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III. Introduction 

Escape and withdrawal responses are essential behaviors that animals must possess in order to 

survive in an environment in which they are under the threat of predation and injury. Escape 

responses, in which animals move their entire body away from the threat, have been studied 

extensively in various invertebrates (Card, 2012).  For example, in the crayfish, a mechanical tap 

elicits one of two distinct escape responses dependent upon which end of the animal the stimulus 

is applied. Mechanical tap stimulation applied to the rostral end results in simultaneous bending 

of all abdomen segments, causing backwards movement away from the stimulus. In contrast, a 

caudal tap causes bending of only rostral abdomen segments, resulting in a sudden jump upwards 

accompanied by rotation of its hind end away from the stimulus (Edwards et al. 1999). In 

cockroaches, a puff of wind causes the animal to first orient its body away from the source of 

wind and subsequently run in that direction (Camhi et al. 1978). Withdrawal responses, in which 

the animal withdrawals part of its body away from a potential threat, are also present in 

invertebrates. For example, crickets respond to a noxious heat stimulus applied to their tarsi by 

withdrawal (Cleland et al. 2015). Vertebrates also exhibit withdrawal responses to diverse 

stimuli from skin, joint, and muscle (Schomburg 1990; Baxendale 1981).  

A. Nociceptive Withdrawal Reflex 

The focus of this research is the mammalian withdrawal reflex known as the nociceptive 

withdrawal reflex (NWR). The NWR is a rapid withdrawal movement of some part of the body 

in response to noxious (actual or potential tissue-damaging) stimuli, which may protect the body 

part that is being withdrawn (Sherrington 1910). Some common examples of noxious stimuli are 

heat, such as touching something very hot, pressure, such as pinching your skin with tweezers, or 
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chemical, such as eating a spicy food (Cleland and Gebhart, 1997), or extreme cold, such as 

sudden immersion in very cold water (Hensel et al. 1974).  

The NWR was initially studied extensively in the early 1900’s by C.S. Sherrington. Based on 

studies in spinalized cats, he showed that noxious stimulation of the skin or afferent nerves in 

hip, knee, and ankle joints evoked widespread stereotyped flexion of the limb. The resulting limb 

flexion arose from excitation of flexor muscles and simultaneous inhibition of extensor muscles 

acting on the ankle, knee, and hip (Sherrington 1910). More recently, the NWR has been shown 

to occur in both human legs (Andersen and Sonnenborg 1999) and arms (Serrao et al. 2006) as 

well as in rats (Schouenborg and Kalliomaki 1990), mice (Thelin and Schouenborg 2008), and 

rabbits (Clarke and Harris 2004).  

B. Mechanisms of the NWR 

a. Nociceptors  

Nociceptors contain a single process originating from the cell body in the dorsal root ganglion 

which bifurcates and extends a peripheral axon to innervate the skin and a central axon to 

synapse on second-order neurons in the dorsal horn of the spinal cord. The central axon enters 

the spinal cord through the dorsal root and divides into branches that innervate multiple spinal 

segments in the rostral and caudal directions (Dubin and Patapoutian 2010).  

The axons that transmit cutaneous nociceptive information to the central nervous system can be 

classified into two main groups: C-fibers and Aδs. Initial, fast-onset pain is mediated by Aδ 

nociceptors whose axons are myelinated and support faster conduction velocities; C-fibers are 

small in diameter and unmyelinated, therefore mediating slow-onset pain and supporting slower 
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conduction velocities (Dubin and Patapoutian 2010). Fast-onset pain is characterized by a sharp, 

intense discomfort following stimulation, while slow-onset pain is a more gradual, aching 

sensation. Conduction velocities for Aδ-nociceptive units average 12 m/s with a range of 3-23 

m/s while conduction velocities for C-fibers average 0.8 m/s with a range of 0.4-1 m/s (Leem et 

al. 1993). Aδ branches generally cluster in small areas creating a small receptive field, while C-

fibers are more broadly distributed having much larger receptive fields (Dubin and Patapoutian 

2010).  In the rat, the receptive fields for Aδ- and C-fiber nociceptive units were distributed 

evenly over the paw skin innervated by each nerve and could be activated by noxious stimulation 

of the cutaneous surface of the paw (Leem et al. 1993). 

The plantar surface of the paw in the rat receives extensive nociceptive innervation through the 

sural and plantar nerves. Of the sural Aδ-units, 68% of all sensory afferents were nociceptors, 

and all of those innervating the plantar surface of the paw were identified as nociceptors. The 

sural C-fiber units were made up of 44% nociceptors, while the plantar C-fiber units were 

composed of 77% nociceptors (Leem et al. 1993).  

Although heat activates both Aδ and C-fiber sensory afferents, nociceptive information resulting 

from noxious skin heating at a low rate is likely mediated preferentially by C-fibers. Upon 

heating the hind paw skin of the rat at a relatively low rate of 0.9°C/sec, C-fibers were initially 

activated around 8-10 seconds after the onset of heating, while Aδ afferents were largely 

unaffected. In contrast, a high rate of skin heating (6.5°C/sec) activated both classes of 

nociceptors, but activation of Aδs was more intense and occurred after shorter onset. At the high 

rate of heating, Aδs were activated within 2 seconds of the onset of the stimulus, which was a 

similar latency to the withdrawal of the paw at 2.5 seconds. A similar effect was seen at the low 
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rate of heating with activation of C-fibers around 10 – 12 seconds after the onset of the stimulus, 

also corresponding to the withdrawal latency (Yeomans and Proudfit 1996). Variation in 

activation of Aδs and C-fibers depending upon the rate of heating allows the pathway which is 

preferentially activated to be experimentally controlled by changing the intensity of the stimuli. 

A more intense stimulus producing a shorter latency of response could be used to activate Aδs, 

while a less intense stimulus resulting in a longer latency of response could be used to activate 

C-fibers.  

b. Spinal Cord  

The NWR is a spinal reflex, as animals with severed spinal cords still exhibit the NWR in 

response to noxious stimuli (Sherrington 1910). Actions by nociceptors have been demonstrated 

as di/tri synaptic, with excitatory actions mediated through a minimum of one or two spinal 

interneurons and the corresponding inhibitory actions through a minimum of two spinal 

interneurons (Eccles and Lundberg 1959). Nociceptors that innervate the tail of the rat terminate 

in superficial Rexed laminae I and II of the dorsal horn (Grossman et al. 1982) and nociceptive 

afferents that innervate the skin of the leg and paw terminate in the dorsal horn from caudal L5 to 

caudal L2 (Woolf and Swett 1983). Neurons involved in transmitting information regarding the 

withdrawal reflex of a single muscle are present in the deep dorsal horn (Schouenborg et al. 

