Clicks, likes, and shares: Using the theory of planned behavior, self-efficacy, and impression management to predict digital activism activities

Aaron Noland
James Madison University

Follow this and additional works at: https://commons.lib.jmu.edu/diss201019

Part of the Communication Technology and New Media Commons, Nonprofit Administration and Management Commons, Public Relations and Advertising Commons, and the Social Media Commons

Recommended Citation
Noland, Aaron, "Clicks, likes, and shares: Using the theory of planned behavior, self-efficacy, and impression management to predict digital activism activities" (2017). Dissertations. 156.
https://commons.libjmu.edu/diss201019/156

This Dissertation is brought to you for free and open access by the The Graduate School at JMU Scholarly Commons. It has been accepted for inclusion in Dissertations by an authorized administrator of JMU Scholarly Commons. For more information, please contact dc_admin@jmu.edu.
Clicks, likes, and shares: Using the theory of planned behavior, self-efficacy, and impression management to predict digital activism activities
Aaron Noland

A dissertation submitted to the Graduate Faculty of
JAMES MADISON UNIVERSITY

In
Partial Fulfillment of the Requirements
for the degree of
Doctor of Philosophy

Strategic Leadership Studies

May 2017

FACULTY COMMITTEE:

Committee Chair: Dr. Karen Ford

Committee Members/ Readers:

Dr. Margaret Sloan

Dr. Corey Hickerson
Dedication

This dissertation is dedicated to those who motivated me to finish it, supported me along the way, and inspire me in every day. To my amazing wife, Melinda, for her unending support, love, encouragement, laughter, and belief in me. For supporting me through an incredibly challenging period, for carrying the weight that this process placed on you and for doing these things with such grace, patience, and love. I love you cable.

To my mom, brother and sister-in-law, for urging me to continue this work and believing I could do it back when I didn’t think it would ever be a reality. And for fun times and unconditional love. To Fred and Linda and Chuck and Tara for making me feel welcome and special and for helping me keep the goal in sight along this process. To Sam, Kate, and Ben for being a source of endless joy and love and for always making me giggle. To my golf trip friends and “best football friends,” for their encouragement, fun, willingness to always join me to relax and unwind with good times.

To my professors, mentors, and teachers all throughout my life for their dedication, endless hours of work, patience, and for seeing in me, potential, and pushing me to preserve. To my students former, current, and future for always restoring in me a hope for the future and idealism. Thank you for making my job so rewarding, challenging, and fun.

To my amazing friends group and brothers and sisters in Christ at GCC for their belief in me, reassurance, prayers, and celebrations. It’s a joy to walk with Christ in community with you all. Finally, and most importantly, to my personal savior Jesus Christ through whom I am righteous not by my own works but through His sacrifice and great love. All that is good in me is by and through the power of Christ in me.
Acknowledgments

This work is on the shoulders of many others I haven’t acknowledged here and many whom are unseen. It is also true there are many who are not able to pursue this opportunity as I have who are far more deserving. First, the professors who directly worked with me on the paper. Dr. Margaret Sloan for working with me from the beginning of the program through the end on this program of research. Thank you for the ideas, support, belief, and incredibly helpful suggestions. Dr. Sara Finney, thank you for teaching me structural equation modeling and so much more. SEM remains one of the most impactful and best courses I’ve ever taken. Thank you for the feedback on the paper and suggested revisions and for modeling excellence in instruction. Finally, Dr. Karen Ford, thank you for your support, encouragement, and guidance as my advisor through this process. It was a joy to work with you on this dissertation – you prepared me every step of the way and I always felt secure. Thank you for doing such an excellent job and setting me up for success. To my former professors, teachers, and mentors for molding and shaping me into who I am today.

Dr. Matt Brigham, thank you for your belief in my ability to complete this project and program and for your encouragement. I appreciate that I was always able to bounce ideas off you and that you’d take the time and energy to help me process. Thank you for your belief and for allowing me a safe space to process.

