATCY4 

 

#Matched & Unmatched PS mean, median, and sd after NN matching, ATC 

Coding 

PSMeanMatchedTreatANNATC[i]   <-  

mean(FullANNATC$distance[FullANNATC$group==0 & FullANNATC$weights==1]) 

PSMeanMatchedCompANNATC[i]   <-  

mean(FullANNATC$distance[FullANNATC$group==1 & FullANNATC$weights==1]) 

PSMeanUnMatchedTreatANNATC[i]   <-  

mean(FullANNATC$distance[FullANNATC$group==0 & FullANNATC$weights==0]) 

PSMeanUnMatchedCompANNATC[i]   <-  

mean(FullANNATC$distance[FullANNATC$group==1 & FullANNATC$weights==0]) 

 

PSMedMatchedTreatANNATC[i]   <-  

median(FullANNATC$distance[FullANNATC$group==0 & 

FullANNATC$weights==1]) 

PSMedMatchedCompANNATC[i]   <-  

median(FullANNATC$distance[FullANNATC$group==1 & 

FullANNATC$weights==1]) 
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PSMedUnMatchedTreatANNATC[i]   <-  

median(FullANNATC$distance[FullANNATC$group==0 & 

FullANNATC$weights==0]) 

PSMedUnMatchedCompANNATC[i]   <-  

median(FullANNATC$distance[FullANNATC$group==1 & 

FullANNATC$weights==0]) 

 

PSsdMatchedTreatANNATC[i]   <-  

sd(FullANNATC$distance[FullANNATC$group==0 & FullANNATC$weights==1]) 

PSsdMatchedCompANNATC[i]   <-  

sd(FullANNATC$distance[FullANNATC$group==1 & FullANNATC$weights==1]) 

PSsdUnMatchedTreatANNATC[i]   <-  

sd(FullANNATC$distance[FullANNATC$group==0 & FullANNATC$weights==0]) 

PSsdUnMatchedCompANNATC[i]   <-  

sd(FullANNATC$distance[FullANNATC$group==1 & FullANNATC$weights==0]) 

 

#Variance Ratio for matched groups, after NN Matching, ATC coding 

VRANNATC[i] <- 

var(ANNATC$distance[ANNATC$ATCgroup==0])/var(ANNATC$distance[ANNATC$ATC

group==1]) 

 

#All variables AFTER Nearest Neighbor Matching with 0.20 Caliper, ATT 

Coding 

AvgX1TreatANNCal[i]   <-  mean(ANNCal$x1[ANNCal$group==1]) 

AvgX2TreatANNCal[i]   <-  mean(ANNCal$x2[ANNCal$group==1]) 

AvgX3TreatANNCal[i]   <-  mean(ANNCal$x3[ANNCal$group==1]) 

AvgX4TreatANNCal[i]   <-  mean(ANNCal$x4[ANNCal$group==1]) 

AvgX5TreatANNCal[i]   <-  mean(ANNCal$x5[ANNCal$group==1]) 

AvgYA1TreatANNCal[i]   <-  mean(ANNCal$YA1[ANNCal$group==1]) 

AvgYA2TreatANNCal[i]   <-  mean(ANNCal$YA2[ANNCal$group==1]) 

AvgYA3TreatANNCal[i]   <-  mean(ANNCal$YA3[ANNCal$group==1]) 

AvgYA4TreatANNCal[i]   <-  mean(ANNCal$YA4[ANNCal$group==1]) 

AvgPSTreatANNCal[i]    <-  mean(ANNCal$PS[ANNCal$group==1]) 

 

AvgX1CompANNCal[i]   <-  mean(ANNCal$x1[ANNCal$group==0]) 

AvgX2CompANNCal[i]   <-  mean(ANNCal$x2[ANNCal$group==0]) 

AvgX3CompANNCal[i]   <-  mean(ANNCal$x3[ANNCal$group==0]) 

AvgX4CompANNCal[i]   <-  mean(ANNCal$x4[ANNCal$group==0]) 

AvgX5CompANNCal[i]   <-  mean(ANNCal$x5[ANNCal$group==0]) 

AvgYA1CompANNCal[i]   <-  mean(ANNCal$YA1[ANNCal$group==0]) 

AvgYA2CompANNCal[i]   <-  mean(ANNCal$YA2[ANNCal$group==0]) 

AvgYA3CompANNCal[i]   <-  mean(ANNCal$YA3[ANNCal$group==0]) 

AvgYA4CompANNCal[i]   <-  mean(ANNCal$YA4[ANNCal$group==0]) 

AvgPSCompANNCal[i]    <-  mean(ANNCal$PS[ANNCal$group==0]) 

 

SDX1TreatANNCal[i]   <-  sd(ANNCal$x1[ANNCal$group==1]) 

SDX2TreatANNCal[i]   <-  sd(ANNCal$x2[ANNCal$group==1]) 

SDX3TreatANNCal[i]   <-  sd(ANNCal$x3[ANNCal$group==1]) 

SDX4TreatANNCal[i]   <-  sd(ANNCal$x4[ANNCal$group==1]) 

SDX5TreatANNCal[i]   <-  sd(ANNCal$x5[ANNCal$group==1]) 

SDYA1TreatANNCal[i]   <-  sd(ANNCal$YA1[ANNCal$group==1]) 

SDYA2TreatANNCal[i]   <-  sd(ANNCal$YA2[ANNCal$group==1]) 

SDYA3TreatANNCal[i]   <-  sd(ANNCal$YA3[ANNCal$group==1]) 

SDYA4TreatANNCal[i]   <-  sd(ANNCal$YA4[ANNCal$group==1]) 

SDPSTreatANNCal[i]    <-  sd(ANNCal$PS[ANNCal$group==1]) 

 

SDX1CompANNCal[i]   <-  sd(ANNCal$x1[ANNCal$group==0]) 
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SDX2CompANNCal[i]   <-  sd(ANNCal$x2[ANNCal$group==0]) 

SDX3CompANNCal[i]   <-  sd(ANNCal$x3[ANNCal$group==0]) 

SDX4CompANNCal[i]   <-  sd(ANNCal$x4[ANNCal$group==0]) 

SDX5CompANNCal[i]   <-  sd(ANNCal$x5[ANNCal$group==0]) 

SDYA1CompANNCal[i]   <-  sd(ANNCal$YA1[ANNCal$group==0]) 

SDYA2CompANNCal[i]   <-  sd(ANNCal$YA2[ANNCal$group==0]) 

SDYA3CompANNCal[i]   <-  sd(ANNCal$YA3[ANNCal$group==0]) 

SDYA4CompANNCal[i]   <-  sd(ANNCal$YA4[ANNCal$group==0]) 

SDPSCompANNCal[i]    <-  sd(ANNCal$PS[ANNCal$group==0]) 