1995). 

c. Modulation 

Neural pathways can be modulated by influences that change the properties of the pathway 

without directly producing a response. The transmission of nociceptive information within the 
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spinal cord is modulated by descending pathways originating in the brainstem. These influences 

on spinal nociceptive processing rely on neuronal pathways originating in the medulla, 

specifically the rostroventral medulla (RVM), including the medial nucleus raphe magnus 

(Gebhart 2004). These descending influences can either inhibit or enhance spinal nociceptive 

processing. Descending inhibitory influences were seen to descend the spinal cord in the 

dorsolateral funiculi, while facilitatory influences descended from the RVM in the 

ventral/ventrolateral spinal cord (Gebhart 2004). In the decerebrate state, there is often complete 

suppression of the NWR, but upon severing the spinal cord, the excitatory action to flexor nuclei 

and inhibitory action to extensor nuclei is released.  Therefore, an overall tonic inhibitory effect 

is produced by the brainstem, modulating the activity of both flexor and extensor spinal 

pathways (Eccles and Lundberg 1959).   

In order to identify the level of the brainstem responsible for modulation, Holmqvist and 

Lundberg (1961) made transverse lesions in a caudal progression in the brain stem and recorded 

the effects of these lesions on the NWR. When a low pontine lesion was made, there was a 

release of the inhibitory affects to extensor motoneurons. The release of the excitatory path to 

flexor motoneurons was not observed until a more caudal lesion was made in the medulla.  Thus, 

it can be concluded that different aspects of the NWR are modulated by pathways originating 

from various locations within the brainstem; inhibitory pathways lie in the rostral region of the 

medulla, while excitatory pathways lie in the caudal region.   

d. Long Loop Reflexes 

In addition to playing a role in the NWR by modulating the reflex in the spinal cord through 

descending pathways, the brain may contribute to long loop NWRs. Long loop reflexes transmit 
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sensory information back to the brain before descending pathways convey the information to the 

appropriate motoneurons (Lee and Tatton 1975). Studies of the stretch reflex show that in 

response to sudden upper limb displacement in monkeys, three early peaks of electromyogram 

(EMG) activity were recorded at 10 to 12 milliseconds, 32 to 35 milliseconds, and 45 to 60 

milliseconds. The first component was timed appropriately with a monosynaptic stretch reflex, 

but the two later components were thought to be mediated by long-loop reflexes (Lee and Tatton 

1975) through the cortex.  Later studies (Evarts 1973) showed that corticospinal neurons were 

activated as the arm of a monkey was stretched, suggesting that these neurons were playing a 

role in the withdrawal response. Although these results were obtained for the stretch reflex, they 

raise the possibility that the NWR may include long loop components. 

There is indirect evidence that neurons in the RVM may play a role in mediating a long loop 

NWR. Thermal stimulation was used to provoke the NWR in rats and the activity of single cells 

in the RVM and the EMG of muscle activity in hind limb flexors were recorded. A similar 

pattern was seen between the rate of activity in the ON and OFF cells present in the RVM and 

the muscle EMG recordings following noxious stimulation. Since neurons in the RVM are 

known to project to the spinal cord, the similar pattern of activity between these neurons and the 

EMG recordings suggests that these neurons could be involved in a long loop reflex that 

contributes to the withdrawal response (Devonshire et al. 2015).   `  

C. Dependence of the NWR on Stimulus Location  

Sherrington (1910) studied the NWR by electrically stimulating different nerves in the limbs of 

spinalized cats and visually observing muscles in order to determine which ones were activated 

during the response. He discovered that patterns of muscle contraction and relaxation from 
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various nerves were generally the same regardless of which part of the limb the stimulus was 

applied. Although the reflexes primarily consisted of excitation of flexor muscles and inhibition 

of extensor muscles, the magnitude of the responses varied depending on which nerve was 

stimulated. Sherrington labeled the variation in relative magnitude “local sign” (Creed and 

Sherrington 1926).   

The concept of a stereotyped nociceptive withdrawal reflex began to be challenged in the early 

1950s and 1960s (Hagbarth, 1952; Grimby, 1963). Hagbarth electrically stimulated smaller 

branches of nerves in the decerebrated cat hind limb and found that the resulting reflex varied 

with the location of the nerve which was stimulated. In one branch of the nerve, he observed 

excitation of flexors and inhibition of extensors, as was seen by Sherrington, but in the other 

branch he saw the opposite effect (excitation of extensors and inhibition of flexors). In order to 

explain the results obtained by Sherrington, the excitation of flexors and inhibition of extensors 

would have likely been the stronger response, so when the entire nerve was stimulated, flexion 

would dominate and mask the weaker excitation of extensors.  

 Hagbarth’s results (1952) also provided evidence that the nature of the nociceptive withdrawal 

response was fundamentally determined by the area of skin of the limb to which the stimulus was 

applied. Each of the extensor muscles studied was inhibited when most parts of the limb were 

stimulated, but could be excited from an area of skin mainly localized over the muscle itself. 

Conversely, each of the flexor muscles studied was excited from most parts of the limb but 

inhibited when the skin localized to the antagonist extensor muscle was stimulated. 

 Similarly, Grimby (1963) found that painful electrical stimuli applied to the plantar surface of 

the human foot produced reflex EMG that depended on the stimulus position, and was patterned 
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to provide optimal withdrawal of the foot away from the noxious stimuli. Specifically, it was 

observed that as the stimulus moved from the hollow of the foot to the hallux ball, the reflex 

provoked gradually shifted from muscles that caused plantar flexion to those that evoked 

dorsiflexion. As the stimulus was shifted from the hollow of the foot to the heel, the resulting 

reflex shifted from dorsal to plantar flexion. As the stimulus was shifted from the medial to the 

lateral side of the plantar surface, the ankle movement gradually changed from inversion to 

eversion. This study provided further evidence for the dependence of the withdrawal response on 

the location of the stimulus and suggested the reflex is designed to directly withdraw the 

stimulated body part away from the stimulus.  

