10-1-1928

Virginia Teacher, October 1928

State Normal School for Women at Harrisonburg (Harrisonburg, Va.)

Follow this and additional works at: http://commons.lib.jmu.edu/vateacher

Recommended Citation
Virginia Teacher, October, 1928, IX, 8, Harrisonburg, (Va.): State Normal School for Women at Harrisonburg.

This Article is brought to you for free and open access by the JMU Special Collections at JMU Scholarly Commons. It has been accepted for inclusion in Virginia Teacher by an authorized administrator of JMU Scholarly Commons. For more information, please contact dc_admin@jmu.edu.
THE VIRGINIA TEACHER

October, 1928

THE SCIENTIST AND EDUCATION
Donald W. Davis

GENERAL SCIENCE TEACHING
IN VIRGINIA
Fred C. Mabee

DEFICIENCIES IN HIGH SCHOOL LATIN
E. Marion Smith

NEGRO EDUCATION IN THE UNITED STATES

THE READING TABLE

EDUCATIONAL COMMENT

Published at the State Teachers College of Harrisonburg, Va.

15 CENTS
JUST PUBLISHED

FUNDAMENTALS OF BUSINESS PRACTICE

by

Supervisor of Penmanship and Commercial Work, Lawrence, Kansas

Laboratory materials for use in Junior Business Training Courses. One hundred practical assignments with all instructions and practice material self-contained in the pad. Intended for use with the text, Fundamentals of Business, by the same author, as supplementary to other texts, or independently of any text.

NEW, DIFFERENT, EXPLORATORY, PRE-VOCATIONAL

LIST PRICES

Fundamentals of Business (Text) 80c
Fundamentals of Business Practice (Pad Form) 80c

Write for Samples and Other Information

THE GREGG PUBLISHING CO.
New York Chicago Boston San Francisco Toronto London

ATTENTION OF TEACHERS AND PRINCIPALS

We carry a complete line of School Furniture, Auditorium Seating, Blackboards and Accessories. School Supplies, Maps, Globes and Charts, latest publications. Kindergarten Supplies, Teachers Supplies, Playground Equipment, Gymnasium and Athletic Goods. Any special catalog or prices mailed on request. Write us today.

VIRGINIA SCHOOL SUPPLY CO.
Box 1177
2000 W. Marshall St.
Richmond :: Virginia

TOWNS BUS LINE SERVES

THE SHENANDOAH VALLEY

Good Transportation From Winchester to Roanoke

SPECIAL RATES FOR PARTIES

Phones 323—636-J
Harrisonburg :: Virginia

A FOOD AND AN ENERGY BUILDER

IMPERIAL

THE CREAM OF ALL ICE CREAMS

Manufactured in Harrisonburg, Va.

and sold by all leading Ice Cream dealers throughout the Shenandoah Valley
Foreign Language Text Books
For High Schools and Colleges

LAFAYETTE SERIES

- **FRENCH GRAMMAR**: Beslat-Dey
 For fourfold mastery of French $1.64
- **LE VOYAGE DE MONSIEUR PERRICHON**: N. A. Goodyear
 Quick reference guide48

LATIN SERIES

- **FIRST YEAR LATIN**: Foster and Arms
 An admirable course 1.28
- **FIRST YEAR LATIN** (in preparation)

AMERICAN-SPANISH SERIES

- **NOTICE Y SUR**: W. E. Knight
 For beginners 1.36
- **CUENTOS MEJICANOS**: J. H. Corryn
 Second-year 1.28
- **EL SOMBRERO DE TRES PICOS**: C. B. Qualia
 Classroom edition; exercises 1.32
- **LA VIDA DE LAZARILLO DE TORMES**: Berkowitz-Woyzy
 Modernized version; exercises ... 1.40
- **ADVANCE SPANISH COMPOSITION**: Castillo and Montgomery
 Profitable and thorough 1.40

JOHNSON PUBLISHING COMPANY
Richmond, Virginia.
CONTENTS

The Scientist and Education ... \textit{Donald W. Davis} 231
General Science Teaching in Virginia Today \textit{Fred C. Mabee} 237
Some Needs of High School Latin Students as Revealed in College Work \textit{E. Marion Smith} 243
A Historical Pageant ... \textit{Linnie Sipe} 245
Pageant of the Shenandoah Valley \textit{Elizabeth Knight} 249
The Lingering Zest to Persecute 253
Negro Education in the United States 255
Educational Comment .. 258
The Reading Table ... 261
News of the College and its Alumnae 263

$1.50 a Year Published Monthly except August and September 15 Cents a Copy

LOGAN AND ANTHONY'S

Practice Leaves in Junior English

FORM J

Identical in plan with Practice Leaves in English Fundamentals, Forms A and B, the new Practice Leaves automatically come into a share of the wide popularity and high recommendation already accumulated by the earlier forms. With their use, the younger student enjoys the same economy of labor in practice and the instructor a like economy of time and tedium of correction.

D. C. HEATH AND COMPANY

239 West 39th Street :: :: :: :: New York City
THE SCIENTIST AND EDUCATION

THIS title requires some restriction, since I shall consider the relation to education of those scientists only, who are engaged in educational work. The industrial scientist and the research scientist connected with non-teaching institutions have very important relations to education, but these relations I shall not attempt to treat. Let us for the moment center our attention upon the relation of scientists in educational institutions to the educational phases of their work and to the educational situation in general. Within this scope let us keep in mind especially the social and industrial needs of Virginia and the educational conditions in the state. There is time in our program for only a suggestive treatment—not for an exhaustive one. I hope it may not prove an exhausting one.

Let us recognize at the outset that the professional scientist has no patent upon the scientific method, no prescriptive right to the possession of scientific knowledge, no vested interest in its benefits, no exclusive claim upon the designation of scientist.

We are all scientists! In saying this I do not mean to imply that a certain elimination has been exercised in the admission to this hall, rejecting all who do not exhibit the insignia of an exclusive fraternity of scientific men. On the contrary, all who have any interest in our exercises have been invited and are cordially welcomed. Furthermore, even those who, by reason of indifference to the attractions of our program, remain in outer darkness are also scientists. Every man capable of education is to some degree a scientist. He observes through his various senses the animate and inanimate objects about him. He perceives processes and conceives relations among these material objects. He reasons with more or less skill, cogency, and completeness concerning the world about him. He makes generalizations more or less profound and applies them in his subsequent behavior. For some of these scientific processes there is obvious need if not necessity. Others are indulged in as a result, let us say of idle curiosity. This common human being is an applied scientist, but he is also a pure scientist. Yes, every man stands at some level of scientific advancement.

Some men arrive at notions at variance with yours and mine, notions indeed flatly contradictory to those held by great groups of individuals; these have arrived by faulty application of scientific methods, at notions that we regard as primitive, fantastic, unfounded, untrue. Some men, early adopting a generalization that the masters or professors or writers are the media of all knowledge, abandon their progressive scientific endeavor to observe with their own senses, to use their own intellects in organizing knowledge, and rest in utter dependence upon authority. The level of scientific development of this numerous class of men is that characteristic of the Dark Ages. We recall, in contrast with these, men who have made rigorous use of scientific methods. The seal of our Academy bears the name of Clayton, the pioneer botanist and keen observer of nature, faithfully utilizing every opportunity to catalog the plants of the wilderness; of Jefferson, far-seeing patron of science, keenly appreciative of its attractions and its benefits; of Maury, skilled Pathfinder of the Seas; of Reed, the conqueror of yellow fever—each in his century leading in the applications of the methods of science to the problems of his day. Not only in the work of the pioneer or the re-
search worker is the scientific method of use. In the multitudinous affairs of everyday life we are each confronted with situations involving observation, comparison, judgment, reason; i.e., involving scientific analysis, hypothesis, and verification. Who is it—farmer, business man, carpenter, banker—that is free from such situations! Whose success or failure is not dependent to a large extent upon the readiness with which he correctly solves these situations? None, perhaps, unless such as the factory worker who serves monotonously, day by day, a certain machine. Each, according to the degree to which he follows scientific methods of analysis and guides his affairs by scientific knowledge, merits the name of scientist.

Every normal child is a scientist. From birth he receives sensory impressions of objects about him and early learns to make practical judgments concerning them and to apply these in his daily affairs. He makes a good start in the development of his scientific powers. He observes, he eagerly attacks new problems that present themselves, he learns as a result of experience, he makes fairly effective use of his knowledge. But he is still far from being equipped physically, mentally, socially, spiritually, for the life and work of a man. Great growth is essential if he is to enjoy the satisfaction of maturity in whatever sphere the future may find him. The scientist may well give earnest consideration of the problem as to what part the study of sciences should play in his development. His progress through school and college should see a constant accumulation of scientific knowledge, a continuing development of skill in acquiring and applying this knowledge and a growth of ideals associated with or derived from study of sciences.

As the most direct and obvious end to be attained in the teaching of sciences we should mention the building up in the mind of the student of a fund of knowledge. I say a fund of knowledge, not merely a catalog of facts—a fund of related facts, of ordered facts, facts regarding the physical universe and man in all his aspects. With adequate time devoted to studies in science, including continuous science work in the secondary years, there is no good reason why every pupil should not cover the field of the sciences with a fair degree of completeness and possess at graduation from high school a speaking acquaintance with the facts and more elementary principles of all sciences. In this age of dependence upon controlled physical forces, chemical processes, biological relationships—surely in our age of science this is an essential feature of adequate education.

Along with the acquisition of knowledge by the pupils, should go acquisition of skills of various types—skill in the use of the senses in observation, skill in analysis, skill in the combination of analysis and observation and judgment which we call experiment, skill in the formation of correct judgments, skill in carrying out logically a train of reasoning, skill in bringing available knowledge to bear upon new situations. It is not to be expected that these skills will be perfected in school, in college, or in life. But the beginnings of the early years should be continued; there should be constant building on the foundation previously laid. The utilization of these skills in the application of knowledge to daily affairs should become a fixed habit. For the acquisition of knowledge within the field of the sciences and the development on the part of the pupil of the special skills peculiar to this field, scientists must have primary responsibility and of this responsibility they should be keenly aware.

In addition to these features of education in which the sciences are almost exclusively concerned, there are others in which the sciences go hand in hand with other subjects as means to educational objectives. Among these may be mentioned ideals, appreciations, aesthetic and ethical standards.

Even in the accomplishment of the more
common objectives of education, objectives for which the sciences are not regarded as essential elements, the study of the sciences may be of very great service. I will refer for example to training in effective understanding and use of language. Words representative of material objects or physical processes known to the child are easily learned and remembered and readily used. The use of words to represent relations is also comparatively easy, provided the child's experience is sufficient for the complexity of the relation and this relation is really clear to his mind. But the further we depart from material objects and physical processes in our use of language the more difficult it becomes for the child. To learn to use language in connection with ideas remote from physical phenomena is at best a long and laborious process. In it the learner is beset by two dangers. The lesser one is that he will abandon the attempt and remain satisfied not to think beyond the immediate range of tangible objects. The other danger is that in addition to abandoning the attempt to use intellectual processes dealing with intangible concepts, the student may acquire the habit of merely imitating the use of words by others without himself grasping their meaning or possessing the ideas they appear to represent. Every teacher needs to be constantly on guard against this very strong tendency. Now for bridging this gap between objects and abstractions, in leading the student to use language with precision, the materials of physical sciences are of utmost value. In other fields efforts to guard against this danger and to keep language significant are made under serious handicaps. But in the sciences the objects are constantly at hand and training may be as completely centered about objects as may be desired. Detachment from objects may be accomplished as development of the individual permits. Generalization, safeguarded by adequate checks, may be accomplished by easy and obvious stages.

The period of formal instruction in school or in college is short in the normal life of a man, short in view of all the knowledge that our race has accumulated, all the skills we covet, all the vast unknown we would know, the apparently impossible tasks we would do. The period of learning may be most effectively lengthened if, during the period in school and college, the pupil retains or develops an inquiring mind. For the scientist the habit of inquiry is essential. For the teacher of science no quality is more fundamental. He must feel the challenge of the unknown. He may be unable to meet with appropriate action any particular challenge. Other interests and duties may take precedence but its appeal must be recognized, its pull must be felt. The skilled teacher will lead his pupils to recognize the limitations of their knowledge, recognize the present limitations and be unsatisfied. This desire to know is immensely enhanced by the realization that it can be satisfied by one's own effort. A demonstration of this fact is valuable in any field; it can be made with perhaps greater readiness in the sciences than in any other. I believe that nothing stimulates so greatly the desire to know as an experience in the search for knowledge that is new not to the searcher only but new to the experience of mankind. To the cat, as food a mouse is a mouse; and to us knowledge may be equally valuable new or old. But playing with old knowledge, like the cat's toying with a caught mouse, cannot bear the zest that attaches to the search for the unknown, cannot take the place in exercise of the scientific habit of the quest of knowledge that is brand new. I believe that research has not yet attained to its rightful place in education, that we have not yet realized its wide application and stimulating possibilities. Under guidance even the embryo scientist may experience the joy of discovery and actively contribute to the sum of human knowledge or to the devices that transmute human knowledge into other human goods. That David Putnam and Deric Nusbaum are...
making interesting and important discoveries as explorers is not so remarkable as that we have been so long in discovering the possibilities of such work in a boy's education. Especially in the sciences is there opportunity for exposing the beginner to some of the exhilarating experiences of the explorer and to utilize these experiences in early education.

