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Abstract 

The purpose of this study was twofold: to determine the effects of two types of non-invasive, 

peripheral sensory stimulation on the frequency of infant swallowing and to explore the cortical activation 

patterns in response to stimulation in the somatosensory and motor regions of the brain during infancy, 

between 2-4 months and 7-9 months of age. The two different forms of mechanical stimulation investigated 

include pacifier stimulation to the lips and oral cavity and vibrotactile stimulation via the external throat area to 

the laryngeal tissues. The study represents a prospective, repeated experimental research design. Investigators 

utilized an accelerometer and an inductive plethysmography system to identify swallowing events and 

functional near-infrared spectroscopy (NIRS), a non-invasive cortical optical-imaging technique, to cortical 

responses to the peripheral stimulation conditions by measuring the hemodynamic responses in cortical oral-

motor and sensorimotor regions. A repeated-measures ANOVA was performed on the participants’ 

swallowing frequency data with and without the stimulation conditions. The results indicated a significant 

difference (p < .001) among the three conditions (no stimulation, pacifier stimulation, and vibrotactile 

stimulation), with pairwise comparisons indicating that the pacifier and vibrotactile conditions significantly  

(p < .001) increased the infants’ swallowing frequency compared to swallowing frequency without stimulation. 

Swallowing frequency did not differ between the pacifier and vibrotactile conditions (p > .05). NIRS recordings 

were obtained on only a few subjects for technical reasons. NIRS pilot data changes in blood flow occurred 

during the pacifier and vibrotactile stimulation conditions in a few infants. Overall findings suggest that both 

pacifier and vibrotactile stimulation can serve to up-regulate the frequency of swallowing in normal infants. 

Non-nutritive pacifier stimulation may be beneficial for increasing the frequency of swallowing in infants in 

addition to the known benefits of aiding in sucking skills development. Vibrotactile stimulation represents an 

alternative or complementary intervention for increasing the frequency of swallowing in infants that may not 

interfere with the process of oral intake. The current study continues to collect data for normal infants and 

should be explored in infants with disordered swallowing, particularly in the neonatal intensive care unit.



 

Introduction 
 
Background of the Study – Normal and Disordered Swallowing 
 

Dysphagia is the term used to describe a swallowing problem. Swallowing begins 

during the fetal stage of development, emerging in utero around 12-14 weeks of gestation, but 

can appear as early as 10 weeks and matures significantly during the period of neonatal 

maturation (Bosma, 1985; Bulock, Woolridge, & Baum, 1990; Devries, Visser, & Prechtl, 

1982; Humphrey, 1967; Jadcherla, Gupta, Stoner, Fernandez, & Shaker, 2007; Lopez Ramon 

y Cajal, 1996; Petrikovsky, Kaplan, & Pestrak, 1995). Swallowing involves an extensive 

control system, ranging from areas of the cortex down to the cervical spinal cord (A. J. 

Miller, 1999). Swallowing is largely mediated through bilateral brainstem neural pathways, 

involving central pattern generators (CPGs) that produce stereotypical and rhythmic motor 

activity (Jean, 1972, 1984a, 1990, 2001; A. J. Miller, 1993). The swallowing CPGs are 

composed of afferent and efferent neural networks within the nucleus tractus solitarius 

(NTS), the dorsal medullar region of the reticular formation, and the dorsal and ventral 

medullar areas surrounding the NTS and the nucleus ambiguus, respectively. These 

swallowing CPG networks are composed of two primary groups of neurons. A system of 

interneurons organizes and programs the motor patterning for swallowing (Jean, 2001). The 

first group of swallowing of neurons, named the dorsal swallowing group, is positioned in 

the nucleus tractus solitarius in the dorsal medulla. These neurons are responsible for 

producing, molding, and organizing the timing of the swallow. The second group, or the 

ventral swallowing group, are positioned in the ventrolateral medulla and act as ―switching 

neurons,‖ in that they distribute the programmed swallowing drive to the motoneuron pools 

responsible for swallowing. The primary cranial nerves that carry sensory and/or motor 
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information involved in deglutition include the Trigeminal (V), Facial (VII), 

Glossopharyngeal (IX), Vagus (X), and the Hypoglossal (XII) cranial nerves.  

A growing base of research also indicates increasing cortical involvement and 

modulation of swallowing throughout development. Research primarily involving 

electrophysiological methods with primates and functional magnetic resonance imaging 

(MRI) with humans have identified an extensive network of cortical areas of activation 

during swallowing. Such areas include the primary sensorimotor cortex, sensorimotor 

integration areas, premotor cortex, supplementary motor areas, insula, frontal operculum, 

anterior cingulate cortex, and the left pericentral and anterior parietal cortex (Hamdy, 

Mikulis, et al., 1999; Hamdy, Rothwell, et al., 1999; Kern, Jaradeh, Arndorfer, & Shaker, 

2001; Kern & Shaker, 2002; Malandraki, Sutton, Perlman, Karampinos, & Conway, 2009; R. 

E. Martin, Goodyear, Gati, & Menon, 2001; R. E. Martin et al., 1999; R. E. Martin et al., 

2004; R. E. Martin & Sessle, 1993; Michou & Hamdy, 2009; A. J. Miller, 2008; Mistry & 

Hamdy, 2008; K. Mosier & Bereznaya, 2001; K. Mosier et al., 1999; K. M. Mosier, Liu, 

Maldjian, Shah, & Modi, 1999; Toogood et al., 2005). 

Swallowing represents one of the most complex sensorimotor acts of the human 

body (Jean, 2001; A. J. Miller, 1993). Swallowing disorders can manifest in difficulties with 

one or more phases of the swallow: oral phase, pharyngeal phase, and the esophageal phase. 

The oral phase (generally divided into a separate oral preparatory and oral phases for adults) 

involves formation of the bolus and oral transit of the bolus posteriorly towards the 

pharynx, and pharyngeal swallow initiation. The pharyngeal phase involves the movement of 

the bolus through the pharynx, with protective mechanisms engaged to allow for safe transit 

past the entrance to the larynx. Airway protection mechanisms include closure due to 

hyolaryngeal excursion, laryngeal vestibule closure with the arytenoids to the epiglottis, and 
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vocal fold closure. Normally swallowing does not involve aspiration, when food, liquid, or 

saliva travels below the vocal folds, en route to the trachea. Reflexive relaxation of the 

cricopharyngeus muscle, one part of the upper esophageal sphincter (UES), occurs due to 

suppression of motor neuron activity for the cricopharyngeus and inferior pharyngeal 

muscles. Finally, active pull with the hyolaryngeal excursion aids UES opening and bolus 

propulsion through the sphincter into the esophagus. The esophageal phase involves passage 

of the bolus down the esophagus pushed by a series of peristaltic waves, and entry into the 

stomach through the lower esophageal sphincter (Bosma, 1957; Doty, 1968; A. J. Miller, 

1982). Precise timing and coordination of swallowing and respiration are essential for a safe 

swallow, to prevent material from reaching the lungs (Bosma, 1985; Thach & Menon, 1985). 

Malandraki et al. (2009) demonstrated that the oral phase involves more cortical control, 

whereas the pharyngeal phase may be more reflexive and involve brainstem control to a 

greater degree (Ertekin & Aydogdu, 2003).  

 Infants are primarily breast or bottle feeders for the first six months of life. Early 

infant feeding is characterized by a suck-swallow-breathing pattern. Infants are faced with 

the task of coordinating this sucking, swallowing, and breathing pattern while feeding after 

birth. Full-term, healthy infants are expected to successfully execute this coordination 

pattern at their first oral feeding. Coordinating the infant feeding pattern is often difficult for 

preterm infants in the neonatal intensive care unit (NICU) due to neurological immaturity 

(Bingham, 2009). Around 40% of preterm infants that experience deficits in oral feeding are 

considered to stem primarily from their neurologic and physiologic immaturity (Simpson, 

Schanler, & Lau, 2002). Other medical conditions that may result in dysphagia in infants 

include congenital and craniofacial anomalies, respiratory disorders, gastrointestinal 

disorders, cardiovascular disorders, neurological conditions, and neuromuscular disorders (J. 
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C. Arvedson, 2008; C. K. Miller, 2009; Newman, Keckley, Petersen, & Hamner, 2001; 

Sheppard & Fletcher, 2007). High percentage of infants under one year of age with 

neurologic abnormalities, genetic syndromes, congenital heart disease, and premature birth, 

including those with a history of bronchopulmonary dysplasia have swallowing dysfunction 

(Mercado-Deane et al., (2001). 

The swallowing motor program is present early in the gestational period and fetuses 

nearing term-birth swallow around 500-1,000 mL of amniotic fluid each day (Mizuno & 

Ueda, 2003; Ross & Nijland, 1998). Despite the swallowing that the fetus experiences in utero, 

the coordination of swallowing, sucking, and breathing may not be efficient enough for 

successful oral feeding with the preterm infant after birth. The general consensus is that 

premature infants are not capable of coordinating the suck and swallow with breathing for 

successful and efficient total oral feeding until around week 34 of gestation (Bauer, Prade, 

Keske-Soares, Haeffner, & Weinmann, 2008; Da Nobrega, Boiron, Henrot, & Saliba, 2004; 

Lau & Schanler, 1996; Matthews, 1994; McCain, Gartside, Greenberg, & Lott, 2001). This 

age also corresponds with the time period of maximum synaptogenesis of the medulla 

(Rogers & Arvedson, 2005; Takashima, Mito, & Becker, 1985). Therefore, preterm infants in 

the NICU often require gastric feeding tubes to meet growth and nutritional needs until their 

feeding skills mature and improve (Bauer, et al., 2008; Boiron, da Nobrega, Roux, & Saliba, 

2009). Infants with dysphagia may demonstrate difficulties with sucking, swallowing, 

respiration, or a combination of all three. Expanding our knowledge base of normal infant 

swallowing patterns is needed.  

Pediatric feeding disorders (which may or may not include a swallowing disorder) 

occur in approximately 25-45% of children considered to be developing normally and up to 

80% of non-typically developing children (J. C. Arvedson, 2008; Bell & Alper, 2007; 



Infant Swallowing Stimulation 5 

 

 

Burklow, Phelps, Schultz, McConnell, & Rudolph, 1998; Lefton-Greif & Arvedson, 2007; 

Linscheid, 2006; Manikam & Perman, 2000). Within the broader category of feeding 

disorders, the precise incidence rate of pediatric swallowing disorders is unknown (Lefton-

Greif & Arvedson, 2007; Loughlin & Lefton-Greif, 1994). Jadcherla et al. (2009) report that 

26% of infants born prematurely experience dysphagia. Based on parent-report, 12% of 

infants who were preterm displayed swallowing problems when assessed at 30 months of age 

(Wood et al., (2003). The incidence of swallowing disorders appears to be growing as the 

survival rate of premature infants with complex medical conditions continues to increase due 

to advanced medical technology and knowledge and the improved professional identification 

of children with dysphagia (Ancel et al., 2006; J. C. Arvedson, 2008; Burklow, et al., 1998; 

Hawdon, Beauregard, Slattery, & Kennedy, 2000; Lefton-Greif & Arvedson, 2007; Marlow, 

2004; Newman, et al., 2001). 

Statement of the Problem 

 Although swallowing difficulty is not uncommon in preterm and early infancy, 

limited literature is available on infant swallowing in contrast with research on infant sucking 

(Lau, Smith, & Schanler, 2003; Rogers & Arvedson, 2005). In healthy preterm and term 

infants oral feeding performance improvement relies on sucking skills, increased swallowing 

frequency, and the ability to handle larger boluses (Lau, (2003). The approach to swallowing 

intervention with infants differs from that of adult swallowing rehabilitation. First, the 

anatomical differences and immature neurological systems result in biomechanical 

differences in the swallow for infants and young children (Newman, et al., 2001). The 

anatomical structures involved with the swallowing mechanism develop as the infant grows, 

reaching adult-like approximation around age six years (J. C. Arvedson & Brodsky, 2002). 

Secondly, some intervention techniques do not transfer in application to the pediatric 
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population, due to infants’ and young childrens’ inability to verbalize needs or follow 

instructions (Kramer & Eicher, 1993). Many of the current interventions for dysphagia in the 

NICU are targeted toward environmental modifications (feeding schedules, nipple selection, 

thickening agents, positioning, chin and cheek support, and external pacing. Interventions 

also target oral and labial stimulation via non-nutritive sucking on a pacifier. A full 

understanding of how such orally-centered treatments influence the remainder of the 

swallowing motor act, such as the pharyngeal component is lacking (Sheppard & Fletcher, 

2007). Some of the interventions although commonly used in practice have not been shown 

to directly affect the swallowing component of the suck-swallow-breathe patterning during 

infancy. Legislative intiatives have increased the access that the pediatric population has to 

dysphagia services, but scientific bases for guiding services to this population are limited 

(Bell & Alper, 2007). The incidence of pediatric swallowing disorders may be increasing and 

an improved understanding of normal infant swallowing patterns and development of 

cortical response to swallowing stimulation is warranted. Such knowledge is needed to 

inform future intervention techniques targeting infant swallowing disorders. 

Statement of the Need 

The American Academy of Pediatrics hospital discharge criteria for the high-risk 

neonate require safe and efficient oral feeding is a prerequisite for discharge from the NICU 

(Committee on Fetus and Newborn, 1998; Lau, 2006). Successful oral feeding often 

represents the final milestone that a preterm infant in the NICU must master. A lack of oral 

feeding can increase hospital stay by an average of 9.3 days (Bingham, 2009; Bragelien, 

Rokke, & Markestad, 2007; Poore, Barlow, Wang, Estep, & Lee, 2008). Hospitalization in 

the NICU is expensive, costing around $1,000 per day. More than 500,000 infants are born 

prematurely each year in the United States. The first year of tube feeding costs approximately 
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$46,875 and can cost up to approximately $180,000 across the first five years of tube feeding 

(Jadcherla, et al., 2009; Piazza & Carroll-Hernandez, 2004). Immature oral feeding among 

NICU babies may cost around 4.5 billion dollars each year (Bingham, 2009). Furthermore, it 

appears that the number of previously preterm infants returning for feeding services is at 

least 40% of those patients seen in feeding clinics (Lau, 2006).  

Persisting neurodevelopmental sequelae associated with NICU infants have been 

established (Hawdon, et al., 2000). Specifically related to feeding skills, neurodevelopmental 

outcomes at 18 months has been correlated with neonatal feeding performance (Mizuno & 

Ueda, 2003). Hawdon et al. (2000) discovered that neonates with feeding disorders are more 

prone to vomiting and coughing when presented with solid food at six months, and not as 

likely to tolerate lumpy food textures or experience pleasurable mealtimes at 12 months of 

age. Persisting transitional feeding complications are not uncommon with infants who 

experience feeding difficulties early in life (Emond, Drewett, Blair, & Emmett, 2007). 

In a longitudinal study, Palmer and Heyman (1999) observed developmental delays 

on the Denver Developmental, Vineland Social Maturity Scale, and the Bayley Scales of 

Infant Development) at two to three years of age in children who had a dysfunctional suck 

as neonates. Of the infants previously found to have a disorganized suck, 44% demonstrated 

developmental delays at 2 years of age. The two infant with a normal suck did not have 

developmental delay during later assessment. Medoff-Cooper (2005) presented study 

findings demonstrating a strong relationship between characteristics of sucking in very low 

birth weight infants at 40 weeks gestation and their score on the Bayley Scales of Infant 

Development at six months of age. Finally, problems with feeding early in life may also 

represent a factor in the delay of other motor behaviors involving the shared aerodigestive 

tract, such as babbling and speech production (Adams-Chapman, 2006; Ballantyne, Frisk, & 
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Green, 2006; Barlow, 2009c; McFarland & Tremblay, 2006; Mizuno & Ueda, 2005). 

Therefore, intervention for feeding and swallowing deficits at an early age that can be 

implemented in the NICU, may contribute to improved developmental outcomes (e.g., 

cognitive and motor outcomes) in addition to facilitation of safe and efficient oral feeding. 

In addition, research is needed to understand the influence of sensory input on 

swallowing for all ages (Logemann, 1996). Based on what Bingham (2009) calls the 

―deprivation model of dysphagia in premature infants,‖ sensory interventions to encourage 

appropriate feeding development within the pediatric population are needed. (p. 744) 

Specifically, knowledge of the influence of such stimulation ―on the rhythmicity and 

frequency of ingestive behaviors‖ is needed to augment current intervention techniques. (p. 