Finally, thank you to the students, refugees, immigrants, and others I’ve met and learned from who do not have the same unearned privileges that I benefit from. This work is aimed at helping create a more just world for all. I hope we can all love more like you each day.
Table of Contents

Dedication .. ii

Acknowledgements .. iii

Table of Contents ... iv

List of Tables .. v

List of Figures .. vi

Abstract .. vii

I. Introduction ... 1
 - Background of the Study
 - Research Question
 - Definitions of Terms
 - Visualization of Models

II. Literature Review ... 17
 - Slacktivism and Social Media / Digital Activism
 - Social Cognitive Theory
 - Self-Efficacy
 - Impression Management
 - Theory of Planned Behavior

III. Methodology ... 32
 - Study 1
 - Procedures and Sample
 - Measures
 - Results
 - Study 2
 - Specification of Models
 - Procedures and Sample
 - Measures
 - Data Analytic Procedures

IV. Results .. 50
 - Model Estimation and Fit Indices
 - Descriptive Statistics and Foreshadowing of Results
 - Path Analysis

V. Discussion .. 61

References ... 78

Appendix ... 99
List of Tables

Table 1 Pattern Matrix and Descriptives for Generic Version…………………………..37
Table 2 Pattern Matrix and Descriptives for Online Version…………………………..38
Table 3 Intercorrelations, descriptive, and scale statistics for variables…………………..54
Table 4 Fit Indices for Competing Models (n=1,366)……………………………………..55
Table 5 Direct, Indirect, and Total Effects, Standard Error, and Z-Tests for Model 2….60
List of Figures

Figure 1 Competing models predicting digital & traditional activism………………….14
Figure 2 Competing models predicting digital & traditional activism………………….40
Figure 3 Model 2 with coefficients, disturbance terms, and error variances…………..59
Abstract
Social media has evolved as a space for connection, advocacy, and commerce in recent years. Nonprofit organizations have been called to engage stakeholders on the Internet generally, and social media specifically as the pervasiveness of online presence has increased. In addition, nonprofit organizations have struggled to sustain engagement with the millennial population over the same time. Millennials have been termed digital natives and use social media proficiently. The convergence of these two mandates for nonprofit organizations – to engage via social media and to engage millennials – represents the importance of this study. To begin to help nonprofit organizations develop this strategy this study seeks to answer the question: why do millennials engage in online activism via social media? To predict these online activism behaviors, this research tests six competing models of The Theory of Planned Behavior using a structural equation modeling approach. The results suggest these models, particularly by adding self-efficacy, may help nonprofit organizations develop an effective social media strategy targeting millennial stakeholders.
Predicting digital activism behaviors

CHAPTER 1
Introduction

In the last decade the Internet has been used for activism at an increasing rate. The protests of the Arab Spring in Egypt, Tunisia, and beyond have demonstrated the incredible power of the Internet as a space for activism, coalition-building, and voice. These social movements have had an indelible impact on the broader socio-political situation in the Middle East and have inspired millions around the world to protest injustices. While the internet as a site of activism is relatively new at the grassroots or advocacy level, for profit organizations have long recognized its value as a public relations, marketing, or reputation tool (Brionnes, Madden, & Janoske, 2013). The power and effectiveness of social media campaigns began to exert pressure on other organizations, particularly nonprofit organizations, and grassroots social movements to leverage social media in pursuit of their missions (Kumar & Thapa, 2015). The combination of expansive reach, low cost, and popularity among similar organizations has resulted in a ubiquitous social media presence (Joyce, 2010).

Nonprofit organizations, operating in dynamic environments, serving multiple bottom lines, and multiple stakeholders are increasingly using the Internet and social media to pursue their missions (McCambridge, 2017). As the popularity and pervasiveness of social media has expanded, so has the mandate for nonprofit organizations to utilize it (Tandon, 2014). Scholars have gone so far as to say organizations must develop and execute an online strategy to maintain legitimacy and competitiveness (Brionnes, Madden, & Janoske, 2013). More specifically, many have called on nonprofit organizations to more effectively use social media to engage the millennial population (Paulin, Ferguson, Schattke, & Jost, 2014) as existing nonprofit volunteers and donors age (Crosby, 2015). These appeals have created a sense of urgency among nonprofit
leaders to use social media (Paulin, et al., 2014; Ho & Dempsey, 2010), but have also resulted in a strategic dilemma.

Nonprofit organizations are under pressure to use social media and engage the millennial population, but many organizations lack a clear strategy to accomplish these mandates (Karch, 2016; Macnamara & Zerfass, 2012). Non-strategic social media usage can result in untapped potential or, in some cases, negative consequences for the organization (Malthouse, Haenlein, Skiera, Wege, & Zhang, 2013). These calls for nonprofit organizations to more effectively engage millennials provide the impetus for developing a social media strategy. Thus, it is essential for organizations to develop a strategy to engage stakeholders online. Setting a strategy based on empirical research will allow organizations to more efficiently and effectively deploy resources. This research begins to explore why millennial individuals engage online in recognition that individual behavior has a tremendous impact on organizational outcomes. An essential component of strategy formation is understanding how and why people engage the target behavior (Smith, 2009). Without research to understand how and why millennials engage online, organizations are left without a fundamental element of strategy formation. The overarching research question this study seeks to begin to answer is what are the psychological foundations that motivate individuals in the millennial population to engage in online activism behaviors? By understanding the motivation of individuals, organizational leaders will better be able to develop targeted campaigns to increase online engagement. To begin to answer the research question, six competing models of the Theory of Planned Behavior (TPB) will be tested for their ability to predict an individual’s online activism behaviors. This chapter continues with a definition of key terms, an overview of digital activism, then discusses the pressures on
nonprofit organizations and their leaders to develop social media strategy targeting the millennial population, and concludes with a visualization of the models to be tested.

