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Abstract 

 Real-ear measurements have been proven to be the most accurate measure of 

hearing aid verification. However, many audiologists find real-ear to be too time 

consuming to use consistently. One popular reason for underutilizing real-ear verification 

is the use of first fitting algorithms provided on manufacturer programming software. 

However, the predicted fittings provided on the software are not an accurate means of 

providing what is recommended by popular prescriptive formulas (Hawkins and Cook, 

2003;  Aarts and Caffee, 2005). The main reason for this discrepancy is that the software 

does not take into account individual anatomical differences, i.e. ear canal volume and 

impedance. When performing real-ear insertion gain (REIG), one must take into account 

individual differences by measuring the unaided response of the ear canal. When using 

REIG, prescriptive targets can be chosen which display the appropriate amount of gain 

recommended based on your patient’s amount of hearing loss and natural ear canal 

properties. While the real-ear method of target matching has been proven to be the most 

accurate means of hearing aid fitting, little research has been done to determine if there is 

a quantifiable benefit to this method. The purpose of this study is to examine the effects 

of utilizing REIG throughout hearing aid fittings and adjustments. In particular, are there 

any differences in speech understanding in quiet and noisy conditions? Also, is there any 

difference in the amount of benefit the patient feels they are receiving from their hearing 

aids or how satisfied they are with them?  

Eight subjects were tested on measures of HINT Quiet and Noise, APHAB and 

SADL; measures were done before and after programming was matched to NAL-NL1 

targets using real ear verification. Findings indicate that programming hearing aids more 
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closely to prescribed targets did not necessarily correlate with improved speech 

understanding and patient-perceived satisfaction and benefit. However, patient feedback 

indicated that the preference was to have targets matched to prescriptive gains as closely 

as possible.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

1. Introduction & Literature Review 

The use of real-ear verification throughout hearing aid fittings has been a long-

standing issue of debate in the realm of audiology.  Research has proven that real-ear is a 

reliable and accurate method of verifying hearing aid gain; however, many audiologists 

do not use it consistently.  Dillon and Keidser (2003) discussed the most popular 

arguments both for and against using real-ear measurements. One commonly found 

argument is that real-ear measurements are only considered valid when proper probe 

microphone placement has been achieved. This topic was discussed in detail by Dirks, 

Ahlstrom and Eisenberg (1996). The authors determined that when proper probe 

microphone insertion is consistently practiced, reliability with real-ear measurements can 

be obtained. In the case of real-ear insertion gain (REIG) measurements, the greatest 

concern is that the insertion depth remains consistent in both aided and unaided 

conditions.  Another argument regards the importance of using real-ear measures over 

functional gain measures. Stelmachowicz and Lewis (1988) compared real-ear versus 

functional gain measures across different hypothetical patients. While they determined 

that there are times when functional gain is appropriate, using real-ear verification is 

generally a more accurate in situ measure of hearing aid performance.  Dillon and 

Keidser (2003) determined that although there are strong arguments both for and against 

routine real-ear measurement, it is still considered best practice to utilize real-ear 

verification consistently throughout hearing aid fittings and follow-up troubleshooting. 

Possible exception to the rule includes when it has been repeatedly proven that 

manufacturer provided fitting software contains an accurate simulation of real-ear.  So if 
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the reliability and validity has been proven time and again, why do audiologists continue 

to underutilize real-ear verification as a standard tool in the hearing aid fitting process? 

One reason many audiologists do not use real-ear is because, as mentioned above, 

manufacturers provide simulated measures on their programming software. Hawkins and 

Cook (2003) demonstrated that manufacturer simulated values were based on 2-cc 

coupler values for the specific model of hearing aid. These values were then transformed 

with what the manufacturer believed to be an appropriate Coupler Output for Flat 

Insertion Gain (CORFIG). This method does not take into account individual variations 

in ear canal volume and impedance. The authors determined that on the twelve subjects 

they examined, these CORFIG values were not an accurate estimate of how the hearing 

aid was actually performing. Simulated values tended to overestimate the amount of gain 

actually provided by the hearing aid, particularly in the very low and high frequencies 

(over 4000 Hz). Rather, they recommended that audiologists employ in situ 

measurements of hearing aid performance in the form of either functional gain or real-ear 

measures.  

Aarts and Caffee (2005) expanded the work of Hawkins and Cook by employing 

similar methods on a larger subject population. This study compared real ear predicted 

values from one manufacturer’s software to in situ measures on 41 subjects. Two styles 

of the manufacturer’s hearing aids were programmed to two common hearing loss 

configurations seen in adult hearing aid users: a flat mild sensorineural loss and a mild 

sloping to moderately severe hearing loss. The authors reported that significant 

discrepancies were present between predicted and measured real-ear values, suggesting 
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that audiologists cannot rely solely on manufacturer technology for best fitting 

procedures. They found the same pattern of overestimated predicted gain in the very low 

and high frequencies as noted by Hawkins and Cook (2003). The authors supported 

Hawkins and Cook’s hypothesis that simulated or predicted values failed to take into 

account individual differences, which can be measured on real-ear systems as real-ear 

unaided responses (REUR). Aarts and Caffee also made the hypothesis that inaccurate 

fittings done with predicted real-ear values could be a catalyst for low levels of 

satisfaction with hearing aids.  

Swan and Gatehouse (1995) measured real-ear insertion gain following first 

fittings performed on hearing aid manufacturer software. They found that a large 

percentage of their subject population failed to meet prescriptive targets on the first 

fitting. Following adjustments, more subjects were able to more closely meet targets, 

however some still failed to do so. Whether or not all of their subjects met prescriptive 

targets, the authors concluded that without the use of real-ear insertion gain measures, the 

audiologist would not have a specific idea of whether or not the hearing aid is providing 

the appropriate amount of gain.  

 Aazh and Moore (2007) took this concept a step further and examined actual 

differences in REUR values between software and in situ measures. Their results 

indicated that there was a significant difference between actually measuring unaided gain 

versus using premeasured values. Surprisingly, they could not find a definitive way to 

attribute the use of software provided values to poor fittings. However, they did identify 

that when comparing audiograms among subjects, those who had steeply sloping high 
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frequency hearing losses were less likely to match target values than those who did not. 

Aazh and Moore also found that when making modifications to hearing aids following 

first fittings, hearing aids with more channels were able to more closely match target than 

those with fewer channels.  

 In clinical practice, audiologists frequently rely on patient feedback as a means of 

verification. Cox (2009) reported that patient feedback is actually a measure of fine 

tuning, not verification.  Fine tuning is essentially the process of making the hearing aid 

perform as the patient wants it to. Verification, on the other hand, is the process of 

ensuring that the hearing aid is doing what the audiologist feels is best for the patient. 

While “low-tech” versions of verification (such as functional gain) can be performed, 

real-ear measures still provide the most accurate validation of hearing aid performance, 

as long as it is performed appropriately. Few other measures are available which can 

actually measure the SPL that the hearing aid is providing at the level of the ear drum.  

 Although real-ear measurements have been proven to be an accurate verification 

of hearing aid performance, certain variability does exist. One such area is the differences 

in prescribed target values across different real-ear systems. Ricketts and Mueller (2009) 

examined variations in target matching to the NAL-NL1 formula between Fonix, Verifit, 

and MedRx systems. Their results indicated that when programming to NAL-NL1 targets 

on one system, prescribed target values would not necessarily match on another system. 

The Verifit and MedRx systems were a fairly close match, however, the Fonix target 

values deviated further from the other equipment. Possible reasons for these 

discrepancies were whether the fitting was bilateral versus unilateral, the number of 
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compression channels in the hearing aid, the type of output limiting employed, the input 

signal of the system, and the method used to analyze output. In order to practice best 

fitting, the authors suggested that audiologists should be careful to utilize the same real-

ear system throughout the hearing aid process. 