As research on the NWR continued into the 1990’s, a more detailed organization of the 

nociceptive cutaneous receptive field of the hind limb muscle was described that further 

confirmed the dependence of the NWR on the stimulus in lightly anesthetized, decerebrated rats 

with intact spinal cords (Schouenborg and Kalliomaki 1990), following spinalization in the 

decerebrated rat (Schouenborg et al. 1992; Weng and Schouenborg 1996), and in the 

decerebrated cat (Levinnson et al. 1999). Most importantly, each muscle or muscle group in the 

reflex pathway was found to have different cutaneous receptive field corresponding closely to 

the skin area that would be expected to be withdrawn by that muscle group during contraction. 

Based on these findings, Schouenborg et al. (1992) concluded that an appropriate movement 

response would be formulated by activation of specific muscles in order to withdraw the limb 

directly away from the stimulus.  

Previous studies on the NWR relied on recording electrical signals directly from nerves or 

muscles, so that the resulting movement was only implied from the patterns of EMG or 
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motoneuron activity. Preliminary research by Clarke and Harris (2004), who recorded 

movements of the limb in the intact, lightly anesthetized rabbit in response to noxious 

mechanical stimuli, discovered a reflex movement pattern similar to that observed by 

Schouenborg and colleagues. As the location of the stimulus was varied along the rostral-caudal 

axis of the plantar surface of the paw, a corresponding change in movement was observed. Pinch 

of the rostral portion of the paw evoked a large flexion at the ankle joint, but as the stimulus was 

moved to the midsole, an extension of the ankle joint was observed before flexion. As the 

stimulus was moved to the caudal portion of the paw, a large flexion of the ankle joint was 

produced. Although the reflex elicited at the knee joint was consistently flexion, unaffected by 

which portion of the paw was stimulated, it appeared that there was a transition of ankle joint 

movement from flexion to extension as the stimulus was moved from the rostral to caudal end of 

the paw. From these results, Clarke and Harris concluded that the movement of the paw was 

affected by the location of the stimulus. 

Although a majority of previous studies had been explored using various non-human mammals, 

in the late 1990’s the NWR began to be studied extensively in humans. Andersen and 

Sonnenborg (1999) utilized electrical stimulation of the human foot sole which provided 

evidence for an organization in which each muscle had its own skin specific receptive field, 

similar to that found by Schouenborg and Kalliomaki (1990). Depending on the location of the 

stimulus, different patterns of EMG and directions of movement provided the most efficient 

withdrawal of the limb. For example, stimulation of the rostral portion of the foot resulted in 

dorsal flexion, while stimulation of the caudal portion evoked plantar flexion. Similarly, 

stimulation of the medial side resulted in inversion, while stimulation of the lateral side caused 

eversion. Sonnenborg and colleagues (2000) found that the inhibition pattern was the same as the 
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excitation pattern, but reversed; whenever an extensor muscle was excited, the complementary 

flexor muscle was inhibited and similarly whenever a flexor muscle was excited, the 

complementary extensor muscle was inhibited. Further studies found that the reflexes elicited 

from the dorsal foot also depended on the stimulus location similar to those obtained by 

stimulation of the plantar foot (Sonnenborg et al. 2001).  

In order to resolve the conflicting results represented by the findings of Sherrington and 

Schouenborg, Cleland and Bauer (2002) conducted studies on intact and spinalized rats by 

applying heat stimuli to the tail and measuring the direction and speed of the withdrawal 

response. In the spinal rat, it was observed that evoked responses were directed partially away 

from the stimulus but also showed a bias for movement in the ventral direction.  The movement 

away from the stimulus was also observed in intact rats, but the ventral bias was changed to a 

preference for movement in the dorsal direction. This change in response could be due to 

reflexes in intact rats being mediated by long-loop reflexes and modulation from the brainstem. 

The results suggested the rat uses a hybrid withdrawal strategy that is intermediate between the 

results obtained by Sherrington and Schouenborg et al. (1990); while responses were limited to 

the ventral directions in the spinal rat and dorsal directions in the intact rat, the number of 

response directions observed was greater than the single response observed by Sherrington 

(1910) and depended partly on stimulus location. 

D. Dependence of the NWR on Initial Position 

While stimulus location has been found to have a significant effect on the NWR, other factors 

may also influence on the NWR; one of which is the posture of the limb or the part of the body 

to which a noxious (Brown 1911; Andersen and Sonnenborg 2003; Richard et al. 2015; Decchi et 
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al. 1997; Serrao et al. 2006; Kim et al. 2007) or non-noxious (Baxendale et al. 1981; Knikou et 

al. 2006; Onushko et al. 2013) stimulus is applied. The initial position of the hind limb was 

initially found to have an effect on the scratching and hopping reflex in rabbits (Brown 1911). 

Later, Baxendale (1980) found that the initial posture of the knee in decerebrated cats influenced 

the non-nociceptive flexion withdrawal reflex, acting to limit hyperextension and hyperflexion of 

the joint. In humans, the posture of the lower limbs while standing (Decchi et al. 1997; Andersen 

and Sonnenborg 2003) and during walking (Richard et al. 2015) altered the reflex evoked by a 

painful electrical stimulus. While subjects were standing, ankle extensors played a dominate role 

and complete withdrawal of the limb was rarely observed; weight was simply shifted from the 

stimulated food to the one which was not stimulated in order to maintain balance (Decchi et al. 

1997; Andersen and Sonnenborg 2003). During walking, flexion at the knee and hip joints was 

the primary response with flexion at the hip aiding in maintenance of balance and walking 

movement depending on the current posture. Additionally, the posture of the upper limbs in 

humans during rest and movement plays a role in modulating the NWR (Serrao et al. 2006). In 

humans with spinal cord injury, components of hip proprioceptors play a role in determining the 

reflex produced in response to simultaneous electrical stimulation and imposed movement of the 

leg using a motorized apparatus (Kim et al. 2007).  Similarly, the effects of hip posture on the 

NWR were also observed in humans with spinal cord injury following a non-noxious stimulus 

(Knikou et al. 2006; Onushko et al. 2013). Knikou and colleagues found that flexion of the hip 

decreased the prominence of the flexion reflex, while extension of the hip produced the opposite 

effect. Additionally, extension of the hip was seen to enhance reflexes at the knee, while flexion 

of the hip amplified the tonic component in response to Achilles vibration (Onushko et al. 2013). 
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Taken together, these studies provide evidence for the influence of the initial posture of the limb 

on the withdrawal response to noxious or non-noxious stimuli.  

