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Abstract 

Wind noise is problematic for hearing aid users who enjoy outdoor activities. Not 

only is it annoying, it can create distortion by overloading the microphone and masking 

signals that hearing aid users desire to hear. Some hearing aid manufacturers offer wind 

noise reduction in addition to general noise reduction (WNR + NR) for clinicians to 

manipulate in their software. This study compares objective and subjective measures of 

wind noise reduction as well as subjective measure of intelligibility obtained using 

various hearing aid manufacturers and noise reduction settings while HINT sentences 

were played in the presence of constantly generated wind. Significant differences in the 

subjective and objective amount of noise present and perceived speech intelligibility was 

found both between manufacturers and between noise reduction settings for each 

manufacturer. Subjectively, intelligibility and noisiness were positively correlated 

(r=0.74, p>.001); conditions that were perceived to be the most intelligible were the same 

conditions that were perceived to be the noisiest.  The perception of intelligibility and 

noisiness depended on the interaction of hearing aid manufacturer and noise reduction 

setting (p<.001, effect size=.77) for hearing aids with WN + NR and depended on both 

hearing aid manufacturer (p<.001, effect size=0.67) and noise reduction setting (p<.001, 

effect size=0.61) individually for hearing aids with only NR.  Objective measures of gain 

reduction were negatively correlated with perceived noisiness (r=-0.87 to 0.92 -

depending on frequency range, p>.001) of sentences; as the amount of gain reduction 

decreased, the perceived noisiness increased.  In this study, the amount of noise perceived 

to be present and the intelligibility of speech depended on both hearing aid manufacturer 

and how noise reduction was programmed. The perception of noisiness and intelligibility 

were positively correlated, suggesting that when more gain reduction was applied 
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sentences became less intelligible. Interestingly, for hearing aid manufacturers with NR 

only the perceived noisiness and intelligibility of sentences both increased when less 

noise reduction was applied. The results of this study have clinical implications for 

programming noise reduction settings in hearing aids when both wind and speech are 

present.   

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Introduction 

Wind noise is a problem for most hearing aid users who enjoy outdoor activities. Not 

only is it annoying to listen to, it can create distortion by overloading the microphone and 

masks signals that hearing aid users desires to hear. Wind noise can be reduced through 

acoustic means and, when the microphone is not overloaded, through signal processing. 

Despite hearing aid manufacturers attempts to alleviate the problems associated with 

wind noise, Kochkin (2005), in one of the largest studies of hearing aid user‟s 

satisfaction, found only 49% of hearing aid users were satisfied with their hearing aids 

performance in wind. To address this issue, certain hearing aid manufacturers have 

recently added wind noise control features that clinicians can manipulate, similar to noise 

reduction (NR) features, within their software programming of the aids. More commonly, 

manufacturers have algorithms built in to the hearing aid processing that will reduce wind 

noise, but it may not be accessible to the clinician for manipulating the amount of wind 

noise reduction. At present, published data on WNR algorithms used by different hearing 

aid manufactures is lacking. The purpose of this study is to determine the efficacy of 

noise reduction algorithms used by different manufacturers to reduce wind noise while 

maintaining speech intelligibility. 

Wind Noise and Hearing Aids 

Wind noise is caused by turbulent air flow; that is, the large changes in particle 

velocity that arises when air collides with any object, such as the pinna, tragus, or a 

hearing aid. Turbulent air flow results in eddies, or random currents that are characterized 

by large spatial pressure differentials as opposed to laminar, or smooth, air flow that is 

characterized by air flowing in distinct layers with no air being exchanged between 
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layers. The sound pressure level resulting from wind increases dramatically with 

increasing wind velocity; that is, wind noise and wind velocity are positively correlated 

with one another (Strasberg, 1988). Specific to hearing aid users, the amount of wind 

noise they will experience is affected by many hearing aid related factors including but 

not limited to hearing aid style, microphone location relative to the wind source, 

microphone directionality, frequency response, and signal processing algorithms (Chung, 

Mongeau, & McKibben, 2009).   

 Turbulence occurs from disruptions in the path of air flow; therefore, bigger 

objects and more disruptions in the air path will generally result in more turbulence and, 

consequently, more wind noise. Dillon, Roe, and Katch, found that, in general, in-the-ear 

(ITE) hearing aids result in the least amount of turbulent air flow followed by 

completely-in-the-canal (CIC) hearing aids, with behind-the-ear (BTE) hearing aids 

resulting in the greatest amount of turbulent air flow (as cited in Thompson, 2002, p 82-

83). In-the-ear hearing aids fully occlude the concha, thereby eliminating what would be 

an additional source of turbulent air flow, while also providing a smooth surface for 

laminar air flow. Completely-in-the-canal hearing aids also eliminate most of the 

turbulence that would occur at the concha, but lack the smooth surface of ITE hearing 

aids. Finally, BTE hearing aids rest in an area of high turbulence behind the pinna and are 

attached to an ear hook and tubing, which create additional sources of turbulence, 

resulting in greater wind noise.  Due to other hearing aid factors, such as microphone 

openings, variable amounts of wind noise may be found within any one hearing aid style 

(Grenner, Abrahamsson, Jernberg, Lindblad, 2000). 
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The sound pressure level (SPL) resulting from turbulent air flow varies with the 

direction of the hearing aid microphone relative to the wind noise. Dillon et al (cited in 

Kates, 2008, p. 155-156) measured the SPL of wind noise arising over a range of 180 

degrees relative to ITE, CIC, and BTE hearing aids fit to KEMARs right ear and 

concluded that the greatest SPL results from wind arising from 0 degrees azimuth while 

the least amount of SPL results from wind arising ipsilateral to the hearing aid ear, with a 

varying amount of SPL occurring from directions between the two extremes. Greater 

wind noise (SPL) was measured from wind arising contralateral to the hearing aid ear 

than from wind arising ipsilateral to the hearing aid ear. This is rationalized in that air 

flow arising ipsilateral to the hearing aid is likely still laminar upon coinciding with the 

hearing aid, whereas air flow arising contralateral to the hearing aid has already been 

disturbed when it reaches the hearing aid and is therefore more turbulent. For BTE 

hearing aids, the difference in SPL occurring at 0 degrees compared to 45 degrees is 

marginal, whereas a decrease in wind flow velocity is seen at 90 degrees (Chung, 

Mongeau, & McKibben, 2009). 

