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Item Parameter Recovery With and Without the Use of Priors 

Introduction   

Estimating item parameters for the 3-parameter item response theory (IRT) model can be 

difficult (e.g., Lord 1968, Appendix B; Thissen & Wainer, 1982). Using Bayesian priors on the 

likelihood functions can reduce estimation problems and can increase the accuracy of item 

parameter estimates (Harwell & Janosky, 1991; Mislevy, 1986, Swaminathan & Gifford, 1986). 

In other areas of Bayesian statistics, choosing the prior distribution is a much-debated issue 

because ill-matched priors can severely bias the items estimates. Ideally, the prior distribution 

would have high density near the parameter value, because the estimate will be biased toward 

regions of higher density. If the mean of the prior is not near the true parameter value and the 

prior distribution has a relatively small variance (highly informative prior), the estimate may be 

seriously biased unless there is enough information in the data to overcome the information in 

the prior. In IRT marginal maximum likelihood (MML) estimation, a typical approach is to apply 

priors to the item discriminations and to the lower asymptotes to avoid implausible estimates. To 

gain these advantages without biasing the estimates too much, IRT analysts often use relatively 

diffuse priors (Lord, 1986). For estimating item parameters by MML, it has long been suggested 

that the specific priors are not that important as long as they are not highly informative. Unlike 

other areas of Bayesian statistics, within the MML literature there has been little exploration of 

choosing the specific priors for analyzing a given dataset. The purpose of this study was to assess 

the sensitivity of item parameter estimation in the 3PL model to different prior distributions. 

More specifically, we varied the appropriateness (i.e., the mean) and the informativeness (i.e., 

the variance) of the prior distributions for item parameter estimation. 
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 Priors can be utilized in joint maximum likelihood (JML), marginal maximum likelihood 

(MML), or fully Bayesian methods such as Monte Carlo Markov Chains (MCMC; Sheng, 2010). 

When priors are used in MML, the procedure is sometimes called marginal Bayesian estimation 

(MBE) and the resulting item parameter estimates are sometimes called Bayes model estimates 

(BME). The focus of this study is the use of priors in MML, but some of the literature from 

Bayesian JML or MCMC may generalize. 

 The 3-parameter-logistic (3PL) model is defined as: 

𝑃(𝜃) = 𝑐𝑖 + (1 − 𝑐𝑖)
𝑒𝑎𝑖(𝜃−𝑏𝑖) 

1+𝑒𝑎𝑖(𝜃−𝑏𝑖) ,                                                 (1) 

where P(𝜃) is the probability of correctly responding to an item given person’s ability level (θ), 

ai is the item discrimination, bi is the item difficulty, and ci is a lower asymptote/pseudo guessing 

parameter. In the 2PL model the lower asymptote is fixed to zero. A constant D = 1.7 may be 

added before the ai; this will make the a-parameters smaller so that they are virtually identical to 

those from a normal ogive (probit) model. When judging how informative a prior is, it is 

important to know whether the researcher was using a logistic or normal (D = 1.7) metric, 

because a variance of 1 in the logistic metric is equivalent to a variance of 0.5882 in the normal 

metric (conversely, a variance of 1 in the normal metric is equivalent to a variance of 1.72 in the 

logistic metric). Similarly, judging the magnitude of the bias and SE or RMSE of the estimates of 

the a-parameter depends on the metric. 

 One important issue is that estimation may not converge or may result in implausible 

parameter estimates or extremely large estimates of the standard errors. The 3PL model often 

runs into these problems (Lord, 1975; 1986; Mislevy, 1986; Swaminathan & Gifford, 1986), 

although such problems are less frequent with the 2PL model. Thissen and Wainer (1982) noted 
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that "estimation of a lower asymptote can wreak havoc with the accuracy of a location 

parameter" (p. 398). Applying reasonable priors often reduces the number of estimation 

problems with the 3PL model. For example, Gao and Chen (2005) reported that a small 

proportion of replications did not converge without priors, and they reported a number of a or c 

estimates that were unreasonably; with priors, there were no such problems. Convergence also 

required fewer iterations with priors; with N = 100, the average number of iterations to reach 

their convergence criterion was 52 without priors but 15 with priors. The informativeness of the 

priors may greatly influence the occurrence of convergence or estimation problems. Sheng 

(2010) showed that far fewer iterations were needed for MCMC convergence with more 

informative priors, which may be true for MML as well.  

