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Abstract 

 

Spatial organization and topographic maps begin in the periphery and are preserved 

throughout the central auditory system.  The Eph and ephrin family of signaling proteins 

is involved in the patterning and arrangement of auditory afferents which code 

information about frequency, intensity, and time.  The present study utilizes the ABR as a 

physiological measure of the electrical potentials occurring in the brainstem following 

acoustic stimulation.  We recorded this measure following click and tone pip stimulation 

in ephrin-B3 and EphA4 deficient mice at 2-3 months of age and compared them to wild 

type controls.   Significant findings included elevated auditory thresholds, prolonged 

latency to waveform peaks, and diminished peak amplitudes among the mutant groups.  

The physiological differences between the wild type and mutant groups provide strong 

evidence of the Eph/ephrins in establishing a fully functional auditory system.    
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Introduction 

The ability to localize sounds and to extract meaningful information from a 

background of noise requires information about the frequency, intensity, and timing of 

sound stimuli.  These complex processes require precise organization throughout the 

afferent auditory system, which begins at the cochlea and continues in the central nervous 

system from the auditory brainstem through the midbrain to diencephalic and 

telencephalic structures.  Functionality of this system relies on molecular mechanisms to 

align and to shape these connections.  The family of Eph receptors and their ligands, the 

ephrins, is known to be important in the early patterning of auditory afferents.  Recent 

anatomical research has investigated the roles of Eph/ephrins in many converging inputs 

to the auditory midbrain.  The inferior colliculus (IC) is the prominent auditory nucleus in 

the midbrain.  In mice, the IC consists of a larger number of inhibitory, rather than 

excitatory, receptor fields.  Inhibition along the auditory pathway is important for 

processing of timing and intensity cues which contribute to binaural processing when 

both ears are working together.  The purpose of the present study is to study simple 

functions of time and intensity in the early auditory evoked responses, up to the level of 

the IC.  If a loss of functioning  Eph receptors detrimentally affects the development of 

precise connections, this influence is expected to show up in evoked potentials that are 

abnormal in either latency (time) or amplitude (intensity) or both (latency-intensity 

functions).  This thesis will examine a set of 5 peaks, generated at peripheral and central 

auditory nuclei up to the IC. 

Auditory brainstem responses (ABR), and evoked potentials in general, reveal 

detailed information regarding the synchronicity of auditory activity.  Latencies of 

various peaks are affected by frequency and intensity.  Thus a relatively complete 

‘picture’ of information about the frequency, intensity, and timing of auditory processing 
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as it proceeds up the ascending pathway can be obtained from ABRs.  Well-formed 

structure of various peaks in the evoked potentials reveals functional circuitry that has 

presumably organized appropriately.  

Peaks at various latencies reveal precision of organization at the level of the 

auditory brainstem and midbrain.  Therefore, the independent variables in this study are 

frequency and intensity of stimuli and the mouse genotype.  The principle dependent 

variable in this study is the ABR threshold, defined as the average between the lowest 

intensity at which reliable waves can be recorded and the first intensity the response was 

absent at various frequencies.  The latencies, amplitudes and general structure of various 

well known peaks in the evoked potential are also presented to show activity of brainstem 

relay nuclei as the auditory signals ascend the afferent pathway.  Four groups of mice are 

studied: two with mutation in ephrins, one without Eph receptors (a true knockout), and a 

control group (termed wild type). 

Background 

A review of molecular biology: Ligands and receptors.  

 To begin this study, a basic understanding of biological processes is important.  

Ligands are proteins which bind to receptors.  Receptors are special proteins on the 

surface of cells that are capable of receiving stimulation and causing some form of 

intracellular response.  Tyrosine kinases are a family of receptors responsible for 

controlling the development of neurons.  Any mutation to the biological function of these 

receptors can “result in unrestrained proliferation and transformation,” thus disrupting 

typical developmental and regenerative procedures (Cadena & Gill, 1992, p. 2332).  

Receptor-ligand binding results in increased kinase activity.  Dimers are formed, which 

are “physical interactions between related proteins,” and the receptors are internalized 
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from the cell surface in order to reduce signaling (Klemm, Schreiber, & Crabtree, 1998, 

p. 569). 

Eph receptors and ephrins are required for ordering of the auditory midbrain 

connections and have various functions in development.  At least 14 members have been 

identified in vertebrates (Flanagan & Vanderhaeghen, 1998).  While variation exists 

between expression in specific tissues of Eph receptors or ephrins across species, there is 

an overlap of function and expression which, when activated, will result in the same type 

of cellular response. Therefore, the Eph family involvement is meant for “complex 

developmental regulation rather than to control distinct cell responses” (Wilkinson, 2001, 

p. 156).   

Eph-ephrin interactions can be bidirectional (ephrin-to-Eph, forward; Eph-to-

ephrin, reverse) and are divided into two subclasses (A and B).  The two classes differ in 

membrane anchors; class A through a glycosyl-phosphatidylinositol (GPI) linkage and 

class B by transmembrane proteins (Holder & Klein, 1999).   Ephrin-A ligands generally 

bind with EphA receptors, and ephrin-B ligands generally bind to EphB receptors.  

However, in the case of ephrin-B2 and ephrin-B3, the B ligands also activate EphA4 and 

allow bidirectional signaling (Pickles, Claxton, & Van Heumen, 2002).  Forward and/or 

reverse signaling can be seen as well as increased or decreased outgrowth of axons 

(Cramer, 2005).  It has been shown that, “given their bidirectional effects, B class ligands 

and receptors, or B class ligands with EphA4, are necessary if cell segregation is to be set 

up or maintained by means of the Eph system” (Pickles et al., 2002, p. 208).   

The Eph receptors and ephrins are important for activity-independent processes to 

occur in development.  These molecular markers direct axons to the appropriate target 

and allow cell-to-cell interaction for the development of complex networks (Gabriele et 

al., 2011; Gabriele, Shahmoradian, French, Henkel, & McHaffie, 2007).  Continuous 



4 

 

 

topographic maps are developed when axons connect to the proper target cells to generate 

a rough map which is further refined by positional labels.  The Eph family has 

“complementary graded expression patterns of a receptor-ligand pair” that result in 

formation of topographic maps (Tessier-Lavigne, 1995, p. 347).  In the auditory system, 

spatial organization and topographic maps begin in the periphery and continue to higher 

central auditory levels.    

The Eph proteins have several roles in normal hearing and in the development of 

the central auditory structures.  Within the cochlea, they are involved in structural 

development and regulation of ion concentration levels.  Evidence exists of selective 

targeting of cochlear innervation within the auditory system.  Spiral ganglion cells have 

neuronal connections expressing ephrin-A2 and EphB1 with some expression of ephrin-

B1 and ephrin-B2 (Pickles et al., 2002).  Eph-ephrin interactions are also involved in the 

development of tonotopic order and connectivity at the level of the cochlear nucleus and 

superior olivary complex (Miko, Nakamura, Henkemeyer, & Cramer, 2007). The efferent 

system which originates in the brainstem also has been shown to depend on proper 

functioning of the Eph proteins and topographic mapping in the central nervous system.   

Before the onset of hearing, multiple layered inputs converging at the IC create 

defined topographic maps.  The IC is organized such that high frequencies are coded in 

the ventromedial part of the central nucleus and low frequencies are coded in the 

dorsolateral region, with high frequency regions maturing earlier than low frequency 

regions (Kelly, Liscum, Van Adel, & Ito, 1998). Some of the mapping that occurs is 

intrinsic to the auditory system, but some is dependent on activity (Gabriele et al., 2011).  