 Another issue which can arise is intratester test-retest reliability. In many clinical 

cases, the same audiologist will always perform real-ear measurements on a patient. 

However, the same clinician can encounter variability between measures if they are not 

consistent with their procedure. Valente, Meister, Smith and Goebel (1990) tested 

intratester test-retest reliability on real-ear insertion gain measures. They found that as a 

clinician was trained in proper procedure which they consistently employed, their results 

became more valid. This includes proper probe tube insertion depth as well as proper 

placement of the patient in front of the loudspeaker.  

 Research has shown that the one of the most important factors of hearing aids to a 

consumer is improved speech understanding. Little evidence is available to prove that 

using real-ear measurements throughout hearing aid fittings results in improved speech 

understanding abilities. Kuk, Harper, and Doubek (1994) examined preferred real-ear 

insertion gain (REIG) values under changing speech and noise conditions. They tested 

twelve subjects using a measure of speech clarity. They reported that as speech and noise 

levels increased, subjects preferred that insertion gain values be lowered from NAL-R 

target values (particularly with speech). As speech understanding is most important to our 

patients, it is essential that we consider it when performing real-ear measures with target 

matching.  
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 Although Kuk, Harper, and Doubek’s study examined preferred gain levels with 

speech clarity, they still did not employ a measure of speech understanding. One measure 

of speech intelligibility is the Hearing in Noise Test (HINT). The HINT serves as a 

sentence speech reception threshold (sSRT), or a measure of at what level the subject can 

correctly identify sentences fifty percent of the time. HINT sentences can be presented in 

quiet or in the presence of a competing background noise. The noise can be presented 

with the speech stimulus or from a separate source as a means of measuring speech 

intelligibility in noise under varying conditions. When presenting sentences in noise, the 

level of the sentences is manipulated to find the subject’s ideal reception threshold for 

speech, which is essentially the signal to noise ratio where they could identify sentences 

fifty percent of the time. The HINT provides a valuable means of measuring speech 

intelligibility to identify if patient performance improves when gain is programmed to 

match prescribed target values. 

 Although many studies have proven that real-ear measures are an accurate and 

essential part of best fitting procedures, not many have examined the patient’s perception 

of using them. Leijon et al. (1990) found that when NAL targets were matched 

appropriately, subjects on average felt that there was too much gain and were 

subsequently unhappy with their hearing aids. One method of examining this is by using 

questionnaires which measure patient perceived satisfaction and benefit. The Abbreviated 

Profile of Hearing Aid Benefit (APHAB) is a measure of patient perceived benefit from 

their hearing aids across four scales. The first three scales (ease of communication (EC), 

reverberation (RV), and background noise (BN)) assess speech communication in 
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favorable, reverberant and noisy environments.  The fourth scale is a measure of 

aversiveness to loud sounds. The APHAB is to be filled out twice by the subject; they are 

to respond to each question both as aided and unaided. Thus the APHAB is a complete 

measure of patient perceived benefit, providing aided and unaided scores across different 

speech communication environments. A benefit score is then derived from the unaided 

and aided scores to determine how much actual benefit the subject deems they are 

receiving form their hearing aid(s).  

 Cox and Alexander (1999) argued that measuring benefit alone excludes many 

factors related to the patient’s perception of the hearing aid. These factors can be 

encompassed in measures of satisfaction.  The Satisfaction with Amplification in Daily 

Life (SADL) scale is a complete measure of satisfaction with hearing aids. It assesses 

satisfaction among four subscales: Positive Effect (PE), Service and Cost (SC), Negative 

Features (NF) and Personal Image (PI). A global score may be obtained from the four 

subscales allowing the hearing aid provider to assess how satisfied a patient is with their 

hearing aid, as well as where specific dissatisfaction may arise. 

 The purpose of this study is to examine the patient-perceived effects of utilizing 

real-ear insertion gain and target matching to NAL-NL1 targets throughout hearing aid 

fittings. Specifically, does using REIG increase patient perceived satisfaction and 

benefit? Also, does using REIG improve performance of speech understanding in quiet as 

well as in different noise conditions? 

 



 

 

 

2. Methods 

2.1 Subjects 

Eight adult hearing aid users (3 M, 5 F; mean age: 52.75) participated in this 

study.  All subjects were fit bilaterally with either Behind-the-Ear (BTE), In-the-Ear 

(ITE), In-the-Canal (ITC), or Completely-In-the-Canal (CIC) hearing aids from the same 

manufacturer. No open fit hearing aids were used in this study. All hearing aids were 

middle level technology. Time of hearing aid experience ranged from six weeks to 

several years.  All subjects were fit with their hearing aids and subsequently tested at Ear, 

Nose and Throat Associates of Charleston, West Virginia. All subjects had symmetrical 

audiogram configurations ranging from a moderate to moderately severe flat 

configuration to a moderate sloping to severe configuration.  

 

Figure 2.1: Average Air Conduction Thresholds for All Subjects (N=8). Error Bars Denote 

+1 SE 
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2.2 Fitting Procedure 

All subjects were initially fit using standard procedure currently employed by the 

five audiologists at Ear, Nose and Throat Associates.  This procedure includes a hearing 

aid evaluation, hearing aid fitting using first-fitting algorithms provided on manufacturer 

software and subsequent follow-up appointments throughout the 30 day trial. All follow-

up adjustments were made based on patient feedback alone.                                                                                                                   

2.3 Testing Procedure 

 Each subject underwent two sessions of testing. Session one was performed with 

their original programming. Testing procedure for session one included the following: 

1. Otoscopy 

2. Pure Tone Audiogram 

3. HINT in Quiet (unaided and aided) 

4. HINT in Noise (0 and 90 degree azimuth, unaided and aided) 

5. REIG (Audioscan RM 500 SL) 

6. APHAB 

7. SADL 

Following session one testing, reprogramming to match NAL-NL1 targets was 

performed. During the reprogramming, subjects were connected to the real-ear system as 

well as the manufacturer software. Adjustments on the software were made while 

continuously running REIG. Prescribed targets were matched as closely as possible 

without creating feedback or patient discomfort. Once NAL-NL1 targets were matched as 
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closely as possible, programming was saved as Program 2 in the hearing aid. Subjects 

were instructed to use the target-matched programming at least two hours a day, but 

ideally as much as possible. A three to four week adjustment period was given for the 

subjects to acclimatize to new programming before returning for a second session of 

testing. Session two test procedure included the following: 

1. Otoscopy 

2. HINT in Quiet (aided only) 

3. HINT in Noise (0 and 90 degree azimuth, aided only) 

4. REIG (Audioscan RM 500 SL) 

5. APHAB 

6. SADL 

7. Final Questionnaire 

All testing for session two was performed with the target-matched programming. 

Subjects were instructed to answer questions on the APHAB and SADL thinking about 

using their new programming created for this study. A final questionnaire was created so 

that subjects could give feedback comparing their original programming with the target-

matched programming. Once all testing was completed, subjects were given the option to 

return to their original programming or keep what was created for this study. 

2.3a Otoscopy 

Otoscopy was performed at the beginning of each session. Otoscopy revealed 

normal, healthy appearing ear canals and tympanic membranes on all subjects. If the 



11 

 

 

 

presence of cerumen was such that it would inhibit REIG measures, cerumen removal 

was performed by an otolaryngologist.  

2.3b Audiograms 

Pure-tone audiograms were performed on each subject prior to speech testing. 

Tested frequencies included 250, 500, 1000, 2000, 3000, 4000, 6000, and 8000 Hz.  Both 

left and right ears were tested.  Testing was performed on a GSI-61 audiometer using 

insert earphones. For both groups, audiogram configurations ranged from a moderate to 

moderately severe relatively flat configuration to a moderate sloping to severe 

configuration. Audiograms for all subjects may be found in Appendix A. 