One of the most serious needs of our educational work outside of vocational and professional schools is the need of making connection between knowing and doing. I should rather say the need of completing knowledge by making it effective. In the sciences above all other subjects, problems are ready at hand. We could improve much of our teaching by more emphasis upon the application of principles we teach. I am not at this point particularly advocating applied science as compared with pure science. I am rather advocating the point of view that a principle is best learned and one's knowledge is best tested through consideration of specific cases. The applications I have suggested may be as purely scientific as Pasteur's research concerning spontaneous generation. They constitute tests of the generality of the principle, of our understanding of its scope. Above all they give us exercise in testing and applying and they develop in us the habit of following principles through to their confirmation or contradiction. They develop the habit of problem solving. Emphasis should be placed at appropriate times upon distinctly practical problems and their solution, but any type of problem that strengthens the tendency to put principles to work is of value.

We have briefly considered some of the possible values that may be derived from the study, and for the most part the elementary study, of the sciences. We make no claim that these advantages are confined to the study of the sciences; but surely the study of these subjects contributes to education elements not secured so readily by means of any other materials. And, let it be noted, these elements are of value alike to persons of most diverse prospective occupation. Scientific knowledge, skill and resourcefulness, accuracy of expression in one's language, an inquiring and applying mind—these are of value to the future business man or historian, the philosopher or the artist, the mechanic or the university professor. This training is not especially for the research worker but for the pupil of an elementary school whatever his future career. We should aim to develop in every capable person, at least such scientific knowledge and skill as will enable him to avail himself of the benefits of scientific discovery and to realize a share in its satisfactions. Familiarity with physical objects, understanding of the principles of science, ability to execute logical judgments and to reason cogently, an investigative attitude, facility in applying one's relevant knowledge to a present situation, these are advantages we must strive to secure for our young people in increasing degree as they progress in our schools.

I shall not attempt to catalog, much less to set forth in detail, the respects in which the product of instruction in our schools and colleges falls short of the possibilities suggested. The claim has been made that education in and through the sciences has been a failure. I think any fair minded person at all familiar with the educational situation will recognize that this claim exaggerates the faults of science teaching. At its best it has justified itself in high degree. But no claim that education in science has failed here in Virginia can be substantiated, since it has never been tried. The O'Shea survey of education in Virginia reports that in sixteen cities, elementary science occupied 3.5% of the pupil's time in school. Certain elements of science are included in other categories and certain other allowances must be made in fully considering this figure. It is, at best, painfully clear that utterly inadequate attention is being given to materials of science in our elementary schools.
and that, with the lack of proper basis and with additional handicaps, the secondary schools are giving inadequate training alike in their science subjects and in tool subjects utilized in the sciences.

In place of apt characterizations and neat distinctions expressed in fitting language by the product of our schools, we hear "wise cracks" expressed in monotonous terms that have lost through senseless repetition what picturesqueness and vigor might have attached to their original use. By the time they have completed secondary school, our pupils have practically abandoned the use of their eyes, their ears, and their other senses as a means of first-hand knowledge. If asked what is before their eyes, they wiggle and squirm, endeavoring to find opening for an inquiry, however ingenuous it may appear, absolutely unwittingly designed to entrap you into an indication as to what you wish them to see. Again and again, as utterly deluded as they are honestly convinced, do they say "I can see but I cannot draw."

Test a class in psychology on distinctions of taste. Time and again the blindfolded student with salt on his tongue will fail to name it. If asked what it tastes like, how often does he fumble about for a suggestion as to what you used on the preceding subject or what your outline may call for. The Dark Ages of learning are not yet past. You decide to present a subject chiefly by lectures. After a few little tests have been given bearing upon the efficacy of your instruction and the tests have been criticized, graded and returned, will not earnest and conscientious pupils come to you asking for a text to lean upon—"I cannot get your lectures." Suppose on the contrary that you decide to use a text as the chief source of information for the student and base your class discussion on that. Will not the same students, after an estimate of their success has been rendered them, beg you to present them information in lectures—"I cannot get this text." Let us admit our own responsibility for a large share of the difficulties our pupils experience in learning; but when due allowance is made for defects in presentation, evidence remains that, by and large, graduates of our secondary schools do not read, they cannot read. The contact between things and words has been so completely severed that language to them no longer represents ideas—it is empty of meaning. The re-establishment of connection between words and things is often the most pressing necessity in their education—and a difficult process indeed at a level where elementary education is supposed to be long past. And this process is elementary education whether carried on in its proper place or in secondary school or college. In the correction of this defect, the work in sciences may well have a large place.

After what I have said it may be superfluous to admit that we do not do in college the grade of work we should do. But let us make no excuses. In one way or another the responsibility is ours. On the whole we cannot blame our pupils for their failures—a more earnest and painstaking body cannot be found. Let the scientists of the State acknowledge a responsibility for providing for these young men and women fuller advantages in education, especially as concerns the sciences, than they have enjoyed.

As one feature in the discharge of this responsibility for education in the sciences I wish to urge research in the teaching phases of our work. If research leading to improvement of teaching in sciences is to be done, it must be done by the teachers themselves. I want to commend in this connection the attitude toward taxonomic work attributed to Alfred G. Mayer. He is reported to have maintained that every biologist owes it to his profession to deal with the systematic classification of some group of organisms. In accordance with this principle he produced a magnificent monograph dealing with the jelly-fishes of the world that will long be a standard of immense
service to his fellow workers. So each teaching scientist should feel under obligation to his profession to make at least one substantial contribution to the technique of presentation of his subject or to the adaptation of the material in his field to the process of education. The scientist is intrigued by problems. Let him see in his teaching the scientific problems there encompassed. Such research would have, as a most valuable by-product, increased interest on the part of the teacher in all phases of education.

A word of caution may be given as to the manner in which improvement in teaching may be brought about. The favorite method, in harmony with a widespread movement of the day, is through the appointment of supervisors. Already this movement has attained great momentum in elementary schools. It has spread to secondary schools; and proposals for extending it to higher education are already heard. It has possibilities of yielding prompt results of value; it has also its dangers. Insofar as it supplies capable leadership of cooperating individual teachers it is well. When and insofar as it degenerates into direction of unskilled teachers and removes the incentive to individual initiative and resourcefulness, it will dismally fail. In secondary and in higher education such a method has no place. Even in elementary grades it is possible that methods better adapted to the genius of our people and the principles of democracy may be found. I make bold to commend to the attention of students of elementary education the Grade-Leader Plan as developed in the elementary schools of Lebanon, Pennsylvania. (see Rorem, S. O. '27-8-13. School and Soc. 26. p. 205-207). Certainly if the development of education in sciences and utilization of the sciences in education are to proceed, scientists must give attention to the matter, must inform themselves more fully and widely upon it and must have a larger voice in the consideration of educational programs and policies.

It is high time that the movement for more adequate treatment of the sciences in Virginia education should gain momentum. Our industrial and economic life is undergoing a change that places new demands upon our people and offers to them new opportunities. New opportunities for skilled and professional work will be open to those who are prepared for it. Broader and more thorough education is needed as a basis for the quickened life of the new day. Our people as a whole need to understand and appreciate the place of the sciences in the economic life of our time. It must almost make even professional scientists rub their eyes to learn of the constantly tightening ties between science and industry. The Chairman of the Board of a great electrical concern, a captain of industry but a layman in science, recently spoke as follows:—

“There are new explorers at work, bringing into the area of possible business operation fields vastly greater than any geographical explorers found. I refer to the research workers in pure science, who are pushing back the horizon and vastly enlarging our fields of knowledge. New materials are being put into our hands from the most unexpected as well as most commonplace quarters. New forces, heretofore undreamed, are shown to be available. I can see a picture of these adventurers in pure science moving out into unknown fields as the great geographical explorers set sail for unknown lands. Following them are the applied scientists learning how to use the new forces just as the early settlers followed the old adventurers. Finally business organizes itself to harness those forces and put them to work.” The movement is on. Will Virginia join in it? We should have this revolutionary development in mind as we deal with students who will shortly be the leaders in both science and industry.

I am fully aware that I have said nothing
new. Since the inspiring example of Huxley, at least, scientists have been making contributions to education and have been taking part in its councils. The members of our Academy and the organization officially have indicated active interest in educational matters. Witness the symposium on the nature and content of first courses in psychology held this afternoon and the papers listed in the Chemical Section for the Round Table Discussion on Chemical Education tomorrow morning. Attention to these matters has been increasing. They demand still deeper study.

I have endeavored to call attention particularly to the needs and opportunities of the present day in education in Virginia and the relation of scientists to it. It is my earnest belief that, in view of existing conditions, the scientists of Virginia should consider most carefully the scientific needs of the industrial situation; that they should give greater attention to educational problems and opportunities, that they should examine with assiduous care their teaching methods and aims, should play an increasing part in the solution of educational problems and should influence more effectively the educational policies of the State.

Believing as I do that scientists should concern themselves with education and express themselves freely upon its problems, I have been impelled to take this occasion to practice, as fully as the occasion and the state of my ignorance permit, what I have preached. None can be more conscious than I of the need for substituting conclusions rigidly drawn after painstaking observation and experiment for opinions such as I have expressed. However, opinions, recognized as such, have a real place in the advancement of knowledge. If they provoke vigorous controversy, all the better so long as it is good tempered and on a basis of mutual respect, and provided it leads to further investigation and to decisions based upon knowledge rather than upon feelings and prejudice. It is with confidence that these propositions will receive such support as they merit and such opposition as they deserve that I lay them before the scientists and educators included in the Virginia Academy of Science and the Virginia Social Science Association and those interested in their concerns.

Donald W. Davis

GENERAL SCIENCE TEACHING IN VIRGINIA TODAY

THIS article considers the following topics: 1 The Place of General Science in the Modern School Curriculum, 2 Survey (partial) of General Science Courses given in Virginia in 1927-8, 3 The Training of General Science Teachers in the State Teachers Colleges of Virginia, 4 Survey of Textbooks, 5 Lack of Equipment, 6 Modern Methods of Teaching, 7 Worth-while Literature.

The above-mentioned topics constitute the high spots in a course on General Science given in the Summer School of the State Teachers College, Harrisonburg, Virginia, 1928.

1. The Place of General Science in the Modern High School Curriculum

General Science is fast winning for itself not only a permanent place in the high school curriculum but also a large place, if we may judge from the fact that the enrolment in this course in the United States is approximately equal to that of all other high school sciences combined.¹ There are several reasons why General Science has won this place for itself: The first and most important reason is that modern General Science courses actually meet the needs of the pupils in the first year high school. This

¹ Frank—How to Teach General Science, p. 12.
is so because the subject matter has a psychological rather than a logical basis, i.e., the content is aimed to satisfy the actual mental questionings on scientific subjects of pupils of that age without classification into the ordinary divisions of science (Chemistry Physics, etc.)

Another reason for the growing prevalence of General Science is that it offers opportunity for the alert teacher to help the pupils with the modern scientific pieces of apparatus in their homes, viz., the radio, victrola, and automobile.

Moreover, General Science can easily be adapted to meet the needs of a particular community, e.g., agricultural or industrial.

And General Science, through the interest it has aroused in the pupils, has served to keep a good many pupils in school who might otherwise have left too early.

Then this course has a good deal of vocational guidance value, as it touches on many sciences, and explores them in a general way, assisting the student to discover for himself to what extent his interests lie in that direction.

The importance of this course in the high school is attested by the fact that recently the Board of Regents of New York State have recognized it as a regular high school science, and by the further fact that all the large universities except one or two now accept General Science for admission.

Because of the vital importance of General Science to the high school pupil, an attempt was made to secure data on the course as at present given in the state. Information was gained through interviews with teachers assembled for the summer session at the State Teachers College, Harrisonburg, Virginia, in the summer of 1928. The data secured is recorded in Table No. I, page 239.

From this table one can see that General Science is almost always taught in the eighth grade (first year high school). This is followed up by a course in Biology in the second year, and Physics and Chemistry, alternately, in the third and fourth years. The time allotted to General Science in most schools is as follows: three recitation periods per week, and two double laboratory periods, as recommended by the state.

The text used in almost every case is *Introduction to Science*, by Bertha M. Clark, published in 1915. Just recently a 1928 edition of this book has been published. (See review elsewhere in this issue.) Miss Clark's book is one of the two texts adopted by the state, the other one being Hessler's *Junior Science*.

It is unfortunate that Virginia, whose public school system has made decided progress in the last twenty years in several lines, should be unprogressive in the matter of adoption of textbooks. If it is not feasible to leave the adoption of textbooks to the teachers, as poorly prepared as they sometimes are at present, at least a longer list of textbooks should be approved.

2. The Training of General Science Teachers in the State Teachers Colleges of Virginia.

The value of a teacher's work depends a good deal both on the quality and the quantity of training. Table No. II, on page 240, shows the natural science courses given by the Virginia State Teachers Colleges.

The two year courses, preparatory to teaching in the grades, offer only two sciences, namely, Nature Study and Hygiene.

The four year courses preparatory to high school teaching offer at least two special sciences, but only one college, Fredericksburg, offers a course in General Science to high school teachers.