 Within the MML literature for 2PL models, Lim and Drasgow (1990) compared not using 

priors to using relatively diffuse priors, variance = 22 for b-parameter and variance = 1 for ln(a).1 

With a sample size of 250, the SE was smaller with priors, but with sample sizes of 750, priors 

had little impact on the SE except for items with large a's and extreme b's. A study by Harwell 

and Janosky (1991) focused on the effect of variance (i.e., the informativeness of the priors) on 

item discrimination parameters, with the variance of ln(a) ranging from 0.12 to 0.752.2 The 

authors found that with small examinee sample sizes the more informative the priors were, the 

smaller the RMSE of the item estimates. This relationship held for both a and b, although the 

priors were only applied to the a-parameters, and was more pronounced in small test length 

 
1 With a log-normal (0,1) distribution, 95% of the density falls between 0.14 and 7.10 after exponentiating. These 

authors were using the normal metric, so 95% range would be 0.24 to 12.07 in the logistic metric. 
2 After transforming back to the metric of the a-parameters, 95% of the density falls between 0.82 and 1.22 for a 

log-normal (0, 0.12) distribution or between 0.23 and 4.35 for a log-normal (0, 0.752). 
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conditions (i.e., 15 vs. 25 item tests). With a sample size of 250 or more and 25 items, the most 

informative prior yielded slightly higher RMSE than the more diffuse priors or no prior. 

Presumably, the more informative prior led to greater bias for some items which outweighed the 

decrease in SE, although bias was not reported separately. When the sample sizes were greater 

than 250 examinees, the authors concluded that the effect of prior informativeness was reduced. 

The authors explained that with greater sample sizes and longer tests, the likelihood functions 

draw enough information from the data and thus the priors are no longer necessary for item 

estimation. In other words, the final estimates are produced primarily from the data and not from 

the prior distribution. The prior neither harms (biases) or helps (reduction in SE) if there is 

enough information in the data. 

 Zeng (1997) compared three sets of priors for the 3PL model using MML, but did not 

include a condition without priors. Zeng used 4-parameter beta distributions for all three 

parameters, once with the parameters of the prior fixed and again with the mean of the prior 

updated after each cycle to match the mean of the item parameter estimates. The third condition 

also updated the mean of the prior, but used a lognormal distribution for the a-prior, a normal 

distribution for the b-prior and a 2-parameter beta distribution for the c-prior. Zeng did not vary 

the spread of the prior distributions; the priors were moderately informative and the sample size 

was also moderate, 500 or 1000. When the item parameters were centered near the center of the 

initial prior density, RMSEs were slightly smaller when the mean of the prior was fixed, 

presumably because estimating the mean added more random error than the systematic error 

caused by the mismatch between prior mean and true parameter. Otherwise, the RMSEs were 

generally somewhat smaller when the means were estimated. Overall, with these moderately 



6 

 

informative priors and moderate sample sizes, it did not make a great difference which priors 

were used.  

 Gao and Chen (2005) also used 4-parameter beta distributions for all three parameters in 

MML estimation and compared these priors to MML without priors. They used three sets of 4-

parameter beta distributions, one set with a mode well-matched to the true item parameters, and 

two other sets centered above or below the mode of the true parameters. The priors were 

moderately informative, with standard deviations of 0.46-0.49 for the a-parameters after 

transforming to the logistic metric (reported as 0.27-0.29 in the normal metric), 0.87-0.90 for the 

b-parameters, and 0.04 for the c-parameters. Priors increased the correlation between true and 

estimated parameters and decreased the RMSE, particularly for the smallest sample (N = 100), 

for which using the wrong prior often yielded lower RMSE than no prior. For larger samples (N 

= 500 or 1000), the benefits of priors were smaller, but they still made a noticeable decrease in 

RMSE. For item sets with mostly moderate discrimination and moderate difficulty, the center of 

the prior made little difference, except for the c-parameters or the smallest sample. For a set of 

items that were easy and not very discriminating, the correlations were smaller and the RMSEs 

were larger than for the other datasets. Estimation for this set of items was better when the prior 

was a better match for the true values, but a mismatched prior still yielded more accurate 

estimates than no prior. 

 Both Zeng (1997) and Gao and Chen (2005) used priors on all parameters. A limited 

small-scale study compared priors on only the c to priors on both a and c for MML (DeMars, 

2019, footnote 5). For a small sample of 400, bias and RMSE for the a-parameters were 

considerably lower with priors on both a and c compared to priors on only c. 
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 In addition to these studies using MML estimation, a study by Sheng (2010) used MCMC 

estimation, more specifically the Gibbs sampler. Sheng's results replicate the findings found in 

Harwell and Janovsky's (1991) and in Gao and Chen's (2005) studies in that larger sample sizes 

are necessary to reduce the effect of the priors on item estimates. However, the recommendations 

differ in the suggested number of examinees. With the 2PL model, Harwell and Janovsky (1991) 

recommended sample sizes greater than 250, whereas with the 3PL model Sheng recommended 

sample sizes greater than 1000, and Gao and Chen noted that for samples of 7500 or more there 

was no difference between priors and no priors for the 3PL model. These recommendations refer 

to the accuracy (bias and/or RMSE) of the item estimates.  