 2.3c Speech Understanding in Quiet and Noise 

The Hearing in Noise Test (HINT) was used to assess speech understanding.  The 

HINT was first performed in quiet in order to obtain a measure of speech reception 

threshold. For the quiet condition, the patient was facing the speaker at zero degree 

azimuth.  The first sentence was presented until the subject was able to repeat the whole 

sentence correctly. From there, nineteen more sentences were presented at varying 

intensities. This process was continued until twenty sentences had been presented. An 

average intensity level was then derived from all 20 presentations, giving the average 

intensity the subject needed to correctly identify sentences fifty percent of the time.                                                                                        

______The HINT was then used in two noise conditions: zero degree azimuth and ninety 

degree azimuth.  In the zero degree azimuth condition, both speech and noise were 

presented from the speaker in front of the subject. The noise was continuously presented 
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at 60dBSPL. The intensity of the sentences was varied in the same manner as the quiet 

condition. Once all twenty sentences had been presented, an average intensity level was 

derived from all presentations, giving the average intensity the subject needed to 

correctly identify sentences fifty percent of the time in the presence of noise.  The noise 

level (60dBSPL) was then subtracted from the average intensity score, giving the 

Reception Threshold for Speech (RTS), which is essentially the signal-to-noise ratio the 

subject needs to correctly identify sentences fifty percent of the time when speech and 

noise are presented from the same source.  The figure below demonstrates speaker-

subject configurations for zero degree and ninety degree azimuth conditions.                                                                                                                                          

_____ 

 

 

 

Figure 2.2: Subject-Speaker Configurations for the HINT test at zero and ninety degree 

azimuth 

_In the ninety degree condition, speech was presented from the speaker in front of 

the subject while noise was presented from a second speaker at a ninety degree angle to 

the subject. The speech and noise are presented in an identical fashion to the zero degree 

azimuth condition. Again, an RTS score is derived, giving the signal-to-noise ratio the 

subject needs to correctly identify sentences fifty percent of the time when speech and 

noise are presented from different sources. HINT testing materials can be found in 

Appendix C. 

 
         0° Azimuth 

Speech & Noise 

    90° Azimuth 

Speech    Noise 
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2.3d Real-Ear Insertion Gain (REIG) 

Real-Ear Insertion Gain (REIG) was performed on all subjects during both testing 

sessions. The Audioscan RML500 SL portable system was used. Calibration was 

performed at the beginning of each test day. REIG testing was selected from the test 

menu, and the patients audiogram values were entered into the system. NAL-NL1 was 

selected as the prescriptive formula. Pink noise was selected as the stimulus type. In order 

to obtain REIG, real-ear unaided gain (REUG) was first measured at 50 dBSPL. This was 

performed by placing a small probe microphone tube into the ear canal matched to a 

marker resting just outside the tragus, to a depth of 25mm. The reference microphone was 

placed just below the earlobe. The subject was placed at a forty-five degree angle to the 

speaker. Once REUG was measured, real-ear aided gain (REAG) was measured at two 

stimulus levels: 50 and 65 dB SPL. These two intensity levels were selected for target 

matching to NAL-NL1 target curves.  Once all three measures had been performed 

(REUG and REAG at 50 and 65 dBSPL), REIG values could be determined. Measured 

REIG values were noted at 500, 1000, 2000 Hz. NAL-NL1 target values were also noted 

at 500, 1000, 2000 Hz. Differences between measured and target values were then 

calculated to determine the accuracy of the hearing aid’s performance.  REIG outputs for 

pre and post target-matching can be found in Appendix B. 

2.3e Subjective Measures of Hearing Aid Benefit and Satisfaction 

Two questionnaires were given to the subjects after testing was completed. The 

first was the Abbreviated Profile of Hearing Aid Benefit (APHAB), which measures 

patient perceived benefit from their hearing aids. The APHAB consists of four subscales: 
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Ease of Communication, Background Noise, Reverberation, and Aversiveness to Sound. 

Each subject was asked to answer each question on the APHAB twice; first as aided and 

second as unaided. The APHAB is measured as a percent score, meaning that a lower 

percent indicates that the subject  has problems on the specific subscale a lower 

percentage of the time, while a higher percent indicates problems on the subscale a 

greater percentage of the time. A global score is then derived across the four subscales to 

determine the amount of overall benefit the subject feels they are receiving from their 

hearing aids.  APHAB Materials can be found in Appendix D.                                                                                                               

______The second questionnaire was the Satisfaction with Amplification in Daily Life 

(SADL), which measures patient perceived satisfaction with their hearing aids. The 

SADL is also measured across four subscales: Positive Effect, Service and Cost, Negative 

Features, and Personal Image. The SADL is measured on a “SADL Scale”, which is 

measured numerically from one to seven. A higher SADL score indicates a greater level 

of satisfaction with hearing aids, while a lower SADL score indicates a lower level of 

satisfaction with hearing aids. Again, a global score was derived across the four subscales 

to determine the amount of benefit the subject feels they are receiving from their hearing 

aids.  SADL materials can be found in Appendix E.  

 

 

 

 



 

 

 

3. Results 

Each subject underwent two sessions of testing. Session one was preformed with 

original hearing aid settings which were obtained using manufacturer-provided first-

fitting algorithms. Session one will be referred to as “Aided Original” when discussed 

throughout the results section. Session two was preformed with hearing aid settings 

which were matched to NAL-NL1 targets using REIG.  Session two will be referred to as 

“Aided with Real-Ear” throughout the results section. All raw data can be found in 

Appendix G.  

3.1 REIG 

 During the Aided Original session, each subject was asked to place their hearing 

aid volume and programming as they normally would for everyday conversation. Prior to 

any subsequent testing, REIG was ran to determine how closely the patient’s hearing aid 

settings matched prescribed NAL-NL1 targets. REIG values were compared to NAL-

NL1 targets at 500, 1000, and 2000 Hz. Four thousand Hz was not used for comparison 

as too much variability was present. Following Aided Original session testing, the 

subject’s hearing aids were reprogrammed using REIG to more closely match prescribed 

NAL-NL1 targets. Figure 3.1 displays values both before and after reprogramming in 

respect to dB SPL difference from NAL-NL1 target values.  
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Figure 3.1: Average dBSPL Difference Between Measured REIG Values and Predicted 

NAL-NL2 Target Values in the Aided Original and Aided with Real-Ear Conditions. Error 

Bars denote +1 SE 

When looking at Figure 3.1, lines with diamond-shaped data points represent the 

dBSPL difference values for the Aided Original condition , and lines with square-shaped 

data points represent the dBSPL difference values for the Aided with Real-Ear condition.  

As seen above, little difference was present at 500 Hz for soft (50dBSPL) or average 

(60dBSPL) stimulation. At 1000 Hz a slight difference was present; however the largest 

difference was seen at 2000Hz for both soft and average input levels.  

3.2 Speech Understanding in Quiet  

Speech intelligibility was assessed using the HINT, and was first tested in quiet. 

Quiet HINT testing was performed in the Aided Original session both with and without 

Average dB SPL Difference Between REIG and NAL-NL1 

Target Values 
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amplification. During the Aided with Real-Ear session quiet HINT testing was only done 

with amplification. Results for HINT in quiet scores in the unaided, Aided Original 

condition, and Aided with Real-Ear condition can be seen in Figure 3.2. 

 

Figure 3.2: HINT in Quiet Scores for Unaided, Aided Original and Aided with Real-Ear 

Conditions. Error Bars denote +1 SE 

When looking at Figure 3.2, it is important to understand that a lower score is 

better. HINT in Quiet scores can essentially be thought of as a measure of Speech 

Reception Threshold (SRT), or the softest level a person can correctly repeat speech 

stimuli fifty percent of the time. When examining the data in Figure 3.2, it is clear that 

scores became lower as subjects were given the opportunity to utilize amplification. A 

one-way analysis of variance (ANOVA) resulted in a significant main effect (F (2) 

=17.61, p < .005), indicating significant improvement between unaided and aided scores. 