 

#Standardized Mean Difference after NN matching with caliper 

SMD_X1_ANNCal[i] <-  MANNCal$sum.matched[c(14)] 

SMD_X2_ANNCal[i] <-  MANNCal$sum.matched[c(15)] 

SMD_X3_ANNCal[i] <-  MANNCal$sum.matched[c(16)] 

SMD_X4_ANNCal[i] <-  MANNCal$sum.matched[c(17)] 

SMD_X5_ANNCal[i] <-  MANNCal$sum.matched[c(18)] 

SMD_PS_ANNCal[i] <-  MANNCal$sum.matched[c(13)] 

 

#Percent Bias Reduction after NN matching with caliper 

PBR_X1_ANNCal[i]  <- MANNCal$reduction[c(2)] 

PBR_X2_ANNCal[i]  <- MANNCal$reduction[c(3)] 

PBR_X3_ANNCal[i]  <- MANNCal$reduction[c(4)] 

PBR_X4_ANNCal[i]  <- MANNCal$reduction[c(5)] 

PBR_X5_ANNCal[i]  <- MANNCal$reduction[c(6)] 

PBR_PS_ANNCal[i]  <- MANNCal$reduction[c(1)] 

 

#Group Regression Coefficient after NN matching with caliper 

Y1ANNCal[i]          <- as.numeric(OutcomeA.1NNCal$coef[2]) 

Y2ANNCal[i]          <- as.numeric(OutcomeA.2NNCal$coef[2]) 

Y3ANNCal[i]          <- as.numeric(OutcomeA.3NNCal$coef[2]) 

Y4ANNCal[i]          <- as.numeric(OutcomeA.4NNCal$coef[2]) 

#Group t-value for each regression coefficient after NN matching with 

caliper 

tNNCalY1A[i]             <-summary(OutcomeA.1NNCal)$coef[2, 3] 

tNNCalY2A[i]             <-summary(OutcomeA.2NNCal)$coef[2, 3] 

tNNCalY3A[i]             <-summary(OutcomeA.3NNCal)$coef[2, 3] 

tNNCalY4A[i]             <-summary(OutcomeA.4NNCal)$coef[2, 3] 

#Treatment Group N (after NN matching with caliper) 

NNCaltreatNA[i]          <-nobs(ANNCal$group[ANNCal$group==1]) 

#Comparison Group N (after NN matching) 

NNCalcompNA[i]           <-nobs(ANNCal$group[ANNCal$group==0]) 

#Cohen's D for Treatment Effect after NN matching with caliper 

NNCalCohenY1A[i]          <-cohenANNCalY1 

NNCalCohenY2A[i]          <-cohenANNCalY2 

NNCalCohenY3A[i]          <-cohenANNCalY3 

NNCalCohenY4A[i]          <-cohenANNCalY4 

 

#Matched & Unmatched PS mean, median, and sd after NN matching with 

Caliper 

PSMeanMatchedTreatANNCal[i]   <-  

mean(FullANNCal$distance[FullANNCal$group==1 & FullANNCal$weights==1]) 

PSMeanMatchedCompANNCal[i]   <-  

mean(FullANNCal$distance[FullANNCal$group==0 & FullANNCal$weights==1]) 

PSMeanUnMatchedTreatANNCal[i]   <-  

mean(FullANNCal$distance[FullANNCal$group==1 & FullANNCal$weights==0]) 

PSMeanUnMatchedCompANNCal[i]   <-  

mean(FullANNCal$distance[FullANNCal$group==0 & FullANNCal$weights==0]) 
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PSMedMatchedTreatANNCal[i]   <-  

median(FullANNCal$distance[FullANNCal$group==1 & 

FullANNCal$weights==1]) 

PSMedMatchedCompANNCal[i]   <-  

median(FullANNCal$distance[FullANNCal$group==0 & 

FullANNCal$weights==1]) 

PSMedUnMatchedTreatANNCal[i]   <-  

median(FullANNCal$distance[FullANNCal$group==1 & 

FullANNCal$weights==0]) 

PSMedUnMatchedCompANNCal[i]   <-  

median(FullANNCal$distance[FullANNCal$group==0 & 

FullANNCal$weights==0]) 

 

PSsdMatchedTreatANNCal[i]   <-  

sd(FullANNCal$distance[FullANNCal$group==1 & FullANNCal$weights==1]) 

PSsdMatchedCompANNCal[i]   <-  

sd(FullANNCal$distance[FullANNCal$group==0 & FullANNCal$weights==1]) 

PSsdUnMatchedTreatANNCal[i]   <-  

sd(FullANNCal$distance[FullANNCal$group==1 & FullANNCal$weights==0]) 

PSsdUnMatchedCompANNCal[i]   <-  

sd(FullANNCal$distance[FullANNCal$group==0 & FullANNCal$weights==0]) 

 

#Variance Ratio for matched groups, after NN Matching with Caliper 

VRANNCal[i] <- 

var(ANNCal$distance[ANNCal$group==1])/var(ANNCal$distance[ANNCal$group=

=0]) 

 

#All variables AFTER Nearest Neighbor Matching with 0.20 Caliper, ATC 

Coding 

AvgX1TreatANNCalATC[i]   <-  mean(ANNCalATC$x1[ANNCalATC$ATCgroup==0]) 

AvgX2TreatANNCalATC[i]   <-  mean(ANNCalATC$x2[ANNCalATC$ATCgroup==0]) 

AvgX3TreatANNCalATC[i]   <-  mean(ANNCalATC$x3[ANNCalATC$ATCgroup==0]) 

AvgX4TreatANNCalATC[i]   <-  mean(ANNCalATC$x4[ANNCalATC$ATCgroup==0]) 

AvgX5TreatANNCalATC[i]   <-  mean(ANNCalATC$x5[ANNCalATC$ATCgroup==0]) 

AvgYA1TreatANNCalATC[i]   <-  

mean(ANNCalATC$YA1[ANNCalATC$ATCgroup==0]) 

AvgYA2TreatANNCalATC[i]   <-  

mean(ANNCalATC$YA2[ANNCalATC$ATCgroup==0]) 

AvgYA3TreatANNCalATC[i]   <-  

mean(ANNCalATC$YA3[ANNCalATC$ATCgroup==0]) 

AvgYA4TreatANNCalATC[i]   <-  

mean(ANNCalATC$YA4[ANNCalATC$ATCgroup==0]) 

AvgPSTreatANNCalATC[i]    <-  mean(ANNCalATC$PS[ANNCalATC$ATCgroup==0]) 

 

AvgX1CompANNCalATC[i]   <-  mean(ANNCalATC$x1[ANNCalATC$ATCgroup==1]) 

AvgX2CompANNCalATC[i]   <-  mean(ANNCalATC$x2[ANNCalATC$ATCgroup==1]) 