The posture of the limb prior to stimulation likely has an effect on the NWR as a result of 

various proprioceptors. Proprioceptors are a component of the somatic sensory system that serve 

to sense how our body is positioned and moving in space. Muscle spindles, also known as stretch 

receptors, are located within a fibrous capsule among several types of specialized skeletal muscle 

fibers. These spindles and their associated Ia afferents are examples of proprioceptors that serve 

to transduce changes in muscle length. Another proprioceptor present in skeletal muscle is the 

Golgi tendon organ, which monitors muscle tension. Joint receptors are responsible for 

responding to changes in the angle, direction, and velocity of movement in a joint. These 

mechanosensitive axons are present in the connective tissue of joints, especially within the 

fibrous tissue surrounding the joints and ligaments (Bear et al. 2015). These three components of 

proprioception may play a large role in modulating the NWR. 

E. Specific Aim 

There have been numerous studies in non-human animals on the effect of stimulus location on 

the NWR and at least a few studies that address the role of initial posture. However, all of these 

studies were conducted in anesthetized, decerebrated, or spinalized mammals. Since descending 

modulation and long loop reflexes may influence the NWR, the anesthetized 

spinalized/decerebrated animal may not be an adequate model of normal animals. Therefore, the 

primary aim of this study was to determine the effect of the stimulus location and initial paw 

position on the direction and magnitude of the nociceptive withdrawal response to heat stimulus 

delivered to various locations on the plantar surface of the paw of intact, unanesthetized rats. 
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Based on previous research, it was hypothesized that stimulus location and initial position of the 

paw would both have an effect on the NWR.  
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IV. Methods 

Male Sprague Dawley rats (n=36 with an average weight of 421.7g ± 100.8g) were bred from 

rats obtained from Harlan (Indianapolis, IN). Male and female rats were housed in separate cages 

with constant access to food and water and were exposed to 12 hour light/dark rotations (light 

8:00-20:00) to imitate their natural environment. The room in which the rats were kept was 

inspected daily in order to ensure an adequate temperature between 68-79 °F, humidity between 

30-70%, and to check for cleanliness and availability of food and water. The animal care facility 

and protocol were approved by the James Madison University Institutional Animal Care and Use 

Committee.  

A. Rat Preparation  

Rats were placed in an acrylic box and lightly anesthetized by exposure to a mixture of 2-5% 

isoflurane in 100% oxygen. Anesthesia was necessary in order to shave the hind end of the rat 

and to mark the bottom of the paw. After the rat was successfully anesthetized, hair clippers were 

used to remove all of the hair on the posterior half of the rat, which aided with visualization of 

the movement of the paw. 

Following shaving, five stimulus locations were marked on the plantar surface of the hind left 

paw using a black permanent marker. The points were approximately 1 mm in diameter and were 

organized with three points proceeding rostral-caudally and three proceeding medial-laterally 

(Figure 1). The stimulation sites were marked for two reasons; to improve absorption of the heat 

stimulus via black ink and to limit the stimulus to the marked areas, as unblackened areas absorb 

heat far less quickly.  
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Figure 1. Stimulation locations. Five points (approximately 1mm in diameter) on the plantar 

surface of the hind left paw were marked with a permanent black marker and stimulated with a 

laser. All five points were used for stimulation while points 1, 2, and 3 were also used for 

tracking movement of the paw. Point 2 was used to represent the approximate center of mass 

(COM) for determining the distance and magnitude of movement. Points  1 and 3 were used to 

determine the initial and final angle of the paw.  

 

 

medial lateral 
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Prior to beginning the experiment, the rats recovered for 45 minutes in order to eliminate any 

influence the anesthesia might have had on their behavior.  

B. Experimental Setup 

The rat was placed on a leveled glass plate (2’X1’) supported by two horizontal steel bars and 

constrained on top of the platform by an acrylic box in order to encourage the animal to remain 

in place during and between trails (Figure 2). The box contained a cutout on the back, left side 

providing space for the hind left paw to move following stimulation without being inhibited by 

coming in contact with the acrylc enclosure. The box also contained a small cutout in the back 

and holes on all sides so that the tail could fully extend and the rat was able to breathe. The 

platform was raised 51 cm from the ground so that the video camera, light emitting diode (LED) 

lights, and laser apparatus would fit underneath.  

Two high-power, low heat, LED (SugarCube; Vergennes, VT) lights were positioned below the 

platform for illumination. The lights were triggered to turn on at the same time the stimulus was 

delivered, providing identification of the video frame at which the stimulus began. A 980nm 

infrared laser diode (BWTEK; Wilmington, DE) was positioned beneath the plate to deliver the 

heat stimulus. The laser stimulus used to provoke the withdrawal response was delivered at 

various watts, depending on the stimulus site. Some areas of the paw required higher wattage in 

order to provoke an adequate response, possibly due to thicker skin, such as the rostral and 

caudal end. The intensity of the stimulus was varied in order to obtain latencies between 1-3 

seconds at each stimulation site. A red low power targeting laser was used so that the heat 

stimulus could be aligned and correctly applied to the intended location. The laser was focused 
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using a large condenser lens to a diameter equivalent to that of the black marked location on the 

paw (~1mm).  

A conventional video camera (Sony HDR-CX130) placed beneath the glass plate was used to 

record the animal’s paw movement. In some experiments, a second camera was placed to the left 

of the rat and used as a second source of video footage of the movement. The focus, exposure, 

and zoom on the cameras were manually adjusted prior to each experiment. The cameras 

recorded movement in pixels, thus it was necessary to covert pixels to millimeters in order to 

accurately interpret distance of movement. To do so, following each experiment, one frame was 

recorded with a ruler placed on the glass to serve as a known distance marker in order to perform 

this calibration.  
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Figure 2. Experimental setup. The rat was placed on a glass plate supported by two steel bars 

and enclosed in an acrylic box. Two LED lights were directed at the rat and used for 

illumination. A video camera was placed beneath the platform, directly below the rat so that the 

entire animal was in the frame. The laser was positioned beneath the platform and adjusted so 

that the appropriate location was stimulated.  
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C. Experimental Protocol 

There were a total of 36 experiments performed, 19 of which I completed while the remainder 

were carried out by my colleagues. Each experiment consisted of fifteen trials, with individual 

locations stimulated three times. The order at which each location was stimulated was 

determined randomly prior to each experiment. Randomizing the stimulus location decreased any 

relative effect that the order at which the points were stimulated might have on the response. 