As a direct consequence of the lack of correlation of wind noise at either 

microphone as well as the low frequency boost that is inherent to directional microphone 

arrays, omnidirectional microphones generally result in less wind noise than directional 

microphones (Chung, et al 2009; Chung, McKibben, & Mongeau, 2010). Directional 

microphones can increase the signal to noise ratio (SNR) when the signal of interest and 

noise are spatially correlated, but separated. For cancellation to occur the signal reaching 

the diaphragm from each microphone port must be correlated; otherwise addition or 

subtraction of the signals at either port may result in amplification of the signal rather 



4 
 

 

than reduction of the signal (Kates, 2008). In the case of wind, the noise will be spatially 

uncorrelated at each microphone and will therefore often result in larger, rather than 

smaller, vibrations of the microphone diaphragm. In addition, directional microphones 

have an inherent low frequency roll off secondary to the readily matching phase angles of 

low frequency wavelengths. To compensate for the low frequency roll off that is inherent 

to directional microphone arrays, directional microphones utilize a low frequency boost. 

The spectrum of wind noise is predominantly in the low frequencies, at around 300 Hz or 

less depending on wind velocity, with a steep roll off at higher frequencies (Wuttke, 

1991; Larrson & Olsson, 2004).  By nature of the spectrum of wind noise, the low 

frequency boost in directional microphone arrays is counterproductive to wind noise, 

making directional microphone arrays more susceptible to intolerable wind noise than 

omnidirectional microphones. Some hearing aids utilize an algorithm in which the 

hearing aid will automatically switch to omnidirectional mode upon detection of wind. In 

hearing aids that do not automatically switch, a hearing aid user should be counseled to 

switch his or her hearing aid to omnidirectional mode in the presence of wind.   

Reducing Wind Noise in Hearing Aids 

Acoustic means to reduce wind noise, such as a physical wind screen, is an 

effective way to reduce wind noise. Unfortunately, due to the small size of hearing aids a 

wind screen is unrealistic and therefore hearing aid manufacturers must rely on signal 

processing algorithms to reduce wind noise. To be effective, signal processing algorithms 

require a way for the hearing aid to separate wind noise from desired signals.  

One of the most consistent distinguishing characteristics of wind noise is that it is 

predominantly low frequency in nature. When characterizing wind noise, despite small 
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differences in exact numbers, the general consensus is that it is strongly low frequency in 

nature with a relatively steep roll off above ~300 Hz (Wuttke, 1991; Dillon et al 1999; 

Larrson & Olsson, 2004, as reported in Kates, 2008, p 158-159).  A spectrum algorithm 

that determines the presence or absence of wind based on the percentage of the incoming 

signal that is low frequency is one algorithm that can be used to reduce wind noise. Such 

an algorithm monitors the amount of the incoming signal that is low frequency to 

determine the presence or absence of wind. The algorithm then frequency shapes, or 

decreases the amount of gain at low frequencies, when wind is indicated (Kates, 2008).  

Unlike speech, wind is highly uncorrelated at any point in time. Consequently, 

another algorithm that can successfully be used to reduce wind noise is a correlation 

algorithm. Correlation algorithms utilize a statistic that determines the correlation of 

incoming signals at the front and rear microphones. Therefore, dual microphones are a 

requirement for a hearing aid to utilize this algorithm. Wind lacks the spatial correlation 

that other signals, such as speech and external background noise, will have at both 

microphones; whereas speech will be spatially correlated at each microphone, wind will 

be uncorrelated. When the statistic determines the signal is uncorrelated at each 

microphone, this is indicative of wind and the gain will be reduced. Correlation 

algorithms can be done in the frequency domain using Fast Fourier Transform (FFT), 

whereby the amount of correlation is determined in several individual frequency bins. 

Gain would then be set in each frequency bin depending on the amount of correlation in 

each frequency bin (Kates, 2008).   

In addition to an algorithm to reduce wind noise, some hearing aid manufacturer‟s 

offer wind noise control features in their programming software that clinicians can 
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manipulate similar to noise reduction (NR). More commonly, manufacturers have general 

noise reduction that will likely reduce wind noise, but is not monitoring for wind noise 

specifically. At present, published data on wind noise reduction algorithms used by 

different hearing aid manufactures is lacking. The purpose of this study is to determine 

the efficacy of algorithms used by different manufacturers in reducing wind noise while 

maintaining speech intelligibility. Specifically, the following questions will be addressed: 

1) Are there consistent subjective differences, both within and between listeners, in 

speech intelligibility within and across manufacturers? 2) Are there subjective differences 

in perceived noisiness within and across manufacturers? 3) Do subjective measures of 

noisiness correlate with objective measures of gain reduction within and across 

manufacturers? 