Definition of Key Terms

Before continuing with the paper it is important to define some key terms. First, *slacktivism*, is defined as low cost, low risk digital practices (liking, sharing, retweeting) without willingness to put forth significant effort (Shumann & Klein, 2015; Kristefferson & Peloza, 2013). Second, *traditional activism*, is defined as letter writing, lobbying, writing checks, door-to-door advocacy, and volunteering for advocacy efforts. Third, *digital activism*, is defined as “social media activity to raise awareness, produce change, or grant satisfaction to a person,” (Rotman, et al., 2011, p. 821) or “social media for social change” (Briones, Madden, & Janoske, 2013, p. 209). Fourth, *mimetic isomorphism* is the result of organizations, when faced with uncertainty, looking to other organizations they perceive as successful and mimicking their activities and strategies in an effort to gain legitimacy (DiMaggio & Powell, 1983). Fifth, *self-efficacy* is one’s self-beliefs about their ability to succeed in a particular setting or engaging in a target behavior (Bandura, 1977, 1986, 1997). Finally, *impression management* is the “process by which individuals attempt to control the impressions others form of them (Leary & Kowalski, 1990, p. 34).

Emergence of Digital Activism & Millennial Population

The increasing power and influence of social media, and activism that leverages this space, has challenged traditional notions of activism and advocacy (Kavada, 2010). In the past, advocacy and activism occurred offline. Some common activities that encompass the notion of traditional activism include: letter writing, lobbying, picket lines, sit-ins, fundraising,
volunteering, door-to-door campaigns, and attending public meetings. Digital activism pursues the same end as traditional forms of activism, change (often socio-political and justice oriented), but does so in a virtual space, often, but not exclusively, using social media. Indeed, “social media for social change” (Briones, Madden, & Janoske, 2013, pg. 209) is an apt way to describe digital activism on social networking sites. The proliferation of digital activism has not been met with resoundingly positive reviews. In fact, much has been written in news articles and academic outlets criticizing this form of activism for a variety of reasons (Lim, 2013; Morozov, 2009). The majority of these critiques can be understood under the umbrella of casting this form of activism as slacktivism without much nuance.

Millions of people around the world viewed and shared the *KONY 2012* video in the spring of 2012. It immediately skyrocketed to the most watched and shared YouTube video. Then, nearly as quickly as the campaign rose to prominence, critics began to call it slacktivism. In fact, the pervasiveness of ‘slacktivism’ seems to be inextricably linked with the release of the *KONY 2012*. A LexisNexis Academic search of ‘slacktivism’ is revealing. The search returned 129 hits prior to the March 5, 2012 release of the KONY video with the first mention occurring in a 2002 article in the New York Times about science fair projects defining slacktivism as “the desire people have to do something good without getting out of their chair” (Feder, 2002). In the 10 years after Feder’s article leading up to the KONY video, only 129 LexisNexis results contain slacktivism. However, in the time since the release in 2012, (approximately four and a half years) there are 428 results containing slacktivism. To be clear, this video does not represent the initial instance of slacktivism nor has it driven the entirety of these results, but these results are telling – slacktivism as a construct is increasingly relevant. These campaigns, which ask people to like, share, retweet, favorite, comment, or engage in other ways on social media are
Predicting digital activism behaviors

particularly interesting for nonprofit leaders. Many of the viral social media campaigns (ALS Ice Bucket Challenge, Pink Ribbon for Breast Cancer, KONY 2012, and countless others) are started by nonprofit organizations. In fact, social change advocacy online is often started or facilitated by nonprofit organizations and their engagement with relevant stakeholders (Brionnes, Madden, & Janoske, 2013; Waters, Burnett, Lamm, & Lucas, 2009).