In the judgment of the writer the minimum requirement of twenty-four semester-hours of "content" courses for high school teachers is decidedly not enough. General Science teachers usually have to teach one other science, and they should have taken at least two college courses in that science before teaching it, and preferably three. And
for the teaching of General Science, teachers should have more science than the three fundamental ones, Physics, Chemistry, and Biology. There should be one course in Astronomy, and one in either Geology or Physical Geography. Such an increased emphasis on the subject matter would help to raise the scholastic standards of the Teachers Colleges to those of the first-class liberal arts colleges. The need for more thorough training in subject matter for high school science teachers was emphasized in the recent conference (April 11, 1928) on Natural Science Education, Teachers College, Columbia University, particularly by Professor N. Henry Black of Harvard, and Professor Victor La Mer of Columbia.

It may be worth while to add a few thoughts on certain characteristics of the progressive teacher. This teacher will keep in close touch with modern scientific news, both while in college, and in teaching service. She will call the attention of her students to accounts of modern inventions and experimentations in the newspapers, periodicals, and scientific magazines. The "dynamic" teacher will not only interest her pupils in science but will arouse the community and set the people to thinking scientifically. The stirring up of the community will also react in a stimulating way on the pupils.

4. Survey of Textbooks.

As one of the projects in the class, the members reviewed nine modern General

<table>
<thead>
<tr>
<th>Location</th>
<th>Grade in Which Course is Taught</th>
<th>Recitations Per Week</th>
<th>Lab. Periods Per Week</th>
<th>Other Sciences Taught</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple Grove</td>
<td>4th yr. H. S.</td>
<td>5—45 min.</td>
<td>2—45 min.</td>
<td>H. Ec., Agri., and Biology</td>
</tr>
<tr>
<td>Brandy</td>
<td>8th grade (1st yr. H. S.)</td>
<td>3—45 min.</td>
<td>3—45 min.</td>
<td>Biology</td>
</tr>
<tr>
<td>Bridgewater</td>
<td>1st yr. H. S.</td>
<td>3—45 min.</td>
<td>2—40 min.</td>
<td>Biology and Chemistry</td>
</tr>
<tr>
<td>Broadway</td>
<td>1st yr. H. S.</td>
<td>3—45 min.</td>
<td>2—40 min.</td>
<td>Biology and Chemistry</td>
</tr>
<tr>
<td>Brunswick</td>
<td>8th grade</td>
<td>3—40 min.</td>
<td>2—40 min.</td>
<td>Biology and Chemistry</td>
</tr>
<tr>
<td>Crozet</td>
<td>8th (1st)</td>
<td>3—45 min.</td>
<td>4—45 min.</td>
<td>Biol., Chem., and H. Ec.</td>
</tr>
<tr>
<td>Dayton</td>
<td>1st yr. H. S.</td>
<td>3—45 min.</td>
<td>2—40 min.</td>
<td>Biology</td>
</tr>
<tr>
<td>Edom</td>
<td>1st yr. H. S.</td>
<td>3—45 min.</td>
<td>3—40 min.</td>
<td>Biology and Chemistry</td>
</tr>
<tr>
<td>Elkton</td>
<td>1st yr. H. S.</td>
<td>3—40 min.</td>
<td>2—40 min.</td>
<td>Biology and Chemistry</td>
</tr>
<tr>
<td>Front Royal</td>
<td>8th grade</td>
<td>3—40 min.</td>
<td>2—40 min.</td>
<td>Biology and Chemistry</td>
</tr>
<tr>
<td>Greenville</td>
<td>8th grade</td>
<td>3—40 min.</td>
<td>2—40 min.</td>
<td>Biology and Chemistry</td>
</tr>
<tr>
<td>Fairfax</td>
<td>not taught</td>
<td>3—40 min.</td>
<td>2—40 min.</td>
<td>Biology and Chemistry</td>
</tr>
<tr>
<td>Harrisonburg</td>
<td>8th (1st yr. H. S.)</td>
<td>3—45 min.</td>
<td>2—40 min.</td>
<td>Biol., Chem., and Physics</td>
</tr>
<tr>
<td>Leesburg</td>
<td>1st yr. H. S.</td>
<td>3—45 min.</td>
<td>2—40 min.</td>
<td>Biology and Chemistry</td>
</tr>
<tr>
<td>Lexington</td>
<td>1st yr. H. S.</td>
<td>3—45 min.</td>
<td>2—40 min.</td>
<td>Biology and Chemistry</td>
</tr>
<tr>
<td>Loudoun</td>
<td>8th grade</td>
<td>3—45 min.</td>
<td>2—40 min.</td>
<td>Biology and Chemistry</td>
</tr>
<tr>
<td>Lunay</td>
<td>8th (1st yr. H. S.)</td>
<td>3—45 min.</td>
<td>2—40 min.</td>
<td>Biology and Chemistry</td>
</tr>
<tr>
<td>Manassas</td>
<td>8th grade</td>
<td>3—45 min.</td>
<td>2—40 min.</td>
<td>Biology and Chemistry</td>
</tr>
<tr>
<td>Matoca</td>
<td>8th grade</td>
<td>3—45 min.</td>
<td>2—40 min.</td>
<td>Biology and Chemistry</td>
</tr>
<tr>
<td>McGaheyssville</td>
<td>1st yr. H. S.</td>
<td>3—45 min.</td>
<td>2—40 min.</td>
<td>Biology and Chemistry</td>
</tr>
<tr>
<td>New Castle</td>
<td>1st yr. H. S.</td>
<td>3—45 min.</td>
<td>2—40 min.</td>
<td>Biology and Chemistry</td>
</tr>
<tr>
<td>New Hope</td>
<td>1st yr. H. S.</td>
<td>3—45 min.</td>
<td>2—40 min.</td>
<td>Biology and Chemistry</td>
</tr>
<tr>
<td>Northamp</td>
<td>8th grade</td>
<td>3—45 min.</td>
<td>2—40 min.</td>
<td>Biology and Chemistry</td>
</tr>
<tr>
<td>Petersburg</td>
<td>8th (1st yr. H. S.)</td>
<td>3—40 min.</td>
<td>2—40 min.</td>
<td>Biology and Chemistry</td>
</tr>
<tr>
<td>Pleasant Valley</td>
<td>1st yr. H. S.</td>
<td>3—40 min.</td>
<td>2—40 min.</td>
<td>Biology and Chemistry</td>
</tr>
<tr>
<td>Richmond</td>
<td>1st and 2nd yr. H. S.</td>
<td>3—40 min.</td>
<td>2—40 min.</td>
<td>Biology and Chemistry</td>
</tr>
<tr>
<td>Rural Retreat</td>
<td>8th (1st yr. H. S.)</td>
<td>3—40 min.</td>
<td>2—40 min.</td>
<td>Biology and Chemistry</td>
</tr>
<tr>
<td>Salem</td>
<td>1st yr. H. S.</td>
<td>3—40 min.</td>
<td>2—40 min.</td>
<td>Biology and Chemistry</td>
</tr>
<tr>
<td>Saltville</td>
<td>8th (1st yr. H. S.)</td>
<td>3—40 min.</td>
<td>2—40 min.</td>
<td>Biology and Chemistry</td>
</tr>
<tr>
<td>Spotsylvania</td>
<td>Alternates yrs.</td>
<td>3—40 min.</td>
<td>2—40 min.</td>
<td>Biology and Chemistry</td>
</tr>
<tr>
<td>Stanley</td>
<td>8th (1st yr. H. S.)</td>
<td>3—40 min.</td>
<td>2—40 min.</td>
<td>Biology and Chemistry</td>
</tr>
<tr>
<td>Staunton</td>
<td>8th (1st yr. H. S.)</td>
<td>3—40 min.</td>
<td>2—40 min.</td>
<td>Biology and Chemistry</td>
</tr>
<tr>
<td>Timberville</td>
<td>1st yr. H. S.</td>
<td>3—40 min.</td>
<td>2—40 min.</td>
<td>Biology and Chemistry</td>
</tr>
<tr>
<td>Washington</td>
<td>8th grade</td>
<td>3—40 min.</td>
<td>2—40 min.</td>
<td>Biology and Chemistry</td>
</tr>
</tbody>
</table>
Science textbooks for the high school, according to criteria proposed by Frank. This work was done to give the members experience in rating and selecting their textbooks. The result is a careful estimate of the marketed textbooks in this subject. The scores for each of the nine books are given in Table III, page 241.

In order to illustrate the thoroughness with which the books were scored, there are given below the questions raised under the first heading, “Selection of Subject Matter,” each one of which had to be scored for each book:

A. Does the subject matter cover the minimum essentials based on environment, activities, and interests of the pupils in any community? (Perfect score equals 6.)

B. Does it provide a body of very important supplementary materials for strong classes (near essentials)? (Perfect score equals 6.)

C. Does it provide a body of additional materials particularly fitted for this specific locality (local essentials)? (Perfect score equals 6.)

D. Is all the material socially worth while and does it lend itself to the accomplishment of the aims of secondary education? (Perfect score equals 6.)

E. Is the subject matter adapted to the age and preparation of the pupils of the grade in which the subject is given in my school? (Perfect score equals 6.)

By Table III one can tell which items of the books in the opinion of the scorers, reach the standard and which do not. For example, the first, fourth, fifth, seventh, and ninth books seem to fall down in their illustrations. Each feature of one book can easily be compared with the corresponding feature of the other books. For instance, according to Frank's standard, no book is perfect in providing adequate information as to other sources of materials.

<table>
<thead>
<tr>
<th>Colleges</th>
<th>For Primary Teachers</th>
<th>For Grammar Grade Teachers</th>
<th>For High School Teachers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farmville</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nature Study</td>
<td></td>
<td>General Biology</td>
</tr>
<tr>
<td></td>
<td>Geography</td>
<td></td>
<td>General Chemistry</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>General Physics</td>
</tr>
<tr>
<td>Fredericksburg</td>
<td>Hygiene</td>
<td></td>
<td>Special course in Zoology, Botany, Entomology, Organic Chemistry, and General Experimental Physics.</td>
</tr>
<tr>
<td></td>
<td>Nature Study</td>
<td></td>
<td>General Science</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>General Biology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>General Chemistry</td>
</tr>
<tr>
<td>Harrisonburg</td>
<td>School Hygiene</td>
<td></td>
<td>General Physics</td>
</tr>
<tr>
<td></td>
<td>Nature Science</td>
<td></td>
<td>Organic Chemistry</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>School Hygiene</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>General Biology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>General Chemistry</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>General Physics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Advanced Physics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Organic Chemistry</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Qualitative Analysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Quantitative Analysis</td>
</tr>
<tr>
<td>Radford</td>
<td>Nature Study</td>
<td></td>
<td>General Biology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>General Chemistry</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Organic Chemistry</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Analytical Chemistry</td>
</tr>
</tbody>
</table>

Note:—In the above table all courses for primary and grammar grade teachers are compulsory, while those for high school teachers are elective.
5. The Lack of Equipment

One of the greatest problems facing the well-prepared General Science teacher concerns equipment. The average school in Virginia is sadly lacking in this respect, due largely to the fact that principals and school boards do not appreciate the importance of this course. It should also be borne in mind that equipment is constantly wearing out and has to be replaced.

In the selection of equipment there are at least four determining factors, which are as follows: the present equipment, the number of students in the class, the outstanding method which the teacher will use, and the amount of money available for new equipment.

The alive and up-to-date teacher will realize that much of the minimum equipment may, if necessary, be devised by the students in the General Science classes. For example, alcohol lamps have been made by punching holes in the tin tops of cold cream jars, and inserting a loose round wick. Discarded photographer's boxes have been used as receptacles for a school museum.

Glass jars and bottles of all kinds may serve as beakers. Discarded screen trimmings may be cut and used for wire gauze.

In many of the schools where the General Science equipment is meager or nil, the teacher has access to the laboratory equipment used in the other science classes. A better plan, however, is to have some equipment belonging exclusively to the General Science students that they may be proud of and responsible for. If the individual laboratory method of instruction is to be used for a large class, it may be practically impossible to have completed sets of apparatus without borrowing from the rest of the science department. Since, however, recent investigations have shown the lecture demonstration method to be superior in some respects to the individual laboratory method, the General Science teacher should have at least one complete set of apparatus for this type of teaching. For the worthwhile individual laboratory experiments the teacher should borrow, if necessary, the required equipment. The progressive teacher will improve the laboratory equipment each year.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Perfect Score</th>
<th>Textbook Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Selection of subject matter</td>
<td>30 20 18 24 30 30 30 19 27 28</td>
<td></td>
</tr>
<tr>
<td>II. Organization of subject matter</td>
<td>20 19 19 20 20 20 20 16 20 20</td>
<td></td>
</tr>
<tr>
<td>III. Is the psychological organization of the book based on the learning process?</td>
<td>10 10 10 4 8 10 10 6 8 8</td>
<td></td>
</tr>
<tr>
<td>IV. Does the book provide information as to other sources of material?</td>
<td>10 2 8 8 9 5 7 2</td>
<td></td>
</tr>
<tr>
<td>V. Is the book well illustrated</td>
<td>5 4 5 5 4 5 4 5 4 4</td>
<td></td>
</tr>
<tr>
<td>VI. Has provision been made for Laboratory Experiments and Projects?</td>
<td>5 3½ 5 3 3 4 3½ 3½ 3½ 3</td>
<td></td>
</tr>
<tr>
<td>VII. Is the material character of the book adapted to the purpose for which it is intended?</td>
<td>5 5 5 5 5 5 5 4½ 4½ 5</td>
<td></td>
</tr>
<tr>
<td>VIII. Is the book written in good, clear English that is in keeping with the age and preparation of the pupils?</td>
<td>5 4 5 5 5 5 5 5 5 5</td>
<td></td>
</tr>
<tr>
<td>IX. Is the book no more expensive than other texts of the same type?</td>
<td>5 5 5 4 5 5 5 5 5 5</td>
<td></td>
</tr>
<tr>
<td>X. Is the book adapted to the course of study in your school and the needs of your particular community?</td>
<td>5 4 5 5 5 5 5 3 5 5</td>
<td></td>
</tr>
<tr>
<td>Total scores</td>
<td>100 82.5 85 83 94 93 95.5 67.5 88 89</td>
<td></td>
</tr>
</tbody>
</table>
6. Modern Methods of Teaching
Attention is directed to the following methods:

I. Lecture Demonstration. The teacher performs an experiment before the class with appropriate questions and explanations. The students observe closely, and record observations. After performing a number of experiments at the beginning of the course, the teacher gradually transfers the burden of it to her pupils, who prepare and give the work before the class. Recent studies, according to Frank,\(^3\) show "that this method, if properly handled, is the most economical and efficient method for imparting many of the understandings which are necessary, and for developing appreciations and powers of observation. Much of the laboratory work now done by pupils in General Science classes could be eliminated, and better results obtained in less time and at less cost by the lecture demonstration method."