Hearing instruments from four manufacturers were chosen for this study. The 

hearing aid chosen from manufacturer A utilizes 16 channels and two microphones, one 

for omnidirectional processing and one for directional processing, which are used 

independently of one another. A fast-acting, single-microphone noise reduction algorithm 

is utilized to reduce noise between the syllables of speech and maintain appropriate gain 

prescription when speech is present. Incoming signals are analyzed and the most 

appropriate algorithms are implemented depending on overall input level, input level in 

each channel, statistical categorization of inputs and the signal-to-noise ratio present in 

each channel. The clinician can manipulate how much gain reduction will be applied 

given several different noise categories, one of which is wind. The turbulence of wind 

passing across the microphone diaphragm triggers the wind noise reduction algorithm. 
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The resulting adaptation is a level dependant decrease in output for the four lowest 

hearing aid channels (Manufacturer A, personal communication, October 20, 2010).  

The hearing aid chosen from manufacturer B utilizes 20 channels and dual omni-

directional microphones. The amount of gain prescription and noise reduction applied in 

each channel depends on the incoming signal, which is classified into one of 4 categories.  

For each of the categories, the clinician can manipulate the amount of noise reduction and 

wind noise reduction that takes place. The noise reduction algorithm is level dependant 

and gain reduction is applied in the bands where noise is the dominant signal, whereas 

additional gain is provided in the bands where speech is the dominant signal 

(Manufacturer B, personal communication, November 3, 2010).  

The hearing aid chosen from manufacturer C utilizes channel free, fast acting 

processing which continuously adjusts the gain of the hearing instrument to amplify each 

phoneme individually without dividing the signal into fixed channels. When speech and 

noise are detected, the hearing aid uses adaptive directionality in combination with 

adaptive noise reduction to achieve the best signal to noise ratio and increase comfort, 

respectively. Depending on the environment, adaptive directionality transitions between 

high-frequency directional with null steering above 1000 Hz and full directional with null 

steering in all bands. The noise reduction system functions in independent bands across 

the frequency range to reduce noise and maintain speech. The noise reduction system has 

three modes:  a speech mode which prevents noise reduction when speech is detected, a 

comfort mode which initializes more noise reduction given the input level of noise 

detected, and a wind noise mode which utilizes a “fixed reduction for all bands which is 

important when outdoors”.  According to Manufacturer C (personal communication, 
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November 1, 2010) the hearing aid utilizes a correlation algorithm to determine if wind 

noise is present and, if wind is detected, the directionality system will automatically fade 

into high-frequency directionality mode and noise reduction is applied across the 

frequency range. 

The hearing aid chosen from manufacturer D utilizes 10 channels and reduces 

noise on a per channel basis depending on the modulation characteristics of the signal 

present in each channel. Simultaneously, the high frequency region is monitored for the 

presence of harmonically related signals, which suggests the presence of speech and 

prevents excessive noise reduction in those channels when harmonically related signals 

are present.  Multi-band adaptive directionality is used in four individual frequency 

bands, depending on the input in each of the four frequency bands directionality in each 

band will switch independently between full-directional, omnidirectional and split-

directional mode to achieve the best signal to noise ratio in each of the bands.  In the 

instant of wind noise, this hearing aid responds by applying level dependant noise 

reduction and automatic microphone switching based on the amount of signal present that 

would benefit from directionality. For example, if wind noise is excessive and speech 

signals are not present, directionality would not be activated; however, if wind noise is 

modest and speech signals are present that would benefit from directionality the hearing 

aid would go into split directional mode keeping the low frequency bands in 

omnidirectional mode and the high frequency bands in directional mode (Manufacturer 

D, personal communication, September 17, 2010). 



 
 

Methods  

Participants 

A total of 20 participants, nine male and eleven female, were recruited for this 

study. Participants ranged in age from 22-34 with a mean age of 26.  All participants had 

normal hearing and normal middle ear status, which was confirmed with pure-tone 

audiometry and tympanometry, respectively. Hearing thresholds of 20 dB HL or better 

from .5-8 kHz and normal Type A pressure-compliance functions were required, 

bilaterally. 

Signal Preparation 

Hearing Aids 

Four commercially available behind-the-ear (BTE) style hearing aids were used in this 

study. Hearing aids were programmed using the manufacturer‟s software. Each hearing 

aid was programmed to fit a flat 65 dB sensorineural hearing loss using the 

manufacturer‟s default prescription for gain. A moderately-severe flat hearing loss 

configuration was chosen to ensure sufficient gain at all frequencies to activate level 

dependant noise and wind noise reduction algorithms. Hearing aids were coupled to an 

unvented earmold via standard size 13 tubing* and fit to KEMAR‟s right ear.  An 

unvented earmold was selected to maintain a flat frequency response.  Noise reduction 

and, where applicable, wind noise reduction, was programmed in several different ways 

for each hearing aid which resulted in a total of 12 conditions as shown in Table 1. All 

other hearing aid features were programmed as similarly as possible for each 

manufacturer, the details of which can be found in Appendix A.  
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Hearing Aid A and Hearing Aid B both have wind noise reduction available in 

their software for clinicians to manipulate in addition to general noise reduction. Wind 

noise reduction can be set to a minimum, moderate, or maximum amount, similar to how 

noise reduction can be applied in most hearing aid software. Hearing aid A uses two 

microphones, one for omni-directional processing and one for directional processing. The 

turbulence of wind across the microphone triggers the wind noise algorithm so, in theory, 

noise alone which is not turbulent should not trigger the wind noise algorithm. When 

turbulence is picked up at the microphone, the resulting adaptation is a level dependant 

decrease in output level for the four lowest hearing aid channels. Hearing aid B does not 

differentiate between different types of noise, but reduces noise on a per channel basis in 

bands where noise is the dominant signal (Manufacturer B, personal communication, 

November 3, 2010). Therefore in the case of wind, which is low frequency in nature, gain 

reduction would be applied in low frequency channels.  