AvgX3CompANNCalATC[i]   <-  mean(ANNCalATC$x3[ANNCalATC$ATCgroup==1]) 

AvgX4CompANNCalATC[i]   <-  mean(ANNCalATC$x4[ANNCalATC$ATCgroup==1]) 

AvgX5CompANNCalATC[i]   <-  mean(ANNCalATC$x5[ANNCalATC$ATCgroup==1]) 

AvgYA1CompANNCalATC[i]   <-  mean(ANNCalATC$YA1[ANNCalATC$ATCgroup==1]) 

AvgYA2CompANNCalATC[i]   <-  mean(ANNCalATC$YA2[ANNCalATC$ATCgroup==1]) 

AvgYA3CompANNCalATC[i]   <-  mean(ANNCalATC$YA3[ANNCalATC$ATCgroup==1]) 

AvgYA4CompANNCalATC[i]   <-  mean(ANNCalATC$YA4[ANNCalATC$ATCgroup==1]) 

AvgPSCompANNCalATC[i]    <-  mean(ANNCalATC$PS[ANNCalATC$ATCgroup==1]) 

 

SDX1TreatANNCalATC[i]   <-  sd(ANNCalATC$x1[ANNCalATC$ATCgroup==0]) 
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SDX2TreatANNCalATC[i]   <-  sd(ANNCalATC$x2[ANNCalATC$ATCgroup==0]) 

SDX3TreatANNCalATC[i]   <-  sd(ANNCalATC$x3[ANNCalATC$ATCgroup==0]) 

SDX4TreatANNCalATC[i]   <-  sd(ANNCalATC$x4[ANNCalATC$ATCgroup==0]) 

SDX5TreatANNCalATC[i]   <-  sd(ANNCalATC$x5[ANNCalATC$ATCgroup==0]) 

SDYA1TreatANNCalATC[i]   <-  sd(ANNCalATC$YA1[ANNCalATC$ATCgroup==0]) 

SDYA2TreatANNCalATC[i]   <-  sd(ANNCalATC$YA2[ANNCalATC$ATCgroup==0]) 

SDYA3TreatANNCalATC[i]   <-  sd(ANNCalATC$YA3[ANNCalATC$ATCgroup==0]) 

SDYA4TreatANNCalATC[i]   <-  sd(ANNCalATC$YA4[ANNCalATC$ATCgroup==0]) 

SDPSTreatANNCalATC[i]    <-  sd(ANNCalATC$PS[ANNCalATC$ATCgroup==0]) 

 

SDX1CompANNCalATC[i]   <-  sd(ANNCalATC$x1[ANNCalATC$ATCgroup==1]) 

SDX2CompANNCalATC[i]   <-  sd(ANNCalATC$x2[ANNCalATC$ATCgroup==1]) 

SDX3CompANNCalATC[i]   <-  sd(ANNCalATC$x3[ANNCalATC$ATCgroup==1]) 

SDX4CompANNCalATC[i]   <-  sd(ANNCalATC$x4[ANNCalATC$ATCgroup==1]) 

SDX5CompANNCalATC[i]   <-  sd(ANNCalATC$x5[ANNCalATC$ATCgroup==1]) 

SDYA1CompANNCalATC[i]   <-  sd(ANNCalATC$YA1[ANNCalATC$ATCgroup==1]) 

SDYA2CompANNCalATC[i]   <-  sd(ANNCalATC$YA2[ANNCalATC$ATCgroup==1]) 

SDYA3CompANNCalATC[i]   <-  sd(ANNCalATC$YA3[ANNCalATC$ATCgroup==1]) 

SDYA4CompANNCalATC[i]   <-  sd(ANNCalATC$YA4[ANNCalATC$ATCgroup==1]) 

SDPSCompANNCalATC[i]    <-  sd(ANNCalATC$PS[ANNCalATC$ATCgroup==1]) 

 

#Standardized Mean Difference after NN matching with caliper, ATC 

coding 

SMD_X1_ANNCalATC[i] <-  MANNCalATC$sum.matched[c(14)] 

SMD_X2_ANNCalATC[i] <-  MANNCalATC$sum.matched[c(15)] 

SMD_X3_ANNCalATC[i] <-  MANNCalATC$sum.matched[c(16)] 

SMD_X4_ANNCalATC[i] <-  MANNCalATC$sum.matched[c(17)] 

SMD_X5_ANNCalATC[i] <-  MANNCalATC$sum.matched[c(18)] 

SMD_PS_ANNCalATC[i] <-  MANNCalATC$sum.matched[c(13)] 

 

#Percent Bias Reduction after NN matching with caliper, ATC coding 

PBR_X1_ANNCalATC[i]  <- MANNCalATC$reduction[c(2)] 

PBR_X2_ANNCalATC[i]  <- MANNCalATC$reduction[c(3)] 

PBR_X3_ANNCalATC[i]  <- MANNCalATC$reduction[c(4)] 

PBR_X4_ANNCalATC[i]  <- MANNCalATC$reduction[c(5)] 

PBR_X5_ANNCalATC[i]  <- MANNCalATC$reduction[c(6)] 

PBR_PS_ANNCalATC[i]  <- MANNCalATC$reduction[c(1)] 

 

#Group Regression Coefficient after NN matching with caliper, ATC 

coding 

Y1ANNCalATC[i]          <- as.numeric(OutcomeA.1NNCalATC$coef[2]) 

Y2ANNCalATC[i]          <- as.numeric(OutcomeA.2NNCalATC$coef[2]) 

Y3ANNCalATC[i]          <- as.numeric(OutcomeA.3NNCalATC$coef[2]) 

Y4ANNCalATC[i]          <- as.numeric(OutcomeA.4NNCalATC$coef[2]) 

#Group t-value for each regression coefficient after NN matching with 

caliper, ATC coding 

tNNCalATCY1A[i]             <-summary(OutcomeA.1NNCalATC)$coef[2, 3] 

tNNCalATCY2A[i]             <-summary(OutcomeA.2NNCalATC)$coef[2, 3] 

tNNCalATCY3A[i]             <-summary(OutcomeA.3NNCalATC)$coef[2, 3] 

tNNCalATCY4A[i]             <-summary(OutcomeA.4NNCalATC)$coef[2, 3] 

#Treatment Group N (after NN matching with caliper), ATC coding 

NNCalATCtreatNA[i]          <-nobs(ANNCalATC$group[ANNCalATC$group==0]) 

#Comparison Group N (after NN matching with caliper) 

NNCalATCcompNA[i]           <-nobs(ANNCalATC$group[ANNCalATC$group==1]) 

#Cohen's D for Treatment Effect after NN matching with caliper, ATC 

coding 

NNCalATCCohenY1A[i]          <-cohenANNCalATCY1 
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NNCalATCCohenY2A[i]          <-cohenANNCalATCY2 