 Sheng also showed that using non-informative or informative but ill-matched priors had 

less impact on the accuracy of estimates for 2-parameter models than 3-parameter models. 

Marcoulides (2018) showed that ill-matched informative priors could have a large impact on 

2PL item parameter estimates using MCMC with a small sample (N = 150) and short test, but the 

bad informative priors were quite far from most of the true item parameters. After transforming 

back to the metric of the a-parameters, 95% of the density fell between 1.13 and 6.53, but the 

mean of the true a-parameters was 0.63. Consequently, a-parameters were positively biased. 

Similarly, the b-parameters, with a prior mean of −2 but a true mean of 0.9, were quite 

negatively biased. Not using priors is not an option for MCMC, but diffuse parameters yielded 

less bias than the poorly matched informative priors and comparable bias to informative priors 

centered closer to the means of the true parameters. Sheng (2010) suggested choosing prior 

distributions such that most of the prior's density is within a plausible range, effectively 

excluding extreme values. Thus, the key message, whether MCMC or MML estimation, is to 

specify a prior that is moderately informative and contains the feasible item parameter values. 
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Such values should be "sufficiently mild to affect most item parameters minimally when the data 

supply information about them, but keep all parameters within a 'reasonable' range" (Mislevy, 

1986, p. 190) and "not too vague and at the same time not too precise" (Swaminathan & Gifford, 

1986, p. 597). 

 Ideally, moderately-informative priors would provide enough information to avoid 

estimation problems while not biasing estimates very much. Particularly when the mean of the 

prior is not well-matched to an item's true parameter, the prior distribution needs to be diffuse 

enough not to seriously bias the estimate, yet informative enough to prevent unrealistic 

estimates. Thus, two key aspects of the prior distribution were of interest in this study: the match 

of the prior to true parameters, and the spread of the prior density. Although two other studies 

(Gao & Chan, 2005; Zeng, 1997) have explored multiple specifications of priors in MML 

estimation of the 3PL model, both used moderately informative priors and did not modify the 

spread. We will examine the impact of different variances, similar to Harwell and Janosky's 

(1991) study of the 2PL model. Further, both 3PL studies changed the match of the prior by 

changing the mean of the prior; moving the mean of the prior further from the mean of the true 

parameters would make the prior a worse match on average, but it would be a better match for a 

few items. In this study, we instead varied the match of the prior by examining the accuracy of 

recovering each item parameter, some well-matched and some not well-matched. In some 

contexts, such as equating or adaptive testing, the items are not viewed as exchangeable and the 

bias and RMSE of each, not just the average across items, is important. 

 The following research questions in the context of estimating 3PL item parameters using 

MML estimation were explored in this study: 
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1) How do priors impact estimation problems, including standard errors that can not be 

computed and unreasonable values for the item parameter estimates?  If these problems 

seldom occur without priors, there may be little need to use priors. However, if these 

problems occur without priors, it is expected that using priors will reduce the frequency 

of problems. 

2) How sensitive are the item parameter estimates to the mean and variance of the prior? 

Clearly, item parameters mismatched to the mean of the prior will be biased toward the 

prior, and the degree of bias will increase as the prior becomes more informative. 

However, the standard error of the estimates will decrease as the prior becomes more 

informative. The purpose was to explore the magnitude of these effects and whether a 

balance can be achieved. 

3) How does sample size impact Research Questions 1 and 2?  More estimation problems 

are expected with small samples, which would indicate priors are needed more with small 

samples than large samples. However, a given prior distribution will be more informative 

for a small sample, because the informativeness of the prior is relative to the information 

in the data. Thus, if the prior is informative enough to mitigate estimation problems, it 

may also be informative enough to create non-negligible bias, making it difficult to find a 

balance. 

Method 

 To answer the research questions, we conducted a simulated study with a hypothetical 

45-item test. Three levels of item discrimination (1.02, 1.53, 2.04) were crossed by five levels of 

item difficulty (−2, −1, 0, 1, 2) by three levels of lower asymptote (.05, .15, .25). The test in this 

study was longer than simulated tests in some other studies (e.g., Harwell & Janosky, 1991, 
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Sheng, 2010), but resemble tests often used in educational assessment settings. The values of the 

item parameters were fixed across replications so that we could assess if or how the difficulty, 

discrimination, and guessing were related to the accuracy of parameter recovery.  