Hearing aid C and D both have general noise reduction, rather than noise 

reduction and wind noise reduction, available in their software for clinicians to 

manipulate. Hearing aid C utilizes a correlation algorithm to determine if wind is present. 

When the incoming signal is uncorrelated, microphone switching and gain reduction 

takes place. The directionality system automatically switches to high frequency 

directionality mode and noise reduction results in a level-dependant fixed gain reduction 

of at least 10 dB takes place (Manufacturer C, personal communication, November 3, 

2010). Hearing aid D also uses a correlation algorithm to determine if wind is present and 

utilizes directional microphone switching when wind noise is likely present. Directional 
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microphone switching is tied to the amount of wind detected as well as how much of the 

input signal would benefit from having a directional array. When a threshold amount of 

wind is detected, the hearing aid will either go into a split-directional or omnidirectional 

array depending on the amount of the input signal that is present in addition to 

uncorrelated wind that could benefit from a directional array. If the hearing aid goes into 

a split-directional array, channels 1000 Hz and below are processed in omnidirectional 

while higher frequency stimuli are processed in a directional array (Manufacturer D, 

personal communication, September 17, 2010).  

*with the exception of hearing aid D which was a RITE coupled to putty, which acted as 

an unvented earmold   

Table 1 Variable programming of Wind Noise and Noise Reduction in the four hearing 

aids used in this study resulted in 12 unique conditions. Hearing aid A and B resulted in 4 

conditions each: wind noise and noise reduction on maximum settings, wind noise at 

maximum setting and noise reduction at minimum setting, wind noise at minimum setting 

and noise reduction at maximum setting, and wind noise and noise reduction at minimum 

setting. Hearing aids C and D resulted in 2 conditions each: noise reduction at maximum 

setting and noise reduction at minimum setting.  

  Conditions           

Manufacturer 
WN on/ NR 
on 

WN on/ NR 
off 

WN off/ NR 
on 

WN off/ NR 
off 

NR 
on 

NR 
off 

A X X X X     

B X X X X     

C         X X 

D         X X 

 

Stimuli Preparation 

A table fan (feature comforts, model #0118251) was used to generate wind.  The 

fan was placed 91 cm from KEMAR at 45 degrees azimuth to the right. The fan speed 

was set to high and, using a La Crosse Technology EA-3010U handheld Anemometer, 
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the wind speed at the top of KEMAR‟s pinna, or the location of the behind-the-ear 

microphones, was ~5 mph.  A Tannoy System 600 speaker was used to generate speech. 

The speaker was placed 91 cm from KEMAR at 0 degrees azimuth. Sentences from list 1 

of the Hearing In Noise Test (HINT) were routed from a GSI 16 audiometer, calibrated 

July 2009, to the speaker at a level of 65 dB HL. HINT sentences were calibrated using 

the 1 kHz calibration tone on the HINT compact disk. The SPL of the HINT sentences 

were also measured with a Larson Davis System 824 precision SLM.  In a 305cm x 

305cm double-walled IAC sound treated booth, wind was presented from the fan at a 

speed of     ~ 5 mph for two minutes for each condition to allow ample time for noise 

reduction in each of the conditions to fully engage. After two minutes, HINT sentences 

were played from the speaker at a level of 65 dB SPL in conjunction with continuous fan 

generated wind. Output of the 12 hearing aid conditions in response to the sentences in 

wind were recorded through an ER-11 preamplifier with a 1/2” microphone coupled to a 

Zwislocki coupler mounted to KEMAR.   Output of the 12 conditions were recorded to 

the hard drive of a personal computer, to be analyzed offline, using commercial sound 

editing software (Cool Edit Pro 2.1). 

Two, of the ten total recorded, HINT sentences from list 1 were chosen at random 

to use for subjective and objective analysis of wind noise reduction across the different 

conditions. These two sentences were “the woman helped her husband” and “the player 

lost his shoe”. The average RMS of each sentence, with approximately 1 second of wind 

only before and after each sentence, was equalized for each condition. The average RMS 

was equalized to prevent audibility of the sentences from being a confounding factor, 

since it is known that all hearing aids do not provide the same amount of gain. 
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Procedure 

A commercially available signal presentation program (SuperLab version 4.0) 

was used to create an experiment for participants to make judgments on intelligibility and 

noisiness of a HINT sentence processed through the 12 conditions. Participants were first 

asked to judge intelligibility and then asked to judge noisiness of the same HINT 

sentence. The sentence that each participant heard was randomly chosen from the two 

recorded sentences. Ultimately, 10 Participants heard “the wife helped her husband” and 

10 participants heard “the player lost his shoe”. For intelligibility, a paired comparison 

forced-choice paradigm experiment was created in which each participant heard the same 

HINT sentence processed in two different conditions and was asked to choose the most 

intelligible condition of the pair. Participants did this for all 66 possible pairs of the 12 

conditions. For noisiness, participants heard the same HINT sentence processed in each 

condition individually and was asked to rate the nosiness of each of the conditions on an 

analog scale from 1 to 9, with 1 being the least noise and 9 being the most noisy. 

Participants were given the following typed instructions, which were also read aloud 

prior to beginning the study:  

“The sentences you will be listening to have been recorded through a hearing aid 

while wind noise was present. At the beginning of each sentence you will hear some wind 

noise. The wind noise will sound different for each sentence because each sentence is 

being processed differently and through several different hearing aid manufacturers. For 

the first part of the study you will be presented with several pairs of sentences. You will 

be asked to choose the sentence that is the most intelligible. I want you to judge only 

intelligibility, meaning the sentence that is the clearest and the easiest to understand. I 

want you to choose the most intelligible sentence regardless of the amount of wind noise 

present. Sentences cannot be replayed; you will only be allowed to listen to each sentence 

once. For the second part of the study you will be asked to judge the noisiness of several 

sentences. You will be asked to rate the noisiness of the sentences on a scale of 1-9, 1 

being not noisy at all and 9 being very noisy. Sentences cannot be replayed; you will only 

be allowed to listen to each sentence once. Before we begin you will do a practice trial. 