The one-way ANOVA found no significant effect between the Aided Original and Aided 

with Real-Ear conditions, with p=0.259. 
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3.3 Speech Understanding in Noise 

Following HINT in Quiet, speech intelligibility in the presence of background 

noise was assessed using the HINT in Noise. Two noise conditions were examined in 

order to understand the benefit of spatially separating the signal from the noise. First, the 

signal and noise were presented from the same sound source, labeled the 0 degree 

azimuth condition. The 0 degree azimuth condition was tested both with and without 

amplification during the Aided Original session. During that session, the subject was 

asked to set their programs and volume as they normally would for everyday listening. 

Following reprogramming to match NAL-NL1 targets, speech intelligibility in noise was 

re-assessed. During the Aided with Real-Ear session testing was only done with 

amplification, being sure that the program created to match targets was in use. 

  Following the 0 degree condition, speech intelligibility was assessed when the 

signal and noise were presented from separate sound sources, labeled the 90 degree 

azimuth condition. As before, this condition was tested both with and without 

amplification in the Aided Original session, and only with amplification during the Aided 

with Real-Ear session. Also with the 0 degree condition, during the Aided Original 

session subjects were asked to set their program and volume as they would for everyday 

conversational listening, and during the Aided with Real-Ear session to the programming 

created for this study. Figure 3.3 displays results for the HINT in 0 degree and 90 degree 

azimuth conditions as unaided, Aided Original, and Aided with Real-Ear.  
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Figure 3.3: HINT scores in Unaided, Aided Original and Aided with Real-Ear Conditions at 

0 and 90 degree Azimuth. Error Bars denote +1 SE 

  As with the HINT in Quiet, a lower score indicates better speech intelligibility. 

The HINT in Noise is measured as Reception Threshold for Speech (RTS), which is 

essentially the signal to noise ratio needed to correctly repeat speech stimuli fifty percent 

of the time. A negative RTS score means that the speech stimulus was softer than the 

noise, while a positive score indicates the noise was louder. Looking at the data in Figure 

3.3, it is clear that performance was better across all three conditions in 90 degree 

azimuth. A one-way ANOVA resulted in a significant main effect of condition (F (2) 

=5.414, p < 0.05), indicating an improvement in scores as aided versus unaided. A 

significant azimuth effect was also found (F=18.632, p < 0.05), correlating with a 

significant improvement in the 90 degree azimuth condition.  No significance was seen in 

the 90 degree azimuth between the Aided Original and Aided with Real-Ear scores, with 

p=0.962. 
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 In order to examine interaction effects between HINT scores in quiet and noise, a 

multivariate analysis of variance (MANOVA) was ran. Because HINT quiet and noise 

scores are measured on two different scales (SRT and RTS, respectively), normative 

values were subtracted from all raw scores in order to obtain unified data. The 

MANOVA examined three areas: the effect of listening condition (quiet, 0 degree, 90 

degree), the effect of aided condition (unaided, Aided Original, Aided with Real-Ear), 

and the effect of listening by aided conditions.  Results of the effect of listening showed 

that there was a significant effect with F (2,14) = 76.8, p <0.01. Wilks Lambda value 

showed that listening condition was responsible for 96% of variance. Results of the effect 

of aided condition showed no significant effect with p=0.655. Wilks Lambda value 

showed that aided condition was responsible for 87% of variance. When examining the 

interaction of listening by aided, no significant effect was found with p = 0.420, with a 

Wilks Lambda values showing the interaction of both conditions was responsible for 93% 

of variance. In summary, a significant effect of the listening condition was found, 

indicating that performance improved given the listening condition; however, the three 

aided conditions did not play a significant role.   

 To examine this point further, a MANOVA was ran comparing only the Aided 

Original and Aided with Real-Ear conditions in the two HINT Noise conditions (0 and 90 

degree azimuth). Again, a significant effect of listening condition was found with F 

(2,14) = 36.79, p<0.001.  As before, no significant effect was found of aided conditions 

(p=0.007) or with listening by aided conditions (p=0.163).  Wilks Lambda value for 

listening by aided resulted in 53% percent of variance being due to the interaction 
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between the two conditions.  In order to determine which listening condition yielded 

better scores, the raw data was examined. As discussed before, a significant improvement 

was seen in the 90 degree azimuth condition, indicating that there was a significant 

improvement in that listening condition, but it was not be attributed to the aided 

condition.  

3.4 Satisfaction & Benefit 

Following measures of speech intelligibility, patient-perceived satisfaction and 

benefit were measured. Two questionnaires were used to assess this:  

1. Abbreviated Profile of Hearing Aid Benefit (APHAB) 

2. Satisfaction with Amplification in Daily Life (SADL) 

3.4a APHAB 

The APHAB was administered during both sessions. During the Aided Original 

session, subjects were asked to fill out the questionnaire answering each question twice – 

once as when wearing their hearing aids, and once when not. During the Aided with 

Real-Ear session, subjects were asked to answer questions as only with their hearing aids. 

The APHAB is measured across four subscales: 

1. Ease of Communication (EC) 

2. Background Noise (BN) 

3. Reverberation (RV) 
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4. Aversiveness to Sounds (AS) 

Following completion of the survey, scores were calculated using the APHAB 

scoring software. Average unaided, aided and benefit scores were calculated. Figure 3.4 

displays results for APHAB scores across the four subscales in unaided, Aided Original 

and Aided with Real-Ear conditions. 

 

Figure 3.4: Average APHAB Scores Across the Four APHAB Subscales (EC, BN, RV, AV) 

in the Unaided, Aided Original and Aided with Real-Ear Conditions. Error Bars denote +1 

SE 

Traditionally, the APHAB examines two areas: Speech Perception and Loudness. 

Speech perception is rated in the first three subscales (EC, BN, RV) and loudness is rated 

in the fourth (AV).  Among the speech perception subscales, it is expected that a lower 

APHAB score will be present in an aided condition. In the loudness subscale, there is 

often a higher score in the aided condition, indicating that loud sounds are more 

bothersome when wearing one’s hearing aid. The data found in this study follows this 

traditional pattern. As with the HINT, a MANOVA was ran to examine interaction 
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effects between aided conditions and subscale. Again, normative values were subtracted 

from normative data. Also, the Aversiveness scale was flipped to be a “Nonaversiveness” 

measure so that data was more unified. This time, the effect of subscale, the effect of 

aided condition, and the effect of subscale by aided condition were examined.  There was 

no significant effect found of the subscale condition (p=0.556).  Wilks Lambda value 

showed that 55% of variance was due to the difference between subscales. There was 

also no significant effect of aided condition (p=0.721). Wilks Lambda value showed that 

10% of variance was due to aided condition. Finally, no significant interaction was found 

in the subscale by aided (p=0.271), with a Wilks Lambda value indicating 60% of 

variance was due to the interaction between subscale and aided conditions. This indicates 

that no significant differences were found in responses based on aided conditions or 

across subscales. 

3.4b SADL 

The SADL was the second questionnaire used to assess patient-perceived satisfaction 

or benefit with their hearing aids. Like the APHAB, the SADL was administered during 

both sessions. During the Aided Original session, subjects were asked to fill out the 

questionnaire answering each question once, thinking about their current (original) 

hearing aid settings. During the Aided with Real-Ear session, subjects were asked to 

answer questions thinking about their new (with real-ear) hearing aid settings. The SADL 

is measured across four subscales: 

1. Positive Effect (PE) 
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2. Service & Cost (SC) 

3. Negative Features (NF) 

4. Personal Image (PI) 

Following completion of the survey, scores were calculated using the SADL scoring 

software. Average unaided, aided and global scores were evaluated. Figure 3.5 shows 

results for SADL scores across the four subscales in the Aided Original and Aided with 

Real-Ear conditions. 

