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Abstract 

An emerging infectious disease caused by the fungus Batrachochytrium dendrobatidis 

(Bd) is leading to global amphibian declines and is threatening the biodiversity of amphibians. 

Bd susceptibility varies among individuals, species, and populations perhaps due to defensive 

mechanisms such as symbiotic skin microbes. Some species of amphibians such as Craugastor 

fitzingeri, a terrestrial frog native to Central America, continue to persist in Bd-positive 

environments in Panama. My study focused on identifying antifungal bacterial isolates and 

determining the culturability of the bacterial community on 15 individuals of C. fitzingeri. 

Morphologically distinct isolates were challenged against Bd in inhibition assays to determine an 

inhibition score for each isolate. The 16S rRNA sequences of all cultured isolates were aligned 

and grouped in Operational Taxonomic Units (OTUs). The relative abundance of cultured OTUs 

was compared to that of the entire bacterial community obtained with the culture-independent 

method. Over 80% of the individuals had at least one morphologically distinct Bd-inhibitory 

isolate at an inhibition score of 80% or greater. In comparing culturability, the cultured 

community was significantly more relatively abundant than the entire culture-independent 

community (Wilcoxon test: W=101130, p= 2.53e-14). Specifically, Cellulomonas, Comamonas 

testosteroni, and Acinetobacter johnsonii were highly relative abundant and were culturable. 

However, one relatively abundant species of Pseudomonas was not culturable. Additionally, I 

was able to culture 17.92% of the total relative abundance within the entire bacterial community. 

Identifying inhibitory isolates and the relative abundances of culturable OTUs are crucial steps to 

designing an ideal probiotic to potentially protect amphibian populations from Bd.  
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Introduction 

An emerging infectious disease, chytridiomycosis, caused by the fungus 

Batrachochytrium dendrobatidis (Bd), is leading to global amphibian declines and is threatening 

the biodiversity of amphibians (Berger et al., 1999). In the neotropics, Bd has spread from 

Mexico to Panama (Woodhams et al., 2008; Lips et al., 2008; Cheng et al., 2011), colonizing 

areas such as Gamboa, Mamoni, Nuevo Vigia, and Icunati (Rebollar et al., 2014). Although Bd 

persists throughout Panama, Bd susceptibility varies among individuals, populations and species, 

perhaps due to variations in the innate immune system, such as antimicrobial peptides (AMPs), 

adaptive immune system, and defensive symbiotic skin microbes. The goal of my study was to 

identify Bd-inhibitory bacterial isolates and determine the culturability of the bacterial 

community on C. fitzingeri as critical steps in discovering effective probiotics for conserving 

Panamanian amphibians. 

Innate and adaptive immune responses to Bd 

Amphibians have two types of immune responses: the innate and adaptive immune 

response. The innate immune response is a rapid, non-specific response that serves as a first line 

of defense until the adaptive immune response can be activated (Carey et al., 1999). 

Antimicrobial peptides (AMPs), which are part of the innate immune response, are secreted by 

many species of frogs and are a species-specific mechanism that potentially protects individuals 

against pathogens such as Bd. For example, AMPs from the frog Limnodynastes tasmaniensis 

were more inhibitory in laboratory assays than those from Litoria chloris, Litoria caerulea, and 

Mixophyes fasciolatus, which inhabited the same area in Australia (Woodhams et al., 2007a). 

Litoria tasmaniensis had a higher survival rate than the other species where Bd is present, which 

suggested that its AMP mixtures and concentrations were more inhibitory and protective in 
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nature (Woodhams et al., 2007a). As a result, Bd susceptibility was not equivalent among 

species. If a species does not secrete AMPs that effectively inhibit Bd, then the species is likely 

to decline unless other defenses exist or selection can increase the frequency of effective 

defenses (Bletz et al., 2013).  

Alternatively, the adaptive immune response is an antigen-specific response that requires 

ample time to become activated (Carey et al., 1999). It is surprisingly ineffective against Bd 

because the fungus impairs lymphocyte generation and induces apoptosis of host cells (Fites et 

al., 2013). The evasion of host immunity by Bd explains why attempts at a vaccine have been 

less than successful, although repeated vaccinations on the same individual are known to 

increase Bd resistance and allow up to 50% survival (McMahon et al., 2014). Given that AMPs 

cannot be manipulated and are species specific and that vaccinations have met with limited 

success, symbiotic skin microbes may be the primary mechanism in conserving amphibians, 

especially since they can be manipulated (Bletz et al., 2013; Harris et al., 2009a; Lam et al., 

2010).    

Beneficial skin microbiota 

The resident skin microbiota on amphibians play a crucial role in inhibiting Bd and 

enabling amphibians to coexist with Bd. Previous studies revealed that amphibian populations 

persisting with Bd had a greater proportion of Bd-inhibitory bacterial isolates than declining 

populations (Woodhams et al., 2007b). A recent study showed that the mucosome of the 

amphibian, consisting of both AMPs and bacterial metabolites, predicted the individual’s 

survival when exposed to Bd in vitro (Woodhams et al., 2014). Further analysis illustrated that 

variation in AMP effectiveness did not significantly contribute to the amphibian’s survival. 
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Therefore, the resident bacterial community is the most likely mechanism leading to protection 

(Woodhams et al., 2014). 