II. Project Method.\(^4\), \(^5\), \(^6\) Kilpatrick defines a project as a "whole-hearted purposeful act proceeding in a social environment." Frank defines the project as a problem, or series of related problems, in which the pupil conceives a problematic situation, believes it to be worth solving, and believes that he can solve it. Moreover, he wants to solve it.

The project properly carried out develops the pupil's self-reliance, initiative, and resourcefulness. It also provides a more natural method of procedure, and hence the old idea of training and discipline will carry over and function in everyday life.

III. New Type Tests. The teacher will want to use one or more of these tests each year in order to check up on her work and to improve her methods:

IV. The following devices to gain and hold the interest of pupils may be mentioned: (1) Science clubs, (2) Science plays, (3) Scrap books, (4) Science bulletin boards, (5) Moving pictures, and (6) Exhibits. The two latter may be secured from industrial concerns, large universities, and the government. Write the U. S. Bureau of Education in Washington for information.

7. Worth-While Literature
Every General Science teacher should allow several dollars each year in her personal budget for periodicals and books for the sake of inspiration, and to keep in touch with the latest methods and materials. A brief list is given below. For fuller lists consult Frank's *How to Teach General Science*, Chapter XVI, and the Virginia State Course of Study in General Science.

TEXTS

- Caldwell and Eikenberry—*Elements of General Science*. Ginn, 1926. $1.60.
- Clement, Collister, Thurston—*Our Surroundings*. Iroquis Publishing Co., 1928. $1.70.
- Pieper and Beauchamp—*Everyday Problems in Science*. Scott Foresman, 1925. $1.60.
- Wood and Carpenter—*Our Environment*. Allyn and Bacon, 1927.

GENERAL REFERENCE BOOKS

- Brownlee and others—*First Principles of Chemistry*. Allyn and Bacon. $1.60.
- Downing—*Our Living World*. University of Chicago Press. $2.50.
- Duff and Weed—*Elements of Physics*. Longmans. $2.20.

FOR THE TEACHER

- Frank—*How to Teach General Science*. Blakiston, 1926. $2.00. Very valuable.
- Monahan—*Laboratory Layouts for the High

PERIODICALS

The Science Classroom—250 Fourth Ave., New York City. 25 cents.

Fred C. Mabee and Others.

NEEDS OF HIGH SCHOOL LATIN STUDENTS AS REVEALED IN COLLEGE WORK

IT WAS with considerable reluctance that I consented to give this paper when your President approached me on the subject last spring, and as the time intervening between then and now has gone by, I have suffered many misgivings and qualms of conscience as I realized that I perhaps had little or nothing constructive to offer you in the way of criticism. I do, however, relish the opportunity of putting before you some of the absurdities arising from high school Latin as it is apparently taught, which I—and my colleagues in your colleges here in Virginia—are forced annually to face. I do this, understand me, with no sense of superiority, but only hoping that you may be interested in sharing with us some of our experiences.

I personally teach in what I believe is one of the best of the women's colleges in Virginia, one which draws students from all parts of the state—so I may assume, I think, that my knowledge of Virginia college students is pretty typical of the knowledge which other college professors in Virginia have of them. Our freshman requirement is such that the majority of our first year students take one year of college Latin. This is a course in Vergil's Aeneid, if the student has come on to college with only three years of high school Latin; Livy and Horace if she enters with four years to her credit. In many instances it is amazing—nay, even appalling—what their three or four years of preparation in high school have failed to do for them, for to be perfectly frank, a large proportion of the students who enter college every year come atrociously prepared in Latin. I am far from being one who credits everything that students say, but when a thing happens repeatedly over a series of years, I do eventually begin to take some stock in it. And in my experience it has been no uncommon thing for freshmen to explain to me that ponies and trots have been countenanced throughout their high school course or that interlinear translations have been recommended. Such students usually flounder for a time and then become hopelessly overwhelmed in a sea of difficulties. They have no fundamentals of grammar. I have honestly had freshmen students who did not know an adverb from a noun, who had never heard of the present and historical perfects, to whom sequence of tenses was not even a name, and who persisted in following up verbs of saying and thinking with ut clauses (which to make matters even worse sometimes contained an infinitive instead of a subjunctive). Yet in spite of all this, their high schools have passed them on to us for college work—often even with straight A records. What are we as college professors to do? It is physically impossible for us in the few scattered hours which we can scrape together outside of the classroom to build up a background which a normal student acquires in no less than three or four years.

Every fall as the first freshman Latin quiz approaches, I am greeted on all sides by worried students who maintain that they have never taken Latin quizzes before and that they are therefore at a loss as to how to go about studying for them. Or again, regarding Latin prose composition, I find that quite a universal defense of bad prose papers is the statement that during the last
year or year and a half of the student’s high school training no prose composition has been taught. Of course, these are juvenile complaints. The more mature student would strive ahead in silence and suffer the consequences. And yet, as I hear these complaints again and again, I am often led to wonder what the aim of the high schools at the present time is. It certainly does not appear that they are making any very valiant effort to prepare students for college. In the good old days they used to attempt this, at least. And I wonder if it is not still their duty.

Sometimes I wonder if you who teach in high schools are not devoting too much time to the purely pedagogical side of the matter at the expense of the real meat of your subjects. It is a fact constantly to be deplored, that that fad and fancy of modern instruction, commonly called under the misapplied name of “education,” has during the past ten years or so made vast inroads upon the curricula of our secondary schools. I sometimes think that it does not matter so much any more what we teach, or whether we teach anything at all, so long as we have a method. And I sadly fear that this is the case with Latin. Education so-called is not content to let the dear, dead classics speak for themselves in dignified fashion as they once did, but it seeks to relegate them degradingly to the realms of the kindergarten in one sweeping effort to make students of the classics out of members of our younger generation who have not even the proper stamina to imbibe them.

Those of us who attend the meetings of the Southern Section of the Classical Association in the spring of the year, know all too well that one must each year sit through the reading of two or three papers with titles like the following: “How to Make Latin Interesting to the High School Student,” “Some Devices for Making the Teaching of High School Latin Interesting,” “Some Detours in the Teaching of Latin.” The titles themselves are a curious and illuminating commentary on our modern educational tactics. But the contents of the papers are still more so.

It develops from these papers that many of you are setting up so-called Latin laboratories, the chief equipment of which, so far as the uninitiated can determine, appears to be old magazines, cardboard, paste, and scissors, and their chief aim seems to be to construct charts. And it appears that your students weave stories on these charts, in good or bad Latin, around pictures of every conceivable nature. I have even seen these charts when they centered around such idiotically non-classical themes as George Washington and four snow men seated about a table. Is it any wonder that the Ablative Absolute and cum temporal clauses are beginning to suffer amid such nonsense as this?

I recently spent a half hour questioning some of my freshmen as to their high school upbringing in Latin and I learned some remarkable facts. Perhaps the most interesting was the statement advanced by one of them that it had been a part of her course in Caesar for each member of the class to dress a doll properly in a Roman toga. So far so good. But it seems that the day the dolls so dressed were due, dolls of all kinds were presented to the teacher and accepted, including Kewpies! Surely this is verging fast on the farcical.

And then there are Latin Clubs—a further device for interesting the high school student. I for one am decidedly sceptical as to their value, especially when the students belonging to them make a point of celebrating a purely American Thanksgiving in some supposedly fitting Roman fashion and sing “Jingle Bells” in Latin at Christmas time.

Where is fled the time honoured respect which has always been shown the classics? Surely such absurdities as these can never be expected to go far to create a classical
background. But just consider, if you please, what the time and energy consumed in these hollow performances would do for the average student if properly utilized in reading Latin itself. I do not say bore your students—for there is a wealth of interest for the youthful mind even in Cesar and Cicero and Vergil, and if it is properly gotten across to the students it cannot fail to please. But I do say make them know thoroughly first hand at least a limited number of the classics, and don't make a mere farce out of the language in which they are written. It is the elements of a classical background that you ought to be instilling, together with a good working understanding of the Latin language.

I admit that there are two things which make the task more difficult than it might otherwise be. The first is the vast number of young people whom we are at present trying to educate. Our high schools are much overcrowded, and a great many of the teachers (especially in the smaller schools) are handling a far greater number of students than they should. This no doubt—in a measure, at least—accounts for the seeming lack of discrimination in the students whom they are sending on for college work. But it is a condition which must be remedied and remedied soon if the high schools are to succeed in training students for college work.

Secondly, as I am well aware, some of you—perhaps many of you—are decidedly out of your chosen field. That, of course, is in no way your fault, but the fault of our system. It is sad, but true that our school boards do not make a more definite effort to fill Latin positions with Latin majors. It is hard, I admit, if you have specialized in chemistry to find that you must teach Latin, or *vice versa*, but I have known all too many cases where such is the truth. If you will permit me in closing I will give the two most striking instances of this which have come to my attention.

In the early days of my teaching at Hollins I had a student whom I inherited from my predecessor, who had failed to pass our required freshman course the year before I came, and it fell to my lot to carry her through it for a second time. It was no agreeable task. She knew no Latin, but finally when June came, out of the kindness of my heart, I put her through, thinking that she had suffered long enough. Two years later she graduated with a major in science—a mediocre student throughout her course. The following year she came back to college as an alumna on a visit, and meeting me on the campus, she danced gaily up to me with the greeting: “Dr. Smith, I am sure you can never guess what I am teaching.” I assured her that I could not. She informed me that it was Latin. In stunned surprise I exclaimed, “My dear girl, how can you? You don’t know any.” “But,” she replied, “it was the only vacancy in our high school and I wanted to do something.” I am still wondering what her students learn, for she is still after several years teaching Latin. Fortunately none of her products have as yet come my way.

I have also the converse of this. The best major I have ever turned out is teaching in a small high school in Virginia and is teaching every subject in the high school curriculum, I verily believe, except Latin!

E. Marion Smith

A HISTORICAL PAGEANT

THE fourth grade wanted to give some type of dramatization. After reading a number of stories about early Virginia history, they decided to give a historical pageant.

I. What the Children Did

A. They read widely for information and background material.

1. They read history books and stories relating to the settlement of Virginia.
2. They made an outline of their history material.
3. They located on their maps Chesapeake Bay, Cape Charles, Cape Henry, James River.
4. They traced the route of the colonists from the entrance of the Chesapeake Bay to Jamestown Island.
5. They studied a pageant for form.

B. They wrote the pageant.
1. They selected the episodes from Virginia history that they wanted to present, taking into consideration the dramatic effects of the stories read.
2. They made a draft of the pageant.
 a. They decided upon a name for the pageant.
 b. They wrote the lines for the reader.
 c. They wrote a description of each of the pantomime episodes.

C. They planned to present the pageant.
1. They chose the characters.
 a. They selected those that could best take the major parts.
 b. They saw that every child had a part.
2. They planned and made their own costumes.
3. They planned and made the scenery for the pageant.
4. They selected a committee to extend invitations to other grades.
5. They invited their parents.
6. They chose a committee to make posters for advertisement.
7. They made programs for the pageant.

II. What the Children Learned about the Settlement of the Jamestown Colony.
A. Settlers came to Virginia
 1. To seek their fortunes.
 2. For adventure.

B. The people who came to Virginia
 1. The number of people who came were one hundred and two.
 2. The people came to Virginia in three ships, "Susan Constant," "Godspeed," and "Discovery."
 3. The people were blacksmiths, laborers, carpenters, mechanics, and noblemen.
 4. The leaders were Captain John Smith, Bartholomew Gosnold, and Rev. Robert Hunt.
C. The hardships of the voyage
 1. The stormy weather made the voyage long and dangerous.
 2. The supply of food became limited and many people died from hunger.
 3. The dangers of the voyage caused many of the men to become homesick.
D. The landing of the settlers
 1. The settlers landed on Jamestown Island May 13, 1607.
 2. The settlers were very tired from their long voyage.
 3. The settlers held a religious service to thank God for guiding them safely to land.
 4. The settlers began to build crude homes and churches.
E. The early life of Captain John Smith
 1. He was born in Lincolnshire, England.
 2. He liked adventure.
 3. He ran away from home and became a brave soldier.
 4. He came to Jamestown with the settlers in 1607.
F. The story of Captain John Smith's voyage up the Chickahominy River
 1. He set out to explore the river and get food for the colony.
 2. He was captured by the Indians.
3. He was taken before Powhatan and his council for trial.
4. He was given a death sentence by Powhatan.
5. He was saved by Pocahontas.