The layers within the IC are made up of combinations of various inputs, including those 

arising from the cochlear nucleus, superior olivary complex, and nuclei of the lateral 

lemniscus.  Having overlapping and non-overlapping patterns in the central nucleus of the 
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IC serves to “determine the innervation and organizational scheme for functional 

compartments of neurons” and allows for the processing of different auditory tasks 

(Gabriele et al., 2007, p. 69).  The precise arrangement of these pathways begins prior to 

the onset of hearing and refines in the early stages of development in order to create a 

functional auditory system. 

General Statement of the Problem   

The purpose of the present study is to determine functional consequences in Eph-

ephrin mutant mice utilizing physiological measures.  The fact that the genes found in the 

mouse are essentially the same as the genes found in humans makes it a useful animal 

model for research (Spencer & Kumar, 2002).  It is well established that Eph-ephrin 

interactions play a pivotal role in the development and organization of the auditory 

system, yet few studies have assessed their importance from a physiological or behavioral 

perspective.  Previous studies have focused mainly on the development within the cochlea 

and spiral ganglia, while less is known about the role of the Eph-ephrins in the central 

auditory system.  Electrophysiological studies of mutant mice have analyzed amplitudes 

of the peripheral waves I-III in the auditory brainstem response (ABR); however, the 

present study focuses on wave V which reflects activity in the IC.  To complete the study, 

threshold ABRs and neurodiagnostic ABRs will be obtained in normal and mutant adult 

mice at 2-3 months of age.   

Literature Review 

The mouse cochlea reaches maturity at 8 days old and consists of two turns.  The 

cochlear potentials reach adult levels of sensitivity by 14 days old (Mikaelian & Ruben, 

1965).  The frequency limits of hearing in a mouse range from 500 Hz to 100 kHz with 

optimal hearing sensitivity at 15 kHz (Ehret, 1974).  Behavioral audiograms revealed 

optimal sensitivity between 8 kHz and 24 kHz with decreased thresholds in the 
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frequencies above and below (Radziwon et al., 2009). The control strain used in this 

study (C57BL/6J mice) were found to have early onset hearing loss beginning in the high 

frequencies at 8 months of age, therefore measures were taken to ensure that testing was 

completed well before these processes began (Parham, 1997).   

The ABR is a popular method for assessing electrical potentials in the mouse 

auditory system following acoustic stimulation (Parham, Sun, & Kim, 2001).  ABRs are a 

short- latency auditory evoked potential which can help in determining site of lesion and 

estimation of hearing sensitivity in subjects with healthy middle ear function. Mouse 

ABRs are closely related to those in cats and humans, which makes mice a useful animal 

model of the auditory pathways (Henry, 1979).  The mouse ABR consists of five peaks, 

labeled waves I-V.  The first peak, or wave I, originates from the action potential in the 

auditory nerve, wave II from the ipsilateral cochlear nucleus, wave III from the 

contralateral superior olivary complex, wave IV bilaterally from the lateral lemniscus, 

and wave V from the lateral-most portion of the contralateral IC (Melcher & Kiang, 

1996).  The mouse ABR is primarily generated by waves I-III and the largest amplitude 

waves are waves I and II (Miko et al., 2008).  Previous studies of ABRs in mice have 

focused on measuring the amplitudes and latencies of waves I-III due to their robust 

response.   

In humans, the neurodiagnostic ABR consists of five peaks, waves I-V, which 

occur within the 6 millisecond period following a high-intensity, transient stimulus.  

There are various clinical applications for the neurodiagnostic ABR.  It can be used to 

diagnose eighth nerve or auditory brainstem dysfunction, as well as to monitor the status 

of the auditory system during surgery through intraoperative monitoring.  The 

neurodiagnostic ABR is influenced by conductive and sensory hearing loss; therefore, it 

can be used as a way to test for type of hearing loss.  Additionally, the ABR is a tool to 
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estimate auditory sensitivity in populations unable to provide a behavioral response (Hall, 

2007).  

In mice, wave I is the largest wave; in contrast, wave V is the largest wave in a 

normal human ABR.  Wave V is much more difficult to determine in mice due to its 

tendency to blend in to the noise floor.  Wave V in humans is generated by fibers of the 

ascending portion of the lateral lemniscus terminating in the IC and has contralateral 

contributions.  Because wave V is receiving contributions from multiple pathways 

traveling up the brainstem, there is a natural amplification in the auditory system when 

the pathways reconnect.  Wave I is generated by the distal portion of the auditory nerve 

and is typically a smaller response, as its generator is located only on the side ipsilateral 

to stimulation.  In ABR recordings, peak amplitude may be 1 µV, but it is considerably 

smaller in most cases (Burkard, Don, & Eggermont, 2007). 

High intensity stimuli at any frequency will activate more basal portions of the 

cochlea due to the asymmetric shape of the traveling wave.  The latency is shorter when 

the base of the cochlea is activated since the traveling wave does not have far to travel 

before activation.  Additionally, there is less of a synaptic delay when using high intensity 

stimuli regardless of frequency.  Studies have shown that when click level is decreased, 

the ABR peak latencies will increase and the amplitudes will decrease (Burkard, Don, & 

Eggermont, 2007).  Changes in latency are about equal for all peaks, and wave I will first 

be affected, causing a subsequent shifting of peaks (Ackley, Decker, & Limb, 2007).  As 

the stimulus intensity continues to decrease closer to threshold, the waveform peaks will 

gradually disappear. 

The interwave intervals (IWIs) are a measure of the transmission time through the 

brainstem.  This would mean that “the I-III IWI reflects the time taken to traverse the 

caudal brainstem, while the III-V IWI reflects the time taken to traverse the rostral 



8 

 

 

brainstem”  (Burkard et al., 2007, p. 233).  In subjects with no pathological processes 

present, the IWIs are expected to stay relatively stable even as intensity is changed, since 

the latencies of all waves should be shifting together. This important measure can help 

identify lesions in the auditory nerve or brainstem.   

Click evoked ABRs are not capable of providing frequency specific threshold 

estimations.  In theory, a click stimulates all frequencies equally; however the transducer 

shapes the response and may emphasize a particular frequency region more than others.  

For more frequency specific information, tone pip ABRs have been used clinically to 

provide pediatric auditory assessment.  Tone burst stimulation at low- to moderate-

intensity levels can result in ABR responses for threshold assessment that are typically 

within 20 dB of audiometric threshold. 

The ABR has been used to assess the hearing function of many strains of mutant 

mice; however, little research has been done on mice with mutations of the Eph family.  

The most prominent study on this topic found that mice having mutations in EphA4 or 

ephrin-B2 have significantly altered levels and patterns of activation in the auditory 

brainstem following pure tone stimulation.  The EphA4 mice had wave I amplitudes that 

were 54% smaller and wave II amplitudes that were 56% smaller than controls.  Latencies 

of wave I and wave II were not significantly different in EphA4; however the latency of 

wave III was significantly longer.  ABR thresholds were found to be 75% higher than 

controls.  Based on these findings the authors concluded that, “EphA4 protein has 

pronounced effect on the magnitude of evoked activation in the auditory brainstem” 

(Miko et al., 2008, p. 43).  The ephrin-B2 mice had wave I amplitudes that were 38% 

smaller than controls which suggests an auditory nerve and/or cochlear nucleus deficit.  