As expected, there is a strong negative correlation between Bd survival and anti-Bd 

metabolites produced by resident skin bacteria (Becker et al., 2009). Inhibitory bacteria such as 

Janthinobacterium lividium, which produce the metabolite violacein (Harris et al., 2009a; Becker 

et al., 2009), and Pseudomonas fluorescens, which produce the metabolite 2,4-DAPG (Myers et 

al., 2012), have been isolated from several amphibian species and are known to inhibit Bd. Rana 

muscosa juveniles that were augmented with J. lividium had higher concentrations of violacein 

on their skins than controls and experienced dramatically reduced morbidity and mortality, 

which suggests bioaugmentation of inhibitory isolates through probiotic therapy can prevent 

chytridiomycosis (Harris et al., 2009a).  

One aim of this study was to identify inhibitory isolates that can be further tested for their 

suitability as probiotics. The success of probiotic therapy depends on the probiotic’s ability to 

persist on individuals and within a population, while not causing harm to the amphibian host or 

other species. Furthermore, the amphibian’s immune defenses must not inhibit the probiotic nor 

should the probiotic eliminate important bacteria native to the amphibian host. A successful 

probiotic is also defined by the culturability of the microbial isolate, such that it can be 

effectively applied to individual amphibians and to the environment for transmission to 

individuals (Muletz et al., 2012; Bletz et al., 2013). Specifically in this study, I identified Bd-

inhibitory bacteria as possible candidates for probiotics.  
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Focus of this study 

This study encompassed three aims within the overall goal of discovering effective 

probiotics to protect Bd-susceptible amphibians. The first aim of my study was to identify Bd-

inhibitory skin bacteria residing on Craugastor fitzingeri, a terrestrial frog native to Panama. 

Although C. fitzingeri persists in environments with Bd, some individuals could still be 

negatively affected; however, this needs to be experimentally determined. Therefore, identifying 

Bd-inhibitory bacteria and their relative abundance on the skin bacterial community can be used 

in future conservation efforts to proactively protect this species and related Panamanian 

amphibians to enhance their survival. The second and third aims were to determine if the 

frequently cultured OTUs were relatively abundant in the overall community of skin microbiota 

and whether the more relatively abundant OTUs were more likely to be inhibitory than less 

relatively abundant OTUs. 

Significance of isolates being culturable  

Previous studies regarding the culturability of microorganisms implied that culturable 

microbes are not necessarily the most dominant members of the microbial community but are 

species that can easily grow on selected media (Hugenholtz, 2002). However, a study 

investigating the bacterial community residing on Rana catesbeiana (bullfrog), Notophthalmus 

viridescens (eastern newt), Pseudarcris crucifer (spring peeper), and Bufo americanus 

(American toad) near Blacksburg, VA, revealed that most of the relatively abundant OTUs were 

in fact culturable (Walke et al., 2015). Furthermore, individuals with a greater culture-dependent 

OTU richness also exhibited a higher culture-independent OTU richness (Walke et al., 2015). 

The culture-independent method isolates DNA from all bacterial species regardless of their 
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culturability, whereas the culture-dependent method isolates only bacteria that are able to grow 

on selective media. One goal of my study was to determine if this relationship between culture-

independent and culture-dependent OTU richness is a more general pattern in amphibians such 

as C. fitzingeri. 

  I hypothesized that the probability of having Bd-inhibitory metabolites was likely to be 

higher among the most relatively dominant members of the resident bacterial community due to 

natural selection. In the presence of Bd, natural selection could act on the skin bacterial 

community to increase the frequency of inhibitory isolates on frog skins without inducing host 

mortality. This could lead to the most relatively abundant OTUs being antifungal. Alternatively, 

natural selection could increase the proportion of frog individuals with the most inhibitory 

bacterial communities as individuals with more protective communities survive and those with 

less protective communities have higher mortality. Taking into account natural selection, a focus 

of my study was to identify whether relatively dominant OTUs had a greater intensity of Bd 

inhibition compared to less abundant OTUs. Thus, Panamanian frogs that do persist with Bd are 

hypothesized to have relatively abundant Bd-inhibitory bacteria. 

Summary of hypotheses:  

1. Individuals of C. fitzingeri that persist in an environment with Bd will have Bd-inhibitory 

bacteria. 
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2. The most relatively abundant OTUs will be culturable. 

 

Figure 1: Relative abundance of culture-independent OTUs. Each 
color represents a different OTU. I hypothesized that the most 
relatively abundant OTUs are culturable.  

 

3. The probability of having Bd-inhibitory metabolites will be higher among the most relatively 

abundant members of the resident bacterial community. 

 

Figure 2: Possible Bd-inhibitory isolates. Each color represents a different 
OTU. I hypothesized that the likelihood of having antifungal properties is 
higher among the most relatively abundant OTUs. 

 

 

 

	  

	  
	   Inhibitory? 

