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Abstract 

 

Over the past decade, educational policy trends have shifted to a focus on examining 

students’ growth from kindergarten through twelfth grade (K-12). One way states can 

track students’ growth is with a vertical scale. Presently, every state that uses a vertical 

scale bases the scale on a unidimensional IRT model. These models make a strong but 

implausible assumption that a single construct is measured, in the same way, across 

grades.  Additionally, research has found that variations of psychometric methods within 

the same model can result in different vertical scales. The purpose of this study was to 

examine the impact of three IRT models (unidimensional model, U3PL; bifactor model 

with grade specific subfactors, BG-M3PL; and a bifactor model with content specific 

subfactors, BC-M3PL); three calibration methods (separate, hybrid, and concurrent), and 

two scoring methods (EAP pattern and EAP summed scoring; EAPSS) on the resulting 

vertical scales. Empirical data based on a states’ assessment program were used to create 

vertical scales for Mathematics and Reading from Grades 3-8. Several important results 

were found. First, the U3PL model always resulted in the worst model-data fit. The BC-

M3PL fit the data best in Mathematics and the BG-M3PL fit the data best in Reading. 

Second, calibration methods led to minor differences in the resulting vertical scale. Third, 

examinee proficiency estimates based on the primary factor for each model were 

generally highly correlated (.97+) across all conditions. Fourth, meaningful classification 

differences were observed across models, calibration methods, and scoring methods. 

Overall, I concluded that none of the models were viable for developing operational 

vertical scales. Multidimensional models are promising for addressing the current 

limitations of unidimensional models for vertical scaling but more research is needed to 
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identify the correct model specification within and across grades. Implications for these 

results are discussed within the context of research, operational practice, and educational 

policy. 
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CHAPTER 1 

 

Introduction 

“What can it mean to say that one [vertical] scaling method is better than another? The 

only answer that makes any sense is to say that it means that one method gives a more 

accurate representation of the attribute values than the other.” (Lumsden, 1976, p. 272) 

*    *    * 

Over the past decade, educational policy trends in kindergarten through twelfth 

grade (K-12) assessment have shifted from a focus on yearly snapshot assessments of 

examinees to a focus on assessing examinees’ development across the K-12 curriculum. 

This trend began with the federal No Child Left Behind Act of 2001 (NCLB, Public Law 

107-110), which required states to test examinees at certain grades across K-12. Part of 

the purpose of the NCLB was to implement an accountability framework where schools 

had to demonstrate that the percentage of examinees who met a defined proficiency 

standard at a given year was greater than the percentage of examinees who met the 

standard the previous year. States’ policy makers’ concern with the NCLB framework 

was that schools were not recognized for improving examinee learning unless an 

examinee crossed a proficiency standard defined by a cut-score on a standardized test.  

For example, under the NCLB framework a school could have a positive impact on 

examinee learning but fail to meet predetermined adequate yearly progress (AYP) 

percentages and could subsequently be classified as “In Need of Improvement”.  This 

formal classification and increasingly severe classifications could lead to corrective 

actions against the schools such as replacing school staff, restructuring the school 

organizationally, or closing the school. This concern eventually led to the U.S. 
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Department of Education’s (USDE) growth model pilot program in 2005 (Spellings, 

2005). This program focused on schools setting proficiency targets for low-performing 

examinees and tracking their progress toward these targets. Under the growth pilot 

program, schools were recognized for increasing examinee learning even if the examinee 

did not meet a proficiency standard.  

More recently, President Obama’s Administration released its blueprint for 

reforming the Elementary and Secondary Education Act (ESEA; currently under 

reauthorization as the NCLB; USDE, 2010) which has continued the trend of focusing on 

examinee development across K-12: “instead of a single snapshot, we will recognize 

[examinees’] progress and growth” (President Obama, USDE, 2010, p. 1). At the same 

time, the Common Core State Standards (CCSS) initiative has focused on standards-

based education reform via new Mathematics and English Language Arts curriculum that 

are articulated across grades. In addition, the USDE has made funding available to states 

through the Race to the Top program (RTTT) to support the establishment of assessment 

systems that track students’ progress across these new curricula (USDE, 2009). The 

CCSS initiative and RTTT led to the creation of state assessment consortiums (e.g., 

Smarter Balanced Assessment Consortia, SBAC; Partnership for Assessment of 

Readiness for College and Careers, PARCC; and others) that have developed and begun 

implementing new assessment processes that assess students at multiple time points 

within- and across grades to facilitate the evaluation of student development from K-12.   

These key policy initiatives have ultimately led states to implement methods for 

measuring examinee growth. One obstacle to measuring examinee growth in K-12 is that 

different tests are administered to examinees at each grade level. Because of this, it is not 
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possible to compare an examinee’s score on a Grade 5 (G5) test directly to his or her 

score on a Grade 4 (G4) test. Prior to making these comparisons, the tests have to be 

linked and tests scores have to be transformed to a common scale. This common scale is 

typically called a developmental or vertical scale. After tests across grades are placed 

onto a vertical scale, researchers, educators, and policy makers can then examine and 

compare examinees’ growth across grades (Kolen & Brennan, 2004).  

Although appealing, vertical scaling is a complex and challenging process 

because tests that measure slightly different constructs across grades in a given subject 

area are placed onto the same metric. In order to make meaningful comparisons on that 

metric, the construct must be measured in a stable and consistent way across grades. 

When the construct or measure varies across grades, multidimensionality may become 

present and the current methods used for vertical scaling are no longer appropriate. In this 

study, I examined psychometric methods for developing vertical scales that attempt to 

account for multidimensionality. Specifically, I compared unidimensional and 

multidimensional bifactor IRT methods for developing vertical scales in the context of a 

state’s G3-G8 Mathematics and Reading testing program. 

Vertical Scales 

Vertical scaling is a process used to place examinee scores, from different tests 

that measure the same construct (e.g., Mathematics) at different grades, onto the same 

scale (Tong & Kolen, 2007). Reckase (2009a) provided a useful analogy between 

physical scales and measurement scales, which I extend to vertical scales. 

 There are two common scales used for temperature, Fahrenheit and Celsius; each 

can be thought of as a type of vertical scale. These scales have three noteworthy 
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properties. First, both scales have an arbitrary numerical origin, which each scale’s 

developer set. For example, the scientist Daniel Fahrenheit set the origin of the 

Fahrenheit scale to the coldest temperature he could achieve in his lab, which was based 

on an ice, water, and salt mixture. Whereas the astronomer, Anders Celsius set the origin 

of the Celsius scale at the point at which water freezes. Second, they are both equal 

interval scales, meaning a change in one unit anywhere on the scale is comparable and 

reflects the same magnitude of change in actual temperature. Third, each scale spans the 

continuum of a single construct (i.e., temperature), meaning the same scale can be used to 

measure low temperatures (water freezing) or high temperatures (water boiling). The 

properties of these scales make them useful for evaluating how temperature changes. 

Similarly, the goal of vertical scaling is to develop a score scale with the same 

three properties. Ideally, vertical scales should have the following three properties: 1) an 

established, although arbitrary, origin (e.g., the mean of examinees’ Mathematics scores 

in Grade 5); 2) equal interval scales, meaning a change in one unit anywhere on the scale 

is comparable and reflects the same magnitude of change in the construct measured (i.e., 

a one-unit change in scores at lower grades reflects the same amount of change in actual 

ability as a one-unit change in scores at higher grades); and 3) spans the desired 

continuum of a single construct (e.g., G3 through G8 Mathematics).  

When a vertical scale meets these properties, it becomes possible to make 

meaningful inferences about examinee development across a K-12 curriculum. The 

ability to evaluate examinees’ educational development on a single scale makes the 

process of vertical scaling appealing to policy makers, educators, parents, and examinees. 

However, the process for developing meaningful vertical scales in education is much 
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more difficult and complex than developing a scale for temperature. The extent to which 

the ideal properties of vertical scales are compromised can hinder the ability to make 

meaningful inferences about examinee development.  

Vertical Scales and Dimensionality 

One important consideration for developing a vertical scale is the assumption of 

unidimensionality. Unidimensionality implies that different tests across grades measure a 

single underlying construct. Presently, at least 23 states use a vertical scale based on a 

unidimensional model to provide examinees with scores for a given subject area 

(Education Week, 2010; Reckase, 2010). The extent that these scores are accurate and/or 

meaningful for making comparisons of examinees on the vertical scale depends on 

whether the construct is unidimensional within and across grades. When a 

unidimensional model is applied to data that are multidimensional then the resulting 

scores on the scale become a composite of different dimensions (Reckase, 1979) and no 

longer accurately reflect the construct of interest.  

The misapplication of a unidimensional model may be problematic for a single 

test and is further exacerbated when multiple tests are linked across grades when 

developing a vertical scale. The problem arises because even within the same subject area 

(e.g., Mathematics) test content is expected to shift from grade-to-grade. This shift, 

referred to as construct shift (Martineau, 2004), results from the changing emphasis of 

content in the curriculum and is often reflected in the percentage of test items covering 

different content areas in a test blueprint. For example, in lower grades (e.g., G3) a state’s 

Mathematics test may emphasize number sense and operations and in higher grades (e.g., 

G8) the state’s Mathematics test may emphasize algebraic reasoning and concepts. 
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However, scores on a Mathematics vertical scale would be interpreted in terms of general 

mathematics ability even though scores on the lower and higher ends of the scale may not 

actually be comparable. 

 Meeting the assumption of unidimensionality in practice may depend partly on 

the subject area (Reckase & Martineau, 2004; Wang & Jiao, 2009; Weeks, 2011). Wang 

and Jiao (2009) investigated the Stanford Reading Comprehension Tests, which span G3-

G10, using a multigroup confirmatory factor analysis approach. They found that the 

Reading tests were unidimensional within and across grades. In contrast, Reckase and 

Martineau (2004) demonstrated that when modeling science achievement data from G3-

G7, using a multidimensional IRT model, examinee growth was not uniform across a 

single dimension. Rather, the growth trend changed depending on the dimension 

examined. Similarly, Weeks (2011) explored the dimensionality of the Colorado 

Examinee Mathematics Assessment from G5-G9 and using an exploratory factor analysis 

approach he identified three to four factors at each grade level. Other researchers have 

also reached similar conclusions regarding the multidimensionality of Mathematics 

assessments (Kupermintz, Ennis, Hamilton, Talbert, & Snow, 1995; Kupermintz & 

Snow, 1997).  

These findings are not surprising considering how large-scale tests are developed. 

In K-12 assessments, states define a subject area in terms of multiple content standards at 

each grade level. Items are then selected to map onto each of these content standards. 

Across grades, the content standards and percentage of the items that map onto them will 

usually vary. This variation reflects the changing emphasis of different content standards 

across the curriculum. For example, concepts emphasized at higher grades may not be 
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emphasized at lower grades and vice versa. This may have partially been the result of the 

emphasis of NCLB, which was on providing summative assessments of examinees at 

individual grade-levels with little consideration given to understanding examinee growth 

on the curriculum across grades.  

To minimize the impact of curriculum and test variation across grades, states may 

go through a process of vertically aligning their content standards and curriculum so 

there is systematic overlap of content across grades and an improved balance in how 

concepts are taught and reinforced across grades (Tomkowicz, Zhan, & Yen, 2010). 

Vertically aligning content standards, curriculums and test content is important for 

developing meaningful vertical scales; however, the process is not specifically intended 

to prevent multidimensionality. Additionally, the process of developing items for each 

grade is not conducted with a vertical scale in mind. Items are typically developed for a 

specific grade and content area without consideration of how the item might function 

when used in other grades. In K-12 education, it may be more realistic to expect that the 

assumption of unidimensionality will not be met, especially when a vertical scale spans 

several grades (e.g., G3-G8).  

Vertical Scaling and Item Response Theory 

In the past two decades, Item Response Theory (IRT) has become the 

predominant approach to vertical scaling. Presently, all state K-12 testing programs use 

IRT methods to develop vertical scales (Reckase, 2010). Traditional IRT methods model 

examinee responses as a function of a single, unidimensional construct or trait. As 

previously discussed, the assumption of unidimensionality cannot be expected to hold in 

the context of vertical scaling. Due to the potential inadequacies of using unidimensional 
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IRT models for developing vertical scales, researchers have recently begun investigating 

the use of multidimensional IRT (MIRT) models for vertical scaling (e.g., Li & Lissitz, 

2012; Reckase & Martineau, 2004; Weeks, 2011). 

In the MIRT framework, multiple dimensions or factors are explicitly modeled to 

develop vertical scales that more accurately represent a construct. There are at least two 

general approaches for using MIRT models in vertical scaling: correlated-factor models 

or bifactor models. Using the first approach, a model would be specified so that multiple 

vertical scales are developed for a subject area across grades using a correlated MIRT 

model (cf. Weeks, 2011). For example, if a Mathematics curriculum had five content 

standards across grades (e.g., number sense and operations, algebraic reasoning, etc.) a 

dimension could be modeled for each content area. Because each content area is 

consistent across grades, theoretically, an individual vertical scale could be developed for 

each area. The multiple vertical scales would make it possible to evaluate student growth, 

across grades, at the content level. Although appealing, there are at least two issues with 

this approach. First, content domains are likely to be highly correlated because tests are 

typically constructed to be unidimensional. This may make it difficult to estimate distinct 

scales. Second, a substantial number of vertical anchor items (potentially nine or more 

per dimension; Weeks, 2011) would be needed to develop each dimension’s vertical 

scale. This number of vertical anchor items may not be pragmatic for K-12 testing where 

the total number of items on a single test is typically between 40 and 50 items.  

Alternatively, a bifactor MIRT model could be used to develop a single, more 

pure measure of a construct (Li & Lissitz, 2012). The bifactor model is a special case of 

the MIRT model where item responses are a function of a general factor and no more 
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than one secondary factor. All items load onto the general factor and all factors are 

orthogonal to each other (Gibbons & Hedeker, 1992). Although bifactor models have 

never been used for developing operational vertical scales, they have been used in other 

areas of measurement. For example, bifactor models have been used to model testlets 

(e.g., a set of items that are related to a common reading passage; DeMars, 2006) and to 

model wording effects (e.g., negatively worded items on a personality measure; 

DiStefano & Motl, 2009). Typically, the secondary factors are believed to capture 

variance unrelated to the primary construct of interest. When thought of this way, the 

bifactor model theoretically produces a more accurate estimate of proficiency on the 

general factor. Thus, the bifactor model can be conceptually thought of as a step between 

the relatively simple unidimensional IRT model and the more complex correlated 

multidimensional IRT model. 

Although the bifactor model is appealing for vertical scaling, there has only been 

one investigation of this model in the literature (Li & Lissitz, 2012). Additionally, there 

are other considerations that have to be made in the IRT framework when developing a 

vertical scale, including specifying the structural (e.g., unidimensional vs. 

multidimensional) and measurement components of the model (e.g., 1PL vs. 3PL), 

choosing a calibration method (e.g., separate vs. concurrent), and choosing the estimation 

methods for the item parameters and examinee proficiency estimates (e.g., MLE vs. 

EAP). Each of these choices can potentially influence the characterization of growth on 

the vertical scale (Briggs & Weeks, 2009; Tong & Kolen, 2007). The characterization of 

growth refers to different properties of the proficiency distributions once they are placed 

onto the vertical scale. The characteristics of interest typically include the mean and the 
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variance/standard deviation of the examinee distribution as each grade, and the 

standardized difference between adjacent grades’ distributions (analogous to a 

standardized effect size such as Cohen’s d). 

Purpose 

In the vertical scaling literature, there are no standardized practices for developing 

a vertical scale and research has demonstrated that various decisions can affect the 

properties of the resulting vertical scale (Briggs & Weeks, 2009; Camili, Yamamoto, & 

Wang, 1993; Tong & Kolen, 2007). Thus, when investigating IRT methods for vertical 

scaling it is important to evaluate how various combinations of decisions (e.g., model 

choice, calibration method, proficiency estimator, etc.) can affect the characterization of 

student growth on the resulting vertical scale. For example, is within-grade variability 

dependent on the IRT model used? If so, does within-grade variability increase, decrease, 

or remain constant across grades? Does student growth look different depending on the 

calibration method used? Which model best fits the data and should the best fitting model 

be used to establish the scale?   

Unfortunately, the complexities and resources involved in developing vertical 

scales in practice have limited applied research in this area. This is particularly alarming 

because more and more states are adopting vertical scales for their K-12 testing programs 

and there is little comprehensive research to guide the development of vertical scales 

under the assumption of unidimensionality, or worse yet, when unintended 

multidimensionality is present. Thus, the overall purpose of this study was to conduct a 

comprehensive investigation of the bifactor IRT model, in comparison to the 
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unidimensional IRT model, for developing vertical scales for G3-G8 Mathematics and 

Reading in the context of K-12 testing.   

Overview 

This dissertation is divided into five chapters. In Chapter 1 the foundational 

concepts of vertical scaling were introduced, the assumption of unidimensionality was 

discussed, and two methods for modeling multidimensionality (i.e., correlated MIRT and 

bifactor models) when developing vertical scales were briefly reviewed. 

 In Chapter 2, the process for developing vertical scales using unidimensional and 

multidimensional IRT is discussed with consideration of how different decisions made 

during the vertical scaling process can influence the characterization of growth on the 

resulting vertical scale. The chapter concludes with a discussion of using bifactor MIRT 

models for vertical scaling, followed by the formal research questions that will be 

investigated in this dissertation.  

In Chapter 3, I describe the data used to develop vertical scales, detail the 

methodology followed, and define the evaluation criteria used to examine the vertical 

scales. 

In Chapter 4, I provide results of vertical scales developed based on data from a 

state’s Mathematics and Reading G3-G8 testing program. These vertical scales were 

created under a variety of different research conditions as described in Chapter 3. 

In Chapter 5, I evaluate and discuss the results in context of best practice for 

developing vertical scales with consideration of the operational feasibility of the methods 

used in this study. I also discuss limitations of the current research and provide 

recommendations for future research in vertical scaling. The chapter concludes with a 
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brief discussion of the interplay between psychometrics, operational testing, and 

educational policy and how each must be considered when implementing new 

methodology in practice.  
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CHAPTER 2 

Review of the Literature 

“When psychometric innovations are implemented in high‐stakes testing, it is incumbent 

upon the testing community to demonstrate before the implementation that the 

measurement properties of the system, particularly the equivalence and comparability of 

scores, are sufficient for their intended use.” (Yen, 2009, p. 2) 

*    *    * 

Overview 

In this chapter, I discuss the process for developing vertical scales with a focus on 

IRT methods for vertical scaling. The chapter begins with an overview of the non-

technical decisions that must be made when developing vertical scales (e.g., defining a 

framework of growth), followed by a discussion of the technical decisions (e.g., selecting 

a vertical scaling model), and concludes with a discussion of possible ways to use 

multidimensional IRT methods to account for multidimensionality in vertical scaling.  

Vertical Scaling: Defining Growth 

Similar to how a researcher would apply and evaluate a measurement model 

based on a theoretical framework, vertical scales are developed within a framework of 

growth. In the context of K-12 education, a framework for growth is contingent on 

defining how examinees are expected to develop over the curriculum. This definition 

helps guide the process for developing and evaluating vertical scales. Kolen and Brennan 

(2004, p. 376) considered the definition of growth to be a “crucial component” in 

developing a vertical scale and defined two general types of growth: the domain 

definition and the grade-to-grade definition.    
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Domain definition of growth. The domain definition of growth considers how 

examinees develop over the entire content domain (Kolen & Brennan, 2004). For 

example, a domain definition of growth for Vocabulary would be defined in terms of how 

examinees develop in Vocabulary across all grades. At lower grades examinees may 

learn simple, one-syllable words (e.g., “ball”), but may move onto more complex 

compound words at higher grades (e.g., “basketball”). The domain definition of growth 

aligns with subject areas where the same content is typically taught and reinforced across 

grades, but the subject becomes more difficult. This definition of growth is less common 

in K-12 testing where subject areas are often curriculum dependent and differ in content 

across grades. The domain definition of growth aligns with a scaling test design 

(described in the next section). 

Grade-to-grade definition of growth. The grade-to-grade definition of growth 

defines development over the content domain in terms of examinee growth at each grade 

(Kolen & Brennan, 2004). Using this definition, the curriculum at each grade may be 

related to a broader content domain, but aspects of the domain may be emphasized 

differently at each grade level. For example, in Mathematics, number sense and 

operations may be emphasized at G3 while algebraic reasoning may be emphasized at 

G8. For pragmatic reasons, testing programs may define growth in terms of grade-to-

grade growth because it aligns with how curricula are developed. The grade-to-grade 

definition aligns with the common item design (described in the next section).  

Vertical Scaling: Designs 

Scaling test design. In the scaling test design, a scaling test is developed that 

covers content across all grades (see Figure 1). For example, a Vocabulary scaling test 
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would include Vocabulary items that span the G3-G8 curriculum. Examinees in each 

grade are administered the same scaling test in addition to a grade specific test. The 

scaling test is used to construct the vertical scale and the grade specific tests are linked to 

that scale. The scaling test could be developed internally by the state or an external test 

could be used. The quality of the results when basing the scale on an external test may 

depend on the match of the content of the test to the curriculum (Reckase, 2010).  

The primary disadvantages of the scaling test design are the resources and time it 

takes to develop and administer the tests. In addition, examinees who receive questions 

far above their ability may not be motivated to fully attempt the items (e.g., a third grade 

examinee responding to grade 8 items). However, this design may more realistically 

capture a K-12 program’s ideal conceptualization of examinee growth because the 

scaling test is developed to represent the specified domain across all grades. Additionally, 

all examinees are administered items that span the entire vertical scale rather than only 

part of the scale, which allows for a direct ordering of examinees on the content domain 

(Kolen & Brennan, 2004).  

Common item design. In the common item design, a grade specific test is 

administered to examinees at each grade (see Figure 2). Adjacent grades (e.g., G3/G4, 

G4/G5) contain a set of identical vertical anchor items that cover the content domain 

between grades. Each grade level test contains a set of lower-grade, on-grade, and above-

grade vertical anchor items. The anchor items are ideally of appropriate difficulty for 

each grade (Lu, 2010). In practice, however, above grade items may be very difficult for 

the lower grade examinees. 
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Vertical anchor items can be placed at the end of the lower grade test and at the 

beginning of the higher-grade test if test developers are concerned with how the difficulty 

of the items may affect examinee performance on other areas of the test. The items can 

also be spread throughout the test when the impact of item difficulty is not a concern. 

Examinee performance on the vertical anchor items is used to establish the grade-to-

grade growth. Because all grades are linked together via vertical anchor items between 

pairs of adjacent grades, it is possible to scale all grade levels onto the metric of any one 

grade. Researchers have suggested that the number of vertical anchor items used should 

be at least 20% of the total test length (Kolen & Brennan, 2004; Reckase, 2010). This is 

the same percentage of items typically cited for horizontal equating (Angoff, 1984; Kolen 

& Brennan, 2004). However, more than 20% may be needed to ensure precise linking 

(McBride & Wise, 2001).  

At least two issues may arise with the common item design. First, when items are 

placed at different positions on a test they may behave in unintended ways (contextual 

effects) that could lead to systematic errors in linking (Kolen & Brennan, 2004). In 

practice, it would be difficult to identify or manage the impact of contextual effects and 

test developers may prefer to hold vertical anchor items positions static across grades to 

limit these effects. 

Second, there is an implicit assumption that examinees at the higher-grade level 

will perform better on the vertical anchor items than examinees at the lower level. This is 

assumed because examinees at the higher-grade level are expected to have grown on the 

content domain (Johnson & Yi, 2011). However, examinees at higher grades will not 

necessarily perform better on lower grade items. This situation can occur when 
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examinees at the lower grade level are more recently exposed to the content covered by 

an item than examinees at higher grades or when there is not strong curriculum overlap 

among adjacent grades. If examinees at the lower grade level perform better than 

examinees at the higher-grade level, across a majority of the vertical linking items, then 

the resulting vertical scale may not accurately reflect examinees progression across the 

domain.  

Johnson and Yi (2011) demonstrated that even when examinees at the lower grade 

levels perform better on a large number of vertical anchors items the resulting vertical 

scale could still characterize positive growth. However, results from their study are 

limited because they did not compare vertical scales based on items that were easier at 

the lower grade to vertical scales based on items that were easier at the higher grade. 

Ultimately, the vertical anchor items used in the common item design will have a 

large impact on how growth is characterized on the vertical scale because the growth on 

the scale is tied to examinees’ performance on these items.  

Vertical Scaling: Methods and Models 

Non-IRT methods for vertical scaling. Once a vertical scaling design is 

implemented and data are collected, a statistical method is needed to develop the actual 

scale. In practice, the primary methods that have been used for vertical scaling are 

Thurstone scaling methods and IRT scaling methods. Both of these methods can be used 

to develop a vertical scale using data collected from either the scaling test or common 

item design. A distinguishing difference between the two methods is that Thurstone 

scaling methods are based on the observed total scores while IRT methods are based on 

the item-level responses. 
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Thurstone scaling. Thurstone scaling (Thurstone, 1925) is the most commonly 

used observed-score method for vertical scaling. In the past, this method was used to 

create vertical scales for large-scale national tests such as the California Test of Basic 

Skills (CTBS; McGraw-Hill, 1989). Thurstone scaling links grades using the observed 

total scores on a scaling test or set of vertical anchor items (Thurstone, 1938). This 

method assumes that scores are normally distributed within each grade. 

To establish the link between grades, percentile ranks based on a scaling test or a 

set of vertical anchor items are calculated at each observed score point and are 

transformed to normalized z-scores (z-scores). When using a scaling test the z-scores are 

relative to the entire set of examinees that was administered the scaling test. When using 

vertical anchor items the z-scores are relative to the set of examinees at adjacent grades 

that responded to the vertical anchor items.  

The z-scores on the scaling test or vertical anchor items are used to calculate a 

scaled mean ( ,T z ) and scaled standard deviation for each grade ( ,T z ). A referent grade 

(e.g., G5) is used to set the scale. For example, G5 could be set to have a mean of 0 and a 

standard deviation of 1.
1
 The means for the grades adjacent to the referent grade are 

linked to the referent scale using the following transformation, 

1

, 1

, 2 , , 2

, 2

( )
( )

( )

T z

T z T z F z

F z


  


   (1) 

 

where , 2F z
 
is the z-score mean for the from, F, scale (e.g., adjacent grade mean; G4), 

1,T z
 
is the z-score mean for the to, T, scale (e.g., referent grade; G5), , 1T z

 
is the z-score 

                                                 
1
 Typically, 0 and 1 are used for mathematical convenience. A linear transformation can be used to set the 

scale to any specified mean and standard deviation. 
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SD for the to scale (e.g., G5), , 2F z
 
is the z-score standard deviation for the from scale 

(e.g., G4),
2
 and , 2T z  is the resulting transformed mean on the referent grade’s scale. 