747) Opportunity exists to explore the influence of sensory stimulation on the frequency of 

swallowing in infants, which could capitalize on the role of experience-dependent sensory 

stimulation in central pattern generator and neocortex pathway formation (Barlow, Finan, 

Lee, & Chu, 2008).  

Specific Aims: 

 Determine the effect of pacifier stimulation on the frequency of infant swallowing.  

 Determine the effect of vibrotactile stimulation on the frequency of infant 

swallowing. 

 Determine if cortical activation occurs with stimulation in the somatosensory and 

motor regions of the brain in early infancy between 2-4 months and 7-9 months of 

age. 
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Research Questions 

The purpose of this study is twofold: to determine the effects of two different 

stimuli on the frequency of swallowing and to determine if cortical activation occurs in 

response to swallowing stimulation in early infancy. Specifically, this study aims to address 

the following questions: 

1. Does the presence of a pacifier increase the frequency of swallowing in normal 

infants at 2-4 and 7-9 months of age? 

2. Does the presence of vibrotactile stimulation increase the frequency of swallowing in 

normal infants at 2-4 and 7-9 months of age? 

3. Does cortical activation with stimulation increase in the somatosensory and motor 

regions of the brain between 2-4 and 7-9 months of age? 

It is hypothesized that: 

1. The presence of a pacifier will increase the frequency of swallowing. 

2. The presence of vibrotactile stimulation will increase the frequency of swallowing. 

3. Cortical activation with stimulation occurs in the somatosensory and motor regions 

of the brain in the 7-9 month group and will be greater than in the same regions of 

the 2-4 month old infants. 

Limitations 
 

The present research begins an investigation of the infant swallow in healthy, 

typically developing, full-term infants. An understanding of whether particular stimuli affect 

the frequency of swallowing in a typically developing, healthy infant is important before 

studying the techniques with a medically fragile and disordered infant population. Due to the 

nature of the medical conditions associated with prematurity and the environment of the 

neonatal intensive care unit, preterm infants are already subjected to numerous aberrant 
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sensory experiences. Therefore, the present research targeted healthy infants without 

swallowing disorders as the participants, with hope of transferring the focus of this research 

to infants experiencing dysphagia in the NICU in the future, once the knowledge base of 

normal infant swallowing stimulation is expanded.  

An additional limitation of the present research includes a small sample size. The 

present research represents preliminary exploration of infant swallowing stimulation using 

the pacifier and vibrotactile stimulation and the related brain activation patterns. However, 

interventional studies in preterm NICU infants would be optimal future studies.  

Limitations are also involved in the determination of cortical activation by 

stimulation using near-infrared spectroscopy (NIRS) with infants. For adults, the placement 

of NIRS probes over specific, targeted brain regions is accomplished using a structural 

magnetic resonance image (MRI) to ensure consistent positioning of the NIRS probes for 

each adult participant, as anatomical landmarks in the brain are individualized. For safety 

considerations, a structural MRI for neuronavigation with the infants, especially healthy 

infants with no other medical need for a MRI, was not considered (Aslin & Mehler, 2005). 

Safety considerations involve the requirement that infants remain still in the MRI tunnel in 

order to avoid motion artifact, which often involves sedation. Exposure to high magnetic 

fields and the loud noise level that occurs with the radiofrequency (RF) gradient changes 

may be a risk to the infant during MRI. Therefore, NIRS probe placements on the infant 

participants in this study may not represent exact positioning over the somatosensory or 

motor brain regions. Rather, the positioning was estimated based upon atlases displaying 

average infant brain anatomical landmarks and the 10-20 International System of Electrode 

Placement for Electroencephalograpy (Jasper, 1958). Therefore, variation in the targeted 



Infant Swallowing Stimulation 11 

 

 

underlying neural regions during NIRS probe positioning may have occurred in the present 

study.  

Finally, the use of near-infrared spectroscopy limits the current study’s infant 

participants to those without highly-pigmented skin color. NIRS involves the measurement 

of the degree of absorption by hemoglobin chromophores by different wavelengths of near-

infrared light as the light is reflected back through the scalp. Wassenaar and Van den Brand 

(2005) found that the high levels of melanin, which are greater in individuals with dark skin 

color, interfere with wavelength transmission, making the measurement of changes in 

absorption inaccurate. The authors suggested that NIRS measurements involving 

participants with highly-pigmented skin should be interpreted with caution. Therefore, in an 

effort to collect reliable NIRS measurements, we excluded participants with highly-

pigmented skin.



 

Review of the Literature 
 
Infant swallowing frequency 
 

Infant swallowing frequency has been researched using both animal models as well 

as preterm and full-term infants. However, the frequency of swallowing in the infant 

population has not been investigated extensively.  

Animal research pertinent to infant swallowing frequency 

Ross (1998) found that a spontaneous swallowing frequency of 43 swallows per hour 

(around 0.72/min) in near-term ovine fetuses was similar to the swallowing frequency of 

preterm ovine fetuses. However, the volume intake differed, with the near-term ovine 

fetuses displaying an increased volume intake per swallow as compared to the preterm 

counterparts.  

In an investigation of swallowing and respiration coordination in full-term lambs, a 

mean non-nutritive swallowing frequency of 121 + 9 h-1  (around 2.02/min) during 

wakefulness was observed (Reix et al., 2003). A mean non-nutritive swallowing frequency of 

57 + 10 h-1 (around 0.95/min) during wakefulness was observed in preterm lambs (Reix, 

Arsenault, Langlois, Niyonsenga, & Praud, 2004). The frequency of isolated, non-nutritive 

swallowing in preterm lambs during periods of wakefulness was lower as compared to full-

term lambs.  

Human infant non-nutritive and nutritive swallowing frequency research 

Non-nutritive swallowing 

Menon, Schefft, and Thach (1984) report that during a control period, which did not 

include any apneic spells or the presence of pharyngeal devices, preterm infants with 

diagnosed idiopathic apnea demonstrated an average of 0.69 + 0.16 swallows per minute. 

Thach and Menon (1985) report that infants (preterm and older infants) complete around six 
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swallows per minute during wakefulness. In a study involving both healthy full-term infants 

and infants born prematurely, but having reached term gestational age at the time of the 

study, Jeffery, Ius, and Page (2000) report a mean spontaneous swallowing frequency of 1.6 

swallows per minute with the term infants. The infants born prematurely demonstrated a 

mean spontaneous swallowing frequency of 1.3 swallows per minute. Statistical analysis 

indicated no statistically significant difference between the spontaneous swallowing 

frequencies for term and prematurely-born infants. Nixon, Charbonneau, Kermack, 

Brouillette, and McFarland (2008) report non-nutritive swallowing frequency for infants 

born prematurely, but near full-term in age at the time of the study of 47 swallows per hour 

(around 0.78/min) during wakefulness. Koenig, Davies, and Thach (1990) report an 

infrequent swallowing frequency of 0.10 + 0.03 swallows per second during non-nutritive 

sucking and indicated similar frequencies for both term and preterm infants. Kramer (1993, 

1985, 1989) indicates that pharyngeal swallows may occur more frequently and at faster 

speeds in the infant as compared to the pharyngeal phase of an adult swallow. Furthermore, 

Kelly, Huckabee, Frampton, and Jones (2008) report an informal observation during a 

longitudinal study with 10 term, healthy infants that swallowing frequencies declined as age 

increased.  

Nutritive swallowing 

 Adult humans swallow an average of around 580 times per day (around 0.40/min), 

with swallowing becoming more frequent during activities such as eating (Lear, Flanagan, & 

Moorrees, 1965; Logemann, 1998). da Costa, van den Engel-Hoek, & Bos (2008) state that 

infants typically swallow as often as 60 times a minute (around 1 per s) while feeding. 

Bamford, Taciak, & Gewolb (1992) report that an infant swallowing frequency of 1 Hertz or 

more (around 1 per s) during periods of rapid feeding may function to protect the airway 
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(Daniels et al., 1988; Koenig, et al., 1990; Mathew & Bhatia, 1989). The swallowing 

frequency during feeding appears to be rapid at the onset of feeding, with one suck per 

swallow initially, but the frequency of swallows decreases after the first several swallows 

(Koenig, et al., 1990; Matthew, 1991; Thach, 1992b).  

Swallowing during sleep 

In contrast to swallowing during wakefulness, the frequency of infant swallowing 

decreases during sleep. In a group of 10 preterm infants diagnosed with idiopathic apnea, 

Pickens et al. (1988) observed an average of 0.94 + 0.25 swallows per minute during sleep. 

An average swallow frequency of 23.3 + 2.1 swallows per hour (around 0.39/min), was 

observed during a sleep study involving infants between one and 34 weeks of age (Don & 

Waters, 2003). Although the frequency of non-nutritive swallowing tends to decrease during 

periods of sleep, the frequency of non-nutritive swallowing during infant sleep is more rapid 

than the swallow frequency for adult mammals during sleep (Jeffery, et al., 2000; Nixon, et 

al., 2008; Reix, et al., 2003; Thach & Menon, 1985). Nixon and colleagues’ 2008 study 

confirmed earlier findings of more swallowing events during respiratory pauses, as compared 

to swallowing during continuous breathing while infants slept (Don & Waters, 2003; Menon, 

et al., 1984; Pickens, Schefft, & Thach, 1988; Pickens, Schefft, & Thach, 1989). Frequent 

non-nutritive swallowing during periods of respiratory pause may serve as a protective 

mechanism for airway safety, in order to escape apnea or aspiration caused by gastric reflux 

or other secretions (Nixon, et al., 2008; Praud & Reix, 2005; Reix, et al., 2004; Thach, 1992a).  

Premature infant swallowing characterized by decreased frequency 

Premature infants demonstrate a decreased frequency of swallowing compared to 

their full-term counterparts and this may be associated with persistent tube feeding. In a 

study of 20 neonates with dysphagia, (Jadcherla, et al., 2009) found that a subset of five 
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infants with dysphagia who required chronic gavage feeding displayed unique characteristics 

during pharyngoesophageal motility studies. The researchers observed that the five subjects 

who did not achieve oral feeding success, among other characteristics not pertinent to the 

present study, displayed an infrequency of swallows. The majority of the infants with 

dysphagia achieved oral feeding and displayed a mean swallowing frequency of 2.4 + 0.3 

swallows per minute, whereas the five neonates who remained on tube feedings at the 

follow-up evaluation demonstrated a mean swallowing frequency of 0.4 + 0.2 swallows per 

minute. 

Using audiosignal recordings with premature infants at the level of the cricoid 

cartilage in the neck, Da Nobrega et al. (2004) observed a swallowing frequency of 13.1 + 

4.7 swallows per minute during the tube-bottle feeding period in which the infants were 

transitioning toward full oral feeding, and a swallowing frequency of 22.2 + 6.8 swallows per 

minute in the premature infants who had advanced to full bottle-feedings. The frequency of 

swallowing increased for all infants advancing from tube-bottle feeds to full oral feeds. 

However, the results of this study should be interpreted with caution, as the researchers 

utilized a microphone placed in front of the cricoid cartilage to record swallowing patterns. 

Cervical auscultation has not recognized as a valid diagnostic tool for measuring swallowing 

in clinical practice. Rather, clinicians are encouraged to use cervical auscultation only as a 

supplemental tool during swallowing evaluation. Furthermore, the researchers placed the 

microphone in front of the cricoid cartilage, which may not represent the optimal location 

during cervical auscultation. The lateral portion of the larynx may represent the best 

placement site for a microphone or stethoscope during cervical auscultation (Vice, Heinz, 

Giuriati, Hood, & Bosma, 1990). Lau et al. (2003) also observed an increased swallowing 

frequency during oral feedings between preterm and full-term newborn infants, suggesting 
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that the increase is mediated by maturation of the swallowing reflex. Twelve healthy preterm 

infants displayed 45 + 14 swallows per minute, while the eight healthy full-term infants 

displayed a swallowing frequency of 55 + 15 swallows per minute. In summary, swallowing 

frequencies of premature and term infants increase with the development of stable sucking 

and swallowing motor activity (Gewolb, Vice, Schwietzer-Kenney, Taciak, & Bosma, 2001). 

Critical periods – why early intervention is important 

The first research aim of the present study is to determine if stimulation can increase 

the frequency of infant swallowing through peripheral, mechanical sensory input. Keeping in 

mind that the ultimate application for this research is geared toward the neonatal intensive 

care unit population, the concept of a ―critical period‖ is crucial to the timing of 

intervention.  

Experience aids the development of neuronal circuitry during early postnatal life 

(Hensch, 2004). Around 28 weeks of gestation in the human fetus, synchrony of cell wave 

signals between sensory and central brain systems begins, creating a foundation for 

neurosensory connections between the periphery and central systems before the influence of 

sensory input external to the central nervous system (W. F. Liu et al., 2007; Penn & Shatz, 

1999). In addition to the intrinsic neural development just described, external, or activity-

dependent sensory stimulation, is also essential during critical periods for normal 

development of neuronal connectivity (W. F. Liu, et al., 2007). Extrinsic stimulation, specific 

to various sensory networks, signals arrangement of neurons in the cerebral cortex into 

unique, functional sensory systems. Central pattern generators for motoric movement 

involve an inherent network that is modulated through activity-dependent sensory 

experience. For movements such as swallowing, such motor experiences begin in utero and 

mark the beginning of early sensory experience that aids in circuit formation and tuning 
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(Barlow 2006). Critical periods, or windows of time in which developing systems are 

vulnerable to certain types of sensory input, coincide with a period of rapid synaptogenesis 

(cortical growth) in which environmental factors may advantageously shape or disrupt 

development and mapping of the immature brain (Barlow, Finan, Lee, et al., 2008; Beradi, 

Pizzorusso, & Maffei, 2000; Bosma, 1970; Bourgeois, 1997; Hensch, 2004; Hubel & Wiesel, 

1970; Huttenlocher & Dabholkar, 1997; W. F. Liu, et al., 2007; Mrzlajk, Uylings, Kostovic, & 

Van Eden, 1990; Pomeroy & Volpe, 1992; Wiesel, 1982; Wiesel & Hubel, 1965). The pattern 

of rapidly increasing myelination within the central nervous system occurs during the first 

eight months after birth and represents a vulnerable window of time of high sensitivity to 

environmental experiences (Kinney, Brody, Kloman, & Gilles, 1988). Specifically related to 

deglutition, the nucleus tractus solitarius region of the reticular formation and nucleus 

ambiguus myelination begins around the 40th week of gestation and persists through early 

postnatal development (Takashima, et al., 1985).  

Animal research regarding critical periods 

Animal research first perpetuated the concept of critical periods early in life, in which 

an organism’s system is ―primed‖ to collect sensory information from the environment (J.C. 

Arvedson, 2006; Lorenz, 1965). Animal model studies have demonstrated the disturbance in 

the developing brain structures engaged in sensorimotor functions as a result of sensory 

deprivation and motor constraints (Pascual, Fernandez, Ruiz, & Kuljis, 1993; Pascual & 

Figueroa, 1996; Pascual, Hervias, Toha, Valero, & Figueroa, 1998; Poore, Barlow, et al., 

2008). Due to sensory deprivation, the cerebral cortex in animal models displays a reduced 

number of dendritic spines (Takashima, et al., 1985; Valverde, 1967) 

On the other hand, specialization and diversification of the early postnatal neocortex 

in rats has been observed to develop at an increased rate following different forms of 
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sensorimotor stimulation, suggesting that sensorimotor experiences can modulate brain 

structure and function during the period sensitive to plasticity in early postnatal life (Pascual, 

et al., 1993; Pascual & Figueroa, 1996; Poore, Barlow, et al., 2008). Further, it has been 

demonstrated in animal models that early, enhanced sensory experience is capable of 

augmenting the number of dendritic spines (Globus & Scheibel, 1967; Schapiro & Vukovich, 

1970; Takashima, et al., 1985). 

Critical periods and deglutition 

The critical period represents the window of opportunity for optimizing pattern 

formation in the sensory-driven neuronal system for functional and proficient swallowing, 

along with other processes involved in deglutition (Barlow, 2009a; Hensch, 2004; McFarland 

& Tremblay, 2006; Penn & Shatz, 1999). Sensory input may aid in tuning the central pattern 

generators involved in deglutition (Bingham, 2009). Aberrant or a lack of external sensory 

stimulation during critical periods may disrupt the normal course of neuronal maturation, 

subsequently delaying appropriate development of a sensory system (Beradi, et al., 2000; W. 