 

Figure 3.5: Average SADL Scores Across the Four SADL Subscales (PE, SC, NF, PI) as well 

as Global Scores in the Aided Original and Aided with Real-Ear Conditions. Error Bars 

denote +1 SE 

When looking at the SADL scores, little difference is seen between the Aided 

Original and Aided with Real-Ear conditions.  A MANOVA was ran to examine 

interactions between subscales and aided conditions. Again, normative values were 

subtracted from scores to unify data. Like the APHAB, effects of subscale, aided 
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condition , and subscale by aided condition were examined. Tests of subscale showed no 

significant effect (p=0.345), with a Wilks Lambda value showing 97% of variance was 

due to subscale. Tests of aided condition showed no significant effect (p=0.813).  No 

significant effect was found when examining interaction between subscale and aided 

conditions (p=0.008), with a Wilks Lambda value showing 71% of variance being due to 

the interaction between subscale and aided conditions. This indicates that there was no 

significant difference in scores between the two aided conditions or across subscales. 

Thus, there was no significant effect of improvement in satisfaction and benefit scores 

when matching hearing aids to NAL-NL1 targets.  

3.5 Final Questionnaire 

At the end of the Aided with Real-Ear session, subjects were asked to fill out a simple 

questionnaire created for this study. Questions were as follows: 

1. Which hearing aid program did you prefer, your original or the one that was 

created for this study? 

2. Please list some specific reasons for your preference. 

Of the eight subjects, six listed the study (target-matched) programming as their 

preference. Some specific reasons for this preference were improved clarity of speech 

and hearing in the presence of background noise. The two subjects who listed their 

original programming as their preference cited loudness as the reason they disliked the 

target-matched settings. Depending on their preference, hearing aide settings were either 

left alone or returned to their original programming.  



 

 

 

4. Discussion 

The aim of this study was to determine the specific benefit a patient will receive 

when having their hearing aids programmed as closely to NAL-NL1 targets as possible 

with the aid of real ear measurement. Research included in the literature review 

demonstrated that using real-ear verification is the most effective means of meeting 

prescribed targets. Using this method on a group of subjects who had previously 

experienced programming without real-ear verification provided insight on subjective 

measures of satisfaction and benefit. Beyond that, measures of speech intelligibility 

provided that ability to correlate changes made with programming to performance on the 

HINT in quiet and noise. 

4.1 Discrepancy in hearing aid gain with and without real ear verification: 

Real-Ear Insertion Gain (REIG) was tested twice: before (participants’ original 

hearing aid gain programmed without real ear verification) and after programming to 

match NAL-NL1 targets as closely as possible with the aid of real ear verification. 

Initially, REIG values were found to be on average 6 to 12dBSPL under prescribed NAL-

NL1 target values for 50dBSPL and 65dBSPL input. The work of Hawkins and Cooke 

(2003) demonstrated that on average, especially in the higher frequencies (above 

1000Hz), actual insertion gain measures were approximately 10dBSPL under NAL-NL1 

prescribed measures. Aarts and Caffee (2005) expanded the previous study, finding that 

at 50dBSPL input, actual insertion gain values were on average close to target at 500 Hz, 

about 5dBSPL below target at 1000 Hz, and approximately 10 to 15dBSPL below NAL-

NL1 targets at 2000Hz and above.  These discrepancies closely resemble those found in 
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this study when comparing original real-ear insertion gain values to NAL-NL1 predicted 

values.  Following reprogramming to more closely match prescriptive targets, minor 

discrepancies were seen at 500 Hz, with the greatest difference being seen at 2000 Hz. 

The goal of the NAL-NL1 prescriptive method is to make speech intelligible while 

keeping sounds comfortable. The emphasis of gain is on the middle frequencies. When 

500 Hz was raised significantly, patients often reported too much loudness or that their 

own voice sounded unnatural. When manipulating 1000 Hz and 2000 Hz, patients were 

more flexible with the amount of possible increased gain. This is likely due to the fact 

that NAL-NL1 method provides emphasis on these frequencies to begin with, with a goal 

of maximizing speech intelligibility. In addition, increased gain in the mid frequency 

region is less noticeable than any gain adjustment at low or high frequencies.  

In correlating the REIG target matched programming to patient feedback, a trend 

of improved clarity of speech and greater audibility in background noise were reported. 

This agrees well with the fact that 2000 Hz was the greatest area of increase across 

manipulated frequencies. When providing more gain to the middle frequencies, it would 

be expected that speech intelligibility would improved (Byrne D, 2001) (Ching TY, 

2001). This also correlates well with HINT scores.  

4.2 Reception Threshold for Speech in Quiet: 

HINT scores in Quiet yielded two significant effects: a main effect between 

unaided and both aided conditions (with and without real ear verification), as well as an 

effect between listening conditions (between 0 and 90 degree azimuths).  A significant 
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main effect is to be expected as research has long proven that there is a great benefit in 

speech intelligibility when wearing hearing aids (in a person with hearing loss) (Dillon, 

2001). The second significant factor, between both aided conditions, was a more 

interesting finding. There was a 5dBHL difference between the Aided Original to Aided 

with Real-Ear conditions, with the lower score being in the second condition. This 

showed that as subjects’ hearing aids are programmed more closely to target, they will be 

able to correctly understand speech in quiet situations at a softer level. The HINT score in 

quiet is a direct reflection of the improved audibility achieved by providing the additional 

gain while attempting to match the NAL-NL1 targets. However, real-life situations are 

almost never completely quiet, so the HINT in Noise was of more interest in regards to 

relating findings to clinical application. 

4.3 Reception Threshold for speech in the presence of Noise: 

As mentioned before, the HINT in Noise was performed at two azimuth 

conditions: 0 degree and 90 degree. Again, a significant main effect was found between 

unaided and aided conditions. The surprising find in this condition is that no significant 

benefit was found between the Aided Original and Aided with Real-Ear conditions. The 

likely reason for this is the difficulty of the task. The 0 degree azimuth condition proved 

to be far more difficult than the 90 degree azimuth condition among the unaided and both 

aided conditions (Dillon, 2001). On average, subjects needed the speech signal to be 

louder than the noise in order to correctly repeat it.  Research examining the advantages 

of binaural listening has proven that being able to separate the sources of noise and 

speech signal improves understanding (Henkin Y, 2007)  (Dillon, 2001). During this 
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study, the 0 degree condition was so difficult that subjects struggled no matter what the 

aided condition. However, a much different scenario was found when the speech and 

noise were spatially separated. 

The 90 degree azimuth condition replicates a situation where the speech and the 

noise are spatially separated by 90 degrees with speech originating in front of the listener. 

This condition is an easier task compared to the 0 degree condition as reported in studies 

involving directional  hearing aid microphones (Ricketts, 2000), and normative data for 

the HINT (Nielson et al., 1993). As before, a significant main effect was found between 

unaided and aided conditions, which we would expect. What was more interesting is that 

subjects did far better in the 90 degree azimuth condition than the 0 degree azimuth, 

particularly in the Aided Original and Aided with Real-Ear conditions (see Figure 3.3 in 

the results section). MANOVA results indicated that there was a significant improvement 

when changing listening conditions from 0 to 90 degree azimuth. This indicates, as 

mentioned before, that there is an improvement in speech intelligibility when speech and 

noise are spatially separated. 

Overall, in the HINT conditions, subjects were better at correctly repeating HINT 

sentences when using amplification. Interestingly, subjects did so poorly across the board 

in the 0 degree azimuth noise condition that no significant benefit to using real-ear 

verification with target matching could be determined. When moving from the difficult 0 

degree condition to the 90 degree condition, a significant improvement in scores was 

seen. However, the differences in aided conditions could not be attributed to a change in 

listening condition. Therefore, results show that there was an improvement in speech 
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intelligibility when using amplification; however it was dependent upon listening 

environment.  One consideration is that there may have been an effect of learning. As 

subjects were familiarized to HINT testing during the Aided Original session, they had an 

advantage of learning effect during the Aided with Real-Ear session. This could have 

played as a factor in the HINT Quiet and 90 degree azimuth scores, where subjects did 

slightly better in the Aided with Real-Ear condition, although no significant difference 

was found. 