Additionally, the scaled z-score standard deviation can be computed with the 

following equation: 

, 1

, 2

, 2

( )

( )

T z

T z

F z
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  (2) 

 

In the scaling test design, Equations (1) and (2) are used to directly transform all 

grade’s means and standard deviations to the referent grade’s scale. In the common items 

design, grades are transformed to the referent scale by chaining across the adjacent 

grades. Chaining is a multistep scaling process used to scale the non-adjacent grades. For 

example, to place G3 on the G5 metric, the G3 scale is first transformed to the G4 metric 

via the vertical anchor items between G3 and G4. G3 is then placed on the G5 scale using 

the link established between the G4 and G5 vertical anchor items. After transforming 

each grade’s mean to the referent scale the means are expected to increase across grades, 

which reflects the average growth on the scale. The transformations described above 

establish the vertical scale.  

Next, the scaled means (e.g., , 2T z ) and standard deviations (e.g., , 2T z ) for each 

grade are used to transform raw scores on the grade level test, in a scaling test design, or 

the on-grade items, in the common item design, to the vertical scale. First, the raw scores 

are transformed to normalized z-scores for the grade level tests or the on-grade items. 

The values of these z-scores are relative only to examinees within each grade. Thus, 

                                                 
2
 The “from” (F) and “to” (T) is adopted from Weeks (2011). This notation is useful because linking occurs 

across multiple grades in vertical scaling. Thus, multiple from/to transformations are needed during the 

vertical scaling process. This logic extends to IRT vertical scaling as well. 
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within each grade the mean and standard deviation of the z-scores are 0 and 1, 

respectively. The z-scores at each score point within each grade are transformed to the 

vertical scale using the follow equation, 

2 , 2 2 , 2( )T T z F T zz z    (3) 

 

where 2Fz is the within-grade z-score, 2Tz  is the transformed z-score, and , 2T z  and 

, 2T z  are multiplicative and additive transformation constants (analogous to the scaling 

constants discussed in the next section) obtained from Equations (1) and (2), respectively. 

After conducting this transformation for all score points, across all grades, any examinee 

can be given a score on the vertical scale. 

There are other decisions that can be made when conducting Thurstone scaling 

such as smoothing the score distributions or obtaining the mean and standard deviation of 

the normalized z-scores over different ranges of raw scores. These decisions could affect 

the resulting vertical scale but are beyond the scope of this study (cf. Kolen & Brennan, 

2004). 

Unidimensional IRT methods for vertical scaling. In the past two decades, IRT 

has become the predominant methodology for vertical scaling. Presently, all state K-12 

testing programs use IRT methods to develop vertical scales (Reckase, 2010). Thus, the 

focus of the remainder of this chapter is on considering various IRT methods for vertical 

scaling.  

When developing vertical scales using IRT methods, several choices have to be 

made such as specifying the structural (e.g., unidimensional vs. multidimensional) and 

measurement components of the model (e.g., 1PL vs. 3PL), determining the calibration 
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method (e.g., concurrent vs. separate), and choosing the estimation methods for the item 

parameters and examinee proficiency estimates (e.g., MLE vs. EAP). Each of these 

choices can potentially affect the characterization of growth on the vertical scale (Briggs 

& Weeks, 2009; Tong & Kolen, 2007). In this section, I describe IRT methods for 

vertical scaling and discuss the literature on how these various choices can affect the 

interpretation of examinee growth on the resulting vertical scale. 

Unlike Thurstone scaling, IRT methods model examinees’ responses at the item 

level rather than at the total score level. Item responses can be dichotomous (two 

categories; e.g., correct or incorrect) or they can be polytomous (more than two 

categories). The polytomous case is not considered in this study and not described here 

(cf. de Ayala, 2009). In IRT, the probability of an examinee responding correctly to an 

item, 1ijx  , is a function of the examinee’s ability and characteristics of the item. The 

unidimensional three-parameter logistic (U3PL) IRT model
3
 (Lord, 1980) is expressed 

mathematically as: 
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 (4) 

 

where , , ,( 1| )ij j i i ia b cP x  4
 indicates the probability of a correct response to item i for 

examinee j given the examinees ability, j , and a set of item parameters, , ,i i ia b c . The 

discrimination parameter (or slope), ia , indicates the rate at which probability of a 

correct response changes at the steepest point on the curve. The difficulty parameter, ib , 

                                                 
3
 The “U” in front of the “3PL” is not typical in IRT literature. It is used here to indicate that the model 

being discussed is a unidimensional 3PL model. Later in the paper, “M3PL” will be used to indicate 

multidimensional 3PL models. 
4
The notation P(x=1| ,a,b,c) will also be presented in short hand form P( , a, b, c) in this dissertation. 
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indicates the location of the item on the scale and is also referred to as the difficulty of 

the item. Its value is equal to the   at which approximately 50% of the examinees would 

answer the item correctly. The lower asymptote parameter, ic , indicates the probability 

that an examinee with a very low   would answer the item correctly. The c-parameter is 

also referred to as the pseudo-guessing parameter because its value will not necessarily 

equal chance guessing depending on the item distracters (Hambleton, Swaminathan, & 

Rogers, 1991). For historical reasons, sometimes a 1.7 multiplicative constant is included 

in front of the a-parameter, which sets the scale of the a-parameter to the normal ogive 

metric (DeMars, 2010). Because this constant is arbitrary, it is not included here. 

The U3PL model can be constrained to produce either the U2PL or U1PL models. 

Fixing the c-parameter to zero in Equation (4) yields the U2PL model. Further 

constraining the a-parameter to be equal across all items yields the U1PL model. Fixing 

the a-parameter to 1 leads to a special case of the U1PL model, the Rasch model (Rasch, 

1960). The U3PL and Rasch models are the most commonly used IRT models in K-12 

testing (Weeks, 2011). However, because the data used in this study will be obtained 

from tests developed under the U3PL model the other models will not be further 

considered. 

Figure 3 displays the item response function (also referred to as the item 

characteristic curve; ICC) for an item with the parameters; a = 1, b = 0, and c = .20. The 

“S” shape of the ICC reflects that the relationship between the probability of a correct 

response and the model parameters are based on a monotonic function.  

Calibration. After an IRT model is selected, the item parameters and ability 

parameters are estimated. The estimation of the item and ability parameters is called 
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calibration. In vertical scaling, item and ability parameters have to be estimated for tests 

across all grades and then placed onto a common scale. Two related properties of IRT 

make this scaling possible. First, the item parameters and latent ability metric are 

indeterminate with respect to the scale origin and spread. Meaning, these metrics have no 

inherent center point or interval properties (they are mathematically “indetermined”). To 

resolve the indeterminacy of the metric the scale of the latent ability distribution is 

typically fixed to a mean of 0 and a standard deviation of 1
5
 (Kolen & Brennan, 2004). 

Fixing the scale establishes the metric for both the item parameters and the ability 

parameters. Second, item and ability parameters are theoretically invariant. When the 

assumptions of the IRT model are met the parameter estimates from different calibrations 

only differ by a linear transformation. After transforming both the ability and item 

parameters, the probability of a correct response to item i for examinee j remains 

equivalent. 

 In vertical scaling there are multiple ways to conduct calibration including: 

separate, concurrent, and hybrid calibration.  

Separate calibration. When conducting separate calibration, item and ability 

parameters are estimated individually at each grade. After calibration, the resulting 

parameter estimates are on different scales and a linking method is needed to transform 

the parameters to the scale of the referent grade. The linear transformation for the ability 

parameters can be calculated using, 

  Tj FjA B    (5) 

 

                                                 
5
 The indeterminacy can also be resolved by fixing the parameters of an item as well. 
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where A and B are slope and intercept constants, respectively, that are estimated as 

described below using vertical anchor items. Fj  and Tj are the values of   for examinee 

j on the from, F, scale (e.g., G4) and the to, T, scale (e.g., G5, referent grade), 

respectively. A chaining process is used to transform the ability parameters to the referent 

grade.  

For an example of a two grade chaining process, the linear transformation of the 

ability estimates between grades 3 ( 3 j ) and 4 ( 4 j ) and grades 4 ( 4 j ) and 5 ( 5 j ) for 

student j are,  

4 34 3 34 G3 to G4: j jA B    (6) 

5 45 4 45 G4 to G5: j jA B    (7) 

 

After merging and algebraic simplifying the equations, the transformation of the 

proficiency estimates from grade 3 directly to grade 5 is, 

5 34 45 3 34 45 34 G3 to G5: ( )j jA A A B B     (8) 

Equation 8 demonstrates the chaining process for the thetas. Notice that multiple 

sets of slope (A) and intercept (B) constants were needed to transform the G3 thetas 

directly to G5. 

The linear transformation for the individual item parameters between 

adjacent grades can be calculated as: 

  F i
Ti

a
a

A
  (9) 
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  Ti Fib Ab B   (10) 

  Ti Fic c  (11) 

 

where i refers to item i on each test. The c-parameter is independent of the 

transformation. A similar chaining process, as described above, can be conducted to 

rescale all item parameters to the referent grade. 

Theoretically, the transformations in Equations (9) and (10) should result in the 

same set of item parameters regardless of the form on which anchor items appear; 

however, in practice they may not be equal due to violations of IRT assumptions and/or 

random error. 

There are several methods that can be used to estimate the A (slope constant) and 

B (intercept constant) constants needed for the linear transformations of the parameters. 

Three methods, mean-sigma (Marco, 1977), mean-mean (Loyd & Hoover, 1980), and the 

Stocking and Lord method (S-L; Stocking & Lord, 1983) are described here. The first two 

methods are called moment methods because they use the mean and/or standard 

deviations (i.e., the first and second moment) of the vertical anchor item parameters to 

estimate the scaling constants. The third method is called a test characteristic curve 

method because the scaling constants are obtained by a process used to minimizes the 

distance between the test characteristic functions (also called the test characteristic curve 

or TCC)  which are obtained in each grade using the vertical anchor items. 

The mean-sigma method uses the means and standard deviations of the b-

parameters to obtain the A and B constants needed for the scale transformation. The A 

constant is calculated by, 



26 

 

( )
 

( )

T

F

b
A

b




  (12) 

 

where ( )Tb and ( )Fb  are the standard deviations of the b-parameters of the vertical 

anchor items on the to and from scales, respectively. 

The B constant is calculated by, 

  ( ) ( )T FB b A b    (13) 

 

where ( )Tb and ( )Fb are the means of the of the b-parameters for the same items and A 

is the scaling constant obtained in Equation (12). 

Similar to the mean-sigma method, the mean-mean method uses the mean of the 

a-parameters and mean of the b-parameters to obtain the A and B constants. The A 

constant is calculated by, 
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  (14) 

where ( )Fa
 
and ( )Ta

 
are the means of the a-parameters of the vertical anchors items 

on the from and to scales, respectively. The B constant is calculated in the same manner 

as in the mean-sigma method (see Equation (13)). 

Unlike the moment methods described previously, the Stocking and Lord (1983) 

method considers all item parameters when estimating the A and B constants, 

21
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The sum of the probabilities across all items,  ( ;  ;  ;  )
n

ji Tj Ti Ti Ti

i

P a b c  , is the TCC. 

The S-L method uses an iterative multivariate search technique to obtain the best 

combination of A and B constants that minimizes the difference between the TCCs of the 
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vertical anchor items across N examinees and n items. This is the most commonly used 

linking method in operational equating and vertical scaling. 

Concurrent calibration. When conducting concurrent calibration for vertical 

scaling all item and ability parameters across grades are estimated simultaneously using a 

multiple-group method (Bock & Zimowski, 1997; Tong & Kolen, 2007). The vertical 

scale is established by fixing the mean and standard deviation of a referent grade, 

typically to 0 and 1, respectively. Additionally, individual vertical anchor items between 

adjacent grades are constrained to be equivalent (Mislevy, 1993). These constraints place 

the item and ability parameters on the scale of the referent grade. 

Hybrid calibration. Hybrid calibration is based on both separate and concurrent 

calibration methods (Reckase, 2010). In hybrid calibration, multiple concurrent 

calibrations are used to estimate item and ability parameters for pairs of adjacent grades 

(e.g., G3/G4, G5/G6, etc.). The item parameters are then linked using any of the linking 

methods described above.  

Separate vs. Concurrent vs. Hybrid Calibration. Research on which method is 

best is conflicting, but the general consensus is that concurrent calibration should lead to 

slightly more accurate and precise parameter estimates (smaller standard errors) when the 

IRT model holds because it is based on more information and error is not introduced 

from linking (Beguin & Hanson, 2001; Hanson & Beguin, 2002; Tsai, Hanson, Kolen, & 

Forsyth, 2001).  In contrast, separate calibration may lead to more accurate and sensible 

results when the model does not hold (Hanson & Benguin, 2002; Kolen & Brennan, 

2004).  
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Hybrid calibration may be a reasonable compromise between separate and 

concurrent calibration for at least three reasons. First, the parameter estimates may be 

more accurate than separate calibration because each calibration is based on 

approximately twice as much data. Second, the method may be more robust to violations 

of IRT assumptions (e.g., dimensionality) because multiple models are estimated. Third, 

because only two grades are calibrated simultaneously, convergence issues may be less 

common compared to a concurrent calibration of all grades. 

Kim (2007) investigated the impact of concurrent calibration and separate 

calibration for developing vertical scales. The researcher developed vertical scales for 

G3-G8 using both methods in four subject areas: Vocabulary, Reading, Mathematics, and 

Science. Kim found that differences in grade-to-grade growth and within-grade 

variability were trivial regardless of calibration method used for Vocabulary and 

Mathematics vertical scales. In contrast, for Reading and Science, less growth was 

demonstrated using concurrent calibration and grade-to-grade variability decreased less 

using concurrent calibration. The author noted that the results were at least partly 

dependent on the type of proficiency estimator used. 

Karkee, Lewis, Hoskens, Yao, and Haug (2003) evaluated vertical scales for G5-

G10 Mathematics using separate, concurrent, and hybrid calibration. In contrast to Kim 

(2007), they found that each method yielded similar results with regard to grade-to-grade 

growth. The pattern of grade-to-grade variability was similar for concurrent and separate 

calibration but hybrid calibration led to greater variability at two grade levels.   

Due to the inconsistent results regarding the type of calibration method, it may be 

necessary to evaluate calibration methods in the context of each data situation rather than 
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attempt to make broad generalizations about which method is best. In K-12 testing, the 

choice of calibration method may be determined most often by pragmatic or contractual 

reasons. For example, if concurrent multiple-group calibration fails to converge on an 

admissible solution it may be necessary to use separate or hybrid calibration in order to 

provide examinees with scores. 

UIRT proficiency estimation. In the IRT framework, estimation of examinees’ 

proficiency is conducted independently of the estimation of the IRT model parameters. 

Proficiency estimates can be based on the examinees’ response patterns (i.e., pattern 

scoring) or based on their number-correct score (i.e., summed scoring). In pattern scoring 

examinees with the same summed score will receive different estimate abilities if their 

patterns of responses are different. The opposite is true in summed scoring. In vertical 

scaling research, pattern scoring is common because estimated abilities in IRT are more 

accurate than summed scores because they are based on the examinee’s response 

patterns, which provides more information than a single total score. In operational K-12 

testing, summed scoring may be preferred because examinees with the same total score 

receive the same scaled score regardless of their pattern of correct responses. Further, the 

use of summed scoring may be more transparent and understandable to stakeholders (e.g., 

examinees, teachers, parents, and others).  

Two methods of pattern scoring, Maximum Likelihood Estimation (MLE), 

Expected A Posteriori (EAP), and one method of summed scoring, Expected A Posteriori 

Summed Scoring (EAPSS), are discussed here. 

Maximum Likelihood Estimation (MLE). Each of the methods described next use 

the likelihood function that forms the basis of MLE. The likelihood function for 
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examinees j’s observed response string, x, conditional on a given   and a set of item 

parameters (ai, bi, ci) is, 
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where xij is the binary response (0, 1) to item i for examinee j and P is the probability of 

that response. The likelihood for an examinee is the product of the likelihoods for all 

items. The goal of MLE is to find the   that maximizes the likelihood. The   that 

maximizes the likelihood function is used as the ML estimate of the examinee’s 

proficiency. In practice, an iterative algorithm such as the Newton-Raphson method (cf. 

de Ayala, 2009) is used to solve for  . ML estimates are unbiased when the model holds. 

One disadvantage of MLE is that there is no   estimate for patterns of all incorrect or all 

correct responses. In these situations a very small or large value of   is assigned to 

examinees with these response patterns. 

Expected A Posteriori (EAP).  EAP pattern scoring method is based on a Bayesian 

framework. Bayesian methods incorporate a prior distribution, which provides 

information about an estimate. Prior distributions can be specified by the practitioners or 

estimated empirically, but often a normal distribution is used. The use of a prior 

distribution makes it possible to obtain ability estimates for examinees with all incorrect 

or all correct responses.  

The Bayes’ EAP estimate (Bock & Aitkin, 1981; Bock & Mislevy, 1982) is the 

mean of the posterior distribution of  , given an examinee’s response pattern. The 

integration over   is approximated using a quadrature method. Quadrature methods have 
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been found to yield accurate estimates when using as few as 10 quadrature points (Bock 

&Mislevy, 1982). 

The EAP estimate with q specified quadrature points is given as, 
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where Xq  is the q
th

 quadrature midpoint on  , ( )qL X is the likelihood function of the 

observed response string at Xq (see Equation (16)), and W is a relative density weight 

from the prior distribution for that quadrature point. EAP estimates are biased toward the 

prior distribution’s mean   but are more efficient estimates (i.e., smaller standard errors) 

of   than MLE (de Ayala, 2009). 

 Instead of using the mean of the posterior distribution, the mode can also be used. 

Using the mode forms the basis of another proficiency estimator, Maximum A Posteriori 

(MAP). MAP is computationally more complex than EAP and tends to lead to more 

biased estimates of   (Bock & Mislevy, 1982; Mislevy & Bock, 1997). MAP is not 

investigated in this study and the reader is referred to Swaminathan and Gifford (1982) 

for a more detailed discussion of this estimator.   

Expected A Posteriori Summed Scoring (EAPSS). EAP estimates based on 

summed scores can be obtained using Thissen and Orlando’s (2001, p. 120) method: 

For any summed score (with items score xi = 0 or 1), 
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the likelihood is given as, 
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where the summation is over all of the responses patterns that equal the same summed 

score. ( )xiP 
 
is the ICC for response x to item i, and ( )  is the density function of  .  

The probability of each summed score is given by 

( ) ( )x xP L d    (20) 

 

where the marginal probability of the summed score is the integration of ( )xL   over θ. 

The EAP estimate associated with a summed score, X, is computed by 
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The integration is typically approximated by the method of quadratures, as in Equation 

(17). The W(Xq) in Equation (17) did not appear in Equation (21) because it has already 

been incorporated in Equation (19), symbolized by ( )  . Conceptually, the EAPSS 

estimate is based on weighting the EAP estimates for each response pattern that yields the 

same total score. Within any total score, the more likely response patterns have greater 

weights. 

The EAP estimates can be transformed to a more meaningful scaled score in 

practice but it is not necessary. Although there is a slight loss of information using EAP 

summed scores, scoring may be more easily understood because examinees with the 

same summed score receive the same proficiency estimate. Like EAP pattern scoring, 

EAP summed scores are biased toward the mean. However, EAP summed scores may be 

even more biased because summed scoring has more measurement error. Thus, the bias 
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towards the mean may be more pronounced under summed scoring (Tong & Kolen, 

2007). 

MLE vs. EAP vs. EAPSS. There has been little research examining how the 

proficiency estimator may affect the resulting vertical scale. This is surprising 

considering the importance of the proficiency estimator to the characteristics of the 

empirical score distributions.  

In the most comprehensive study on proficiency estimators in vertical scaling, 

Tong and Kolen (2007) compared MLE, EAP, EAPSS, and MAP estimators using both 

real and simulated vertical scaling data for G3-G8. With the real data, each of the 

estimators provided similar estimates of the grade-to-grade means. The largest 

differences were between MLE and MAP, where MLE produced more variability within 

grades compared to MAP, which lead to smaller standardized effect size differences 

between grades for MLE. EAP and EAPSS produced similar results and generally fell 

between MLE and MAP with regard to variability across grades. With simulated data, all 

the estimators reproduced the true scale but EAP and EAPSS produced more accurate 

estimates compared to MAP and MLE. Overall, their results were consistent with 

Hendrickson, Kolen, and Tong’s (2004) who found that MLE produced more variability 

in proficiency estimate than EAP across three different achievement tests. 

Kim (2007) compared multiple proficiency estimators including MLE and EAP 

for vertical scales developed for G3-G8 in Vocabulary, Reading, Mathematics, and 

Science. Across subject areas, the author found that a) grade-to-grade mean estimates 

were similar regardless of estimator; b) MLE produced greater within-grade variability 

compared to EAP; and c) grade-to-grade variability decreased across grades but the 
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pattern was similar for each estimator. Briggs and Weeks (2009) more recently compared 

the MLE and EAP under various vertical scales developed for G3-G6 Reading. Similar to 

previous research they found that MLE yielded more within-grade variability compared 

to EAP. Overall, it is not surprising that EAP and EAPSS estimators tended to yield 

vertical scales with less within-grade variability. As previously discussed Bayesian based 

estimators shrink scores towards the mean of the prior resulting in narrower score 

distributions. 

Thurstone scaling vs. IRT scaling. As IRT methods of vertical scaling became 

more popular, researchers often compared IRT scaling methods and Thurstone scaling 

methods. Findings from these studies typically show that Thurstone scaling results in 

increasing grade-to-grade variability and IRT scaling results in consistent or decreasing 

grade-to-grade variability (Camilli, Yamamoto, & Wang, 1993; Clemans, 1993; 

Williams, Pommerich, & Thissen, 1998; Yen, 1986). 

In a more recent study comparing the two methods, Tong and Kolen (2007) 

compared Thurstone scaling and IRT scaling under a scaling test design using both 

simulated and real data. For the simulated data, the authors found that when the 

assumptions of the two methods were met they produced similar vertical scales (but IRT 

vertical scaling was slightly more accurate). For the real data, the authors found that 

Thurstone scaling resulted in variability that increased from grade-to-grade and the scale 

indicated that high-achieving examinees grew more across grades than the low-achieving 

examinees did. They concluded that this occurred because the method forces normality 

even when score distributions are non-normal (Tong & Kolen, 2007). In contrast, IRT 

scaling resulted in fluctuating grade-to-grade variability and low achieving examinees 
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grew more at lower grades and less at higher grades. Although the two methods have 

been found to yield slightly different vertical scales, IRT methods of vertical scaling have 

largely replaced Thurstone scaling methods in practice. 

IRT assumptions. In the previous section, the IRT process for vertical scaling was 

discussed without consideration of important statistical assumptions that are made in the 

IRT framework. IRT methods make three strong assumptions that should ideally hold in 

order to develop meaningful vertical scales; they are local independence, correct model 

specification, and correct dimensionality. These assumptions are difficult to meet in the 

context of vertical scaling due to the complexities of modeling a construct across multiple 

grades. 

Local independence. Items exhibit local independence if they are uncorrelated 

after conditioning on examinee ability. When there is residual covariance among items 

after conditioning on examinee ability, the assumption of local independence is violated. 

Items may exhibit dependence due to a number of reasons such as when one item 

provides the answer to another item (DeMars, 2010).  

Model specification. Model specification is concerned with the fit between the 

empirical data and the model applied to the data (DeMars, 2010). A model that does not 

correctly specify construct dimensionality or specify the correct item response function 

would be considered misspecified. When models are misspecified estimates can be biased 

and interpretation of estimates may be inaccurate.  

Dimensionality. The dimensionality assumption is related to the local 

independence assumption. When items or groups of items covary after controlling for 

examinees’ ability the assumption of dimensionality is violated. This covariance may be 
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due to a meaningful dimension that was not properly modeled or it could be a nuisance or 

unintended dimension.  Traditional IRT models assume the data are unidimensional; this 

means all items on a test measure the same construct. The unidimensionality assumption 

is made explicit in the model by the single   used to represent an examinee’s ability (see 

Equation (4)). Any residual covariance between items after conditioning on   is 

typically considered nuisance variance due to unintended dimensionality (DeMars, 2010). 

In practice, minor violations of the unidimensionality assumption are expected and most 

practitioners are satisfied when unidimensionality approximately holds. However, as data 

depart from unidimensionality, parameter and standard error estimates become 

inaccurate. It can be difficult to develop tests that are unidimensional for any individual 

grade and it may be practically impossible to develop tests across grades that exhibit 

unidimensionality. In the context of vertical scaling in K-12 assessment the assumption 

of unidimensionality should not be expected to hold across grades, although the amount 

of departure from unidimensionality may depend on the subject area as previously 

discussed (Reckase & Martineau, 2004). 

If tests exhibit multidimensionality within a grade or across grades it is 

psychometrically inappropriate to use UIRT models to develop the vertical scale. When a 

unidimensional model is applied to multidimensional data examinees’ scores no longer 

represent a single construct and interpretations of the scores may be misleading or 

erroneous. Instead of ignoring the dimensionality, multidimensional IRT models, which 

can account for the dimensionality, may be more appropriate. Presently, no states use 

MIRT models for developing vertical scales (Reckase, 2010). This is likely due to at least 

three reasons: a) as mentioned previously, tests are currently developed under a 
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unidimensional framework, with items modified or removed from tests in an attempt to 

meet the unidimensionality assumption; b) MIRT models are more complex and more 

difficult to implement in practice; and c) because of the complexity of MIRT models and 

the current testing paradigm there is a paucity of research in using MIRT models for 

developing vertical scales in any setting. The research that does exist has been mostly 

confined to simulation studies. Theoretically, accounting for the dimensionality in the 

data within and across grades should lead to more accurate and meaningful vertical 

scales.  

Multidimensional IRT methods for vertical scaling. One advantage of using 

UIRT models for vertical scaling is their simplicity, which makes them easier to estimate 

and apply in practice. However, because of their simplicity they may not accurately 

model the complex interactions between examinees and items within or across grades 

(Reckase, 2009). In this section methods for developing vertical scales are extended to 

the multidimensional IRT framework. Overall, the vertical scaling process is similar, 

except that a different type of IRT model is used to establish the vertical scale.  

In the multidimensional IRT framework the probability of an examinee 

responding correctly to an item is a function of a vector of examinee abilities (or traits) 

and the characteristics of the item. The U3PL model presented in Equation (4) is similar 

to the multidimensional three-parameter logistic model (M3PL; Reckase, 1997, 2009), 
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where , , ,( 1| )ij i id cP x  j iaθ indicates the probability of a correct response to item i for 

examinee j given an m x 1 vector of abilities (e.g., 1, 2...j j jm   ) determined by the number 
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of dimensions (m) specified, and the item parameters, , ,i id cia , where ia  is a m x 1 vector 

of discrimination parameters (e.g., 1, 2, ,...i i ima a a ) , id is an intercept term, and ic is a 

pseudo-guessing parameter. For example, in a two-dimensional MIRT model each 

examinee would have two estimated abilities (m = 2; 1 , 2 ) and each item would have 

two a-parameters ( 1,ia , 2ia ). 