After each location had been stimulated once, the process with the same sequence was repeated 

twice. 

The experiment began by placing the rat on the glass plate and allowing it to acclimate. 

Following orientation of the rat in the correct direction, the acrylic box was placed around the rat 

and the platform was shifted so that the entire rat was in the field of view of the video camera 

beneath. The conventional video camera (60fps) was set to record, the laser was positioned so 

that the red dot was placed over the desired location, and the stimulus was delivered using a foot-

activated switch. After the animal had responded by moving its hind limb, the video recording 

was stopped. The animal was then allowed to rest for at least four minutes before the next 

stimulus was delivered in order to minimize the influence of repeated stimulation. 

Following completion of the experiment, the video file was transferred to a computer and 

converted to a series of “jpg” image files using TMPGEnc Video Mastering Works 5 for 

compatibility with subsequent analysis software. The LED lights were set to turn on at the start 

of the stimulus, therefore the onset of illumination was used to determine the frame in which the 

application of the stimulus began. Video was then cut five frames before the onset of the 

stimulus and five frames following termination of the response.  
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The images were analyzed using ProAnalyst (Xcitex; Cambridge, MA) in order to track the 

initial and final position and angle of the paw. The entire movement of the limb during the 

response was not tracked as this is not possible at 60 fps. Prior to tracking, a Cartesian coordinate 

system was produced for each individual rat by setting the origin at the urinary orifice. The 

positive Y axis was aligned with the center of the rat in the rostral direction and the positive X 

axis was set to the medial (Figure 3 viewed from above).  
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Figure 3. Cartesian coordinate system. A Cartesian coordinate system was defined for each 

individual rat prior to tracking the initial and final position of the paw. The urinary orifice was 

used as the origin with the axes and direction as shown in the figure.  
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The withdrawal response was usually characterized by a rapid removal of the paw from the plate 

and quick replacement of the paw on the surface. Following replacement, the rat left its paw in 

place on the plate for an extended period of time. In order to determine how stimulus location 

and initial position affected the response, the position of the first, second (representing the 

approximate center of mass), and third location were determined prior to the onset of the 

stimulus and immediately following the placement of the paw back on the glass. This was 

completed by recording the X and Y coordinates of these three points prior to and following the 

movement.   

The coordinates from ProAnalyst for each trial were exported to an Excel spreadsheet, where the 

direction and magnitude of the vector connecting the initial and final locations of the COM of the 

paw were calculated. The coordinates of stimulus points one and three were used to calculate the 

angle of the paw before and after the movement.   

Analysis and graphing was conducted using SigmaPlot and custom programs in Matlab written 

by Corey Cleland. Significance (α) was set at a p-value of 0.05 and error bars are standard error 

of the mean unless otherwise stated.  Parametric statistics were used if the data were normally 

distributed (Shapiro-Wilk test) and non-parametric statistics were used for data that were not 

normally distributed. Circular statistics were used for directional data.  
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V. Results 

The nociceptive withdrawal response resulting from heat stimulation applied the plantar surface 

of the paw in intact, unanesthetized rats was characterized by rapid removal and replacement of 

the paw on the glass surface. The left panel of Figure 4 shows two video frames taken from a 

camera positioned to the left of the rat, demonstrating the position of the paw prior to the 

delivery of the stimulus and during the response. Figures 4A and 4B show video frames from the 

same trial taken from a camera positioned directly beneath the rat, illustrating the position of the 

paw before and after the movement. In Figure 4B, the shaded region represents the initial 

position of the paw. Figure 4C shows how the direction of movement of the COM of the paw, θ1, 

and the magnitude of movement, d, were quantified. In this example, the direction was 143 

degrees and the distance was approximately 8 mm. Figure 4D shows how the change in foot 

angle, θ2, was measured via the angular change in axis determined by stimulus points 1 and 3. In 

this example, the change in angle was about 15 degrees.  

Figure 5A shows responses from each trial (n=36, n=652 trials) represented as a vector. When 

the magnitude and direction of all responses are represented individually, it is apparent that all 

directions are represented. The frequency histogram of the response directions suggests a 

preference for movement in the caudal-lateral direction (Figure 5B).  
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Figure 4. Translational and rotational movement of the hind limb. Video recording from the 

rat’s left side illustrates the NWR evoked by heat stimulation of the plantar surface of the hind 

left paw. Typically the withdrawal and replacement of the paw occurred within 50 ms. Video 

from below the animal shows the initial position of the hind limb before the stimulus (A) and 

following the stimulus-induced movement (B) (the initial limb position prior to the stimulus is 

represented by the shaded region). Paw movement following stimulation was measured in two 

ways in order to determine the magnitude of the response: (C) translation and (D) rotation. The 

illustration shows the initial and final locations of the approximate center of mass (COM) of the 

paw viewed from above the rat. Θ1 represents the angle of rotation as measured from the dotted 

vertical line and “d” indicates the distance the paw moved. In this example, the direction was 143 

degrees and the distance was approximately 8 mm. D) The change in foot angle from initial paw 

position to the final paw position after movement is represented by θ2. In this example, the 

change in angle was about 15 degrees.  

8mm 
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Figure 5. Changes in response distance. A) Each trial (n=36, n=652) is represented by a vector, 

showing the relative direction and magnitude of movement of the hind left paw in response to 

stimulation. All directions appear to be represented. B) Direction of movement is represented in 

a frequency histogram. Although all directions are represented, it is apparent that there is a 

preference for movement in the caudal direction and to a lesser extent in the lateral direction.  
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A. Dependence on Stimulus Location 

The first question addressed by this study was whether or not the stimulus location on the paw 

determined the translational (direction and magnitude) and rotational (change in paw angle) 

aspects of the withdrawal response.  Stimulation at each location produced a variety of responses 

with almost all directions represented (Figure 6A). When comparing the direction and magnitude 

of translational movement at each stimulus location to one another, it appears that the responses 

were generally the same, regardless of what point was stimulated. Similarly, the change in angle 

of the paw was similar among all stimulus locations (Figure 6B).   

In order to determine if stimulus location had a significant effect on the withdrawal movement, 

the response vectors in polar coordinates (Figure 6A) were converted to their rostral-caudal and 

lateral-medial components, which allowed each component to be aligned with the stimulus 

points in the appropriate direction. The change in rostral-caudal position is shown in regard to 

the rostral, center, and caudal stimulus locations (Figure 7A), while the data for the change in 

lateral-medial position is shown in regard for the lateral, center, and medial stimulus locations 

(Figure 7B).  