14 
 

 

Please let me know if the volume is too loud or too soft and it will be adjusted as needed 

before beginning the study.” 

 

For both intelligibility and noisiness the participants could not replay any of the 

conditions and had to make either a choice, for intelligibility, or a rating, for noisiness, 

before proceeding to the next pair of conditions (for intelligibility) or single condition 

(for noisiness). Participants had to press a key to signal they were ready to hear the next 

condition before it was played.   

Data Analysis 

Subjective Measurements  

A custom software program written to compute the coefficient of agreement 

based on the formula by Kendall and Gibbons (1990) was used (Lincoln Gray, personal 

communication, October 2, 2010) to determine if there was a significant, consistent 

difference in intelligibility rankings of the 12 conditions within and between participants. 

All possible pairs of conditions (66) were presented to each participant.  A coefficient of 

agreement evaluates consistency within and between participants by the number of 

circular triples committed by a participant. A circular triple occurs when a participant is 

inconsistent in their judgments. For example, if a participant is asked presented with 3 

options: A, B, and C and the participant judges A superior to B and B superior to C, then 

by default A should be judged superior to C. However, in that case if C is judged to be 

superior to A, then a circular triple has occurred. A circular triple reflects inconsistency 

on the participant; therefore the less circular triples, the higher the z score from Kendall‟s 

statistical test, and more likely the participants rankings will be significantly different 

than chance. The coefficient of agreement program gives the number of circular triples 

and a z-score reflecting difference from chance for each individual participant and for the 
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group.  Note that individuals can be completely consistent as individual observers, but 

very different comparing one to the other.  The program also reports rankings of the 

conditions presented to participants and the total number of times each condition was 

chosen as the more intelligible of the pair.  

Two separate MANOVAs were performed to determine the effect of hearing aid 

manufacturer and noise reduction settings on the perceived intelligibility and noisiness of 

conditions. One MANOVA was used to analyze data with the two hearing aid 

manufacturers who have wind noise reduction and noise reduction (WNR + NR); within-

subjects factors were manufacturer (A or B), WNR on or off and NR on or off and 

between subjects factor was sentence, as 10 participants heard each sentence. The second 

MANOVA was used to analyze data with the two hearing aid manufacturers who only 

have noise reduction (NR) settings; within-subject factors were manufacturer (C or D), 

NR on or off and between subjects factor was again sentence.  

Objective Measurements 

 Cool Edit Pro version 2.1 was used to make physical measures of the dB SPL 

output of the 12 recorded conditions. The investigator making the physical measurements 

was blinded to the conditions. Output was measured at 2 time periods for each condition, 

once before the HINT sentence began and wind only was present (noise only measure) 

and again when the sentence and wind were present (signal + noise measure). Output was 

measured at several different frequencies for both the noise and the signal + noise 

measurement of the recorded conditions:  .25, .5, 1, 2, 4, and 6 kHz. The amount of 

frequency specific wind noise gain reduction (dB SPL) was calculated for each condition 

by subtracting the noise only output from the signal + noise output at each frequency 



16 
 

 

measured. Low, mid, and high frequency gain reduction was calculated by taking an 

average of the gain reduction at .25 and .5 kHz, 1 and 2 kHz, and 4 and 6 kHz, 

respectively.  

 

 

 



 
 

Results 

Intelligibility 

An independent samples t-test comparing the number of circular triples 

committed by participants who heard sentence 1 and participants who heard sentence 2 

yielded no significant difference (p>.05). The ranking of intelligibility, or preference, was 

highly correlated and significant (r=0.67, p=.005) between participants who heard 

sentence 1 and participants who heard sentence 2. Given no significant difference in 

circular triples and the significantly correlated ranking of intelligibility between the two 

sentence groups, all further results were obtained by analyzing data from all participants 

as a whole.  

Intelligibility: All Conditions 

Kendall‟s coefficient of agreement yielded significant differences (p<.001, effect 

size=16.6), both within and between participants, in the perceived intelligibility of the 12 

conditions. Figure 1 demonstrates how subjects ranked intelligibility of the 12 conditions.  

(values can range from 11 to 0 if there were a single overall „winner‟ and „loser‟). 
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Figure 1 Ranking of intelligibility, or preference, of conditions among participants using 

Kendall‟s Coefficient of Agreement. Intelligibility given by the average total number of 

times each condition was chosen (n=20) to as most intelligible of the sentence pair, 0 

being the least intelligible and 11 being the most intelligible on this scale. WN= wind 

noise setting; NR= noise reduction setting; on= set to maximum possible setting; off=set 

to minimum possible setting.  

Intelligibility: Correlation with Nosiness 

The perceived intelligibility of a condition was highly and significantly correlated 

with the perceived noisiness of the same condition (r=0.74, p>.001, r2=.5 or a medium 

effect size). Perceived intelligibility and noisiness were directly correlated; as the 

perceived intelligibility increased, the perceived noisiness increased. Figure 2 

demonstrates the correlation between the subjective measures of intelligibility and 

noisiness when wind was present for all conditions. 
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Figure 2 Correlation of intelligibility and noisiness of conditions. Perceived intelligibility 

and noisiness were positively related. Intelligibility given by the average total number of 

times each condition was chosen (n=20) as the most intelligible of the pair; 0 being the 

least intelligible and 11 being the most intelligible on this scale. Noisiness given by the 

average noisiness rating (on a scale of 1-9) given to each condition (n=20); 0 being the 

least noisy and 9 being the most noisy on this scale.  