We manipulated sample size, use of priors, variance of prior (i.e., informativeness), and 

the match between the mean of the prior and the true parameter (appropriateness). Sample size 

had two levels (100 and 500). Use of priors had three levels: none, priors on c's, priors on both 

a's and c's. Priors were not applied to the b's because Mislevy (1986) noted they were generally 

better determined by the data than the a's and c's. Harwell and Janosky (1991) noted that priors 

are generally not needed for the b's, Gao and Chen (2005) suggested a non-informative prior 

would generally be acceptable for the b's, and Kim, Cohen, Baker, Subkoviak, and Leonard 

(1994) found that adding a prior to the b's made little difference in RMSE, bias, or correlation 

with true parameters. Lord (1986) also suggested priors for the a's and c's but not for the b's. The 

use of priors only on the c's was prompted by Harwell and Janosky's finding that, with 

moderately large samples (500 or more), priors on the a's made little difference in the 2PL 

model. This result motivated the idea that it might be adequate to apply priors only to the c-

parameters in the 3PL model with moderately large samples. When priors were used (for the 

latter two conditions), the prior for a was normal, mean = 0, and the prior for c was logit-normal, 

mean = −1.73. The variance of the prior for a had three levels (0.3, 1.0, 1.5) as did the variance 

of the prior for the logit of c (0.46, 0.59, 0.72). The match of the prior mean was manipulated 

within each test form by using the same prior mean for all items. For one third of the items, the 

prior mean was too high, for one third it was too low, and for one-third it was well matched. 
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 For each sample size, data were drawn for 500 replications.  was distributed ~N(0,1), 

and was sampled for each replication. Probability of correct response for each response was 

calculated as a function of the item parameters and  and compared to a random draw from 

U[0,1]; if the probability was greater than the random draw, the response was coded correct. The 

simulated data was then used for item parameter estimation in each of the various use of prior 

and variance of prior conditions. The mirt package (Chalmers, 2012) in R was used for model 

estimation.  

Results 

Research Question 1 

Research Question 1 was assessed by counting the proportion of replications in each 

condition which had a) no reported standard errors; b) at least one a-parameter estimate less than 

-2 or greater than 7, c) at least one b-parameter estimate less than -6 or greater than 6, or d) at 

least one c-parameter estimate greater than .7. These problems were noted at the replication 

(within condition) level because this represents estimating data from one test administration. 

With real data, if the analysts noticed problems with any item, it is likely they would then start 

tweaking the estimation, either by discarding items or applying priors to the likelihood.  The 

absence of standard errors in the mirt package indicates that the information matrix during the 

estimation could not be inverted. Implausibly high discrimination, or discrimination estimates 

less than zero when the item-total correlation was positive, indicate an anomaly that most 

analysts would notice and investigate. Similarly, very large or small item difficulties, or very 

large lower asymptotes would clue the analyst that there were estimation problems. The 

information relevant to Research Question 1 is presented in Table 1. Not specifying priors led to 
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the highest frequency of replications that contained at least one issue. When the sample size was 

equal to 500, 60.8% of the replications had at least one problem. This number increased to 100% 

when the sample size was equal to 100. Thus, in small or moderate sample sizes, not specifying 

priors is vital. Applying priors only on the c parameter helped estimation for the larger sample 

size condition (n= 500) but not for the smaller sample size condition as about 60% of replications 

still had at least one of the problems. Specifying priors for both a and c parameters reduced the 

number of estimation issues even further for both sample size conditions. For the larger sample 

size condition, having priors on both a and c parameters resulted in almost no estimation 

problems. However, that was not the case for the smaller sample size condition as the percent of 

replications with problems still ranged from 16.2% to 39.8% even when both priors were 

applied. As the prior on a became less informative (i.e., the variance became larger), more 

estimation problems were observed. As the prior on c became less informative, more estimation 

problems were observed as well; however, the effect was smaller. Interestingly, most of the 

estimation problems in the conditions where priors were applied (either on c or on both a and c) 

were extreme b values. This shows the interrelatedness of the parameter estimates; although the 

true parameters were independent, the estimation errors were not (Mislevy, 1986).  

Research Question 2 

Parameter Estimates 

 To address Research Question 2, bias across 500 replications was calculated. Before 

calculating bias, estimates for an item (within a single replication) were removed if the estimated 

a was negative or > 7, if the estimated b was < −6 or >6, or if the estimated c was > .7. Since a 

substantial proportion of replications were plagued by estimation issues when no priors were 

specified or priors were used only on c in the small sample (Table 1), the bias for those 
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conditions is not presented. To assess the relative importance of the factors, the variance was 

partitioned and 2 was computed. 