There is no b-parameter (item difficulty) in the M3PL; instead there is an item 

intercept, di. For the unidimensional IRT model, bi = -di/ai. In the multidimensional IRT 

model, the multidimensional item difficulty (MDIFF; Reckase, 1985, 2009) is defined as, 
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where MDIFF is the distance from the origin, (where 1  and 2 both equal 0) to the point 

on the item response surface (IRS) that is maximally discriminating (analogous to the 

point of inflection on an ICC). This point represents a .5 probability of a correct response 

when ci = 0. However, in a multidimensional space there are multiple combinations of   

that lead to a .5 probability of a correct response. 

Analogous to the constraints on the U3PL, the M3PL can be constrained to 

produce either the M2PL or M1PL. Fixing the c-parameter to zero in Equation (22) yields 

the M2PL model (Reckase, 1985, 2009). Further constraining the a-parameter to be equal 

for each dimension yields the M1PL model (Adams, Wilson, & Wang, 1997). Similar to 

the U3PL (see Equation (22)), the function based on the estimated parameters can be 

plotted across a range of thetas. Instead of an ICC, the function produces the IRS (see 
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Figure 4). A response surface represents the probability of a correct response given an 

examinee’s estimated ability on multiple traits. 

Correlated MIRT model. Dimensions in a MIRT models can be specified to be 

correlated or uncorrelated (i.e., orthogonal). In the K-12 context, a correlated MIRT 

model could be based on specifying a dimension for each content area for a given subject 

area. The model would imply that items within a content area are more related to each 

other than to items in other content areas and the content areas are related to each other. 

A correlated MIRT model could be used to develop a vertical scale for each dimension, 

which would make it possible to identify how examinees grow across multiple 

dimensions. For example, in Mathematics examinees could show growth in Number 

Sense and Operations but not Algebraic Reasoning. A physical measurement analog 

would be using a [vertical] scale for height and a [vertical] scale for weight as related 

indicators of physical growth over time.   

Using a correlated MIRT model to develop multiple vertical scales is intuitively 

appealing; but K-12 tests are generally developed based on a unidimensional IRT model 

(e.g., Rasch). Thus, in the present testing paradigm these types of MIRT models have had 

little use in practice. These models are also computationally complex because each 

dimension is considered during the estimation of the item and ability parameters.  

Another problem with attempting to develop multiple vertical scales using a 

correlated MIRT model is that the number of vertical anchor items needed to ensure 

accurate linking increases substantially. Weeks (2011) stated that a minimum of 7 to 19 

vertical anchor items may be needed per dimension (depending on the amount of error 

that can be tolerated) to support multidimensional vertical scales. Other researchers also 
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agree that having a sufficient number of vertical anchor items across all specified 

dimensions is necessary in order to use a MIRT model for vertical scaling (Li, 2006; 

Reckase & Li, 2007). 

Overall, correlated MIRT models may have little utility for vertical scaling in the 

current testing paradigm. However, a special case of the MIRT model, the bifactor 

model, may be useful for developing a single, purer vertical scale based on current test 

construction practices. 

Bifactor MIRT model. The bifactor MIRT model is a special case of the MIRT 

model where each item response is a function of a general factor and no more than one 

secondary factor. All items load onto the general factor and all factors are orthogonal to 

each other (see the middle and bottom model in Figures 5 and 6; Gibbons & Hedeker, 

1992). As mentioned in Chapter 1, bifactor models have successfully been used to model 

testlets (DeMars, 2006) and wording effects (DiStefano & Motl, 2009). The secondary 

factors are thought to capture variance unrelated to the construct of interest. When 

thought of this way, the bifactor model produces a more accurate estimate of ability on 

the general factor. 

The M3PL model presented in Equation (23) is a bifactor model when constraints 

are imposed on the model which leads to the probability of a correct response being a 

function of an intercept parameter ( id ), lower asymptote ( ic ), two a-parameters ( 1, 2i ia a ), 

and two thetas ( 1, 2j j  ); one for a general factor and one for a secondary factor. Another 

way to think about the bifactor model is by the specification of a factor matrix (Li, 2011). 

Consider a hypothetical two-item test with two secondary factors; the matrix would be 

specified as presented in Table 1. 
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In the first column, both items load onto the general factor, in the second column, 

item 1 loads onto a secondary factor, and in the third column, item 2 loads onto a 

different secondary factor. The same logic extends to multiple items and multiple 

secondary factors. 

The bifactor model holds promise for vertical scaling for at least two reasons. 

First because items only load onto two dimensions the computational complexity of the 

model is similar to a two-dimensional MIRT model regardless of how many secondary 

factors are specified (Cai, 2010; Cai, Yang, & Hansen, 2011). This makes the bifactor 

model especially promising for vertical scaling in K-12 testing where models must 

converge in order to provide examinees with test scores. Second, the bifactor model more 

appropriately aligns with the current testing paradigm. Specifically, test developers 

attempt to develop unidimensional tests within grades. However, when tests are modeled 

across grades they are likely to exhibit multidimensionality. Any deviation from 

unidimensionality is unintended by the test developer even if it is unavoidable. Thus, the 

bifactor model has utility for developing a vertical scale on the general factor that is 

theoretically a more pure measure of examinees’ ability in the overall construct (e.g., 

Mathematics ability). 

Grade Specific Bifactor model (BG-M2PL). Li and Lissitz (2012) proposed a 

bifactor model with a general factor and grade specific secondary factors (e.g., one for 

each grade; BG-M2PL
6
). The purpose of the model was to capture construct shift across 

grades. The model implies that a general construct is measured across grades but items 

within each grade share additional variance above and beyond the general factor.  

                                                 
6
 In this study the 3PL version (“BG-M3PL”) of this model was estimated to allow for comparisons of this 

model to other models used in the study (i.e., U3PL and BC-M3PL). 
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Li and Lissitz simulated multidimensional data for three hypothetical grades. The 

data were simulated such that the true model was a bifactor model with a general factor 

and three secondary factors. The general factor represented the primary content domain 

and the three secondary factors represented construct shift at each hypothetical grade. 

Multiple conditions were studied including sample size (1000, 2000, and 3000), percent 

of common items (20%, 30%, and 40%), and the magnitude of the secondary factors 

(small, moderate, and large). The authors then applied a 2PL bifactor model with grade 

levels modeled for the secondary factors (e.g., the true model, BG-M2PL) and a U2PL 

model using concurrent calibration for comparison.  

Results for the U2PL model showed that item discrimination parameters were 

typically overestimated, estimation accuracy decreased as the secondary factors became 

stronger, and examinee proficiency estimates and group mean estimates were always less 

accurate compared to the bifactor model. However, item difficulty parameters were 

accurately estimated with both models. 

In the same study, Li and Lissitz used the bifactor model to develop a vertical 

scale for a state’s Mathematics assessment. The vertical scale spanned G3-G5. The 

authors found that a vertical scale based on a constrained bifactor model (where the 

subfactor a-parameters were fixed to 1)  fit the real data better than a U2PL model based 

on the evaluation of model fit indices (i.e., AIC and BIC). They also noted that the 

variance of the grade specific factors was small. Importantly, the correlation between the 

proficiency estimates from the U2PL and the constrained bifactor model was very high (r 

= .98). The authors concluded that the U2PL model was adequate for developing the 

vertical scale for these data. 
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The results from Li and Lissitz (2012) are important for states currently 

implementing a unidimensional IRT model for vertical scaling. Complicated 

measurement models should not be used when they are not necessary. However, the real 

data study is limited in several important ways. First, the vertical scale was developed to 

span only three grades. Currently, states are developing vertical scales to span more than 

three grades (e.g., G3-G8) and in the future it is likely that states will be interested in 

developing vertical scales across the entire K-12 assessment program. As more grades are 

linked the less likely a unidimensional model is appropriate because curriculum and 

content standards become increasingly discrepant across grades. Second, the real data 

study was limited to Mathematics assessment and the findings may not generalize to 

other subjects (e.g., Reading or Science) or even to other states’ Mathematics tests. Third, 

the authors only specified one type of bifactor model. Their goal was to model grade-

specific secondary factors; however, this model would not be able to capture possible 

dimensionality of the individual content domains across grades.  

Content Based Bifactor model (BC-M3PL). To address some of the limitations of 

Li and Lissitz (2012), while recognizing the potential of the bifactor model for vertical 

scaling, a different bifactor model specification was proposed in this study. Specifically, 

a bifactor model based on content domain secondary factors spanning G3-G8 in both 

Mathematics and Reading was examined (BC-M3PL). Similar to Li and Lissitz (2012), 

this model takes advantage of the relative simplicity of estimating the bifactor model 

(compared to a correlated MIRT model) and also implies that there is a general construct 

measured across grades. However, the BC-M3PL model differs from Li and Lissitz’s 

BG-M2PL model in several important ways.  
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First, the secondary factors in the BC-M3PL model represent each of the content 

areas across grades instead of grade specific secondary factors. The model is intended to 

align with the content domains as defined by current state K-12 programs. These content 

domains are operationally defined in test blueprints and tests are developed around these 

blueprints in practice. 

Second, items in the same content area load onto a content subfactor across 

grades. This implies that the subfactors capture the common variance among content 

areas above and beyond the general factor. Content areas may shift across grades because 

of their changing emphasis in the curriculum (Young, 2006). These shifts represent 

unintended variability due to the practical limitations of perfectly aligning tests and 

curriculum across grades. Thus, the BC-M3PL explicitly models the dimensionality that 

may arise from the shifts in content areas. This is similar to using bifactor models for 

method or testlet effects.  

Third, because this model aligns with the content domain the same numbers of 

factors are modeled regardless of the number of grades that are linked. Fourth, because 

the common vertical anchor items were specified to load onto the same secondary factor 

across grades the appropriate constraints can be applied to these items for both the 

general factor’s (i.e., 1,ia ) and the subfactor’s (e.g., 2ia )  a-parameters during calibration. 

MIRT calibration. The process of calibrating the model and estimating examinee 

proficiency is the same in the MIRT framework. However, other researchers have 

modified the linking and estimation methods to handle the complexity of a 

multidimensional response function. The calibration methods discussed for 
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unidimensional IRT (i.e., separate, concurrent, and hybrid calibration) are discussed next 

in the context of multidimensional IRT. 

Separate calibration becomes more complicated in the MIRT framework due to 

the multiple parameters that must be linked. In addition, for correlated MIRT models the 

angle of the dimensions must be considered during linking. This does not directly apply 

to bifactor models because the angles of the factors are orthogonal. Oshima, Davey, and 

Lee (2000) provided the mathematical extensions of the UIRT linking methods to the 

MIRT framework. The methods they presented are summarized below. 

The linear transformation for the ability parameters can be calculated as:  

  Tj Fj θ Aθ β  (24) 

 

where A  is a m x m rotation matrix that adjusts the variances and covariances of the 

ability dimension, θ is a m x 1 vector of ability estimates, and β is a m x 1 translation 

vector that alters the location of the scale.  

The linear transformation for the item parameters for the M3PL can be calculated 

as: 

1( )Ti Fi

  a A a  (25) 

1  Ti Fi Fid d  a A β  (26) 

  Ti Fic c  (27) 

 

where ia is a vector of discrimination parameters. The c-parameter is independent of the 

transformation. Although the notation has changed to matrix algebra form, Equations 
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(24), (25), (26), and (27) are similar to Equations (5), (9), (10), and (11) presented for 

unidimensional linking.  

Recall from the unidimensional case that the goal is to solve for a set of constants; 

in the multiple dimensional case the constants are A  and β , which are matrices and 

vectors, respectively. Oshima, Davey, and Lee (2000) extended the unidimensional 

linking methods to the multidimensional case. Due to limitations of available software 

packages, discussed below, multidimensional linking was not examined in this study. 

However, the multidimensional analog of the unidimensional Stocking and Lord method 

is described here to show some of the similarities between the methods. 

The multidimensional Stocking and Lord method minimizes the following 

function, 

1 211
[  ( ;  ;  ;  ) - ( ;  ;  ;  )    ( ) ]

n n

ji Ti jiTj Ti Ti FiFj Fi Fi FI

i i

F d dP c P
q

c    
θ

θ a Aθ β A a a A β  (28) 

 

where q is the number of θ  vectors. The other parameters are defined directly above. 

Conceptually, this minimization is similar to minimizing the test characteristics curve but 

now the minimization is over the multidimensional test characteristic surface (TCS). This 

method produces an A matrix which both adjusts the units (the diagonal elements) and 

rotates the factors (the off diagonal elements). With the bi-factor model, however, 

rotation would distort the meaning of the factors. To keep the factors from rotating, the 

diagonal elements of the A matrix could instead be found using Equation 19, with 0's on 

the off diagonals. However, with only a few anchor items loading on each secondary 

factor, the resulting A matrix might have a large standard error. 

Concurrent calibration proceeds the same way as in the unidimensional case 

except the vertical scale is established by fixing the mean and standard deviation of both 
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the general factor and each of the subfactors of the referent grade, typically to 0 and 1, 

respectively. These constraints identify the bifactor model and result in the item and 

ability parameters on the scale of the referent grade. Because the secondary factors in the 

BG model are grade-specific, the secondary factors are each identified by fixing the mean 

and SD within each grade. Hybrid calibration also proceeds in the same manner with 

pairs of adjacent grades estimated simultaneously and then multidimensional linking 

methods (i.e., multidimensional S-L) are used to establish the vertical scale. 

MIRT proficiency estimation. Proficiency estimation also becomes more 

complex in the context of multidimensional IRT. The same methods used to score 

examinees in the unidimensional case (e.g., MLE, EAP, and EAPSS) are discussed next 

in the context of multidimensional IRT. 

Maximum Likelihood Estimation (MLE). The likelihood function for examinee j’s 

observed response string, x, conditional on a given θ  and a set of item parameters ( ia , 

di, ci)   is, 

1

1

( | , , , ) (1 )ij ij

ij

n
x x

j j i i i ij

i

L d c P P




 θ ax  (29) 

where xij is the binary response (0, 1) to item i for examinee j and P is the probability of 

that response in a multidimensional space. The likelihood for an examinee is the product 

of the likelihood for each item given a θ  vector. The goal is to find the θ  that maximizes 

the likelihood. The θ  that maximizes the likelihood function is used as the estimate of 

the examinee’s proficiency. Recall that θ  is a vector of abilities, thus the ability estimate 

for each dimension in the model is estimated simultaneously. However, for each item 

only the general and one secondary factor are considered at any time during the 
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computation. Iterative algorithms are used to find the θ  that maximizes the likelihood 

(Reckase, 2009). 

Expected A Posteriori (EAP) and Expected A Posteriori Summed Scoring 

(EAPSS). For the bifactor model, the EAP θ can be estimated for the primary factor. The 

likelihood is a function of both the primary θ, denoted θp, and the secondary θ; denoted 

θk. However, each item’s likelihood is a function of only one secondary θk in addition to 

the primary θp (Gibbons & Hedeker, 1992). To estimate the primary θp, the likelihood of 

the responses to the subset of items that measure specific factor k is specified as a 

function of θp and θk, the grade-specific or content-specific θk. Then integration occurs 

over the distribution of θk, with the integration approximated by summation over the 

quadrature points, to obtain the marginal likelihood conditional on θp only. These 

marginal likelihoods can then be multiplied across the item subsets to find the marginal 

likelihood of the response string, which is then plugged into Equation (17). In summary,  

( ) ( , ) ( )p k q p k q k q

qk

L L g   
 

    
 
  (30) 

 

where k q is the value of θk evaluated at the midpoint of quadrature q and g( k q ) is the 

relative density of the qth quadrature. 

EAP summed scoring for the bifactor model follows the same process as 

presented for the unidimensional case; however, the marginal Pxi(θp) must first be 

calculated by integrating Pxi (θp, θk) over the distribution of whichever specific subfactor 

k that item i depends on. 
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Research Questions 

The MIRT framework provides the necessary tools for handling dimensionality in 

the context of vertical scaling. Unfortunately, there is a lack of published research with 

regard to MIRT methodology for developing vertical scales; although it has been growing 

in the past decade. Based on the current testing paradigm, I argued that the bifactor model 

might hold potential for modeling multidimensionality in order to develop a purer 

estimate of the primary factor (i.e., Mathematics ability). I also discussed the importance 

of various decisions that have to be made when implementing vertical scales. The 

research questions investigated in this study were motivated by these considerations. 

Research Question 1  

Which IRT model for vertical scaling best represents the data for Mathematics 

and Reading: U3PL, BG-M3PL, or BC-M3PL? 

The primary purpose of this study was to evaluate vertical scales developed under 

each of these three IRT models. Based on the discussion of multidimensional bifactor 

IRT models presented in Chapter 2 it was expected that the BG-M3PL and BC-M3PL 

would fit the data used in this study better than the U3PL because they explicitly model 

multidimensionality. This multidimensionality was expected to be present in the G3-G8 

Mathematics and Reading tests. Furthermore, the BC-M3PL was expected to fit the data 

better than Li’s (2011) BG-M3PL because it aligns more closely with the content 

domains specified for Mathematics and Reading.  

Research Question 2  

a) Do the latent grade-to-grade means, standard deviations, and effect sizes 

depend on the IRT model and calibration method used to develop the vertical scale?  
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b) Do the empirical means and standard deviations depend on the IRT model, 

calibration method, and scoring method used to develop the vertical scale? 

 To comprehensively evaluate the measurement models used to develop vertical 

scales and to score examinees, it was important to assess the characterization of the 

resulting vertical scales for Mathematics and Reading under various vertical scaling 

methods. Briggs and Weeks (2009) noted that the combination of IRT model and 

calibration method could affect the resulting vertical scale.  

Based on the reviewed literature, the estimated vertical scales were expected to 

fluctuate with respect to their estimated means, standard deviations, and effect sizes 

depending on combinations of IRT model, calibration method, and subject areas. Vertical 

scales were evaluated in terms of the estimated latent distributions (“true vertical scale”) 

after calibration and linking but prior to scoring.
7
 For the multidimensional bifactor 

models (BG-M3PL and BC-M3PL), vertical scales were developed and evaluated based 

on concurrent calibration only. Practical and theoretical issues prevented the evaluation 

of these models for the separate and hybrid calibration conditions. 

First, separate calibrations of the BG-M3PL model did not make theoretical or 

conceptual sense. When conducting separate calibrations the BG-M3PL reduces to a two 

dimensional orthogonal exploratory IRT model because all items load onto the same 

primary factor and the same grade-specific secondary factor.   

                                                 
7
 Either the empirical moments (means and standard deviations) of the scored examine sample or the 

estimated moments of the latent distribution could have been used to evaluate the vertical scale. The latter 

was chosen because the estimated moments of the latent distribution provide a more accurate estimate of 

the population than the empirical distribution of the examinees’ proficiency estimates (Hoijtink & Boosma, 

1996). 
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Second, for the BC-M3PL model linking was theoretically possible, however, the 

only software available to conduct the linking was not capable of maintaining the 

orthogonal nature of the bifactor model after linking. The separate and hybrid calibrations 

were initially examined, but there were severe problems in the linking. Preliminary 

research using MIRT linking for BC-M3PL resulted in high correlations between the 

subfactors after linking using IPLINK (Lee & Oshima, 1996). Due to error in the item 

parameter estimates and possibly lack of item parameter invariance, the multidimensional 

extension of the Stocking-Lord method yielded factors that were considerably correlated. 

Thus, the meaning of the bifactor model was lost due to the necessary mathematical 

rotations of the factors during multidimensional linking.  Using Equation 19 to get the 

diagonal elements of A was also considered, but each of the content factors had only 4-7 

vertical anchor items. This did not seem enough to get a stable estimate of A, especially 

considering that on the content factors the ratio of aFrom/ATo differed considerably from 

item to item. Because MIRT linking did not lead to a meaningful A matrix for the 

bifactor, models results were excluded from this dissertation. 

The estimated means based on EAP and EAPSS were expected to be similar to 

the estimated latent means due to the large number of examinees used in this study. 

However, the distributions of the examinees’ estimated proficiencies were expected to 

demonstrate less within-grade variability (smaller standard deviations at each grade) 

using the summed score method (EAPSS) relative to the pattern scoring methods (EAP).   

In the research literature, EAPSS has been found to shrink towards the mean more than 

EAP (Tong & Kolen, 2007). Additionally, the extent that this pattern held was expected 

to fluctuate across IRT models and calibration methods. 
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Research Question 3  

Do the correlations of the general factor proficiency estimates depend on the IRT 

model, calibration method, and scoring method?  

 Li and Lissitz (2012) found that the correlations between general factor 

proficiency estimates based on a U2PL and a constrained bifactor model (BG-M2PL) 

were very high (r  = .98) when using these models to develop vertical scales for 

operational K-12 data. In this study, it was also expected that the correlations of the 

general factor proficiency estimates between the models would be high (r ≈ .90 to 1.00). 

Additionally, the correlations were expected to vary based on the model used to create 

the vertical scale because the rank-order of the proficiency estimates are partly dependent 

on the specified model and scoring methods used.  

Research Question 4  

Do examinee proficiency classifications depend on the IRT model, calibration 

method, and scoring method used?  

 Presently, in K-12 testing the classification of examinees into different 

proficiency categories is as important, if not more important, than the proficiency 

estimates themselves. This is because most policy and decision making at the student, 

school, district, and state level is based on examinees’ classifications (e.g., not proficient 

(NP), limited knowledge (LK), proficient (PR), and advanced knowledge (AK)) rather 

than examinees’ actual scores. Because the proficiency estimates were expected to vary 

based on the IRT model, calibration method, scoring method and subject area, the 

classification of examinees into different proficiency categories was also expected to 
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vary. Changes in proficiency estimates around proficiency category cut-scores would 

have the biggest impact on classification.  
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CHAPTER 3 

Method 

“Choosing the right [vertical] scale is not an option. It is important that any choice of 

scale be made consciously and that the reasons for the choice are carefully considered. In 

making such choices, appealing to common sense is no guarantee of unanimity of opinion 

or of reaching a sensible conclusion.” (Yen, 1986, p. 314) 

*    *    * 

Sample 

Archival data used in this study were obtained from examinees who completed a 

state’s standardized Mathematics and Reading tests in grades 3-8 during the 2011-2012 

school year.
8
  Data were obtained with permission from the state and its test vendor. The 

state administers Mathematics and Reading tests for assessment purposes and to meet 

federal accountability requirements. Prior to receiving the data, all identifying examinee 

information was removed.  

The total number of examinees who completed these assessments was 

approximately 258,000. The sample of examinees used in this study was 72,981 for 

Mathematics and 73,006 Reading (see Table 2). The sample only included examinees 

who responded to test forms containing vertical anchor items. These forms were 

randomly spiraled at the classroom level and the examinee sample used was assumed to 

be randomly equivalent to the population of examinees for the 2011-2012 testing year. 

Demographic characteristics of examinees that completed the Mathematics and 

Reading tests for all grades are included in Tables 3 and 4. The overall gender 

                                                 
8
 The data did not include examinees who completed modified or alternate G3-G8 Mathematics or Reading 

assessments. 
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composition was approximately 50% males and 50% females across all grades. The 

overall ethnic composition was approximately 53% Caucasian, 16% American Indian, 

14% Hispanic, 9% African American, 2% Asian, .3% Pacific Islander, and 5% indicated 

two or more races.  

Measures 

Mathematics G3-G8 tests. Grades 3 through 8 Mathematics tests contained 60 

items including 50 scored items (operational items) and 10 non-scored items (non-

operational items). Across grades, the tests were developed to assess examinees’ ability 

in five content standards: a) algebraic reasoning, b) number sense, c) geometry, d) 

measurement, and e) data analysis and statistics. Tables 5 and 6 contain the standards and 

objectives for G3 and G8 Mathematics, respectively. The standards and objectives, as 

well as the associated curricula, are vertically aligned across grades. For example, the 

primary content standards for G3-G8 Mathematics are identical for all grades. However, 

the secondary objectives within each content standard vary, which reflects the 

progression in curricula across grades. In general, objectives in adjacent grades (e.g., 

G3/G4) are more closely aligned than objectives in non-adjacent grades (e.g., G3/G8). 

Alignment in adjacent grades also reflects the curriculum overlap in these grades, which 

is important to the development of a vertical scale. The percentage of items covering each 

standard and objective varied reflecting the shift in curriculum focus across grades. 

Descriptive statistics for the total raw scores are presented in Table 7. Raw scores 

on these tests range from 0-50, except in grade 5 where scores ranged from 0-49
9
. 

Overall, examinees’ scored high on the Mathematics tests within grades. The 

                                                 
9
 Typically, grade 5 has a raw score range of 0-50, however, an item was removed by the State and test 

vendor during operational scoring procedures. 
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distributions of the total scores were generally normal across grades however; some 

minor negative skew and kurtosis was present. Coefficient alpha, an indicator of internal 

consistency, was acceptable for these types of tests and ranged from .89 to .91 across 

grades. 

Reading G3-G8 tests. Similar to the G3-G8 Mathematics tests, the state 

administers Reading tests across G3-G8. Each Reading test contained 60 items including 

50 scored items (operational items) and 10 non-scored items (non-operational items). 

Across grades, the tests were developed to assess examinees’ ability in four content 

standards: a) vocabulary, b) comprehension/critical literacy, c) literature, and d) research 

and information. Tables 8 and 9 contain the standards and objectives for G3 and G8 

Reading, respectively. Similar to Mathematics, the primary content standards and 

secondary objectives were vertically aligned and the secondary objectives varied to 

reflect the progression in curriculum across grades. Objectives in adjacent grades were 

more closely aligned than objectives in non-adjacent grades. In addition, the percentage 

of items covering each standard and objective varied across grades.  

Descriptive statistics for the total raw scores are presented in Table 10. Raw 

scores on these tests range from 0-50. Overall, examinees scored slightly higher on the 

Reading tests across grades compared to the Mathematics tests. The distributions of the 

total scores were also generally normal across grades with some minor negative skew and 

kurtosis. Coefficient alpha was considered acceptable and ranged from .86 to .90 across 

grades. 
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Data Collection 

Test administration. In this section I describe the design and methods the state 

used to collect and screen data. Due to the confidential nature of this information, some 

specific details were purposefully left out. 

All examinees enrolled in the state’s public school system were required to 

participate in the 2011-2012 statewide assessment. For both G3-G8 Mathematics and G3-

G8 Reading, paper-and-pencil tests were administered to examinees in G3-G6 and 

computer-based tests were used for examinees in G7-G8.  

Test administration design. For horizontal equating, the state used a non-

equivalent, anchor test design (commonly referred to as the NEAT design; Holland, 

2007; Kolen, 2007) for both Mathematics and Reading testing programs. The NEAT 

design is the most commonly implemented equating design used in practice because of its 

logistical advantages over other designs (cf. Cook & Eignor, 1991). In this design, 

examinees within each subject and grade level took different test forms each year. For 

example, the G3 Mathematics test administered this year was a different form from the 

G3 Mathematics test in the previous year. Each year the test forms were horizontally 

equated to an established base year’s scale.  