Intelligibility: Manufacturers with Wind Noise Reduction and Noise Reduction (A 

and B) 

MANOVA yielded a significant interaction between hearing aid manufacturer and 

noise reduction setting on the perceived intelligibility of conditions involving hearing aid 

manufacturers with WNR + NR (p<.001, effect size=.77).  The left side of figure 3 

demonstrates the interaction of hearing aid manufacturer and noise reduction settings on 

the perceived intelligibility of the conditions. With the exception of wind noise reduction 

on and noise reduction off, hearing aid manufacturer A was perceived to be more 

intelligible than hearing aid manufacturer B for all noise reduction settings. When wind 
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noise reduction was on and noise reduction was off, manufacturer B was perceived to be 

more intelligible than manufacturer A.  

Intelligibility: Manufacturers with Noise Reduction (C and D)  

A MANOVA yielded significant main effects of hearing aid manufacturer 

(p<.001, effect size=0.67) and noise reduction setting (p<.001, effect size=0.61) on the 

perceived intelligibility of conditions involving hearing aid manufacturers with NR, but 

no interaction.  The right side of figure 3 demonstrates the main effects of hearing aid 

manufacturer and noise reduction settings on the perceived intelligibility of the 

conditions. Regardless of noise reduction setting, manufacturer C was perceived to be 

more intelligible than manufacturer D. Regardless of manufacturer, conditions in which 

noise reduction was set to maximum (NR on) were perceived to be more intelligible than 

conditions in which noise reduction was set to minimum (NR off). 
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Figure 3 Perceived intelligibility of conditions. Intelligibility given by the average total 

number of times each condition was chosen (n=20) as the most intelligible of the pair; 2 

being the least intelligible and 10 being the most intelligible on this scale. Between  

manufacturers with WNR + NR and manufacturers with NR only, conditions WN on/NR  

on and WN off/NR off are most comparable to NR on and NR off, respectively. 

Noisiness 

An independent samples t-test comparing the noisiness rating of the 12 conditions 

by the participants who heard HINT sentence 1 and participants who heard HINT 

sentence 2 yielded insignificance (p>.05). The numerical scale of noisiness rating, or 

noisiness, was highly correlated and significant (r= 0.82, p<.001) between participants 

who heard HINT sentence 1 and participants who heard HINT sentence 2. Given no 

significant difference in nosiness rating and the significantly correlated nosiness rating 

between the two sentence groups, all further results were obtained by analyzing data from 

all participants as a whole.  
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Noisiness Rating: Correlation with Objective Gain Reduction 

The perceived noisiness of a condition was highly and significantly correlated 

with objective gain reduction.  The correlation was negative, as expected, showing that 

louder sounds (more gain) are perceived as more noisy. This relationship was true for low 

frequency gain reduction (r=-0.92, p>.001), mid frequency gain reduction (r=-0.92, 

p>.001) and high frequency gain reduction (r=-0.87, p>.001). Gain reduction at low, mid, 

and high frequency regions differed in the absolute amount of gain reduction; the greatest 

amount of gain reduction was measured at high frequency regions and the least amount of 

gain reduction was measured at low frequency regions; as demonstrated in Figure 4 in the 

shift along the y-axis for low, mid, and high frequency regions and the amount of gain 

reduction.   

 

Figure 4 Correlation of perceived noisiness and objective gain reduction across low 

frequency, mid frequency, and high frequency regions for all conditions when wind was 

present. Noisiness given by the average noisiness rating (on a scale of 1-9) given to each 

condition (n=20); 0 being the least noisy and 8 being the most noisy on this scale. 
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Noisiness: Manufacturers with Wind Noise Reduction and Noise Reduction (A 

and B) 

A MANOVA yielded a significant interaction between hearing aid manufacturer 

and noise reduction setting on the perceived noisiness of conditions involving hearing aid 

manufacturers with WNR + NR programming (p<.001, effect size=.77).  Figure 5 

demonstrates the interaction of hearing aid manufacturer and noise reduction setting on 

perceived noisiness of the conditions. With the exception of wind noise reduction on and 

noise reduction off, hearing aid manufacturer A was perceived to be noisier than hearing 

aid manufacturer B for all noise reduction settings. When wind noise reduction was on 

and noise reduction was off, manufacturer B was perceived to be noisier than 

manufacturer A. 

Noisiness: Manufacturers with Noise Reduction (C and D) 

A MANOVA yielded significant main effects of hearing aid manufacturer and 

noise reduction setting on the perceived noisiness of conditions involving hearing aid 

manufacturers with NR (p<.001, effect size=0.67, 0.61).  Figure 5 demonstrates the main 

effects of hearing aid manufacturer and noise reduction settings on the perceived 

noisiness of the conditions. Regardless of noise reduction setting, manufacturer C was 

perceived to be noisier than manufacturer D. Regardless of manufacturer, conditions in 

which noise reduction was set to a maximum (NR on) were perceived to be noisier than 

conditions in which noise reduction was set to a minimum (NR off). 
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Figure 5 Perceived noisiness of conditions. Noisiness given by the average noisiness 

rating (on a scale of 1-9) given to each condition (n=20); 3 being the least noisy and 8 

being the most noisy on this scale. Between manufacturers with WNR + NR and 

manufacturers with NR only, conditions WN on/NR on and WN off/NR off are most 

comparable to NR on and NR off, respectively. 