4.4 APHAB 

Aside from speech intelligibility, subjective measures of satisfaction and benefit 

were used to determine any patient-perceived improvement in programming hearing aids 

closer to NAL-NL1 targets. Remember that the APHAB measures two things: speech 

perception and loudness. When comparing APHAB scores among all three aided 

conditions, no significant difference was found between subscales. However, when 

looking at the loudness subscale a lower score was obtained with unaided answers, 

indicating that loud sounds become more bothersome when the subjects are wearing their 

hearing aids. It is important to note that no significant difference was found between 

aided conditions, showing that there is no greater aversion to sound when hearing aids are 

programmed closely to NAL-NL1 targets. 

4.5 SADL 

The SADL was used to assess a subjective measure of satisfaction. The SADL 

was only measured with aided responses, so the only comparison is made between the 
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Aided Original and Aided with Real-Ear conditions. Across all subscales, including the 

global score, no significant difference was found between aided conditions. This 

indicates that there was no difference in how satisfied subjects were with their hearing 

aids when programming was matched closely to NAL-NL1 targets. 

4.6 APHAB & SADL 

While no significant difference in satisfaction and benefit were found between 

Aided Original and Aided with Real-Ear settings, it cannot be said that patients didn’t 

prefer the target matched settings over their original. It is important to remember that 

satisfaction and benefit can be measured on a large scale, and as it is a subjective 

measure, that scale may vary for patient to patient. So while no significant difference was 

found, it does not necessarily correlate with patient feedback. Due to this discrepancy, a 

simple questionnaire to compare both aided conditions was created. 

4.7 Subjective Preference of Participants  

The final questionnaire asked two important questions: Which programming did 

you prefer, and why? Across all seven subjects, five reported that they preferred the 

target-matched settings. Reasons why included improved clarity of speech, less trouble in 

background noise, and greater comfort. This correlates well with our findings regarding 

speech intelligibility in quiet and noise. The two subjects who preferred their original 

settings cited loudness as the reason for their choice. They reported that the target-

matched settings were just too loud in all settings, and they did not feel comfortable using 

the programming in everyday situations.  
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Given this information, it is important to recall that this questionnaire had one 

major flaw: subjects were not blinded as to what programming was experimental and 

what was their original. Therefore, it is possible that users who preferred new settings 

could be experiencing a “wow” effect. (Bentler RA, 2003) 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

5. Conclusion 

This study aimed to examine the actual benefit received by patients when their 

hearing aids are programmed as close to prescribed NAL-NL1 targets as possible using 

real-ear verification. The participants benefited in the area of speech intelligibility. In 

particular, in quiet situations as well as noisy situations when speech and noise are 

spatially separated. While no significant difference in patient perceived satisfaction and 

benefit were found, patient feedback indicated that for most subjects, there was a great 

improvement in speech intelligibility and comfort when using target-matched 

programming.  

This study should be considered as evidence of the actual benefit of using real-ear 

verification in clinical practice. If patients are complaining of trouble understanding 

speech in the presence of noise, or wanting to understand speech more clearly, this 

method of fitting hearing aids should be considered as a means to remedy the issue. This 

study can also be considered a jumping off point for future research in the area of real-ear 

verification, such as the difference in programming between new and experienced 

clinicians. Overall, the message is that real-ear verification is not only an effective means 

of matching prescribed target values, but also an effective means of improving patient-

perceived speech intelligibility and comfort.  
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Appendix A 

Informed Consent 

INFORMED CONSENT 

Identification of Investigators & Purpose of Study   

You are being asked to participate in a research study conducted by Ms. Sarah Sporck 

and Dr. Ayasakanta Rout from James Madison University (JMU).  Ms. Sporck is a 

doctoral student in the audiology program at JMU; Dr. Rout is a professor at JMU who 

specializes in research related to hearing aids. The purpose of this study is to determine if 

a new hearing aid fitting technique results in improved benefit and user satisfaction.  This 

study will help us to provide better services to future hearing aid users.  This study will 

also contribute to the student’s completion of her doctoral dissertation. 

Potential Risks & Benefits 

The investigator does not perceive more than minimal risks from your involvement in 

this study.  The tests used in this study are commonly used clinical procedures in 

audiology.  Potential benefits from participation in this studying include increased benefit 

and satisfaction with your hearing aids. 

Research Procedures 

Should you decide to participate in this research study, you will be asked to sign this 

consent form once all your questions have been answered to your satisfaction.  This study 

consists of two tests which will be performed at Ear, Nose and Throat Associates of 

Charleston, WV.  The first test will require you to be comfortably seated in a hearing test 

suite and listen to sentences in background noise presented from a loudspeaker at a 

comfortable listening level.  Your task will be to repeat what you hear.  The second test 

requires you to listen to sound presented to your ear both with and without your hearing 

aid in place.  A probe microphone will be comfortably placed in your ear canal during 

this test.  Once again, the sound will be presented through the probe microphone at a 

comfortable listening level.  Your only requirement will be to sit quietly for the short 

duration of this test.  Finally, you will be asked to complete three surveys prior to your 

test session.  The Abbreviated Profile of Hearing Aid Benefit (APHAB) assesses a 

hearing wearer’s perceived level of benefit from amplification.  The Satisfaction with 

Amplification in Daily Life (SADL) and Expected Consequences of Hearing Aid 

Ownership (ECHO) are used in conjunction; the SADL measures daily satisfaction with 

amplification while the ECHO assesses expected outcomes of a hearing aid prior to 

fitting. These surveys will assist the researchers in determining how much benefit you are 
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receiving from your hearing aids, as well as how satisfied you are with them.  The doors 

of the sound booth will be closed during the entire session and the researcher will be on 

hand during the session for any assistance. The entire test protocol including both tests 

and signing your consent form is expected to take approximately one hour.   

Confidentiality  

The results of this research will be presented at professional conferences.  While 

individual responses are obtained and recorded anonymously and kept in strict 

confidence, aggregate data will be presented representing averages or generalizations 

about the responses as a whole.  No identifiable information will be collected from the 

participant and no identifiable responses will be presented.  All data will be stored in a 

secure location accessible only to the researcher.  The researcher retains the right to use 

and publish non-identifiable data.  At the end of the study, all records will be shredded.  

Final aggregate results will be made available to participants upon request. 

Participation & Withdrawal  

Your participation is entirely voluntary.  You are free to choose not to participate.  

Should you choose to participate, you can withdraw at any time without consequences of 

any kind. 

Questions about the Study 

If you have questions or concerns during the time of your participation in this study, or 

after its completion or you would like to receive a copy of the final aggregate results of 

this study, please contact: 

Ms. Sarah Sporck    Dr. Ayasakanta Rout 

Communication Sciences and Disorders        Communication Sciences and Disorders 

James Madison University   James Madison University 

sporcksk@jmu.edu    Telephone:  (540) 568-3867 

      routax@jmu.edu 

Questions about Your Rights as a Research Subject 

Dr. David Cockley  

Chair, Institutional Review Board 

James Madison University 

(540) 568-2834 

cocklede@jmu.edu 

Giving of Consent 

I have read this consent form and I understand what is being requested of me as a 

participant in this study.  I freely consent to participate.  I have been given satisfactory 

file:///C:/Documents%20and%20Settings/CSD_GA/Local%20Settings/Temporary%20Internet%20Files/Content.IE5/Temporary%20Internet%20Files/Content.IE5/0T6785AB/sporcksk@jmu.edu
file:///C:/Documents%20and%20Settings/CSD_GA/Local%20Settings/Temporary%20Internet%20Files/Content.IE5/Temporary%20Internet%20Files/Content.IE5/0T6785AB/routax@jmu.edu
mailto:cocklede@jmu.edu
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answers to my questions.  The investigator provided me with a copy of this form.  I 

certify that I am at least 18 years of age. 