 Priors Applied Only on the Pseudo-guessing Parameter (c). Figure 1 presents bias for 

all item parameters when priors only on c were specified and sample size was equal to 500. The 

mean of the prior on c was set to be equal to .15, which leads to the prior being appropriate for 

one-third of the items (items with true c values of .15). For the other two-thirds of the items 

(items with true c values of .05 and .25), the prior was not appropriate and thus bias in opposite 

directions was expected. The bias in a estimates ranged from about -0.16 to .68 (top panel of 

Figure 1), and depended on how well c matched the prior (2 = .51) and b (2 = .26) and their 

interaction (2 = .10). The a-parameter was positively biased when c was below the mean of its 

prior distribution but negatively biased when c was above the mean of its prior distribution. This 

effect was accentuated for difficult items. Items that were easier (difficulties of -2 and -1) had 

almost no bias, whereas items that were more difficult (difficulties of 1 and 2) had noticeable 

bias. To a small extent, the strength of the prior on c had the expected effect as well (2 = .02 

each for c x c-prior-variance and b x c x c-prior-variance). The less informative the prior on c 

was (e.g., variance of the prior on the logit of c increasing from .46 to .59 to 72), the less biased 

the a parameter estimates were (for items with high-b combined with high or low c). The pattern 

was similar for the mean bias in b and c in that the bias was positive when the mean of the c-

prior was too high and negative when the mean of the prior was too low (middle and bottom 

panels of Figure 1). However, the variance of the prior for c made little difference in the bias for 

b or c. Item difficulty parameters were most biased when the prior on c was not matched well, 

especially for the easier items (2 = .03 for main effect of b and .30 for b x c). This contrasted 
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with the bias in discrimination, which was greatest for difficult items. Only when the true 

difficulties were equal to 2 were the estimated b parameters unbiased, regardless of the true c 

values. More discriminating items had bias closer to zero for b (2 = .11 for a x c). 

For c, the main effect of how well the c matched the prior explained 84% of the variance. 

Item pseudo-guessing parameters were the most biased (in expected directions) when the items 

were easy (for b x c, 2 = .12), regardless of the strength of the prior on c. The items with true c 

values of .05 were almost always overestimated to be .15 for the easiest items, which lead to the 

bias being .10. Conversely, the easy items with true c values of .25 were almost always 

underestimated to be .15, which lead to the bias being -.10. Thus, the appropriateness of the prior 

had expected effects, while the strength of the prior did not seem to affect the accuracy of c 

parameters (the main effect and interactions involving the strength of the prior each accounted 

for < 1% of the variance in mean difference).  

Priors Applied on Item Discrimination (a) and the Pseudo-guessing Parameters (c). 

Figure 2 presents the bias for a parameters when priors were applied on a and c parameters and 

sample size was equal to 500 (see Appendix for N = 100). The variance in the bias was 

partitioned with a model that included sample size, but the main effects and interactions with 

sample size will be discussed separately—in this section, trends across both sample sizes will be 

discussed. The prior on c had a mean of .15 and three different variance levels, as before. The 

prior on a had a mean of 1.53 and three different variance levels (i.e., .3, 1, and 1.5). Thus, the 

prior on a was appropriate for one third of the items (items that had true a value of 1.53) and not 

appropriate for the other two thirds of the items (items that had true a values of 1.02 and 2.04).  

When the prior on a was the most informative (i.e., the variance of prior on a equaled .3, top 
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panels of Figure 2), the bias in a parameters was in the expected directions. That is, the most 

discriminating items (i.e., items with true a values of 2.04) were underestimated, whereas the 

least discriminating items (i.e., items with true a values of 1.02) were overestimated. This pattern 

replicated regardless of the informativeness of the prior on c. However, when the prior on a 

parameter was less informative (i.e., the variance of prior on a equaled to 1 or 1.5, middle and 

bottom panel of Figure 2), the above-mentioned pattern changed (2 = .19 for interaction 

between match of a to prior mean and strength of a-prior). Instead, the magnitude of bias 

depended more on the match between the c parameter and its prior mean (2 = .20 for the main 

effect of c and 2 = .03 for interaction between c and variance of a-prior), although within each 

level of c the bias was most negative/least positive for the higher values of a (2 = .38 for the 

main effect of a). That is, items with c below the prior mean (.05) had overestimated a 

parameters, whereas items with levels of c above the prior mean (.25) had underestimated a 

parameters. Moreover, the bias increased as difficulty increased (2 = .04 for both  a x b and b x 

c), especially when the prior on c was informative (i.e., variance of prior on the logit of c equaled 

to .46). This “funnel” effect was most pronounced when the prior for c was informative and 

dissipated as the prior on c became less informative.  