In summary, there were significant differences in the perceived intelligibility and 

noisiness rating of the 12 conditions and subjective measures of noisiness were 

significantly correlated with objective measures of gain reduction. Perceived 

intelligibility and noisiness depended on an interaction between manufacturer and noise 

reduction setting for hearing aids with both WNR + NR and depended on manufacturer 

and noise reduction settings individually for hearings aids with only NR. 



 
 

Discussion 

Hearing aid users face turbulent wind that cannot be replicated in a laboratory, yet 

clinicians need data demonstrating the efficiency of noise and wind noise reduction 

algorithms in those conditions, particularly when speech is present. To date clinicians 

have to rely on manufacturer‟s information on how the hearing aids are designed to 

perform in wind but have no data available to support or refute their claims. Other studies 

have demonstrated the effects of different hearing aid styles, position of microphones, 

and directionality of microphones on the amount of wind noise, but have yet to analyze 

the efficiency of noise reduction algorithms at reducing wind noise in commercially 

available hearing aids (Chung et al, 2009; Chung et al, 2010; Kates, 2008; Thompson 

2002). This study was designed from a clinical stand point to assess the efficiency of 

wind noise and noise reduction algorithms at reducing wind noise while maintaining 

speech intelligibility. Knowing that the turbulent conditions that hearing aid user's face 

cannot be duplicated, a fan was used to generate wind at a speed typical of a light breeze 

(Huler, 2004) while recorded speech was simultaneously played and the resulting sound 

quality from 4 hearing aid manufacturers, 2 with WNR + NR and 2 with NR only was 

evaluated.  

Perceived Intelligibility in hearing aids with WN+NR and NR only 

There were significant differences in the perceived intelligibility of the 12 

conditions evaluated in this study; however the differences yielded no consensus as to 

which hearing aid or noise reduction settings were more intelligible. How each of those 

factors contributed to the perceived intelligibility depended on whether or not the hearing 

aid had WNR + NR or NR only.  
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The perceived intelligibility of the two manufacturers with WNR + NR depended 

on complex interactions (no single the manufacturer nor wind noise or noise reduction 

setting were clearly better) whereas manufacturers with only NR had main effects of 

manufacturer and noise reduction.  Two of the conditions in the hearing aids with WNR + 

NR (A and B), those conditions being when both wind noise reduction and noise 

reduction were set to maximum (WNR on/NR on) and when both were set to minimum 

(WNR off/NR off), were very similar to the conditions used in manufacturers with NR 

only (C and D), those conditions being noise reduction set to maximum (NR on) and 

minimum (NR off). As demonstrated in Figure 3, in those 4 extreme conditions hearing 

aids A and C were more intelligible than hearing aids B and D, respectively, regardless of 

noise reduction settings. As for noise reduction settings in the 4 extreme conditions, 

sentences were perceived to be more intelligible when those settings were at a minimum 

for manufacturer A, but were perceived to be more intelligible when those settings were 

at a maximum for hearing aids B, C and D. 

Intelligibility increased in the extreme condition where noise reduction settings 

were programmed to maximum as compared to minimum for three of the four hearing 

aids used in this study. While the resulting favorable increase in intelligibility among the 

majority of the hearing aids used in this study are intuitive to what a clinician would 

predict with increased noise reduction, it is a finding that has yet to be consistently 

supported in the literature. Noise reduction has been shown to consistently increase 

comfort in noise, but not necessarily speech intelligibility (Zakis, Hau, & Blamey, 2009; 

Bentler, Wu, Kettel, Hurtig, 2008). The results of this study are not surprising, however, 

because the “noise” was wind alone. Wind noise theoretically triggers level dependant 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Zakis%20JA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Zakis%20JA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Blamey%20PJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Bentler%20R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Bentler%20R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kettel%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hurtig%20R%22%5BAuthor%5D
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gain reduction only in the lowest hearing aid channels, which should not degrade speech 

intelligibility. In addition, this study did not measure speech intelligibility objectively, but 

asked listener's to subjectively assess speech intelligibility. Chung, Tufts, and Nelson 

(2009) did demonstrate increased speech intelligibility as well as sound quality 

preference among listeners when modulation-based digital noise reduction was activated 

in the presence of other real-world noises, lending support to the results found here. 

However, this study is the first to analyze the effects of gain reduction on speech 

intelligibility in the presence of wind noise alone and should be replicated to determine if 

these results are potentially generalizable.  

Perceived Noisiness of Speech in Hearing Aids with WNR + NR and NR only 

The perceived noisiness of manufacturers with WNR +NR depended on the manufacturer 

as well as the wind noise and noise reduction settings whereas manufacturers with only 

NR had main effects of manufacturer and noise reduction setting.  In the extreme 

conditions aforementioned for hearing aids with wind noise and noise reduction, 

however, there were main effects of hearing aid and noise reduction settings similar to 

the main effects seen for hearing aids with only NR. In those 4 extreme conditions 

hearing aids A and C were noisier than hearing aids B and D, respectively, irrespective of 

noise reduction settings. As for noise reduction settings in the 4 extreme conditions, 

sentences were perceived to be noisier when those settings were at a minimum for 

manufacturers with WNR + NR (A and B), but were perceived to be noisier when those 

settings were at a maximum for manufacturers with only NR (C and D). When not 

separating the two groups of manufacturers, but comparing the extreme conditions of all 

4 manufacturers, manufacturers with WNR + NR (A and B) at maximum (WNR on/NR 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Tufts%20J%22%5BAuthor%5D


28 
 

 

on) were both less noisy than manufacturers with NR only (C and D) at maximum (NR 

on).  