	  

	  
	  

Culturable? 
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Study species 

Craugastor fitzingeri: 

C. fitzingeri is a nocturnal amphibian that usually inhabits leaf litter or the margins of 

streams (Polaña & Crawford, 2003). Although C. fitzingeri is persisting with Bd (Rebollar et al., 

2015), individuals might be susceptible to Bd-induced morbidity. Furthermore, the bacterial 

community of C. fitzingeri is known to consist of Actinobacteria and Pseudomonas, although 

these taxa are less common in Bd-naïve areas (Rebollar et al., 2015). Previous studies 

emphasized the importance of both groups of bacteria as possible antifungal isolates (Harris et 

al., 2009b; Rebollar et al. 2015). Therefore, characterizing the bacterial community of C. 

fitzingeri and identifying possible Bd-inhibitory isolates for probiotics could protect related 

species, such as Craugastor punctariolus, a neotropical stream-breeding frog (Chaves et al., 

2014), that are Bd susceptible. 

Bd: 

Bd was first isolated in 1998 from a captive, blue poison dart frog at the National 

Zoological Park in Washington, D.C. (Longcore et al., 1999). Its lifecycle, prevalence, and 

virulence have been well documented since its discovery. The life cycle of Bd consists of the 

motile and flagellated zoospore (Van Rooij et al., 2012). After colonization, the zoospore encysts 

in the host’s epidermis and forms a germ tube, where it grows into a cell of the stratum corneum, 

transfers its cellular material into the host’s epidermal cell, and begins to develop into a 

zoosporangium (Van Rooij et al., 2012). Once the zoosporangium reaches the epidermal layer, it 

releases its zoospores, which can then infect the host or colonize other potential hosts. 

Studies suggest that Bd moves in a wave to naïve areas, resulting in rapid and mass 

mortality of amphibian populations (Lips et al., 2006). Infected amphibians shed zoospores in the 
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environment, thereby enabling horizontal (frog-to-frog contact) and environmental 

(environment-to-frog) transmission of the fungal pathogen (Lips et al., 2006). The exact 

pathogenesis of chytridiomycosis is unknown, but studies show that the pathogen predominantly 

inhibits electrolyte absorption, thereby disrupting osmoregulatory capacities of the amphibian 

skin and thus resulting in death  (Voyles et al., 2009).  
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Methods 

Sampling and isolation protocol 

I investigated the bacterial community found in the culture-dependent samples of 15 

individuals of C. fitzingeri from Gamboa, Panama and compared the relative abundance of each 

OTU identified from cultured isolates to that of the culture-independent sample using 16S 

Illumina sequencing. In 2012, Dr. Myra Hughey from Virginia Tech (VT) swabbed each of the 

15 individuals twice in the field: first for culture-independent characterization and second for 

culture-dependent isolation (Figure 3: step 1). Each individual was swabbed 20 times on its 

ventral surface and 5 times on its feet and webbing. The first swab was placed into a 

microcentrifuge tube and kept on ice until it could be stored at -20°C. Dr. Eria Rebollar 

processed the first swab using 16S Illumina sequencing to determine the bacterial community 

structure. Sequences that were 97% similar in 16S rRNA gene sequence were clustered together 

and taxonomically identified using the Quantitative Insights into Microbial Ecology (QIIME) 

pipeline (Caporaso et al., 2010).  

The second swab was preserved in glycerol solution and kept frozen until examination. 

VT researchers at the Smithsonian Tropical Research Institute in Panama plated the culture-

dependent swabs on 1% tryptone and incubated them at 25°C (Figure 3: step 2). Morphologically 

distinct colonies were further isolated on 1% tryptone agar plates (Figure 3: step 3) and 

incubated at 25°C. These isolates were inoculated with trypticase soy broth and 40% glycerol 

cyroprotectant and cryopreserved at -80°C.  

I re-isolated each isolate and plated it onto its own mini plate, which provided an 

additional check for contamination (Figure 3: step 4). If the isolate did not match the original 

morphological description, I re-isolated it again to check for contamination. If the isolate was in 
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pure culture, I noted the discrepancy of its description. However, I did not use the isolate if there 

were two strains. I inoculated each isolate into 2 mL microcentrifuge tubes containing trypticase 

soy broth and glycerol cyroprotectant and incubated it at room temperature for a maximum of 24 

hr (Figure 3: step 5). The microcentrifuge tubes were then cryopreserved at -80°C. After “waking 

up” each isolate, I taxonomically classified each cryopreserved isolate and challenged it against 

Bd in an inhibition assay. 

 

Figure 3: Overview of methods to identify Bd-inhibitory isolates. Culturing bacteria from the skin of C. fitzingeri began with 
swabbing the frog (step 1) and generating a mixed culture plate (step 2). Each isolate was reisolated (steps 3 and 4) to axenic 
culture before cryopreserving (step 5) in an -80°C freezer. The cryopreserved isolates were then plated (step 6) and cultured in 
tryptone (step 7). Afterwards each isolate was co-cultured with Bd (step 8) in preparation for challenge assays (step 9) against Bd. 