Figure 3 presents the bias for b parameters when priors were applied on a and c parameters 

and sample size was equal to 500 (see Appendix for N = 100). The greatest magnitude of bias 

was observed in conditions where c was not well-matched to the prior mean (2 = .40), 

especially for the easiest and least-discriminating items (2 = .16 for b, .11 for a x b, .03 for a x 
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c, and .04 for b x c).3  The strength of the prior on a also made a difference for the easiest and 

least-discriminating items (2 = .02 for b x prior variance, .03 for a x prior variance, and .06 for 

the 3-way interaction). The strength of the prior on c did not affect the bias in b.  

Figure 4 presents the bias for c parameters when priors were applied on a and c parameters 

and sample size was equal to 500 (see Appendix for N = 100). The same pattern of bias 

replicated with c parameters as before with priors only on c. That is, the bias depended on the 

item’s match to the mean of the prior of the c parameter (2 = .84). Easy items (difficulties of -2 

and -1) that had true c below the prior mean were always overestimated, whereas easy items that 

had true c above the prior mean were always underestimated (2 = .09 for b x c). Thus, overall, 

the results confirm our hypothesis about the appropriateness of the mean of the priors. However, 

the effect of informativeness of the prior often depended on the item difficulties. 

Standard Error Estimates 

 The precision of parameter estimates was evaluated by computing empirical standard 

error across the 500 replications (after discarding items with extreme values, as described for 

bias). Ideally, parameter estimates would not be biased and they would have small empirical 

standard error. Generally, the RMSE (the total error) followed the same pattern as the standard 

error; exceptions where the RMSE was influenced more by the bias will be noted. Figures with 

RMSE are available in the appendix. Before partitioning the variance, the standard error was log-

transformed to reduce the skew. 

 
3 This interaction appears to be due to the value of a, not the match of the a to the prior mean; the highest a's are not 

well-matched, but they have the smallest magnitude of bias for the b's. 
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 Priors Applied Only on the Pseudo-guessing Parameter (c). Figure 5 presents 

empirical standard errors for all item parameters when priors only on c were specified and 

sample size was equal to 500; as was done for bias, the standard error for the smaller sample was 

were not reported for this condition because most replications had one or more estimation 

problems. The standard errors for item discrimination or item difficulty remained approximately 

the same regardless of the strength of the prior on c (2 ≤ .01 for all interactions involving the 

variance of the prior). The only parameter that was affected by the variance of the prior on c was 

the pseudo-guessing parameter (bottom panel in Figure 5) (2 = .15 for the main effect and .05 

for the interaction between b and strength of c-prior). The less informative the prior on c was, the 

higher were the standard errors of c. However, the difference in magnitude between the standard 

errors from the least informative condition (i.e., where the variance of prior on c was equal to 

.72) and the most informative condition (i.e., where the variance of prior on c was equal to .46) 

was likely negligible. When this effect was combined with no effect of the strength of the prior 

on bias, the total effect of the prior variance on RMSE (Appendix) was very small. Larger 

standard errors were observed for items with higher true levels of pseudo-guessing parameter (, 

2 due to c = .03 for SE of a, .17 for SE of b, and .11 for SE of c), particularly for the hardest 

items (2 = .03, .02, .12 for the b x c interaction when the outcome was SE of a, SE of b, SE of c, 

respectively). In the case of the SE, in contrast to the bias, this effect was seemly not due to the 

match of the c to the prior mean but literally to the value of c, because low values of c (poor 

match) had the lowest SE. 

Priors Applied on Item Discrimination (a) and the Pseudo-guessing Parameters (c). 

 Figure 6 presents the standard errors for a parameter when priors were applied on a and c 
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parameters and sample size was equal to 500 (N =100 available in the Appendix). The variance 

in the log of SE was partitioned with a model that included sample size, but the main effects and 

interactions with sample size will be discussed separately—in this section, trends across both 

sample sizes will be discussed. As expected, the smallest standard errors were observed when the 

prior on a was the most informative (i.e., the variance of prior on a was equal to .3) (2 = .74). 

There were interactions between the strength of the prior on a and the level of difficulty (2 = 

.05) and discrimination (2 = .03); the latter interaction appears to be due to the value of a, not 

the match of I to the mean of the prior. Varying the strength of the prior on c did not seem to 

affect the standard errors of item discrimination. 