A millennial population has spearheaded much of the proliferation of digital activism, often termed digital natives (Williams, Crittenden, Keo, & McCarty, 2012). This group of young people, currently aged 14-33 (Pyser, 2014), uses social media extensively to connect with friends, consume news, shop, and engages in advocacy (Feldmann, et al., 2016; Williams, et al., 2012). Nonprofit organizations have sought effective and efficient ways to engage millennials for some time now, even commissioning the annual millennial report (Feldmann, et al., 2016), but have struggled to achieve sustained engagement (Ness, 2012). The millennial population is important for nonprofits for a multitude of reasons. First, millennials are influential and proficient users of social media (Williams, et al., 2012). Millennials help promote products and ideas online and represent, often untapped, potential for nonprofit organizations (Feldmann, et al., 2016). Second, millennials are passionate about making a difference, finding meaningful work, and pursuing justice in the world (Dagher, 2014). These values line up well with the mission of many nonprofit organizations. Millennials are also passionate about financially supporting initiatives that make a positive difference in the world (Pyser, 2014). Establishing a positive relationship with millennials may result in increased giving to nonprofits (Dagher, 2014; Pyser, 2014). Indeed, according to one study, 84% of millennials donated to charity in 2014 (Feldmann, Thayer, Wall, Dashnaw, Franzman, & Ponce, 2016), while 52% of them were interested in providing ongoing monthly support (Feldmann, Nixon, Brady, Brainer-Banker, &
Predicting digital activism behaviors

Wheeler, 2013). Third, According to research, they demand accountability (Pyser, 2014) and dialogic engagement with organizations (Sisco & McCorkindale, 2013) they support.

Accountability has been a major theme of nonprofit leadership and management for some time now, but organizations are continuing to search for effective ways to communicate accountability and increase dialogue with stakeholders (Saxton & Guo, 2011). The dialogic approach is a unique area of convergence between nonprofit organizational objectives, social media, and the millennial population. Organizations are turning to the Internet more and more to communicate accountability (Saxton & Guo), but are still struggling to capitalize on the dialogic features of social media (Sisco & McCorkindale, 2013). Commentators have called on nonprofits to engage millennials (Pyser, 2014), specifically on social media, to increase their connection, capitalize on millennial voices, and create and sustain dialogue with difficult to reach stakeholders. Research has documented that millennials voice support for their causes more on social media than in any other venue (Feldmann, et al., 2016). This important fact, combined with the continued rise of social media as a space for activism bolsters the urgent need for nonprofit organizations to engage millennials online. In order to realize the potential of engaging millennials on social media, nonprofit organizations must develop a social media strategy specifically targeting this population of savvy users.

Nonprofit Leadership, Institutionalism & Social Media Activism

Nonprofit leaders are tasked with setting the overall vision of their organization (Anheier, 2014), scanning the environment to ensure organizational strategy fits the external environment appropriately (Maier, Meyer, & Steinbereithner, 2016; Anheier, 2014; Kumar, Subramanian, & Strandholm, 2001), and establishing a planned strategy while being nimble enough to adapt to current trends (Ebrahim, 2005). One such trend is the pervasiveness of social media use by
nonprofit organizations and citizens. These trends exert pressure on organizations to include social media, or some form of digital presence, in their organizational strategy. Prevailing wisdom, in fact, is that the question for organizations is not if but how and to what end to utilize social media in pursuit of the mission (Brionnes, Madden, & Janoske, 2013). From an organizational theory perspective, this external pressure to conform to prevailing norms and organizational activities is consistent with Neo-Institutionalism (DiMaggio & Powell, 2013). It is important to understand the implications social media and digital activism have on nonprofit leaders and how organizational decision-making is driven by the need for perceived legitimacy.