Median values for change in rostral-caudal distance (Figure 7A), lateral-medial distance (Figure 

7B), and angle (Figure 7C) are shown with respect to the five stimulus locations. The change in 

distance in the rostral/caudal position (P=0.07, n=391) and the change in distance in the 

lateral/medial position (P=0.16, n=391) were not significantly affected by the location of the 

stimulus (Figures 7A and 7B). The data for change in angle are shown with respect to all five 

stimulus locations (Figure 7C). Similar to rostral-caudal and lateral-medial position, the stimulus 



 

31 

 

location did not have a significant influence on the change in angle of the paw (P=0.58, circular 

Watson-Williams F-test, n=652) (Figure 7C). 

Contrary to our hypothesis, it can be concluded that stimulus location did not have a significant 

effect on the NWR, raising the question of what other factors might play a role in mediating this 

movement.  
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Figure 6. Magnitude, direction, and angle of movement at each stimulation site. Each trial at 

each of the five stimulation points is represented as a vector (n=36, n=652 trials). Movement of 

the COM (A) is described by the magnitude and direction of the movement of the paw based on 

initial and final position of the paw following stimulation. It appears that movement occurred in 

all directions at each stimulation point. Change in foot angle (B) measured prior to and following 

the movement also appears to occur in all directions at all stimulation sites. Unity magnitudes 

were set for the angle vectors, as only the change in angle was measured.   
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Figure 7. Dependence of change in position and angle of response on stimulus location. The 

data from each trial are represented as boxplots with the median represented by the line in the 

center of the box, the upper and lower boundaries of the box indicating the 75
th

 and 25
th

 

percentile, the whiskers demonstrating the 90
th

 and 5
th

 percentile, and the dots showing the 95
th

 

and 5
th

 percentile. A) The change in movement in the rostral/caudal direction for the rostral, 

center, and caudal stimulus locations did not significantly depend on stimulus location (P=0.09, 

n=391, Kruskal-Wallis test). B) Similarly, the change in position in the medial/lateral direction 

for the lateral, center, and medial stimulus locations did not significantly depend on stimulus 

location (P=0.16, n=391, Kruskal-Wallis test ). C) The mean change in angle for each stimulus 

location also did not significantly depend on stimulus location (P=0.58, n=652). 
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B. Dependence on Initial Position 

Since stimulus location did not have a significant effect on the withdrawal response, other 

variables that may be responsible. The way in which the rat positioned itself varied between 

experiments, leading to the idea that the initial posture of the paw might be responsible for the 

observed variation in the withdrawal response. In order to test whether the initial position of the 

paw had an effect on the NWR, it was first confirmed that various initial positions of the paw 

were in fact adopted by the rat prior to delivery of the stimulus (Figure 8).  

In order to determine if initial position of the paw had a significant effect on the withdrawal 

response, a regression analysis was performed on the initial position of the paw (COM) and the 

change in position of the paw (COM) in the lateral-medial and rostral-caudal directions (Figures 

9A and 9B). There was a significant relationship between initial lateral-medial position and 

movement in the lateral-medial direction (R
2
=0.11, P<0.0001, slope=-0.5) as well as between 

initial rostral-caudal position and movement in the rostral-caudal direction (R
2
=0.22, P<0.0001, 

slope=-0.6) (Figures 9A and 9B). These results show that when the paw is initially back, it tends 

to move forward; when initially forward, it tends to move back. Similarly, when the paw is 

initially right, it tends to move left; when initially left, it tends to move right. A regression 

analysis was also performed comparing the initial angle and final angle of the paw and it was 

found that final angle may significantly depend on initial angle (R
2
=0.28, P<0.0001, slope = 0.6 

deg/deg) (Figure 9C).  

Although statistically significant, the R
2 

values from the previous correlations were fairly low 

(R
2
=0.11, 0.22, and 0.28). These low R

2
 values could have been due to differences between rats 

used in each experiment such as weight, gender, or posture of the animal adopted in the acrylic 
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box. In order to eliminate this variation, each rat was analyzed individually. When the data for 

each of the 36 rats are displayed on separate graphs, the resulting individual R
2
 values of 

statistically significant relationships (n=26, 25, and 25) were much higher (R
2
=0.47±0.16, 

0.52±0.20, 0.36±0.17) (Figures 10, 11, and 12). More importantly, 33 of 36 experiments had a 

negative slope when examining the change in position in the lateral-medial direction (Figure 10) 

and 35 of 36 had a negative slope when examining the change in position in the rostral-caudal 

direction (Figure 11). Similarly, 32 of 36 graphs of individual experiments examining the initial 

and change in angle of the paw contained positive slopes (Figure 12). Of the 8 graphs with 

differing slopes, only one was statistically significant.  

The individual slopes from each experiment were compiled onto a single graph for change in 

lateral-medial position, rostral-caudal position, and final angle (Figure 13). Those experiments 

which had positive slopes in regard to change in position in the rostral/caudal and lateral/medial 

are displayed as thick lines, while those that had a negative slope for initial vs. final angle are 

displayed as thick lines. In order to test the effect of initial positon of the paw on the withdrawal 

response, a one-sample T-test was performed by comparing each slope to a hypothesized 

population mean of 0. In the lateral-medial direction (P<0.000001, Slope=-0.67±0.42) (Figure 

13A), as well as the rostral-caudal direction (P<0.00001, Slope=-0.87±0.60) (Figure 13B), the 

initial paw position significantly influenced the change in position of the paw in that particular 

direction. In addition, the initial angle of the paw determined the final angle of the paw 

(P<0.000001, Slope=0.48±0.36) (Figure 13C). 
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C. Multiple Regression 