NNCalATCCohenY3A[i]          <-cohenANNCalATCY3 

NNCalATCCohenY4A[i]          <-cohenANNCalATCY4 

 

#Matched & Unmatched PS mean, median, and sd after NN matching with 

Caliper, ATC Coding 

PSMeanMatchedTreatANNCalATC[i]   <-  

mean(FullANNCalATC$distance[FullANNCalATC$group==0 & 

FullANNCalATC$weights==1]) 

PSMeanMatchedCompANNCalATC[i]   <-  

mean(FullANNCalATC$distance[FullANNCalATC$group==1 & 

FullANNCalATC$weights==1]) 

PSMeanUnMatchedTreatANNCalATC[i]   <-  

mean(FullANNCalATC$distance[FullANNCalATC$group==0 & 

FullANNCalATC$weights==0]) 

PSMeanUnMatchedCompANNCalATC[i]   <-  

mean(FullANNCalATC$distance[FullANNCalATC$group==1 & 

FullANNCalATC$weights==0]) 

 

PSMedMatchedTreatANNCalATC[i]   <-  

median(FullANNCalATC$distance[FullANNCalATC$group==0 & 

FullANNCalATC$weights==1]) 

PSMedMatchedCompANNCalATC[i]   <-  

median(FullANNCalATC$distance[FullANNCalATC$group==1 & 

FullANNCalATC$weights==1]) 

PSMedUnMatchedTreatANNCalATC[i]   <-  

median(FullANNCalATC$distance[FullANNCalATC$group==0 & 

FullANNCalATC$weights==0]) 

PSMedUnMatchedCompANNCalATC[i]   <-  

median(FullANNCalATC$distance[FullANNCalATC$group==1 & 

FullANNCalATC$weights==0]) 

 

PSsdMatchedTreatANNCalATC[i]   <-  

sd(FullANNCalATC$distance[FullANNCalATC$group==0 & 

FullANNCalATC$weights==1]) 

PSsdMatchedCompANNCalATC[i]   <-  

sd(FullANNCalATC$distance[FullANNCalATC$group==1 & 

FullANNCalATC$weights==1]) 

PSsdUnMatchedTreatANNCalATC[i]   <-  

sd(FullANNCalATC$distance[FullANNCalATC$group==0 & 

FullANNCalATC$weights==0]) 

PSsdUnMatchedCompANNCalATC[i]   <-  

sd(FullANNCalATC$distance[FullANNCalATC$group==1 & 

FullANNCalATC$weights==0]) 

 

#Variance Ratio for matched groups, after NN Matching with Caliper, ATC 

coding 

VRANNCalATC[i] <- 

var(ANNCalATC$distance[ANNCalATC$ATCgroup==0])/var(ANNCalATC$distance[A

NNCalATC$ATCgroup==1]) 

 

#All variables AFTER Generalized Boosted Modeling, ATT Coding 

AvgX1TreatAGBM[i]   <-  BalAGBM$es.mean.ATT$`tx.mn`[1] 

AvgX2TreatAGBM[i]   <-  BalAGBM$es.mean.ATT$`tx.mn`[2] 

AvgX3TreatAGBM[i]   <-  BalAGBM$es.mean.ATT$`tx.mn`[3] 

AvgX4TreatAGBM[i]   <-  BalAGBM$es.mean.ATT$`tx.mn`[4] 

AvgX5TreatAGBM[i]   <-  BalAGBM$es.mean.ATT$`tx.mn`[5] 
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AvgX1CompAGBM[i]   <-  BalAGBM$es.mean.ATT$`ct.mn`[1] 

AvgX2CompAGBM[i]   <-  BalAGBM$es.mean.ATT$`ct.mn`[2] 

AvgX3CompAGBM[i]   <-  BalAGBM$es.mean.ATT$`ct.mn`[3] 

AvgX4CompAGBM[i]   <-  BalAGBM$es.mean.ATT$`ct.mn`[4] 

AvgX5CompAGBM[i]   <-  BalAGBM$es.mean.ATT$`ct.mn`[1] 

 

SDX1TreatAGBM[i]   <-  BalAGBM$es.mean.ATT$`tx.sd`[1] 

SDX2TreatAGBM[i]   <-  BalAGBM$es.mean.ATT$`tx.sd`[2] 

SDX3TreatAGBM[i]   <-  BalAGBM$es.mean.ATT$`tx.sd`[3] 

SDX4TreatAGBM[i]   <-  BalAGBM$es.mean.ATT$`tx.sd`[4] 

SDX5TreatAGBM[i]   <-  BalAGBM$es.mean.ATT$`tx.sd`[5] 

 

SDX1CompAGBM[i]   <-  BalAGBM$es.mean.ATT$`ct.sd`[1] 

SDX2CompAGBM[i]   <-  BalAGBM$es.mean.ATT$`ct.sd`[2] 

SDX3CompAGBM[i]   <-  BalAGBM$es.mean.ATT$`ct.sd`[3] 

SDX4CompAGBM[i]   <-  BalAGBM$es.mean.ATT$`ct.sd`[4] 

SDX5CompAGBM[i]   <-  BalAGBM$es.mean.ATT$`ct.sd`[5] 

 

#Standardized Mean Difference after GBM 

SMD_X1_AGBM[i] <-  BalAGBM$es.mean.ATT$`std.eff.sz`[1] 

SMD_X2_AGBM[i] <-  BalAGBM$es.mean.ATT$`std.eff.sz`[2] 

SMD_X3_AGBM[i] <-  BalAGBM$es.mean.ATT$`std.eff.sz`[3] 

SMD_X4_AGBM[i] <-  BalAGBM$es.mean.ATT$`std.eff.sz`[4] 

SMD_X5_AGBM[i] <-  BalAGBM$es.mean.ATT$`std.eff.sz`[5] 

 

#####Percent Bias Reduction after GBM 

PBR_X1_AGBM[i]  <- PBRX1GBM 

PBR_X2_AGBM[i]  <- PBRX2GBM 

PBR_X3_AGBM[i]  <- PBRX3GBM 

PBR_X4_AGBM[i]  <- PBRX4GBM 

PBR_X5_AGBM[i]  <- PBRX5GBM 

 

#Group Regression Coefficient after GBM 

Y1AGBM[i]          <- as.numeric(OutcomeA.1GBM$coef[2]) 

Y2AGBM[i]          <- as.numeric(OutcomeA.2GBM$coef[2]) 

Y3AGBM[i]          <- as.numeric(OutcomeA.3GBM$coef[2]) 

Y4AGBM[i]          <- as.numeric(OutcomeA.4GBM$coef[2]) 