F. Liu, et al., 2007). 

Infant volitional feeding is a learned motor behavior, and the lack of adequate 

sensory learning experiences may, in turn, affect normal brain development for feeding and 

swallowing proficiency, as sensory stimulation affects the motoric swallowing response 

(Bingham, 2009; McFarland & Tremblay, 2006). A lack of experience-dependent sensory 

stimulation events in the NICU due to prolonged tube-feeding can lead to oral aversions, an 

aberrant gag reflex (oversensitive, elicited by non-oral stimulation) and continued dysphagia 

(J. C. Arvedson & Brodsky, 2002; Barlow, Finan, Lee, et al., 2008; Bingham, 2009; Comrie & 

Helm, 1997; Scarborough & Isaacson, 2006). Additionally, Samson et al. (2005) found that 

the presence of continuous positive airway pressure (CPAP) decreased the frequency of non-
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nutritive swallowing in full-term lambs. Many preterm infants undergo CPAP administration 

and the potential inhibitory effects on swallowing frequency could also possibly contribute 

to delay in swallowing maturation. 

It is hypothesized that prolonged dependence on tube feedings and oxygen 

administration, which many premature infants experience, and the subsequent sensory and 

motor deprivation to the oral-facial region disrupts the ―critical period‖ during the first two 

months of life in which sensory stimulation maximally aids in neural pathway development 

within the developing cortex and brainstem central pattern generators for the suck, swallow, 

and respiration (Barlow, 2009a, 2009c; Bingham, 2009; Hensch, 2004; Illingworth & Lister, 

1964; Kelly, Huckabee, Jones, & Frampton, 2007a; McFarland & Tremblay, 2006; Penn & 

Shatz, 1999; Poore, Barlow, et al., 2008; Stevenson & Allaire, 1991). Scarborough and 

colleagues found that infants experiencing oral deprivation, due to continued gavage feeding 

as the primary means of nutrition, displayed a persisting abnormal gag reflex (Scarborough, 

Isaacson, & Wiley, 2005). A critical period is also believed to be involved in the transition to 

solid foods. Children delayed in the transition to solid foods have been observed to display 

food refusal and emesis (J.C. Arvedson, 2006; Illingworth & Lister, 1964). Experimentally 

delayed transitions to solid food in rats have demonstrated a cortical decrease in synapse 

development (Lorenz, 1965). 

Prompting the development of sensory receptors in a system via peripheral 

stimulation may aid in the developing sensory network connections (Bradley, 1975). Early 

tactile sensory stimulation to the oral and pharyngeal regions that occurs during the act of 

swallowing is essential during the first few months of life to foster appropriate pathway 

connections for swallowing within the nucleus tractus solitarius of the brainstem 

(Scarborough, et al., 2005).  
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Entrainment of the infant suck 
 

In line with early sensory stimulation experiences, a logical research extension may be 

to apply the idea of entrainment of the infant suck to infant swallowing, through presumed 

targeting of glossopharyngeal, vagus, and potentially trigeminal cranial nerve sensory input 

pathways. Sucking and swallowing behaviors observed in utero with co-occurring oral-facial 

self-stimulation have served as guidance for appropriate sensory stimulation postnatal 

interventions in the NICU (J. L. Miller, Sonies, & Macedonia, 2003). Research indicates that 

oral stimulation programs and non-nutritive suck (NNS - sucking for reasons other than 

nutritional intake, e.g., on a pacifier) entrainment through trigeminal cranial nerve sensory 

input may result in earlier attainment of efficient oral feeding, increased volume intake, 

weight gain, and decreased hospitalization (Barlow, 2009c; Bingham, 2009; Fucile, Gisel, & 

Lau, 2002; Fucile, Gisel, & Lau, 2005; Poore, Barlow, et al., 2008; Rocha, Moreira, Pimenta, 

Ramos, & Lucena, 2007; Sheppard & Fletcher, 2007). Liu et al. (2007), Delaney & Arvedson 

(2008), and Arvedson, Clark, Lazarus, Schooling, & Frymark (2010) provide detailed 

information regarding studies exploring the benefits of interventions involving oral 

stimulation and NNS. Barlow and colleagues have enhanced the approach of NNS in 

training the development of sucking skills for tube-fed infants with the use of a new device, 

the NTrainer (Barlow, Finan, Lee, et al., 2008; Poore, Zimmerman, Barlow, & al., 2008).  

The NTrainer device takes advantage of the extensive supply of mechanoreceptors 

in orofacial tissues (Finan & Barlow, 1996). Their innovation is a motorized, pulsating 

servomotor pacifier designed to match the natural temporal characteristics of the non-

nutritive sucking pattern. Six to 12 sucking cycles occurring at a frequency of around two 

Hz, followed by a pause for respiration, is characteristic of an infant’s non-nutritive sucking 

pattern (Barlow, Finan, Lee, et al., 2008; Wolff, 1968). Therefore the NTrainer was designed 
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to pulsate in a pattern of six bursts, at an individual frequency of 1.8 Hz within bursts, with 

two seconds of pause over three minutes. The intervention protocol was administered three 

to four times a day. Results of the Barlow et al. (2008) intervention protocol illustrate the 

effectiveness of the NTrainer in assisting tube-fed premature infants with no or inefficient 

sucking skills in the accelerated development of an organized non-nutritive suck, which in 

turn, increased oral feeding success. Premature infants in the NTrainer experimental group 

demonstrated greater oral intake amounts (total oral intake percentage per day) sooner than 

their control-group counterparts.  

Barlow and colleagues’ (2008) research illustrates the potential for aiding and 

strengthening the developing neuronal pathways of the brainstem and cerebral cortex via 

mechanical sensory stimulation. The infant sucking control center is receptive to peripheral 

input (Barlow, Finan, Chu, & Lee, 2008; Finan & Barlow, 1996, 1998; Poore, Zimmerman, et 

al., 2008; Rocha, et al., 2007). The NTrainer entrains the ororhythmic sucking behavior 

through sensory input to mechanoreceptors in the orofacial region to the sucking central 

pattern generator. In other words, mechanoreceptor afferent activity is entrained which, 

subsequently, modulates firing patterns of the lower motor neurons involved in the motor 

activity (Barlow, 2009b). That is, ―neurons that fire together will wire together‖ (S. Lowell & 

Singer, 1992). Descending inputs may shape the firing patterns of motoneurons involved in 

trigeminal, facial, and hypoglossal cranial nerve motoric functions (Barlow, 2009c). Animal 

research using neonatal guinea pigs and neonatal rats has indicated the sucking central 

pattern generator is housed bilaterally within the reticular formation at the levels of the pons 

and medulla (Iriki, Nozaki, & Nakamura, 1988; Tanaka, Kogo, Chandler, & Matsuya, 1999). 

Motor nuclei of the trigeminal, facial, and hypoglossal cranial nerves are all involved in 

producing sucking activity and likely operate in a coordinated fashion, however the 
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trigeminal nuclei may play a principal role (Tanaka, et al., 1999). Again, animal research has 

indicated that the sucking central pattern generator can be modulated via inputs traveling 

down to the brainstem from a sucking region within the motor cortex (Iriki, et al., 1988; 

Nozaki, Iriki, & Nakamura, 1986). Such neural network entrainment parallels current 

proposals concerning the role of sensory experiences in pathway emergence (Hensch, 2004; 

Marder & Rehm, 2005; Penn & Shatz, 1999). 

Entrainment of the infant swallow? 

Many of the current intervention techniques, including behavioral and environmental 

modifications as well as oral-motor stimulation and non-nutritive suck promotion, practiced 

with infants with dysphagia are implemented without evidence-based data of how such 

interventions affect the entire feeding process. In particular, how do such interventions 

affect the pharyngeal component of a swallowing event? Our field needs a better 

understanding of the underlying anatomic and neurophysiologic underpinnings of the 

functions we are attempting to change during therapy.  

In an effort to address the pivotal need for new knowledge of infant swallowing 

patterns, the present research aimed to investigate mechanisms which may lower the 

threshold for swallowing by providing external sensory input to elicit swallowing. This basic 

level, mechanism research may lead to potential clinical techniques to enhance facilitation of 

efficiency in sucking, swallowing, and breathing coordination. Emergent research suggests 

that entrainment of feeding central pattern generators can be accomplished via tactile, 

kinesthetic, auditory, and chemosensory stimuli (Bingham, 2009). Sensory input not only aids 

in the initiation of a swallow, but also in modification of the swallowing threshold (Mistry & 

Hamdy, 2008). In an effort to investigate mechanisms involved for swallowing among two 

sensorimotor intervention techniques commonly used in the neonatal intensive care unit, 
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Boiron, da Nobrega, Roux, and Saliba (2009) used acoustic signal analysis. Results indicate 

that an oral support protocol, involving jaw and cheek stabilization and external pacing, 

yielded the greatest increase in the number of swallows during feeding compared to an oral 

stimulation protocol and control group in 43 preterm infants. Very little literature exists 

concerning the effect of intervention techniques currently practiced with the infant 

population for feeding and swallowing difficulties on the frequency of swallowing. 

Sensory input from the oral and pharyngeal regions due to food, liquid, or saliva are 

essential for swallowing, and activates afferents within the trigeminal, glossopharyngeal, and 

vagal (superior laryngeal) nerves (Jean, 1984b, 2001; S. Y. Lowell et al., 2008; Shaker & 

Hogan, 2000). Early animal research indicates that stimulation of the pharynx can elicit 

closure and rising of the larynx for swallowing, and that stimulation of the larynx can initiate 

swallowing (Jean, 1984b; Nishino, Tagaito, & Isono, 1996). The internal branch of the 

superior laryngeal nerve (iSLN) has been identified as a potent afferent for pharyngeal 

swallow initiation (Doty, 1968; Jean, 1972, 2001; A. J. Miller, 1972a, 1999; Mistry & Hamdy, 

2008; Storey, 1968b). Jafari, Prince, Kim, & Paydarfar (2003) confirmed the importance of 

the iSLN for safe deglutition in adults, as afferent signals from this nerve facilitate complete 

closure of the larynx, preventing penetration and aspiration. Findings indicate that 

interference with sensory reception disrupts swallowing initiation and movement patterning 

important for preventing penetration and aspiration. 

However, researchers have illustrated that the pharyngeal branch of the 

glossopharyngeal nerve also plays an important role in the reflexive pharyngeal swallow in 

rats (Kitagawa, Shingai, Takahashi, & Yamada, 2002). Mechanical stimulation of pharyngeal 

mucosa effectively elicits swallowing (Doty, 1968; F. R. Miller & Sherrington, 1916; Sinclair, 

1970). Whereas the superior laryngeal nerve primarily supplies sensory pathways from 
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laryngeal mucosa, the pharyngeal plexus (pharyngeal branch of the vagus nerve and 

pharyngeal branch of the glossopharyngeal nerve) supplies the mucosae of the pharynx. 

Kitagawa and colleagues’ de-nervation experiments in rats referenced above demonstrate 

that mechanical stimulation of pharyngeal regions using a von Frey hair effectively elicited a 

swallow, but that the reflexive activity was innervated by the pharyngeal branch of the 

glossopharyngeal nerve. Stimulation of the pharyngeal branch of the vagus nerve was not 

involved in swallow initiation in the rat. The involvement of the pharyngeal branch of the 

vagus nerve may be in the efferent output of a swallow pharyngeal reflex. The study also 

illustrated that the pharyngeal branch of the glossopharyngeal nerve may be just as successful 

in eliciting a swallow as the superior laryngeal nerve. It is clear that the pharyngeal and 

laryngeal areas are highly sensitive to stimulation of the pharyngeal swallow reflex. 

Research concerning increasing the frequency of the swallowing via peripheral, 

mechanical sensory input has been investigated in the healthy adult population (Theurer, 

Bihari, Barr, & Martin, 2005; Theurer, Czachorowski, Martin, & Martin, 2009). Stimulation 

of oropharyngeal regions via sensory input has been shown to increase cortical activation of 

areas involved in swallowing (Fraser et al., 2003; Hamdy et al., 2003; Power et al., 2004). 

Lowell et al. (2008) also observed in adults that oral air pulse stimulation resulted in 

activation of both bilateral subcortical and cortical swallowing areas, as well as both sensory 

and motor areas involved in swallowing. Furthermore, the air pulse stimulation resulted in 

brain activation similar to subjects who were asked to produce a volitional swallow. Results 

indicate that peripheral sensory stimulation is capable of initiating the brainstem and cerebral 

swallowing network in the adult human.    

Therefore, animal and human research has indicated the ability of peripheral sensory 

stimulation to elicit swallowing and research in the adult human population has indicated 
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that mechanical sensory input can facilitate an increased frequency of swallowing. 

Furthermore, such swallowing stimulation has been demonstrated to increase both 

subcortical and cortical activation for areas involved in swallowing. Similar investigations 

with the infant population are needed in order to gain a better understanding of swallowing 

patterns earlier in life. The present study aims to explore mechanisms that might be used not 

only to elicit swallowing, but also serve to increase the frequency of swallowing in young 

infants with swallowing difficulties or those born prematurely, whose central pattern 

generators are still maturing and primed to collect sensory information - those who are still 

learning to efficiently coordinate sucking, swallowing, and breathing. However, application 

of the present research to such disordered or premature populations will depend upon future 

investigation regarding the ability of infants with neurological immaturity or damage to 

respond to the sensory stimulation utilized in this research.  

Eliciting the infant swallow – current knowledge base 
 

German, Crompton, Owerkowicz, & Thexton (2004) state that limited knowledge 

exists regarding initiation of the pharyngeal swallow in the infant population. Orenstein and 

colleagues found that perioral stimulation in the form of an air puff administered to the face 

at a distance of 30 centimeters consistently and immediately induced the infant swallow, 

likely influencing afferents of maxillary and manibular branches of the trigeminal nerve 

(Orenstein, Bergman, Proujansky, Kocoshis, & Giarrusso, 1992; Orenstein, Giarrusso, 

Proujansky, & Kocoshis, 1988). This technique to elicit a swallow in the infant, coined the 

―Santmyer swallow,‖ is dependent on the infant’s behavior state. The swallowing reflex, 

using the Santmyer swallow technique, could not be elicited during deep sleep without the 

infant waking, and was also difficult to elicit during crying. The response to this form of 

stimulation was found to disappear between 11 and 24 months of age (Orenstein, et al., 
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1992). Additionaly, the behavioral shaping of light tactile stimulation applied to the posterior 

tongue, and removed immediately to avoid a gag, consistently elicits a swallow in infants and 

children with dysphagia (N. Lamm & Greer, 1988; N. C. Lamm, De Felice, & Cargan, 2005). 

Specifically, Lamm and colleagues describe their participants as infants and children with 

lingual disorders and underlying causes of the dysphagia due to genetic, gastrointestinal, 

neuromuscular disorders, or cancer.  

Jadcherla et al. (2007) explored two forms of pharyngeal stimulation (air and water 

infusions) utilizing pneumohydraulic micromanometry within a sample of healthy, but 

premature neonates. The researchers hypothesized that both forms of pharyngeal 

stimulation would generate specific neuromotor behavioral outputs, including the pharyngeal 

reflexive swallowing (PRS) event. The pharyngeal swallows were confirmed using submental 

electromyography (EMG). PRS frequency was found to be greater with the water stimulus 

condition as compared to the air stimulus condition. PRS was elicited 22% of the time in 

response to air stimulation, whereas PRS was elicited 69% of the time in response to water 

stimulation. This study suggests that water is the more reliable form of direct pharyngeal 

stimulation to evoke a pharyngeal swallow in healthy, premature neonates. Furthermore, the 

frequency of swallowing increased as the volume of water infusions increased. Although 

mechanoreceptor and osmoreceptor stimulation in infant development is not fully 

recognized, this study demonstrates that such stimulation does elicit PRS responses. 

Jadcherla et al. (2007) suggest that their approach using pneumohydraulic 

micromanometry represents a safe and reliable instrumental method for evaluating 

sensorimotor and physiologic characteristics of the neonatal swallow. However, pharyngeal 

stimulation with the administration of water is invasive and requires costly instrumentation. 

Potentially, other forms of pharyngeal stimulation may similarly influence glossopharyngeal 
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and laryngeal nerve afferents, leading to neural activation responsible for swallowing. Many 

infants in the NICU are already exposed to abnormal sensory expereiences due to the nature 

of their medical conditions, which emphasizes the importance of considering less intrusive 

swallow stimulation methods for dealing with the NICU population. 

The present study aims to study the effects of two different, non-invasive forms of 

mechanical, or tactile, stimulation to elicit swallowing in the infant. Tactile input may serve 

as a robust type of sensory input with infants, as tactile sensory tracts represent one of the 

first sensory pathways to develop, beginning during the early fetal period (Garcia & White-

Traut, 1993). In fact, initial reaction to tactile stimulation in utero can be observed shortly 

following the eighth week of gestation (Hooker, 1942). Due to the early development of 

tactile sensory tracts, tactile stimulation has traditionally been utilized with infants, who 

following birth, are experiencing apnea as a method to trigger respiration (Garcia & White-

Traut, 1993).  