It is possible that the effects of stimulus location on the withdrawal response were obscured by 

the significant effects of initial position. To account for this possibility, multiple regression 

analysis was performed in which the effects of both initial position of the paw and stimulus 

location were determined together. The change in position of the paw in the lateral/medial 

direction (P=0.51) and in the rostral/caudal direction (P=0.07) were still not significantly 

affected by the stimulus location. Similarly, it remained that stimulus location did not 

significantly affect the change in angle of the paw (P=0.15). 
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Figure 8. Initial locations of the paw prior to stimulation. The initial locations of the COM of 

the paw are displayed in the lateral-medial and caudal-rostral plane, showing there was a wide 

distribution of initial locations of the COM of the paw adopted voluntarily by the rat. 
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Figure 9. Initial rostral-caudal, medial-lateral, and angular paw position influences final 

paw position. The initial location of the paw significantly influenced the change in position of 

the paw in the lateral-medial direction (A) (R
2
=0.11, P<0.0001, slope=-0.5 mm/mm) as well as 

in the rostral-caudal direction (B) (R
2
=0.22, P<0.0001, slope=-0.6 mm/mm). The initial angle of 

the paw also significantly influenced the final angle of the paw (R
2
=0.28, P<0.0001, slope = 0.6 

deg/deg). 
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Figure 10. Individual rats show initial lateral-medial paw position influences final paw 

position. Each individual rat is shown on a separate graph, further demonstrating the dependence 

of change in position of the paw on initial position of the paw. The r
2
 value, p-value, and slope 

for each trail are displayed above the graph. There were negative slopes for 33 of 36 rats, with 

those that had a positive slope indicated by a box. The average R
2
 value for all significant 

experiments (n=26) was 0.47±0.16 and the average slope for all rats was -0.67±0.42. These 

values demonstrate the significant influence of the initial lateral-medial position on the change in 

lateral-medial position of the paw.  
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Figure 11. Individual rats show initial rostral-caudal paw position influences final paw 

position. Each individual rat is shown on a separate graph, further demonstrating the dependence 

of change in position of the paw on initial position of the paw. The r
2
 value, p-value, and slope 

for each trail are displayed above the graph. There were negative slopes for 35 of 36 rats, with 

the one that had a positive slope indicated by a box. The average R
2
 value for all significant 

experiments (n=25) was 0.52±0.20 and the average slope for all rats was -0.87±0.60. These 

values demonstrate the significant influence of the initial rostral-caudal position on the change in 

rostral-caudal position of the paw.  
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Figure 12. Individual rats show initial angle of paw position influences change in angle of 

paw position. Each individual trail is shown on a separate graph, further demonstrating the 

dependence of change in angle of the paw on initial angle of the paw. The r
2
 value, p-value, and 

slope for each trail are displayed above the graph. There were positive slopes for 32 of 36 rats, 

with those that had a negative slope indicated by a box. The average R
2
 value for all significant 

experiments (n=25) was 0.36±0.17 and the average slope for all rats was 0.48±0.36. These 

values demonstrate the significant influence of the initial angle of the paw on the change in angle 

of the paw. 
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Figure 13. Combined slopes from individual rats demonstrate dependence of final paw 

position on initial position. Slopes from individual trials were combined and displayed on a 

single graph. The data for analysis of initial position passed the Shapiro-Wilk normality test, so 

normal statistics were used for investigation. Those experiments which had positive slopes in 

regard to change in position in the rostral/caudal and lateral/medial are displayed as thick lines, 

while those that had a negative slope for initial vs. final angle are displayed as think lines. The 

change in position of the paw showed a strong dependence on the initial position of the paw 

lateral-medially (A) and rostral-caudally (B) (P<0.000001, Slope=-0.67±0.42; P<0.000001, 

Slope=-0.87±0.60, one-sample T-test, n=652 trials). Similarly, the initial angle of the paw had a 

significant effect on the final angle of the paw (P<0.000001, Slope=0.48±0.36,  one-sample T-

test, n=652 trials).  
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VI. Discussion 

Previous studies have shown that the NWR is affected by stimulus location and initial posture in 

anesthetized, decerebrated or spinalized non-human mammals as well as in humans; however, 

there had been no studies regarding these variables and their effect on the NWR in intact, 

unanesthetized non-human mammals.  

The effect of stimulus location on the NWR in intact, unanesthetized rats was determined by 

applying an adequate heat stimulus to the plantar surface of the hind, left paw at five different 

locations in order to evoke the NWR. The withdrawal response generally consisted of rapid 

removal and replacement of the paw on the platform. In contrast with previous literature, the 

stimulus location did not significantly influence the direction of movement, magnitude of 

movement, or the change in angle between the initial and final positions of the hind, left paw.   

Although stimulus location did not have an effect on the NWR, our hypothesis was supported by 

the fact that the initial position of the paw prior to stimulation did significantly influence the 

response. In order to determine the effect of the initial position on the NWR, the paw was 

stimulated following placement in a variety of different positions adopted voluntarily by the rat 

prior to beginning each trial and the withdrawal movement was observed. If the paw was initially 

placed in the rostral direction, it tended to move caudally, and similarly, if the paw began more 

caudally relative to the rat’s body, it would move in the rostral direction. As the paw was 

positioned in the lateral direction, it moved medially, and as the paw was initially positioned in 

the medial direction, it tended to move laterally. The initial angle of the paw was also seen to 

play a significant role in determining the final angle of the paw following the response.  
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A. Comparison to Previous Studies  

a. Stimulus Location  

The first purpose of this study was to determine the effect of stimulus location on the NWR in 

intact, unanesthetized rats. It was found that the direction of the response, magnitude of the 

response, and change in angle of the paw were all unaffected by which location on the plantar 

surface of the paw had been stimulated. This finding contradicted results found in previous 

studies, as it has been shown that the NWR could be influenced by which part of the limb is 

stimulated. Hagbarth (1955), Grimby (1963), Schouenborg and colleagues (1992), and Andersen 

and Sonnenborg (1999) all found that different responses could be evoked depending upon 

which specific area of the limb was stimulated.  

Andersen and Sonnenborg (1999) studied the actual movement trajectory of the foot in humans 

in response to noxious stimuli delivered to various locations on the foot and showed that dorsi-

flexion, plantar flexion, inversion and eversion were differentially evoked by stimuli in different 

locations. In contrast, this study was solely based on the initial and final position of the paw, 

rather than the movement that happened between removal and replacement of the paw on the 

platform. It is possible that different patterns of eversion and inversion were occurring as the paw 

was removed and replaced on the platform, but the final position of the paw remained unaffected 

by the stimulus location.  

Additionally, studies by Grimby (1963) and Andersen and Sonnenborg (1999) were completed in 

humans, while my experiment was completed in rats. In rats, the NWR tends to be much stronger 

than the reflex seen in humans. Although the stimulus location was seen to affect the NWR in the 

studies completed by Grimby (1963) and Andersen and Sonnenborg (1999), the observed 
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response was much weaker than the rapid removal and replacement of the paw witnessed in the 

rat.   