G. The coming of the first women to Virginia
1. They came to be wives for the men.
2. They were chosen by the men at the ship.
3. They were bought for $80.00 or 120 lbs. of tobacco.

III. Skills and Abilities Strengthened
A. They developed the art principles of lettering, spacing, and the use of color
 1. By making posters
 2. By making programs
B. They improved their English habits
 1. By making oral reports
 2. By writing well constructed sentences for the description of the pageant
 3. By making an outline of the subject matter.
C. They gained skill in the manipulation of materials
 1. By cutting and making costumes
 2. By cutting figures for the posters.
D. They strengthened their oral and silent reading habits
 1. By reading history stories
 2. By telling history stories.

IV. Attitudes and Appreciations Strengthened
A. They gained a respect for Virginia and its founders.
B. They developed co-operation through working in committees.
C. They acquired growth in leadership through being chairmen and giving reports.
D. They developed initiative in planning episodes and in acting.
E. They acquired growth in citizenship by respecting the rights of others in discussion lessons.

V. Bibliography
A. Books for the children
 Blaisdell and Ball—American History For Little Folks. Little, Brown and Company, Boston.

*These books were read by the fastest readers.
†This book was used as a text.
B. Books for the teacher

VI. The Pageant
 As a suggestion and help to other teachers, the pageant is included in this unit of work. This pageant is most effective when given out-of-doors.

The Settlement of the Jamestown Colony

CHARACTERS
- Capt. John Smith
- Pocahontas
- Powhatan
- Rev. Robert Hunt
- Settlers
- Indians
- Dancers

INTRODUCTION
Herald—In England there were people who were in debt, who wanted adventure, who wished to get away from work, to seek a fortune. Then, too, the population of the country was getting too large. So the London Company was organized to get people to come to the New World and settle. On December 19, 1606, three vessels, *Susan Constant*, *Godspeed*, and *Discovery*, set sail for the New World. This voyage lasted five months and was full of hardships. The sea was stormy and food was scarce. They sailed into the Chesapeake Bay and up a river which they named James after their king. On May 13, 1607, they landed on what is now Jamestown Island. This was the first permanent English settlement in Virginia.

EPISODE I
The Landing of the English at Jamestown
Herald—As soon as the settlers were on shore they gave thanks to God for a safe trip. Then they set to work to make shelter for themselves. The Indians gave them a friendly greeting.

Pantomime—Enter settlers very tired from their long voyage. They gaze over the strange land.

Mr. Hunt, the preacher, signals for prayer. They fall upon their knees. All rise and sing the hymn *Praise God From Whom All Blessings Flow.*

The settlers then pitch their tents.

During the landing, the Indians may be seen in the distance talking and making signs among themselves about the settlers.

The Indians advance and give a dance.

The settlers sit quietly and watch them.

EPISODE II
The Story of Captain John Smith and Pocahontas
Herald—Captain John Smith went up the Chickahominy River to discover the Pacific Ocean and was attacked by a band of Indians. Like the quick-witted man that he was, he took out his pocket compass and showed them how to read it. This kept the Indians from killing him just then. They bound his hands behind him and took him to Powhatan, the Indian chief. Powhatan and his counsel talked the matter over quietly and decided to put Captain John Smith to death. Two warriors brought stones and his head was laid on them. Just as the clubs were raised to strike him, Pocahontas rushed forward and pleaded for his life. Thus Captain John Smith was saved.

Pantomime—Enter Captain John Smith and an Indian guide. They walk boldly through the woods with bows and arrows.

A band of Indians jump out from behind trees. They shoot Captain John Smith's friend, and bind Smith's hands.

The prisoner is taken before Powhatan and his council for trial. The Indians talk together in secrecy about their prisoner. Powhatan orders the prisoner killed. They lay Smith's head upon two rocks. Several warriors raise their tomahawks to cut off his head. The Indians dance madly around the prisoner.
Pocahontas runs forward and drops upon her knees before Captain John Smith, and pleads for his life.

Powhatan gives the signal for the prisoner to be set free. The Indians unbind the prisoner's hands. Pocahontas and Captain John Smith walk off together.

EPISODE III

The First White Women Brought to Virginia

Herald—The governor of the colony and the London Company thought the men would work better and be happier if they had wives. So twelve years after the settlers came, a shipload of women were sent to be wives for the settlers. The men went down to the shore to greet the women. Each man chose a woman for his wife, and paid the Captain of the ship 120 lbs. of tobacco or $80.00 for bringing her across. They had a great feast in honor of their wives and invited the Indians as their guests.

Pantomime—Enter white women just off the ship. They feel very lonely in a strange land.

The settlers walk down to the shore to greet the women. Each settler looks over the group of women and selects a wife. He calls her aside and she consents to be his wife. After each man has selected his wife he pays the captain of the ship $80.00 or 120 lbs. of tobacco for her. All the settlers walk proudly away from the shore with their wives.

A feast is given by the settlers in honor of their wives. The Indians are invited. Dances are given during the feast.

Linnie Sipe

Thirty-four countries were represented among the places of birth of the 390 graduates of eighth-grade evening schools in Detroit this year. Nineteen countries of Europe were included, Germany coming first with 65, Poland was next with 36, then Russia with 30, and Italy with 12.

PAGEANT OF THE SHENANDOAH VALLEY

This colorful portrayal of the history of the Shenandoah Valley inhabitants was given by the Choral Club of the Harrisonburg State Teachers College on April 8, 1927. There were approximately two hundred and forty participants.

As each epoch was mentioned in the libretto, which was read by a student in academic gown, the characters, dressed in period costumes, ascended the stage for their scene. All of the players entered from the rear of the auditorium and came forward as did the actors in the Grecian amphitheatre.

SCENE I. FAIRIES

The elves dance up the aisle and pose for a tableau while soft music is played. The leading fairy dances “To a Wild Rose,” by MacDowell and then is joined by the others in Grieg’s “Morning.”

They all scamper off when the Indians enter for the next scene.

SCENE II. INDIANS

As these dark creatures come forward the chorus sings “Whirl-A-Yah!” On the stage the braves form a semi-circle and sing a war song. As they retire into the background, the maidens join in an Indian corn dance.

The Indians vanish while two members of the chorus sing the “Canoe Song,” from the “Feast of the Red Corn” by Bliss.

SCENE III. KNIGHTS OF THE GOLDEN HORSESHOE

Spotswood enters with his trusty men. As they stand looking out over the beautiful Valley, he presents the golden horseshoes to them as tokens of their journey. They sing “God Save the King.”

SCENE IV. GERMAN PEASANTS

Representatives of the early German colonists, dressed in peasant costume, dance the “Dutch Couples.”

SCENE V. SCOTCH-IRISH

The Scotch-Irish reveal the pious side of
the sturdy settlers who wandered down from the north. A half-dozen players pantomime an early church scene. They sing “Lead, Kindly Light.”

SCENE VI. QUAKERS

The delightful air of the English Quaker settlers is given by the simple dance song, “Dost Thou Love Me, Sister Ruth?”, in a little home scene of that time.

SCENE VII. REVOLUTIONARY HEROES

A church scene of the Revolutionary period and a call to arms show the splendid spirit of those times. This is followed by the minuet, after which the characters slip lightly away.

SCENE VIII. CIVIL WAR HEROES

For the Civil War period a home scene is given, in which a young soldier returning from battle tells of the death of Ashby. Two old darkies stand by and beat time, while the other characters join in the Virginia Reel as an expression of happiness for the elder son’s safe return.

SCENE IX. (A) OLD SCHOOL

An old-fashioned spelling bee, coupled with the rakish pranks one often hears about, makes this scene one of the most amusing in the pageant. They sing several old songs of which “Jingle Bells” is an example.

SCENE IX. (B) MODERN SCHOOL

In contrast to the preceding, a modern lesson in music appreciation is given. Rubinstein’s “Melody in F” is the record used. A very marked progress was shown in the contrasting methods.

SCENE X. COLLEGE GIRLS OF H. T. C.

As the closing scene, representatives of every campus organization sing our school songs. Each girl wears a banner bearing the name of her respective organization. These banners are thrown in a pile in the center of the stage, while the girls are singing, as a token of the good fellowship harbored by all.

As the college girls leave the stage, still singing, the characters of the entire pageant follow in review, joining in the song. These are followed by the chorus of perhaps thirty voices, adding much to the effectiveness of the pageant.

After all has vanished, the student reads her epilogue.

The words of the pageant follow.

LIBRETTO: PAGEANT OF THE SHENANDOAH VALLEY

PROLOGUE

It seems I have been dreaming
On a high and lonely hill.
Beneath I see the wide oxbows of the Shenandoah.
Drifting down its soft blue waters
Come the inhabitants of the valley
Since the world first began.
“First is the forest primeval. The murmuring pines and the hemlocks,
Bearded with moss, and in garments green,
Indistinct in the twilight,
Stand like Druids of old, with voices sad and prophetic,
Stand like harpers hoar, with beards that rest on their bosoms,
Loud from its rocky caverns, the deep voiced ocean
Speaks, and in accents disconsolate answers the wail of the forest.”—(Longfellow)

There in this forest primeval,
Elf and fay come out to play
When the moon does shine as bright as day.
Whirling and whirling in circles so light,
Dancing and prancing 'neath stars shining bright.
Tripping and skipping—Oh! see how they fly!
Fairies so airy, so gay, and so spry.

SCENE I. FAIRIES

But a rustling has startled them from the trees—
’Tis an Indian wandering lonely in the breeze.
Roused by his footsteps, the sprites have stopped their dancing; and vanished into the cold white light of the morning. As the moon, low in the west, shines clear on the garish hills; the distant valley and the vacant woods spread round a stalwart figure where he stands.

Whither have fled these sprites of heaven, who so gaily ushered in this Indian? Hark! I hear a hill voice calling “Wait, and we'll come back again!” But the Red man holds his ground.

Scene II. Indians
Sad it seems that they should vanish, but their legends live forever, every child will understand them. And the heart's right hand of friendship will extend to them in Bookland.

Even their faults remembering kindly, sympathizing with their errors.

(Canoe song—Duet.)

Then come the white!
We thought they slept! the sons who kept the names of noble sires and slumbered while the darkness crept around their virgin fires; but aye the Golden Horseshoe Knights their old dominion keep, whose foes have found enchanted ground, but not a Knight asleep.

Scene III. Knights of the Golden Horseshoe
Out thro' the mist and murk of morn their silent figures vanished. And ere the wind's low breath is born the clash of steel is banished. These left thru' a mist of air the line of my vision on waters fair. Then the German fathers of the inner-vale see the light that shall never fail, the beacon light which shines to tell to all the world—to say that here they had come to make their home, in the Shenandoah's winding dell.

Whose great command shall bless that land whom the land shall bless in joy and distress—forever and a day.

Scene IV. German Peasants
And when the bright all-cheering sun from their contracted views retired though Folly deems his race is run on other worlds he lights his fires. Cold climes beneath their influence glow, and frozen rivers learn to flow.

Then the Scotch and Irish landed here with God commander o'er them. From out the north with God to fear, and carry all before them with seven hundred men or more from State to State with rapid stride, these rugged troops had marched before, to Shenandoah, with a martial pride.

Scene V. Scotch-Irish
Now hurrying from the busy scene where their Shenandoah's waters flow, may'st they enjoy their rural reign and every earthly blessing know. As they who Rome's proud legions swayed return and seek their sylvan shade.

Then come the persecuted Quakers, in search of freedom for their worship, for new homes, for place of living, simple living, yet so richly filled with love, and hearts of longing.

Answer them, sons of the self same race and blood of the self same clan.

Let us speak with each other face to face, and answer as man to man. And loyally love and trust each other as none but free men can.

So, here in love and peace and plenty founded they their homes, which strengthened this new nation in its starting on its way to fame and glory.

Scene VI. Quakers
Their fame thus spread to distant lands, May envy's fiercest blasts endure, like Egypt's pyramids it stands, built on a basis more secure.
Time’s latest age shall own in them
The patriot and too the statesman.
Time pushes on till 1776
I see a group of people at their Sabbath
worship
In the little church in Woodstock.
Out of the north wild news comes
Far flashing on its wings of flame
Swift as the boreal light that flies
At midnight through the startled skies
“And there is tumult in the air
The fife’s shrill note, the drum’s loud beat
And through the wild land everywhere
The answering tread of hurrying feet,
While the first oath of Freedom’s gun
Comes on the blast from Lexington.”—(T. B. Read)

SCENE VII. REVOLUTIONARY HEROES

“Twilight and evening bell
And after that the dark
And there should be no sadness of farewell
As they embark
For though from out our bourne of Time
and place
The flood may bear them far
Their names have not fallen from the race
When they have crossed the bar.”
—(Tennyson)
The rock shone bright the kirk no less
That stands above the rock
The moonlight steeped in silentness
The steady weather cock
And the stream was white with silent light
Till rising from the same
Full many shapes, these elders, dight
In somber colors came.