 

Isolate identification 

To prepare cryopreserved isolates for DNA extraction, I plated 15 µL of each isolate onto 

1% tryptone agar and incubated it at 25°C for 48 hr. Each isolate was then re-isolated onto 

individual agar plates and re-incubated at 25°C for 48 hr to ensure pure cultures. I extracted the 

DNA of each isolate using PrepMan Ultra Sample Preparation Reagent (Applied Biosystems, 

Foster City, CA, USA) or DNeasy Blood & Tissue Kit (QIAGEN, Inc., Valencia, CA, USA). I 

PCR amplified the 16S rRNA gene sequence with the primers Bac8F (5’-AGA GTT TGA TCC 
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TGG CTC AG-3’) and Univ1492R (5’-GGT TAC CTT GTT ACG ACT T-3’). Each PCR isolate 

underwent the following amplification protocol: 1 cycle of 94°C for 4 min to denature the DNA 

and 30 cycles of 94°C for 1 min, 53°C for 1 min, and 72°C for 90 s, and 1 cycle of 72°C for 10 

min. To confirm amplification, I ran PCR products on 2% gel electrophoresis and then sent them 

to Eurofins (Louisville, KY) for sequencing. I taxonomically classified each isolate according to 

maximum percent similarity with NCBI Genbank identities.  

Inhibition assays 

I thawed cryopreserved Bd at 40°C for 3 min and then incubated it with 20 mL of 1% 

tryptone broth at 21°C for 7 days. Afterwards, Bd was re-cultured by transferring 1 mL of Bd 

into 20 mL of 1% tryptone broth and incubated at 21°C. I re-cultured Bd twice in order to 

generate enough zoospores to co-culture the fungus with each bacterial isolate and challenge the 

bacterial isolates against the fungus. Four days following the Bd-reculture, I thawed the 

cryopreserved bacterial isolates at room temperature and plated 9 µL of each isolate on 1% 

tryptone agar and incubated it at 25°C for 2 days (day 0) (Figure 3: step 6). 

 I cultured each isolate with 2 mL of 1% tryptone broth and placed it on a shaking 

incubator at 21°C for 2 days to ensure uniform growth conditions (day 2) (Figure 3: step 7). In 

preparation for using Bd for the challenge assays (day 7), I plated and evenly distributed 1 mL of 

Bd onto 1% tryptone agar plates. The Bd was slightly dried at room temperature in a laminar 

flow hood without the lid for approximately 10 minutes and then incubated with the lid at 21°C 

for 4 days (day 3). I co-cultured 100 µL of each bacterial isolate with 1000 µL of 1% tryptone 

broth and 100 µL of Bd to encourage the formation of bacterial metabolites (Day 4). I also 

generated a positive control, consisting of 1100 µL of 1% tryptone and 100 µL of Bd, and a 
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negative control, containing 1200 µL of 1% tryptone. Each co-culture and control was placed on 

a shaking incubator at 21°C for 3 days (day 4) (Figure 3: step 8).  

According to the inhibition of Bd assay procedure outlined by Bell et al. (2013) and 

modified by Matt Becker and Molly Bletz, the cell free supernatant (CFS) of each bacterial 

isolate was generated, as explained below, and then challenged against Bd in a 96-well plate 

inhibition assay (Day 7) (Figure 4: step 9). In order to standardize the amount of Bd zoospores 

used in each challenge, I flooded the Bd plates generated on day 3 with two-3 mL portions of 1% 

tryptone broth and incubated them at room temperature for 10 min. To assess zoospore density, 

zoospores of Bd were filtered and diluted to 2x106 zoospores/mL using a hemocytometer 

procedure, which consisted of 2 replicate counts of zoospore concentration. Each of the two 

replicate counts was similar in concentration. I prepared a heat-killed Bd control by incubating 

500 µL of quantified Bd at 60°C for 1 hr. Meanwhile, I prepared the bacterial isolates for 

challenge by centrifuging 1000 µL of each isolate from day 4 at 10,000 rpm for 5 min to pellet 

the cells. The supernatant, consisting of bacterial metabolites, was added to the 96-well plate as 

described below. 

To prepare the 96-well plate for the addition of the bacterial CFS, I first added 50 µL of 

quantified Bd (2x106 zoospores/mL) to all wells, excluding the controls. I then filtered (filter 

size: 0.22µm) and pipetted 50 µL of bacterial CFS into its corresponding well (bacterial isolate 

treatment). I also pipetted nutrient depleted, positive, heat-killed Bd, and negative controls in the 

96-well plate as described in Table 1. There were three replicates for all bacterial isolates and 

controls within each challenge assay. The nutrient depleted control served as an important 

comparison for the CFS from the isolates in order to determine whether the bacterial metabolites 

or the depletion of nutrients in the co-culture conditions inhibited Bd growth. Therefore, any 
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inhibition above that of the nutrient depleted control was evidence of inhibition due to bacterial 

metabolites (Figure 4). I incubated the 96-well plate at 21°C for 10 days and determined the 

optical density (OD) using a spectrophotometer on days 0, 4, 7, and 10 (Figure 4).  The OD 

readings correlated with Bd growth such that each reading was used to determine the extent to 

which each isolate inhibited Bd, as described below. 