Nonprofit organizations use social media for a variety of reasons with a range of sophistication and intentionality. Nonprofit organizations can use social media to inform the public about their mission or a particular social problem (Waters et al., 2009). The Internet generally, and social media specifically, have disrupted traditional notions of philanthropy, making space for donor networks to expand geographically and demographically (Saxton & Guo, 2010). Advocacy organizations or advocacy networks make special use of the Internet to build coalitions and invite broader bases of supporters to their cause (Brionnes, Madden, & Janoske, 2013). The Internet and social media are also, increasingly, used as sites to build social capital and connection to communities who are otherwise not represented in public deliberation (Bermudez, 2014). Finally, social media can be used to recruit volunteers and raise awareness about organizational activities (Bortree & Seltzer, 2009). These potential outcomes represent tremendous potential for nonprofit organizations to utilize social media to further their missions; however, social media, as any other organizational strategy, should be pursued intentionally and thought through strategically.
The way nonprofit organizations use social media is often not strategic. Institutional theory provides a way of understanding this nonstrategic use of social media. As mentioned, organizations feel pressure to develop and maintain a social media presence because it is increasingly pervasive (Waters et al., 2009). Institutional theory posits that organizations, faced with uncertainty, often make decisions to maintain a reputation of legitimacy (Anheier, 2014; DiMaggio & Powell, 1983). In order to sustain their perceived legitimacy, organizations often look to successful organizations and mimic their organizational activities and strategy (Anheier, 2014). Neo-Institutional theory names this practice mimetic isomorphism – the practice of, given an uncertain environment, behaving consistent with successful organizations within their field (Anheier, 2014; DiMaggio & Powell, 1983). Alternatively, organizations can also behave consistent with dominant norms an organization perceives in its environment. Generally, this form of isomorphism applies to regulations, professional standards, and bureaucratic structures, but is also relevant here (Anheier, 2014; DiMaggio & Powell, 1983). Put simply, isomorphism is the result of perceived peer pressure at an organizational level. For example, a medium-sized nonprofit in the human services subsector may see the feature stories, blogs, videos, Twitter, Facebook, and Instagram activity of the most successful organizations in their subsector. Faced with uncertainty, they may look to these organizations and their activities as a way to improve organizational performance. As a result, the organization begins to mimic these activities, perhaps slightly modifying them to fit their resources and purposes. However, engaging in a specific activity, in this case, social media, simply because “competitors” are doing so is a nonstrategic reason for pursuing a course of action. It also represents a pitfall many organizations, nonprofit and otherwise, fall into with regard to social media – failing to scan the environment, develop a coherent strategy for using social media, and implement the social media
engagement accordingly (Macnamara & Zerfass, 2012; Kent, 2008; Li & Bernoff, 2008; Seltzer & Mitrook, 2007). Nonstrategic social media engagement may not be disastrous, but it likely will leave the organization in a place where they “have yet to fully utilize social media for their operations and fundraising” (Brionnes, Madden, & Janoske, 2013, pg. 207), and the opportunities presented by the Internet and social media to engage stakeholders remain underdeveloped.

The question nonprofits must confront is how to use the Internet and social media strategically. This question is particularly difficult to answer given the dynamic nature, continuous change, and short attention span of social media. It seems organizations must simultaneously develop strategies to integrate social media and be open to continual adaptation of strategies and activities based on dynamic environmental factors. Mintzberg and Waters’ (1985) strategy model and Bryson’s strategic change cycle (2011) offer ways for organizations to set and adapt social media strategy. Mintzberg and Waters’ strategy model differentiates planned and emergent organizational strategies. Mintzberg and Waters’ model begins with deliberate strategy. Deliberate or planned strategy is developed traditionally and in a linear way beginning with mission, vision, and values before implementing organizational strategy and allocating resources to specific organizational activities (Krug & Weinberg, 2005; Mintzberg & Waters, 1985). Bryson’s strategic change cycle begins with an examination of internal and external environments, the mission and vision, strategic fit and is then followed by strategy formation and implementation (Bryson, 2011). However, similar to Mintzberg and Waters’ model, the strategic change cycle includes many opportunities to continue to scan internal and external environments, re-vision, and shift strategies to fit dynamic factors that influence organizational behavior (Bryson, 2011).
Operating using these models, nonprofit leaders can approach social media strategy intentionally with long-term goals and build activities around achieving those goals. For example, one weakness in how most nonprofits use social media is the lack of dialogic engagement (Waters et al., 2009). Dialogic engagement involves two-way communication between an organization and its stakeholders (Bortree & Seltzer, 2009). Dialogic approaches to social media engagement have been shown to increase stakeholder engagement and expansion of user networks (Bortree & Seltzer, 2009; Taylor, Kent, & White, 2001; Kent & Taylor, 1998). Certainly, nonprofit organizations could leverage a dialogic approach to social media to improve transparency and accountability, which are increasingly demanded by stakeholders, donors, volunteers, and partners (Macnamara & Zerfass, 2012; Saxton & Guo, 2011). These long-term static strategies, however, do not preclude an organization from continuously revisiting these strategies or developing emergent strategies as environmental factors shift (Bryson, 2011).

Mintzberg and Waters’ (1985) and Bryson’s (2011) models provide new paths for organizations to change strategies as new opportunities result from a dynamic environment.