SCENE VIII. CIVIL WAR HEROES

They pass the fountain and the blasted pine
tree,
Their footsteps are lagging and weary
Yet onward they go through a broad belt of
light
Toward the shade of the forest so dreary,
All’s quiet along the Shenandoah this night
No sound save the rush of the river,
While soft falls the dew on the face of the dead
The picket’s off duty forever!

Then the old school comes
They climb the blue Virginian hills
Against embattled foes,
And planted there, in valleys fair,
The lily and the rose
These brought to fall the fairest lands
The beauties of the earth—
To light the hearths of happy homes
With loveliness and worth.—(Ticknor)

SCENE IX. (A) OLD SCHOOL SCENE

(B) MODERN SCHOOL SCENE

As these did vanish from my sight
I saw the spires of H. T. C.
As they were passing by
The grey blue stones of H. T. C.
Against a pearl grey sky
My heart was with those college girls
Who start abroad to life.
The years go fast at H. T. C.
The golden years and gay
The hoary colleges look down
At carefree girls at play.
But when the bell is sounded! work!
They put their games away—(Letts)

SCENE X. COLLEGE GIRLS OF H. T. C.

Epilogue

For States redeemed—our western reign
Restor’d by thee to milder sway
Thy conscious glory shall remain
When this great globe is swept away
And all is lost that pride admires
And all the pageant scene expires.
When the clear blue waters shine again,
From on my hill top I can gain
A glimpse of what the world may be
A hundred years from now.

(Finish)

A New York City school teacher tells
about a little boy whose coat was so difficult
to fasten that she went to his assistance. As
she tugged at the hook, she asked:
“Did your mother hook this coat for
you?”
“No,” was the astounding reply, “she
bought it.—Children, The Magazine for
Parents.
THE LINGERING ZEST TO PERSECUTE

This address, delivered at the 174th commencement of Columbia University, June 5, 1928, by President Nicholas Murray Butler, deals with an astonishing present condition:

At the close of his monumental History of the Inquisition of the Middle Ages, the historian Henry Charles Lea offers the reflection that such a review as he has made of the follies and crimes of our ancestors is, when rightly estimated, full of hope and encouragement. Imperfect though they be, the human institutions of today when compared with the past, record an improvement and an advance which are little short of marvelous. We are tempted to lose sight of these encouraging facts when we dwell, as of course from time to time we must, upon the shortcomings of our own generation, and upon what may be called the vestigial remains of older vices, follies and crimes.

Persecution has a long and squalid history. It existed under the Christian Emperors as well as amongst the heathen and among Protestants as well as under the Papacy and the Inquisition. In fact no form of political belief and no form of religious faith appear wholly to have escaped its devastating and debasing influence. Today it seems incredible that Melancthon soberly approved putting Servetus to death for the imputed crime of blasphemy, and that he even went so far as to express wonder whether any one would dissent from his judgment and disapprove that severity. A contemporary, Bucer by name, announced publicly in his pulpit that Servetus should have had his bowels pulled out and been torn to pieces. There would appear to be no limit to the cruelty and to the fanaticism of persecution, no matter what the mild and gentle professions of the persecutors, and no matter what the fundamental principles of their religious faith. It is often the case that those who loudly proclaim their own right to think and speak and act as they choose are the first to denounce and to persecute those who differ from them.

Our own American ancestors went to incredible lengths in their persecutions and their cruelties. The Statute Books of the 17th and 18th Centuries are filled with astounding enactments which contradict at every turn the fundamental principles professed by those who settled the American colonies and who began to lay the foundation of what is now the government and the social system of the United States. The so-called Blue Laws, which still clutter the statute books of several of the older states, and which occasionally lead some belated fanatic to cry aloud for law enforcement, are the remaining and the tragic evidences of habits and customs of mind and conduct that were once dominant in more American colonies than one. Happily it is a far cry from the New York of 1701 when any priest caught in the colony was doomed to life imprisonment, with the proviso that should he seek to escape he should be shot, and when any Catholic was absolutely forbidden either to vote or to hold public office, to the happier, the freer, the more liberal, and the more truly American New York of 1928. Loudly demanding that they should have freedom to worship God, that freedom was denied time and again by the colonists to those who did not wish to worship God in their particular way.

From time to time we have had more or less significant and temporary revivals of this 17th and 18th Century bigotry. A hundred years ago there sprang up among us the so-called Know Nothing movement, which troubled the public life of the nation until the outbreak of the Civil War. Then, some forty years ago, there grew up like a mushroom the American Protective Association, which was more of a nuisance than a danger while it lasted. Finally, there has come the oddly stupid and unintelligent movement known as the Ku Klux Klan, which stoutly proclaims its belief in the fatherhood of God and the brotherhood of
man, provided there be no children and no brothers who are either Catholics or Jews or Negroes. A sense of humor should have protected us from this amazing outbreak. Spreading for a time with rapidity among the markedly less intelligent elements of the population, particularly in small towns and in rural districts, the Ku Klux Klan developed a commercial and coldly material side which hastened its undoing. Sarcasm, ridicule and laughter did the rest.

It is distressing, of course, that the zest to persecute should persist at all. In a society and a state built upon the Bill of Rights, and offering lip service at least to the finest principles and ideals of liberalism as these have been developing for some three hundred years, persecution is oddly out of place. But it appears that liberalism is a hard lesson to learn. Liberty as a personal possession may be highly acclaimed, while liberty as an institution for the protection of all men may at the same moment be violently, even passionately, attacked. Much more than we realize the various outbreaks, legal or other, which aim at uniformities and conformities, at compulsions and at prohibitions, rest upon the lingering zest to persecute. Other reasons and other excuses, quasi-moral or quasi-religious, may be offered, but the real reason is the determination on the part of organized groups to compel their fellow countrymen to act, and if possible, to speak and to think in accordance with their own particular practices and preferences. Those who continue to manifest this zest to persecute are out of touch with the march of progress, are rejecting the example of the life as well as the words of Christ, whose followers they often profess to be, and are flying in the face of the fundamental principles of that American political philosophy to which they give such voluble lip service. It would be an interesting bit of scientific inquiry to ascertain whether that hypocrisy which is just now so widespread among our people is an act, an achievement, or a habit. Perhaps some experimentation would be needed to settle these questions, but it would be well worth undertaking. A crusade on behalf of temperance, which begins by making temperance a crime is, to say the least, a puzzling phenomenon.

“Give me the liberty to know, to utter, and to argue freely according to conscience, above all liberties,” said John Milton. This is the doctrine and the only doctrine upon which free government and free society can rest, and which must always and everywhere be insisted upon in a true democracy. Proscriptions, blacklists, demands that individuals be deprived of posts of honor and emolument because of their lack of conformity to some more or less outrageous law or doctrine, or because of their religious faith and opinions, are all vestigial remains of that older and widespread habit of persecution which is now so happily on the wane.

The lingering zest to persecute is a challenge to the 20th century university. In the university at least there is freedom to seek the truth and to proclaim it as found or believed, provided only it be done with scholarly competence, sincerity and good manners. The university becomes in this way the ideal community where men and women move in an atmosphere of freedom, enjoy the stimulus of difference of opinion and of view, and gain the inspiration which only the honest and earnest seeker after truth ever really knows. It is the discharge of this high function which reveals to the public mind the university as a fundamental human institution, serving the noblest of purposes and resisting with calmness and determination every effort to turn back the hands on the face of the clock which marks the passage of that time which measures progress.

Ninety per cent of all the pupils who graduated from the elementary schools of Dallas, Texas, last year entered high schools.
NEGRO EDUCATION IN THE UNITED STATES

The number of institutions for the higher education of the Negro race in the United States more than doubled, and enrollments have increased over six-fold during the past ten years, according to a report issued by the Bureau of Education of the Interior Department after a comprehensive survey of Negro universities and colleges.

In 1917 there were 31 Negro institutions offering college work, the report shows, while in 1927, of the 79 institutions included in the survey, 77 were engaged in college work. The college enrollments in the 31 institutions ten years ago amounted to 2,132 Negro students as compared with 13,680 attending the institutions surveyed in 1927, an increase of 550 per cent. The annual income of the Negro universities and colleges in the United States has also gained at a rapid rate. For 1917 it totaled $2,283,000 while for 1926-27 the annual income was $8,560,000, an increase of 275 per cent. The financial support being accorded Negro higher education in the country is nearly four times what it was in 1917.

Total capital investment in the real properties of the universities and colleges surveyed has likewise increased tremendously, the report shows. The value of the physical plants of these institutions 10 years ago was fixed at $15,720,000. Their present value is $38,680,000, representing a gain of 146 per cent, due principally to the construction of modern school buildings and other improvements in the plants. The most important advance made by the institutions has been the large increase in their productive endowments, indicating the existence of a growing conviction that Negro higher education must be placed on a permanent basis through the provision of stable annual income. In 1917, the productive endowments of the universities and colleges making up this survey amounted to $7,225,000 with an annual yield of $361,250. Since then, additions have brought this total up to $20,713,000, the annual yield being $1,071,300. The gain over the period of 10 years in both endowment and annual yield, therefore, has been approximately 185 per cent.

The survey of Negro universities and colleges was conducted at the request of State departments of education of 19 States, 79 Negro institutions, the Association of Colleges for Negro Youth, the Phelps-Stokes Fund and the educational boards and foundations of seven church bodies, all of whom co-operated in arranging the study and in furnishing information. Everyone of the 79 institutions was visited by representatives of the Bureau. In addition to a general review of Negro higher education, the report contains individual chapters dealing in unabridged form with the academic programs, physical plants, graduation requirements, admission requirements, enrollments, training of the faculty, salaries, teaching loads, educational and scientific equipment and other functions of each of the institutions. The universities and colleges surveyed include: 5 in Alabama, 3 in Arkansas, 1 in Delaware, 1 in the District of Columbia, 3 in Florida, 9 in Georgia, 2 in Kentucky, 5 in Louisiana, 2 in Maryland, 5 in Mississippi, 1 in Missouri, 12 in North Carolina, 1 in Oklahoma, 1 in Ohio, 2 in Pennsylvania, 5 in South Carolina, 8 in Tennessee, 8 in Texas, 4 in Virginia, and 1 in West Virginia.

While presenting the exceptional progress accomplished in Negro higher education during the past 10 years, the report also calls attention to the fact that the immediate need of the race is more education, better education and higher education. The latest available figures show that there are approximately 48,000 Negro teachers in the United States, including those teaching in elementary schools, high schools, and colleges. Of this number 1,050 are teachers in institutions of higher learning and 46,950 in elementary and high schools. Upon the
latter rests the responsibility of educating 5,000,000 Negro youth under the age of 19 years, a task far beyond the capacities of such a small number. The lack of teachers, the report points out, is serious.

A considerable proportion of the teachers in Negro schools are also reported as being deficient in proper training. Many have not received more than elementary school preparation while the training of a large number of others has been limited to one or two years work in or graduation from high school. A shortage prevails not only in the number of teachers, but also in their quality. The solution of the problem is largely centered in higher education. If more teachers adequately trained and prepared for the overwhelming undertaking of educating 5,000,000 Negro boys and girls are to be provided, the task must be done in the institutions of higher learning. Continuing, the report asserts:

The economic salvation of the Negro is dependent to a great degree upon his training in the fields of agriculture, mechanic arts and crafts. While 1,000,000 Negroes own or operate farms, there are 1,178,000 of the race engaged in ordinary farm labor. The lack of training in mechanic arts and crafts is indicated by the fact that only 56,000 are skilled craftsmen as compared with 1,371,000 pursuing unskilled occupations or employed as day laborers. All States have established land-grant colleges offering courses in agriculture, mechanic arts and home economics. In these colleges members of the race may prepare themselves not only to become teachers in these fields but also to enter into these vocations with all the advantages of superior specialized knowledge. If continued progress is to be made to higher economic levels, the Negro youth of the country must take advantage of these opportunities.

National social and economic life demands the training of many more Negro professional and technical leaders. This is also a question of higher education. To safeguard the health of the colored people and of their neighbors, to instruct them in hygiene, sanitation and in the measures necessary to ward off disease, care for those that fall ill, are as essential as intellectual and economic development. There are 3,500 Negro physicians and surgeons in the United States, or approximately one colored physician to every 3,343 Negroes. The white race has a physician to every 553 persons. A serious lack of Negro dentists prevails. There is only one to every 10,540 Negro inhabitants. In technical lines an even more pronounced shortage of trained men is revealed. There are in the United States only 50 Negro architects, 184 engineers, 145 designers, draftsmen and inventors, and 207 chemists. Professional and technical education can be obtained in institutions of higher learning only. With regard to Negro clergymen the report states:

Although the number of Negro clergymen serving as pastors of churches or preachers of the gospel is approximately 19,600, the training of a large number is extremely limited. Many have not had the benefit of a secondary education and others have never graduated from college, much less obtained the advantage of proper training in schools of theology. The average number of graduates from Negro theological seminaries is less than 10 a year when the actual demand for qualified Negro ministers is over 100 annually. The responsibility of providing leadership to direct the ethical, the religious, and the spiritual life of the large Negro population is one that rests upon higher education.

A considerable portion of the report is devoted to the methods of control and administration of the institutions. Four general types of government were found among the 79 institutions participating in the survey. These included 22 publicly supported institutions under State government and control, made up of land-grant colleges, normal and teacher-training colleges; 9 universities and colleges owned, governed and
controlled by independent boards of trustees and privately supported; 31 universities and colleges under ownership and control of Northern white church boards and privately supported; and 17 privately supported colleges owned and governed by Negro church organizations and conferences.