#Group t-value for each regression coefficient after GBM 

tGBMY1A[i]             <-summary(OutcomeA.1GBM)$coef[2, 3] 

tGBMY2A[i]             <-summary(OutcomeA.2GBM)$coef[2, 3] 

tGBMY3A[i]             <-summary(OutcomeA.3GBM)$coef[2, 3] 

tGBMY4A[i]             <-summary(OutcomeA.4GBM)$coef[2, 3] 

#Treatment Group N (after GBM) 

GBMtreatNA[i]          <-nobs(finalDataA$group[finalDataA$group==1]) 

#Comparison Group N (after GBM) 

GBMcompNA[i]           <-nobs(finalDataA$group[finalDataA$group==0]) 

#Cohen's D for Treatment Effect after GBM 

GBMCohenY1A[i]          <-cohenAGBMY1 

GBMCohenY2A[i]          <-cohenAGBMY2 

GBMCohenY3A[i]          <-cohenAGBMY3 

GBMCohenY4A[i]          <-cohenAGBMY4 

 

#All variables AFTER Nearest Neighbor Matching with 0.20 Caliper, ATC 

Coding 

AvgX1TreatAGBMATC[i]   <-  BalAGBMATC$es.mean.ATT$`tx.mn`[1] 

AvgX2TreatAGBMATC[i]   <-  BalAGBMATC$es.mean.ATT$`tx.mn`[2] 
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AvgX3TreatAGBMATC[i]   <-  BalAGBMATC$es.mean.ATT$`tx.mn`[3] 

AvgX4TreatAGBMATC[i]   <-  BalAGBMATC$es.mean.ATT$`tx.mn`[4] 

AvgX5TreatAGBMATC[i]   <-  BalAGBMATC$es.mean.ATT$`tx.mn`[5] 

 

AvgX1CompAGBMATC[i]   <-  BalAGBMATC$es.mean.ATT$`ct.mn`[1] 

AvgX2CompAGBMATC[i]   <-  BalAGBMATC$es.mean.ATT$`ct.mn`[2] 

AvgX3CompAGBMATC[i]   <-  BalAGBMATC$es.mean.ATT$`ct.mn`[3] 

AvgX4CompAGBMATC[i]   <-  BalAGBMATC$es.mean.ATT$`ct.mn`[4] 

AvgX5CompAGBMATC[i]   <-  BalAGBMATC$es.mean.ATT$`ct.mn`[1] 

 

SDX1TreatAGBMATC[i]   <-  BalAGBMATC$es.mean.ATT$`tx.sd`[1] 

SDX2TreatAGBMATC[i]   <-  BalAGBMATC$es.mean.ATT$`tx.sd`[2] 

SDX3TreatAGBMATC[i]   <-  BalAGBMATC$es.mean.ATT$`tx.sd`[3] 

SDX4TreatAGBMATC[i]   <-  BalAGBMATC$es.mean.ATT$`tx.sd`[4] 

SDX5TreatAGBMATC[i]   <-  BalAGBMATC$es.mean.ATT$`tx.sd`[5] 

 

SDX1CompAGBMATC[i]   <-  BalAGBMATC$es.mean.ATT$`ct.sd`[1] 

SDX2CompAGBMATC[i]   <-  BalAGBMATC$es.mean.ATT$`ct.sd`[2] 

SDX3CompAGBMATC[i]   <-  BalAGBMATC$es.mean.ATT$`ct.sd`[3] 

SDX4CompAGBMATC[i]   <-  BalAGBMATC$es.mean.ATT$`ct.sd`[4] 

SDX5CompAGBMATC[i]   <-  BalAGBMATC$es.mean.ATT$`ct.sd`[5] 

 

#Standardized Mean Difference after GBM, ATC Coding 

SMD_X1_AGBMATC[i] <-  BalAGBMATC$es.mean.ATT$`std.eff.sz`[1] 

SMD_X2_AGBMATC[i] <-  BalAGBMATC$es.mean.ATT$`std.eff.sz`[2] 

SMD_X3_AGBMATC[i] <-  BalAGBMATC$es.mean.ATT$`std.eff.sz`[3] 

SMD_X4_AGBMATC[i] <-  BalAGBMATC$es.mean.ATT$`std.eff.sz`[4] 

SMD_X5_AGBMATC[i] <-  BalAGBMATC$es.mean.ATT$`std.eff.sz`[5] 

 

#####Percent Bias Reduction after GBM, ATC Coding 

PBR_X1_AGBMATC[i]  <- PBRX1GBMATC 

PBR_X2_AGBMATC[i]  <- PBRX2GBMATC 

PBR_X3_AGBMATC[i]  <- PBRX3GBMATC 

PBR_X4_AGBMATC[i]  <- PBRX4GBMATC 

PBR_X5_AGBMATC[i]  <- PBRX5GBMATC 

 

#Group Regression Coefficient after GBM, ATC Coding 

Y1AGBMATC[i]          <- as.numeric(OutcomeA.1GBMATC$coef[2]) 

Y2AGBMATC[i]          <- as.numeric(OutcomeA.2GBMATC$coef[2]) 

Y3AGBMATC[i]          <- as.numeric(OutcomeA.3GBMATC$coef[2]) 

Y4AGBMATC[i]          <- as.numeric(OutcomeA.4GBMATC$coef[2]) 

#Group t-value for each regression coefficient after GBM, ATC Coding 

tGBMATCY1A[i]             <-summary(OutcomeA.1GBMATC)$coef[2, 3] 

tGBMATCY2A[i]             <-summary(OutcomeA.2GBMATC)$coef[2, 3] 

tGBMATCY3A[i]             <-summary(OutcomeA.3GBMATC)$coef[2, 3] 

tGBMATCY4A[i]             <-summary(OutcomeA.4GBMATC)$coef[2, 3] 

#Treatment Group N (after GBM), ATC Coding 

GBMATCtreatNA[i]          <-

nobs(finalDataA$ATCgroup[finalDataA$ATCgroup==0]) 

#Comparison Group N (after GBM), ATC Coding 

GBMATCcompNA[i]           <-

nobs(finalDataA$ATCgroup[finalDataA$ATCgroup==1]) 

#Cohen's D for Treatment Effect after GBM, ATC Coding 

GBMATCCohenY1A[i]          <-cohenAGBMATCY1 

GBMATCCohenY2A[i]          <-cohenAGBMATCY2 

GBMATCCohenY3A[i]          <-cohenAGBMATCY3 

GBMATCCohenY4A[i]          <-cohenAGBMATCY4 
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#Other GBM Values 

ESS_CompGBM[i]           <-ps.AGBM$desc$es.mean.ATT$ess.ctrl 

mean.esGBM[i]            <-ps.AGBM$desc$es.mean.ATT$mean.es 

iterGBM[i]               <-ps.AGBM$desc$es.mean.ATT$n.trees 

 