Wave II amplitudes were not significantly different.  The latency of wave I was 

unaffected; however, wave II had a significantly shorter latency, whereas wave III had a 
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significantly longer latency.  Thresholds in ephrin-B2 mice were found to be 20% higher 

than controls. Based on these findings, they concluded that the Eph proteins may be 

expressed in cochlear neural and non-neural regions and have involvement in 

maintenance of ion concentrations in the cochlea as well as structural development.  The 

ABR changes also suggested “a poorly developed auditory nerve-cochlear nucleus 

junction…abnormality in the superior olivary complex…[and] slower neural conduction 

time through the auditory pathway may be an indication of the integrity of myelin” (Miko 

et al., 2008). 

Topographic maps are evident in the auditory system as well as other sensory 

systems and rely on accurate transmission from the periphery to the central nervous 

systems.  EphA4 and ephrin-B2
lacZ

 mice have shown distinct afferent layers in the lateral 

superior olivary complex (LSO) before the onset of hearing.  By postnatal day 8, these 

layers project to cover the range of frequencies in the ipsilateral and contralateral central 

nucleus of the IC (CNIC) and will sharpen and become more precise by the time hearing 

function emerges.  Both EphA4 and ephrin-B2 have a strong presence in the LSO and 

dorsal nucleus of the lateral lemniscus as well as other locations along the brainstem.   

They are also expressed in discrete patches before auditory experience within the external 

cortex of the inferior colliculus (ECIC).  Tonotopicity that begins in the mouse cochlea is 

continued to the LSO and CNIC.  Differences between the two strains were seen in the 

way the expression gradients declined over time (postnatal day 0 to day 12), but at birth 

they both displayed an apparent gradient which became “more flattened or homogenous” 

with increasing auditory experience (Gabriel et al., 2011, p. 191).  They concluded that 

the Eph-ephrins are capable of positional cues to allow development and function of the 

auditory system, which occurs similarly to other sensory systems with topographic 

mapping.         
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There are a considerable number of Eph genes, and damage to a single gene may 

or may not show significant effects.  A study by Miko et al. (2008) found that EphA4 and 

ephrin-B2 changed the response of ABR measures to pure tones that resulted in increased 

ABR thresholds and changes in latency and amplitude measures, suggesting significant 

roles of this single gene in normal hearing.  It is useful to study mice that have the ephrins 

or Eph receptors knocked out because they “have been shown to display phenotypic 

responses that correlate with anatomical defects” (Howard et al., 2003).  

One study by Miko et al. (2007) of mice lacking Eph proteins looked at c-fos 

activation levels, an early gene that is correlated to activation of neurons.  Pure tones 

were presented to the mice and within 15 minutes the mice were anesthetized for removal 

of the brain.  Sections of the brainstem were prepared for quantitative and topographic 

analysis of the cells in the dorsal cochlear nucleus (DCN) and the medial nucleus of the 

trapezoid body (MNTB) under a microscope to determine the activation levels of c-fos as 

well as the position and spread of the activated frequency band.  The DCN and MNTB 

are representative of two separate auditory pathways.  Mice with mutations of EphA4 and 

ephrin-B2 were utilized in this experiment.  They found that mice lacking EphA4 had 

changes in magnitude of activation levels in the DCN and MNTB, and mice lacking 

ephrin-B2 only had changes in magnitude of activation in the MNTB, but not the DCN.  

The researchers found that “ephrin-B2 protein is an important local cue for correct 

targeting in the developing central nervous system” (Miko et al., 2007).  The differences 

in effects on activation levels between mice lacking the ligand and mice lacking the 

receptor indicate that effects on topography occur even with partial loss of the ligand.   

Based on gradients of these proteins being observed in the IC, the authors propose the 

continued importance of these proteins further up the brainstem. 
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 Mice lacking function of the EphB2 receptors had severe malformation of the 

semicircular canals and reduced amount of endolymph, which resulted in chronic circling 

behaviors as evidence of vestibular system dysfunction.  Mice with an absence of EphB2 

and EphB3 receptors showed delays of the fibers crossing the midline, although they 

eventually projected to their targeted structure.   The cell bodies and fibers in the efferent 

pathways were traced with DiI fluorescent, a lipophilic diffusible dye.  The ipsilateral and 

contralateral pathways and cell bodies were found to have mutant pathways to the 

semicircular canals that were disturbed and often had atypical caudal extensions (Cowan, 

Yokoyama, Bianchi, Henkemeyer, & Fritzsch, 2000).   

Studies have shown that ephrin-B2 and ephrin-B3 are expressed in the adult 

mouse cochlea, more specifically in the modiolus.  Ephrin-B2 is also expressed in the 

neurons of the spiral ganglion, organ of Corti cells, the stria vascularis, and in a layered 

pattern in the cochlear duct (Cowan et al., 2000; Pickles et al., 2002).  Mutations of 

EphB1 and EphB3 resulted in alterations of distortion product otoacoustic emissions 

amplitudes, suggesting their importance in normal cochlear function.  Mice deficient in 

these proteins showed significantly decreased measures of amplitude at two months of 

age as compared to wild-type littermates.  This compromised peripheral auditory function 

was not apparent in mice deficient in EphB2 and ephrin-B3 which indicates that although 

they are involved in development of the auditory system, they are not necessary for outer 

hair cell function (Howard et al., 2003).    

Based on the literature review, it is expected that there will be changes in ABR 

latency, amplitude, and threshold measures in the mutant mice as compared to the wild-

type mice.  The absolute latencies and IWIs will be analyzed to determine effects on 

peripheral and central transduction time.  Amplitudes of wave I will provide a measure of 

the peripheral function.  Finally, the primary focus of this study will be on auditory 
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thresholds to provide an estimate of actual hearing sensitivity.  Therefore, the role of the 

current study is to determine the functional consequences that occur with altered 

connectivity in Eph-ephrin mutant mice when tested with the ABR. 
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Methodology 

 The mice used in this study were born and bred in an animal housing facility in 

the Health and Human Services building at James Madison University.  The subjects in 

this study consisted of 27 mice from several different genetic groups.  Mice were 

genotyped by PCR from tail samples.  The control group consisted of 10 wild type mice 

from the C57BL/6J strain (Jackson Laboratories, Bar Harbor, ME) (5 females, 5 males) 

that were tested at approximately 75 days old. Three strains of mutant mice (provided by 

Dr. Mark Henkemeyer) were utilized in this study: ephrin-B3
lacZ

 (EB3
lacZ

), ephrin-B3
null 

(EB3
null

), and EphA4
lacZ

.  In control of wild-type animals, ephrin-B3 is expressed in the 

cochlear nucleus, superior olivary complex, and lateral lemniscus, with no expression in 

the central nucleus of the IC.  The EB3
null -/-

 (n=3) are true knockouts, as they completely 

lack the ephrin-B3 protein.  In normals, EphA4 is heavily expressed in the central nucleus 

of the IC.  In the case of the lacZ mutants, the gene is not entirely knocked out, but part of 

it has been removed so that it is incapable of retrograde signaling.  The kinase is deleted 

and a marker is inserted which encodes the enzyme β-galactosidase so that protein 

expression activity can be tracked (Gabriele, M., personal communication, 2010 & 

Gabriele et al., 2011).  The mice were housed in a BioZone MiniSmart Rack System with 

ad libitum food and water and HEPA-filtered air into each cage.  All experimental 

procedures were performed in compliance with the National Institutes of Health “Guide 

for the Care and Use of Laboratory Animals” (NIH publications No. 80-23, revised 1996) 

and received prior approval by the Institutional Animal Care and Use Committee at James 

Madison University (Gray IACUC Protocol #A04-09, “Hearing Tests in Mice”) 

 Testing was performed in wild-type and mutant adult mice at 2-3 months of age 

(average=61.9 days), before any documented age-related hearing loss in the control 

C57BL/6J strain (Ehret, 1976).  The mice were lightly and momentarily anesthetized with 
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5% isoflurane and then injected IP with 150 mg/kg ketamine and 30 mg/kg xylazine.  