Pacifier and swallowing 
 

A mechanical stimulus is recognized in many regions of the oral cavity, as a large 

region of mechanoreceptors are on the tongue (A. J. Miller, 1999). In addition to the 

Santmyer swallow elicited by facial stimulation, perioral and intraoral stimulation to the lips 

and oral cavity also elicits the sucking reflex (Orenstein, et al., 1992). Different stimuli to the 

same perioral area elicit different reflexes, thus a close relationship between the suck and 

swallow is evident (Barlow, 2009c; Lau, 2006; Orenstein, et al., 1992). In 1988, Orenstein 

and colleagues reported that a pacifier dipped in a sweet substance such as jelly (infants 

demonstrate an early preference of sweet tastes) only initiates swallows infrequently and 

inconsistently (Mennella & Beauchamp, 1998). German, Crompton, Owerkowicz, & 

Thexton (2004) highlight the lack of data concerning how oral sensation influences the 
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elicitation of swallows in infants. German and colleagues have used infant pigs as the animal 

model to explore questions surrounding infant feeding behaviors. The researchers 

investigated how various sensory inputs (frequency and volume of milk delivery) influenced 

feeding behavior in this animal model. The volume of the milk bolus delivered did not 

influence the feeding swallow frequency, which is fairly constant at 1.5 swallows per second. 

However, the increased frequency of milk delivery, particularly in younger infant pigs, 

increased the swallow frequency to around two swallows per second at higher frequencies of 

delivery. Therefore, results from their study referenced above demonstrate an increased 

motor response in the pharynx was observed subsequent to oral stimulation of the anterior 

oral cavity of infant pigs. This suggests that sucking activity may serve to increase the 

frequency of swallowing however, the relationship between the suck and elicitation of the 

swallow is not fully understood. The German, Crompton, Owerkowicz, & Thexton (2004) 

study illustrates a potential connection between stimulation of trigeminal afferents in the 

intra-oral region and the posterior glossopharyngeal afferents during feeding with the onset 

of increased swallowing in the infant animal model.  

Suggestions that the maxillary branch of the trigeminal nerve may carry sensory 

fibers involved in pharyngeal swallowing stimulation have been offered (Doty, 1968; 

Dubner, Sessle, & Storey, 1978; Jean, 2001; A. J. Miller, 1972b, 1982, 1999). These may or 

may not be positioned in the optimal location for stimulation of pharyngeal swallowing. 

Initiation of pharyngeal swallowing via trigeminal sensory fibers may depend on the location 

of fibers stimulated within the oral cavity. Mechanoreceptors of the anterior tongue involve 

neuronal connections in the pons region, as opposed to mechanosensitive sensory fibers 

located in the posterior oral area that involve synapses in the nucleus tractus solitarius. 

Therefore, the latter may prove better positioned for eliciting pharyngeal swallowing (A. J. 
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Miller, 1999). Swallowing may be initiated or modified by exciting intraoral and pharyngeal 

afferents innervated by the trigeminal and glossopharyngeal networks during sucking activity 

(Barlow, 2009a, 2009c; Jean, 1990; Mistry & Hamdy, 2008). Furthermore, with 

neuromuscular development, increased tongue force used in driving the bolus toward the 

pharynx may aid in eliciting the swallow (Barlow, 2009c; Lau, 2006). Lau, Smith, Schanler 

(2003) found a close relationship between the frequency of swallowing and sucking during 

oral feeding. However, Lau (2006) suggests that swallowing may not be frequent during non-

nutritive sucking since it only involves management of an infant’s secretions. Koenig (1990) 

reports that swallowing was not frequent during non-nutritive sucking activity for a group of 

term and preterm infants. A close connection between sucking and swallowing is evident, 

but the precise relationship remains unclear. Thus, the present study aimed to determine the 

influence of non-nutritive sucking on a pacifier on the frequency of swallowing in the infant. 

If non-nutritive sucking does not serve as an effective form of entrainment for 

mechanoreceptors involved in swallowing elicitation, vibrotactile stimulation may represent 

an alternative, or complementary, habilitation strategy for infants with swallowing disorders.  

Vibrotactile device and swallowing 
 
To our knowledge, vibrotactile stimulation and swallowing has not been investigated 

in the infant population. Previous research suggests that sensory stimulation of the exterior 

throat region at the laryngeal level is effective in improving swallowing function in adults 

(Ludlow et al., 2007). In 2007, Ludlow and colleagues devleoped a vibrotactile device that 

administers mechanical sensory input to the exterior throat area. The vibrotactile sensory 

input is transmitted via tissue vibration to mechanoreceptors in the laryngeal mucosa via the 

thyroid cartilage and musculature in the larynx and pharynx.  
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The two main cranial nerves involved in initiation of the pharyngeal phase of 

swallowing include the glossopharyngeal and the internal superior laryngeal nerve (iSLN) of 

the vagus. The glossopharyngeal nerve innervates the posterior region of the tongue and the 

upper portion of the pharynx. The iSLN innervates the lower portion of the pharynx, down 

to the level of the true vocal cords. Stimulation of the glossopharyngeal nerve and iSLN can 

elicit initiation of pharyngeal swallowing. However, as mentioned earlier, stimulation of the 

iSLN appears to be the most potent pathway in eliciting pharyngeal swallowing. Sensory 

fibers of the iSLN contain receptors sensitive to tactile stimulation of the mucosa in 

different regions of the larynx (A. J. Miller, 1999). 

Superficial mucosa and laryngeal joints in the laryngeal and pharyngeal regions 

contain mechanorecepors (Bradley, 2000). Stimulation of pharyngeal and laryngeal mucosa 

induces various reflexes, including swallowing, for airway protection  (Mathew & 

Sant'Ambrogio, 1990; Storey, 1968a, 1968b; Widdicombe, 1986). Mucosa and joints in the 

larynx contain both superficial and deep mechanoreceptors (Bradley, 2000). Afferents in the 

superior laryngeal nerve are primarily rapidly adapting and some slowly adapting to pressure 

and vibratory stimuli (Boushey, Richardson, Widdicombe, & Wise, 1974; Davis & Nail, 

1988). Merkel cell and Meisnner corpuscle receptors likely respond to tactile stimulation in 

the laryngeal and pharyngeal region (Bradley, 2000).  

The vibrotacile device may lower the threshold for swallowing by deliverying sensory 

input that stimulates superior laryngeal nerve and glossopharyngaeal afferents, which may 

enhance activation of brainstem and cortical neural networks that control swallowing. 

Vibratory stimulus applied to the exterior throat region activates mechanoreceptors in the 

mucosa in the around the glottis and pharyngeal regions. Sensory information involved in 

the innervations of the pharynx and larynx, likely primarily carried via the iSLN, is carried to 
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the nucleus tractus solitarius (NTS) and surrounding reticular formation in the dorsal 

medullary area of the brainstem. The NTS serves as an elongated relay nucleus that stretches 

from the area of the facial motor nucleus down to the level of the cervical spinal cord. The 

interstitial subnucleus of the NTS represents the primary area for synaptic terminals of the 

glossopharyngeal and iSLN nerves. The dorsal swallowing group interneurons will then 

organize and shape the timing for the pharyngeal phase of swallowing. The program is 

distributed to the ventral swallowing group of interneurons, which then communicates the 

swallowing drive to the various motoneuron pools. The motoneuron pools include the cell 

bodies of neurons that innervate skeletal muscles of the head and neck involved in 

swallowing, and are located in the longitudinal nucleus ambiguus (NA), which lies ventrally 

to the nucleus tractus solitarius in the brainstem, and the dorsal motor nucleus of the vagus. 

The semicompact region of the NA receives projections from the NTS innervating 

pharyngeal muscles, while the loose area of the NA contains motoneurons specific to 

innervations of laryngeal muscles. Motoneuron pools for innervations of muscles important 

to pharyngeal swallowing are also located in the trigeminal motor nucleus, the facial motor 

nucleus, the hypoglossal nucleus, and at the level of C1-C3 of the cervical spinal cord. (Jean, 

2001; A. J. Miller, 1999) 

  In the present study, vibrotactile senosry stimulation was delivered to the participants 

at a low frequency of stimulation. When turned on, the vibrotactile device is programmed to 

deliver a four Hz vibration (150 ms on, 100 ms off). The vibration can be heard during 

voicing in adults. Vibration, or a moving and dynamic mechanical stimulus, appears to be 

more effective in stimulation of sensory fibers sensitive to mechanical stimulation (Davis & 

Nail, 1988; A. J. Miller, 1999). Furthermore, these fibers and their synaptic connections on 

neurons in the NTS appear to respond to low frequency stimulation. Mechanoreceptors 
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responding to stimulation of pharyngeal and laryngeal mucosal vibratory stimulation may be 

significant in activating the pathways involved in pharyngeal swallowing (A. J. Miller, 1999). 

Additionally, second order neurons are selectively activated at certain frequencies (Mifflin, 

1997). Data regarding the appropriate intensity (e.g., frequency of vibrotactile stimulation) 

for various types of sensory stimulation have not been fully indentified for the human 

newborn population (W. F. Liu, et al., 2007). Therefore, administration of vibrotactile 

stimulation to infants at an extremely low frequency marks a safe starting point. Further 

studies investigating the optimal frequency of delivery in the infant population would be 

beneficial.  

Cortical activation for swallowing in infants – reflexive to volitional 
 
The second aim of the present study is to determine if cortical involvement in 

response to swallowing stimulation increases over time in early infancy, specifically from 

two-four months of age to seven-nine months of age. The neonatal phase marks a period in 

which volitional swallowing is lacking (Jadcherla, et al., 2007). Infants gradually transition 

from a reflexive, brainstem-mediated suck-swallow-breathe pattern to increasingly include a 

volitional swallowing component as cortical pathways develop via transitional feeding 

learning experiences (Jadcherla, et al., 2009; Loughlin & Lefton-Greif, 1994; Stevenson & 

Allaire, 1991). However, this presumed period of increasing cortical modulation has not 

been thoroughly documented and the growing suprabulbar influence during the first year 

remains unclear (Barlow, 2009c; Kelly, et al., 2008).   

Research in both animals and humans indicates that breathing-swallowing 

coordination is mainly brainstem-controlled (Dick, Oku, Romaniuk, & Cherniack, 1993; 

Feroah et al., 2002; Kelly, et al., 2008; Lewis, Bachoo, Polosa, & Glass, 1990; F. R. Miller & 

Sherrington, 1916; Saito, Ezure, & Tanaka, 2002; Smith, Wolkove, Colacone, & Kreisman, 
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1989). However, over the course of development in the first couple years of life, 

synaptogenesis and cortex and corticobulbar tract myelination occurs, suggesting an increase 

in suprabulbar control (Gibson, 1991; Huttenlocher & Dabholkar, 1997; Kelly, et al., 2008; 

Sarnat, 1989). Furthermore, neonates experiencing damage to suprabulbar structures can 

exhibit swallowing disorders (Sarnat, 1989). Interestingly, developing cortical influence may 

differ between nutritive suck-swallow-breathe coordination and non-nutritive breathing and 

swallowing coordination, in that the former may involve growing cortical influence over the 

first year of life, while non-nutritive coordination may be solely under brainstem control 

during the first year of life (Kelly, et al., 2008; Kelly, Huckabee, Jones, & Frampton, 2007b). 

Further investigation is needed. In other sensory domains, using near infrared spectroscopy, 

findings include different cortical activation patterns between two and three-month old 

infants for visual perception (Watanabe, Homae, & Taga, 2010). The present study aimed to 

determine cortical activation patterns over time for non-nutritive swallowing using near 

infrared spectroscopy. 

Bosma (1986) introduced the idea of encephalization in describing the maturation 

from a reflexive feeding process to one with increasing cortical modulation (Rogers & 

Arvedson, 2005; Stevenson & Allaire, 1991). The pattern of gradual suprabulbar 

contribution is suggested through examination of infant feeding reflexes. Infant primitive 

reflexes related to swallowing, such as rooting and suckling (an immature version of 

sucking), disappear around 6 months (J. C. Arvedson & Brodsky, 2002). Volitional control 

of the infant suck has been reported to emerge at 3 months, but more research is needed 

(Reynolds & Fletcher-Janzen, 2008). It appears as though the evolution of volitional oral-

preparatory and oral-phase motor skills begins around 6 months of age and continues for 

several years (Kramer & Eicher, 1993; Stevenson & Allaire, 1991). 
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Near-infrared Spectroscopy 

Near-infrared spectroscopy (NIRS), an optical imaging technique, has been utilized 

in infant studies in the assessment of motor, visual, cognitive, auditory, and language 

domains (Aslin & Mehler, 2005; Isobe et al., 2001; J. Meek, 2002). This optical imaging 

technique was first implemented with adult humans and reported in 1977 (D. Boas & 

Franceschini, 2009; Jobsis, 1977). Near infrared spectroscopy was first developed for use 

in infants to screen for brain function abnormalities in the nursery. NIRS is a safe, non-

invasive technique for clinical and research purposes with infants and has been utilized 

with premature, medically-fragile infants (Cerussi, Van Woerkom, Waffarn, & Tromberg, 

2005; Liston et al., 2002; Pichler et al., 2008; Zotter et al., 2007). 

Optical imaging utilizes absorption spectroscopy as a measure of relative blood 

oxygenation in the brain via measurements of hemoglobin concentration, as near-infrared 

light in the 650-950 nm wavelength range is capable of penetrating hemoglobin, with low 

absorption by cerebral tissues (D. Boas & Franceschini, 2009; Bortfeld, Wruck, & Boas, 

2007; J. Meek, 2002). Wavelengths of light beyond the 950 nm range are greatly absorbed 

by water (D. Boas & Franceschini, 2009). Within this ―optical window,‖ near-infrared light 

is emitted through the scalp and brain tissue and is differentially absorbed by oxygenated 

and deoxygenated hemoglobin in the blood (Gratton, Sarno, Maclin, Corballis, & Fabiani, 

2000; Villringer & Chance, 1997). One of the chief limitations with NIRS is the 

quantification of hemoglobin concentration changes (Hoshi, 2003). The path-length of 

light transmission cannot be precisely quantified due to the scattering of light as it 

traverses through the scalp and outer cortex tissue (D. Boas & Franceschini, 2009). 

However, a reliable amount of light travels through the cortical mantle in a banana-shaped 

pathway back through the scalp and is measured by photodetectors (Gratton, Maier, 
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Fabiani, Mantulin, & Gratton, 1994). Two wavelengths of near-infrared light are used in 

order to maximize the relative quantifications of hemoglobin concentration changes (D. A. 

Boas, Dale, & Franceschini, 2004). The TechEn, Inc. system (Milford, MA, model CW6) 

used in the present study emits two wavelengths of near-infrared light: 690 nm (more 

sensitive to deoxygenated hemoglobin) and 830 nm (more sensitive to oxygenated 

hemoglobin). Changes in local oxygenated hemoglobin and deoxygenated hemoglobin 

(relative to a control period) are measured in a region of interest, and contribute to the 

computation of a total hemoglobin measurement. The absorption changes are quantified 

via a modified Beer-Lambert Law (Cope et al., 1988).  

 In reaction to a stimulus event, neural activation typically results in an increase of 

oxygenated hemoglobin in the area of interest, while local concentrations of deoxygenated 

hemoglobin decrease. Total hemoglobin is also found to increase (Bartocci et al., 2000; 

Bortfeld, et al., 2007; Hoshi & Tamura, 1993; Jasdzewski et al., 2003; Obrig et al., 1996; 

Strangman, Franceschini, & Boas, 2003). The term coined, ―neurovascular coupling,‖ 

describes the physiological changes in the relationship between neural and vascular 

responses to brain activation. Cerebral blood flow increases to the local region of interest 

due to an increase of oxygen consumption resulting from neural activation. This 

hemodynamic response is utilized as an index of cortical activation and research indicates a 

link between hemodynamics and neural activity (Bortfeld, et al., 2007; Gratton, Goodman-

Wood, & Fabiani, 2001; Grinvald et al., 1991; J. Meek, 2002; Obrig et al., 2000; Seiyama et 

al., 2004; Strangman, Boas, & Sutton, 2002; Villringer & Chance, 1997; Villringer & 

Dirnagl, 1995; Watanabe, et al., 2010). The hemodynamic response is slow, typically 

peaking 6-8 seconds after the stimulus event (Irani, Platek, Bunce, Ruocco, & Chute, 2007; 

J. Meek, 2002).  
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Literature points to considerable variation in the infant oxygenated- and 

deoxygenated hemoglobin response during optical imaging (Karen et al., 2008). Studies 

have indicated that infants may demonstrate increases in both oxygenated and 

deoxygenated hemoglobin, contributing to the increased total hemoglobin (Bortfeld, et al., 

2007; J. Meek, 2002; J. H. Meek et al., 1998). The rise in deoxygenated hemoglobin, an 

opposite response compared to adults, may be due to an immature infant brain (Bortfeld, 

et al., 2007; J. Meek, 2002). Findings from other research indicate an increase in 

oxygenated-hemoglobin, with a varying deoxygenated-hemoglobin response (Hoshi et al., 

2000; Taga, Asakawa, Hirasawa, & Konishi, 2003). Other infant research has found a 

decrease in both oxygenated- and deoxygenated-hemoglobin (Kusaka et al., 2004). 