Table 1: Treatments used in the inhibition assays 
Treatment Description of Treatment Purpose 

Bacterial isolates Bd, CFS from bacterial isolates, 
and tryptone 

Detect effects of bacterial 
metabolites on Bd growth. 

Nutrient depleted control Bd and sterile water Control for inhibitory effects of 
nutrient depletion 

Positive control Bd, CFS from Bd, and tryptone Control for growth of Bd with its 
own metabolites 

Negative control CFS from Bd and tryptone Control for the effect of nutrients 
and metabolites from CFS 

Heat-killed Bd Heat-killed Bd and CFS from Bd  Control for the effect of no 
growth with Bd 

 

 

Figure 4: Predicted trends in OD values for the controls. The positive control (purple dash) is expected to have the 
greatest increase in OD values, following the nutrient depleted control (solid blue line), and inhibitory isolates 
(dashed orange line). The negative and heat-killed Bd controls are expected to have OD readings of zero.   
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Data analysis 

In order to calculate an inhibition score of each isolate, I determined the slope of the OD 

readings over time using data collected on days 0, 4, 7, and 14 for each replicate (total of 3) and 

averaged the slopes from each replicate to generate a mean value. The average slope of each 

isolate was then divided by the average slope of the nutrient depleted control, within that same 

challenge plate, to determine the proportion of growth. I subtracted the proportion of growth 

from 1 to determine the inhibition score so that positive values indicated inhibition and negative 

values indicated facilitation. I considered inhibition scores of greater than or equal to 80%, 85%, 

90%, and 95% in the analysis. 

 To determine whether relatively abundant OTUs were culturable, I first clustered cultured 

isolates into OTUs. I aligned the 16S rRNA sequence of each isolate and calculated the percent 

similarity between the sequences using Geneious (6.1.8, 2005-2013 Biomatters Ltd.). I generated 

OTUs from all the sequences based on 97% similarity. Afterwards, I re-aligned the 16S rRNA 

gene sequences of all isolates from each OTU group that had more than one sequence to generate 

a consensus sequence. I then taxonomically identified each consensus sequence using NCBI 

Genbank database. Each cultured OTU was compared to the culture-independent sample using 

QIIME. I eliminated OTUs that had less than 12 reads across individuals and rarefied the OTUs 

to the minimum number of reads per individual to normalize the number of reads, resulting in 

36,952 reads per individual. I compared the relative abundance of cultured OTUs to the Illumina 

sample using a nonparametric Wilcoxon test in R (Core Team, 2014).  
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Results 

Presence of Bd-inhibitory isolates 

Fourteen out of fifteen individuals of C. fitzingeri had at least one morphologically 

distinct Bd-inhibitory bacterial isolate at 80% inhibition. Individuals 21 and 35 had the highest 

proportion of Bd-inhibitory isolates, whereas individuals 27 and 30 had the lowest proportion 

(Table 2). Regardless of percent inhibition (80-95%), individual 21 had 10 inhibitory isolates 

(Table S1, S2, S3). At an inhibition score of 80%, 36.25% of the cultured isolates were 

inhibitory towards Bd-growth. Specifically, over 50% of the isolates within the genera 

Curtobacterium (Actinobacteria), Enterobacter (Gammaproteobacteria), Microbacterium 

(Actinobacteria), and Comamonas (Betaproteobacteria) were inhibitory (Figure 5). Alternatively, 

over 50% of the isolates within the genus Mycobacterium (Actinobacteria) were facilitating. 

Each genus had at least 6 isolates in total in order to determine a valid proportion of isolates that 

were inhibitory.  

Table 2: The proportion and number of inhibitory isolates on individuals of C. fitzingeri at 
80% or greater inhibition 

In
hi

bi
tio

n 
at

 8
0%

 o
r 

G
re

at
er

 

Individual Number of 
Isolates Tested 

Number of 
Inhibitory Isolates 

Proportion of 
Inhibitory isolates 

21 13 10 0.769 
22 11 2 0.182 
23 17 9 0.529 
24 10 5 0.500 
25 16 3 0.188 
26 17 5 0.294 
27 6 0 0.000 
28 20 6 0.300 
29 6 1 0.167 
30 11 1 0.091 
31 13 6 0.462 
32 10 3 0.300 
33 8 3 0.375 
34 13 4 0.308 
35 4 3 0.750 
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Figure 5: Inhibitory isolates within specific genera on C. fitzingeri. Each bar represents the proportion of inhibitory 
isolates relative to the total number of isolates for that genus. The total number of isolates for each genus is located 
above each bar.  