Each mouse received additional 1/3 doses as needed.  The mice were placed in a sound-

proof booth in a restraint on an Animal Blanket Control Unit to maintain body 

temperature during testing.   

 ABR measures were obtained by using three small subdermal needles: the 

noninverting electrode on the vertex, the inverting electrode on the mastoid of the test ear, 

and the ground electrode at the base of the neck.  Electrodes were adjusted until the 

impedance values were 1kΩ or less.  Braided electrode leads were then connected to a 

Tucker Davis RA4PA 4-channel Preamp. 

A Y-shaped closed-tube sound delivery system measured the output of a TDT 

EC1 high-frequency electrostatic speaker with an Etymotic research ER-7C probe 

microphone (see Figure 1 for setup).  Proper placement of the system was verified using 

the Dynamic Signal Analyzer and recording values of peak frequency, amplitude, and 

bandwidth of the stimulus during the highest-intensity neurodiagnostic ABR for each 

different stimulus for each mouse.  Visual monitoring of the activity of the mouse 

throughout testing was achieved with an infrared camera.  If high activity was occurring, 

additional 1/3 dose injections of ketamine/xylazine were administered.  Following the 

conclusion of testing, the mice were allowed to fully recover from anesthesia before being 

returned back to their cages. 
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Figure 1. Setup for ABR measures with electrodes and transducer in place. 

  Calibration 

The loudest stimuli presented (nominally 90 dB on the BioSig system) were 

presented using the TDT SigGen software.  The clicks were calibrated by finding their 

peak-equivalent sound pressure level through the process described below.  Stimuli for 

the closed-tube delivery system were presented by a Tucker Davis Technologies TDT 

EC1 with the end of the closed tube sound delivery system placed into the end of a 

specially built artificial ear.  The artificial ear was a plastic cavity with the expected 

volume found in the literature of an adult murine external auditory meatus.   

The Agilent 35670A spectrum analyzer was first calibrated with a ¼ inch B&K 

4939 microphone to a 1/4 inch coupler into a Bruel & Kjaer Model 4230 sound level 

calibrator to read 94 dB.  The ¼ inch microphone was then connected to the artificial ear.  

No attenuator was attached to the microphone pre-amplifier.  The amplitude switches on 

the Listen Inc amplifier were set to A1=20, A2=20, A3=0, and the polarization voltage 

was 200.  The output of the TDT System3 - from the digital-to-analog converter, RP3, 

through a programmable attenuator, PA5, was connected directly to the TDT EC1 driver.   
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To calibrate the clicks, the Y-tube sound delivery system was placed against the 

artificial ear, in a way that was as similar as possible to the way the system was placed 

against the mouse meatus.  The analog output of the ¼ inch microphone attached to the 

artificial ear was then connected to an Agilent 5461D digital oscilloscope.  The peak-to-

peak voltage of the nominally 90 dB click was recorded to be 116 mV.  To convert this 

peak-to-peak voltage (Vp-p) to dB ppeSPL, the dB SPL of a long 1 kHz pure tone 

(generated by the B&K 4230 calibrator and a long 1 kHz pure tone from SigGen) was 

noted on the spectrum analyzer at the same time the digital oscilloscope calculated the 

Vp-p.  This was done for several intensity levels.  A regression line of the stimulus 

intensity as a function of Vp-p, with both expressed in dB, revealed a linear function with 

slope of 1 and intercept of 14.  Thus, 14 dB were added to the BioSig intensity levels for 

correction to dB ppeSPL for the clicks. 

Calibrations were also performed for 8 kHz and 12 kHz pure tones of 1 s-duration 

each presented at a nominal (uncalibrated) level in the BioSig software of 90 dB.  The 8 

kHz tone output was 106 dB SPL and the 12 kHz tone output was 108 dB SPL. Thus, 16 

and 18 dB was added for correction to dB SPL for the 8 and 12 kHz tone pips, 

respectively.  Using the probe-tube system attached to the artificial ear, the same 

calibrations were run as done at the beginning of each recording from the mice.  That is, 

the ER7C probe was connected to the Spectrum Analyzer and results from a peak-hold 

average during presentation of the loudest stimulus was recorded.  Into the artificial ear, 

these measurements revealed peaks of 49, 68, and 79 dB for the clicks, 8 and 12 kHz, 

respectively.  The peak energy for the click occurred at about 3.1 kHz and had a band 

level of 59 dB (200-20000 Hz).  The peak of the tone pips occurred at the expected 

frequency. 
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In summary, clicks were calibrated with the peak-to-peak equivalent sound 

pressure level (dB ppeSPL).  Pure tones were calibrated with the simple sound pressure 

level (dB SPL).  Throughout the following results, 'dB' will mean dB ppeSPL when used 

as the intensity of clicks, and 'dB' will mean dB SPL when used as the intensity of tone 

pips. 

Protocol 

Tucker Davis Technology (Achula FL) BioSig software was used to obtain ABR 

measures.  The sample rate was 24498/s.  The gain of the TDT RA4 Medusa Base Station 

neurophysiological amplifier was 20.  The recorded response was digitally filtered from 

300 to 3000 Hz with an artifact rejection of 20.  A 10 ms time window produced 244 

samples per sweep.  The ABR protocol was arranged to begin at an uncalibrated level of 

90 dB and decrease in intensity to 20 dB.   The nominal intensity levels presented were 

90, 70, 60, 55, 50, 45, 40, 35, 30, 25, and 20 dB.  A total of four waveforms with 100 

sweeps each were obtained at each intensity level (condensation, rarefaction, 

condensation, rarefaction).  Condensation and rarefaction waveforms were summed to 

eliminate the cochlear microphonic and ensure reproducibility.  At the end of the runs, 

another set of waveforms at 90 dB was obtained to guarantee integrity of the signal at the 

end of testing.   

 Three stimuli were presented to each mouse; broadband clicks, 12 kHz tone pips, 

and 8 kHz tone pips.  Presentation of clicks and the 12 kHz tone pip were randomized, 

and if the mouse remained sedated, the 8 kHz tone pip was presented as well.  The clicks 

were 0.1 ms in duration, while the tone pips were 5 ms in duration (with 0.5 ms Blackman 

windowed rise/decay times.  Stimulation occurred at a rate of 39.1 cps.   

Based on normative data on hearing sensitivity in mice, testing was performed at 

2-3 months of age to reduce the effects of age-related hearing loss.  At this age, 
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behavioral testing in C57BL/6J mice has shown thresholds at 8 kHz of 35 dB SPL (Miko 

et al., 2007). Tone bursts of 8 kHz and 12 kHz were chosen since they lie within the 

normal range of hearing in adult mice and will provide frequency specific information 

about hearing sensitivity in the optimal range of hearing (Ehret, 1976).    The ABR 

thresholds for all four groups of mice were compared and analyzed for statistical 

significance. 