Sherrington (1910) relied on visual observation of muscles while Grimby (1963) and 

Schouenborg and colleagues (1992) analyzed the NWR based on EMG recordings. Responses 

were inferred based on these electrical recordings of nerves of muscles, therefore withdrawal 

movement was never actually observed. As the present experiment looks at the actual movement 

of the paw, this could be another reason for the differing results. 

Most importantly, studies in the past have all been completed in animals that were anesthetized, 

decerebrated, or spinalized. Our study was conducted in rats that were intact and unanesthetized, 

so the pathways mediating the response could be very different. Modulation and long loop 

reflexes are two components that may influence the NWR, possibly playing a role in the 

differing results seen in intact, unanesthetized rats compared to animals that were anesthetized, 

decerebrated, or spinalized.   

Finally, Clarke and Harris (2004) performed an experiment in intact, lightly anesthetized rabbits, 

where they found that varying the stimulation location on the plantar surface of the hind limb 

resulted in a change in response. As the pinch stimulus was moved from the rostral to the caudal 

end of the paw, the response at the ankle joint gradually shifted from flexion to extension, but the 

response at the knee was consistently flexion. The ankle joint movement does not affect the final 

location of the paw, while the movement at the knee joint does. Consistent with our results, 

Clarke and Harris found that the movement at the knee unaffected by which part of the paw was 

stimulated.  
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b. Initial Position 

The second purpose of this study was to determine the effect of the initial position of the paw on 

the NWR. Relying on spontaneously variability in the initial position of the paw adopted 

voluntarily by the rat, it was discovered that where the paw was positioned prior to delivery of 

the stimulus had a significant effect on the translational (direction and magnitude) and rotational 

(angle) aspects of the withdrawal response.  If the paw was initially placed rostrally, it would 

move caudally during the response and if the paw was initially placed caudally, it would move 

rostrally during the response. Similarly, if the paw was initially place laterally, it would move 

medially during the response and if the paw was initially placed medially, it would move 

laterally during the response. 

The finding that initial position plays a significant role in mediating the NWR is supported by 

previous research regarding nociceptive (Brown 1911; Andersen and Sonnenborg 2003; Richard 

et al. 2015; Decchi et al. 1997; Serrao et al. 2006; Kim et al. 2007) as well as non-nociceptive 

(Baxendale et al. 1981; Knikou et al. 2006; Onushko et al. 2013) reflexes. It was first discovered 

that the initial posture of the hind limb in rabbits played a role in mediating the scratching and 

hopping reflex (Brown 1911). Later, Baxendale (1981) found that that posture of the knee in 

decerebrated cats acted to influence the non-nociceptive flexion-reflex in order to limit hyper-

extension of the limb. It has since been discovered that the initial position of the lower limb in 

humans plays a role in mediating the NWR while the subject is standing (Decchi et al. 1997; 

Andersen et al and Sonnenborg 2003) as well as walking (Richard et al. 2015). Extensors were 

activated while standing while hip flexors were primarily activated while walking, both acting to 

assist in maintaining balance. Similarly, the posture of the upper limbs has been seen to influence 
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the NWR during rest and movement (Serrao et al. 2006). These findings were further supported 

in humans with spinal cord injury, where it was found that the response to a noxious (Kim et al. 

2007) and non-noxious (Knikou et al. 2006; Onushko et al. 2013) stimulus were significantly 

influenced by the position of the lower limb prior to stimulation.  

Although a majority of previous research on the effect of initial posture of the limb on 

nociceptive and non-nociceptive reflexes has been completed in humans, a similar pattern of 

neural mechanisms mediating the NWR is likely present in rats, resulting in similar outcomes 

being obtained. In agreement with previous research, our results have indicated a dependence of 

the NWR in intact, unanesthetized rats on the initial position of the hind, left paw prior to 

noxious stimulation.  

B. Mechanisms 

The present results reveal that withdrawal movement is influenced by the initial position of the 

hind paw, resulting in changes in the direction, magnitude, and angle of response. The 

dependence of hind paw location and angle on initial position raises the question of what 

underlying mechanisms mediate this relationship. The first possibility is that the CNS is using 

information from limb proprioceptors. There are three types of proprioceptors located in the limb 

that may provide information that could influence the response. Muscle spindles, located in 

muscles, measure the length of muscles and indirect joint angle. Golgi tendon organs, located 

within muscle tendons, measure muscle force. The third type of sensor is joint afferents, located 

in the connective tissue of joints, which measure the angle, direction, and velocity of movement 

in a joint (Bear 2015). Information from these three types of proprioceptors may also be 
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combined with the CNS. Since proprioceptors are known to modulate spinal reflexes (Onushko 

et al. 2013), it is possible that NWR pathways may also be influenced.   

The second possibility is that the reflex is influenced by corollary discharge, also known as 

efference copy. Corollary discharge is an internal copy of a motor-producing command that can 

be sent to other areas of the brain, informing them of the forthcoming movement. Corollary 

discharge has been shown to be important is regulating motor output as well as interpreting 

incoming sensory information, so it is possible that corollary discharge is playing a role in 

mediating the NWR based on initial position of the paw (Nelson 1996). One critique of this 

explanation is that the animal’s paw sometimes remained in place for an extended period of time 

before the stimulus was delivered, therefore reducing the possibility that the information from 

the corollary discharge was still active in the CNS upon stimulation. 

C. Significance  

The ability of an animal to effectively withdrawal a part of its body away from potential harmful 

stimuli is important for survival. In order for the withdrawal to be effective, it is imperative that 

the animal maintains its balance. As suggested by these experiments, the posture of the animal 

plays an important role in mediating the withdrawal response to a noxious stimulus. Upon 

withdrawal of the limb, the animal must ensure that it does not tip over following movement, 

resulting in further damage and inability to escape the threat. Similarly, posture may be 

significant so that the animal is able to position itself in order to run or move away from the 

stimulus following withdrawal of the limb.  
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Unlike initial position, stimulus location was not found to play a significant role in determining 

the withdrawal response. This could imply that as long as the paw is moved an adequate distance 

away from the stimulus, it is unimportant in which direction the movement in directed. Also, 

since the paw of the rat is so small, the changes in where it is stimulated may have been so 

minute that they did not cause a change in the withdrawal strategy.   
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