Figure 7 presents the standard errors for b parameter when priors were applied on a and c 

parameters and sample size was equal to 500 (N =100 available in the Appendix). Varying the 

information in the prior on c did not seem to affect the standard errors of b. However, varying the 

strength of the prior on a had an effect (2 = .03). The highest standard errors for item difficulty 

were observed for the conditions in which the prior on a was the least informative (i.e., variance 

of prior on a equal to 1.5). Lastly, items that had the highest difficulty (2 = .34) or highest level 

of c parameter, resulted in the highest standard errors for the b parameters. 

Lastly, Figure 8 presents the standard errors for the c parameter when priors were applied 

on a and c parameters and sample size was equal to 500 (N =100 available in the Appendix). As 

expected, the more informative the prior on c was, the lower were the standard errors for the c 

parameter (2 = .14). Varying the information in the prior on a did not affect results, aside from a 

small interaction (2 = .02) between the value of a and the variance in the prior for a. The 

estimation of items with highest true values of c resulted in highest estimated c standard errors.  
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Research Question 3 

 To address Research Question 3, we compared the bias across the two sample size 

conditions. Because most of the replications for N = 100 had estimation issues if there was no 

prior distribution on the a's, only the conditions with priors on both a's and c's were considered. 

When the priors were applied to both a and c parameters, sample size had little impact on bias. 

For the bias in the a parameter, the interaction between sample size and the match of the a to the 

prior mean explained 4% of the variance; when a was poorly matched to the mean of the prior 

and thus biased, the absolute value of the bias was greater for the smaller sample. The same 

pattern was observed for N = 100 and N = 500, however in the n = 100 condition it is clearer, 

because a prior with a given variance is relatively more informative with a smaller sample. 

 Similar conclusions can be drawn about the impact of sample size on the bias on the b 

parameter when priors on both a and c parameter were specified. The interaction between sample 

size and b explained 5% of the variance, and the interaction between sample size, b and the 

variance of the prior for a explained 2% of the variance —essentially, in conditions where the 

bias was further from zero, the absolute value of the bias was greater for the smaller sample. 

Thus, the difference between bias on b parameter across the sample size conditions is the 

magnitude. When the prior on a was most informative (i.e., the variance of prior on a equaled to 

.3), the range of mean bias in b for all smaller sample size conditions was almost twice as wide 

as the range of mean bias in b for all larger sample size conditions. However, when the prior on a 

was the least informative (the variance of prior on a equaled to 1.5), the range of mean bias was 

approximately the same. Thus, the effect of sample size on mean bias in b was somewhat 

moderated by the informativeness of the prior on a. 
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 Lastly, different sample size conditions did not affect the bias in c when both priors on a 

and c were applied. Not only the patterns of bias were the same (primarily dictated by the true 

levels of c), but also the magnitude of bias was the same across the sample size conditions.  

 In general, one would expect SEs to be larger with smaller samples, but a given prior is 

also relatively more informative for smaller sample sizes, reducing the variance. No priors were 

applied to the b's, so the SEs for the b's were substantially higher with the small sample (2 = 

.41). This main effect was smaller for the a's (2 = .03), and there was an interaction between 

sample size and the strength of the prior for a (2 = .07); the decrease in the SE of it as the 

variance in the prior on a decreased was somewhat greater for smaller N. For the SE of c, again 

the main effect of sample size was small (2 = .02), with a small interaction between sample size 

and item difficulty (2 = .05). 

Summary and Discussion 

 Table 2 and Table 3 summarize the effects due to either the strength of the prior or the 

match of the item parameter to the mean. In short, the mean of the prior impacted the bias, but 

the variance of the prior impacted the standard error. In Figure 1 and Figure 4, it is clear that 

mis-specifying the prior mean leads to sizeable bias in the c-parameter for the easy items. Unless 

much larger samples are available, there is almost no information in the data to estimate the c-

parameter. This bias in the c-parameter leads to predictable bias in the b-parameter for easy 

items. There is no easy way to avoid this issue; fixing the c-parameter to zero (using a 2PL 

model) would yield greater bias for items with non-zero c-parameters. The specification of the 

mean of the prior for the a-parameter impacted the bias in the a-parameter when the variance of 
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the a-parameter was small; otherwise, the difference between the bias for a-parameters above 

and below the prior mean was relatively small. 

 The standard errors of the a-parameters noticeably increased as the variance of the a-

parameter increased. The variance of the c-parameter had a less sizeable impact on standard 

errors; perhaps the effect would have been greater if a wider range of variances had been 

included. 