Some exceptions to the above variation include NIRS studies in which infants were 

sedated (Isobe, et al., 2001). In these cases, the typical adult hemodynamic response 

pattern was observed, with a local increase of oxygenated hemoglobin concentration and 

decrease of deoxygenated hemoglobin concentration in the region of interest. Thus, 

behavioral state may affect the infant hemodynamic response (Karen, et al., 2008). 

 Aslin & Mehler (2005) report that studies with infants have not been conducted to 

determine if neural tissue damage occurs from the transmission of infrared-light through 

the scalp and brain tissues. With the infant brain, general consensus suggests that between 

0.3 mW and 5.0 mW of near-infrared light intensity is safe. 

10-20 International System for Electrode Placement with Electroenchephalography 

The 10-20 system of electroencephalography (EEG) electrode placement, as 

delineated in 1957 in the Report of the Committee on Methods of Clinical Examination in 

EEG, is currently the most reliable technique for positioning the NIRS probes with the 

infant population (Jasper, 1958; Wilcox, Bortfeld, Woods, Wruck, & Boas, 2008). 
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Neuronavigation to locate the precise underlying neural areas of interest is not typically 

performed with infants due to the safety considerations with magnetic resonance imaging 

(MRI) (Aslin & Mehler, 2005). In the current study, NIRS probe positioning for the brain 

regions of interest for swallowing used external anatomical landmarks of the infant skull (i.e., 

nasion, inion, external auditory canals) and averaged infant atlas MRI templates, accessed 

from Dr. Richards’ at the University of South Carolina Neurodevelopmental MRI database 

(Almli, Rivkin, & McKinstry, 2007; Evans, 2006; Fu, Fonov, Pike, Evans, & Collins, 2006; 

Karama et al., in press; Leppert et al., in press; A. K. Liu et al., 2007; Richards, 2010, 2009; 

Sanchez, Richards, & Almli, 2011; Waber et al., 2007; Wilke, Holland, Altaye, & Gaser, 

2008). The 10-20 system assumes a reliable relationship between the external scalp 

landmarks and the underlying neural substrates, although individual variation does exist 

(Blume, Buza, & Okazaki, 1974; Homan, Herman, & Purdy, 1987; Jasper, 1958; Okamoto et 

al., 2004).



 

Methods 

Participants 

Subjects were recruited by a recruitment pamphlet (see Appendix A) placed in local 

hospital’s birthing center, local obstetrician and pediatrician offices, the local community 

health center, and local retail and professional organizations.  

A power analysis was performed before participant enrollment using data on the 

mean spontaneous swallowing frequency in infants with dysphagia who had achieved oral 

feeding (Jadcherla, et al., 2009). The independent variable was the type of feeding group and 

the outcome variable was the swallowing frequency of infants with dysphagia. The number 

of subjects required in each age group was determined using a power analysis performed 

using Systat13 software and yielded the following results, as outlined in Table 1 below. 

Table 1 

A Priori Power Analysis 

______________________________________________________________________________ 

 

Expected difference   Standard deviation of difference   Effect size   Alpha   Power   No. of subjects 
______________________________________________________________________________ 
 

0.400 0.300 1.333 0.05 0.80 7 per group 

______________________________________________________________________________ 

Infant exclusionary criteria were determined through parent/caregiver-report: 

 History of feeding or swallowing problems 

 Currently being treated for a diagnosed reflux 

 Never been exposed to either a bottle or a pacifier 

 Born prematurely (before 37 weeks gestation) 

 Fails the Ages & Stages-3 developmental screening 

 Unable to maintain a quiet, calm behavior state for less than 5 minutes at a time 

 History of seizures 

 History of neurological or neurodevelopmental abnormalities 

 Congenital anomalies or craniofacial malformation 
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Additional exclusionary criteria regarding the use of near-infrared spectroscopy (NIRS) 

included: 

 Highly-pigmented (dark) skin color 
 Known cardiovascular disorders or neuropathies  
 Unable to maintain a quiet, calm behavior state for less than 5 minutes at a 

time 
 Broken skin in the area of the head that NIRS probes will be placed on the 

scalp  
 

As all of the researchers involved use English as their primary mode of 

communication, participants of the current study were limited to parents/caregivers able to 

proficiently speak, read, and understand English. Data collected from the infants tested 

during the pilot phase was used in the final study if their data was valid and reliable.  

Equipment and Software 

All study equipment was used in the Neural Bases of Communication and 

Swallowing Laboratory at James Madison University. 

Pacifier Stimulation  

Parents/caregivers were instructed to bring a familiar pacifier that their infant used 

consistently at home for the portion of the study utilizing pacifier stimulation.  

Vibrotactile Stimulation 

Vibrotactile stimulation was delivered via a small flat motor (size of a dime) attached 

to the outside of the throat, laterally to the thyroid cartilage, with medical or double-sided 

adhesive tape.  

Accelerometers 

Two 0.4 gram Kistler accelerometers (Amherst, New York, model 8778A500) were 

used in an attempt to measure swallowing and sucking movements. The first accelerometer 

was secured using tape on the infant’s external throat area, laterally to the thyroid cartilage, 
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to detect movement of the hyolaryngeal elevation during swallows. This was used to indicate 

a swallow had occurred. Pharyngeal swallows are regularly identified by the characteristic 

hyoid and laryngeal elevation (Amaizu, Shulman, Schanler, & Lau, 2008; Bulock, et al., 1990; 

Logemann et al., 1992). A second accelerometer was positioned with tape in the infant’s 

facial region in an attempt to detect and confirm sucking movement.  

Inductotrace 

The Inductotrace System (Ambulatory Monitoring, Inc., Ardsley, NY, model 

10.9000), inductive plethysmography, was used to record the transient suppression of 

respiration, or apneic moment, associated with a swallowing event for both adults and 

infants (Ardran, Kemp, & Lind, 1958; Bamford, et al., 1992; Clark, 1920; Curtis, Cruess, 

Dachman, & Maso, 1984; Gryboski, 1969; Koenig, et al., 1990; Logan & Bosma, 1967; 

Loughlin & Lefton-Greif, 1994; B. Martin, Logemann, Shaker, & Dodds, 1994; Mathew, 

1991; Nishino, Yonezawa, & Honda, 1985; Preiksaitis, Mayrand, Robins, & Daimant, 1992; 

Selley, Flack, Ellis, & Brooks, 1989a, 1989b; Thach & Menon, 1985; Wilson, Thach, 

Brouillette, & Abu-Osba, 1981). Two elastic transducer bands (Ambulatory Monitoring, Inc., 

Ardsley, NY), which contain insulated wires and are made specifically for infants within the 

current study’s age range, were used to record the respiratory patterns of the participant. 

One elastic band was placed around the infant’s rib cage and one elastic band around the 

abdomen. Inductive plethysmography is regularly used to record respiratory measurements 

in humans, even during infancy (Martinot-Lagarde, Sartene, Mathieu, & Durand, 1988; 

Semienchuk, Motto, Galiana, Kearney, & Brown, 2005). Abdominal, rib cage, and sum 

motion signals were not calibrated for volume. Rather, the amplifiers were set at 1.0 for the 

abdominal and rib cage signals and 2.0 for the sum signal. The inductive plethysmography 
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has been used previously with infants for measurement of respiratory movements related to 

swallowing (Goldfield, Richardson, Lee, & Margetts, 2006; Nixon, et al., 2008). 

Near-Infrared Spectroscopy (NIRS) 

Near-infrared spectroscopy (TechEn, Inc., Milford, MA, model CW6) was used to 

quantify the percent change in deoxygenated hemoglobin and percent change in 

oxygenated hemoglobin in response swallowing stimulation. Using the International 10-20 

system of electrode placement for electroencephalography, this study placed NIRS probes 

bilaterally on the scalp over the somatosensory and motor areas of the infant brain. Probe 

configuration consisted of an emitter placed bilaterally over the primary motor region (M1) 

of the brain, with two detectors in the post-central sensory region and two detectors in the 

pre-central motor planning region (see Figure 1 below). Emitters and detectors were 

separated by a distance of 2 cm (Taga, Homae, & Watanabe, 2007). Thus, for each 

hemisphere, data was collected from four sampling areas (the region between each of the 4 

detectors and the central emitter). Probes were housed in an elastic headband. The 

intensity of the laser light hitting the scalp was between 3-3.5 mW for the 830 nm 

wavelengths and around 5 mW for the 690 nm wavelengths.  

 

Figure 1. Near-infrared spectroscopy headband probe configuration. The lower sensory and upper motor detectors were on a 180 angle 

relative to the emitter on either side, while the upper sensory and lower motor detectors were positioned at 10 angles from relative to the 
emitters. 
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Brainsight v2.0 (Rogue Research Inc., Montreal, QC) was used to view and navigate 

averaged infant atlas MRI templates, accessed from Dr. Richards’ at the University of South 

Carolina Neurodevelopmental MRI database (Almli, et al., 2007; Evans, 2006; Fu, et al., 

2006; Karama, et al., in press; Leppert, et al., in press; A. K. Liu, et al., 2007; Richards, 2010, 

2009; Sanchez, et al., 2011; Waber, et al., 2007; Wilke, et al., 2008). An atlas for infants aged 

3 months, 6 months, and 9 months of age were used in order confirm that probe 

configuration (see Figure 2 below) targeted the same underlying neural areas for the entire 

age range of the present study. Brainsight neuronavigation also facilitated determination of 

emitter placement three inches above T3 and T4 along the lateral Cz to T3/T4 line of the 

International 10-20 system. The lower region of the primary motor area (M1) was 

consistently located three centimeters above T3/T4 for our age range.  

 

Figure 2. Near-infrared spectroscopy probe configuration as determined using Brainsight. The letter ―e‖ represents an emitter and the 
letter ―d‖ represents a detector. Probes were placed bilaterally. 

 
Specifically, for each of the three infant brain atlases utilized (3 months, 6 months, 

and 9 months), the files was opened in Brainsight using the 3x1 layout. Under the ―MNI 
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tab,‖ the Anterior Commissure-Posterior Commissure line (AC-PC line) was manually set, 

using an online AC-PC line figure for visual guidance in marking the AC and PC points. 

Visual observation confirmed that the line was oriented in a midline position. No 

bounding box or overlay adjustments were made. Under the ―ROIs Tab,‖ a new region of 

interest (ROI) was selected from region paint. The sagittal view was selected for the main 

window. The ―+‖ marker was then moved to the right edge in the coronal view. The pen 

diameter was set to 10 mm (1 cm). The emitter and detectors distances were then 

measured and marked in the appropriate motor or somatosensory area of the brain. The 

detectors were placed at a 2 centimeter distance from the emitter.  

Data collection and analysis 

An ADInstruments, Inc. PowerLab 16/30 (Colorado Springs, CO, model ML880) 

data acquisition unit was used to collect and synchronize all signals described above, as well 

as amplify and digitize the signals for data analysis. E-Prime v2.0 (Psychology Software 

Tools, Inc., Sharpsburg, PA) was used to control (run) the vibrotactile stimulation, while 

LabChart v7.1 (ADInstruments, Colorado Springs, CO) with PowerLab was used to collect, 

display, and analyze the digitally acquired signals from the various measurement methods 

being used in this study. HomER (Hemodynamic Evoked Response) software was used for 

NIRS data analysis (Huppert & Boas, 2005). Systat 13 and SPSS 18.0.0 were used for 

statistical analyses. Figure 3 below provides visual mapping of the equipment set-up for the 

overall experiment. 
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Figure 3. Equipment flowchart for overall experiment. 

Experimental Design 

This study was a prospective, repeated design. Outcome measures were within-

subjects (effect of stimulation) and between-subjects (age). All infants in this study were to 

receive pacifier and vibrotactile stimulation, with a corresponding period of no stimulation. 

The independent variables were the stimulus conditions (no stimulation, pacifier stimulation, 

and vibrotactile stimulation) and age group. The dependent variables were the frequency of 

swallowing and the NIRS measures of changes in percent oxygenation hemoglobin in the 

somatosensory and motor regions of the infant brain.  

The pacifier stimulation, vibrotactile stimulation, and no stimulation conditions were 

presented in a counter-balanced order. Each condition was presented for an accrued time of 

5-10 minutes. For the pacifier stimulation period, the infant was offered a pacifier for non-

nutritive sucking, which was recorded for up to 10 minutes. Vibrotactile stimulation was also 

presented for up to 10 minutes. For the present study, the vibrotactile motor ran at 100 Hz 
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and was programmed, via an E-Prime script, to be on for 150 ms of vibration followed by 

100 ms quiet intervals, resulting in 4 Hz modulation. Each vibrotactile stimulation epoch was 

presented for 10 seconds at a time, with randomized inter-stimulus periods of no stimulation 

for 18-28 seconds between each stimulus presentation (see Figures 4, 5 below). Up to 18 

stimulus epochs were presented within a 10 minute timeframe. Infants were allowed to feed 

during the session, pending individual hunger demands.  

 

Figure 4. Single, 10s vibrotactile stimulation epoch as displayed in LabChart. 

 

Figure 5. Two, 10s vibrotactile stimulation epochs separated by a randomized non-stimulation interval of 23s as displayed in LabChart. 

Procedures 

Consent Process  

Interested parents/caregivers were instructed to call the Neural Bases of 

Communication and Swallowing Laboratory (NBCSL) at James Madison University to 

participate in the telephone screening in order to determine whether or not the infant was 

eligible to participate (see Appendix B). If the infant was determined eligible, the 

investigator scheduled an appointment with the parent/caregiver to discuss the informed 

consent form and begin the experimental session. A letter of invitation to participate in the 

study, a copy of the parental informed consent form (see Appendix C), a JMU parking 
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pass, and the Ages & Stages-3 developmental screening parent questionnaire were mailed 

to the parent/caregiver (Dionne, Squires, & Leclerc, 2004; Pizur-Barnekow et al. 2010).  

The caregiver was asked to bring the completed questionnaire to the scheduled 

appointment. If the caregiver did not complete the questionnaire prior to the scheduled 

appointment, it was completed at the time of the appointment. During the scheduled 

appointment, parents/caregivers of the eligible infants read and reviewed the informed 

consent form with the investigators. After all parent/caregiver questions were answered 

and the parent/caregiver displayed full understanding of the consent form and agreed to 

allow the infant to participate in the study, the consent form was signed. Additional release 

forms involving permission to use data for educational purposes and permission to contact 

the parent/caregiver for future studies were presented and signed.  

  Caregivers/parents could elect or decline to have their infant participate in using 

near-infrared spectroscopy to measure brain activity in response to stimuli. Once the 

consent process was complete, the participants spent 1-2 sessions at the NBCSL, which 

took approximately 2 hours. Those participants enrolled in the NIRs portion of the study 

also spent 1-2 sessions at the NBCSL after the consent process was completed. The NIRS 

sessions took approximately 3-4 hours. 

Recording Procedures 

After the consent process was complete, the devices were placed (Figures 3, 6). A 

microphone was also clipped to the clothing of either the caregiver/parent or the infant. If 

the infant was participating in the NIRS portion of the study, the NIRS probes headband 

was placed on the head. All experimental sessions digitally video recorded. Digital video 

recordings were stored on a secure NBCSL server with no names to protect the anonymity 

of each participant.  



Infant Swallowing Stimulation 47 
 

 

 

 

Figure 6. Infant participant wearing NIRS probe headband and ―suck‖ accelerometer (circled in white). ―Swallow‖ accelerometer not 
visible in picture. 
 