ESS_CompGBMATC[i]           <-ps.AGBMATC$desc$es.mean.ATT$ess.ctrl 

mean.esGBMATC[i]            <-ps.AGBMATC$desc$es.mean.ATT$mean.es 

iterGBMATC[i]               <-ps.AGBMATC$desc$es.mean.ATT$n.trees} 

 

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

#~~~~~~~~~~~~~~~~~~~        Creating Excel File       ~~~~~~~~~~~~~~~~~ 

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Final.Sim.Data.A.BeforeMatching<-cbind( 

   

  #All,variables,BEFORE,matching/weighting 

  #Averages 

AvgX1TreatA,AvgX2TreatA,AvgX3TreatA,AvgX4TreatA,AvgX5TreatA,AvgYA1Treat

A, AvgYA2TreatA,AvgYA3TreatA, 

  

AvgYA4TreatA,AvgX1CompA,AvgX2CompA,AvgX3CompA,AvgX4CompA,AvgX5CompA,Avg

YA1CompA,AvgYA2CompA,AvgYA3CompA,AvgYA4CompA, 

  #Standard Deviations 

  

SDX1TreatA,SDX2TreatA,SDX3TreatA,SDX4TreatA,SDX5TreatA,SDYA1TreatA,SDYA

2TreatA,SDYA3TreatA,SDYA4TreatA, 

  

SDX1CompA,SDX2CompA,SDX3CompA,SDX4CompA,SDX5CompA,SDYA1CompA,SDYA2CompA

,SDYA3CompA,SDYA4CompA, 

  #Correlations 

  

Cor_X1.X2_A,Cor_X1.X3_A,Cor_X1.X4_A,Cor_X1.X5_A,Cor_X2.X3_A,Cor_X2.X4_A

,Cor_X2.X5_A,Cor_X3.X4_A, 

  

Cor_X3.X5_A,Cor_X4.X5_A,Cor_X1.PS_A,Cor_X2.PS_A,Cor_X3.PS_A,Cor_X4.PS_A

,Cor_X5.PS_A,Cor_X1.Y1_A, 

  

Cor_X2.Y1_A,Cor_X3.Y1_A,Cor_X4.Y1_A,Cor_X5.Y1_A,Cor_X1.Y2_A,Cor_X2.Y2_A

,Cor_X3.Y2_A,Cor_X4.Y2_A, 

  

Cor_X5.Y2_A,Cor_X1.Y3_A,Cor_X2.Y3_A,Cor_X3.Y3_A,Cor_X4.Y3_A,Cor_X5.Y3_A

,Cor_X1.Y4_A,Cor_X2.Y4_A,  

  

Cor_X3.Y4_A,Cor_X4.Y4_A,Cor_X5.Y4_A,Cor_G.Y1_A,Cor_G.Y2_A,Cor_G.Y3_A,Co

r_G.Y4_A, 

  #Standardized Mean Differences 

  

SMD_X1_All,SMD_X2_All,SMD_X3_All,SMD_X4_All,SMD_X5_All,SMD_PS_All,SMD_X

1_AllATC,SMD_X2_AllATC,SMD_X3_AllATC,SMD_X4_AllATC,SMD_X5_AllATC,SMD_PS

_AllATC, 

   

  #Outcome Variables 

  #Population Regression Coefficients 

PopY1A,PopY2A,PopY3A,PopY4A,PopATCY1A,PopATCY2A,PopATCY3A,PopATCY4A, 

  #Population t values 
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tPopY1A,tPopY2A,tPopY3A,tPopY4A,tPopATCY1A,tPopATCY2A,tPopATCY3A,tPopAT

CY4A, 

  #Population Cohen's d 

  

PopCohenY1A,PopCohenY2A,PopCohenY3A,PopCohenY4A,PopCohenATCY1A,PopCohen

ATCY2A,PopCohenATCY3A,PopCohenATCY4A, 

  #Ns  

  

treatPopNA,compPopNA,treatBaseNA,compBaseNA,treatPopNAATC,compPopNAATC,

treatBaseNAATC,compBaseNAATC, 

  #Baseline Regression Coefficients 

  

BaseY1A,BaseY2A,BaseY3A,BaseY4A,BaseATCY1A,BaseATCY2A,BaseATCY3A,BaseAT

CY4A, 

  #Baseline t values 

  

tBaseY1A,tBaseY2A,tBaseY3A,tBaseY4A,tBaseATCY1A,tBaseATCY2A,tBaseATCY3A

,tBaseATCY4A, 

  #Baseline Cohen's d 

  

BaseCohenY1A,BaseCohenY2A,BaseCohenY3A,BaseCohenY4A,BaseCohenATCY1A,Bas

eCohenATCY2A,BaseCohenATCY3A,BaseCohenATCY4A, 

  #Propensity Score mean, sd by group (before matching) 

AvgPSTreatA,AvgPSCompA,SDPSTreatA,SDPSCompA, 

  #VRs 

VRB,VRBATC  

) 

 

Final.Sim.Data.A.AfterNNMatching<-cbind( 

   

  #All,variables,AFTER,NN matching 

  #Averages 

  

AvgX1TreatANN,AvgX2TreatANN,AvgX3TreatANN,AvgX4TreatANN,AvgX5TreatANN,A

vgYA1TreatANN,AvgYA2TreatANN, 

  

AvgYA3TreatANN,AvgYA4TreatANN,AvgPSTreatANN,AvgX1CompANN,AvgX2CompANN,A

vgX3CompANN,AvgX4CompANN, 

  

AvgX5CompANN,AvgYA1CompANN,AvgYA2CompANN,AvgYA3CompANN,AvgYA4CompANN,Av

gPSCompANN,AvgX1TreatANNATC, 

  

AvgX2TreatANNATC,AvgX3TreatANNATC,AvgX4TreatANNATC,AvgX5TreatANNATC,Avg

YA1TreatANNATC,AvgYA2TreatANNATC, 

  

AvgYA3TreatANNATC,AvgYA4TreatANNATC,AvgPSTreatANNATC,AvgX1CompANNATC,Av

gX2CompANNATC,AvgX3CompANNATC, 

  

AvgX4CompANNATC,AvgX5CompANNATC,AvgYA1CompANNATC,AvgYA2CompANNATC,AvgYA

3CompANNATC,AvgYA4CompANNATC,AvgPSCompANNATC, 

  #Standard Deviations 

  

SDX1TreatANN,SDX2TreatANN,SDX3TreatANN,SDX4TreatANN,SDX5TreatANN,SDYA1T

reatANN,SDYA2TreatANN, 



187 
 

 
 

  

SDYA3TreatANN,SDYA4TreatANN,SDPSTreatANN,SDX1CompANN,SDX2CompANN,SDX3Co

mpANN,SDX4CompANN, 

  