 One limitation in this study was that the match of the parameter to the mean of the prior 

was manipulated by varying the item parameters. When the bias was similar in magnitude but 

with opposite signs for items above vs. below the mean of the prior, it could reasonably be 

inferred that the bias was due to how well the item parameter matched the mean. However, the 

SE (and in some cases the bias) appeared to depend on the value of the parameter, not its 

matched to the prior. This could be inferred when, for example, instead of similar SE for 

parameter values above and below the mean, the lowest (or highest) parameters had the lowest 

SE, followed by middle values of SE for the values best matched to the mean, followed by 

highest SE for the highest (or lowest) parameter values. It might have been clearer to keep 

constant values of the a and c parameters across items while varying the mean of the prior for 

different items. 

 Overall, these findings reinforce the earlier suggestions that it makes little difference 

what priors are specified, as long as they are not too informative. For the prior of the a-

parameter, variances of 1.0 or 1.5 seem to give similar levels of bias for these sample sizes. For 

the prior of the c-parameter, the examined variances were perhaps too strong for the easiest 

items. However, we do not recommend weaker priors because, with so little information in the 

data for easy items, weaker priors for the c-parameter would likely lead to estimation problems. 
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Tables 

Table 1 

Proportion of iterations in which at least one item estimate was unreasonable in all conditions for the two sample size conditions 

  N= 500 N = 100 

Var of a prior Var of logit-c prior Extreme a Extreme b Extreme c No SEs At least one problem Extreme a Extreme b Extreme c No SEs At least one problem 

No prior No prior 0.266 0.004 0.398 0.130 0.608 1.000 0.288 0.902 0.364 1.000 

No prior 0.46 0.142 0.048 0 0 0.184 0.944 0.520 0 0.036 0.980 

No prior 0.59 0.166 0.044 0 0 0.204 0.952 0.514 0 0.040 0.984 

No prior 0.72 0.170 0.036 0 0.004 0.204 0.964 0.496 0 0.054 0.986 

0.3 0.46 0 0 0 0 0 0 0.162 0 0 0.162 

0.3 0.59 0 0 0 0 0 0 0.188 0 0.004 0.188 

0.3 0.72 0 0 0 0 0 0 0.190 0 0.002 0.190 

1.0 0.46 0 0.006 0 0.004 0.008 0 0.274 0 0.002 0.274 

1.0 0.59 0 0.004 0 0 0.004 0 0.218 0 0 0.218 

1.0 0.72 0 0 0 0 0 0 0.210 0 0 0.210 

1.5 0.46 0 0.012 0 0.004 0.012 0 0.398 0 0 0.398 

1.5 0.59 0 0.012 0 0.004 0.012 0 0.348 0 0 0.348 

1.5 0.72 0 0.006 0 0.002 0.006 0 0.288 0 0 0.288 

Note. Extreme item estimates were defined as a  > 7 or < -2 , b  > 6 & < -6, c > .7. 
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Table 2 

Summary of Effects of Prior Specification on Bias 

Priors on c's (N = 500 only) 2 

Bias for a-parameter  

b x match of c to prior mean .10 

match of c to prior mean x variance of prior for c .02 

b x match of c to prior mean x variance of prior for c .02 

Bias for b-parameter  

match of c to prior mean .53 

a x match of c to prior mean .11 

b x match of c to prior mean .30 

Bias for c-parameter  

match of c to prior mean .84 

a x match of c to prior mean .02 

b x match of c to prior mean .12 

Priors on a's and c's  

Bias for a-parameter  

match of a to prior mean .38 

match of c to prior mean .20 

match of a x b .04 

match of a x N .04 

match of a x variance of prior for a .19 

match of a x match of c .03 

Bias for b-parameter  

match of c to prior mean .40 

match of a x b .11 

match of a x match of c .03 

match of c x b .04 

match of a x variance of prior for a .03 

b x variance of prior for a .02 
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N x b x variance of prior for a .02 

match of a x b x variance of prior for a .06 

Bias for c-parameter  

match of c to prior mean .84 

match of c x b .09 

Note: Only factors which accounted for at least 2% of the variance are included. 
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Table 3 

Summary of Effects of Prior Specification on SE 

Priors on c's (N = 500 only) 2 

SE for c-parameter  

variance of prior for c .15 

b x variance of prior for c .05 

Priors on a's and c's  

SE for a-parameter  

variance of prior for a .74 

N x variance of prior for a .07 

a x variance of prior for a .03 

b x variance of prior for a .05 

SE for b-parameter  

variance of prior for a .03 

SE for c-parameter  

variance of prior for c .14 

b x variance of prior for c .03 

a x variance of prior for a .02 

Note: Only factors which accounted for at least 2% of the variance are included. 
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