Following an experimental session, each parent/caregiver was asked to confirm 

that the infant did not experience any adverse events before departing the session. A 

follow-up phone call or email was made to determine if any subsequent adverse had 

occurred due to participation in the study.  

Risks/Discomforts 

Both the pacifier and vibrotactile device were non-invasive forms of stimulation with 

no known risks. The vibrotactile device was secured on the throat region using medical or 

double-sided tape, which could cause redness when removed. Baby lotion was offered to 

reduce redness per parent/caregiver request. The accelerometer(s) were secured on the 

throat and in the facial region using medical or double-sided tape, which could cause redness 

of the skin when removed. The two elastic Inductotrace bands stretched, producing no 

discernable discomfort, other than light pressure when wrapped around the rib cage and 

abdomen. The bands were not restrictive and easily stretched to measure chest wall and 

abdominal movement. 

―Suck‖ accelerometer 
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  Markers were used on the scalp to indicate the International 10-20 system locations 

before probe placement. Laser light emitted from the NIRS optodes could potentially cause 

eye damage if the light makes contact with the eyes. The lasers were only turned on once 

they were securely positioned on the infant’s head. The infants may have felt light pressure 

from the sensor probes being held in place by a headband. Every effort was made to apply 

the probes slowly to allow the infant to adapt to them.  

Outcome Measure 

This study involved two outcome measures, the mean frequency of swallows per 

minute over a period of five minutes. The mean frequency of swallowing was measured for 

each condition: no stimulation, pacifier stimulation, and vibrotactile stimulation.  

Data Analysis Procedures 

Following data collection from the first six participants enrolled in the current study 

(three in each age group), a second power analysis was performed using the current study’s 

data. The second power analysis used the swallowing frequency data collected from the first 

six participants of the current study (three infants in each age group). Mean differences and 

standard deviations of the differences in swallowing frequency per condition were calculated 

and the N required per group at a power of .8 and an alpha of .05 per repeated analysis using 

Systat13 software (see Table 2 below).  
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Table 2 

Second Power Analysis 

_________________________________________________________________________________________________________ 

 
Stimulation type by group Expected difference   Standard deviation of difference   Effect size   Alpha   Power   No. of subjects 
_________________________________________________________________________________________________________ 

Young group with pacifier -5.833 4.215 1.384 0.05 0.80 7 per group 

Old group with pacifier 4.467 2.715 1.645 0.05 0.80 6 per group 

Young group with vibrotactile -2.800 1.735 1.614 0.05 0.80 6 per group 

Old group with vibrotactile -2.900 1.735 1.672 0.05 0.80 4 per group 

_________________________________________________________________________________________________________ 

Results estimated that six participants in each age group, yielding a total sample size of 

twelve participants, would be sufficient to answer the research questions. 

The mean frequency of swallowing between conditions was compared using a 

repeated-measures ANOVA while testing for age group between subjects and the interaction 

of age group by stimulation effects. The significance level was set at α = .05, as no ANOVA 

was planned for the NIRS results. A Bonferroni correction is not necessary at this time, as 

we only have one outcome variable.  

Video Recording Observation and Marking Swallows Procedures  

The investigator conducted the analysis using de-identified data files. For each 

participant, the video recordings were first reviewed and detailed notes made, noting all 

times when the infant moved or produced a vocalization. If motion artifact in the 

LabChart data accompanied a movement, this was also noted. The audio channel from the 

LabChart data was converted into a WAV audio file. The WAV audio files were compared 

to the video files in order to match timing between the LabChart files and videos. For the 

first seven participants, the video files for the pacifier condition were also carefully 

reviewed and all sucking interval times were noted. Sucking activity was clearly visible in 

watching the videos. For the remainder of the participants, sucking activity was carefully 
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marked using a pulse generator, which yielded marked sucking intervals in a channel in the 

LabChart data. All notes from the videos were then added as comments in the LabChart 

data files. Sucking intervals and vibrotactile epochs were also added as comments (see 

Figures 7-9 below).  

 

Figure 7. Comments identifying a vibrotactile stimulation epoch as displayed in LabChart. 

 

Figure 8. Comments identifying sucking intervals marked via pulse generator as displayed in LabChart. 

 

Figure 9. Comment identifying movement and motion artifact as observed in video recording as displayed in LabChart. 

Next, all swallows were marked in the de-identified LabChart data files for each 

condition (see Figure 10 below). Files were blinded by a staff co-investigator so that the 

investigator was not aware of which condition file was being reviewed. The infant swallow 

pattern was identified through extensive review of LabChart files recorded during bottle 

feedings, as well as data files which included reliable ―marking‖ of swallows using a pulse 

generator. Swallows were identified by the above determined typical swallowing pattern 



Infant Swallowing Stimulation 51 
 

 

 

with a corresponding apneic moment in the ―Sum‖ Inductotrace signal of at least 350 ms 

(Lau 2006).  The phase of respiration in which a swallow occurred was determined using a 

channel in LabChart that displayed the first derivative of the ―Sum‖ Inductotrace signal 

(999 point window width). In the ―Sum 1st Derivative‖ channel, a line was drawn at zero. 

A swallow occurring when the ―Sum 1st Derivative‖ signal was below zero was considered 

to occur during exhalation and was considered to occur during inhalation when this signal 

was above zero. 

 

Figure 10. Swallow on exhalation and corresponding apneic moment as marked in LabChart. 

Swallowing Frequency Procedures 

All raw data comments from each LabChart data file were then exported to an 

Excel spreadsheet that captured the timing of all events from each condition for each 

participant. The Excel spreadsheets were then utilized to determine all ―calm time‖ that 

could be pulled for each condition to reach the accrued five minutes of time for data 

analysis of swallowing frequency. Target ―calm time‖ included time when the infant was 

not moving or crying. Given that the present study’s sample included infants, motion 

artifact was unavoidable, as infants tend to move spontaneously. This represents a 

limitation of the current study, particularly in analysis of the near-infrared spectroscopy 

data. Therefore, after all completely ―calm time‖ was identified and if additional time 
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periods were needed to reach the accrued five minutes, additional ―calm times‖ were 

included. However, if swallows occurred within three seconds following motion artifact or 

crying, or within one second following a crying event detected in the accelerometer 

recording, data were omitted from analysis. For all usable time periods, the longest 

durations of uninterrupted time were included in the analysis. Swallows were then counted 

within the accrued five minutes of usable time and the swallowing frequency per minute 

was calculated. For each swallow, it was also noted whether or not respiration was 

interrupted on inspiration or exhalation. 

Intra-rater Reliability 

Following data collection and analysis of the ninth participant, intra-rater reliability 

in identifying and marking swallows was assessed. Data from the first nine participants 

yielded 25 files that could be used for assessing intra-rater reliability; 20% were randomly 

chosen and blinded, re-labeled as files ―A-E.‖ Swallows and the phase of respiration were 

then re-marked for each blinded file and then compared to the originally marked files for 

consistency and accuracy. 

NIRS Analysis Procedures 

Near-infrared spectroscopy data files were opened and analyzed in HomER data 

analysis software (Huppert & Boas, 2005). After a file was opened in HomER, all channels 

were assessed in an unfiltered view for a cardiac signal and appropriate signal intensity. 

Channels which did not contain a cardiac signal, were too noisy, or were not of appropriate 

intensity in raw data form (.5-2 x 106) were not included for processing. A low pass filter (.5 

Hz) high pass filter (.016 Hz) and were then applied in order to reduce respiration and 

cardiac components of the signals, since the hemodynamic response of interest is relatively 

slow in comparison to the other physiological signals. The ―Cov. Reduced dConc‖ filtering 
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was then applied (a third principle component analysis performed on the concentration 

data), for data processing.  

The periods that represented the least motion artifact after filtering were identified 

and epochs during this time were chosen for event-related averaging (see Figure 11 below). 

Between six and 16 stimulation or control (no stimulation) epochs were included in the 

event-related averages, depending on the individual’s data. A minimum of six epochs proved 

sufficient in seeing the hemodynamic response. The epoch times were identified through 

identifying vibrotactile stimulation time, pacifier time, or non-stimulation times and manually 

entered into HomER. The vibrotactile epochs, as controlled via E-Prime, were included as 

an auxiliary channel in the NIRS machine and were recorded in HomER.  The sucking 

interval epochs were either noted from observation of the video recordings and converted to 

HomER time or pulled directly from the NIRS auxiliary channel that received the ―sucking‖ 

marking via a pulse generator. The no stimulation epochs were identified in the LabChart 

data files and manually entered in HomER. Non-stimulation epochs did not include any 

swallow events. The time intervals between each epoch for each condition were set as closely 

to uniform and identical as the raw data allowed. The average was then performed over 25 

seconds for epochs in each condition (no stimulation, vibrotactile, or pacifier), from five 

seconds before the start of an epoch to 20 seconds following the initiation time of each 

epoch. Averaged data were then exported to an Excel spreadsheet. A hemodynamic 

response was characterized by a peak value equal to or greater than a 2% increase in 

oxygenation. 
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Figure 11. Screenshot of event-related averaging in HomER for a stimulation condition. 

As a point of reference, see Figure 12 and Figure 13 below to view the typical hemodynamic 

response (or cerebral blood blow response) as a result of neural activation in a region of 

interest in the brain. 

  

Figure 12. Typical hemodynamic response from Pasley & Freeman (2008). 
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Figure 13. Averaged NIRS oxygenation data from a region of interest from Bunce, Izzetoglu, Izzetoglu, Onaral, & Pourrezaei (2006). 



 

Results 

Participants 

Recruitment contacts were with 21 parents/caregivers willing to volunteer their 

infants. Of those, nine infants did not qualify (seven infants were not using a pacifier, one 

infant was being treated for a diagnosed reflux, and one was born before 37 weeks 

gestation). The study included 12 healthy infant volunteers with parent-reported normal 

swallowing, forming two different age groups (six 2-4 month old infants and six 7-9 month 

old infants). A total of 13 experimental sessions were completed, with 12 unique 

participants (8 females, 4 males) completing the study.  Longitudinal data was collected 

from one infant who participated in the study as a younger infant in the 2-4 month range 

and returned to participate again as an infant in the older 7-9 month range.  The average 

age of the younger infants was 3:16 (range 2:16 to 4:19) months and the average age of the 

older infants was 8:6 (range 7:4 to 9:19) months. All participants scored within in normal 

limits on the Ages & Stages-3 developmental questionnaire, meeting age-appropriate 

developmental milestones in communication, gross motor, fine motor, problem solving, 

and personal-social categories. Wassenaar and Van den Brand (2005) found that the higher 

levels of melanin interfered with the reflected wavelength transmission in near-infrared 

spectroscopy measurements for those with ―black, very black, and incredibly black skin‖ 

color. (p. 196) No participants from the current study who participated in the near-infrared 

spectroscopy portion of the study had black skin color; all infants who participated in the 

NIRS portion of the study were Caucasian with very light skin color. Therefore, all near-

infrared spectroscopy data collected during the current study is believed to be accurate and 

reliable in regard to the skin pigmentation issue. There are no adverse events to report 

following data collection from the first 13 participants. Per parent report, the redness 
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caused by removal of medical tape typically disappeared within eight hours after removing 

the tape. 

As many infants, particularly in the older age range, use a pacifier for a short period 

of time in early infancy and then prefer to use their own fingers for oral stimulation, 

infants who no longer used a pacifier or refused the pacifier during the experimental 

session only received vibrotactile stimulation. From the group of 12 unique participants, 

two infants (one from each age group) refused the pacifier during the experimental 

session. For the purpose of the repeated-measures ANOVA concerning swallowing 

frequency, datasets that included data collected from all three conditions (no stimulation, 

vibrotactile, and pacifier) were used for the statistical analysis, which included 5 

participants in each group.   

Vibrotactile Device Amplitude 

The first three participants from the younger age group and the first four 

participants from the older age group were considered to receive low vibrotactile 

amplitude, as the battery was at around 67% full capacity. All other participants were 

considered to receive normal vibrotactile amplitude (see Figures 14, 15 below illustrating 

swallowing frequency during the vibrotactile condition, comparing low amplitude and 

normal amplitude for each age group). For the younger group, the mean swallowing 

frequencies between the two vibrotactile amplitude groups were nearly identical (4.67 + 

.31 for the low amplitude group and 4.67 + .68). For the older group, the mean swallowing 

frequency for the low amplitude was slightly higher than the mean swallowing frequency 

for the normal amplitude group (5.30 + .81 and 4.93 + .31), respectively). Independent 

samples t-tests comparing the mean swallowing frequencies between the two vibrotactile 

amplitude groups for each age group indicated no significant difference in mean 
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swallowing frequencies for the two different vibrotactile amplitude groups within the 

younger infant group and the older infant group, t(4) = 0.00, p >.05 and t(5) = 0.73, p 

>.05, respectively.  

 

Figure 14. Comparison of mean swallowing frequency between vibrotactile amplitude groups for the younger infants. 

 

Figure 15. Comparison of mean swallowing frequency between vibrotactile amplitude groups for the older infants. 

Marking Swallows and Intra-rater Reliability 

During data collection, a staff investigator attempted to visually observe the 

hyolaryngeal movement indicating the beginning of pharyngeal swallowing, and pressed 
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the button on a pulse generator to ―mark‖ swallows as a supplemental confirmation for 

swallowing activity. This method proved unreliable, as visual observation of the infant 

neck area was often impossible due to posturing, and was discontinued early on in the 

participant enrollment phase. Re-identification and marking of swallows was identical to 

the initial swallows marked in 98% of the swallows identified, demonstrating adequate 

intra-rater reliability. 

Individual variation in the accelerometer placement for the suck differed, given that 

the type and size pacifier that each infant uses varied. The ―suck‖ accelerometer proved 

unreliable in detecting sucking activity and yielded unusable data signals. Due to pacifier 

construction, the investigators were unable to find a reliable placement to detect sucking 

activity. Furthermore, many infants would not tolerate the ―suck‖ accelerometer. Therefore 

the investigators decided to discontinue use of the ―suck‖ accelerometer after the seventh 

participant. Instead, sucking activity was ―marked‖ manually via visual observation and the 

use of a pulse generator, the button of which was pressed and held down during all times 

that an infant sucked.  

Swallowing Frequency 

Table 3 below outlines the mean swallowing frequencies and standard deviations 

for each condition within each of the two age groups, as well as the combined swallowing 

frequencies for all participants in which data was collected (see Figures 16, 17 below 

illustrating swallowing frequency by condition for only the data used for the ANOVA 

analysis (n = 10, 5 in each age group)): 

 

 

 

 

 



Infant Swallowing Stimulation 60 
 

 

 

Table 3 

Mean Swallowing Frequency by Condition and Group 

____________________________________________________________________________________ 

Mean swallowing frequency (M + SD) No stim  Pacifier  Vibrotactile 
(swallows per minute over 5 minutes) 
____________________________________________________________________________________ 
 
2-4 month olds   1.60 +.14  4.88 + .59  4.84 + .71 
 
7-9 month olds   1.77 +.61  4.87 + .68  5.13 + .69 
 
Combined    1.69 +.45  4.87 + .61  5.00 + .68 
____________________________________________________________________________________ 

 

Figure 16. Mean swallowing frequency by stimulation condition in younger group of five infants with complete datasets. 

 

Figure 17. Mean swallowing frequency by stimulation condition in older group of five infants with complete datasets. 
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The Kolmogorov-Smirnov and Shapiro-Wilk tests of normality indicated normal 

distributions (test statistics p > .05) for swallowing frequencies within each condition (no 

stimulation, pacifier, and vibrotactile) for both age groups, indicating that normal 

distributions can be assumed. The Levene test of homogeneity of variance indicated that 

we can assume roughly equal variance for the pacifier and vibrotactile swallowing 

frequencies, as they were non-significant (p > .05). The Levene test statistic based on the 

mean for the no stimulation swallowing frequencies was significant (p < .05), as some 

outlier higher swallowing frequencies occurred in the older group. The Levene test statistic 

for the no stimulation condition based on the median, which is a better measurement 

when outliers are involved, was non-significant (p > .05) and homogeneity of variance 

could be assumed. 

The repeated-measures ANOVA Mauchly’s test statistic was non-significant (p > 

.05), demonstrating sphericity and equal variances. There was a significant main effect of 

stimulation type, F(2, 16) = 192.21, p < .001 and no significant interaction effect between 

the type of stimulation and the age group, F(1, 8) = .105, p > .05. Cohen’s d effect size was 

0.94. Pairwise comparisons using a Bonferroni correction indicated a significant difference 

(p <.001) between the mean swallowing frequency for the no stimulation condition and 

the mean swallowing frequencies for the pacifier stimulation and vibrotactile stimulation 

conditions. Pairwise comparisons indicated no significant difference (p > .05) in mean 

swallowing frequency between the pacifier and vibrotactile stimulation types.  