SDX5CompANN,SDYA1CompANN,SDYA2CompANN,SDYA3CompANN,SDYA4CompANN,SDPSCom

pANN,SDX1TreatANNATC, 

  

SDX2TreatANNATC,SDX3TreatANNATC,SDX4TreatANNATC,SDX5TreatANNATC,SDYA1Tr

eatANNATC,SDYA2TreatANNATC, 

  

SDYA3TreatANNATC,SDYA4TreatANNATC,SDPSTreatANNATC,SDX1CompANNATC,SDX2Co

mpANNATC,SDX3CompANNATC, 

  

SDX4CompANNATC,SDX5CompANNATC,SDYA1CompANNATC,SDYA2CompANNATC,SDYA3Comp

ANNATC,SDYA4CompANNATC,SDPSCompANNATC, 

  #Standardized Mean Differences 

  

SMD_X1_ANN,SMD_X2_ANN,SMD_X3_ANN,SMD_X4_ANN,SMD_X5_ANN,SMD_PS_ANN,SMD_X

1_ANNATC,SMD_X2_ANNATC,SMD_X3_ANNATC,SMD_X4_ANNATC,SMD_X5_ANNATC,SMD_PS

_ANNATC, 

  #PBRs 

  

PBR_X1_ANN,PBR_X2_ANN,PBR_X3_ANN,PBR_X4_ANN,PBR_X5_ANN,PBR_PS_ANN,PBR_X

1_ANNATC,PBR_X2_ANNATC,PBR_X3_ANNATC,PBR_X4_ANNATC,PBR_X5_ANNATC,PBR_PS

_ANNATC, 

  #Outcome Variables 

  #Regression Coefficients 

Y1ANN,Y2ANN,Y3ANN,Y4ANN,Y1ANNATC,Y2ANNATC,Y3ANNATC,Y4ANNATC, 

  #t values 

tNNY1A,tNNY2A,tNNY3A,tNNY4A,tNNATCY1A,tNNATCY2A,tNNATCY3A,tNNATCY4A, 

  #Cohen's d 

  

NNCohenY1A,NNCohenY2A,NNCohenY3A,NNCohenY4A,NNATCCohenY1A,NNATCCohenY2A

,NNATCCohenY3A,NNATCCohenY4A, 

  #Ns 

NNtreatNA,NNcompNA,NNATCtreatNA,NNATCcompNA, 

  #Propensity Score mean, median, sd by group/matching 

  

PSMeanMatchedTreatANN,PSMeanMatchedCompANN,PSMeanUnMatchedTreatANN,PSMe

anUnMatchedCompANN, 

  

PSMeanMatchedTreatANNATC,PSMeanMatchedCompANNATC,PSMeanUnMatchedTreatAN

NATC,PSMeanUnMatchedCompANNATC,   

  

PSMedMatchedTreatANN,PSMedMatchedCompANN,PSMedUnMatchedTreatANN,PSMedUn

MatchedCompANN,   

  

PSMedMatchedTreatANNATC,PSMedMatchedCompANNATC,PSMedUnMatchedTreatANNAT

C,PSMedUnMatchedCompANNATC,PSsdMatchedTreatANN,PSsdMatchedCompANN,PSsdU

nMatchedTreatANN,PSsdUnMatchedCompANN,   

  

PSsdMatchedTreatANNATC,PSsdMatchedCompANNATC,PSsdUnMatchedTreatANNATC,P

SsdUnMatchedCompANNATC, 

  #VRs 

VRANN,VRANNATC 

) 
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Final.Sim.Data.A.AfterNNCaliperMatching<-cbind( 

   

  #All,variables,AFTER,NN matching with caliper 

  #Averages 

  

AvgX1TreatANNCal,AvgX2TreatANNCal,AvgX3TreatANNCal,AvgX4TreatANNCal,Avg

X5TreatANNCal,AvgYA1TreatANNCal, 

  

AvgYA2TreatANNCal,AvgYA3TreatANNCal,AvgYA4TreatANNCal,AvgPSTreatANNCal,

AvgX1CompANNCal,AvgX2CompANNCal, 

  

AvgX3CompANNCal,AvgX4CompANNCal,AvgX5CompANNCal,AvgYA1CompANNCal,AvgYA2

CompANNCal,AvgYA3CompANNCal, 

  

AvgYA4CompANNCal,AvgPSCompANNCal,AvgX1TreatANNCalATC,AvgX2TreatANNCalAT

C,AvgX3TreatANNCalATC, 

  

AvgX4TreatANNCalATC,AvgX5TreatANNCalATC,AvgYA1TreatANNCalATC,AvgYA2Trea

tANNCalATC,AvgYA3TreatANNCalATC, 

  

AvgYA4TreatANNCalATC,AvgPSTreatANNCalATC,AvgX1CompANNCalATC,AvgX2CompAN

NCalATC,AvgX3CompANNCalATC, 

  

AvgX4CompANNCalATC,AvgX5CompANNCalATC,AvgYA1CompANNCalATC,AvgYA2CompANN

CalATC,AvgYA3CompANNCalATC,AvgYA4CompANNCalATC,AvgPSCompANNCalATC, 

  #Standard Deviations 

  

SDX1TreatANNCal,SDX2TreatANNCal,SDX3TreatANNCal,SDX4TreatANNCal,SDX5Tre

atANNCal,SDYA1TreatANNCal, 

  

SDYA2TreatANNCal,SDYA3TreatANNCal,SDYA4TreatANNCal,SDPSTreatANNCal,SDX1

CompANNCal,SDX2CompANNCal, 

  

SDX3CompANNCal,SDX4CompANNCal,SDX5CompANNCal,SDYA1CompANNCal,SDYA2CompA

NNCal,SDYA3CompANNCal, 

  

SDYA4CompANNCal,SDPSCompANNCal,SDX1TreatANNCalATC,SDX2TreatANNCalATC,SD

X3TreatANNCalATC, 

  

SDX4TreatANNCalATC,SDX5TreatANNCalATC,SDYA1TreatANNCalATC,SDYA2TreatANN

CalATC,SDYA3TreatANNCalATC, 

  

SDYA4TreatANNCalATC,SDPSTreatANNCalATC,SDX1CompANNCalATC,SDX2CompANNCal

ATC,SDX3CompANNCalATC, 

  

SDX4CompANNCalATC,SDX5CompANNCalATC,SDYA1CompANNCalATC,SDYA2CompANNCalA

TC,SDYA3CompANNCalATC,SDYA4CompANNCalATC,SDPSCompANNCalATC, 

  #Standardized Mean Differences 

  

SMD_X1_ANNCal,SMD_X2_ANNCal,SMD_X3_ANNCal,SMD_X4_ANNCal,SMD_X5_ANNCal,S

MD_PS_ANNCal,SMD_X1_ANNCalATC, 

  