Emergent strategies do not involve the linear strategic planning processes traditionally associated with strategy development. Instead, these strategies arise as shifts occur. For example, the ALS Ice Bucket Challenge campaign was a resounding success. ALS strategically designed the campaign, but did not anticipate the level of success and funding. This success represents a shift which led to emergent strategies to engage volunteers in ways they never had before (ALS Association, 2014). Another example of emergent strategy is illustrated by changing refugee resettlement laws. Refugee resettlement agencies set a specific number of refugees they will resettle at the start of every year and plan their activities and allocate resources accordingly. In the last year, however, President Obama has asked these agencies to find a way
to resettle new refugees, primarily from Syria. In order to meet this mandate, organizations had
to develop emergent strategies to house, find employment for, and integrate new refugees. All of
these new activities resulted from a shift in the environment. These two examples, one with a
dynamic shifting external environment (more volunteers engaged) and one with a federal
mandate (to resettle more refugees), illustrate the importance of setting long-term strategy while
constantly monitoring a dynamic environment so that an organization can appropriately respond
(Bryson, 2011; Mintzberg & Waters, 1985).

More strategic use of social media and Internet activism combined with continual
environmental scanning and emergent strategies are necessary for nonprofit organizations to
maximize the strategic value of social media and digital activism. As organizations capitalize on
dominant trends and set social media strategy they may be able to increase their resources
through new fundraising networks and increased donor engagement (Panic, Hudders &
Cauberghe, 2016; Ingenhoff & Koelling, 2009; Waters, et al., 2009), engage with stakeholders
directly through dialogic communication (Bortree & Seltzer, 2009) increasing perceptions of
legitimacy and transparency, and expand their advocacy and volunteer reach (Sobre-Denton,
2016; Macnamara & Zerfass, 2012). Finally, new media outlets represent ways to engage
younger stakeholders who may be resistant to traditional forms of activism (Kavada, 2010;
Bennett, 2008). Nonprofit organizations need to engage young people to replace aging donor
and volunteer populations. Additionally, given the demographics of social media usage
intensity, understanding how young people engage on social media is important to developing an
effective social media strategy (Brionnes, Madden, & Janoske, 2013). Understanding the
psychological foundations and motivations of activism behavior generally, and digital activism
behavior specifically, is an essential component of building strategy.
Nonprofit leaders operate with tight financial margins in pursuit of important missions and are dependent on donations and volunteers. If online activities can lead to an increase in volunteer and activist engagement, which may lead to increased notoriety and financial liquidity, leaders would be wise to adjust their engagement strategies accordingly. The Ice Bucket Challenge is one example of how, so-called ‘slacktivism,’ generated an increase in giving and volunteer engagement (ALS Association, 2014).

As previously noted, digital activism and slacktivism have emerged as popular forms of social cause engagement with the proliferation of social media and high profile campaigns such as ALS Ice Bucket Challenge and KONY 2012. However, academic research on the topic has focused on the outcomes of these campaigns for nonprofit organizations, evaluation of message strategies, or critiquing these campaigns as slacktivism. Slacktivism has been conceptualized as “low-cost and low risk digital practices” such as signing petitions, “liking” a Facebook page, or re-tweeting a tweet on Twitter (Shumann & Klein, 2015, pg. 308), and token displays of support online without intention or willingness to put forth significant effort in pursuit of social change (Kristofferson, White, & Peloza, 2013).

Examples of, so-termed ‘slacktivism,’ are extensive. One of the first ‘slacktivism’ campaigns was the yellow Livestrong bracelet supporting Lance Armstrong’s Livestrong charity. More recently, colored ribbons and bracelets have been used for causes ranging from breast cancer to Alzheimer’s disease. The reach of these campaigns is impressive. Millions of people around the world viewed, participated in, and shared the ALS Ice Bucket challenge in summer of 2014, and millions of Facebook users have changed their profile pictures to show solidarity for marriage equality and for Paris in the aftermath of the November, 2015 terrorist attacks. These campaigns exemplify slacktivism according to some who define it as token support for a cause.
Predicting digital activism behaviors

without intention to put forth additional effort (Kristofferson, White, & Peloza, 2013). Much of the academic literature on slacktivism frames these activities as driven by impression management, laziness, and social desirability (White & Peloza, 2009; Bal, Archer-Brown, Robson, & Hall, 2013). However, emerging research provides evidence that minimizing the impact of this form of activism may be shortsighted. Additionally, some research has indicated that digital activism is often part of a broader range of activities to support social causes (Center for Social Impact Communication, 2011). From this burgeoning field of research we can deduce that digital activism is indeed impactful – likely more activism than slacktivism – and digital activism tends to be part of a broader set of activities in pursuit of social causes.