Each year test forms were designed to be equivalent in terms of content coverage 

but individual items varied between forms, which lead to minor form-to-form differences 

in difficulty. To separate the differences in form difficulty from the differences in 

examinees’ ability between forms, identical horizontal anchor items were embedded 

across forms within each grade. Overall, the horizontal anchor items proportionally 

represented the content of the entire test and were placed in the same item position across 
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forms. These items capture differences that arise due to non-equivalent groups of 

examinees taking the different forms year-to-year. After accounting for examinee 

differences, the forms were equated to account for the minor differences in form 

difficulty. After horizontal equating, test scores were theoretically interchangeable 

regardless of which form an examinee took. Across all grades, at least 10 items on all test 

forms were horizontal anchor items; however, on average approximately 18 (SD = 2) of 

the items on a test form were horizontal anchor items. All horizontal anchor items were 

also operational items and were included in the examinees’ scores. 

For vertical scaling, the state used a common item design (Kolen & Brennan, 

2004); this design is analogous to the NEAT design used for horizontal equating. Table 

11 contains a visual representation of the common item design used by the state. Similar 

to horizontal anchor items, vertical anchor items represented content that was common 

between adjacent grades. At each grade, across all forms, 20 vertical anchor items were 

embedded in order to establish a link between each adjacent pair of grades. Ten of these 

items were on-grade vertical anchor items, were present in all forms, and were used for 

scoring purposes. The other 10 were off-grade vertical anchor items that were placed in 

field test positions across two forms. These off-grade vertical anchor items were not used 

for scoring purposes.   

 The state administered 10 different test forms in G3 and G8, and 12 different 

forms in G4-G7. Additional forms were administered in G4-G7 because each of these 

grades linked to two adjacent grades (e.g., G4 and G6 are adjacent to G5). Four forms in 

G4-G7 two forms in G3 and G8 contained vertical anchor items. The other eight forms at 

each grade level contained field test items instead of vertical anchor items. Tables 12 and 
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13 include the percentage of items that were intended to map onto each of the content 

areas for both non-anchor and vertical anchor items. The coverage of the standards varied 

slightly between the non-anchor and anchor items. Specifically, in Mathematics there was 

a higher percentage of non-anchor items that mapped onto content standard 2. In Reading 

the percentage of items mapping onto each content standard was more consistent between 

the non-anchor and anchor items. 

  Data screening. Following the state’s data screening practice, any examinee who 

attempted fewer than five items was removed from the data. Missing responses were 

scored as incorrect.
10

 In addition, responses from Braille forms, examinees taking the test 

a second time, invalidated tests, and examinees attending private schools were excluded. 

Vertical anchor item evaluation. All items were evaluated prior to inclusion in 

calibration or linking. Ideally, item-model fit would have been evaluated on a model-by-

model basis. That is, the fit of the individual items would have been evaluated for the 

U3PL, BG-M3PL, and BC-M3PL in each calibration condition. However, because of the 

large number of grades, subject areas, and research conditions this was considered 

impractical in this study. Additionally, a static set of items was needed to make 

comparisons of the models across conditions and screening items based on different 

models could have led to the removal of items based on the results of one model but not 

the other. Thus, item-model fit was evaluated using the estimated item parameters from 

the U3PL model based on separate calibrations at each grade level. Because of the 

complexities of this research study, a conservative approach was taken to evaluating the 

functioning of items. That is, items were only removed for extreme poor item-model fit, 

                                                 
10

 It is not necessary to score missing responses as incorrect when estimating an examinee’s ability on the 

  metric. However, it is common practice to treat missing responses as incorrect in K-12 testing and it is 

necessary for computing summed scores.  
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poor classical test theory (CTT) statistics, and/or poor IRT parameters. Overall, a 

multipronged approach was used to evaluate the items. 

Anchor items were evaluated using both CTT (i.e., item difficulty and item 

discrimination) and IRT item statistics (i.e., item difficulty, item discrimination, and 

item-model fit).
11

 Items that functioned poorly (e.g., items with low discrimination) were 

evaluated for removal. Tables 16-23 contain the item difficulties and point biserial 

correlations for all vertical anchor items. Overall, the vertical anchor items were easy for 

the examinees with almost all item difficulties above .50. This is consistent with the high 

total scores on these tests. Overall, vertical anchor item difficulties were similar to the 

non-anchor item difficulties (see footnote 11). Although the items were easy for the 

examinees on average, positive growth trends were observed across all grades for both 

subjects (i.e., items became increasingly easier at higher grades). The highest 

concentration of negative growth items was observed between grades 5 and 6 for both 

subject areas. 

Point-biserial correlations were considered generally acceptable and above .30 

across all items. One Reading vertical anchor item (Table 21, Grade 7, Vertical Anchor 

Item 4) had a near zero item discrimination for each grade it was administered on (G6-

G8). 

Empirical and model implied ICC plots were examined visually for all items. 

Items were considered for removal if there were large differences between ICCs. Large 

differences were considered indicative of a lack of item-model fit. Overall, ICCs were 

considered acceptable for all items with the exception of the item mentioned in the 

                                                 
11

 For brevity, only item difficulty and item discrimination tables are included for the vertical anchor items. 

CTT and IRT parameter estimates for all items are available upon request from the author. 
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previous paragraph (Reading Grade 7, Vertical Anchor Item 4). Figure 5 includes an 

example of the typical ICC plot observed across all items (left). Additionally, the ICC 

plot for the vertical anchor with a near 0 item discrimination is included for comparison 

(right). 

Yen’s Q1 (Yen, 1981) was used to examine item-model fit. It is expressed 

mathematically by: 
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where Nji is the number of examinees in cell j for item i; Qji and Eji are the observed and 

predicted proportions of examinees in cell j that pass item i: 
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Yen’s Q1 is a theoretically χ
2 

distributed statistic that is based on comparing the 

observed (Oij) and expected proportions (Eij) of examinees who answered the item correct 

at a specified number of intervals (J) across  . Yen recommended using 10 intervals. 

Degrees of freedom for the statistic are df = 10 – the number of estimated item 

parameters. In this study, the degrees of freedom for this statistic was 7 (df = 10-3). Large 

differences between the observed and expected proportion of examinees at each interval 

lead to higher χ
2 

values. The χ
2
 test can be used to test model-data fit, however this test is 

known to have high Type 1 error rates (Orlando & Thissen, 2000). Thus, the Q1 values 

were transformed into an effect size statistic 
1iQZ : 
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1iQZ was used to help identify items that were exhibiting poor fit. In this study 

items were flagged for poor-fit if 
1iQZ > (sample size × 4)/1500. Flagged items were 

subsequently re-evaluated for inclusion based on other available information including 

CTT and IRT estimates and empirical and model-implied ICCs. 

For vertical anchor items, items with lower p-values at higher grade levels (e.g., a 

G3 item that was the anchor item on the G4 test) were also considered for removal. 

Lower p-values at higher grades indicated that the items were more difficult for 

examinees at higher grades and indicates negative growth. 

No single criterion was used for removing an item from this study. Instead, all of 

the criteria were considered as a whole. For example, although some vertical anchor 

items had lower p-values at the upper grades they were still retained in this study because 

they demonstrated acceptable model-fit. After evaluating all of the items based on the 

criteria discussed, the only item removed from analysis was the aforementioned Reading 

7 vertical anchor item 4. This item was removed from each grade where it appeared (G6-

G8) because of extremely poor model-fit. 

Analyses 

Fixed factors and manipulated factors. There are many decisions that must be 

made when implementing a vertical scale (e.g., design, estimation, model, etc.) and 

research on vertical scales has found that different combinations of decisions can lead to 

different vertical scales (Kolen & Brennan, 2004; Tong & Kolen, 2007). In simulation 

studies on vertical scaling many types of conditions are often manipulated (e.g., number 

of anchor items, item parameters, number of grade levels linked) that are usually fixed in 

operational research based on practical constraints and/or contractual agreements 
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between states and their test vendors. Because of this, certain factors in this study were 

necessarily fixed (e.g., maximum number of anchor items) while others were manipulated 

(e.g., types of IRT model). It is important to note that the fixed factors are no less 

important to the development of operational vertical scales (Kolen & Brennan, 2004; Yen 

& Burket, 1997; Young, 2006), but by holding them constant, other factors could be 

studied. 

In this section I describe the factors that were fixed (number of item parameters 

estimated, vertical scaling design, and number of vertical anchor items) and the factors 

that were manipulated (subject, model type, calibration method, and scoring method) in 

the development and evaluation of different vertical scales for this study (see Tables 14 

and 15). 

Fixed factors. 

Item parameters. Each measurement component of the models was estimated as 

either a U3PL or the analogous M3PL. The 3PL measurement component of the model 

was chosen for two reasons. First, items for this testing program were calibrated based on 

the U3PL model and tests were subsequently developed based on the banked U3PL item 

parameters. Second, because the 3PL includes a lower asymptote parameter (i.e., pseudo-

guessing parameter) it is theoretically the most appropriate model for multiple-choice 

items when some correct guessing was expected. 

Vertical scaling design. As described previously, the state used a common-item 

vertical scaling design. This design is the most commonly used design in K-12 practice 

because it can be implemented without changing the total test administration time. 
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However, it is important to note that there are different vertical scaling test designs that 

exist (cf. Kolen & Brennan, 2004).  

Number of anchor items. As described previously, there were a total of 20 vertical 

anchor items between adjacent grades split across multiple test forms at each grade (see 

Table 11). Each vertical anchor item form contained 5 unique off-grade vertical linking 

items. The vertical anchor items were embedded within each form and varied in position 

across the form. Meaning, they were not grouped in any location (beginning, middle, or 

end) in any form. These off-grades items linked to either the lower or above grade. In G3 

and G8 two forms contained off-grade vertical linking item. In G4-G7 four forms 

contained off-grade vertical linking items. This number of vertical anchors was consistent 

with the research literature that suggests at least 20% of the length of the total test should 

be vertical anchor items (Kolen & Brennan, 2004; McBride & Wise, 2000; Young, 

2006).  

Manipulated factors. 

Subject. Five vertical scales were developed separately for two subjects, 

Mathematics and Reading, for G3-G8. These subjects are ideal for developing vertical 

scales because they are tested at each grade from G3-G8 and the content standards were 

vertically aligned. It was important to establish vertical scales for more than one subject 

area so that across subject comparisons could be made. The best vertical scaling methods 

for Mathematics may not be the best methods for Reading.  

Model. To establish the vertical scales, three types of IRT models were estimated. 

1. A U3PL model served as the baseline model (see the top model in Figures 6 

and 7). In this model, each item across all grades loaded onto a single factor (i.e., 
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Mathematics or Reading ability). Because only a single factor was modeled, a single   

(or latent score) was estimated for each examinee. Although this model was not 

considered theoretically justifiable for vertical scaling, due to probable violations of the 

unidimensionality assumption (Li & Lissitz, 2012), it is currently the most commonly 

used model for developing vertical scales in K-12 testing programs. The U3PL was the 

most parsimonious model estimated in this study. 

2. A BG-M3PL bifactor model with grade levels modeled with 1 general factor 

and 6 grade specific factors (e.g., one for each grade) was estimated (see the middle 

model in Figures 6 and 7). In this model every item across all grades loaded on to a 

general factor (e.g., Mathematics ability), and items within each grade loaded onto a 

grade specific subfactor (e.g., G3 subfactor). All factors were fixed to be uncorrelated 

(i.e., orthogonal). Li and Lissitz (2012) proposed this type of model to capture construct 

shift across grades. This model implied that a general construct is measured across grades 

but items within each grade shared variance above and beyond the general factor (for 

further discussion of this model see Chapter 2). In the published literature, this model has 

never been used to develop vertical scales across more than three grades. Additionally, 

the 3PL version of this model has never been studied. 

3. A BC-M3PL bifactor model with 1 general factor and 4 or 5 content specific 

subfactors (i.e., 4 for Reading and 5 for Mathematics) was estimated (see the bottom 

model in Figures 5 and 6). In this model, every item across all grades loaded onto a 

general factor (e.g., Mathematics ability), and items within each content area (irrespective 

of grade) loaded onto a content specific subfactor (e.g., C1 = Number Sense and 

Operations). All factors were fixed to be uncorrelated (i.e., orthogonal). Thus, they 
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measured only the part of the content not captured by the general Mathematics or 

Reading factors. This model has never been used for vertical scaling in the current 

literature. 

 Calibration method. In this study, three calibration methods were evaluated: 

concurrent, separate, and hybrid calibration for the U3PL models. However, for reasons 

discussed in Chapter 2 only concurrent calibration was conducted for the BG-M3PL and 

BC-M3PL models.  

 For concurrent calibration, item parameter estimates, and the estimated ability 

distributions are placed on the same scale when the IRT model is simultaneously 

estimated for all grade levels. In this study, G5 was used as the referent grade for all 

models.
12

 To set the scale, the mean and standard deviation of the ability distributions for 

G5 was fixed to 0 and 1, respectively, for the general and subfactors. All other grades’ 

means and standard deviations were freely estimated. Additionally, individual vertical 

anchor item parameters for each adjacent grade were constrained to be equal within the 

U3PL and the BC-M3PL models. In the BG-M3PL, the subfactor loadings were not 

constrained to be equal for the vertical anchor items. Recall, in this model the vertical 

anchor items load onto grade specific subfactors at each grade. Thus, common vertical 

anchor items are on different subfactors across grades and it was considered inappropriate 

to constrain these subfactor loadings. After applying the constraints, parameters were 

estimated in relation to the scale of the referent grade. 

 For separate calibration, the U3PL models were estimated separately at each 

grade level. To set the scale for each grade level, the mean and standard deviation of the 

                                                 
12

 Grade 5 was selected as the referent grade because it is one of the middle grades. Because linking error is 

compounded across grades when conducting separate calibration, choosing the middle grade, theoretically, 

balances the linking error that is introduced during chaining. 



67 

 

ability distribution was fixed to 0 and 1, respectively. Adjacent grades item and ability 

parameters were linked using a linear transformation of the scales based on the vertical 

anchor items using the Stocking and Lord method (Stocking & Lord, 1983). To link non-

adjacent grades for the U3PL model (e.g., G3-G5) a chaining process (described in 

Chapter 2) was used to place the estimated item parameters and ability estimates onto the 

scale of the referent grade.  

For the hybrid method pairs of adjacent grades (i.e., G3-G4, G5-G6, and G7-G8) 

were calibrated concurrently and then linked using the same methods as described for 

separate calibration. To set the scale, the mean and standard deviation of the lower grades 

ability distribution was fixed to 0 and 1, respectively (e.g., G3-G4). The vertical anchor 

items between the upper (e.g., G4) and lower grade (e.g., G5) of each adjacent pair of 

grades were used for linking for the U3PL models. 

Scoring method. In addition to the direct estimates of the latent mean and standard 

deviations of the ability distributions obtained as part of the item calibration process, 

pattern scoring (EAP) and summed scoring (EAPSS) methods were used to evaluate the 

empirical distributions of the examinees’ proficiency estimates. Although pattern scoring 

and summed scoring are usually highly correlated, they can potentially lead to different 

examinee rank-ordering and different empirical distribution moments; specifically, the 

standard deviation of the distribution.  

Examinee pattern scores (i.e., examinee’s ability estimates) were obtained using 

EAP (Bock & Aitkin, 1981; Bock & Mislevy, 1982). Examinee summed scores were 

obtained using EAPSS based on Thissen and Orlando’s (2001, p.120) method. Both EAP 

and EAPSS were described in detail in Chapter 2. 



68 

 

Software and estimation. Data were managed using SAS 9.2. All calibrations 

and scoring were conducted using flexMIRT (Cai, 2012). All models were estimated 

using the Bock-Aitkin Expectation-Maximization (E-M; Bock & Aitkin, 1981) algorithm 

to compute the marginal maximum likelihood (MML) estimates of the item parameters 

and the mean and standard deviations of each grades’ ability distribution. Due to the 

complexity of simultaneously estimating a large number of parameters across multiple 

grades, priors were specified for the general factor a-parameters (normal; 1.7, 1.0), 

subfactor a-parameters (log-normal, -0.2, 0.5) and the c-parameters (beta; 100, 400) in all 

research conditions. For the E-M algorithm, the maximum number of E-M cycles was set 

to 5000 and the maximum number of iterations within each M-step was set to 100. The 

default convergence criteria set in flexMIRT were used to define model convergence. 

Specifically, .0001 was the convergence criteria for the E-M cycles. The M-step iteration 

convergence criteria was .000000001. For comparison, Multilog uses a more liberal 

default convergence criteria of .001 (E-M) and .0000001 (M). 

The empirical quadrature distribution was used for estimation and scoring. The 

density of the quadrature (QD) range was consistent across calibrations. Four quadrature 

points were estimated for every one theta unit (e.g., 0-1.0) but the QD ranges varied 

depending on the number of grades calibrated. Specifically, a range of -4 to 4 (33 QD 

points), -5 to 5 (41 QD points), and -6 to 6 (49 QD points) was used for separate, hybrid, 

and concurrent calibrations, respectively. For separate and hybrid calibrations of U3PL 

models, IRT scale transformations constants, based on the Stocking and Lord procedure 

(Stocking & Lord, 1983), were obtained using STUIRT 1.0 (Kim & Kolen, 2004).  

Research Question 1  
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Which IRT model for vertical scaling best represents the data for Mathematics 

and Reading: U3PL, BG-M3PL, or BC-M3PL? 

 To investigate this research question the overall model fit of the U3PL, BG-

M3PL, and BC-M3PL was assessed for each calibration. Evaluation of model fit was 

based on four model-data fit indices; the log-likelihood ratio test (∆G
2
), the Akaike 

information criterion (AIC, Akaike; 1974), the Bayesian information criterion (BIC; 

Schwarz, 1978), and the sample size adjusted BIC (SSABIC). 

 The likelihood ratio test was used to assess the fit of nested models. The U3PL 

was nested within both the BG-M3PL and the BC-M3PL by fixing the secondary factors’ 

parameters to 0. The BG-M3PL and BC-M3PL are non-nested models and cannot be 

evaluated using the likelihood ratio test.  

 The likelihood ratio test is based on the difference between the -2 log-likelihoods 

(-2LL) of the reduced (e.g., U3PL) and full model (e.g., BC-M3PL). 

2 ( 2 ) ( 2 )R FG LL LL      (34) 

 

The 
2G statistic is theoretically distributed as χ

2 
with the degrees of freedom 

equal to the difference in the number of parameters estimated between the reduced and 

full model. A statistically significant test statistic indicates that the full model fits the data 

better than the reduced model at the specific alpha. However, one concern with the log-

likelihood test is that it has been shown to have extremely high Type I error rates due to 

departures from the χ
2
 distribution (DeMars, 2012b; Hayashi, Bentler, & Yuan, 2007). 

The high Type 1 error rate means this test will favor the more complex bifactor models. 
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Because of this issue the log-likelihood test was given less emphasis during the 

evaluation of the models.  

The AIC, BIC, SSABIC were used to compare the relative fit of all of the models. 

For each of these indices, lower values indicate better fit. 

 The AIC is expressed as: 

 ( 2 ) 2( )parmsAIC LL N    (35) 

 

where Nparms is the number of parameters estimated in the model. The AIC penalizes 

models as they become more complex by adjusting the -2LL upwards based on the 

number of parameters estimated by the model. An issue with the AIC is that it will 

generally favor complex models over simpler models and does not account for sample 

size (DeMars, 2012b). Thus, the BIC and SSABIC were used in conjunction with the 

AIC to address this issue. 

The BIC is similar to AIC and is expressed as, 

 ( 2 ) ln( )( )parmsBIC LL N N    (36) 

 

where ln(N) is the log of the sample size. The BIC adjusts the -2LL upwards based on the 

number of parameters weighted by the sample size. 

The SSABIC is expressed as, 

 ( 2 ) ln(( 2) / 24)( )parmsSSABIC LL N N     (37) 

 

where ( 2) / 24N   leads to a less severe sample size adjustment. 
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Overall model fit indices are based on different pieces of statistical information 

and do not always agree. Thus, the best fitting model was determined by considering all 

of the fit indices as a whole but emphasis was placed on the BIC and SSABIC. 

Research Question 2 

a) Do the latent grade-to-grade means, standard deviations, and effect sizes 

depend on the IRT model and calibration method used to develop the vertical scale?  

b) Do the empirical means and standard deviations depend on the IRT model, 

calibration method, and scoring method used to develop the vertical scale? 

 a) To investigate this research question the estimated latent means for G3-G8 

were plotted and examined for all of the vertical scales after calibration and linking. Ten 

vertical scales were plotted. Visual inspection of the mean plots was used to determine if 

different combinations of IRT model and calibration method led to practically different 

patterns of growth across the vertical scales. Additionally, the population standard 

deviations were examined across grades to identify any trends such as increasing or 

decreasing standard deviations across grades. 

The separation of grade distributions between adjacent grades was examined by 

calculating Yen’s (1986) effect size: 

. .
2 2
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
 (38) 

 

where upperX is the mean of the upper grade, lowerX is the mean of the lower grade, 
2

upperS

is the variance of the upper grade, and 
2

lowerS is the variance of the lower grade. Yen’s 

effect size standardizes adjacent grade-to-grade differences based on the variability at 
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each grade. The larger the effect size, the greater the separation in adjacent grade 

distributions, indicating more grade-to-grade growth. 

b) The empirical means and standard deviations of the examinees’ proficiency 

estimates were calculated using a summed score approach (EAP) and a pattern scoring 

approach (EAPSS). Both the EAP and EAPSS estimates were obtained based on each 

vertical scale that was developed (10 vertical scales x 2 scoring methods). The trend in 

means and standard deviations was examined across grades.  

Research Question 3 

Do the correlations of the general factor proficiency estimates depend on the IRT 

model, calibration method, and scoring method?  

To investigate this research question, examinee ability estimates were correlated 

at each grade level for the general factor after scoring for all research conditions (10 

scoring conditions x 6 grades x 2 subjects areas). In the context of this study, correlations 

between .96-1.00 were considered high and indicated that the models and scoring 

conditions resulted in a similar rank-orderings of examinees. Correlations between .91-

.95 were considered acceptable but meaningful rank-order changes of examinees were 

anticipated to occur. Correlations below .90 were considered low and significant rank-

order changes were expected to occur as correlations dropped below this value. 

Research Question 4 

Do examinee proficiency classifications depend on the IRT model, calibration 

method, and scoring method used?  

To investigate this research question the 2011-2012 observed cut-scores used in 

the state’s testing program were used to classify examinees into proficiency categories 
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(e.g., unsatisfactory, limited knowledge, proficient, and advanced) at each grade level 

(see Table 52). These cut-scores were based originally on raw scores and were 

transformed through the test characteristic function to   cut-scores on the vertical scale 

using the linking constants obtained from the separate calibrations for the U3PL model.  

Overall, fit indices (RQ1) were used to evaluate the appropriateness of the model. 

Correlations between examinee proficiency estimation, characteristics of the vertical 

scale distributions (RQ2 and RQ3), and classifications of examinees (RQ4) were used to 

evaluate the practical impact of the different models, calibration methods and scoring 

methods for developing vertical scales operationally. 
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CHAPTER 4 

Results 

“Small changes in percentages of proficient students can have major consequences. If we 

are to measure change using educational assessments, it is critical that the assessments 

have sufficient measurement quality that they can be very accurately [scaled].” (Yen, 

2010, p. 8) 

*    *    * 

The results section is presented in order of the research questions (RQ1-RQ4). 

Due to the large number of models tested across multiple grades tables and figure are 

included at the end of the dissertation. 

Research Question 1 

Which IRT model for vertical scaling best fits the data: U3PL, BG-M3PL, or BC-

M3PL? 

Tables 24-29 contain the model fit information for each of the calibration 

conditions. The PRM column indicates the number of estimated parameters in the 

models. The ΔPRM column indicates the difference between the number of parameters 

estimated in the bifactor models and the U3PL models. The best-fit column rank-orders 

the fit of the models based on the fit indices. Across all conditions, there were no 

discrepancies between the fit indices. Meaning, all of the indices led to the same 

conclusions regarding model-fit. 

The cycles column indicates the number of cycles needed for the model to meet 

the convergence criteria. The maximum number of cycles was set at 5000. A value of 

5000 in this column indicates that the model did not meet the default convergence criteria 
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set in flexMIRT (described in Chapter 3). Due to of the conservative nature of the 

convergence criteria the results from the non-converged models were used throughout the 

analyses. To justify the use of the non-converged models the maximum parameter change 

(max parm change) at the end of the E-M cycles was evaluated. This value indicates the 

largest parameter estimate change at the final E-M cycle. Notice that across calibration 

conditions this value was small providing some evidence that the parameter estimates 

were reasonably stable at 5000 cycles.  

Mathematics Model Fit  

Tables 24 and 25 include the model fit information for the Mathematics U3PL 

separate and hybrid calibration conditions. This information is presented for consistency, 

because, in these conditions no other models were tested and no comparisons can be 

made for these calibration conditions. Across all grades the U3PL model converged. 

Table 26 includes the model fit information for the concurrent calibrations. 

Neither the BG-M3PL nor BC-M3PL model met convergence criteria in the concurrent 

calibration condition. The results across each of the fit indices indicate that the BC-M3PL 

model provided a better representation of the data than the other models in this 

calibration condition. Additionally, the BG-M3PL fit the data the second best, and the 

U3PL model fit the worst. 

Reading Model Fit 

Tables 27 and 28 include the model fit information for the Reading U3PL 

separate and hybrid calibration conditions. Across all grades the U3PL model converged. 

Table 29 includes the model fit information for the concurrent calibration 

condition. In the concurrent calibration condition, the BC-M3PL model did not converge. 
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In contrast to Mathematics, the BG-M3PL provided the best fit in Reading. The BC-

M3PL model fit second best followed by the U3PL model. 

Item Parameter Estimates Discussion 

A comprehensive discussion of individual item parameters was not feasible due to 

the large number of items (600 items across 3 different models) used in the development 

of vertical scales in this study. However, important general trends were observed across 

each of the models and are discussed briefly here.  

In the U3PL models, items generally had high positive a-parameters (item 

discriminations) across all grades and subjects. The b-parameters (item difficulties) 

varied and the items were generally spread across the theta scale. The c-parameters 

(pseudo-guessing) were typically between .18 and .25 across all grades and subject areas. 

Recall that a prior was placed on the c-parameters to keep them in a reasonable range 

given the type of data used in this study.  

The c-parameters in the bifactor models were consistent with the parameters 

observed in the U3PL models. There is no comparable b-parameter in the bifactor 

models. Neither of these parameters will be discussed for the bifactor models.  

In contrast to the U3PL models the general factor a-parameters for the BG-M3PL 

models were generally slightly smaller and more variable across grades. This was 

expected because the variance is partitioned between a single general factor and a single 

grade-specific subfactor. In Mathematics G3 and G6 there were several items with 

negative a-parameters on the general factor. This could be a result of over factoring or the 

emergence of dominant subfactors. In Reading, the a-parameters on the general factor 
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and grade specific subfactors were typically similar in magnitude across all grades. In 

contrast to Mathematics, no negative a-parameters were observed on the general factor.  