 

 

 

________________________________________Sarah Sporck _________________     

Number of Participant                                               Name of Researcher (Printed) 

 

 

_____________________________________________________________________ 

                                                                                  Name of Researcher (Signed)                                    

 

 

_____________________________________________________________________       

       Date                                                      Date 
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Appendix B 

Audiograms 
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Appendix C  

Real Ear Insertion Gain Measures 

Subject 1 – Aided Original 
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Subject 1 – Aided with Real-Ear 
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Subject 2 – Aided Original 
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Subject 2 – Aided with Real-Ear 
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Subject 3 – Aided Original 
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Subject 3 – Aided with Real-Ear 
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Subject 4 – Aided Original 
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Subject 4 – Aided with Real-Ear 
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Subject 5 – Aided Original 
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Subject 5 – Aided with Real-Ear 
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Subject 6 – Aided Original 
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Subject 6 – Aided with Real-Ear 
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Subject 7 – Aided Original 
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Subject 7 – Aided with Real-Ear 

 



72 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



73 

 

 

 

Subject 8 – Aided Original 
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Subject 8 – Aided with Real-Ear 
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Appendix D 

HINT Materials 
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Appendix E 

APHAB Materials 
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Appendix F  

SADL Materials 
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Appendix G 

Final Questionnaire 

 

 

 

 

 

 

 

 

 



 

 

 

 

Appendix H 

Raw Data 

Subject Data 

Patient Initials Date Audiogram Configuration Hearing Aid 

JB 7/18/2009 

R: mild at 2kHz, sloping to severe in low and high 
frequencies                                                                               
L: mild sloping to severe 

L: Widex VITA - CAM                           
R: Widex Flash ITE 

CL 7/18/2009 moderate rising to mild Widex Aikia BTEs 

        

SS 8/8/2009 mild gently sloping to moderate Widex Bravissimo ITEs 

JE 8/8/2009 
R: mild sloping to profound                                                                        
L: moderate sloping to profound Widex Aikia ITEs 

        

BB 8/22/2009 mild sloping to severe Widex Bravissimo ITCs 

KM 8/26/2009 
R: flat, moderate to severe                                                        
L: flat, mild to moderate 

Widex Flash ITE Full 
shells 

NW 1/15/2010 mild sloping to moderately-severe Widex B2 BTEs 

CT 1/29/2010 mild sloping to severe Widex Inteo CICs 
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Audiometric Data 

Right 
Ear 250Hz 500Hz 1000Hz 2000Hz 3000Hz 4000Hz 6000Hz 8000Hz 

JB 70 65 55 40 55 60 65 80 

CL 55 60 60 55 60 40 30 45 

SS 25 35 45 50 40 50 40 45 

JE 30 40 50 65 75 100 100 95 

BB 30 40 50 50 55 60 65 70 

KM 65 65 60 50 55 60 50 75 

NW 20 30 35 35 45 55 65 75 

CT 35 45 55 75 70 75 75 70 

Average 41.25 47.50 51.25 52.50 56.88 62.50 61.25 69.38 

St. Dev. 19.226 13.887 8.3452 12.817 11.63 18.127 21.671 16.995 

 

Left 
Ear 250Hz 500Hz 1000Hz 2000Hz 3000Hz 4000Hz 6000Hz 8000Hz 

JB 40 50 50 45 60 65 65 70 

CL 60 65 60 60 60 50 35 45 

SS 35 45 50 50 55 60 60 50 

JE 45 45 40 55 70 85 80 90 

BB 25 35 45 45 50 60 60 70 

KM 35 45 45 50 50 60 55 60 

NW 25 30 35 40 50 55 65 70 

CT 45 60 60 70 70 70 65 70 

Average 38.75 46.88 48.13 51.88 58.13 63.13 60.63 65.63 

St Dev. 11.573 11.63 8.8388 9.613 8.4251 10.67 12.66 13.999 
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REIG Data 

AIDED ORIGINAL 

Target = 
50     500 Hz        

1000 
Hz        

2000 
Hz     

Patient 
Initials  Target  Actual  Difference  Target  Actual  Difference  Target  Actual  Difference  

SS Left  18 9 9 32 15 17 31 21 10 

SS Right  14 13 1 29 20 9 29 23 6 

JE Left  13 -1 14 25 12 13 27 27 0 

JE Right  18 8 10 28 21 7 31 13 18 

CL Left 0 12 -12 40 18 22 39 17 22 

CL Right 0 4 -4 38 17 21 36 20 16 

BB Left  13 10 3 28 26 2 28 17 11 

BB Right  16 7 9 31 27 4 30 16 14 

NW Left 0 2 -2 15 9 6 19 11 8 

NW Right 10 5 5 22 16 6 22 15 7 

CT Left 29 10 19 40 19 21 40 19 21 

CT Right 22 9 13 37 21 16 38 17 21 

JB Left 11 12 -1 24 13 11 21 11 10 

JB Right 15 10 5 22 21 1 22 17 5 

KM Left 11 4 7 24 17 7 25 21 4 

KM Right 12 13 -1 29 18 11 28 14 14 

Average  12.625 7.9375 4.6875 29 18.125 10.875 29.125 17.438 11.6875 

St. Dev.  8 4 8 7 5 7 7 4 7 
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Target = 
65     500 Hz        

1000 
Hz        

2000 
Hz     

Patient 
Initials  Target  Actual  Difference  Target  Actual  Difference  Target  Actual  Difference  

SS Left  12 7 5 24 10 14 24 17 7 

SS Right  8 7 1 21 14 7 24 17 7 

JE Left  11 -1 12 20 9 11 26 22 4 

JE Right  11 5 6 25 19 6 31 9 22 

CL Left 21 5 16 31 16 15 31 16 15 

CL Right 19 3 16 30 11 19 28 16 12 

BB Left  8 6 2 21 25 -4 22 21 1 

BB Right  10 4 6 24 25 -1 24 10 14 

NW Left 0 2 -2 10 5 5 12 8 4 

NW Right 6 2 4 16 10 6 18 11 7 

CT Left 20 10 10 32 19 13 35 19 16 

CT Right 15 3 12 29 18 11 36 12 24 

JB Left 8 9 -1 18 7 11 26 5 21 

JB Right 10 3 7 18 17 1 17 19 -2 

KM Left 17 3 14 18 20 2 20 19 1 

KM Right 7 12 5 20 19 1 19 17 2 

Average  11.438 5 7.0625 22.313 15.25 7.3125 24.563 14.875 9.6875 

St. Dev.  6 3 6 6 6 6 7 5 8 
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AIDED WITH REAL-EAR 

Target = 
50     500 Hz        

1000 
Hz        

2000 
Hz     

Patient 
Initials  Target  Actual  Difference  Target  Actual  Difference  Target  Actual  Difference  

SS Left  18 6 12 32 18 14 31 23 8 

SS Right  14 7 7 29 19 10 29 28 1 

JE Left  18 13 5 28 27 1 31 35 -4 

JE Right  18 4 14 33 32 1 34 21 13 

CL Left 0 16 -16 40 30 10 39 34 5 

CL Right 0 8 -8 38 29 9 36 32 4 

BB Left  13 4 9 28 18 10 28 29 -1 

BB Right  16 11 5 31 22 9 30 27 3 

NW Left 0 4 -4 15 11 4 19 12 7 

NW Right 10 8 2 22 22 0 22 19 3 

CT Left 29 6 23 40 21 19 40 18 22 

CT Right 22 10 12 37 27 10 38 28 10 

JB Left 11 11 0 24 15 9 21 16 5 

JB Right 15 11 4 22 18 4 22 21 1 

KM Left 11 16 -5 24 20 4 25 22 3 

KM Right 12 9 3 29 25 4 28 24 4 

Average  12.94 9.00 3.94 29.50 22.13 7.38 29.56 24.31 5.25 

St. Dev.  8 4 9 7 6 5 7 7 6 
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Target = 
65     500 Hz        