 Threshold was defined in dB as halfway between the last level a response was 

obtained and the first level that no response was present.  Latencies and amplitudes of 

prominent peaks in the ABR were obtained using Matlab software written by the thesis 

advisor.  Latency was calculated in milliseconds from the stimulus onset to the peak of 

the wave and corrections were made for tube length.  The latencies of wave I to wave V 

were obtained at each intensity level until threshold was reached.   Peak amplitude 

measures were obtained for wave I and wave II which have been shown to have the 

largest amplitude in mice.  The amplitude was calculated from the peak of the wave to the 

following trough.   

 Latency-intensity functions (LIFs) were assembled for waves I and V and were 

compared for each group of mice.  Studies have shown that wave I in an ABR is derived 

from the distal portion of the auditory nerve, and that the LIF will be similar for all ABR 

peaks.  LIFs are “dependent on processes limited to the cochlear hair cell-auditory nerve 

fiber synapse and the auditory nerve up to the axon hillock, where the action potential is 

initiated,” and is considered to be a peripheral process (Burkard, Don, & Eggermont, 

2007, p. 235).  Research has suggested that when performing a click-evoked ABR at high 

intensities in humans, the cochlear base is stimulated, whereas clicks near threshold are 

generated by frequencies in the region of 1-2 kHz.  This latency effect is supported by the 

fact that the traveling wave has a delay as it moves towards the apex.  Due to this 
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phenomenon, there is an apical shift in the primary place of stimulation along the basilar 

membrane which roughly produces a 1 ms latency increase (Hall, 2007).   
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Results 

Statistical analyses utilized independent samples t tests, one-way ANOVAs with 

post Hoc tests, and analyses of covariance.  P values less than .05 are considered 

significant.  Table 1 shows the mean thresholds for the clicks, 8 kHz tone pip and 12 kHz 

tone pip for each mouse strain tested and Figure 2 is a box plot of thresholds by group.  

Group Stimulus Mean 

Threshold (dB)  

N Std. Deviation 

(dB) 

Effect Size 

(Cohen's d) 

C57BL/6J Click 57 10 8  

8 kHz 58 10 7  

12 kHz 51 10 8  

EphA4 Click 64 8 17 0.9 

8 kHz 60 7 22 0.3 

12 kHz 71 8 19 2.5 

Ephrin-B3
Lz 

Click 75 4 22 2.3 

8 kHz 68 3 25 1.4 

12 kHz 76 3 25 3.1 

Ephrin-B3
null 

Click 72 3 6 1.9 

8 kHz 75 2 9 2.4 

12 kHz 98 1  5.9 

 

Table1:  Average thresholds for the click, 8 kHz tone pip and 12 kHz tone pip.  The dB 

for clicks is dB ppeSPL and the dB for tones is dB SPL 

 

There were significant differences between groups for the click thresholds (F3, 

21=4, p=.026).  The C57BL/6J group and EphA4 group were the same.   The C57BL/6J 

group was statistically different from the ephrin-B3
Lz

 group and the ephrin-B3
null 

group.  

The ephrin-B3
Lz 

group and the ephrin-B3
null 

group are essentially the same, and the 

ephrin-B3 
null

 and the EphA4 group are the same as well.  The EphA4 group was 

statistically different from the ephrin-B3
null

 group. 
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Figure 2. Box plot of thresholds by group. 

 

 There were no significant differences between groups for the 8 kHz stimulus (F3, 

18=1, p=.520).  There was a significant difference between groups (F3, 19=9, p=.001) in the 

12 kHz thresholds.  Post Hoc tests showed that the ephrin-B3
Lz

 group is not different 

from the ephrin-B3
null

 group or the EphA4 group. The C57BL/6J group showed 

significant differences from all other groups.  The ephrin-B3
Lz 

group and the EphA4 

group were not statistically significant from each other.  The ephrin-B3
Lz  

 is almost 

different from the ephrin-B3
null 

group.  The ephrin-B3
null

 group is statistically different 

from the EphA4 group. 

There were no significant differences for any group in the calibrated levels for all 

stimuli tested.  However, the differences were most evident with the 12 kHz stimulus.  
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Click (F3, 23=1, p=.386), 8 kHz (F3, 21=1, p=.580), and 12 kHz (F3, 23=2, p=.145); 

thresholds for all groups had no significant effects from calibration levels.  

The latency-intensity functions for wave I (see Figure 3) show clear trends with 

the wild-type group having the shortest latencies, the EphA4
Lz

 having the next longest 

latencies, and some overlap between the ephrin-B3
Lz 

and ephrin-B3
null 

groups which had 

the longest overall latencies.  The response is clearly under stimulus control as seen by 

the decreasing latencies as intensity of the clicks increases.  Statistical evaluation with 

ANCOVA shows effects on Wave I latency (see Table 2 for latency measures) due to 

mouse strain (F3, 111=21,  p<.001) and to stimulus intensity level (F1, 111= 39,  p<.001),.  

Similar effects were seen for the 8-and-12 kHz tone pips (all p values less than .001 for 

effects of mouse strain and for stimulus intensity for both frequencies of tone pips).   

 

Figure 3. LIFs for wave I with a click stimulus.  Intensity levels are measured in dB 

ppeSPL. 
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Group Stimulus Mean Wave I 

Latency (ms) 

N Std. 

Deviation 

(ms) 

Effect Size 

(Cohen's d) 

 

C57BL/6J Click 1.20 10 .16  

8 kHz 1.58 10 .25  

12 kHz 1.62 10 .15  

Ephrin-B3
Lz 

Click 1.65 4 .26 2.8 

8 kHz 2.24 3 .50 2.6 

12 kHz 2.15 4 .31 3.5 

Ephrin-B3
null 

Click 1.57 3 .19 2.3 

8 kHz 1.73 2 .24 0.6 

12 kHz 1.11 1 -- -3.4 

EphA4 Click 1.49 8 .44 1.8 

8 kHz 1.79 7 .38 0.8 

12 kHz 1.66 8 .37 0.3 

Table 2: Average wave I latencies for each mouse group at 104 dB ppeSPL for the clicks, 

106 dB SPL for the 8 kHz tone pip, and 108 dB SPL for the 12 kHz tone pip. 

 

The discussion will be about wave V because of its relevance to the IC.  Wave V 

latency-intensity functions for the click (see Figure 4) showed no significant differences 

by mouse strain (F3, 91=2, p=.129) and a significant effect of stimulus intensity (F1, 91=4, 

p=.059).    Wave V latency-intensity functions for the 8 kHz tone pip (see Figure 5) 

showed significant mouse strain differences (F3, 81=5, p=.002) and no significant stimulus 

intensity effects (F1, 81=2, p=.148). The 12 kHz tone pip had overlapping latency-intensity 

functions for the C57BL/6J and EphA4
Lz 

groups with significantly longer latencies for the 

ephrin-B3
Lz

 group (see Figure 6).  There were significant effects by mouse strain (F2, 

98=26, p=.000) and no effects by stimulus intensity (F1, 98=1, p=.310). There are a smaller 

number of mice in the ephrinB3
null

 group due to the small number of mice that had 

measurable ABR waveforms.  Average latencies for wave V can be seen in Table 3. 
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Figure 4. LIF for wave V with a click stimulus.  Intensity levels are measured in dB 

ppeSPL. 
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Figure 5. LIFs for wave V with an 8 kHz tone pip stimulus. 
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Figure 6. LIFs for wave V with a 12 kHz tone pip stimulus. 