In the BC-M3PL models the a-parameters on the general factor were similar in 

magnitude to the a-parameters observed in the BG-M3PL models, however, no negative 

a-parameters were observed. At some grades, however, items had higher a-parameters on 

the content specific subfactors than the general factor. This was prominent in G4, G6, and 

G8 for Mathematics and to a lesser extent for G4 and G8 in Reading. 

Research Question 2 

a) Do the latent grade-to-grade means, standard deviations, and effect sizes 

depend on the IRT model and calibration method used to develop the vertical scale?  

b) Do the empirical means and standard deviations depend on the IRT model, 

calibration method, and scoring method used to develop the vertical scale? 

U3PL Stocking-Lord Constants 

The Stocking-Lord cumulative linking constants (A and B) are presented in 

Tables 30 and 31 for the U3PL separate and hybrid calibrations where linking was 

conducted. These constants control the variability (slope constant) and shift (intercept 

constant) of the individual grade scales when rescaled to the grade 5 metric. These values 

are redundant with the final means and standard deviations of the vertical scales and will 

only be discussed briefly. Decreasing slope constants indicate scale shrinkage or reduced 

variability and increasing values indicate scale expansion or increased variability, during 

linking. 

 The value of the slope constants increased across Mathematics indicating a 

pattern of increasing variability across grades. This trend was not observed for Reading 
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where the slope constants were generally close to 1.00 indicating constant variability 

across grades.  As expected the intercept constants reflected positive growth across 

grades for both subject areas in the U3PL condition. The smallest growth occurred 

between  G5 and G6 in both subject areas and was approximately half of the growth 

observed between the other grades. Additionally, the average growth across grades was 

only moderate, extending approximately 2.50 SDs for Mathematics (-0.98 to 1.40) and 

approximately 2 SDs in Reading (-0.89 to 1.05). 

Mathematics and Reading Latent Vertical Scale Means 

Tables 32 and 33 contain the vertical scale means across grades for Mathematics 

and Reading. These means are also graphically presented in Figures 8 and 9. 

Additionally, the cumulative normal density distributions are presented in Figures 14 

through 18. Each of these tables and figures provide complimentary information about 

distributions on the vertical scale. The normal density plots represent the estimated 

population distributions of the examinees on the vertical scale based on the estimated 

means and standard deviations.   

The Mathematics vertical scales demonstrated a slightly wider range of growth 

across the scale compared to the Reading vertical scales. Additionally, the estimated 

means varied across models more in Mathematics than Reading.  These variations were 

primarily observed in the bifactor models compared to the U3PL models. Within the 

linking conditions of the U3PL models similar means were observed regardless of 

calibration method used. Note, however, for Mathematics (Figure 15) there is a slight 

reversal of the distributions for examinees at the lower end of the G6 distribution in the 

hybrid calibration condition. That is, examinees at the higher grade (G6) were expected 
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to have a lower scale score than examinees below the 20
th

 percentile at the lower grade 

(G5). In the context of vertical scaling this result is typically considered implausible 

because it indicates examines at higher grades have regressed on the content domain. 

For both Mathematics and Reading, the smallest amount of growth was typically 

observed between G5 and G6. Across U3PL conditions (separate, hybrid, and concurrent) 

growth on the scale was similar regardless of the calibration method used. However, one 

noteworthy pattern emerged in Mathematics in which scales had slightly lower G3 means 

for the concurrent calibration condition. This slight downwards shift of the scale resulted 

in each grade’s mean being slightly lower than the hybrid and separate calibration means 

across the scale. A similar effect was observed for the hybrid calibration to a lesser 

extent. 

Results for the BG-M3PL and BC-M3PL model in Mathematics were not 

consistent with one another. The BG-M3PL demonstrated positive growth on the general 

factor across grades, except between G5 and G6, where growth was negative and then 

became positive again between G6 and G7. Results for the BC-M3PL indicated a similar 

occurrence between G3 and G4 where the means reflected negative growth. Additionally, 

the growth between G6, G7, and G8 was smaller relative to the other conditions. The 

negative growth is also reflected in the cumulative normal density functions by 

distribution reversals. In Mathematics distribution reversals were observed for both the 

BG-M3PL calibration (Figure 17) between G6, G5, and G4; and the BC-M3PL 

calibration between G4 and G3 (Figure 18). These reversals were not observed in 

Reading (cf. Figures 18-23). 
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The negative growth results are not surprising based on the discussion of the 

parameter estimates for Mathematics and the estimated latent means for the bifactor 

models’ subfactors. For example, although examinees had negative growth between G3 

and G4 on the BC-M3PL general factor in Mathematics, these same examinees had 

higher positive growth on each of the content subfactors in Mathematics. When 

subfactors become stronger in the bifactor model, growth trends can be displaced onto 

these subfactors. However, this leads to non-intuitive results for the general factor 

vertical scale. In U3PL conditions all growth is placed on the general factor; however, it 

is important to note that this does not mean it is theoretically or conceptually appropriate 

to characterize growth on a vertical scale in this manner. This issue will be discussed in 

more detail in Chapter 5.  

 Results for the BG-M3PL and BC-M3PL were more consistent with one another 

in Reading. Similar growth was observed across the scale for both models except 

between G7 and G8 where there was limited growth for the BC-M3PL model. However, 

across all subfactors between G7 and G8 large growth was observed. The growth on the 

general factor may have been displaced to the subfactors between these grades. Overall, 

the BG-M3PL model had a larger range of means compared to the other models. This led 

to almost 2.25 SDs of growth while each of the other models only resulted in 

approximately 2SDs of growth across the scale.  

Mathematics and Reading Latent Vertical Scale Standard Deviations 

Tables 34 and 35 contain the vertical scale standard deviations (SD) across grades 

for Mathematics and Reading. These SDs are also graphically presented in Figures 10 

and 11. These are not the standard deviations of the score estimates; instead they are the 
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estimates of the standard deviations derived from the empirical histograms estimated 

during calibration.  

The general patterns of standard deviation were different between Mathematics 

and Reading. In Mathematics standard deviations tended to increase across grades for 

U3PL separate and hybrid linking conditions. This effect was prevalent across G5-G8. In 

the U3PL concurrent condition, the SDs fluctuated across grades but were generally close 

to 1.00. In the BG-M3PL concurrent condition the SDs fluctuated largely across grades. 

For example, at G3 the SD was .57 and at G4 the SD was 1.58. This was almost a 

threefold increase in the estimated variability of the examinee distribution across two 

grades. Recall, that several negative a-parameters were observed on the general factor in 

Mathematics for at G3 and variance was displaced to the subfactors in these instances. 

The BC-M3PL SDs fluctuated slightly across grades with no distinct pattern observed.  

In Reading, varying decreasing trends in SDs were observed across grades in all 

conditions. In each of the U3PL conditions the estimated SDs were similar in magnitude 

within each grade. In the BG-M3PL a large decreasing trend in SDs was observed across 

grades. Specifically, the SD in G3 was 1.30 and in G7 was .76. In the BC-M3PL 

condition the SDs were generally near 1.00 indicating constant variability across grades.  

Mathematics and Reading Effect Sizes 

Tables 36 and 37 contain the vertical scale effect sizes across grades for 

Mathematics and Reading. These effect sizes are also graphically presented in Figures 12 

and 13. Yen’s effect sizes indicate the separation of the distributions between grades. The 

effect sizes account for both the mean separation and the variability of the distributions. 

Yen’s effect sizes are analogous to Cohen’s d values and the magnitudes of these values 
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can be loosely interpreted based on Cohen’s original effect size “rules of thumb” for 

within and between group treatment effects (Cohen, 1988). In the context of vertical 

scaling in this study, values near .30 indicated “small” grade-to-grade growth, values near 

.50 indicated “medium” grade-to-grade growth, and values near or greater than .80 

indicated “large” grade-to-grade growth  

Across subject areas and conditions, effect sizes were generally between small 

and medium. Effect sizes across conditions fluctuated more in Mathematics than 

Reading. The smallest effect sizes typically occurred between G5-G6 where values were 

close to .30 across conditions, which indicated a small effect. These values are generally 

consistent with the pattern observed for the means. This is because the values of the 

variances were typically near 1.00, which led to similar interpretations of growth between 

the effect sizes and means.  

There were some noteworthy differences between Mathematics and Reading. In 

Mathematics, larger effect sizes were observed between G3 to G4 than in Reading G3 to 

G4. These effect sizes were approximately 50% larger across grades for the U3PL 

vertical scales. Negative growth occurred at G3-G4 and G6-G7 for the BC-M3PL model 

and at G5-G6 for the BG-M3PL. Negative growth was only observed with the bifactor 

models. In each instance where negative growth occurred on the general factor, strong 

positive growth occurred on one or more of the subfactors. The combination of negative 

a-parameters on the general factor, emerging subfactors and positive growth on these 

subfactors, explains the negative growth observed in the bifactor models. Implications for 

this result are discussed in Chapter 5. 
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In Reading, effect sizes were similar in magnitude across all condition except in 

G8 where a small effect (.08) was observed between G7-G8 for the BC-M3PL model. 

This was consistent with the small mean difference observed between G7 and G8.  

Mathematics and Reading Empirical Means and Standard Deviations 

In operational testing, the theoretical vertical scale may be of less interest than the 

examinees’ empirical proficiency estimates based on that scale. Thus, empirical means 

and standard deviations were also evaluated based on the empirical distributions of the 

examinee scores (Tables 38 and 39). Note that this distribution is not the same as the 

estimated latent (or “true”) distribution, which defines the vertical scale. The latent 

distributions is the estimated distribution based on the model calibrations. The empirical 

distribution is the distribution of the examinees’ actual theta estimates after pattern (EAP) 

or summed scoring (EAPSS). This distinction is important because the means and 

standard deviations can be different between the latent and empirical distributions. 

Because a large examinee sample was used in this study, the means between the latent 

and empirical distributions were expected to be similar. However, differences in standard 

deviations were expected between EAP and EAPSS as discussed in Chapter 2.  

 Across all conditions mean differences were only observed in the second decimal 

position and were considered negligibly different from the estimated latent means. Any 

fluctuations in the means were likely because of the relative inaccuracies of the empirical 

distributions compared to the direct estimates of the latent distribution. 

Some differences between EAP and EAPSS were observed for the SD estimates. 

Across all conditions EAPSS empirical SDs were either the same or slightly smaller than 

the EAP empirical SD estimates. In Mathematics (Table 38), EAPSS empirical SD 
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estimates were much smaller in magnitude for the BG-M3PL model across all grades. For 

example, in G6 the empirical SD estimate based on EAPSS was 20% of the magnitude of 

the same estimate based on EAP. In G3 and G6, which had extremely low EAPSS SD's, 

several items had negative a-parameters on the primary factor. Thus, examinees with the 

same summed score could have very different pattern scores. The EAPSS estimates are 

averaged across all patterns. Because each summed score is an average of both high and 

low EAP estimates, the variance of the resulting scaled scores is low. 

Similar results were observed in Reading (Table 39), in which the EAPSS 

empirical SDs were the same or smaller than the EAP empirical SDs. Again, the largest 

differences were observed with the BG-M3PL model. However, the magnitude of 

differences was typically no more than 10% across grades. 

Research Question 3 

Do the correlations of the general factor proficiency estimates depend on the  IRT 

model, calibration method, and scoring method?  

Correlations across all conditions are presented for Mathematics G3-G8 and 

Reading G3-G8 in Tables 40-51. High correlations were expected across all conditions 

because a dominant general factor was expected regardless of model. This was reflected 

in the typically higher a-parameters on the general factor for the U3PL, BG-M3PL and 

BC-M3PL as discussed in RQ1. 

 In examining the correlations of the general factor, a schema was used to 

evaluate the meaningfulness of the correlations. Recall from Chapter 3, that correlations 

between .96-1.00 were considered high, 91-.95 were considered acceptable and 

correlations below .90 were considered low.  
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Correlations within the U3PL (column and rows 1-6) and BC-M3PL (column and 

rows 9-10) conditions were above .98 across G3-G8 in both Mathematics and Reading. 

Additionally, the correlations between the U3PL and BC-M3PL conditions were always 

above .97. This suggests that the relative rank-order of examinees was consistent 

regardless of model or linking method used in these conditions.   

Correlations below .90 were isolated to the BG-M3PL (column and rows 7-8) 

conditions across subjects and grades. Correlations of the BG-M3PL EAP scores were 

not consistent within or between conditions. The BG-M3PL EAP scores typically had the 

low correlations with the BG-M3PL EAPSS scoring conditions across grades and 

subjects. The BG-M3PL EAP (column 7) condition also had low correlation with the 

U3PL and BC-M3PL conditions. These correlations were especially low in Mathematics 

for G3 (approximately .30s) and G6 (approximately .20s). It is also important to note that 

the estimated variance in G3 and G6 were low relative to the other variance estimated for 

this model (see Table 34 for SDs).  

Further examinations of the BG-M3PL condition revealed that the BG-M3PL 

subfactors had several items with high discrimination parameters on the subfactors and 

low or negative item discriminations on the general factor. Thus, the variance of the 

general factor in this condition was meaningfully different than in the other conditions. 

This point was discussed briefly in RQ1. Specifically, the negative discrimination 

parameters resulted in examinees with the same summed scores receiving potentially 

very different EAP estimates. Examinees’ with pattern scores based primarily on correct 

responses to items with negative item parameters were estimated to have much lower 
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general factor EAP estimates than examinees with the same raw summed score who 

answered the items with positive discrimination parameters.  

In the EAPSS condition the pattern of responses for the same raw score were 

weighted, which resulted in consistent EAP estimates for examinees with the same raw 

scores. Thus, the rank order of examinees based on the EAPSS estimates were similar to 

what would be expected by the raw scores. This is likely the reason why the EAPSS 

conditions were still highly correlated with the U3PL and BC-M3PL condition even 

though they were not correlated highly with EAP. In this unique situation, the EAPSS 

estimates were likely more appropriate than the EAP estimates.  

In Reading the same patterns described for Mathematics also occurred, however, 

the correlations were generally higher across all conditions. Recall that there were fewer 

negative and/or low a-parameters on the general factor in Reading for the bifactor 

models. Still, the BG-M3PL EAP scores generally had the lowest correlations with all 

other conditions but were typically greater than .80 across conditions. Similarly, the 

analogous EAPSS scores were highly correlated with the other conditions.  

Research Question 4 

Do examinee proficiency classifications depend on the IRT model, calibration 

method, and scoring method used?  

To examine this research question the state’s current 2011-2012 proficiency cut-

score were transformed to the vertical scale based on the U3PL model in the separate 

calibration condition. Table 52 contains the cut-scores before and after they were placed 

on the vertical scale.  The Stocking and Lord constants (A and B) obtained during 

horizontal equating were used to place examinees scores within each grade onto the 
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original scale score metric (not the vertical scale) developed for this testing program. The 

scale score cut-scores for each grade are provided in columns labeled SS LK (limited 

knowledge cut), SS PR (proficient cut), and SS AK (advanced knowledge cut). To obtain 

the within-grade theta cut-score equivalents, each cut score was subtracted from the B 

constant and divided by the A constant. Next, to place the theta cut scores onto the U3PL 

vertical scale, the Stocking and Lord constants obtained from the U3PL separate 

calibration linking condition were applied to the within-grade theta cut-scores. These 

transformed cut-scores were used to determine the classifications of examinees.  

This model served as the baseline comparison condition. Because the cut-scores 

were not initially based on a vertical scale there were inconsistencies observed after 

placing the cut-scores onto the vertical scale. For example, the Reading G3 advanced 

knowledge cut-score was higher than the Reading G4 advanced knowledge cut-score on 

the vertical. This may seem counter intuitive but it is expected when cut-scores are 

developed within grades without considering the growth of students and changes in tests 

across grades. For example, the Reading G3 teachers set higher standards within G3 than 

the Reading G4 teachers did. After transforming the G3 advanced knowledge cut-score to 

the vertical scale it was higher than the G4 advanced knowledge cut-score. The purpose 

of this study was not to focus on where the cut-scores were on the vertical scale; rather 

the focus was on changes in examinee classifications based on the current cut-scores.    

The percent classification of examinees into each proficiency category was 

calculated based on each vertical scale and each scoring method. Examinees were 

classified only within their respective grades. For example, if G3 examinees had theta 

scores that placed them into an above grade classification category they were only 
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counted within their on-grade classification category. That is, a very high scoring 

examinee in a lower grade was not considered to have met the classification categories in 

higher grades. 

 Changes in the percentage of examinees at each proficiency level were used to 

assess if the choice of vertical scaling method would have had a meaningful impact on 

the classification of examinees. It is important to note that changes in classification only 

indicated that different methods vary with respect to classification. The “true” examinee 

classifications are unknown in a real data study. 

Tables 53-56 contain the examinee classifications for Mathematics and Reading 

across grades. Examinees could be classified into one of four categories including not 

proficient (NP), limited knowledge (LK), proficient (PR), and advanced knowledge 

(AK). The labels of these categories are not of specific interest in this study but are used 

for consistency with this state’s testing program. Differences of greater than 2% at any 

classification category were considered meaningful in this study. Differences of even .5% 

to 1% may be considered meaningful in operational settings where a small percentage of 

classifications differences may affect a large number of examinees. For example, in this 

state 1% of the examinees at each grade represents approximately 450 examinees. 

Differences at the proficiency cut-score were considered the most important.  

Across Mathematics differences of greater than 2% were observed in all grades 

and at all classification categories. Overall, within the U3PL and BC-M3PL calibrations, 

EAP and EAPSS classifications typically did not vary by more than 1%-2% across all 

grades. In the BG-M3PL conditions, large differences were observed in the classification 

between EAP and EAPSS especially at G3 and G6. Recall that these grades have been 
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discussed frequently this chapter. The empirical EAP variances as these grades were the 

lowest for the BG-M3PL model and the EAPSS variances were even lower. This has the 

effect of severe shrinkage of the empirical distributions and affects the classifications of 

examinees. There were no clear trends observed in the classification of examinees 

between EAP and EAPSS overall.  

The U3PL separate and hybrid calibrations also typically did not vary by more 

than 1%-2%. No obvious trends of increasing or decreasing classification were observed 

within the U3PL calibrations. Across grades the classifications simply appeared to 

fluctuate. This may be due to the slight difference in the meaning of the composite 

general factor when a different number of grades and items are used during calibration.  

Across models (U3PL, BG-M3PL, BC-M3PL) there were large differences in 

classifications. In the BG-M3PL model at G3 almost all examinees were classified as not 

proficient. A similar pattern was observed at G5, G6, and G7, where examinees were 

generally not classified in the advanced knowledge category.  This is consistent with the 

low mean estimate at G3 for this model.  

The classification percentages of the BC-M3PL model were generally closer to 

the U3PL model but still varied by 10-15% or more at any classification across grades.  

Additionally, no consistent trend of increasing or decreasing classifications was observed. 

At G3 and G6 a smaller percentage of examinees were classified as not proficient or 

limited knowledge compared to the U3PL conditions. In contrast, at G4, G7, and G8 a 

higher percentage of examinees were classified as not proficient or limited knowledge. 

Overall, the classification results were consistent with the empirical means and standard 

deviations. That is, in conditions where means were lower, there were more examinees in 
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lower classification categories and vice versa when means were higher relative to the 

grade level. 

 Across grades in Reading, patterns similar to those found across grades in 

Mathematics were observed; however, the classifications across conditions were more 

consistent. The classifications for EAP and EAPSS conditions typically varied within 1% 

to 2% for the U3PL and BC-M3PL models. In the BG-M3PL conditions, they typically 

varied between 1% to 5%. Within the U3PL conditions classifications typically varied 

between 1% to 2%; however, at some grades (e.g., G8 advanced knowledge) 

classification differences were greater than 2%.  

Similar to Mathematics, the BG-M3PL conditions generally resulted in fewer if 

any examinees in the advanced knowledge category across all grades. The BC-M3PL 

model was typically within 2% of the classification observed across the U3PL models at 

G4, G5, G6 and G7. At G3 and G8 fewer examinees were classified in the proficient 

category compared to the U3PL models. Overall, the trends in classification were similar 

to those observed for the means, SDs, and effect sizes. The general factor across models 

in Reading was typically more similar than in Mathematics where stronger subfactors 

emerged. The classifications tables provided a more realistic evaluation of the impacts 

that the various models, calibration and scoring methods would have on these examinees. 

Implications for these results will be discussed in Chapter 5.  
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CHAPTER 5 

Discussion 

“The question is, ‘is it worth it?’ That is, does all of the time and effort that goes into 

creating multidimensional [vertical] scales really make a difference?” (Weeks, 2011, 

p.118) 

*    *    * 

The overall purpose of this dissertation was to examine the utility of the bifactor 

model for vertical scaling within a state’s K-12 testing program. The bifactor model was 

of specific interest because it allows for a potentially more complete specification of a 

multidimensional latent space while also being computationally feasible in practice. In 

the process of examining the bifactor model, other psychometric decisions made during 

the vertical scaling process were also evaluated (e.g., IRT model across subjects, 

calibration methods, and scoring methods).  

The framework of this study was such that the psychometric process of vertical 

scaling was examined within a larger operational testing context. That is, technical and 

practical decisions in the development and evaluation of vertical scales were made with 

both psychometric and operational measurement issues in mind. This framework was 

extended into the discussion section. I return to the research questions investigated and 

discuss the results based on a broader context of the feasibility and validity of the models 

used to develop vertical scales.  

Research Question 1 

Which IRT model for vertical scaling best represents the data for Mathematics 

and Reading: U3PL, BG-M3PL, or BC-M3PL? 
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I hypothesized that the BC-M3PL model would provide better fit to the data than 

BG-M3PL and U3PL models. This hypothesis was motivated by two things. First, 

construct shift is likely to be present in the context of vertical scaling and second, tests 

are developed to content blueprints that explicitly suggest that subject areas are 

multidimensional. These two points imply that subject areas such as Mathematics and 

Reading are potentially multidimensional within and across grades. Ideally, this 

multidimensionality, or the latent space more specifically, is correctly specified within 

and across grades in the context of the vertical scale in order to obtain meaningful and 

valid examinee scores on the scale. 

This hypothesis was partly supported; the BC-M3PL model provided better fit 

across in Mathematics but the BG-M3PL model provided better fit in Reading. These 

results are consistent with Li (2012) who found that a constrained bifactor model 

provided better data fit over a unidimensional model for vertical scaling for a state’s 

Mathematics program. However, in this study, the BC-M3PL model provided better data 

fit in Mathematics. Although the bifactor models demonstrated better data fit, I ultimately 

concluded that they were not appropriate for operational vertical scaling based on the 

other research questions investigated in this study. A justification for this decision is 

presented through the remainder of this chapter. 

Research Question 2 

a) Do the latent grade-to-grade means, standard deviations, and effect sizes 

depend on the IRT model and calibration method used to develop the vertical scale?  

b) Do the empirical means and standard deviations depend on the IRT model, 

calibration method, and scoring method used to develop the vertical scale? 
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I hypothesized that the IRT model, calibration method, and scoring method would 

affect the characterization of growth as defined by the means and standard deviations of 

the ability distributions across grades. This hypothesis was also supported.  

The separate, hybrid, and concurrent U3PL calibrations resulted in slightly different 

means and standard deviation at each grade. The differences were most distinct in G3 and 

G8 for both Mathematics and Reading. The differences observed between calibrations 

may be the result of linking error. An additional source of error is introduced during the 

vertical scaling process for separate and hybrid calibration because an additional linking 

step is needed to place the grades on the vertical scale. The linking constants used are 

themselves estimates and can fluctuate. Any fluctuations in the linking constants are 

compounded when grades non-adjacent to the referent grade (e.g., G3, G7, and G8) are 

transformed to the G5 scale because multiple sets of linking constants are involved in the 

chaining process. This linking error could cause small fluctuations in the means and 

standard deviations at each grade. 

Another plausible explanation for the fluctuations observed between separate, 

hybrid, and concurrent linking is that the unidimensional factor may, theoretically and 

mathematically, mean something different in each of these conditions. Based on the 

research literature discussed in Chapters 1 and 2 it was anticipated that a unidimensional 

model would not be appropriate for vertical scaling in the context of Mathematics and 

Reading. Thus, the model was expected to be misspecified, which violates the 

dimensionality assumptions made by unidimensional IRT models. Specifically, if the 

Mathematics and Reading domains are actually multidimensional across grades—which 

is likely—then the results of modeling a single factor will be different if grades are 
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calibrated separately or concurrently. This occurs because the unidimensional factor 

becomes a composite of the multidimensionality which is likely different within and 

across grades. Thus, when items across all grades are used to estimate the unidimensional 

factor then that factor will vary if the relationships between the items reflect different 

constructs across grades. 

Across models, the characterization of growth on the vertical scale varied greatly.  

The U3PL models always demonstrated increasing means from grade-to-grade. The 

magnitude of the growth was consistent with that observed by other researchers (Tong & 

Kolen, 2007). However, the bifactor models did not always lead to vertical scales that 

demonstrated positive  growth. At some grades, the bifactor models demonstrated 

negative growth in Mathematics. In Reading, all of the models resulted in positive growth 

grade-to-grade. However, the BC-M3PL model  resulted in noticeably less growth 

between G7 and G8. As was discussed in Chapter 4, instances of negative growth on the 

general factor for the bifactor models were associated with instances of positive growth 

on the subfactors.  

Although the bifactor models provided better overall data fit, the interpretability 

of growth on the general factors was not straightforward. It is unlikely that the growth 

patterns observed in Mathematics were reflective of the true growth of the examinees. 

Generally, we might expect growth in Mathematics and Reading to be similar, as was 

observed for the U3PL calibrations. If this is a reasonable assumption in this examinee 

sample, then it is unlikely that the growth patterns observed on the general factor for 

Mathematics using the bifactor models were a more accurate representation of the 

examinees’ actual or “true” Mathematics growth across grades. The fluctuating growth 
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observed in Mathematics for the bifactor model may have occurred for several reasons, 

each described below. 

1) The bifactor models may be a more correct but still poor specification of the 

latent space for these constructs. At some grades, the actual subfactor dimensions may be 

a mathematical artifact of the calibration process and may not actually exist in truth. 

Although a confirmatory approach was used to specify the model based on the 

Mathematics content standards, this does not mean that the content standards reflect the 

actual dimensionality of the data. For example, Weeks (2011) used an exploratory IRT 

approach to identify the dimensionality of a state’s Mathematics tests across grades and 

found that three or four dimensions existed at each grade. Although this approach was 

exploratory, it provides some evidence that the dimensionality of Mathematics a) varies 

across grades, and b) may not be well represented by the BC-M3PL model. However, 

Weeks (2011) also chose to use a confirmatory approach based on the Mathematics 

content standards instead of modeling the dimensions based on the exploratory models, 

because he could not meaningfully interpret the dimensions he observed. 

Another concern with the specification of the content subfactors in the BC-M3PL 

calibrations was that the tests in Mathematics are also built to process standards in 

addition to content standards. The process standards represent the problem solving 

procedures that are important to the Mathematics domain. For practical reasons these 

standards were ignored in the specification of the BC-M3PL model in this study. A more 

accurate model may have included content and process factors or subfactors instead of 

content factors only.  
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Although the patterns of growth on the subfactor domains were not a focus of this 

study, positive growth was always observed on one or more subfactors when negative 

growth was observed on the general factor. This indicates that at some grades, these 

content subfactors may be capturing meaningful growth on the content standards, but in 

others, they do not. This issue is not easily resolved, because the growth on the subfactors 

was not consistently positive or negative across grades. Instead, it varied across 

subfactors, grades, and subjects.  