 

Culturability of bacteria 

On average, the cultured isolates were significantly more relatively abundant than the 

entire community obtained through Illumina methods (Wilcoxon test: W=101130, p= 2.53e-14). I 

cultured 17.92% of the total relative abundance identified by culture-independent methods 

(Table 3, Table S4). In fact, I determined that most of the relatively abundant OTUs were 

culturable. Specifically Cellulomonas, Comamonas testosteroni, and Acinetobacter johnsonii 

were all in high relative abundance within the Illumina community and were culturable (Figure 

6). However, one species of Pseudomonas was highly abundant (43.75%) but was not culturable 

(Figure 6).  
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I also found that some bacterial classes were more culturable than others. OTUs that were 

found in more than 12 reads across all individuals in the Illumina community were included into 

the dataset. All cultured Betaproteobacteria met this criterion (Figure 7). Alternatively, only 

72.22% Actinobacteria, 77.78% Firmicutes, 62.5% Alphaproteobacteria, and 90.91% 

Gammaproteobacteria met this criterion (Figure 7). The remaining isolates were found on 12 or 

fewer reads across individuals. 
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Figure 6: Relative abundance of cultured OTUs compared to the entire Illumina community. The 
cultured OTU community had a higher relative abundance than the Illumina community (W=101130, 
p= 2.53e-14). Cellulomonas, Comamonas testosteroni, and Acinetobacteri johnsonii were highly 
abundant and culturable.  
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Actinobacteria 

Firmicutes 
Gammaproteobacteria 

Betaproteobacteria 

Alphaproteobacteria 

 
Figure 7: Phylogenetic analysis of the cultured community based on the 16S rRNA gene sequence. Phylogenetic 
analysis of each bacterial class Actinobacteria, Firmicutes, Gammaproteobacteria, Betaproteobacteria, and 
Alphaproteobacteria was compared to an out-group 16S rRNA sequence of a Cyanobacterium. Blue branches 
represent OTUs that were found in at least 12 reads across all 15 individuals, whereas black branches represent 
OTUs found in fewer than 12 read in the Illumina community. Isolate identification numbers are located outside of 
each branch and boot strap values are located near each branch node.  

 

Correlation between relative abundance of OTUs and inhibition 

I was unable to determine if there was a higher probability of having inhibitory 

metabolites among the most relatively abundant OTUs. Some of the isolates within the same 

consensus OTU exhibited different biological properties with respect to Bd growth such that 

some were facilitating, whereas others were inhibiting. Therefore, each consensus OTU was 

separated into unique strains, depending on its inhibition score such that strain A, strain B, and 
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strain C had inhibition scores ranging from greater than 0.75, between 0.2 and 0.75, and below 

0.20, respectively (Table 3). The relative abundance of each strain within the Illumina 

community was not obtained. Therefore, I could not determine whether a highly inhibitory strain 

was in high relative abundance. However, I did find that all of the isolates of Betaproteobacteria 

were inhibitory towards Bd to some extent (Figure 8). In contrast, isolates assigned to OTUs of 

Alphaproteobacteria (Figure 8), Actinobacteria, Firmicutes, and Gammaproteobacteria (Figure 

1S) consisted of various inhibitory and facilitating isolates. 

Table 3: Proportion of Bd-inhibition for strains within consensus OTUs   
OTU ID Identification Relative Abundance Strain Average Proportion of 

Inhibition 

1 Comamonas testosteroni 0.037509923 1A 0.867317319 
1B 0.642068269 

2 Enterobacter aerogenes 0.002715234 2A 0.947873265 
2B 0.583088086 

3 Mycobacterium brisbanense 0.000122682 
3A 1.082458771 
3B 0.451475354 
3C -0.134520153 

4 Staphylococcus saprophyticus 0.006202641 4A 0.935532234 
4C -0.151529988 

5 Rhizobium sp. 0.000598975  0.739130435 

6 Rhizobium causense 9.92E-05 6B 0.557180434 
6C 0.037849393 

7 Acinetobacter radioresistens 0.007279714  0.586766735 

9 Streptomyces drozdowiczii 0.000371653 
9A 0.932156959 
9B 0.567574869 
9C 0.021992238 

10 Streptomyces  3.79E-05  0.611591488 

11 Isoptericola variabilis 0.00023093 11B 0.421095008 
11C -0.124798712 

12 Microbacterium oleivorans 0.000487118 12A 0.869526302 
12C -1.194788394 

13 Microbacterium pumilum 0.000333766 
13A 0.794909902 
13B 0.710144928 
13C -1.859000557 

14 Methylobacterium radiotolerans 1.26E-05 14B 0.320621746 
14C -0.584507042 

15 Acinetobacter johnsonii 0.033699574 
15A 0.935849185 
15B 0.403063787 
15C -1.983869501 

16 Ochrobactrum pseudogrignonense 0.000672945 16A 0.850221855 
16B 0.626096759 

18 Curtobacterium oceanosedimentum 0.000523201 18 0.943155405 
20 Diaminobutyricimonas aerilata 0.000553872 20 0.980897152 
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Figure 8: Inhibition scores of bacterial isolates in (A) Betaproteobacteria and (B) Alphaproteobacteria OTUs. Strain 
identification is located above each isolate. Bacterial isolates are identified by their numbers along the x-axis. 
Strains A, B, and C had inhibition scores ranging from greater than 0.75, 0.2 - 0.75, and less than 0.20, respectively. 
OTUs that consisted of one isolate were not differentiated based on strain identification. 
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Discussion 

Presence of Bd-inhibitory microbes 

Approximately 93.3% of the individuals that persisted in an environment with Bd had at 

least one morphologically distinct Bd-inhibitory bacterial isolate (Table 1). Since the proportion 

of protected individuals exceeds 80%, it is likely that susceptible individuals may be protected 

from Bd-induced mortality through a process analogous to herd immunity (Lam et al., 2010). 