Objective measures of gain reduction were significantly, indirectly correlated with 

noisiness; with less objective gain reduction, the perceived noisiness of a condition 

increased.  The most absolute gain reduction was measured at high frequency regions, 

which is also counter intuitive to what one would predict given that the hearing aids noise 

reduction algorithms are designed to reduce output only in the lowest frequency bands 

when wind is present in the absence of other noise.  One possible explanation for greater 

absolute gain reduction measured in the high frequency regions than the low frequency 

regions is that the noise reduction algorithms are level dependant and, in the case of a flat 

hearing loss configuration, hearing aids gain prescription often provides more high 

frequency than low frequency amplification to maximize speech intelligibility. 

Listener‟s perceived the sentences to be less noisy when noise reduction was set 

to maximum for hearing aids with WNR + NR, but perceived the sentences to be noisier 

when noise reduction was set at maximum for hearing aids with NR only. The results for 

hearing aids with WNR + NR are expected whereas the results for the aids with NR only 

are surprising, especially given that previous researchers have demonstrated positive 

effects of noise reduction, when activated, on the perceived comfort of sounds (Zakis, 

Hau, & Blamey, 2009). It is unclear as to why the hearing aids used in this study with 

WNR + NR were perceived to be less noisy when noise reduction was programmed at 

maximum and hearing aids with NR only were perceived to be more noisy when noise 

reduction was programmed at maximum. Although these results are surprising, the fact 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Zakis%20JA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Zakis%20JA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Zakis%20JA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Blamey%20PJ%22%5BAuthor%5D
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that objective gain reduction was significantly, indirectly correlated with noisiness lends 

support to the reliability of the listener‟s subjective rating of noisiness.  

When analyzing the perceived noisiness of sentences in wind for all 4 

manufacturers in the extreme maximum setting, manufacturers with WNR + NR were 

both perceived to be less noisy than manufacturers with only NR.  It is not surprising that, 

when the noise source is wind, manufacturers programmed with WNR + NR at maximum 

would be more efficient at reducing wind noise, compared to manufacturers with NR 

only at maximum. This is the first study to compare the noisiness of hearing aids with 

WNR + NR to hearing aids with only NR in the presence of wind. This study should be 

replicated and, ideally, other studies should be done to include different hearing aid 

manufacturers to determine if there is a trend in 1) manufacturers with NR only being 

perceived to be noisier when NR is set to maximum compared to minimum, 2) 

manufacturers with WNR + NR being perceived to be less noisy, when programmed at 

maximum, compared to manufacturers with NR only when the noise source is wind.  

Noisiness and Intelligibility 

Regardless of manufacturer or noise reduction setting, intelligibility and noisiness 

were positively correlated with one another indicating that what affects intelligibility also 

affects noisiness (see figure 2).  In this study, sentences that were perceived to be the 

most intelligible were also perceived to be the noisiest and sentences that were perceived 

to be the least intelligible were also perceived to be the least noisy. It is likely that the 

majority of clinicians would increase the amount of wind noise and noise reduction in the 

case of a of a hearing aid user who complains of wind noise. This finding has clinical 

applications in that there may be a tradeoff between intelligibility and noisiness. The 
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results of this study suggest that appropriate programming not only depends on the 

manufacturer and that manufacturer‟s noise reduction settings, but also on whether a 

patient‟s primary complaint is loudness or speech intelligibility when speech and wind 

are simultaneously present.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Conclusion 

Significant differences were found, with a large effect size, in the intelligibility of 

the 12 conditions implemented in this study. Noisiness was significantly, positively 

correlated with participants‟ preference for intelligibility; the conditions that the 

participants rated as noisiest were the same conditions that the participants ranked as 

most intelligible. In addition, objective, physical measures of gain reduction were 

significantly correlated with subjective measures of noisiness. Although there were 

significant differences in intelligibility and noisiness of the 12 conditions, there was no 

clear answer as to how manufacturers with wind noise reduction compare to 

manufacturers with only noise reduction. To further investigate the effects of 

manufacturer and noise reduction setting on speech intelligibility and noisiness it was 

necessary to separate manufacturers with WNR + NR and manufacturers with NR only. 

When analyzed separately there were clear interaction and main effects of manufacturer 

and noise reduction setting on hearing aids with WNR + NR and NR only, respectively. 

Again, there was not a single noise reduction setting or manufacturer that resulted in 

improved intelligibility or noisiness. This study indicates that extreme noise reduction 

settings may have adverse affects depending on whether the patient‟s primary complaint 

is understanding speech or the noisiness of wind when speech is also present. Limitations 

of this study include use of a limited number of hearing aids, normal hearing participants, 

one wind speed, and hearing aids programmed for one degree of hearing loss and 

configuration.  
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Appendix A 

 

Manufacturer A 

Venting: occluded 

Omnidirectionality 

Acoustic Scene Analyzer: Quiet: default expansion, machine noise: adaptation amount: 

up to 10 dB (setting number 2), Wind*, Speech in noise*, Noise*  

Level (adaptation manger): 3 

Fitting formula: e-stat  

 

Manufacturer B 

Venting: occluded 

Omnidirectional 

Programs: autopro4 (default), Quiet/Match Target, Group/Party Noise, Traffic/Intense 

Noise and Music: Phase canceller: disabled, antishock: moderate, NR*, WNR*, Speech 

Enhancement: maximum 

Sensitivity control: medium (default) 

Transition Control: average (default) 

 

Manufacturer C   

Venting: occluded 

Programs: P1 multi-environment 

Omnidirectional 

Environment optimizer: Speech in noise (versus off) 
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Manufacturer D 

Venting: occluded 

Program manager: general, active (default) 

Experience: long-term 

Adaptation manager 3 

Directionality: Surround 

Noise management: Variable 

My voice: on 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*variable, see Table 1 
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