 

Group Stimulus Mean Wave 

V Latency 

(ms) 

N Std. Deviation 

(ms) 

Effect Size 

(Cohen's d) 

 

C57BL/6J Click 5.02 10 1.0  

8 kHz 5.62 10 1.0  

12 kHz 5.46 10 .87  

Ephrin-B3
Lz 

Click 5.16 2 .05 0.1 

8 kHz 7.16 3 1.6 1.5 

12 kHz 6.75 4 .61 1.5 

Ephrin-B3
null 

Click 5.24 2 .08 0.2 

8 kHz 5.46 2 .43 -0.2 

12 kHz -- -- --  

EphA4 Click 5.19 7 .69 0.2 

8 kHz 5.90 7 .79 0.3 

12 kHz 5.57 7 .73 0.1 

Table 3: Average wave V latencies for each mouse group at 104 dB ppeSPL for the 

clicks, 106 dB SPL for the 8 kHz tone pip, and 108 dB SPL for the 12 kHz tone pip. 
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The wave I-V IWIs for the C57BL/6J, ephrin-B3
Lz

, ephrin-B3
null

, and EphA4 

groups were analyzed for significance. The wave I-V IWI for the clicks (see Figure 7) 

showed no significant differences by mouse strain (F3, 91=1, p=.926) or by  intensity (F1, 

91=1, p=.682).    Wave I-V IWI for the 8 kHz tone pip (see Figure 8) showed significant 

mouse strain differences (F3, 77=4, p=.019) and no significant stimulus intensity effects 

(F1, 77=1, p=.658). The 12 kHz tone pip wave I-V IWI (see Figure 9) showed significant 

effects by mouse strain (F2, 87=18, p=.000) and no effects by stimulus intensity (F1, 87=3, 

p=.105).  

 

Figure 7. Wave I-V IWIs for the click.  Intensity levels are measured in dB ppeSPL 
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Figure 8. Wave I-V IWIs for the 8 kHz tone pip. 
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Figure 9. Wave I-V IWIs for the 12 kHz tone pip. 

. 

 

Amplitude of wave I was significantly different between groups for the clicks (F3, 

115=6, p=.001), 8 kHz tone pips (F3, 108=3, p=.023), and the 12 kHz tone pips (F3, 111=8, 

p=.000).  See Figures 10, 11, and 12 for the amplitude/intensity functions for the click, 8 

kHz, and 12 kHz tone pip, respectively.  The wave I amplitude was significantly affected 

by the stimulus intensity across all test conditions (p<.000).  Refer to Table 4 for average 

wave I amplitudes for each group and stimulus. 
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Figure 10. Wave I amplitude for the clicks.  Intensity levels are measured in dB ppeSPL. 
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Figure 11. Wave I amplitude for the 8 kHz tone pip. 
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Figure 12. Wave I amplitude for the 12 kHz tone pip. 

Group Stimulus Mean Amp I 

(µV) 

N Std. Deviation 

(µV) 

Effect Size 

(Cohen's d) 

 

C57BL/6J Click 2.25 10 1.25  

8 kHz 1.81 10 .80  

12 kHz 2.57 10 1.15  

Ephrin-B3
Lz 

Click 1.31 4 1.13 -0.8 

8 kHz 1.10 3 .71 -0.9 
12 kHz 1.13 4 .90 -1.3 

Ephrin-B3
null 

Click .91 3 .47 -1.1 
8 kHz .82 2 .05 -1.2 

12 kHz .48 1 --  
EphA4 Click 1.24 8 .71 -0.8 

8 kHz 1.14 7 .61 -0.8 
12 kHz .96 8 .46 -1.4 

 

Table 4: Average wave I amplitudes for each mouse group at 104 dB ppeSPL for the 

clicks, 106 dB SPL for the 8 kHz tone pip, and 108 dB SPL for the 12 kHz tone pip. 
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The amplitude of wave II was significantly different between groups for the clicks 

(F2, 110=4, p=.015), 8 kHz tone pips (F2, 117=3, p=.000), and the 12 kHz tone pips (F2, 

121=13, p=.000).  The wave II amplitude was also significantly affected by the stimulus 

intensity across all test conditions (p<.000).  Refer to Table 5 for average wave II 

amplitudes for each group and stimulus. 

Group Stimulus Mean Amp II (µV) N Std. Deviation (µV) 

C57BL/6J Click 1.80 10 1.15 

8 kHz 2.53 10 1.52 

12 kHz 2.38 10 1.13 

Ephrin-B3
Lz 

Click 1.02 4 .66 

8 kHz .69 3 .23 

12 kHz .83 4 .27 

Ephrin-B3
null 

Click .62 3 .21 

8 kHz .58 2 .39 

12 kHz .45 1 -- 

EphA4 Click 1.70 8 .91 

8 kHz 1.60 7 .78 

12 kHz 1.24 8 .47 

 

Table 5: Average wave II amplitudes for each mouse at 104 dB ppeSPL for the clicks, 

106 dB SPL for the 8 kHz tone pip, and 108 dB SPL for the 12 kHz tone pip. 

 

Neurodiagnostic ABRs show graded effects of Eph-ephrin mutations.  Figure 13 

shows the grand average of all the recordings from all mice in each of 4 groups to the 

loudest (90 dB) clicks.  The vertical scale is the same for all groups, although the different 

waves have been shifted vertically to avoid overlap.  The amplitude of the ABR is 

decreased in the mutant groups and the prominent peaks are delayed relative to wild-type. 

The effects appear to be more significant at higher CNS levels, meaning that the later 

peaks are smaller and delayed. These data show that Eph-ephrin mutation play a 

significant role in the development of the afferent auditory system. 
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Figure 13. Neurodiagnostic ABRs in the 4 mouse strains tested to a 104 dB ppeSPL click. 

 

Some other analyses of group differences and calibrations 

Significant differences in weight were seen, with the ephrin-B3
Lz

, ephrin-B3
null

, 

and EphA4 groups being statistically heavier than the C57BL/6J group (F3, 23=11, 

p=.000).  The mutant groups did not show any significant differences in weight.   

 There were significant differences in age between all groups (F3, 23=5, p=.010). 

The EphA4 group had the oldest mice out of all that were tested.  No group showed any 

effect of age on threshold. 

 Among the 3 mutant groups, there were no significant differences (F1, 10=2, 

p=.235) between homozygous-recessive (-/-) and heterozygous (-/+) genotypes, which is 

likely due to the small sample size.   
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 Sex had no effects on thresholds, with p>.47 over all groups and stimuli analyzed 

separately.  More specifically, for clicks in the wild type group t8=.6, p=.57; for wild type 

8 kHz tone pips t8=.63, p=.55; for wild type 12 kHz t8=.76, p=.47; 5 females had the same 

thresholds as 2 males in the EphA4 group with significance in all three stimuli above .76; 

among the other groups, only click thresholds in the ephrin-B3
nul

 group could be 

evaluated, and sex was not significant with p=.76. 

 Among the C57BL/6J group, there was no correlation between thresholds and 

stability of waveforms.  In the mutant groups, the correlations were poor because of poor 

neurodiagnostic ABR waveforms at the highest intensity. 