Herd immunity can indirectly protect susceptible individuals if a large percentage of the 

population is protected from an infectious disease. For example, previous studies of R. muscosa 

suggested that herd immunity played a crucial role in preventing Bd epidemics by reducing Bd 

survival and viability (Lam et al., 2010). Therefore, it is possible that the bacterial community 

protects and thereby enables C. fitzingeri to persist in Bd-endemic areas without experiencing 

drastic population declines.  

Greater than 50% of the isolates within the genera Curtobacterium (Actinobacteria), 

Enterobacter (Gammaproteobacteria), Microbacterium (Actinobacteria), and Comamonas 

(Betaproteobacteria) were inhibitory towards Bd growth (Figure 5). Previous studies also 

confirm that these genera can be inhibitory towards Bd-growth (Woodhams et al., 2015). It is 

possible that individuals of C. fitzingeri were enriched with these protective bacteria in 

relationship to their relative abundance in the environment (Rebollar et al., 2015; Walke et al. 

2014) 

Individuals of C. fitzingeri that had Bd-inhibitory isolates and were thus likely protected 

had dissimilar community structures to those that are predicted to be unprotected from Bd 

(Rebollar et al., 2015). Therefore, C. fitzingeri may be undergoing either hologenomic selection 

or microbial community selection. In hologenomic selection, unprotected holobionts—a single 



	  

27 

unit consisting of an individual and its microbiota—are selected against, resulting in host 

mortality (Zilber-Rosenberg & Rosenberg, 2008). Alternatively, if selection acts on the microbial 

community, there would be an increase in inhibitory bacterial species without inducing host 

mortality. For example, individual 27 lacked Bd-inhibitory isolates. Therefore it may be under 

selection to have a skin microbial community similar to that of the protected individuals or the 

holobiont may be selected against. A previous study showed that C. fitzingeri residing in 

Serrania del Sapo, Panama—a Bd naïve area—had a greater microbial diversity compared to C. 

fitzingeri in Bd-occupied sites such as Mamoni, Gamboa, and Soberania, Panama (Rebollar et al., 

2015). Rebollar et al. (2015) suggested that the microbial community on Sapo individuals would 

be selected, without host mortality, to have a protective community similar to individuals within 

the other sites upon the arrival of Bd. Alternatively, individuals without a protective community 

structure will face a high mortality rate.  

Culturability of bacteria 

Culturability is a crucial aspect in determining relative abundance estimates of inhibitory 

members of the bacterial community. Previous studies suggest that culturable OTUs are not 

necessarily abundant, but are easily grown on selective media (Hugenholtz, 2002). Moreover, 

most state that 99% of microbes in nature are unculturable (Hugenholtz et al., 1998). For 

example, studies estimate that only 0.25% of freshwater and sediment, and 0.30% of soil 

microbes are culturable (Amann et al., 1995). Alternatively, another study involving amphibians 

showed that the most relatively abundant OTUs were culturable (Walke et al., 2015). I found that 

the most relatively abundant OTUs, specifically Cellulomonas, Comamonas testosteroni, and 

Acinetobacter johnsonii, were in fact culturable (Figure 6). I was able to culture 17.92% of the 

total relative abundance identified by culture independent methods, specifically within the phyla 
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Actinobacteria, Firmicutes, and Proteobacteria. This is notably higher than previous estimates of 

culturable OTUs. However, one species of Pseudomonas was highly relatively abundant but was 

not culturable (Figure 6). Pseudomonas OTUs have possibly coevolved with the skin microbiota 

of C. fitzingeri and is dependent on the particular chemical characteristics and nutrients of the 

mucosome for survival. Therefore, this symbiont would not be viable on standard culture media 

or outside of the amphibian host in general. 

Correlation between relative abundance and inhibition 

I hypothesized that the most relatively abundant OTUs had a higher probability of having 

Bd-inhibitory isolates. However, I was unable to address this hypothesis due to extensive 

variability within several consensus OTUs. Most of the consensus OTUs consisted of several 

bacterial isolates, each with unique biological properties. These properties rendered some 

isolates within the same OTU as inhibitory, whereas others were facilitating. Therefore, I was 

unable to assign an overall inhibition score for several OTUs.  

Goals for probiotic discovery  

 Identifying inhibitory isolates and their relative abundances are fundamental steps to 

designing an ideal probiotic (Bletz et al., 2013). Probiotics that are inhibitory towards Bd can 

help save individuals, species, and populations of amphibians from Bd-induced mortality. In 

order to further understand the role of the microbial community in probiotics, future work should 

focus on comparing amphibian skin microbiota before and after the arrival of Bd at the same site. 