Near-infrared spectroscopy 

The cortical activation data that was collected represents pilot data for future 

studies involving infant swallowing and near-infrared spectroscopy. NIRS event-related 

changes in O2 concentration data was collected from five participants, two in the younger 
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2-4 month old group and three in the older 7-9 month group.  For some participants, only 

partial NIRS data was collected, as some channels, and in some instances the entire 

condition or condition for a particular side of the head, were too noisy to yield useful 

results.  As only 5 experimental sessions included NIRS data collection (from four unique 

participants, as longitudinal NIRS data was collected twice from the same participant), 

there was not enough NIRS data to run a repeated-measures ANOVA involving age group 

by change in percent blood oxygenation change between conditions and the interaction of 

group and mean change in blood oxygenation. The presence of a hemodynamic response 

was defined as > 2% increase in oxygenation. Table 4 below includes the all available raw 

data for the peak value of percent blood oxygenation change and time the peak value 

occurred for each stimulation condition, according to the type of NIRS channel (area of 

interest in the brain) and separated by age group. 

Table 4 
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Table 5 below includes mean peak values of percent blood oxygenation changes for 

hemodynamic responses and mean peak times for each stimulation condition, according to 

the type of NIRS channel (area of interest in the brain), and separated by age group. 

Table 5 

 

Two-sample t-tests were used to compare mean peak amplitudes of a hemodynamic 

response and mean latencies for the peak response amplitudes between the vibrotactile 

and pacifier conditions. The non-stimulation condition was not included, as this condition 

yielded no hemodynamic responses. The mean peak amplitude during the pacifier 

stimulation condition was 6.50 + 5.80 and 4.81 + 5.05 during the vibrotactile stimulation 

condition. Results comparing the mean peak response amplitudes between the two 

stimulation conditions indicated no significant difference in the amplitude of the mean 

peak response between the pacifier condition and the vibrotactile condition, t(17) = 0.58, p 

>.05. The mean latency in seconds for the peak response during the pacifier stimulation 

condition was 7 + 0.41 and 6 + 2.33 during the vibrotactile stimulation condition. Results 

comparing the mean peak latency between the two stimulation conditions indicated no 

significant difference in latency of the mean peak response between the pacifier condition 

and the vibrotactile condition, t(17) = 0.84, p >.05.  



Infant Swallowing Stimulation 64 
 

 

 

Table 6 below includes proportions of the number of total data points collected 

(total number of ―No Response‖ and hemodynamic responses) to the total number of 

hemodynamic responses for each stimulation condition, according to the type of NIRS 

channel (area of interest in the brain) and separated by age group. 

Table 6 

 

Using information from Table 6 above, a chi-square test comparing the number of 

responses in the no stimulation condition against each of the stimulation conditions 

indicated a significant association between the type of stimulation condition (non 

stimulation versus stimulation) and the presence of a hemodynamic response, 2 (2) = 

15.17, p < .05. The ―Likelihood Ratio‖ chi-square test statistic value was used, as this is 

preferred for a small sample. Based on the odds ratio, the odds of a hemodynamic 

response during the no stimulation condition were zero times higher than with both the 

vibrotactile condition and the pacifier condition. 

A second chi-square test comparing the number of responses between the 

vibrotactile condition and the pacifier condition indicated a significant association between 

the type of stimulation condition and the presence of a hemodynamic response, 2 (1) = 

7.93, p < .05. As with the first chi-square test above, the ―Likelihood Ratio‖ chi-square test 
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statistic value was used. Based on the odds ratio, the odds of a hemodynamic response was 

10 times higher with the vibrotactile condition than with the pacifier condition.  

Finally, a third chi-square test comparing the number of responses between the 

two age groups indicated a non-significant association between the age of the infant 

(younger versus older age groups) and the presence of a hemodynamic response, 2 (1) = 

0.81, p > .05.  

Figure 18 below illustrates an example of no hemodynamic response during the 

non-stimulation condition, while Figure 19 below illustrates and example of a 

hemodynamic response during a stimulation condition.  

 

Figure 18. Event-related average of control epochs during non-stimulation condition illustrating no hemodynamic response. 
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Figure 19. Event-related average of stimulation epochs during a stimulation condition illustrating a hemodynamic response. 

The phase of respiration in which a swallow occurred was also recorded (see Table 

7 below). A majority of the time, swallows occurred on exhalation. Only four participants 

(three in the younger group and 1 in the older group) demonstrated a larger percentage of 

swallows occurring during inhalation for only one out of the three study conditions. 

Swallows occurred during the inhalation phase of respiration on average 42% of the time 

during the non-stimulation condition, 36% of the time for the pacifier condition, and 35% 

of the time for the vibrotactile condition. Overall, current findings indicate a split in the 

vicinity of 60/40% between swallowing on exhalation and swallowing on inhalation. 
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Table 7 

 

 



 

Discussion 

Swallowing Frequency 

The current study sought to gain a better understanding of normal infant 

swallowing patterns without stimulation and in response to peripheral stimulation to better 

understand mechanisms of swallowing control in healthy infants. Findings from the 

current study indicate an average, combined spontaneous non-nutritive swallowing 

frequency of 1.68 + .47 per minute at during the no stimulation condition. The older 

group of infants in the 7-9 month age range seemed to have a slightly higher mean 

swallowing frequency and a greater range of non-stimulated swallowing frequency (1.76 + 

.68 per minute) than in the younger group of infants in the 2-4 month age range (1.60 + 

.14 per minute), which has less variation in their swallowing frequency. These were not 

significantly different. This was likely due to increased activity in the older infants as 

compared with the younger infants who did not move around as much. Wilson et al. 

(1981) reported a relationship between behavioral state and swallowing events, that is 

swallowing occurred more frequently during active behavior states, when other motor 

movements were happening, and observed a decrease in swallowing activity during less 

active, quieter behavior states. The literature concerning infant swallowing frequencies is 

quite variable and inconsistent.  The current study most closely parallels findings by Jeffery 

and colleagues (2000), who reported that term infants swallowed spontaneously around 1.6 

times per minute. Literature also reveals that the frequency of swallowing decreases in 

sleep, although the frequency during sleep is still higher than the adult frequency of 

swallowing during sleep (Pickens, 1988, Don, 2003, Jeffery, 2000, Nixon, 2008, Reix, 2003, 

Thach, 1985). The current study also found a decreased frequency of swallowing during 

sleep, as observed in two infants (one from each age group) who happened to fall asleep 
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during the experimental session during the non-stimulation condition. We observed a 

swallowing frequency 0.6 swallows per minute in the two participants during sleep. 

 The results of a repeated-measures ANOVA performed on the participants’ 

swallowing frequency data indicate a significant (p <.001) difference in mean swallowing 

frequencies for each condition (no stimulation, pacifier, and vibrotactile). The pairwise 

comparison findings indicated that both pacifier stimulation and vibrotactile stimulation 

significantly increased swallowing frequency in normal infants when compared to 

swallowing frequency without stimulation. Furthermore, the pairwise comparisons 

indicated that there was no significant difference between the pacifier and vibrotactile 

conditions, that is, both served to up-regulate swallowing frequency in the normal infant to 

a similar degree. Additionally, there was not a significant interaction with the age group of 

the infants, suggesting that the effect was similar across the two age groups. Therefore, the 

higher frequency of swallowing found using the pacifier and vibrotactile stimulation 

continued through early infancy (2-4 months) into later infancy (7-9 months).   

 Findings from the current study have several important implications. First, a 

discussion regarding non-nutritive sucking intervention and the close relationship between 

sucking and swallowing is warranted. The benefits of non-nutritive sucking practice in the 

development of sucking and feeding skills has been demonstrated and enhanced with 

Barlow and colleagues’ NTrainer device (Barlow, Finan, Chu, et al., 2008; Poore, 

Zimmerman, et al., 2008). Extensive reviews of non-nutritive sucking and oral stimulation 

intervention studies however do not specifically address how such intervention techniques 

affect the pharyngeal swallow component of the overall motor act of feeding and 

swallowing (J. Arvedson, et al., 2010; Delaney & Arvedson, 2008; W. F. Liu, et al., 2007). 

Rather, outcome variables such as weight gain, total oral intake percentage, and decreased 
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hospitalization are used to measure feeding and swallowing performance. As discussed 

earlier, it has been suggested that stimulation of afferent fibers of the trigeminal 

(specifically, of the maxillary branch) may play a role in stimulating the pharyngeal 

component of the swallow, but this has been underexplored (Barlow, 2009a, 2009c; 

German, et al., 2004; Jean, 1990, 2001; A. J. Miller, 1999; Mistry & Hamdy, 2008). The 

results of the current study confirm that non-nutritive sucking using a pacifier does serve 

to elicit and up-regulate swallowing frequency in the normal infant. 

 Additionally, since both pacifier and vibrotactile stimulation serve to up-regulate 

swallowing frequency in normal infants, it is possible that such mechanisms could serve to 

up-regulate the swallowing frequency of infants with disordered swallowing, such as 

premature infants in the neonatal intensive care unit.  This warrants expanded 

investigation into the effect of such peripheral stimulation within the disordered 

population. Both pacifier and vibrotactile stimulation could provide crucial swallowing 

practice and aid in the encouragement of proper feeding development at a point in life 

when the neocortex and central pattern generators important to deglutition are actively 

growing and developing (Barlow, 2009a, 2009c; Barlow, Finan, Chu, et al., 2008; Bingham, 

2009; Hensch, 2004; Illingworth & Lister, 1964; Kelly, et al., 2007a; McFarland & 

Tremblay, 2006; Penn & Shatz, 1999; Poore, Zimmerman, et al., 2008; Stevenson & 

Allaire, 1991). The results indicate that the pacifier, which is typically offered to premature 

infants in the NICU before oral feedings are introduced, may effectively stimulate both 

swallowing and sucking practice. The affect of combining the pacifier and vibrotactile 

stimulation as a potential complementary intervention technique on swallowing frequency 

is needed. Once infants begin to transition to oral feeding trials, results indicate the 
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vibrotactile device may serve as a robust intervention technique that could be used during 

feeding trials to up-regulate swallowing frequency and aid in pattern formation.  

Near-infrared Spectroscopy  

The second aim of the current study was to explore cortical activation in response 

to swallowing stimulation over a period during infancy, between 2-4 months of age and 

between 7-9 months of age. At this time, NIRS data collection continues; however, 

preliminary pilot data suggest some interesting patterns. Literature suggests the absence of 

volitional swallowing during the neonatal period and transition, with transition from a 

reflexive swallowing primarily controlled by the reflexive brainstem central pattern 

generator to more volitionally controlled swallowing as pathway formation evolves in the 

cortex through feeding experience and suprabulbar control expands (Bosma, 1986; 

Gibson, 1991; Huttenlocher & Dabholkar, 1997; Jadcherla, et al., 2007; Jadcherla, et al., 

2009; Kelly, et al., 2008; Loughlin & Lefton-Greif, 1994; Sarnat, 1989; Stevenson & Allaire, 

1991). This transition period from primarily reflexive to growing suprabulbar control may 

occur around six months, as primitive reflexes for feeding begin to diminish around this 

time (J. C. Arvedson & Brodsky, 2002). Furthermore, Kelly et al. (2008; 2007b) have 

suggested that the brainstem may control non-nutritive breathing-swallowing coordination 

during the first year following birth. A chi-square test indicated that the type of stimulation 

used (non stimulation versus either type of swallowing stimulation) resulted in a significant 

association regarding whether or not a hemodynamic response occurred. During the 

condition when no swallowing stimulation was present, event-related averaging of control 

periods produced no hemodynamic response. Findings from the NIRS pilot data collected 

thus far suggest that for swallowing stimulation, which we know increased the frequency 

of swallowing in the infants, the cortex is active in motor and somatosensory areas of 
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interest related to swallowing activity.  This is demonstrated in the presence of a 

hemodynamic response even in the younger infant group during vibrotactile and pacifier 

stimulation conditions.  Furthermore, chi-square results indicated no significant difference 

between age group and the number of hemodynamic responses.  

Results indicated that there appears to be no difference between vibrotactile and 

pacifier stimulation in terms of peak amplitude of the hemodynamic response or the time 

at which the peak response occurs. That is, both vibrotactile and pacifier stimulation 

produce the same type of hemodynamic response in infants. Even though both types of 

stimulation (vibrotactile and pacifier) produced a hemodynamic response in motor and 

somatosensory areas of the brain important to swallowing, findings from a statistical 

analysis comparing responses between the two stimulation conditions indicated a 

significant association between the type of stimulation and the number of hemodynamic 

responses. Based on the odds ratio, the odds of a hemodynamic response was higher with 

vibrotactile stimulation as compared to the pacifier condition. Findings may suggest that 

when comparing the two types of peripheral sensory stimulation, vibrotactile stimulation 

may better enhance cortical activation (and reflect the possibility that non-nutritive sucking 

on a pacifier is more brainstem-mediated), which could be important when considering the 

encouragement of pathway formation and network mapping during critical periods for 

deglutition development. Therefore, even though it appears that pacifier and vibrotactile 

stimulation both serve to equally up-regulate swallowing frequency in normal infants, 

pacifier sensory input may not be as useful in encouraging cortical sensory responses 

important for cortical pathway formation for swallowing as vibrotactile sensory input. 

Perhaps vibrotactile stimulation could provide an intervention technique with infants for 

up-regulating swallowing as well as activating cortical networks for swallowing, one that 
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will not interfere with the process of nutritional intake, as the vibrotactile device is situated 

on the exterior neck area. The NIRS pilot data from the current study presented above do 

suggest notable patterns for which exploration will continue in normal infants and warrant 

expansion to exploration in infants with disordered swallowing. It would also be beneficial 

for future investigation to explore the effects of combining pacifier and vibrotactile 

stimulation. 

Phase of Respiration Interrupted during Swallow Events 

A secondary, rudimentary analysis of the phase of respiration during swallowing in 

healthy infants was performed. As discussed earlier, infants and adults both experience an 

apneic moment, a temporary interruption of respiration, as a swallow is performed. In 

adults, the duration of the apneic moment during a swallow appears to last between 1 and 

1.5 seconds (Clark, 1920; Curtis, et al., 1984; B. Martin, et al., 1994; Nishino, et al., 1985). 

The period of time in which respiration is interrupted during a swallow event appears to 

be shorter in infants, lasting around 0.35 and 0.7 seconds (Lau, 2006).  

Unlike that typical pattern of the apneic moment occurring during the expiratory 

phase of respiration in adults, this patterning appears to be more variable and irregular in 

the infant population (Clark, 1920; Martin-Harris, 2008; B. Martin, et al., 1994; Nishino, et 

al., 1985; Selley, et al., 1989a; Smith, et al., 1989). Lau (2006) observed that the phase in 

respiration interrupted during a swallow event happened at safer time-points in respiration 

as infants developed and matured. Safer time-points for a swallow apneic moment were 

defined as at the beginning of inspiration or at the end of expiration. During feeding, the 

respiration-swallow patterning was marked by change and variability (Bamford, et al., 1992; 

Gewolb & Vice, 2006).   
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In summary, patterns of respiratory cessation during swallowing events appear to 

develop and change as an infant matures, and safe patterning of respiration during a 

swallow may be the final piece to be incorporated into safe infant feeding (Barlow, 2009c; 

Gewolb & Vice, 2006; Hanlon, Tripp, Ellis, & al., 1997). An equal interruption of 

respiration by swallowing during both expiratory and inspiratory phases of respiration has 

been suggested in infancy (Martin-Harris, 2008; Wilson, et al., 1981). Results of the current 

study indicate that the majority of swallows occurred during the expiratory phase of 

respiration. However, the current findings demonstrate that infants in both age groups did 

swallow during inspiration and that the pattern varied among infants. Perhaps the 

patterning of respiration-swallow coordination more closely mimics the typical adult 

patterning when infants sleep (Nixon, et al., 2008). Kelly et al. (2007b) observed an 

interesting sequence of respiration-swallow coordination over the first year of life in 

healthy full-term infants.  During the first 48 hours following birth, the apneic moment 

due to swallowing during feeding was observed to occur in the typical adult-like pattern, 

during the expiratory phase of respiration. In older infants 9 to 12 months of age, a change 

towards a trend for apneic moments interrupting inspiration was observed, followed by 

the return to a more adult-like coordination of respiration and swallowing by the first year 

mark. Such data indicate the changes in respiration-swallow coordination during infant 

development is not uncommon (Martin-Harris, 2008). Clearly, the developmental timeline 

for respiration during swallowing events in healthy and disordered infant populations 

warrants further investigation. 