Purpose of the Study & Visual Representation of Models

As previously noted, the question remains, what are the individual motivations and psychological foundations for engaging in digital activism for the individual? Much of the research in this area has focused on the impact of these campaigns, the messages they use, and their social media strategy, or lack of strategy (Briones, Madden, & Janoske, 2013); however, the psychological motivation of individuals engaged in this behavior remains uninvestigated. Despite an emerging body of research about social media activism is developing, formal investigation of the attitudinal and normative motivations for engaging in digital activism remains uninvestigated. This study investigates the utility of social cause engagement efficacy, impression management and the Theory of Planned Behavior to predict online digital activism. The purpose of this research is to begin to investigate these motivations and foundations.

Specifically, this research applies the Theory of Planned Behavior, self-efficacy, and impression management as motivations on intention to and actually engaging in digital activism. These theories and concepts are elaborated on in detail in the sections that follow, but to provide
a preview, the models that will be tested are included below. These models appear again in the methodology section, but are provided here as a visual cue for the reader to reference as they move through the review of literature. As this research will use structural equation modeling to test competing path models predicting intention to and actual engagement in digital activism, listing out the hypotheses is replaced by displaying the models to be tested. As a result, they are below with a figure note detailing what each abbreviation represents.

Note: BA = Behavioral Attitudes SN = Subjective Norms PBC = Perceived Behavioral Control SCE = Social Cause Engagement Efficacy, BI = Behavioral Intention, ACT = Activism Engagement, IM = Impression Management

Figure 1. Competing models predicting digital & traditional activism

Model 1: Theory of Planned Behavior

Model 2. TPB with SCE added
Model 3. TPB substituting SCE for Behavioral Control (ETPB)

Model 4. TPB with impression management
Model 5. TPB with SCE and impression management

Model 6. TPB with SCE replacing behavioral control and impression management
CHAPTER 2

Literature Review

The paper proceeds by first conceptualizing digital activism and slacktivism and relevant literature, then reviewing pertinent literature on Social Cognitive Theory and self-efficacy, impression management, and, finally, the Theory of Planned Behavior. Next, the results of a pilot scale development for self-efficacy related to digital activism is presented including a principal components analysis. Finally, the methodology for testing the models below is detailed.

Slacktivism, Social Media / Digital Activism

Slacktivism can be defined as token displays of support for a cause, frequently, thought not exclusively, done in virtual spaces without the intention or willingness to put forth significant effort in pursuit of social change (Kristofferson, White, & Peloza, 2013). Slacktivism can take the form of wearing a ribbon or wristband, “liking” or “sharing” a post on Facebook, or retweeting on Twitter. In the existing research slacktivism is positioned in contrast to traditional forms of activism such as volunteering, staging a sit-in, donating money, or joining a campaign. Kristofferson, White and Peloza (2013) argue the primary differentiation between slacktivism and traditional activism hinges on the type of support behaviors offer a social cause:

“We refer to these types of behaviors as *token support* because they allow consumers to affiliate with a cause in ways that show their support to themselves or others with little associated effort or cost. We contrast token support with *meaningful support*, which we define as consumer contributions that require a significant cost, effort, or behavior change in ways that make *tangible contributions* to the cause.” (p. 1150)
Predicting digital activism behaviors

Though some research has equated slacktivism with online cause support such as re-tweeting, commenting, writing, or sharing social media posts, this conceptualization may be more pejorative than alternate views. Slacktivism, as conceptualized above, centers on the lack of tangible contributions or meaningful support, but this seems inconsistent with one of the outcomes of one of the most visible “slacktivist” campaigns in recent memory – KONY 2012. The KONY 2012 campaign raised millions of dollars, achieved the stated goal to make Joseph Kony famous, and contributed to the United States sending soldiers to assist in the hunt for Kony in central Africa (Chandrasekaran, 2013). The ALS Ice Bucket Challenge also raised millions of dollars and increased the number of volunteers engaged with ALS (ALS Association, 2014). As a result, this digital campaign is better termed digital activism than slacktivism. In fact, even the notion of token support is questionable. Some forms of traditional activism, such as signing a petition or making a small donation, may better fit the definition of “slacktivism” here in which the person may have no intention of continuing their engagement with a cause.