SMD_X2_ANNCalATC,SMD_X3_ANNCalATC,SMD_X4_ANNCalATC,SMD_X5_ANNCalATC,SMD

_PS_ANNCalATC, 

  #PBRs 

  

PBR_X1_ANNCal,PBR_X2_ANNCal,PBR_X3_ANNCal,PBR_X4_ANNCal,PBR_X5_ANNCal,P
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BR_PS_ANNCal,PBR_X1_ANNCalATC,PBR_X2_ANNCalATC,PBR_X3_ANNCalATC,PBR_X4_

ANNCalATC,PBR_X5_ANNCalATC,PBR_PS_ANNCalATC, 

  #Outcome Variables 

  #Regression Coefficients 

  

Y1ANNCal,Y2ANNCal,Y3ANNCal,Y4ANNCal,Y1ANNCalATC,Y2ANNCalATC,Y3ANNCalATC

,Y4ANNCalATC, 

  #t values 

  

tNNCalY1A,tNNCalY2A,tNNCalY3A,tNNCalY4A,tNNCalATCY1A,tNNCalATCY2A,tNNCa

lATCY3A,tNNCalATCY4A, 

  #Cohen's d 

  

NNCalCohenY1A,NNCalCohenY2A,NNCalCohenY3A,NNCalCohenY4A,NNCalATCCohenY1

A,NNCalATCCohenY2A,NNCalATCCohenY3A,NNCalATCCohenY4A, 

  #Ns  

NNCaltreatNA,NNCalcompNA,NNCalATCtreatNA,NNCalATCcompNA, 

  #Propensity Score mean, median, sd by group/matching 

  

PSMeanMatchedTreatANNCal,PSMeanMatchedCompANNCal,PSMeanUnMatchedTreatAN

NCal,PSMeanUnMatchedCompANNCal,  

  

PSMeanMatchedTreatANNCalATC,PSMeanMatchedCompANNCalATC,PSMeanUnMatchedT

reatANNCalATC,PSMeanUnMatchedCompANNCalATC, 

  

PSMedMatchedTreatANNCal,PSMedMatchedCompANNCal,PSMedUnMatchedTreatANNCa

l,PSMedUnMatchedCompANNCal, 

  

PSMedMatchedTreatANNCalATC,PSMedMatchedCompANNCalATC,PSMedUnMatchedTrea

tANNCalATC,PSMedUnMatchedCompANNCalATC,  

  

PSsdMatchedTreatANNCal,PSsdMatchedCompANNCal,PSsdUnMatchedTreatANNCal,P

SsdUnMatchedCompANNCal, 

  

PSsdMatchedTreatANNCalATC,PSsdMatchedCompANNCalATC,PSsdUnMatchedTreatAN

NCalATC,PSsdUnMatchedCompANNCalATC, 

  #VRs 

VRANNCal,VRANNCalATC 

) 

 

Final.Sim.Data.A.AfterGBM<-cbind( 

   

  #All,variables,AFTER,GBM 

  #Averages 

  

AvgX1TreatAGBM,AvgX2TreatAGBM,AvgX3TreatAGBM,AvgX4TreatAGBM,AvgX5TreatA

GBM,AvgX1CompAGBM,AvgX2CompAGBM, 

  

AvgX3CompAGBM,AvgX4CompAGBM,AvgX5CompAGBM,AvgX1TreatAGBMATC,AvgX2TreatA

GBMATC,AvgX3TreatAGBMATC, 

  

AvgX4TreatAGBMATC,AvgX5TreatAGBMATC,AvgX1CompAGBMATC,AvgX2CompAGBMATC,A

vgX3CompAGBMATC,AvgX4CompAGBMATC,AvgX5CompAGBMATC, 

  #Standard Deviations 

  

SDX1TreatAGBM,SDX2TreatAGBM,SDX3TreatAGBM,SDX4TreatAGBM,SDX5TreatAGBM,S

DX1CompAGBM,SDX2CompAGBM, 
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SDX3CompAGBM,SDX4CompAGBM,SDX5CompAGBM,SDX1TreatAGBMATC,SDX2TreatAGBMAT

C,SDX3TreatAGBMATC,SDX4TreatAGBMATC, 

  

SDX5TreatAGBMATC,SDX1CompAGBMATC,SDX2CompAGBMATC,SDX3CompAGBMATC,SDX4Co

mpAGBMATC,SDX5CompAGBMATC, 

  #Standardized Mean Differences 

  

SMD_X1_AGBM,SMD_X2_AGBM,SMD_X3_AGBM,SMD_X4_AGBM,SMD_X5_AGBM,SMD_X1_AGBM

ATC,SMD_X2_AGBMATC,SMD_X3_AGBMATC,SMD_X4_AGBMATC,SMD_X5_AGBMATC, 

  #PBRs 

  

PBR_X1_AGBM,PBR_X2_AGBM,PBR_X3_AGBM,PBR_X4_AGBM,PBR_X5_AGBM,PBR_X1_AGBM

ATC,PBR_X2_AGBMATC,PBR_X3_AGBMATC,PBR_X4_AGBMATC,PBR_X5_AGBMATC, 

  #Outcome Variables 

  #Regression Coefficients 

Y1AGBM,Y2AGBM,Y3AGBM,Y4AGBM,Y1AGBMATC,Y2AGBMATC,Y3AGBMATC,Y4AGBMATC, 

  #t values 

  

tGBMY1A,tGBMY2A,tGBMY3A,tGBMY4A,tGBMATCY1A,tGBMATCY2A,tGBMATCY3A,tGBMAT

CY4A, 

  #Cohen's d 

  

GBMCohenY1A,GBMCohenY2A,GBMCohenY3A,GBMCohenY4A,GBMATCCohenY1A,GBMATCCo

henY2A,GBMATCCohenY3A,GBMATCCohenY4A, 

  #Ns  

GBMtreatNA,GBMcompNA,GBMATCtreatNA,GBMATCcompNA, 

  #Additional 

ESS_CompGBM,mean.esGBM,iterGBM,ESS_CompGBMATC,mean.esGBMATC,iterGBMATC 

) 

 

BeforeMatchingWeighting<-as.data.frame(Final.Sim.Data.A.BeforeMatching) 

AfterNNMatching<-as.data.frame(Final.Sim.Data.A.AfterNNMatching) 

AfterNNMatchingCaliper<-

as.data.frame(Final.Sim.Data.A.AfterNNCaliperMatching) 

AfterGBM<-as.data.frame(Final.Sim.Data.A.AfterGBM) 

 

library(writexl) 

 

write_xlsx(list(BeforeMatchingWeighting = BeforeMatchingWeighting, 

AfterNNMatching = AfterNNMatching, AfterNNMatchingCaliper = 

AfterNNMatchingCaliper, AfterGBM = AfterGBM), path="ScenarioA.xlsx") 
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