Limitations and Future Directions 

 The main limitation encountered throughout the experimental sessions was that 

the infant population is active – it was not possible to request that the infants remain still 
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during the session. The older infants seemed to move more than the younger infants, 

though even infants in the younger age group exhibited spontaneous movement. 

Therefore, it would be beneficial to find a technique to uniformly control attention and 

reduce movement, keeping the infants awake but less active. Perhaps an engaging video 

could be played to maintain attention during the experimental conditions. Similarly to the 

current study, Wilson, Thach, Brouillette, & Abu-Osba (1981) concluded that visual 

observation of the hyolaryngeal elevation was unreliable as a method to identify non-

nutritive swallows in infants. It would be beneficial to find a reliable method for ―marking‖ 

swallows, i.e. using a pulse generator during visual observation of swallowing activity, as is 

possible during observation of adult swallowing but complicated while observing infant 

swallowing due to anatomical differences. An effective method may involve alteration in 

positioning of the infants during the study.  

 As discussed earlier, the investigators will continue to collect swallowing frequency 

and NIRS data from the normal infant population. The promising preliminary results and 

observations warrant an expanded exploration within disordered swallowing populations, 

such as with premature infants in the neonatal intensive care unit. Though not an aim or 

form of data collected for the current study, the use of the vibrotactile device in 

stimulating vocalizations may also warrant future investigation, as it was observed that the 

vibrotactile device appeared to be associated with a potentially increased frequency of 

vocalizations among infants in both age groups, as compared to the amount of 

vocalizations informally observed in the non-stimulation and pacifier conditions. The 

vibrotactile device may prove beneficial as an intervention technique possibility in more 

than the realm of disordered swallowing.
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Figure 20. Recruitment pamphlet. 
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Appendix B 

 

Infant’s Name __________________________________ 

Parent/Guardian Name ___________________________ 

Infant’s Age ____________________________________ 

Phone Number __________________________________ 

 

Infant Swallowing Phone Screening Interview Questions 

Hi, my name is _____________________ and I am calling from James Madison University’s Neural Bases of 

Communication and Swallowing Laboratory about your interest in participating in our research study. How are 

you today? Is this a convenient time for us to be calling? Ok, great! Thank you so much for your interest. First, 

I need to ask you some questions to make sure your infant qualifies for the study. You can answer with a 

simple yes or no. If I need more information I will ask you to elaborate.  Are you ready?  

Has your infant ever had feeding or swallowing problems?  (Inclusion = NO) 
 
Is your infant currently being treated for a diagnosed reflux?  (Inclusion = NO) 
 
Has your infant ever been exposed to either a bottle or a pacifier? (Inclusion = YES) 
 
Was your infant born prematurely (before 37 weeks gestation)?  (Inclusion = NO) 
 
Is your infant able to maintain a quiet, calm behavior state for at least 5 minutes at a time?  (Inclusion = YES) 
 
Does your infant have a history of any of the following medical conditions?  (Inclusion = NO TO ALL) 
  

 Seizures 

 Neurological disorders 

 Congenital anomalies (abnormalities present at birth) or facial abnormalities 
 

This study also involves the use of near-infrared spectroscopy (NIRS) during the rest and stimulation periods.  

NIRS is a system used to measure your infant’s brain responses to swallowing.  NIRS is a safe, non-invasive 

system that measures blood flow changes in the brain.  The changes in blood flow signal a brain response.  We 

will be looking for brain responses at the same time your infant’s swallowing is stimulated using the pacifier 

and vibrotactile stimulation.  We are specifically looking for brain responses in two areas of the infant brain – a 

motor area and a sensory area.  The brain response will be measured by placing NIRS probes on your infant’s 

head around the motor and sensory areas.  The probes contain laser light that will travel through your infant’s 

head and determine the brain responses.  NIRS is a safe technique to use with infants, as it does not involve 

radiation, and has been used with even premature, medically-fragile infants.  You may choose to decline your 

infant’s participation in using NIRS and choose to allow your infant to participate in the swallow stimulation 

study without NIRS. 

If NO to NIRS and infant qualifies for the study, proceed to schedule an appointment.  The session should 

take approximately 3 hours. 

If YES to NIRS and infant qualifies according to first set of questions, ask the additional questions: 

Qualifies for study 

   Yes 

  No 
If yes, appointment is scheduled for: 
_______________________ 
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We need to know if your infant has highly-pigmented (dark) skin color?  This is because dark skin interferes 
with light transmission for measuring the brain function using NIRS.  (Inclusion = NO) 
 
Does your infant have any known cardiovascular disorders, including cerebrovascular disease (stroke) or 
peripheral neuropathies?  (Inclusion = NO) 
 
Is your infant able to maintain a quiet, calm behavior state for at least 5 minutes at a time?  (Inclusion = YES) 
 
Does your infant have any broken areas of skin on the scalp?  (Inclusion = NO) 
 
*If qualified, proceed to schedule an appointment.  If they enroll in the optional NIRS portion of the study, the 
session should take approximately 4 hours. 
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Appendix C 

Parent/Guardian Informed Consent 

Identification of Investigators & Purpose of Study   

Your infant is being asked to participate in a research study conducted by Dr. Christy Ludlow (Primary 

Investigator), Dr. Cynthia O’Donoghue, Sarah Hegyi, Katie White, and Lara Karpinski (co-investigators) from 

James Madison University, Department of Communication Sciences and Disorders.  The purpose of this study 

is to better understand two different stimuli on the frequency of infant swallowing, as well as brain activation 

patterns for swallowing during stimulation.  This study will contribute to Sarah Hegyi’s completion of her 

doctoral dissertation.  The findings of the study will also contribute to our overall understanding of infant 

swallowing and could potentially help infants with swallowing disorders in the future. 

Study Population 

25 healthy infant volunteers (6 2-4 month old infants and 6 7-9 month old infants) may participate in this study.   

Exclusion Criteria 

Exclusion criteria by parent/guardian report: 

 History of feeding or swallowing problems 

 Currently being treated for a diagnosed reflux 

 Never been exposed to either a bottle or a pacifier 

 Born prematurely (before 37 weeks gestation) 

 Fails the Ages & Stages-3 developmental screening 

 Unable to maintain a quiet, calm behavior state for less than 5 minutes at a time 

 History of seizures 

 History of neurological or neurodevelopmental abnormalities 

 Congenital anomalies or craniofacial malformation 
 

Additional exclusionary criteria for participants enrolling in the near-infrared spectroscopy (NIRS) portion of 

the study: 

 Highly-pigmented (dark) skin color, which interferes with the measurement of light transmission 
through the scalp. 

 Known cardiovascular disorders, including cerebrovascular disease or peripheral neuropathies.     

 Unable to maintain a quiet, calm behavior state for less than 5 minutes at a time. 

 Broken skin in the area of the head that NIRS probes will be placed on the scalp. 
 

All subjects in this study will potentially receive both the pacifier and vibrotactile stimuli. The parent/guardian 

may decline the use of NIRS and have their infant participate in the pacifier and vibrotactile stimulation 

portion of the study without NIRS.  NIRS will be used to determine brain response patterns for swallowing in 

the somatosensory and motor regions of the brain. 

Research Procedures 

Should you decide to allow your infant to participate in this research study, you will be asked to sign this 

consent form once all of your questions have been answered to your satisfaction.  If your infant participates in 

this study, you may decline from using NIRS or discontinue the use of NIRS during the study if your infant 

becomes fussy or uncomfortable.   
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All study sessions will be videotaped.  Your infant’s name and personal information will be confidential.  
Videotape footage will be stored on a secure computer server and all names will be coded to protect the 
anonymity of each participant.  We also ask that you remain with your infant throughout the study session.  
Your infant will be allowed to feed during the session should they become hungry. 

 

Stimulation + near infrared spectroscopy (NIRS) 

Your infant will participate in a study designed to understand two different stimuli (pacifier stimulation and 

vibrotactile stimulation) on the frequency of infant swallowing.  Both the pacifier and vibrotactile stimulation 

will potentially be administered at different times during the study.  If your infant refuses or no longer uses a 

pacifier, we may stop that portion of the study and move to the vibrotactile portion of the study.  Both 

stimulation types are safe and non-invasive.  To determine how the pacifier affects the frequency of 

swallowing, your infant may be given a pacifier to suck on for a period of time.  You will be asked to bring 

pacifier from home that your infant is comfortable using.  To determine how the vibrotactile stimulation 

affects the frequency of swallowing, a small motor device (about the size of a dime) will be taped to the outside 

of your infant’s throat using double-sided or medical tape.  Your infant will feel a series of vibrations to the 

throat when the motor device is activated.  There will be periods in which the motor device is on and vibrating, 

and periods when the device is still taped to the outside of the throat, but the device is turned off and not 

vibrating. 

Each stimulation type will be administered separately.  As your infant receives each form of stimulation, we will 

be measuring the sucking and swallowing responses in several ways.  First, a small instrument may be taped to a 

region near your infant’s mouth using double-sided or medical tape.  This instrument will allow us to see your 

infant’s sucking motions on a computer.  Secondly, another small instrument will be taped to the outside of 

your infant’s throat.  This instrument will allow us to see when your infant swallows on a computer.  Lastly, 

two elastic bands will be placed on your infant – one band will be placed around your infant’s stomach and one 

a little higher around your infant’s rib cage.  These bands will be used to measure your infants breathing 

patterns and help confirm when your infant swallows. 

During the periods of rest and stimulation, NIRS may be used to understand brain activation patterns for 

swallowing.  NIRS is a safe, non-invasive system that measures blood flow changes in the brain. It is the same 

technology as a pulse oximeter, which is placed on your finger to measure blood oxygen levels. The changes in 

blood flow signal a brain response.  We will be looking for brain responses at the same time your infant’s 

swallowing is stimulated using the pacifier and vibrotactile stimulation, as well as during the periods of rest.  We 

are specifically looking for brain responses in two areas of the infant brain – a motor area and a sensory area.  

The brain response will be measured by placing NIRS probes on your infant’s head over the motor and sensory 

areas.  The probes contain laser light that will travel through your infant’s skull and determine the blood 

oxygenation levels.  NIRS is a safe technique to use with infants, as it does not involve radiation, and has been 

used with even premature, medically-fragile infants.  You may choose to decline the use NIRS or discontinue 

the use of NIRS if your infant becomes fussy or uncomfortable, while still allowing your infant to participate in 

the pacifier and vibrotactile stimulation parts of the study. 

Time Required 

The consent process and study participation can be completed in one session, or can be divided into two 

sessions depending on your schedule of availability. Participation in this study will require approximately 3-4 

hours of you and your infant’s time.   

Risks, Inconveniences, and Discomforts  

The investigators do not perceive more than minimal risks from your involvement in this study. 
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Both the pacifier and vibrotactile device are non-invasive forms of stimulation and involve no known risks.  

The vibrotactile device and small instruments used to measure sucking and swallowing will be secured on the 

area around your infant’s mouth and throat region using double sided or medical tape, which may cause 

redness of the skin when removed, much like when a Band-Aid is removed from the skin. Baby lotion to 

soothe the redness will be administered at your request. In our experience so far, any redness on the skin from 

the tape is usually gone within 8 hours. The two elastic bands used to measure breathing patterns and confirm 

swallows stretch and should produce no discomfort, other than potential light pressure felt from the bands 

being wrapped around your infant’s stomach and rib cage. 

There is potential risk to people in the room from the NIRS lasers, which use light in the near infrared region, 

and could potentially injure the eyes if they were shone into your eyes.  Therefore, the lasers will not be turned 

on until they are positioned on the scalp.  Looking directly at the lasers may cause eye damage.  However, the 

lasers are similar to a laser pointer used in the classroom and the risk is minimal.  The infants may feel light, 

uncomfortable pressure from the sensor probes being held in place by a wrapping around the head.  Markers 

will be used on the scalp during probe placement of the sensors.  These marks will wash away and no hair will 

be removed.  Lastly, the infants may need to make limited body movements for short periods of time.  

Benefits 

The healthy infant volunteers will receive no direct benefit for participation in this study.  However, it is 
anticipated that the results of this swallowing stimulation study will produce applicable and generalizable 
knowledge, potentially benefiting intervention techniques for infants with swallowing disorders in the future.  If 
you would like to receive a copy of the published research, please fill out the attached card with your name and 
address and we will send it to you when it becomes available.  

Compensation 

You will be paid for your infant’s participation in this study.  You will receive $20 for the first hour of you and 
your infant’s time and $10 for each additional hour. 

Confidentiality  

Your participation in this study is entirely confidential.  All data will be stored in the secure and locked Neural 

Bases of Communication and Swallowing Laboratory at James Madison University, which can only be accessed 

by authorized investigators.  The results of this research study will be coded in such a way that your infant’s 

identity will not be attached to the final form of this study.  Your identity will be disassociated from your 

infant’s personal data and your infant will be assigned a participant number.  The researchers retain the right to 

use and publish non-identifiable data. 

The overall findings from this research may be reported in two forms.  In written form, the data will appear in 
a doctoral dissertation and/or journal articles.  In oral form, findings from this research project may also be 
reported at conference presentations.  Upon request, you will be allowed view group results of the study.  You 
may sign a release form to obtain your results from this study and to allow use of your non-identifiable data for 
educational purposes here at JMU. 
 

Disclaimer 

Dr. Ludlow is an inventor on three patent applications concerning the use of devices and methods for 

vibrotactile stimulation for the treatment of dysphagia (swallowing problems).  These patents are owned by the 

National Institutes of Health (NIH) and if they were awarded, licensed and commercialized in the future both 

Dr. Ludlow and the NIH could benefit financially. 



Infant Swallowing Stimulation 82 

 

 

Participation, Right of Withdrawal, and Conditions for Early Withdrawal 

Your infant’s participation is entirely voluntary.  You are free to choose not to participate on your infant’s 

behalf.  Should you choose for your infant to participate, you and your infant can withdraw at any time without 

consequences of any kind.  If you withdraw, you will be reimbursed based on the time that you have 

contributed to the study.  However, failure to complete all required sessions will be your data unusable to the 

investigators.  Additionally, the investigators can remove your infant from the study at any time if continuation 

is not in your infant’s best medical interest or if your infant is unable to fully meet study requirements. 

Questions about the Study 

If you have questions or concerns during the time of your infant’s participation in this study, or after its 

completion or you would like to receive a copy of the final aggregate results of this study, please complete the 

attached card providing your name and address. 

Sarah Hegyi, Katie White, Lara Karpinski   Dr. Cynthia O’Donoghue 

Communication Sciences and Disorders Communication Sciences and Disorders 

James Madison University   James Madison University 

Telephone: (540) 568-5059   Telephone:  (540) 568-3870Email: odonogcr@jmu.edu  

Hegyise@dukes.jmu.edu 

katiedwhite@gmail.edu 

karpinlj@dukes.jmu.edu 

Dr. Christy Ludlow (Primary Investigator) 

Communication Sciences and Disorders     

James Madison University     

Telephone:  (540) 568-3876 

Email: ludlowcx@jmu.edu  

Questions about Your Rights as a Research Subject 

Dr. David Cockley  

Chair, Institutional Review Board 

James Madison University 

(540) 568-2834 

cocklede@jmu.edu 

Giving of Consent 

I have read this consent form and I understand what is being requested of my infant as a participant in this 

study.  I freely consent for my infant to participate.  I have been given satisfactory answers to my questions.  

The investigator provided me with a copy of this form.   

mailto:odonogcr@jmu.edu
mailto:Hegyise@dukes.jmu.edu
mailto:katiedwhite@gmail.edu
mailto:karpinlj@dukes.jmu.edu
mailto:ludlowcx@jmu.edu
mailto:cocklede@jmu.edu
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 I give consent for my infant to participate in the stimulation with NIRS study and consent to videotape my 

infant ________ (parent/guardian’s initials) 

 I decline consent for using NIRS, but give consent for my infant to participate in the stimulation part of the 

study without NIRS and consent to videotape my infant ________ (parent/guardian’s initials) 

 

 

________________________________________________ 

Name of Infant (Printed) 

______________________________________     

Name of Parent/Guardian (Printed) 

 

______________________________________    ______________ 

Name of Parent/Guardian (Signed)                          Date 

______________________________________    ______________ 

Name of Researcher (Signed)                                   Date 

 

______________________________________    ______________ 

Name of Witness (Signed)                                        Date
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