For Reading, all models produced similar results regarding the pattern of growth 

on the general factor. The dimensionality of Reading was expected to be different from 

Mathematics. This was not surprising based on the content standards and curriculum in 

Reading, which are more consistent across grades than Mathematics. Additionally, there 

are no process standards in Reading which may have led to a more appropriate 

specification of the latent space when using the bifactor models for vertical scaling. 

The latent means, EAP means, and EAPSS means were similar across subjects 

and grades. However, the standard deviations varied depending on the scoring method. 

The following pattern was typically observed of the SD estimates; latent SDs > EAP SDs 

> EAPSS SDs. This trend was consistent across conditions. This was expected and 

consistent with findings by Tong and Kolen (2007). Recall from Chapter 2 that EAP is a 

Bayesian based method and scores shrink toward the mean of the prior. This results in a 

biased, but more efficient, estimate of theta. In EAPSS there is a minor amount of 

additional shrinkage because of the loss of information when weighing the EAP pattern 

scores to produce the EAP summed score estimates.  

 



97 

 

Research Question 3 

Do the correlations of the general factor proficiency estimates depend on the  IRT 

model, calibration method, and scoring method?  

There were meaningful differences in the correlations observed with the BG-

M3PL model and other models. This indicates that the general factor of this model is 

likely capturing something different about the construct. The correlations between the 

BC-M3PL model and the U3PL were consistent across all grades in Mathematics and 

Reading and were always greater than .97. This may suggest that the construct captured 

in the general factor is similar between these models. This makes intuitive sense because 

the BC-M3PL items parameters typically had strong positive loadings on the general 

factor and the subfactors were hypothesized to only parse out a small amount of variance 

due to the dependencies within the content areas. However, the interpretations of the 

growth of the BC-M3PL model were non-intuitive in Mathematics with negative growth 

observed between some of the grades. Thus, although the models rank-ordered examinees 

similarly, the distributions of the general factors were still meaningfully different.  

The general factor correlations were near .99 between different calibration 

methods within the U3PL. This provides some evidence that different calibration 

methods will not lead to meaningfully different rank order changes of the examinees even 

though the distributions themselves may fluctuate slightly, as observed by the slightly 

different means and SDs observed within the U3PL calibrations (separate, hybrid, and 

concurrent). The minor differences in correlations observed between calibration methods 

was plausibly due to the linking error introduced in the separate and hybrid calibration 

condition. It also may have been due to the minor fluctuations from using different 
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examinee samples during calibration. In the concurrent calibration conditions, all 

examinees were included in the estimation of all item parameters. Theoretically, this 

should have led to the best estimate of the item parameters because the most information 

is available during calibration. In the separate and hybrid calibration conditions, less 

examinee data is used which may lead to less stable parameter estimates. However, recall 

that even in the separate calibration conditions the sample size used for estimation of any 

grade was never less than 8000. At these high sample sizes, fluctuations in estimates 

across calibration methods should be minimal. 

Within each model, correlations between scoring methods were typically high, 

except in the BG-M3PL condition, where small variances were observed at some grades 

as discussed in Chapter 4. It is important to recognize that EAP and EAPSS can lead to 

varying results depending on the item parameter estimates and the differences between 

pattern and summed scoring methods. In practice, however, the differences between these 

two methods will likely be negligible when the model parameter estimates are more 

typical. The main difference will be the small loss of information that occurs when a 

summed scoring approach is used instead of a pattern scoring approach. 

Research Question 4 

Do examinee proficiency classifications depend on the IRT model, calibration 

method, and scoring method used?  

The most important practical findings relate to the classification of examinees 

across conditions. Across IRT model, calibration method, and scoring methods there 

were regularly classification differences above 2% even at the proficiency cut-score. 

Unlike correlations, the classification percentages will be more sensitive to the mean 
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shifts in the distributions. Thus, even a small difference in the location of the grade level 

distributions can have a meaningful impact on the classifications. Within the U3PL 

calibration methods (separate, hybrid, and concurrent) there were typically small 

differences in examinee classifications. There were also minor classification differences 

across scoring methods (EAP vs. EAPSS). Even these minor differences may be 

considered important for a state testing program where the changing classifications of 

even a small number examinees may cause students, parents, teachers and the general 

public to be concerned. In practice, the calibration methods and scoring methods should 

be determined at some point in the testing program and then held constant. 

 The classification changes were much larger across models. This provides more 

evidence of the importance of the model when developing a vertical scale. With that said, 

the classification cut-scores themselves may be considered arbitrary from a construct 

perspective. Although the cut-scores used in this study were set through a rigorous 

standard setting process, this does not necessarily result in a meaningful “true” 

classification of examinees on the construct. Thus, although the research conditions led to 

varying classifications, similar classification shifts likely occur as a result of changes to 

the cut-scores as a natural part of the evolution of a state’s testing program. Regardless, 

the general public, testing vendors, and state agencies will likely be more concerned with 

classification changes than the other statistical pieces of information evaluated in this 

study such as model fit and correlations. None of the classifications can be considered 

more accurate or more ‘right’ than the other; however, it is important for researchers, 

practitioners, and state agencies to recognize that even seemingly minor changes in 
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psychometric methods can have important impacts on examinees (e.g., separate verse 

hybrid calibration or EAP vs. EAPSS scoring). 

Unidimensional or Multidimensional Models for Vertical Scaling 

The U3PL model is currently the standard for developing vertical scales in state 

testing programs (Education Week, 2010; Reckase, 2010). The use of vertical scaling 

based on unidimesional IRT models will become more prevalent as states transition to the 

Common Core State Standards. The U3PL model assumes that a construct or content 

domain is unidimensional across grades and all of the grades can appropriately be placed 

on the same scale. However, there is evidence to suggest that some subject areas such as 

Mathematics are not unidimensional across grades and what is likely being captured in 

the unidimensional factor is actually a composite of multiple dimensions (Reckase & 

Martineau, 2004; Weeks, 2011). Other subjects such as Reading might be unidimesional 

within and across grades in contrast (Wang & Jiao, 2009).  

In an effort to account for some of the multidimensionality present in vertical 

scaling Li (2012) proposed the BG-M2PL model to account for multidimensionality due 

to dependence of items within each grade, hence the grade specific subfactors. The BC-

M3PL was proposed in this study to model multidimensionality of the content areas 

within and across grades. The content areas were hypothesized to shift in varying ways 

across grades. By specifying content subfactors it was hypothesized that the overall 

construct (Mathematics or Reading) would be better represented across grade. 

The most important question in this study is, which model is ‘appropriate’ or even 

‘most appropriate’? The answer to this question may depend on the construct and the use 

of the model. Although Wang and Jiao (2009) reported that a unidimensional model 
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represented Reading across grades, in this study that finding was not supported. The 

model fit indices suggested that the BC-M3PL in Mathematics and the BG-M3PL model 

in Reading provided the most appropriate representation of the data. From a model-fit 

perspective the bifactor models were optimal within this study for both subject areas. 

From a practical perspective, however, they were not.  

Interpretations of examinee growth were generally more intuitive in the U3PL 

models. However, this is not an endorsement of a unidimensional model for vertical 

scaling.  Although consistent positive growth trends were observed in the U3PL model 

conditions, it is not possible to disentangle what this growth actually represents because 

the unidimensional factor at each grade is likely a composite of multiple dimensions 

within and across grades. This general composite dimension is forced onto the same 

metric in vertical scaling even if it does not mean the same thing across grades. Once 

examinee scores are placed onto the vertical scale it may be easy for stakeholders to lose 

site of the fact that they are likely multidimensional composites that do not mean the 

same thing across the scale. Thus, comparisons and interpretations of students’ growth 

may be inaccurate and lead to erroneous conclusions about students’ knowledge, skills, 

and abilities. 

Additionally, in the bifactor models the subfactors varied. Sometimes a subfactor 

would be dominant (i.e., higher item loadings) and sometimes it would be weak (i.e., 

lower item loadings). In grades where dominant subfactors were observed it may mean 

that the subfactor is capturing an important part of the domain. If this true then evaluating 

examinees on the general factor only may be inappropriate.  The varying subfactors also 

affected the pattern of growth on the general factor across grades. This resulted in 
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patterns of growth that were sometimes difficult to interpret in the bifactor models. Based 

on this study there is some concern that the subfactors may not be stable from grade-to-

grade and in some cases may exist mathematically but not substantively.  

 Presently, the complexities of the constructs across grades may be such that none 

of these models should be used operationally for vertical scaling. In order for vertical 

scales to be most useful there needs to be an alignment between the domain, the test 

development process, and the psychometric model across all grades. However, in spite of 

such a statement states are going to pursue the use of vertical scales. Based on this 

research, there may be some general points that may help states that are considering 

vertical scales. 

 Vertical scales should be considered on a subject-by-subject basis. States should be 

cautious with implementing a vertical scale for subject areas that vary in content and 

curriculum substantially across grades (e.g., Mathematics and Science). Additionally, 

the meaningfulness of the vertical scale may break down as more grades are linked. 

Vertical scales may be appropriate for a few grades but probably not all grades in K-

12.  

 Multidimensional methods of vertical scaling are not well researched and should not 

be considered for use in current practice. Multidimensional models are more complex 

and less stable than their unidimensional counterpart. These models can take much 

longer to estimate and may not always lead to interpretable solutions. However, 

advances in technology and estimation methods will continue to make these models 

more feasible in the future. Thus, researchers should continue to study these models 
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and methods for vertical scaling because of their potential to more accurately 

represent complex constructs.  

 The implementation of operational vertical scales should coincide with a 

comprehensive shift in the process of test design, an alignment of content standards 

across grades, and a process for determining cut-scores. Although not a focus of this 

study, the current within-grade cut-scores were often not intuitive and likely not 

appropriate on the vertical scale. This highlights the importance of shifting the entire 

testing process to one that simultaneously considers all grades during every phase of 

the process. 

 A multidimensional test development process is necessary to support a 

multidimensional model. In this study a multidimensional framework was applied to 

tests that were developed under a unidimensional framework. That is, items were 

initially developed, screened, and selected based on the conceptualization of a single 

domain and using a unidimensional IRT model. Thus, attempting to fit any 

multidimensional model may have been problematic both theoretically and 

statistically. In an ideal multidimensional framework, items would be developed with 

consideration of how they represent and relate to each different dimension. 

Subsequent, calibration of the items based on a multidimensional could then be used 

to help select items that are the most appropriate for the model. As states become 

more interested in measuring specific aspects of domains (i.e., sub-domains) there 

will need to be consideration for how to implement an item and test development 

process that can support a multidimensional framework. However, there will be 



104 

 

considerable challenges for developing multidimensional tests that are stable across 

multiple grades. 

Limitations and Future Direction 

There were several limitations to this study that should be addressed in future 

research.  

1) In operational settings, there may be very short windows of time to conduct the 

entire vertical scaling process. In an effort to mimic operational practice and feasibility, 

certain procedural decisions were made during the vertical scaling process. For example, 

in this study a general set of priors was placed on all item parameters and the estimates of 

these parameters after a specified number of cycles were used regardless of their value or 

magnitude. Even when there were negative or small loadings, item- and model-level 

adjustments such as using stronger priors, removing items, or changing the specification 

of the model were not considered. Making minor item-level or model-level adjustments 

during the vertical scaling process in an operational setting may be difficult. Future 

research should focus on procedural methods for implementing vertical scaling under the 

multidimensional framework. This would include identifying a useful but flexible set of 

priors (rather than situation-specific priors) and processes for handling situations when 

items parameter estimates are out of range. This could include using stronger priors 

initially, removing items with unreasonable parameter estimates from the calibration 

process, or automatically fixing item parameters that appear out of range in order to help 

ensure more accurate estimation of other item parameters. 

Calibration processes also need to be much faster in order to implement these 

models in operational settings. For example, a separate calibration of the U3PL model 
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took only minutes compared to the concurrent bifactor models that took upwards of four 

days to estimate in this study. Future research should look at software and technology 

improvements and improved estimation methods for complex psychometric models. 

These models will continue to be limited primarily to academic research if they cannot be 

estimated more efficiently.  

2) Although two bifactor models were examined in this study there are many 

other plausible models that can and should be evaluated in the context of vertical scaling. 

These models should be closely aligned to the theory and represent the construct 

appropriately across grades. Weeks (2011) investigated correlated MIRT models that 

were based on the subject area’s content standards, which was similar to the approach 

used here. However, the content standards may not provide the best representation of the 

construct or the dimensionality of the data. A closer investigation of these constructs at 

each grade will be necessary to specify the most appropriate psychometric models. This 

area of research will continue to be difficult to study as there are not many settings where 

vertical scaling can be researched within a real data context. However, as more and more 

states implement vertical scales, it will be critical to continue research on the 

dimensionality of the data and the subject domains within and across grades. 

3) Only Mathematics and Reading domains were examined for vertical scaling in 

this study. Mathematics and Reading vertical scales might represent a best-case scenario 

for vertical scaling methodology. These domains are well understood within both 

educational practice and educational research relative to other domains such as critical 

thinking, information seeking, science areas, and others. Yet, even for Mathematics and 

Reading several points were made throughout this dissertation about the limitations of the 



106 

 

vertical scales established for these subjects areas. Other, more complex constructs or less 

understood constructs might need considerable more research before developing vertical 

scales in practice. This point highlights the complexity and challenges of developing 

meaningful vertical scales for any construct.  

4) The vertical scales that were examined in this study were based on a single 

state’s K-12 testing program and may not generalize well to other state testing programs. 

The results and subsequent interpretations of the findings may have changed 

substantively using data from other state testing programs because of variations in 

content standards, curriculum, test designs and processes, and examinee samples. Thus, 

these findings should be considered only within the context of this study. In the future, as 

states transition to the Common Core State Standards, research on vertical scaling may 

become more generalizable between states. It is important to continue applied research in 

this area to help identify best practices for developing vertical scales under a variety of 

situations. 

5) To my knowledge, no studies including this one have pursued a validity 

process for evaluating the final scale. Statistics such as model fit indices, correlation 

tables, and classification percentages have limitations with respect to understanding the 

quality of a psychometric model and the meaningfulness of a vertical scale. A validity 

process is needed to help provide evidence for the interpretability of examinees’ scores 

on the vertical scale. For example, does a 50-unit change in Mathematics in Grade 3 

correspond at all to a 50-unit change in Mathematics at Grade 5? In order to make 

meaningful comparisons of examinees on the vertical scale, the answer to that question 

needs to be ‘yes.’ Mixed methods and qualitative studies including interviews with 
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students, parents and teachers, as well as additional assessments of students may help 

provide insight into the meaningfulness of the vertical scale scores. 

Conclusion 

If constructs are believed to be multidimensional within and across grades in K-12 

testing, then the only appropriate methods for handling this require the use of 

multidimensional models. Unidimensional vertical scales should not continue to be 

pursued simply because they are easier to implement. A meaningful and valid 

interpretation of examinees’ scores is predicated on the meaningfulness and validity of 

the psychometric model. It is my opinion that vertical scales must be evaluated and 

researched in terms of the theoretical constructs they are intended to measure, the ability 

of the psychometric model to appropriately represent the construct given the data, and the 

use of the vertical scale scores for decision-making purposes. A unified approach that 

considers each of these important issues is needed and necessary for the appropriate 

implementation of any scale.  

As educational policy shifts in the future, the use of vertical scales will continue 

to be debated. However, statistical and psychometric methods are not inherently good or 

bad.  Rather they are better characterized as appropriate or not appropriate depending on 

the situation in which they are used. Thus, it will be important to continue researching 

both unidimensional and multidimensional methods of vertical scaling to identify the 

situations where these methods are appropriate and can be used for enhancing the validity 

and meaningfulness of examinees’ scores across grades. 
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Tables 

Table 1 

Common Item Vertical Linking Design for G3-G8 

 General 

Factor 

Secondary 

Factor 1 

Secondary 

Factor 2 

Item 1 a11 a12 - 

Item 2 a21 - a23 

 

Table 2 

Examinee Sample Sizes Across G3-G8 for Mathematics and Reading 

 Grade 3 Grade 4 Grade 5 Grade 6 Grade 7 Grade 8 

Mathematics       

   n 9030 14362 14138 13917 13531 8003 

N 45232 43943 43471 43225 41321 41013 

Reading       

   n 8916 14118 14012 13864 13922 8174 

N 44534 43176 42917 43001 41536 41222 

Note. Sample size is lower in grades 3 and 8 because only two forms contained vertical anchor items. Four 

forms contained vertical anchor items at grade 4-7. n = examinees who responded only to forms containing 

vertical anchor items. N = total number of examinees. 
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Table 3 

Demographic Characteristics by Grade for Mathematics G3-G8 

 Grade 3 Grade 4 Grade 5 Grade 6 Grade 7 Grade 8 

Gender       

% Male 50.11 50.05 50.26 50.05 49.77 49.98 

% Female 49.89 49.95 49.74 49.95 50.23 50.02 

Ethnicity       

% White/Caucasian 52.79 52.66 53.02 53.32 54.57 54.60 

% American Indian/ 

Alaskan Native 
15.50 16.12 16.49 16.63 16.81 16.62 

% Hispanic/Latino 14.91 14.30 13.82 13.17 12.36 12.13 

% Black/ 

African American 
9.03 9.16 8.93 9.40 9.28 9.58 

% Asian 1.88 1.92 2.02 1.94 1.91 1.94 

% Pacific Islander 0.28 0.26 0.27 0.22 0.27 0.23 

% Two or more races 5.60 5.59 5.45 5.31 4.80 4.92 

Note. All values based on data collected in the 2011-2012 school year. 
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Table 4 

Demographic Characteristics by Grade for Reading Grades G3-G8 

 Grade 3 Grade 4 Grade 5 Grade 6 Grade 7 Grade 8 

Gender       

% Male 49.73 49.64 49.86 49.87 49.66 49.97 

% Female 50.27 50.36 50.14 50.13 50.34 50.03 

Ethnicity       

% White/Caucasian 52.84 52.73 53.13 53.40 54.62 54.68 

% American Indian/ 

Alaskan Native 
15.46 16.11 16.50 16.60 16.75 16.60 

% Hispanic/Latino 14.89 14.22 13.68 13.07 12.35 12.04 

% Black/ 

African American 
9.11 9.20 8.99 9.46 9.32 9.57 

% Asian 1.85 1.90 1.98 1.91 1.91 1.90 

% Pacific Islander 0.27 0.25 0.26 0.22 0.26 0.25 

% Two or more races 5.58 5.59 5.46 5.34 4.79 4.96 

Note. All values based on data collected in the 2011-2012 school year. 
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Table 5 

Mathematics G3: Content Standards and Objectives 

Content Standards and Objectives 
Approximate Number 

of Items 

Approximate 

Percentage of Items 

1. Algebraic Reasoning: Patterns 

and Relationship 
7 14% 

Algebra Patterns 2  

Equations 2  

Number Properties 3  

   

2. Number Sense and Operation 20 40% 

Number Sense 10  

Number Operations 10  

   

3. Geometry 7 14% 

Properties of shapes 3  

Spatial Reasoning 2  

Coordinate Geometry 2  

   

4. Measurement 9 18% 

Measurement 4  

Time and Temperature 2  

Money 3  

   

5. Data Analysis 7 14% 

Data analysis 4  

Probability 3  

Total 50 100% 

Note. Information based on the 2010-2011 school year. 
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Table 6 

Mathematics G8: Content Standards and Objectives 

Content Standards and Objectives 
Approximate 

Number of Items 

Approximate 

Percentage of Items 

1. Algebraic Reasoning: Patterns and 

Relationship 
16 32% 

Equations 10-12  

Inequalities 4-6  

   

2. Number Sense and Operation 11 22% 

Number Sense 3-4  

Number Operations 7-8  

   

3. Geometry 9 18% 

Three Dimensional Figures 5  

Pythagorean Theorem 4  

   

4. Measurement 7 14% 

Surface Area and Volume 3  

Ratio and Proportions 2  

Composite Figures 2  

   

5. Data Analysis 7 14% 

Data analysis 3  

Central Tendency 4  

Total 50 100% 

Note. Information based on the 2010-2011 school year. 
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Table 7 

Descriptive Statistics for the Total Score by Grade for Mathematics G3-G8 (Sample 

Only) 

 Grade 3 Grade 4 Grade 5 Grade 6 Grade 7 Grade 8 

Mathematics       

Mean 37.82 38.07 35.54 33.08 31.90 32.45 

Standard Deviation 8.31 8.32 8.34 9.14 8.99 9.37 

Skewness -0.83 -0.85 -0.61 -0.28 -0.16 -0.24 

Kurtosis 0.13 0.14 -0.32 -0.69 -0.68 -0.73 

Note. *Maximum raw score in Grade 5 is 49. 

 

  



124 

 

Table 8 

Reading G3: Content Standards and Objectives 

Content Standards and Objectives 
Approximate Number 

of Items 

Approximate 

Percentage of Items 

1. Vocabulary 12 24% 

Words in Context 2-4  

Affixes, Roots, and Stems 2-4  

Synonyms, Antonyms, and 

Homonyms 
2-4  

Using Resource Materials 2-4  

   

2. Comprehension 

/Critical Literacy 
24 48% 

Literal Understanding 5  

Inferences and Interpretation 7  

Summary and Generalization 6  

Analysis and Evaluation 6  

   

3. Literature 8 16% 

Literary Elements 3-4  

Figurative Language/Sound 

Devices 
4-5  

   

4. Research and Information 6 12% 

Accessing Information 6  

   

Total 50 100% 

Note. Information based on the 2010-2011 school year. 
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Table 9 

Reading G8: Content Standards and Objectives 

Content Standards and Objectives 
Approximate Number 

of Items 

Approximate 

Percentage of Items 

1. Vocabulary 6 12% 

Words in Context 2  

Word Origins 2  

Idioms and Comparisons 2  
   

2. Comprehension/Critical Literacy 21 42% 

Literal Understanding 4  

Inferences and Interpretation 4-6  

Summary and Generalization 5-7  

Analysis and Evaluation 6-8  

   

3. Literature 15 30% 

Literary Genre 4  

Literary Elements 5-7  

Figurative Language/Sound 

Devices 
4-6  

   

4. Research and Information 8 16% 

Accessing Information 4  

Interpreting Information 4  
   

Total 50 100% 
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Table 10 

Descriptive Statistics for the Total Score by Grade for Reading G3-G8 (Sample Only) 

 Grade 3 Grade 4 Grade 5 Grade 6 Grade 7 Grade 8 

Reading       

Mean 35.77 37.20 37.99 35.13 38.17 38.21 

Standard Deviation 8.72 7.83 8.01 8.63 7.45 7.27 

Skewness -0.80 -0.85 -0.91 -0.69 -1.16 -1.20 

Kurtosis 0.01 0.42 0.39 -0.13 1.08 1.53 
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Table 11 

Common Item Vertical Linking Design for Mathematics and Reading G3-G8 

Grade Form 

Grade 

Field Test G3 G4 G5 G6 G7 G8 

1 2 1 2 1 2 1 2 1 2 1 2 

G3 
9 

50 
5          5 

10  5         5 

G4 

9 5  

50 

        5 

10  5         5 

11   5        5 

12    5       5 

G5 

9   5  

50 

      5 

10    5       5 

11     5      5 

12      5     5 

G6 

9     5  

50 

    5 

10      5     5 

11       5    5 

12        5   5 

G7 

9       5  

50 

  5 

10        5   5 

11         5  5 

12          5 5 

G8 
9         5  

50 
5 

10          5 5 
Note. Forms 1-8 are not included in the above table. 60 items are on each form. This can be 

derived by summing across the forms for each row. Items in italics are used for operational 

scoring. Colored cells indicate the grade level of the item.  
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Table 12 

 Mathematics Content Standards Coverage for Non-anchor and Anchor Items 

 Non-anchor Items (%) Vertical Anchor Items (%) 

 1 2 3 4 5 1 2 3 4 5 

G3 12.50 45.00 10.00 20.00 12.50 20.00 20.00 30.00 10.00 20.00 

G4 12.50 40.00 17.50 17.50 12.50 20.00 20.00 20.00 20.00 20.00 

G5 27.50 35.00 12.50 12.50 12.50 22.22 22.22 22.22 22.22 11.11 

G6 27.50 32.50 15.00 12.50 12.50 18.18 18.18 18.18 18.18 27.27 

G7  32.50 22.50 15.00 17.50 12.50 20.00 20.00 20.00 20.00 20.00 

G8 35.00 22.50 17.50 12.50 12.50 20.00 20.00 20.00 20.00 20.00 

Note. Percentages reflect the proportion of items that map to each standard. 

Table 13 

 Reading Content Standards Coverage for Non-anchor and Anchor Items 

 Non-anchor Items (%) Vertical Anchor Items (%) 

 1 2 3 4 1 2 3 4 

G3 25.00 47.50 17.50 10.00 20.00 50.00 10.00 20.00 

G4 22.50 50.00 17.50 10.00 30.00 30.00 20.00 20.00 

G5 22.50 40.00 22.50 15.00 30.00 30.00 30.00 10.00 

G6 17.50 37.50 32.50 12.50 10.00 40.00 20.00 30.00 

G7 20.00 42.50 22.50 15.00 22.22 33.33 22.22 22.22 

G8 10.00 45.00 30.00 15.00 20.00 30.00 30.00 20.00 

Note. Percentages reflect the proportion of items that map to each standard. 
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Table 14 

Mathematics Vertical Scaling Research Conditions 

Research 

Condition 
Model Calibration Linking Scoring 

1 U3PL Concurrent - Pattern Scoring (EAP) 

2 U3PL Concurrent - Summed Scoring (EAPSS) 

3 U3PL Separate  SL Pattern Scoring (EAP) 

4 U3PL Separate  SL Summed Scoring (EAPSS) 

5 U3PL Hybrid  SL Pattern Scoring (EAP) 

6 U3PL Hybrid  SL Summed Scoring (EAPSS) 

7 BG-M3PL Concurrent - Pattern Scoring (EAP) 

8 BG-M3PL Concurrent - Summed Scoring (EAPSS) 

9 BC-M3PL Concurrent - Pattern Scoring (EAP) 

10 BC-M3PL Concurrent - Summed Scoring (EAPSS) 

Note. SL = Stocking and Lord linking method used 

 

Table 15 

Reading Vertical Scaling Research Conditions 

Research 

Condition 
Model Calibration Linking Scoring 

11 U3PL Concurrent - Pattern Scoring (EAP) 

12 U3PL Concurrent - Summed Scoring (EAPSS) 

13 U3PL Separate  SL Pattern Scoring (EAP) 

14 U3PL Separate  SL Summed Scoring (EAPSS) 

15 U3PL Hybrid  SL Pattern Scoring (EAP) 

16 U3PL Hybrid  SL Summed Scoring (EAPSS) 

17 BG-M3PL Concurrent - Pattern Scoring (EAP) 

18 BG-M3PL Concurrent - Summed Scoring (EAPSS) 

19 BC-M3PL Concurrent - Pattern Scoring (EAP) 

20 BC-M3PL Concurrent - Summed Scoring (EAPSS) 

Note. SL = Stocking and Lord linking method used 
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Table 16 

Classical Item Difficulties by Grade for Reading G3-G5 Vertical Anchor Items 

 Grade 3 Grade 4 Grade 5 

 

Below 

Grade 

On 

Grade 

Above 

Grade 

Below 

Grade 

On 

Grade 

Above 

Grade 

Below 

Grade 

On 

Grade 

Above 

Grade 

Item 1 - 0.82 0.88 0.47 0.63 0.79 0.51 0.59 0.62 

Item 2 - 0.68 0.80 0.87 0.91 0.95 0.72 0.75 0.84 

Item 3 - 0.72 0.82 0.86 0.86 0.91 0.66 0.76 0.82 

Item 4 - 0.78 0.84 0.49 0.72 0.76 0.67 0.76 0.84 

Item 5 - 0.52 0.56 0.66 0.71 0.79 0.88 0.88 0.91 

Item 6 - 0.80 0.87 0.94 0.95 0.97 0.82 0.87 0.89 

Item 7 - 0.83 0.88 0.54 0.69 0.77 0.60 0.64 0.69 

Item 8 - 0.73 0.83 0.85 0.86 0.88 0.48 0.55 0.58 

Item 9 - 0.76 0.81 0.92 0.94 0.95 0.57 0.60 0.67 

Item 10 - 0.46 0.40 0.80 0.86 0.91 0.46 0.60 0.67 
Note. All values based on data collected in the 2011-2012 school year. 