There were no effects on thresholds of the real-time calibrations from the probe 

tube during testing. The C57BL/6J group only correlations are all p>.05.  Small sample 

sizes in the mutant groups makes this analysis too variable. 
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Discussion 

Auditory Thresholds 

There are clear differences in the thresholds, LIFs, amplitudes, and 

neurodiagnostic ABRs in Eph-ephrin deficient mice.  This shows that the Eph-ephrin 

family of receptor/ligands plays an important role in the establishment of a fully 

functional auditory system.  The true ephrin-B3
null 

group seems to be most affected. 

 The clicks have most of their energy at an average of 3.2 kHz, according to the 

real-time calibrations performed during the testing of each mouse.  Thus, the click 

thresholds are plotted at 3 kHz, and Figure 14 shows the physiological audiograms of the 

different groups from the ABR threshold data.   

 

Figure 14. Physiological ‘Audiograms’ for all mouse strains tested (ABR thresholds 

versus spectral peak).  Intensity levels are measured in dB SPL for tone pips. 

 

Overall, thresholds were significantly different for test conditions with the click 

and 12 kHz tone pip between all four mouse groups tested suggesting an importance in 

the Eph receptors and ephrins in development of the auditory system.  The 8 kHz tone pip 

showed no significant differences between groups, likely due only to variability.  Figure 2 
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objectively shows similar trends in thresholds across groups at all frequencies.  The 8 kHz 

stimuli were presented last, so individual differences in stability over time would have 

contributed to increased variability, and could likely have brought differences out of the 

range of significance at the .05 level.  There were no differences across groups in our 

measure of preparation stability (correlation of loud clicks at the beginning and end of 

testing), but within-group variability in stability could still have caused the lack of 

significant difference at the 8 kHz.    Calibrations performed during testing helped ensure 

that procedures remained consistent from mouse-to-mouse.  Figure 15 shows a summary 

of Figure 2.  Grand average thresholds for all stimuli are shown for each group.  

Thresholds deteriorate from the lowest thresholds seen in the C57BL/6J (or wild type) 

mice, to the EphA4 mice, Ephrin-B3
Lz 

mice, and finally to the highest thresholds in the 

Ephrin-B3
null   

mice.   

 

Figure 15. Average threshold for each mouse group across all stimuli tested. 

 

Across all stimuli, the C57BL/6J mice had the lowest thresholds, as expected 

since they were assumed to have normal development of the auditory system.  Overall the 
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average thresholds for the C57BL/6J were 55 dB SPL.  The highest numbers of subjects 

were in this group equally distributed between males and females.   

EphA4 receptors have expression in the central nucleus of the IC.  This group of 

mice with these mutations had the largest number of subjects out of the collection of 

mutant strains tested.  While one mouse died under anesthesia and was unable to be 

tested, all other subjects in this group had waveforms for each stimulus.  Average 

thresholds across all stimuli were found to be 65 dB SPL.  

 The ephrin-B3
Lz   

group is known to have some expression of ephrins within the 

cochlear nucleus, superior olivary complex, and lateral lemniscus, but no expression in 

the central nucleus of the IC.  As such, they are not complete knockouts, but rather have 

part of the gene altered so it cannot signal.  The waveforms for these mice had rather poor 

morphology; therefore, a mouse from the C57/6J group was run to ensure this finding was 

not due to an equipment malfunction.  The average overall threshold was 73 dB SPL 

across all stimuli.  One mouse was excluded from this group because it died under 

anesthesia during testing.    
 

 
Ephrin-B3

null 
mice had an overall average threshold of

 
82 dB SPL.  This group 

was expected to have the poorest thresholds due to the extent of the auditory pathway 

mutations that occurred.   It should be noted that the smallest number of subjects had 

recordable ABR waveforms in this group.  Only three mice in this group had present 

waveforms for the click, two had 8 kHz waveforms, and one had a 12 kHz waveform.  

One mouse in this group was excluded because there were no measurable ABR 

waveforms for all stimuli even at the highest intensity level.  
 

 
When looking at click thresholds across all groups, there was a 32% increase in 

threshold for the ephrin-B3
Lz 

group, a 26% increase in threshold for the ephrin-B3
null 

group, and a 12% increase in threshold for the EphA4 group.  Analysis of the 8 kHz tone 
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pip showed a 17% increase in threshold for the ephrin-B3
Lz

 group, a 29% increase for the 

ephrin-B3
null

 group, and a 3% increase in the EphA4 group.  Finally, the 12 kHz tone pip 

showed a 49% increase in threshold for the ephrin-B3
Lz

 group, a 92% increase in the 

ephrin-B3
null

 group, and a 39% increase in the EphA4 group.  Therefore, the most 

significant effects on threshold occurred for the highest frequency presented, which was 

the 12 kHz tone pip.  The 2008 Miko et al. study, found the EphA4 group to have 75% 

higher thresholds and the ephrin-B2 group to have 20% higher thresholds for clicks.  

While this study did not test any mouse from the ephrin-B2 strain, there were clear 

increases in threshold for the EphA4 group, just not as significant of an increase as found 

by Miko et al.   

Neurodiagnostic ABRs 

The neurodiagnostic ABR data provides a good overall view of what is occurring 

along the brainstem across all mouse groups.  Greater effects can be seen within the CNS 

which resulted in prolonged latencies, for example.  The Eph-ephrins are therefore vital in 

developing a functional auditory system, and their roles extend well beyond the 

peripheral auditory system.  This is a new area to consider in Eph-ephrin research and can 

provide information about how altered connectivity affects the ascending response.  

Previous studies did not investigate this far up the brainstem and only focused on 

peripheral consequences.    

Latency Measures 

The latencies also showed effects across all stimuli and mouse strain, suggesting 

that Eph-ephrin mutations increased transduction times to wave I.  Both ephrin-B3 groups 

(Lz and null) appeared to have some overlap in LIFs (see Figure 3), however the small 

number of ephrin-B3
null 

mice with recordable waveforms make it difficult to compare to 

the larger group of ephrin-B3
Lz

.  Of note, Figure 3 demonstrates LIFs that are essentially 
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parallel to one another, which can be indicative of a conductive hearing loss.  However, 

this was the only instance where this parallel pattern occurred, and in the other test 

conditions the latency to wave I did not shift out uniformly.  Additionally, this trend was 

not seen in the wave V LIF for any of the stimuli. If the hearing loss were truly 

conductive, this trend would be seen with both wave I and wave V.   

When looking at latency to wave I for the clicks across all groups, there was a 

38% increase in latency for the ephrin-B3
Lz 

group, a 31% increase in latency for the 

ephrin-B3
null 

group, and a 24% increase in latency for the EphA4 group.  Analysis of the 

8 kHz tone pip showed a 42% increase in wave I latency for the ephrin-B3
Lz

 group, a 9% 

increase for the ephrin-B3
null

 group, and a 13% increase in the EphA4 group.  Finally, the 

12 kHz tone pip showed a 33% increase in latency for the ephrin-B3
Lz

 group, a 32% 

decrease in the ephrin-B3
null

 group, and a 2% increase in the EphA4 group.  In all 

instances, the wave I latency was found to increase, with the exception of the 12 kHz tone 

pip in the ephrin-B3
null

 group where a shorter conduction time was noted; however, only 

one subject in this group had measurable waveforms.  Once again this could likely be 

contributed to the poor morphology and high variability of the waveforms which made
 

valid latency measures more difficult.  Overall, the ephrin-B3
Lz 

group had the greatest 

increases in wave I latency across all stimuli tested, suggesting deficits in the auditory 

nerve.   