Of these different types of government, the report shows that the institutions controlled by independent boards of trustees have the largest average income per institution, the amount being $261,082, while colleges under control of State authority are second on the list with an average annual income per institution of $145,526. The colleges under the control of Negro church organizations have the third largest average income per institution with $66,977 and the institutions having the smallest average income per institution are those controlled and administered from central headquarters of Northern white church boards, their average annual income being $61,075.

The survey was made under the immediate direction of Dr. Arthur J. Klein, chief of the division of higher education of the Bureau of Education, by a committee consisting of Dr. William B. Bizzell, president of the University of Oklahoma; Dr. C. C. McCracken, Ohio State University; Dean George B. Woods, American University; and from the staff of the Bureau of Education, John H. McNeely, assistant to the director; Dr. Walton C. John, and M. M. Proffitt.

ENDOWMENTS

Endowments for all types of schools in the United States in 1926 exceeded $1,000,000,000 as reported recently by the Bureau of Education, Department of the Interior.

The total valuation of all school property in that year, according to the report, was approximately $8,125,085,472 and the grand total of enrollments in all types of schools was about 31,037,736. The total amount of endowments reported by schools in 1926 is as follows: colleges and universities, $987,012,929; teachers colleges and normal schools, $19,425,113; private high schools and academies, $67,151,000. This makes a total of $1,073,589,042.

TEACHERS' RIGHTS

"Teachers will be slaves if they act like slaves. Weakness always tempts the bully. If they cower, they will be bullied. The tragedy and absurdity of the thing is that they could so easily rally a following if they had the imagination to realize how strong they are. If they chose to say that they would not endure the intolerable indignities to which they are subjected, they would very soon command a new kind of respect in the nation.

"Nothing can excuse or explain away spinelessness. But if the educators in the public schools have to lead a double life, it is not due wholly to personal timidity. It is due to a confusion of mind. The teaching profession does not fight for its rights partly because there is great uncertainty as to what its rights are.

"It is not easy to work out a clear principle which will define the status and the function of public school teachers. The fundamental principles which we assume to be true are capable of being manifested to the most surprising and contradictory results.

"It is possible, for example, to derive the Tennessee statute against evolution from one of the principles laid down in Jefferson's bill for establishing religious freedom. It is possible to derive justification for an established church from the very argument used to disestablish a particular church."

—Walter Lippmann.

From a schoolboy's examination paper: "Liberty of conscience means doing wrong and not worrying about it afterwards."

—Walter Lippmann.
EDUCATIONAL COMMENT

WHO READS WHOM

Charles H. Compton, assistant librarian of the St. Louis Public Library, in an address on "The Outlook for Adult Education in the Library" before the American Library Association, tells of an investigation he made recently.

"I took the records of approximately 100 readers of William James, 100 readers of Carl Sandburg, and 100 readers of Homer, Aeschylus, Sophocles, and Euripides in translation. Who were the people that I found had been reading them? Strange to say they represented much the same classes of society. First of all, there were very few, if any, from our so-called intellectuals. Not a lawyer on the list of James or Sandburg or the Greek Classics—a few doctors—a few ministers, but the bulk came from what we consider the uncultured and certainly the humble occupations. Readers of James include a trunk maker, a machinist, stenographers, a saleslady, a laundry worker, a common laborer, a maintenance man in a soap factory, a colored salesman. That these readers in part at least really appreciated James and read him, not because they were consciously striving to improve themselves, but because he had captured their hearts and minds, is indicated by letters which I received from a number of them in answer to a letter which I had sent to them, inquiring how they happened to become interested in James.

"Readers of Sandburg include stenographers, typists, a waitress, a beauty parlor manager, laborers white and black, a department store salesman, a book agent, a musician, a painter, a shoe salesman and an advertising man.

"It may be noted that a number of the readers said in their letters to me that they had become interested in Sandburg's poetry through university extension or night courses.

"The readers of the Greek Classics include printers, clerks, salesmen, a cabinet maker, a draftsman, stenographers, a musician at a vaudeville theatre, a colored insurance agent, a hairdresser, a chauffeur, a drug store clerk, a beauty specialist, a butcher, a telephone operator, and a railroad brakeman's wife."

GRADUATE LIBRARY SCHOOL AT CHICAGO

The new Graduate Library School of Chicago, which is an outgrowth of a movement on the part of the library profession for an institution devoted exclusively to research and graduate study, will open with the Autumn Quarter of the University, October 1, according to an announcement by its Dean, George Alan Works.

J. C. M. Hanson, recently Acting Director of the University of Chicago Libraries and now in charge of the recataloguing of the Vatican Library in Rome, will be Professor of Bibliography, Classification, and Cataloguing in the new school; Harriet E. Howe, Associate Professor of Library Science; and Douglas Waples, Professor of Educational Method.

Dr. Pierce Butler, of the Newberry Library, Chicago, will be a lecturer for the Autumn Quarter, and the special lecturers already engaged include J. Christian Bay, librarian of the John Crerar Library; Theodore W. Koch, librarian of Northwestern
University; Carl H. Milam, secretary of the American Library Association; Carl B. Roden, librarian of the Chicago Public Library; and George B. Utley, librarian of the Newberry Library.

The kinds of positions for which the new Library School will give preparation include those of administrators of public, college, and university libraries, teachers for library schools and of library science in teachers' colleges, and librarians of special collections such as law, history, medicine, science, Americana, manuscripts, etc.

Chicago has many important library interests that will be invaluable to the school. The American Library Association has its headquarters in Chicago, which makes cooperation in certain types of studies readily possible; and the library science student will find unusual facilities for his work in the great libraries for which Chicago is famous—the Crerar, Newberry, Public, University of Chicago, and Northwestern, and other notable collections like those of the Chicago Historical Society, the Chicago Law Institute, and the Municipal Library.

NUMBER OF SCHOOL BUILDINGS AND VALUE OF PROPERTY

The people of the United States consider it a privilege and a duty to see that, as far as possible, their children are educated and trained. With such general faith in education—a growth of nearly three centuries—the question in the United States is not only whether there shall be educational facilities for all people but how those facilities may be best provided and how the process of education may be constantly improved.

In Bureau of Education Bulletin, 1927, No. 39, of the United States Department of the Interior, it is shown that the total number of public school buildings has decreased from 258,859, in 1925, to 256,104 in 1926. This decrease is caused by the replacement of one-room schools by consolidated schools, since the number of one-room schools has decreased approximately 166,000 to 161,521 during the year, and 687 consolidated schools have been added.

The value of school property has increased correspondingly from $4,252,328,000 to $4,676,603,539 from 1925 to 1926. Of this latter sum $3,567,213,562 is the value of sites and buildings, while the remainder of the total value is in equipment, such as furniture, apparatus, libraries, etc. The average value of school property per pupil enrolled is $189.

AIRPLANE MODELS

Twenty-six vocational training instructors, Boy Scout leaders, Y. M. C. A. boys' secretaries and others in similar work went to Detroit late in August to attend the first course in airplane model construction ever offered. The course was given, free of charge, by The American Boy magazine, sponsor of the Airplane Model League of America. The League, in its one year of existence, has enrolled nearly 200,000 members and enlisted the aid of hundreds of manual training teachers.

Merrill Hamburg, airplane model expert, was in charge of the course, which lasted from August 27 to September 1. The work was given at the new Jefferson Intermediate School, offered by the Detroit Board of Education through its interest in promoting model aviation work. The school has special equipment suited for the actual shop work done by the students. Mornings and several afternoons were devoted to lectures and work at the benches, and all of the attendants completed one or more planes. Aram Abgarian, holder of the world's indoor record of 353.6 seconds, assisted Mr. Hamburg.

Special entertainment features included an inspection trip to Ford Airport and the Ford Motor Company factory, a luncheon with Captain Eddie Rickenbacker as the chief speaker, free tickets to a Detroit-
Cleveland ball game and a smoker at which airplane model motion pictures and other entertainment were offered.

The American Boy magazine arranged the course because of the unprecedented interest, in this country and Canada, in airplane model work, and of the wide demand for expert instruction in it. The "Curriculum" covered not only actual model building and flying, but also the theory of aeronautics, means of organizing airplane model clubs and of promoting interest, the holding of contests and other similar matters. A certificate was awarded to each man who completed the course.

It is probably that a similar, though more extensive, course will be offered next summer. For information, those interested should write to the Short Course Director, The American Boy, 550 Lafayette Boulevard, Detroit, Michigan.

ECONOMIC PRIZES

In order to arouse an interest in the study of topics relating to commerce and industry, to stimulate those who have a college training to consider the problems of a business career, and to aid in constructive economic thinking, a committee composed of Professor J. Laurence Laughlin, University of Chicago, chairman; Professor J. B. Clark, Columbia University; Professor Edwin F. Gay, Harvard University; Hon. Theodore E. Burton, Washington, and Professor Wesley C. Mitchell, Columbia University, has been enabled, through the generosity of Hart Schaffner & Marx of Chicago, to offer in 1929 prizes for the best studies in the economic field to certain classes of contestants.

Classes A and B

Class A includes any residents of the United States or Canada, without restriction; the possession of a degree is not required of any contestant in this class, nor is any age limit set. Class B includes only those who, at the time the papers are sent in, are undergraduates of any American college. Attention is expressly called to the rule that a competitor is not confined to topics proposed in the announcements of this committee, but any other subject chosen must first be approved by it. As suggestions, a few questions are here given, and a brief list of subjects offered in recent years are added:

1. The Influence of the South on Protectionism
2. The Effect on Commercial Banking of the Growth of Corporation Securities
3. The Methods of Maintaining Profits by Lowering Costs in the Face of Rising Wage Rates
4. Present and Future Status of the Lumber Industry
5. The Mineral Resources of South America
6. Under Modern Railway Efficiency Can Any Waterway Hold Its Own in Competition?

A first prize of one thousand dollars, and a second prize of five hundred dollars are offered to contestants in Class A.

A first prize of three hundred dollars, and a second prize of two hundred dollars are offered to contestants in Class B. No prizes will be awarded if, in the judgment of the committee, essays of sufficient merit are not submitted. The committee reserves to itself the right to award the two prizes of $1,000 and $500 of Class A to undergraduates in Class B, if the merits of the papers demand it. The winner of a prize shall not receive the amount designated until he has prepared his manuscript for the printer to the satisfaction of the committee.

The ownership of the copyright of studies to which the right to print has been awarded will vest in the donors, and it is expected that, without precluding the use of these papers as theses for higher degrees,
they will cause them to be issued in some permanent form.

Competitors are advised that, hereafter, the Committee will give preference to essays which do not run beyond 250 to 300 printed pages, and which excel in the higher qualities of economic insight, grasp of principles, power of analysis, and style. They should be inscribed with an assumed name, the class in which they are presented, and accompanied by a sealed envelope giving the real name and address of the competitor, together with any degrees or distinctions already obtained. No paper is eligible which shall have been printed or published in a form to disclose the identity of the author before the award shall have been made. Contestants are warned that in submitting essays in more than one contest they may disqualify themselves by disclosing their identity. If the competitor is in Class B, the sealed envelope should contain the name of the institution in which he is studying. The papers of Class A should be sent on or before June 1, 1929, and those of Class B before July 1, 1929, to J. Laurence Laughlin, Esq., University of Chicago, Chicago, Ill.

SOME SUBJECTS OFFERED IN RECENT YEARS

A study of the policy of the Federal Reserve Board during the War. The effect of the European War on the export trade of Great Britain. Protectionism as affected by the War. The effects of price-fixing by the Government during the War. The function of capital. A critical examination of the work of the Shipping Board. The German Monetary Experiences, 1914-1925. Extent and Effects of Installment Selling. The Present Position of, and the Problems arising from, the Modern Development of Water Power Resources. The present position and future prospects of unionism in the United States. The effects of a protective tariff on farm products in the United States. The crisis of 1920 in Japan, the United States and Europe. A survey of the world’s cotton situation. The theory and practice of ship subsidies. The sales tax. What conditions limit the amount of wages that can be paid?

THE READING TABLE

BOOK CLUBS

Ten book clubs have been organized to date to select books for the American reading public. The latest is the Book League of America, founded by Samuel L. Craig, who was the first President of the Literary Guild. The new league will have several novel features to attract the reader. It is said that there will be two books per month, one new and in magazine form, and one standard. The other nine clubs now functioning are the Book of the Month, which was the first in the field; the Literary Guild, the Religious Book Club, the Poetry Book Club, the Catholic Book Club, the Free Thought Book of the Month Club, the Crime Club, the Detective Story Club, and the Book Selection of the American Booksellers’ Association.—HARRY HANSEN, in the New York World.

All General Science teachers in Virginia will be glad to see Miss Clark’s new General Science text, for her book is one of the two texts prescribed by the state. Just as the 1915 edition was an improvement over the 1912 edition, so the 1928 edition is much better than the 1915. As a matter of fact this new edition is long overdue. Professor Frank in his splendid book, How to Teach General Science, says that a General Science text which has been printed more than five years is out of date. And that statement is true. When it comes to radio, airplanes, television and automobiles, every General Science teacher wants to use a text which contains the recent discoveries concerning these applications of science.