 

Table 17 

Classical Item Difficulties by Grade for Reading Grade G6-G8 Vertical Anchor Items 

 Grade 6 Grade 7 Grade 8 

 

Below 

Grade 

On 

Grade 

Above 

Grade 

Below 

Grade 

On 

Grade 

Above 

Grade 

Below 

Grade 

On 

Grade 

Above 

Grade 

Item 1 0.93 0.93 0.96 0.75 0.81 0.82 0.89 0.95 - 

Item 2 0.50 0.56 0.65 0.91 0.95 0.96 0.64 0.79 - 

Item 3 0.43 0.46 0.56 0.79 0.85 0.87 0.80 0.85 - 

Item 4 0.38 0.45 0.53 0.45 0.44 0.49 0.76 0.82 - 

Item 5 0.51 0.60 0.61 0.62 0.68 0.65 0.53 0.64 - 

Item 6 0.61 0.62 0.74 0.58 0.66 0.68 0.59 0.65 - 

Item 7 0.49 0.41 0.52 0.64 0.64 0.75 0.44 0.53 - 

Item 8 0.44 0.61 0.68 0.69 0.77 0.79 0.67 0.79 - 

Item 9 0.51 0.55 0.63 0.84 0.87 0.91 0.77 0.82 - 

Item 10 0.71 0.74 0.80 0.79 0.85 0.90 0.82 0.90 - 
Note. All values based on data collected in the 2011-2012 school year. 
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Table 18 

Classical Item Difficulties by Grade for Mathematics G3-G5 Vertical Anchor Items 

 Grade 3 Grade 4 Grade 5 

 

Below 

Grade 

On 

Grade 

Above 

Grade 

Below 

Grade 

On 

Grade 

Above 

Grade 

Below 

Grade 

On 

Grade 

Above 

Grade 

Item 1 - 0.79 0.82 0.66 0.78 0.79 0.79 0.77 0.75 

Item 2 - 0.92 0.90 0.44 0.69 0.76 0.40 0.42 0.37 

Item 3 - 0.59 0.69 0.66 0.78 0.84 0.52 0.64 0.56 

Item 4 - 0.82 0.86 0.43 0.65 0.70 0.44 0.79 0.79 

Item 5 - 0.78 0.72 0.52 0.75 0.79 0.65 0.80 0.73 

Item 6 - 0.78 0.86 0.73 0.83 0.83 0.76 0.82 0.80 

Item 7 - 0.82 0.72 0.50 0.85 0.90 0.55 0.70 0.74 

Item 8 - 0.90 0.92 0.79 0.88 0.89 0.71 0.79 0.77 

Item 9 - 0.94 0.95 0.59 0.71 0.76 0.62 0.71 0.70 

Item 10 - 0.75 0.72 0.87 0.89 0.92 - - - 
Note. All values based on data collected in the 2011-2012 school year. 

 

Table 19 

Classical Item Difficulties by Grade for Mathematics G6-G8 Vertical Anchor Items 

 Grade 6 Grade 7 Grade 8 

 

Below 

Grade 

On 

Grade 

Above 

Grade 

Below 

Grade 

On 

Grade 

Above 

Grade 

Below 

Grade 

On 

Grade 

Above 

Grade 

Item 1 0.52 0.62 0.62 0.52 0.68 0.62 0.72 0.81 - 

Item 2 0.59 0.69 0.74 0.51 0.60 0.78 0.41 0.69 - 

Item 3 0.44 0.74 0.78 0.52 0.60 0.65 0.59 0.75 - 

Item 4 0.40 0.51 0.42 0.32 0.45 0.44 0.56 0.72 - 

Item 5 0.58 0.71 0.76 0.39 0.75 0.62 0.82 0.88 - 

Item 6 0.55 0.62 0.64 0.30 0.68 0.81 0.47 0.66 - 

Item 7 0.68 0.70 0.65 0.85 0.88 0.93 0.50 0.54 - 

Item 8 0.96 0.95 0.96 0.49 0.67 0.77 0.41 0.38 - 

Item 9 0.85 0.84 0.89 0.41 0.62 0.72 0.28 0.50 - 

Item 10 0.76 0.69 0.68 0.49 0.58 0.68 0.36 0.56 - 

Item 11 0.43 0.61 - - - - - - - 
Note. All values based on data collected in the 2011-2012 school year. 
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Table 20 

Classical Item Discriminations by Grade for Reading Grades G3-G5 Vertical Anchor 

Item 

 Grade 3 Grade 4 Grade 5 

 

Below 

Grade 

On 

Grade 

Above 

Grade 

Below 

Grade 

On 

Grade 

Above 

Grade 

Below 

Grade 

On 

Grade 

Above 

Grade 

Item 1 - 0.35 0.27 0.34 0.41 0.41 0.30 0.28 0.29 

Item 2 - 0.42 0.35 0.41 0.37 0.22 0.42 0.45 0.39 

Item 3 - 0.39 0.34 0.48 0.48 0.44 0.36 0.41 0.36 

Item 4 - 0.33 0.23 0.36 0.48 0.49 0.35 0.43 0.40 

Item 5 - 0.24 0.23 0.38 0.38 0.34 0.28 0.30 0.23 

Item 6 - 0.42 0.38 0.35 0.33 0.28 0.30 0.33 0.27 

Item 7 - 0.42 0.36 0.38 0.39 0.38 0.28 0.27 0.27 

Item 8 - 0.43 0.37 0.35 0.33 0.27 0.27 0.32 0.30 

Item 9 - 0.35 0.31 0.39 0.37 0.31 0.36 0.36 0.31 

Item 10 - 0.33 0.28 0.38 0.40 0.34 0.27 0.35 0.38 
Note. All values based on data collected in the 2011-2012 school year. 

 

Table 21 

Classical Item Discriminations by Grade for Reading Grades G6-G8 Vertical Anchor 

Items 

 Grade 6 Grade 7 Grade 8 

 

Below 

Grade 

On 

Grade 

Above 

Grade 

Below 

Grade 

On 

Grade 

Above 

Grade 

Below 

Grade 

On 

Grade 

Above 

Grade 

Item 1 0.34 0.40 0.37 0.40 0.40 0.38 0.44 0.36 - 

Item 2 0.31 0.37 0.35 0.38 0.38 0.37 0.35 0.28 - 

Item 3 0.32 0.39 0.40 0.29 0.29 0.33 0.37 0.35 - 

Item 4 0.19 0.26 0.32 -0.03 -0.06 -0.03 0.40 0.33 - 

Item 5 0.22 0.25 0.15 0.33 0.28 0.27 0.30 0.29 - 

Item 6 0.31 0.36 0.32 0.19 0.22 0.25 0.32 0.32 - 

Item 7 0.27 0.29 0.29 0.35 0.33 0.37 0.20 0.23 - 

Item 8 0.32 0.41 0.37 0.27 0.30 0.26 0.22 0.26 - 

Item 9 0.24 0.35 0.32 0.32 0.37 0.33 0.39 0.36 - 

Item 10 0.39 0.43 0.40 0.36 0.36 0.32 0.41 0.40 - 
Note. All values based on data collected in the 2011-2012 school year. 
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Table 22 

Classical Item Discriminations by Grade for Mathematics Grades G3-G5 Vertical 

Anchor Items 

 Grade 3 Grade 4 Grade 5 

 

Below 

Grade 

On 

Grade 

Above 

Grade 

Below 

Grade 

On 

Grade 

Above 

Grade 

Below 

Grade 

On 

Grade 

Above 

Grade 

Item 1 - 0.52 0.48 0.41 0.39 0.40 0.37 0.33 0.36 

Item 2 - 0.17 0.16 0.28 0.46 0.43 0.32 0.34 0.26 

Item 3 - 0.40 0.42 0.45 0.42 0.41 0.25 0.40 0.39 

Item 4 - 0.43 0.41 0.33 0.36 0.37 0.38 0.43 0.43 

Item 5 - 0.33 0.30 0.42 0.42 0.39 0.31 0.36 0.32 

Item 6 - 0.51 0.43 0.39 0.38 0.41 0.38 0.33 0.33 

Item 7 - 0.32 0.21 0.21 0.40 0.39 0.48 0.54 0.50 

Item 8 - 0.41 0.32 0.33 0.30 0.29 0.49 0.46 0.43 

Item 9 - 0.29 0.23 0.26 0.35 0.30 0.31 0.39 0.41 

Item 10 - 0.33 0.33 0.36 0.32 0.21 - - - 
Note. All values based on data collected in the 2011-2012 school year. 

 

Table 23 

Classical Item Discriminations by Grade for Mathematics Grades G6-G8 Vertical 

Anchor Items  

 Grade 6 Grade 7 Grade 8 

 

Below 

Grade 

On 

Grade 

Above 

Grade 

Below 

Grade 

On 

Grade 

Above 

Grade 

Below 

Grade 

On 

Grade 

Above 

Grade 

Item 1 0.31 0.35 0.35 0.30 0.33 0.34 0.37 0.37 - 

Item 2 0.40 0.46 0.43 0.26 0.27 0.39 0.29 0.41 - 

Item 3 0.23 0.37 0.35 0.42 0.41 0.42 0.38 0.41 - 

Item 4 0.00 0.25 0.21 0.28 0.41 0.35 0.46 0.50 - 

Item 5 0.48 0.47 0.43 0.11 0.35 0.29 0.36 0.31 - 

Item 6 0.30 0.32 0.31 0.25 0.52 0.50 0.29 0.29 - 

Item 7 0.34 0.33 0.33 0.39 0.36 0.33 0.23 0.28 - 

Item 8 0.22 0.23 0.16 0.34 0.39 0.42 0.48 0.42 - 

Item 9 0.31 0.39 0.30 0.39 0.49 0.48 0.24 0.30 - 

Item 10 0.40 0.42 0.35 0.35 0.38 0.37 0.44 0.56 - 

Item 11 0.37 0.47 - - - - - - - 
Note. All values based on data collected in the 2011-2012 school year. 
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Table 24 

Mathematics G3-G8: Separate Calibrations Model Fit Information 

 

 
PRM -2LL AIC BIC 

SSA 

BIC 
Cyc. 

Max  

Parm  

Change 

G3        

 U3PL 180 439422.56 439782.56 441062.05 439433.68 84 0.000096 

G4        

 U3PL 207 703823.84 704237.84 705805.32 703835.57 80 -0.000097 

G5        

 U3PL 210 754867.14 755287.14 756874.03 754878.87 83 0.000097 

G6        

 U3PL 210 810514.70 810934.70 812518.29 810526.41 131 0.000098 

G7        

 U3PL 210 786698.17 787118.17 788695.84 786709.85 93 0.000097 

G8        

 U3PL 180 468797.25 469157.25 470415.02 468808.25 92 0.000099 

Note. PRM = number of estimated parameters, ΔPRM= parameter difference between full and reduced model, -2LL = negative two log-likelihood, Δ-

2LL = -2LL difference between full and reduced model (equivalent to 
2G ), P = p-value, AIC = Akaike’s Information Criterion, BIC = Bayesian 

Information Criterion, SSABIC = Sample Size Adjusted BIC, Cyc = Total number of E-M cycles (5000 max), Max parm change = maximum parameter 

change at the end of E-M cycles.  



135 

 

Table 25 

Mathematics G3-G8: Hybrid Calibrations Model Fit Information 

 

 
PRM -2LL AIC BIC 

SSA 

BIC 
Cyc. 

Max  

Parm  

Change 

G34        

 U3PL 329 1146847.15 1147505.15 1150156.94 1146859.83 387 0.000099 

G56        

 U3PL 362 1568192.55 1568916.55 1571900.13 1568205.51 238 0.000099 

G78        

 U3PL 332 1258563.41 1259227.41 1261875.90 1258576.02 182 0.000099 

Note. PRM = number of estimated parameters, ΔPRM= parameter difference between full and reduced model, -2LL = negative two log-likelihood, Δ-

2LL = -2LL difference between full and reduced model (equivalent to 
2G ), P = p-value, AIC = Akaike’s Information Criterion, BIC = Bayesian 

Information Criterion, SSABIC = Sample Size Adjusted BIC, Cyc = Total number of E-M cycles (5000 max), Max parm change = maximum parameter 

change at the end of E-M cycles.  

 

Table 26 

Mathematics G3-G8: Concurrent Calibrations Model Fit Information 

 

 
PRM ΔPRM -2LL Δ-2LL P AIC BIC 

SSA 

BIC 

Best 

fit? 
Cyc. 

Max  

Parm  

Change 

G345678            

 U3PL 910 - 3979285.91 - - 3981105.91 3989476.05 3979300.74 3 813 -0.000099 

 BG-M3PL 1309 399 3953064.11 26221.80 0.00 3955682.11 3967722.24 3953079.31 2 5000 0.001447 

 BC-M3PL 1260 350 3934116.72 45169.19 0.00 3936636.72 3948226.14 3934131.88 1 5000 -0.000655 

Note. PRM = number of estimated parameters, ΔPRM= parameter difference between full and reduced model, -2LL = negative two log-likelihood, Δ-

2LL = -2LL difference between full and reduced model (equivalent to 
2G ), P = p-value, AIC = Akaike’s Information Criterion, BIC = Bayesian 

Information Criterion, SSABIC = Sample Size Adjusted BIC, Cyc = Total number of E-M cycles (5000 max), Max parm change = maximum parameter 

change at the end of E-M cycles.  
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Table 27 

Reading G3-G8: Separate Calibrations Model Fit Information 

 

 
PRM -2LL AIC BIC SSA_BIC 

Best  

fit? 
Cycles 

Max  

Parm  

Change 

G3         

 U3PL 180 476729.36 477089.36 478366.57 476740.47 3 100 0.000097 

G4         

 U3PL 210 727742.8 728162.8 729749.39 727754.52 3 74 -0.000097 

G5         

 U3PL 210 696390.73 696810.73 698395.74 696402.45 3 74 -0.000097 

G6         

 U3PL 207 751472.79 751886.79 753446.96 751484.48 3 72 0.0000978 

G7         

 U3PL 207 683456.21 683870.21 685431.25 683467.91 3 85 0.000099 

G8         

 U3PL 177 411755.90 412109.90 413350.45 411766.91 3 66 0.000094 

Note. PRM = number of estimated parameters, ΔPRM= parameter difference between full and reduced model, -2LL = negative two log-likelihood, Δ-

2LL = -2LL difference between full and reduced model (equivalent to 
2G ), P = p-value, AIC = Akaike’s Information Criterion, BIC = Bayesian 

Information Criterion, SSABIC = Sample Size Adjusted BIC, Cyc = Total number of E-M cycles (5000 max), Max parm change = maximum parameter 

change at the end of E-M cycles.  
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Table 28 

Reading G3-G8: Hybrid Calibrations Model Fit Information 

 

 
PRM -2LL AIC BIC SSA_BIC Cycles 

Max  

Parm  

Change 

G34        

 U3PL 332 1205733.96 1206397.96 1209068.81 1205746.63 183 0.000099 

G56        

 U3PL 359 1448434.29 1449152.29 1452108.85 1448447.23 194 0.000099 

G78        

 U3PL 329 1095706.31 1096364.31 1098997.35 1095718.93 128 0.0000997 

Note. PRM = number of estimated parameters, ΔPRM= parameter difference between full and reduced model, -2LL = negative two log-likelihood, Δ-

2LL = -2LL difference between full and reduced model (equivalent to 
2G ), P = p-value, AIC = Akaike’s Information Criterion, BIC = Bayesian 

Information Criterion, SSABIC = Sample Size Adjusted BIC, Cyc = Total number of E-M cycles (5000 max), Max parm change = maximum parameter 

change at the end of E-M cycles.  

 

 Table 29 

Reading G3-G8: Concurrent Calibrations Model Fit Information 

 

 
PRM ΔPRM -2LL Δ-2LL P AIC BIC SSA_BIC 

Best  

fit? 
Cycles 

Max  

Parm  

Change 

G345678            

 U3PL 907 - 3750527.69 - - 3752341.69 3760684.54 3750542.52 3 609 0.000099 

 BG-M3PL 1304 397 3738060.53 12467.16 0.00 3740668.53 3752663.11 3738075.72 1 1150 0.000099 

 BC-M3PL 1246 339 3739363.50 11164.19 0.00 3741855.50 3753316.58 3739378.65 2 5000 0.000542 

Note. PRM = number of estimated parameters, ΔPRM= parameter difference between full and reduced model, -2LL = negative two log-likelihood, Δ-

2LL = -2LL difference between full and reduced model (equivalent to 
2G ), P = p-value, AIC = Akaike’s Information Criterion, BIC = Bayesian 

Information Criterion, SSABIC = Sample Size Adjusted BIC, Cyc = Total number of E-M cycles (5000 max), Max parm change = maximum parameter 

change at the end of E-M cycles.  
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Table 30 

Mathematics and Reading U3PL Separate Calibration Cumulative Linking Constants 

Link 
Notation 

(Afrom,to) 

Math 

Slope 

Reading 

Slope 

Notation 

(Bfrom,to) 

Math 

Intercept 

Reading 

Intercept 

G3 to G4 A3,5 0.8861 1.1220 B3,5 -0.9752 -0.8900 

G4 to G5 A4,5 0.9340 1.03559 B4,5 -0.4237 -0.4074 

G5 to G5 A5,5 1.0000 1.0000 B5,5 0.0000 0.0000 

G6 to G5 A6,5 1.1578 1.0112 B6,5 0.2562 0.2711 

G7 to G6 A7,5 1.2620 0.97820 B7,5 0.7921 0.6466 

G8 to G7 A8,5 1.2586 0.9634 B8,5 1.4302 1.0533 

 

Table 31 

Mathematics and Reading U3PL Hybrid Calibration Cumulative Linking Constants 

Link 
Notation 

(Afrom,to) 

Math 

Slope 

Reading 

Slope 

Notation 

(Bfrom,to) 

Math 

Intercept 

Reading 

Intercept 

G34 to G56 A34,56 0.9842 1.07293 B34,56 -1.1104 -0.9069 

G56 to G56 A56,56 1.0000 1.0000 B56,56 0.0000 0.0000 

G78 to G56 A78,56 1.20587 1.0014 B78,56 0.7757 0.5843 

  



139 

 

Table 32 

Math Vertical Scale General Factor Means  

 
U3PL 

Separate 

U3PL 

Hybrid 

U3PL 

Concurrent 

BG-M3PL 

Concurrent 

BC-M3PL 

Concurrent 

Grade 3 -0.98 -1.11 -1.15 -2.52 -0.69 

Grade 4 -0.42 -0.43 -0.46 -0.54 -1.24 

Grade 5 0.00 0.00 0.00 0.00 0.00 

Grade 6 0.26 0.20 0.16 -0.39 0.46 

Grade 7  0.79 0.78 0.72 0.65 0.35 

Grade 8 1.43 1.33 1.24 1.32 0.66 

 

Table 33 

Reading Vertical Scales Means 

 
U3PL 

Separate 

U3PL 

Hybrid 

U3PL 

Concurrent 

BG-M3PL 

Concurrent 

BC-M3PL 

Concurrent 

Grade 3 -0.89 -0.97 -0.88 -1.09 -1.14 

Grade 4 -0.41 -0.43 -0.42 -0.42 -0.44 

Grade 5 0.00 0.00 0.00 0.00 0.00 

Grade 6 0.27 0.26 0.26 0.34 0.32 

Grade 7  0.65 0.58 0.62 0.72 0.71 

Grade 8 1.05 0.97 0.98 1.14 0.79 
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Table 34 

Mathematics Vertical Scales Standard Deviations 

 
U3PL 

Separate 

U3PL 

Hybrid 

U3PL 

Concurrent 

BG-M3PL 

Concurrent 

BC-M3PL 

Concurrent 

Grade 3 0.88 0.98 1.06 0.57 1.09 

Grade 4 0.92 0.96 1.01 1.58 1.02 

Grade 5 1.00 1.00 1.00 1.00 1.00 

Grade 6 1.17 1.30 1.09 0.65 1.12 

Grade 7  1.25 1.21 1.07 0.90 1.07 

Grade 8 1.25 1.10 1.01 1.03 1.09 

 

Table 35 

Reading Vertical Scales Standard Deviations 

 
U3PL 

Separate 

U3PL 

Hybrid 

U3PL 

Concurrent 

BG-M3PL 

Concurrent 

BC-M3PL 

Concurrent 

Grade 3 1.12 1.06 1.05 1.31 1.02 

Grade 4 1.04 1.02 1.02 1.08 1.04 

Grade 5 1.00 1.00 1.00 1.00 1.00 

Grade 6 1.00 0.98 0.99 0.97 1.00 

Grade 7  0.98 1.00 0.96 0.76 0.98 

Grade 8 0.96 0.94 0.97 0.85 0.98 
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Table 36 

Mathematics Vertical Scales Effect Sizes 

 
U3PL 

Separate 

U3PL 

Hybrid 

U3PL 

Concurrent 

BG-M3PL 

Concurrent 

BC-M3PL 

Concurrent 

G3 to G4 0.62 0.70 0.67 1.67 -0.52 

G4 to G5 0.44 0.44 0.46 0.41 1.23 

G5 to G6 0.24 0.17 0.15 -0.46 0.43 

G6 to G7 0.44 0.46 0.52 1.32 -0.10 

G7 to G8 0.51 0.48 0.50 0.69 0.29 

 

Table 37 

Reading Vertical Scales Effect Sizes 

 
U3PL 

Separate 

U3PL 

Hybrid 

U3PL 

Concurrent 

BG-M3PL 

Concurrent 

BC-M3PL 

Concurrent 

G3 to G4 - - - - - 

G4 to G5 0.44 0.52 0.44 0.56 0.68 

G5 to G6 0.40 0.43 0.42 0.40 0.43 

G6 to G7 0.27 0.26 0.26 0.35 0.32 

G7 to G8 0.38 0.32 0.37 0.44 0.39 

G3 to G4 0.41 0.40 0.37 0.52 0.08 
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Table 38 

Mathematics Means and Standard Deviations for Scoring 

Grade Statistic 

U3PL 

SEP 

EAP 

U3PL 

SEP 

EAPSS 

U3PL 

HY 

EAP 

U3PL 

HY 

EAPSS 

U3PL 

CON 

EAP 

U3PL 

CON 

EAPSS 

BG 

CON 

EAP 

BG 

CON 

EAPSS 

BC 

CON 

EAP 

BC 

CON 

EAPSS 

G3 Mean -0.97 -0.98 -1.09 -1.08 -1.13 -1.12 -2.51 -2.50 -0.69 -0.69 

 SD 0.84 0.83 0.93 0.93 0.99 0.99 0.36 0.13 1.01 1.00 

G4 Mean -0.42 -0.42 -0.42 -0.42 -0.44 -0.44 -0.57 -0.66 -1.24 -1.24 

 SD 0.88 0.87 0.91 0.90 0.95 0.94 1.43 1.29 0.95 0.94 

G5 Mean 0.00 0.00 0.01 0.02 0.02 0.02 -0.03 -0.03 0.00 0.01 

 SD 0.94 0.93 0.94 0.93 0.94 0.93 0.77 0.58 0.95 0.94 

G6 Mean 0.26 0.26 0.21 0.22 0.18 0.19 -0.38 -0.37 0.47 0.47 

 SD 1.09 1.08 1.08 1.06 1.03 1.01 0.50 0.11 1.04 1.01 

G7 Mean 0.79 0.80 0.78 0.79 0.74 0.75 0.65 0.67 0.36 0.36 

 SD 1.19 1.18 1.14 1.13 1.01 0.99 0.68 0.48 1.01 0.98 

G8 Mean 1.43 1.43 1.35 1.35 1.25 1.26 1.33 1.37 0.67 0.67 

 SD 1.19 1.19 1.08 1.07 0.94 0.93 0.86 0.73 1.01 1.00 
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Table 39 

Reading Means and Standard Deviations for Scoring 

Grade Statistic 

U3PL 

SEP 

EAP 

U3PL 

SEP 

EAPSS 

U3PL 

HY 

EAP 

U3PL 

HY 

EAPSS 

U3PL 

CON 

EAP 

U3PL 

CON 

EAPSS 

BG 

CON 

EAP 

BG 

CON 

EAPSS 

BC 

CON 

EAP 

BC 

CON 

EAPSS 

G3 Mean -0.89 -0.88 -0.90 -0.90 -0.88 -0.87 -1.08 -1.10 -1.14 -1.14 

 SD 1.06 1.04 1.02 1.00 0.99 0.97 1.13 0.99 0.96 0.93 

G4 Mean -0.41 -0.40 -0.42 -0.42 -0.41 -0.41 -0.42 -0.42 -0.45 -0.44 

 SD 0.97 0.95 0.99 0.96 0.96 0.94 0.88 0.75 0.98 0.95 

G5 Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.00 

 SD 0.94 0.93 0.94 0.93 0.94 0.93 0.80 0.72 0.93 0.92 

G6 Mean 0.27 0.27 0.26 0.26 0.26 0.26 0.34 0.34 0.32 0.32 

 SD 0.96 0.95 0.95 0.93 0.94 0.93 0.87 0.82 0.94 0.93 

G7 Mean 0.65 0.65 0.59 0.59 0.62 0.62 0.72 0.72 0.72 0.72 

 SD 0.91 0.90 0.93 0.92 0.89 0.88 0.63 0.56 0.91 0.89 

G8 Mean 1.06 1.05 0.98 0.98 0.98 0.98 1.15 1.15 0.79 0.79 

 SD 0.89 0.88 0.90 0.89 0.88 0.88 0.71 0.66 0.89 0.89 
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Table 40 