 While this study set out to focus on wave V to determine effects on different 

amounts of expression in the IC, analysis revealed difficulty in finding a clear and 

consistent wave V in all mouse groups tested.  Different electrode montages and 

additional channels were attempted to increase the amplitude of wave V, but analysis of 

these did not show any clear improvements in recordings.  While there were no group 

differences in wave V LIF for clicks, there were differences between groups for the 8 kHz 
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tone pip, and longer latencies for the ephrin-B3
Lz

.  Once again, the small number of mice 

in the ephrin-B3
null 

group with measurable waveforms made it difficult to see clear trends 

in wave V LIFs.  In fact, for the 12 kHz stimulus, there were no mice in that group that 

had a wave V measurable at decreasing intensity levels.   

Wave V latency for the clicks was found to increase by 3% for the ephrin-B3
Lz 

group, 4% for the ephrin-B3
null 

group, and 3% for the EphA4 group.  Analysis of the 8 

kHz tone pip showed a 27% increase in wave V latency for the ephrin-B3
Lz

 group, a 3% 

decrease for the ephrin-B3
null

 group, and a 5% increase in the EphA4 group.  Finally, the 

12 kHz tone pip showed a 24% increase in latency for the ephrin-B3
Lz

 group, and a 2% 

increase in the EphA4 group.  There were no wave V peaks measurable in the ephrin-

B3
null 

group for the 12 kHz tone pip.  Trends for wave V latency were less clear than for 

wave I latency; however, the ephrin-B3
Lz 

group had the largest percent changes out of the 

3 mutant groups.  This suggests more significant affects of this strain on the IC.  The 

same finding was true for the wave I latency, where the ephrin-B3
Lz 

group had the largest 

increases in latency.   

Interwave Intervals 

Analysis of wave I-V IWIs provided a means of comparing conduction time from 

the brainstem up to the midbrain.  Significant effects of groups were seen in conduction 

times for the 8-and-12 kHz tone pips, but not the click. There should not be an affect of 

intensity on this measure, because the IWI should take similar amounts of time regardless 

of the stimulus intensity, as expected.  This study did not find any significant effects on 

the wave I-V IWI for intensity.  When looking at the figures for the various stimuli tested, 

the click stimulus IWI showed a fair amount of overlap between the groups (see Figure 

7).  More clear distinctions between groups were seen with the 8 kHz tone pip (see Figure 

8) with the ephrin-B3
null 

group having the shortest conduction times and the ephrin-B3
Lz
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having the longest conduction times.    For the 12 kHz tone pip (see Figure 9), the IWIs 

were shortest for the EphA4 group and the longest for the ephrin-B3
Lz

.  No IWIs could be 

obtained for the ephrin-B3
null 

in this case.  It is interesting that for 8 kHz, the conduction 

times were the longest in the ephrin-B3
Lz 

group, but the shortest when the stimulus was a 

12 kHz tone pip.  

Amplitude Measures 

Wave I amplitude at the loudest click decreased by 42% for the ephrin-B3
Lz 

group, 60% for the ephrin-B3
null 

group, and 49% for the EphA4 group.  Amplitudes at the 

loudest 8 kHz tone pip showed decreases of 39% for the ephrin-B3
Lz

 group, 55% for the 

ephrin-B3
null

 group, and 37% for the EphA4 group for wave I amplitude.  Finally, the 

loudest 12 kHz tone pip showed a decrease in wave I amplitude of 56% for the ephrin-

B3
Lz

 group, 81% for the ephrin-B3
null

 group, and 63% for the EphA4 group.  This 

revealed the most significant decreases in wave I amplitude to be for the ephrin-B3
null

 

group.  The 2008 Miko et al. study, found the 54% smaller wave I amplitudes in the 

EphA4 group, as compared to the 49% smaller wave I amplitudes found in this study.   

The amplitude of wave II for the click decreased by 78% for the ephrin-B3
Lz 

group, 66% for the ephrin-B3
null 

group, and 5% for the EphA4 group.  The 8 kHz tone pip 

showed decreases of 73% for the ephrin-B3
Lz

 group, 77% for the ephrin-B3
null

 group, and 

37% for the EphA4 group for wave I amplitude.  Finally, the 12 kHz tone pip showed a 

decrease in wave II amplitude of 87% for the ephrin-B3
Lz

 group, 81% for the ephrin-

B3
null

 group, and 48% for the EphA4 group.  The Miko et al., (2008) study found the 

wave II amplitude for clicks to decrease by 56% in the EphA4 group, however, this study 

only found a 5% decrease in amplitude between the EphA4 group and the wild type 

group.   
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Other Miscellaneous Findings 

It is worth noting that the mutant mice all were significantly heavier than the wild 

type mice.   This often required multiple injections of ketamine/xylazine in order to 

properly anesthetize the mouse for testing.  Attempts were taken to control for age and 

this was done successfully without any age related effects in the analysis.  This was 

important since some strains of mice have been shown to have early onset deterioration of 

hearing which results in higher auditory thresholds.  Therefore, an accurate representation 

of hearing threshold was obtained in the mice before this aging process began.  While 

attempts were made to test an equal number of male and female mice, this was not 

possible given the litters available at the time of testing.  The results suggested that no 

gender differences existed, however, so analysis was not affected by that variable.   

 Finding no significant differences between the homozygous and heterozygous 

genotypes within each group was likely attributed to the small number of homozygotes.   

It was expected that homozygous mutants would have more severe auditory consequences 

and increases in thresholds, however the small number available for analysis may have 

prevented accurate statistics on this variable.  This study was limited by the small number 

of subjects available at the time of testing. Future studies would benefit from an increase 

in sample size for homozygous and heterozygous mice to determine what, if any, 

differences exist.  Of interest would be more homozygous ephrin-B3
Lz

 and homozygous 

EphA4s 

Future Research 

This study hoped to provide objective differences between the wild type mice and 

mutant groups in the latency of wave V.  While the ABR measures were excellent at 

obtaining information about the early wave components, there was considerably more 

difficulty in identification of wave V and more variance in wave V among the wild type 
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mice and mutants.  Therefore, some refinement of the protocol would be necessary if 

future studies were to look for group differences in the later wave components.  Some 

possibilities to improve this based on our pilot study include optimizing the number of 

sweeps and filtering and trying to measure the negative potential following wave V 

(Moller & Jannetta, 1983).  Direct assessment of the IC may be improved by measuring 

the binaural interaction component and the resulting evoked potential from sudden gaps 

in continuous white noise.   

Experimenter biasing in peak selection could affect the external validity of the 

results as well.  Future studies could have improved validity if unbiased volunteers were 

trained on selection of the peaks on randomized subjects and the volunteers participated 

in the analysis of the data.  For this study, all peaks were selected by the same researcher. 

Since this study succeeded in finding physiological differences in mutant mice, we 

may be able to apply this knowledge of normal and abnormal connections to design future 

experiments about the underlying mechanisms of appropriate functional development.  

Understanding which molecular signals are critical in development of auditory circuits is 

a crucial part about determining rational therapy approaches. Since effective treatment of 

hearing loss is dependent on an understanding of the normal auditory system development 

and organization, we could better plan treatment strategies for humans with early 

sensorineural hearing loss. 
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