Miss Clark has grouped the material into ten main topics, among which “Health” and “Learning to Know the Heavens” are new. Other improvements in the new edition are: much better illustrations, list of problems at the end of each chapter, and directions for organized review at the end of each chapter.

FRED C. MABEE
OUR ENVIRONMENT: ITS RELATION TO USE. By Harry A. Carpenter and George C. Wood. Boston: Allyn and Bacon. 1928. Pp. 304. This attractively illustrated book is designed for the General Science of the first year of junior high school (seventh grade). It is the first volume of a three-volume series; Book III has already been published.

PILOTS AND PATHFINDERS. By William L. Nida. New York: The Macmillan Co. 1928. $1.20. This is a new book of history stories for the fourth grade which is written in an interesting style that makes easy reading for grade children. Valuable and suitable references are given at the end of each chapter which will lead the pupil to wider reading on the characters in whom he becomes interested. The historical events and the people concerned are made vivid and real rather than mere names in history. We need more such books to enrich the teaching of history in the elementary school. E. G.

THE HYGIENE OF INSTRUCTION. By Lawrence Augustus Averill. Boston: Houghton Mifflin Company 1928. Pp. 386. $2.00. This volume gives a simple, yet clear, portrayal of the different phases of mental hygiene, the why and wherefore for its practice, the urgent need to begin guidance towards right habits—to forestall maladjustments, inhibitions, etc., not only through the school years, but from infancy as well, in order to secure the least possible waste in instruction that living may every day be full and rich. It also lists a very valuable bibliography in this field. Within its compass, one finds studies of the most outstanding related problems with emphasis upon the joint responsibility of the teacher and the parent. It gives evidence of lending itself admirably to use in teacher-training classes. B. J. L.

THE PLAYROAD TO HEALTH and HEALTH HABITS. By S. Weir Newmayer and Edwin C. Broome. American Book Co., N. Y. 1928. Pp. 144 and 2071, respectively. The teaching of health habits is the task of every primary teacher, but one of the biggest problems has been the finding of easy, suitable material for the child to read. The new Health and Happiness Series by Newmayer and Broome will fill this long felt need for the lower grades.

The first book in the series, The Playground to Health, presents the essential health habits and explains the reason for forming these habits in very enjoyable stories. The illustrations are unusually good. Health plays that will appeal to the children are given.

The second book in the series, Health Habits, carries on the ideas begun in the first book but presents reading material that is a little more difficult. Health Duties at the end of the chapters help to build up health habits by giving the child jobs that will interest him in healthy living and make a lasting and favorable impression. B. M. McC.

HOW TO MAKE LAMP SHADES. By Ruth Collins Allen, with illustrations by Marian Foster and Curtiss Sprague. Pelham, N. Y.: Bridgman, Publishers. 1928. Pp. 64. $1.00. A thoroughly practical short treatise for those artistically or non-artistically inclined. The unusually difficult problems of room illumination and choice of lamp bases and shades, depending upon general design principles and color harmony, are clear and interesting. Directions for constructing, sewing, materials, and applications are based upon a background of much experience.

The general appearance is of praiseworthy art merit. Illustrations are striking and the paper and covering are soft and pleasing. A. M. A.

TOPSY TURVY TALES and PEGGY STORIES. By Mildred Batchelder. Illustrated by Ethel Holmes Stephenson. New York: Charles Scribner's Sons. P. 90 and 89, respectively. Here we have for the child who is learning to read, two story books with real story values. The child who loves to read will regard these as an addition to his own library. The child who has difficulty in mastering the intricacies of reading will here find the urge which will carry him over.

Each story is complete in itself, short enough so as not to tire the child. A glance through the table of contents will reveal good titles: Who Won the Race, A Cooky Chapter, and The Tree in the House. As supplementary reading material for the first grade they are excellent. M. L. S.

This valuable booklet for any music lover to possess will teach one to listen more understandingly to all orchestra works. It is so concise and simple that it can be used most profitably by children in their music appreciation study. C. W. C.

ANNIVERSARIES AND HOLIDAYS; A calendar of days and how to observe them. By Mary E. Hazel- line. Pp. 308. $0.00. American Library Association, 86 East Randolph Street, Chicago, Illinois.

Within the compass of 300 double column pages are brought together, in calendar arrangement, the birthdays of important persons, anniversaries of note-worthy events, feast and fast days of the Christian and Jewish calendars. Important days are given a brief historical paragraph. Material for appropriate observance of the day is cited and often there are suggestions for programs, pageants, theatricals, etc. A separate section of the book is devoted to program making. Aside from this the book is a valuable work for quick re-
NEWS OF THE COLLEGE AND ITS ALUMNI

Appointments to the summer faculty for 1928 included Professor Raus M. Hanson, who comes to Harrisonburg to teach Geography in the Department of Social Sciences; Mrs. Ellen Wood Worth, who offered courses in Home Economics; Miss Virginia Turpin, who taught classes in Physical Education. Mr. Hanson comes from the University of Nebraska and will continue on the faculty during the coming session. Mrs. Worth has recently completed work at Teachers College, Columbia University, prior to which she was a teacher at Simmons College, Boston. Miss Turpin was a graduate of the class of 1928. Other members of the summer school faculty who have previously taught at Harrisonburg are Mrs. Florence Lohman, principal of an elementary school in Richmond, and Mr. B. L. Stanley, principal of the Harrisonburg High School, both of whom offered courses in Education.

Due to higher standards for Virginia teachers, the summer school student body was a more select group than in previous years. A spirit of earnestness and congeniality pervaded the campus. The atmosphere seemed charged with vigor and enthusiasm. Cornelia Carroll led the student body as president, Kathleen Watson served as vice-president, and Mildred Williamson as secretary-treasurer. Mrs. Elsie Judy, Sarah Hartman, Rebecca Brandon, Mary Pritchard, Virginia Drew, Charlotte De Hart, Bernadine Knee, Dorothy R. Cox, Flossie Rouzier, Mrs. Carey Taylor, and Nell Walters comprised the student council.

The Summer Breeze was published weekly for the first time. In previous summers it had appeared but once each fortnight.

The Y. W. C. A. functioned well. Inspiring meetings promoted the spirit of helpfulness which was evident on the campus. The picnic supper given in Bacon Hollow by the Y. W. was delightful.

The Choral Club under the direction of Miss Edna Shaeffer formed the choir for chapel. Trained by a member of the Massanetta Springs School of Music, the Choral Club also presented a cantata, "The Holy City," by Gaul, at Massanetta Springs.

One of the big events of the summer was the meeting at Harrisonburg of the Board of Virginia Teachers Colleges. Mr. W. C. Locker, president of the Board, and Mr. Harris Hart, state superintendent of schools, spoke in chapel. They expressed satisfaction regarding the administration and congratulated the student body on their scholastic record.

The chapel programs were varied and well selected. Ten of the finest speakers and singers at the conference held at Massanetta Springs were available for chapel programs by special arrangement. Dr. J. A. McLean of Richmond, Dr. L. J. Sherrill, Professor of Religious Education of Louisville Theological Seminary, Dr. Clovis Chappell of Nashville, Tennessee, Dr. Alexander Allison of Bridgeport, Connecticut, and Dr. Frank Morgan all gave interesting and informing talks. Musical programs were furnished by Mr. and Mrs. McGhee of Chicago. Mr. McGhee led the singing at Massanetta Springs conferences. Mr. Kruger, bass member of the Westminster Sextet, also delighted the college.

Besides these programs from Massanetta Springs, other attractive speakers were obtained for chapel. Some of these were Dr. J. J. Rives, of the Methodist Church of Harrisonburg; Dr. John Price, a missionary to China, and Mr. J. A. Garber, of Harrisonburg.

The lyceum course presented the Westminster Sextet, whose versatility in singing was enjoyed. Miss Margaret McAdory
gave an illustrated lecture on the stained glass windows in French cathedrals. She gave another lecture on the French, Italian, and Spanish paintings in the Museum of the Louvre in Paris.

The entertainment committee arranged that a movie be shown each week, to be available to every student. Some of the best of these movies were The Bush Leaguer, The Dog of the Regiment, A Texas Steer, and The Love Mart.

Excursion parties visited Massanutten Caverns, Monticello, Monterey, Luray Caverns, and Natural Bridge were among the places visited.

Other recreation was afforded by swimming, track, tennis, and golf. Anne Proctor, Red Cross Life Saving Examiner, gave the Life Saving Tests to Lillian Penn, Mary Butts Marchant, Dorothy R. Cox, Margaret Burckmeyer, and Lillian Derry. They successfully passed the tests. The faculty took pride in the fact that one of its number, Mr. McIlwraith, starred in golf, winning the golf championship at the Spotswood Country Club.

Some members of the winter faculty did not teach here. Mr. Conrad Logan taught at Columbia University, while Mrs. J. C. Johnston and Miss Bertha McCollum did graduate work there. Mrs. Varner and Miss Seeger spent the summer in Europe. Miss Boje traveled in the West, Miss Wilson and Miss Harnsberger to Canada.

Vesper services on Sunday afternoon, August 26, in Walter Reed Hall, opened Commencement week. Dr. White, who spent ten years doing missionary work in India, was the speaker. Tuesday evening the President’s reception to the graduates was given at Hillcrest. Wednesday the graduates enjoyed a merry banquet in the dining room.

On Friday, August 31, forty-nine students received diplomas. Seventeen of these were awarded the bachelor of science degree. Mr. Thomas D. Mason, Supervisor of Teacher Training, State Board of Education, Richmond, delivered the commencement address.

The first B. S. to be conferred on a man by the Harrisonburg college went to Ernest Bowman, who has completed his work here in summer sessions.

Two new buildings are to be completed by the opening of the fall quarter. Harrison Hall will provide a new dining hall to seat two hundred persons and enlarged space for the kitchen as well as additions to the heating unit. Johnston Hall, a new dormitory, located just north of Sheldon Hall, will give living accommodations to one hundred and twenty students. This dormitory is completely fireproof and is connected with Sheldon Hall by an arcade. The foundation for a new home economics practice house is now under way.

In the basement of Johnston will be a completely equipped physics laboratory. At the end of the summer session various improvements were made to the incompletely Walter Reed Hall. These include the permanent ceiling of the auditorium and gymnasium and final interior woodwork through the whole of the building. Concrete curbing is now being laid along all the driveways of the campus, and on the completion of this work all the roadways will be macadamized by the State Highway Commission.

OUR CONTRIBUTORS

DONALD W. DAVIS is professor of zoology in the College of William and Mary. “The Scientist and Education” was his retiring address as president of the Virginia Academy of Science, and was delivered in May, 1928, at the Williamsburg meeting of the Academy.

FRED C. MABEE is professor of chemistry in the State Teachers College at Harrisonburg, where he has recently come after some years as a chemistry professor in Shanghai, China.

E. MARION SMITH is professor of Greek and Latin at Hollins College. This paper was presented at the last Richmond meeting of the Virginia Classical Association.

LINNIE SIPE is a junior in the college at Harrisonburg, and prepared this teaching unit under the direction of Miss Emily Goodlett.

ELIZABETH KNIGHT is a junior at Harrisonburg. The pageant of which she writes was a joint project of the members of the Choral Club.
WE PROTECT YOU. We are big enough to take care of your wants. If you see anything advertised by any firm in the Valley of Virginia, we believe we can furnish it for the same price—or less. Send us the advertisement and we will see that you get it through our Mail Order Department. Write us for prices and samples. Special prices to the Faculty and College Students.

B. NEY & SONS
Harrisonburg, Va.

DR. W. L. BAUGHER
DENTIST
Harrisonburg, Virginia

BURKE & PRICE
FIRE INSURANCE
Harrisonburg, Va.
National Bank Bldg. Phone 16

HARRISONBURG BUILDING and
SUPPLY CO., INC.
Contractors and Builders
Harrisonburg, Virginia
O. M. Masters, President
W. E. Fry, Gen'l. Mgr.

HINKELS
EXPERT SHOE REPAIRING
West Market Street at Liberty

Work of Quality
FOLEY'S SHOE HOSPITAL
117 E. Market St. Phone 418-W
WE CALL FOR AND DELIVER ANYWHERE IN THE CITY

FOREST E. PETERS
Make a Specialty of
WATCH REPAIRING
E. Market St. Harrisonburg, Va.

JOS. NEY & SONS CO.
THE BEST DEPARTMENT STORE
IN HARRISONBURG, VIRGINIA

Your Prosperity is Important to This Bank

We want every member of this community to prosper.

Even though you may do no business with us direct, your prosperity is an advantage to the community and consequently to us.

If we can help, with advice or service, please remember that we are cheerfully at your command.

You may correctly count us YOUR FRIEND.

The Rockingham National Bank
Harrisonburg, Virginia
PROFESSIONAL

B. S. graduates accepted as teachers in secondary schools of Southern Association.

Sixty-four holders of B. S. degrees granted collegiate professional certificate by the State Board of Education, year ending July 1, 1926.

During same year 738 students of the college were certified to teach in Virginia.

CURRICULA

Two year curricula for primary and grammar grade teachers leading to normal professional certificate and diploma.

Four year curriculum for high school teachers leading to the B. S. degree and the Collegiate Professional Certificate.

Four year curriculum (B. S. degree) for Home Economics teachers, dietitians, home demonstration agents and institutional directors.

Four year curriculum (B. S. degree) for elementary teachers, supervisors and principals.