Mathematics Grade 3: General Factor Correlations 

 

 

U3PL 

SEP 

EAP 

U3PL 

SEP 

EAPSS 

U3PL 

HY 

EAP 

U3PL 

HY 

EAPSS 

U3PL 

CON 

EAP 

U3PL 

CON 

EAPSS 

BG 

CON 

EAP 

BG 

CON 

EAPSS 

BC 

CON 

EAP 

BC 

CON 

EAPSS 

 1 2 3 4 5 6 7 8 9 10 

1 1.00          

2 0.99 1.00         

3 1.00 0.99 1.00        

4 0.99 1.00 0.99 1.00       

5 0.99 0.98 1.00 0.99 1.00      

6 0.98 0.99 0.99 1.00 0.99 1.00     

7 0.37 0.36 0.37 0.36 0.37 0.36 1.00    

8 0.99 1.00 0.98 0.99 0.98 0.99 0.36 1.00   

9 1.00 0.99 1.00 0.99 1.00 0.99 0.39 0.99 1.00  

10 0.99 1.00 0.99 1.00 0.99 1.00 0.36 0.99 0.99 1.00 

Note. Values of 1.00 on the off-diagonal were due to rounding. 
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Table 41 

Mathematics Grade 4: General Factor Correlations 

 

 

U3PL 

SEP 

EAP 

U3PL 

SEP 

EAPSS 

U3PL 

HY 

EAP 

U3PL 

HY 

EAPSS 

U3PL 

CON 

EAP 

U3PL 

CON 

EAPSS 

BG 

CON 

EAP 

BG 

CON 

EAPSS 

BC 

CON 

EAP 

BC 

CON 

EAPSS 

 1 2 3 4 5 6 7 8 9 10 

1 1.00          

2 0.99 1.00         

3 1.00 0.99 1.00        

4 0.99 1.00 0.99 1.00       

5 1.00 0.99 1.00 0.99 1.00      

6 0.99 1.00 0.99 1.00 0.99 1.00     

7 0.90 0.87 0.90 0.87 0.90 0.87 1.00    

8 0.98 0.99 0.98 0.99 0.98 0.99 0.88 1.00   

9 0.99 0.99 0.99 0.99 0.99 0.99 0.88 0.98 1.00  

10 0.99 1.00 0.99 1.00 0.99 1.00 0.87 0.99 0.99 1.00 

Note. Values of 1.00 on the off-diagonal were due to rounding. 
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Table 42 

Mathematics Grade 5 General Factor Correlations 

 

 

U3PL 

SEP 

EAP 

U3PL 

SEP 

EAPSS 

U3PL 

HY 

EAP 

U3PL 

HY 

EAPSS 

U3PL 

CON 

EAP 

U3PL 

CON 

EAPSS 

BG 

CON 

EAP 

BG 

CON 

EAPSS 

BC 

CON 

EAP 

BC 

CON 

EAPSS 

 1 2 3 4 5 6 7 8 9 10 

1 1.00          

2 0.99 1.00         

3 1.00 0.99 1.00        

4 0.99 1.00 0.99 1.00       

5 1.00 0.99 1.00 0.99 1.00      

6 0.99 1.00 0.99 1.00 0.99 1.00     

7 0.73 0.73 0.73 0.73 0.74 0.73 1.00    

8 0.96 0.97 0.96 0.97 0.96 0.97 0.75 1.00   

9 1.00 0.99 1.00 0.99 1.00 0.99 0.76 0.96 1.00  

10 0.99 1.00 0.99 1.00 0.99 1.00 0.73 0.97 0.99 1.00 

Note. Values of 1.00 on the off-diagonal were due to rounding.
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Table 43 

Mathematics Grade 6: General Factor Correlations 

 

 

U3PL 

SEP 

EAP 

U3PL 

SEP 

EAPSS 

U3PL 

HY 

EAP 

U3PL 

HY 

EAPSS 

U3PL 

CON 

EAP 

U3PL 

CON 

EAPSS 

BG 

CON 

EAP 

BG 

CON 

EAPSS 

BC 

CON 

EAP 

BC 

CON 

EAPSS 

 1 2 3 4 5 6 7 8 9 10 

1 1.00          

2 0.99 1.00         

3 1.00 0.99 1.00        

4 0.99 1.00 0.99 1.00       

5 1.00 0.98 1.00 0.98 1.00      

6 0.99 1.00 0.99 1.00 0.98 1.00     

7 0.26 0.21 0.26 0.21 0.26 0.21 1.00    

8 0.96 0.97 0.96 0.97 0.95 0.96 0.22 1.00   

9 0.99 0.98 1.00 0.98 1.00 0.98 0.28 0.95 1.00  

10 0.99 1.00 0.98 1.00 0.98 1.00 0.21 0.97 0.98 1.00 

Note. Values of 1.00 on the off-diagonal were due to rounding. 
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Table 44 

Mathematics Grade 7: General Factor Correlations 

 

 

U3PL 

SEP 

EAP 

U3PL 

SEP 

EAPSS 

U3PL 

HY 

EAP 

U3PL 

HY 

EAPSS 

U3PL 

CON 

EAP 

U3PL 

CON 

EAPSS 

BG 

CON 

EAP 

BG 

CON 

EAPSS 

BC 

CON 

EAP 

BC 

CON 

EAPSS 

 1 2 3 4 5 6 7 8 9 10 

1 1.00          

2 0.99 1.00         

3 1.00 0.99 1.00        

4 0.99 1.00 0.99 1.00       

5 1.00 0.98 1.00 0.98 1.00      

6 0.99 1.00 0.98 1.00 0.98 1.00     

7 0.64 0.61 0.65 0.61 0.66 0.62 1.00    

8 0.83 0.84 0.84 0.85 0.85 0.86 0.71 1.00   

9 1.00 0.98 1.00 0.98 1.00 0.98 0.64 0.84 1.00  

10 0.99 1.00 0.99 1.00 0.98 1.00 0.61 0.85 0.98 1.00 

Note. Values of 1.00 on the off-diagonal were due to rounding. 
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Table 45 

Mathematics Grade 8: General Factor Correlations 

 

 

U3PL 

SEP 

EAP 

U3PL 

SEP 

EAPSS 

U3PL 

HY 

EAP 

U3PL 

HY 

EAPSS 

U3PL 

CON 

EAP 

U3PL 

CON 

EAPSS 

BG 

CON 

EAP 

BG 

CON 

EAPSS 

BC 

CON 

EAP 

BC 

CON 

EAPSS 

 1 2 3 4 5 6 7 8 9 10 

1 1.00          

2 0.99 1.00         

3 1.00 0.99 1.00        

4 0.99 1.00 0.99 1.00       

5 0.99 0.98 1.00 0.98 1.00      

6 0.99 1.00 0.99 1.00 0.99 1.00     

7 0.84 0.83 0.86 0.83 0.86 0.84 1.00    

8 0.98 0.98 0.98 0.99 0.98 0.99 0.84 1.00   

9 0.99 0.98 1.00 0.98 1.00 0.98 0.87 0.98 1.00  

10 0.99 1.00 0.99 1.00 0.99 1.00 0.84 0.99 0.98 1.00 

Note. Values of 1.00 on the off-diagonal were due to rounding. 
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Table 46 

Reading Grade 3: General Factor Correlations 

 

 

U3PL 

SEP 

EAP 

U3PL 

SEP 

EAPSS 

U3PL 

HY 

EAP 

U3PL 

HY 

EAPSS 

U3PL 

CON 

EAP 

U3PL 

CON 

EAPSS 

BG 

CON 

EAP 

BG 

CON 

EAPSS 

BC 

CON 

EAP 

BC 

CON 

EAPSS 

 1 2 3 4 5 6 7 8 9 10 

1 1.00          

2 0.99 1.00         

3 1.00 0.99 1.00        

4 0.99 1.00 0.99 1.00       

5 1.00 0.99 1.00 0.99 1.00      

6 0.99 1.00 0.99 1.00 0.99 1.00     

7 0.86 0.86 0.85 0.86 0.85 0.86 1.00    

8 0.98 0.99 0.98 0.99 0.98 0.99 0.87 1.00   

9 0.99 0.98 1.00 0.98 1.00 0.98 0.86 0.98 1.00  

10 0.99 1.00 0.99 1.00 0.99 1.00 0.86 0.99 0.99 1.00 

Note. Values of 1.00 on the off-diagonal were due to rounding. 
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Table 47 

Reading Grade 4: General Factor Correlations 

 

 

U3PL 

SEP 

EAP 

U3PL 

SEP 

EAPSS 

U3PL 

HY 

EAP 

U3PL 

HY 

EAPSS 

U3PL 

CON 

EAP 

U3PL 

CON 

EAPSS 

BG 

CON 

EAP 

BG 

CON 

EAPSS 

BC 

CON 

EAP 

BC 

CON 

EAPSS 

 1 2 3 4 5 6 7 8 9 10 

1 1.00          

2 0.99 1.00         

3 1.00 0.99 1.00        

4 0.99 1.00 0.99 1.00       

5 1.00 0.99 1.00 0.99 1.00      

6 0.99 1.00 0.99 1.00 0.99 1.00     

7 0.79 0.80 0.81 0.81 0.81 0.81 1.00    

8 0.92 0.92 0.93 0.94 0.93 0.94 0.87 1.00   

9 1.00 0.98 1.00 0.98 1.00 0.98 0.80 0.93 1.00  

10 0.99 1.00 0.99 1.00 0.99 1.00 0.81 0.94 0.98 1.00 

Note. Values of 1.00 on the off-diagonal were due to rounding. 
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Table 48 

Reading Grade 5: General Factor Correlations 

 

 

U3PL 

SEP 

EAP 

U3PL 

SEP 

EAPSS 

U3PL 

HY 

EAP 

U3PL 

HY 

EAPSS 

U3PL 

CON 

EAP 

U3PL 

CON 

EAPSS 

BG 

CON 

EAP 

BG 

CON 

EAPSS 

BC 

CON 

EAP 

BC 

CON 

EAPSS 

 1 2 3 4 5 6 7 8 9 10 

1 1.00          

2 0.99 1.00         

3 1.00 0.99 1.00        

4 0.99 1.00 0.99 1.00       

5 1.00 0.99 1.00 0.99 1.00      

6 0.99 1.00 0.99 1.00 0.99 1.00     

7 0.88 0.89 0.88 0.89 0.88 0.89 1.00    

8 0.98 0.99 0.99 0.99 0.99 0.99 0.90 1.00   

9 1.00 0.99 1.00 0.99 1.00 0.99 0.90 0.99 1.00  

10 0.99 1.00 0.99 1.00 0.99 1.00 0.89 0.99 0.99 1.00 

Note. Values of 1.00 on the off-diagonal were due to rounding. 
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Table 49 

Reading Grade 6: General Factor Correlations 

 

 

U3PL 

SEP 

EAP 

U3PL 

SEP 

EAPSS 

U3PL 

HY 

EAP 

U3PL 

HY 

EAPSS 

U3PL 

CON 

EAP 

U3PL 

CON 

EAPSS 

BG 

CON 

EAP 

BG 

CON 

EAPSS 

BC 

CON 

EAP 

BC 

CON 

EAPSS 

 1 2 3 4 5 6 7 8 9 10 

1 1.00          

2 0.99 1.00         

3 1.00 0.99 1.00        

4 0.99 1.00 0.99 1.00       

5 1.00 0.99 1.00 0.99 1.00      

6 0.99 1.00 0.99 1.00 0.99 1.00     

7 0.96 0.93 0.96 0.93 0.96 0.93 1.00    

8 0.98 0.99 0.98 0.99 0.98 0.99 0.94 1.00   

9 1.00 0.99 1.00 0.99 1.00 0.99 0.96 0.98 1.00  

10 0.99 1.00 0.99 1.00 0.99 1.00 0.93 1.00 0.99 1.00 

Note. Values of 1.00 on the off-diagonal were due to rounding. 
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Table 50 

Reading Grade 7: General Factor Correlations 

 

 

U3PL 

SEP 

EAP 

U3PL 

SEP 

EAPSS 

U3PL 

HY 

EAP 

U3PL 

HY 

EAPSS 

U3PL 

CON 

EAP 

U3PL 

CON 

EAPSS 

BG 

CON 

EAP 

BG 

CON 

EAPSS 

BC 

CON 

EAP 

BC 

CON 

EAPSS 

 1 2 3 4 5 6 7 8 9 10 

1 1.00          

2 0.99 1.00         

3 1.00 0.99 1.00        

4 0.99 1.00 0.99 1.00       

5 1.00 0.98 1.00 0.98 1.00      

6 0.98 1.00 0.99 1.00 0.99 1.00     

7 0.86 0.85 0.87 0.85 0.88 0.86 1.00    

8 0.93 0.94 0.93 0.95 0.94 0.96 0.90 1.00   

9 0.99 0.98 0.99 0.98 1.00 0.98 0.88 0.95 1.00  

10 0.98 0.99 0.98 1.00 0.99 1.00 0.87 0.96 0.98 1.00 

Note. Values of 1.00 on the off-diagonal were due to rounding. 
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Table 51 

Reading Grade 8: General Factor Correlations 

 

 

U3PL 

SEP 

EAP 

U3PL 

SEP 

EAPSS 

U3PL 

HY 

EAP 

U3PL 

HY 

EAPSS 

U3PL 

CON 

EAP 

U3PL 

CON 

EAPSS 

BG 

CON 

EAP 

BG 

CON 

EAPSS 

BC 

CON 

EAP 

BC 

CON 

EAPSS 

 1 2 3 4 5 6 7 8 9 10 

1 1.00          

2 0.99 1.00         

3 1.00 0.99 1.00        

4 0.99 1.00 0.99 1.00       

5 0.98 0.98 1.00 0.99 1.00      

6 0.98 0.99 0.99 1.00 0.99 1.00     

7 0.88 0.87 0.90 0.89 0.92 0.90 1.00    

8 0.93 0.94 0.95 0.96 0.96 0.98 0.92 1.00   

9 0.98 0.97 1.00 0.98 1.00 0.99 0.92 0.96 1.00  

10 0.98 0.99 0.99 1.00 0.99 1.00 0.91 0.98 0.99 1.00 

Note. Values of 1.00 on the off-diagonal were due to rounding. 



156 

 

Table 52 

Mathematics (M) and Reading (R) G3-G8: Cut Scores  

Grade Subject A B 
SS 

LK 

SS 

PR 

SS 

AK 

Theta 

LK 

Theta 

PR 

Theta 

AK 

VS 

Theta 

LK 

VS 

Theta 

PR 

VS 

Theta 

AK 

G3 R 85 707.013 649 700 891 -0.683 -0.083 2.165 -1.656 -0.983 1.539 

 M 85 708.939 633 700 798 -0.893 -0.105 1.048 -1.767 -1.068 -0.047 

G4 R 85 702.672 658 700 845 -0.526 -0.031 1.674 -0.952 -0.440 1.326 

 M 85 702.339 639 700 805 -0.745 -0.028 1.208 -1.120 -0.450 0.704 

G5 R 85 696.836 641 700 830 -0.657 0.037 1.567 -0.657 0.037 1.567 

 M 85 680.604 638 700 791 -0.501 0.228 1.299 -0.501 0.228 1.299 

G6 R 85 744.586 647 700 828 -1.148 -0.525 0.981 -0.890 -0.260 1.263 

 M 85 729.793 664 700 795 -0.774 -0.351 0.767 -0.640 -0.150 1.144 

G7 R 85 749.593 668 700 802 -0.960 -0.583 0.617 -0.292 0.076 1.250 

 M 85 723.183 674 700 800 -0.579 -0.273 0.904 0.061 0.448 1.933 

G8 R 85 714.419 655 700 833 -0.699 -0.170 1.395 0.380 0.890 2.397 

 M 85 672.0737 642 700 774 -0.354 0.329 1.199 0.985 1.844 2.939 

Note. A = Multiplicative Constant, B = Additive Constant, SS = Scale Score, LK = Limited Knowledge, PR = Proficient, AK = Advanced Knowledge, 

VS = Cut-scores transformed to vertical scale using U3PL separate calibration Stocking-Lord constants.
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Table 53 

Mathematics G3-G5: Proficiency Classifications  

Grade 
Classification 

Category 

U3PL 

SEP 

EAP 

U3PL 

SEP 

EAPSS 

U3PL 

HY 

EAP 

U3PL 

HY 

EAPSS 

U3PL 

CON 

EAP 

U3PL 

CON 

EAPSS 

BG 

CON 

EAP 

BG 

CON 

EAPSS 

BC 

CON 

EAP 

BC 

CON 

EAPSS 

G3 NP% 16.00 16.78 20.83 21.56 23.21 21.56 97.20 100.00 13.06 12.82 

 LK% 25.46 24.19 25.50 23.57 25.11 27.98 2.80  18.64 17.42 

 PR% 46.76 45.83 43.58 46.71 41.43 42.29   40.94 39.81 

 AK% 11.78 13.21 10.09 8.16 10.25 8.16   27.36 29.94 

G4 NP% 20.49 21.17 20.53 21.17 22.15 21.17 28.04 26.15 51.45 52.87 

 LK% 24.50 22.80 23.64 22.80 23.67 22.80 13.27 22.16 28.90 27.29 

 PR% 46.54 46.79 46.69 46.79 44.57 46.79 44.94 42.45 19.66 19.84 

 AK% 8.47 9.25 9.14 9.25 9.62 9.25 13.74 9.25   

G5 NP% 28.18 29.47 27.75 26.45 27.46 26.45 22.70 18.43 28.36 29.47 

 LK% 28.19 27.29 28.01 30.30 28.19 30.30 24.54 38.32 27.25 27.29 

 PR% 36.60 37.48 37.01 37.48 37.13 37.48 52.76 43.25 37.18 37.48 

 AK% 7.03 5.76 7.24 5.76 7.21 5.76   7.21 5.76 

Note. NP = Not Proficient, LK = Limited Knowledge, PR = Proficient, AK = Advanced Knowledge 
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Table 54 

Mathematics G6-G8: Proficiency Classifications 

Grade 
Classification 

Category 

U3PL 

SEP 

EAP 

U3PL 

SEP 

EAPSS 

U3PL 

HY 

EAP 

U3PL 

HY 

EAPSS 

U3PL 

CON 

EAP 

U3PL 

CON 

EAPSS 

BG 

CON 

EAP 

BG 

CON 

EAPSS 

BC 

CON 

EAP 

BC 

CON 

EAPSS 

G6 NP% 19.00 19.59 19.24 19.59 18.50 19.59 24.91 2.16 12.64 12.35 

 LK% 13.71 11.86 14.17 15.36 15.03 15.36 45.30 97.84 12.45 13.14 

 PR% 47.06 47.68 48.79 47.84 51.07 47.84 29.40  49.39 49.92 

 AK% 20.23 20.87 17.81 17.22 15.41 17.22 0.38  25.53 24.58 

G7 NP% 24.20 25.32 23.45 22.11 21.46 22.11 5.61 4.91 36.21 36.10 

 LK% 12.65 10.78 13.15 13.99 14.31 13.99 25.73 9.18 15.67 15.26 

 PR% 48.00 47.83 49.32 50.42 53.44 53.09 68.66 85.91 43.58 44.33 

 AK% 15.16 16.07 14.08 13.47 10.79 10.81   4.54 4.31 

G8 NP% 33.40 33.87 33.82 33.87 35.20 37.31 33.18 27.61 61.26 62.73 

 LK% 30.18 28.85 34.01 32.58 39.77 36.30 39.80 46.00 26.96 26.81 

 PR% 26.28 26.81 26.03 28.23 22.33 22.90 24.42 25.77 11.13 9.83 

 AK% 10.15 10.46 6.14 5.32 2.70 3.49 2.61 0.62 0.64 0.62 

Note. NP = Not Proficient, LK = Limited Knowledge, PR = Proficient, AK = Advanced Knowledge 
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Table 55 

Reading G3-G5: Proficiency Classifications 

Grade 
Classification 

Category 

U3PL 

SEP 

EAP 

U3PL 

SEP 

EAPSS 

U3PL 

HY 

EAP 

U3PL 

HY 

EAPSS 

U3PL 

CON 

EAP 

U3PL 

CON 

EAPSS 

BG 

CON 

EAP 

BG 

CON 

EAPSS 

BC 

CON 

EAP 

BC 

CON 

EAPSS 

G3 NP% 20.63 20.19 19.91 20.19 18.95 17.89 22.64 20.19 24.41 24.89 

 LK% 19.50 20.50 20.69 20.50 20.66 22.80 35.06 29.12 25.74 24.42 

 PR% 59.87 59.31 59.40 59.31 60.39 59.31 42.29 50.70 49.85 50.70 

 AK%           

G4 NP% 24.73 24.51 24.59 24.51 23.86 24.51 17.56 12.10 24.56 24.51 

 LK% 20.43 20.33 20.26 20.33 20.56 20.33 23.81 23.53 20.82 20.33 

 PR% 53.34 53.17 54.26 54.75 55.11 54.75 58.63 64.37 54.20 54.75 

 AK% 1.51 1.98 0.90 0.41 0.47 0.41   0.41 0.41 

G5 NP% 22.73 22.45 22.76 22.45 22.47 22.45 18.40 15.27 22.77 22.45 

 LK% 24.41 26.08 24.26 26.08 24.35 26.08 28.76 33.25 23.94 26.08 

 PR% 50.41 48.37 50.63 48.37 50.83 48.37 52.84 51.48 51.62 50.68 

 AK% 2.46 3.11 2.36 3.11 2.36 3.11   1.68 0.80 

Note. NP = Not Proficient, LK = Limited Knowledge, PR = Proficient, AK = Advanced Knowledge 
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Table 56 

Reading G6-G8: Proficiency Classifications 

Grade 
Classification 

Category 

U3PL 

SEP 

EAP 

U3PL 

SEP 

EAPSS 

U3PL 

HY 

EAP 

U3PL 

HY 

EAPSS 

U3PL 

CON 

EAP 

U3PL 

CON 

EAPSS 

BG 

CON 

EAP 

BG 

CON 

EAPSS 

BC 

CON 

EAP 

BC 

CON 

EAPSS 

G6 NP% 11.92 11.71 11.76 11.71 11.50 11.71 8.89 8.81 10.88 10.09 

 LK% 13.17 12.49 13.38 12.49 13.39 12.49 13.13 10.60 12.45 14.11 

 PR% 61.75 63.47 62.64 63.47 63.14 63.47 68.72 75.25 63.00 63.47 

 AK% 13.16 12.33 12.22 12.33 11.96 12.33 9.25 5.35 13.68 12.33 

G7 NP% 14.97 13.96 16.37 16.11 14.57 13.96 7.21 6.21 12.81 12.38 

 LK% 10.06 9.80 10.71 10.78 10.43 9.80 7.66 4.67 8.27 8.44 

 PR% 45.89 45.53 46.18 50.02 48.48 53.15 85.13 89.13 47.07 48.47 

 AK% 29.08 30.71 26.74 23.09 26.52 23.09   31.84 30.71 

G8 NP% 20.03 18.47 21.92 21.62 20.81 21.62 9.85 8.88 26.56 24.64 

 LK% 16.44 18.11 16.63 14.96 17.07 14.96 15.17 12.74 20.31 22.96 

 PR% 60.51 60.08 60.73 63.22 62.12 63.42 74.98 78.38 53.13 52.40 

 AK% 3.02 3.34 0.72 0.20       

Note. NP = Not Proficient, LK = Limited Knowledge, PR = Proficient, AK = Advanced Knowledge 
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Figures 

Grade  Item Block 
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Note. Notice the inclusion of a scaling test (ST) across all grades. 

 

 Figure 1.Illustration of the scaling test design. Adapted from Kolen and Brennan (2004). 
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Note. Notice that there are common item blocks between adjacent grades. 

 

 Figure 2.Illustration of the common item design. Adapted from Kolen and Brennan 

(2004). 
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 Figure 3.Item characteristic curve for a unidimensional 3PL model; a = item 

discrimination, b = item difficulty, and c = lower asymptote. 

 
Figure 4. Example of an item response surface for a two-dimensional MIRT model. 
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Figure 5. Model implied and empirical ICC for a Reading G7 typical  

vertical anchor item (top) and an anchor item with a near zero a-parameter (bottom)  
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Note. Each box represents all of the items adminstered at each grade. 

 

Figure 6. Visualization of the U3PL, BG-M3PL, and BG-M3PL concurrent calibration 

models for Mathematics G3-G8.  

U3PL: each item loads 

onto a general factor. 

BG-M3PL: each item 

loads onto a general 

factor and a grade 

specific factor. 

BC-M3PL: each item 

loads onto a general 

factor and a content 

specific factor. 
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Note. Each box represents all of the items adminstered at each grade. 

 

Figure 7. Visualization of the U3PL, BG-M3PL, and BG-M3PL IRT concurrent 

calibration models for Reading G3-G8. 

U3PL: each item loads 

onto a general factor. 

BG-M3PL: each item 

loads onto a general 

factor and a grade 

specific factor. 

BC-M3PL: each item 

loads onto a general 

factor and a content 

specific factor. 
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 Figure 8. Mathematics G3-G8 estimated latent means 
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Figure 9. Reading G3-G8 estimated latent means 
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Figure 10. Mathematics G3-G8 latent standard deviations 

  



169 

 

 

 

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Grade 3 SD Grade 4 SD Grade 5 SD Grade 6 SD Grade 7 SD Grade 8 SD

Reading U3PL Separate Reading U3PL Hybrid Reading U3PL Concurrent

Reading BG-M3PL Concurrent Reading BC-M3PL Concurrent
 

 

Figure 11. Reading G3-G8 estimated latent standard deviations 
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Figure 12. Mathematics G3-G8 Yen’s effect sizes 
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Figure 13. Reading G3-G8 Yen’s effect sizes 

 

 

 
 

Figure 14. Mathematics G3-G8 normal density distributions for U3PL separate 

calibration vertical scales 

 

 
 

Figure 15. Mathematics G3-G8 normal density distributions for U3PL hybrid calibration 

vertical scales 
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Figure 16. Mathematics G3-G8 normal density distributions for U3PL concurrent 

calibration vertical scales 

 

 
 

Figure 17. Mathematics G3-G8 normal density distributions for BG-M3PL concurrent 

calibration vertical scales 
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Figure 18. Mathematics G3-G8 normal density distributions for BC-M3PL concurrent 

calibration vertical scales  
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Figure 19. Reading G3-G8 normal density distributions for U3PL separate calibration 

vertical scales 

 

 
 

Figure 20. Reading G3-G8 normal density distributions for U3PL hybrid calibration 

vertical scales 
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Figure 21. Reading G3-G8 normal density distributions for U3PL concurrent calibration 

vertical scales 

 

 
 

Figure 22. Reading G3-G8 normal density distributions for BG-M3PL concurrent 

calibration vertical scales 
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Figure 23. Reading G3-G8 normal density distributions for BC-M3PL concurrent 

calibration vertical scales 
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