1000 
Hz        

2000 
Hz     

Patient 
Initials  Target  Actual  Difference  Target  Actual  Difference  Target  Actual  Difference  

SS Left  12 6 6 24 16 8 24 22 2 

SS Right  8 5 3 21 14 7 24 21 3 

JE Left  11 6 5 20 24 -4 26 25 1 

JE Right  11 2 9 25 30 -5 31 21 10 

CL Left 21 9   31 25 6 31 32 -1 

CL Right 19 2 16 30 20 10 28 26 2 

BB Left  8 -4 12 21 14 7 22 24 -2 

BB Right  10 3 7 24 19 5 24 21 3 

NW Left 0 3 -3 10 9 1 12 10 2 

NW Right 6 5 1 16 16 0 18 15 3 

CT Left 20 8 12 32 25 7 35 22 13 

CT Right 15 10 5 29 27 2 36 26 10 

JB Left 8 9 -1 18 11 7 26 11 15 

JB Right 10 2 8 18 10 8 17 14 3 

KM Left 17 13 4 18 17 1 20 18 2 

KM Right 7 6 1 20 20 0 19 19 0 

Average  11.44 5.31 5.67 22.31 18.56 3.75 24.56 20.44 4.13 

St. Dev.  6 4 5 6 6 5 7 6 5 
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HINT Data 

AIDED ORIGINAL 

    

      
HINT 
Quiet   

 HINT 0 
Degrees   

HINT 90 
Degrees   

Patient Initials Date Aided Unaided Aided Unaided Aided Unaided 

JB 7/18/2009 36.2 57.0 -1.3 0.3 -4.8 -2.0 

CL 7/18/2009 47.5 53.7 -1.3 0.9 -7.5 -3.9 

SS 8/8/2009 40.5 47.4 0.9 2.0 -4.4 -2.6 

JE 8/8/2009 36.9 63.6 3.7 4.5 0.5 1.0 

BB 8/22/2009 41.7 58.4 -1.2 2.0 -3.8 -1.2 

KM 8/28/2009 40.5 54.9 -1.1 -1.5 -3.3 -3.3 

NW 1/15/2010 37.3 41.8 0.1 0.3 -2.3 1.8 

CT 1/29/2010 51.8 68.5 -2.7 3.5 -1.3 7.6 

Average   41.6 55.7 -0.4 1.5 -3.4 -0.3 

St. Dev.   5.4903 8.4658 1.9559 1.9176 2.413 3.7693 

AIDED WITH REAL-EAR 

    HINT  Quiet HINT 0 Degrees 
HINT 90 
Degrees 

Patient Initials Date Aided Aided Aided 

JB 2/5/2010 40.2 0.5 -2.5 

CL 3/12/2010 42.3 -1.8 -4.4 

SS 2/20/2010 29.3 -0.6 -4.5 

JE 2/20/2010 26.3 3.4 -0.4 

BB 2/5/2010 42.7 -0.3 -3.7 

KM 2/5/2010 37.8 0.5 -4.5 

NW 1/29/2010 31.7 -0.8 -5.5 

CT 2/19/2010 37.8 1.5 -3.2 

Average   36.0 0.3 -3.6 

St. Dev.   6.16636904 1.6 1.580630525 
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APHAB Data 

AIDED ORIGINAL 

    
Ease of 
Communication   

    
Background 
Noise   

      
Reverberation   

Aversiveness 
to Sound   

Patient Initials Date With HA Without HA With HA Without HA With HA Without HA With HA Without HA 

JB 7/18/2009 29.00% 62% 49.70% 85% 28.80% 62.20% 51.80% 24.70% 

CL 7/18/2009 18.50% 50% 39.50% 78.80% 37.50% 62.50% 45.80% 18.70% 

SS 8/8/2009 24.80% 68.50% 27% 78.70% 50% 93% 70.50% 80.70% 

JE 8/8/2009 26.80% 62.30% 33% 39.50% 24.80% 64.30% 47.50% 58.20% 

BB 8/22/2009 18.30% 48% 45.70% 68.50% 33.20% 62.50% 53.80% 27% 

KM 8/26/2009 26.70% 64.50% 31% 41.50% 45.70% 37.30% 35.30% 35.30% 

NW 1/15/2010 17% 74.50% 33.30% 97% 31.30% 68.30% 76.70% 54% 

CT 2/9/2010 2.80% 41.70% 14.20% 74.70% 10.50% 58% 45.70% 11% 

Average   20.45% 58.93% 34.18% 70.46% 32.73% 63.51% 53.39% 38.70% 

St. Dev.   0.084972 0.11274592 0.11116 0.20256423 0.12329 0.1518603 0.13719 0.23573835 

AIDED WITH REAL-EAR 

    
Ease of 
Communication   

    
Background 
Noise   

      
Reverberation   

Aversiveness 
to Sound   

Patient Initials Date With HA Without HA With HA Without HA With HA Without HA With HA Without HA 

JB 2/5/2010 37.30%   66.30%   33%   27.20%   

CL 3/12/2010 18.50%   51.80%   40%   29.30%   

SS 2/20/2010 14.20%   31.20%   24.70%   51.80%   

JE 2/20/2010 24.80%   35.30%   45.80%   82.80%   

BB 2/5/2010 47.80%   50%   52%   66.50%   

KM 2/5/2010 8.30%   14.20%   18.30%   12.30%   

NW 1/29/2010 27.20%   33.20%   29.20%   45.70%   

CT 2/19/2010 5%   19%   8.30%   99%   

Average   22.89% 
 

37.63% 
 

31.35% 
 

51.83% 
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SADL Data 

AIDED ORIGINAL 

Patient Initials Date 
Positive 
Effect 

Service and 
Cost 

Negative 
Features Personal Image Global 

JB 7/18/2009 6.20 3.00 5.00 5.30 5.10 

CL 7/18/2009 5.70 4.70 4.70 5.30 5.20 

SS 8/8/2009 6.70 5.30 4.70 5.70 5.80 

JE 8/8/2009 4.30 5.70 4.00 6.00 4.90 

BB 8/22/2009 4.70 4.00 1.00 6.30 4.40 

KM 8/26/2009 5.30 5.30 6.50 6.30 5.70 

NW 1/15/2010 4.80 5.30 4.00 7.00 5.27 

CT   6.7 6 5.7 5.7 6.1 

Average   5.55 4.91 4.45 5.95 5.31 

St. Dev.   0.93 0.98 1.63 0.58 0.54 

 

AIDED WITH REAL-EAR 

Patient Initials Date 
Positive 
Effect 

Service and 
Cost 

Negative 
Features Personal Image Global 

JB 2/5/2010 6.50 5.00 3.50 6.00 5.60 

CL 3/12/2010 6.20 5.30 5.70 6.30 5.90 

SS 2/20/2010 6.80 6.00 3.70 3.30 5.30 

JE 2/20/2010 6.20 6.70 2.70 6.30 5.60 

BB 2/5/2010 4.00 2.30 2.00 5.00 3.60 

KM 2/5/2010 5.50 5.30 5.00 7.00 5.70 

NW 1/29/2010 6.30 5.70 4.70 6.70 5.90 

CT 2/19/2010 6.30 6.00 3.70 5.00 5.50 

Average   5.98 5.29 3.88 5.70 5.39 

St. Dev.   0.88 1.32 1.22 1.21 0.75 
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