This study could further illustrate whether microbial community or hologenomic selection could 

protect susceptible individuals. Additionally, future experimentation should focus on co-
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culturing combinations of bacterial isolates with Bd to determine whether combinations of 

bacteria, rather than single isolates, are more inhibitory towards Bd.      
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Appendix: Supplementary Tables and Figures 

Table S1: Proportion and number of inhibitory isolates on individuals of C. fitzingeri at 95% or greater inhibition 
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Individual Number of 
Isolates Tested 

Number of 
Inhibitory Isolates 

Proportion of 
Inhibitory isolates 

21 13 10 0.769 
22 11 1 0.091 
23 17 4 0.235 
24 10 1 0.100 
25 16 2 0.125 
26 17 0 0.000 
27 6 0 0.000 
28 20 5 0.250 
29 6 0 0.000 
30 11 0 0.000 
31 13 2 0.154 
32 10 3 0.300 
33 8 1 0.125 
34 13 2 0.154 
35 4 2 0.500 

	  

	  

Table S2: Proportion and number of inhibitory isolates on individuals of C. fitzingeri at 90% or greater inhibition 
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Individual Number of 
Isolates Tested 

Number of 
Inhibitory Isolates 

Proportion of 
Inhibitory isolates 

21 13 10 0.769 
22 11 2 0.182 
23 17 7 0.412 
24 10 3 0.300 
25 16 2 0.125 
26 17 3 0.176 
27 6 0 0.000 
28 20 5 0.250 
29 6 0 0.000 
30 11 0 0.000 
31 13 3 0.231 
32 10 3 0.300 
33 8 1 0.125 
34 13 2 0.154 
35 4 3 0.750 
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Table S3: Proportion and number of inhibitory isolates on individuals of C. fitzingeri at 85% or greater inhibition 
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Individual Number of 

Isolates Tested 
Number of 

Inhibitory Isolates 
Proportion of 

Inhibitory isolates 

21 13 10 0.769 
22 11 2 0.182 
23 17 8 0.471 
24 10 4 0.400 
25 16 3 0.188 
26 17 4 0.235 
27 6 0 0.000 
28 20 6 0.300 
29 6 0 0.000 
30 11 0 0.000 
31 13 6 0.462 
32 10 3 0.300 
33 8 2 0.250 
34 13 4 0.308 
35 4 3 0.750 
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Table S4: Proportion of Bd-inhibition for non-consensus OTUs. The proportion of inhibition could not be 
determined for OTU 50 due to logistics.  

OTU ID Identification Relative Abundance Average Proportion of 
Inhibition 

21 Frankia sp. 0.000276034 0.722155893 
22 Agromyces sp. 0.000050500 0.753709705 
23 Bacillus sp. 0.000869597 0.638751492 
24 Acinetobacter sp. 0.000301292 0.606515436 
25 Paracoccus marinus 0.000126290 0.961623742 
26 Bacillus pumilus 0.000059500 0.897322190 
28 Leucobacter tardus 0.000510572 0.769211452 
30 Gordonia terrae 0.000351808 -0.344548774 
31 Bosea sp. 0.000117269 0.285863328 
32 Caulobacter segnis 0.000030700 0.453834116 
33 Streptomyces gramineus 0.000930937 1.254303599 
34 Gordonia sp. 0.000907484 0.675534690 
35 Microbacteriaceae 0.000120878 0.775952008 
36 Bacillus megaterium 0.000117269 0.282733438 
38 Stenotrophomonas maltophilia 0.000990474 0.975743349 
40 Williamsia serinedens 0.000036100 -0.174230569 
41 Leifsonia sp. 0.000992000 0.683359416 
42 Mycobacterium iranicum 0.000193043 -0.323682838 
43 Bacillus sp. 0.000290467 0.338101430 
44 Nocardioides sp. 0.000187631 0.809957273 
47 Achromobacter xylosoxidans 0.001513675 0.659297789 
48 Steroidobacter agariperforans 0.000014400 0.157718744 
50 Methylobacterium 0.000027100  
51 Mycobacterium sp. 0.000030700 -0.040869404 
53 Rhodomicrobium sp. 0.000021600 -0.475571243 
55 Enterobacter sp. 0.000281446 0.853055917 
56 Stenotrophomonas sp. 0.000037900 0.966364812 
57 Cellulomonas sp. 0.078083279 -0.058214748 
58 Microvirga sp. 0.000064900 -0.180558122 
59 Streptomyces sp. 0.000178610 0.452411754 
61 Acinetobacter sp. 0.000241755 -0.049343929 
62 Bacillus cibi 0.000064900 0.703382000 
65 Agromyces 0.000018000 0.900966184 
66 Chonella panacarvi 0.000014400 0.187600644 
68 Streptacidiphilus jiangxiensis 0.000137115 0.699677939 
71 Pantoea dispersa 0.000339179 0.767686659 
72 Gordonia sp. 0.000120878 0.127294982 
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Figure 1S: Inhibition scores of bacterial isolates in (A) Actinobacteria, (B) Firmicutes, and (C) 
Gammaproteobacteria OTUs. Strain identification is located above each isolate. Bacterial isolates are identified by 
their numbers along the x-axis. Strains A, B, and C had inhibition scores ranging from greater than 0.75, 0.2-0.75, 
and less than 0.20, respectively. OTUs that consisted of one isolate were not differentiated based on strain 
identification. 	  
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