Digital activism is a form of activism that occurs, generally speaking, in an online environment. Joyce (2010) describes the nature of digital activism as concerned with campaign activities (for social change), characterized by “speed, reliability, scale, and low cost … that enable the great scope and reach of contemporary activism” (pg. viii). Digital activism is using digital technologies and networks in pursuit of these campaign activities. The scope of these activities allows for access to expansive, even perhaps boundary-less, social connections and networks while also facilitating activism that is not subjected to traditional power hierarchies (Joyce, 2010). The unfettered nature of social networks and the digital space can facilitate an increased voice for those silenced by traditional forms of political engagement and activism (Murphy, 2015). The conceptualization of digital activism in this research is social media
activity to “raise awareness, produce change, or grant satisfaction to the person engaged in the activity” (Rotman et al., 2011 pg. 821). Setting aside the, perhaps false, delineations between meaningful and non-meaningful support, it is important to better understand the nature of “digital activism” and ascertain how engaging in these behaviors may impact further social engagement and other attitudes.

The literature on digital activism, often termed slacktivism, is rather divided. On one hand are those who argue that initial token acts serve as an important predictor of more effortful engagement (Center for Social Impact Communication, 2011; Brigham & Noland, 2014; Davis, 2011), while conversely, a second camp argues that digital activism is nothing more than lazy self-motivated digital image management (Kristofferson, White & Peloza, 2013; Lim, 2013; Budish, 2012; Morozov, 2009). While many theoretical approaches (Cognitive Dissonance, Consistency Theory, Foot-in-the-door) provide arguments in support of either side of this issue, empirical work on digital activism is lacking. One study done by Kristofferson, White and Peloza (2013) found that private token support predicted likelihood to engage in subsequent public support while the opposite held for initial token support that was public. This supports both theoretical and empirical findings that argue impression management (discussed further below) may be a key motivator to engaging in digital activism (Saxton & Wang, 2014; Lim, 2013; Budish, 2012; White & Peloza, 2009).

It seems clear that engaging in slacktivism is at least partially motivated by impression management and is attractive because of the relative little effort required. Neutralizing the initial sting of this critique Budish (2012) argues,

“the problem with the slacktivism critique is that it is unsurprising that more people participate in easier activities than harder ones. That fact alone does not tell us whether
Facebook and other easy forms of participation are cannibalizing individuals who would otherwise contribute in more tangible and meaningful ways.” (p. 752)

Present in many critiques of slacktivism is an implicit and sometimes explicit assumption that it represents a fixed space in which a slacktivist will remain (Brigham & Noland, 2014). This assumption is particularly troubling given the evidence refuting that claim. The Center for Social Impact Communication (2011) at Georgetown University sought to better understand the predictive power and impact of slacktivism on future social cause engagement. The findings provide empirical evidence in stark contrast to armchair critiques. Their study, termed The Dynamics of Cause Engagement, found that “slacktivists” participate in twice as many activities, are twice as likely to volunteer their time, four times as likely to contact a political representative and equally as likely to donate money when compared to “non-slacktivists” (Center for Social Impact Communication, 2011). Lee and Hsieh (2013) found that, after controlling for demographic variables, individuals who engaged in digital activism were more likely to write to their government, and Shulman and Klein (2015) found that slacktivists were more likely to attend a discussion or sign a petition, but were reluctant to engage in more demanding offline activities. That is, social media activism is often done in addition to other forms of activism.

Though Georgetown’s study calls into question the belief that slacktivists are only engaged online, the premise of this critique is particularly problematic. The online space has become a significant source for activism, organizing, and change in recent years. Marginalized people, social justice advocates, and activists take to the internet in an attempt to persuade the public and build support for their case. Often, these efforts yield important social change or spark important public deliberation. For example, #blacklivesmatter has helped set the agenda for discussions of race and policing in America while #makedclisten is a rallying cry for
conservatives on Twitter. The KONY2012 campaign’s efforts lead to US troops training African Union troops to hunt for the Lords Resistance Army (LRA), and reports that the LRA has, as a result of these efforts, been put on the defensive. Additionally, Invisible Children, the organization responsible for the KONY 2012 campaign has built schools, provided early warning systems, and engaged in an advocacy campaign aimed at LRA soldiers who may defect. These efforts have saved Ugandan lives, tipped off law enforcement, and resulted in numerous defections from the LRA. Finally, the recent ALS Ice Bucket Challenge also challenges these critiques of slacktivism, as the social media movement helped ALS raise over 115 million dollars and resulted in a dramatic increase in volunteerism (ALS Association, 2014).

Another key aspect to social media activism in comparison to traditional activism is the level of strategy and planning that drives both. Veil, Reno, Freihaut, and Oldham (2015) found that activists have used social media strategically to influence decisions, resist power trends, and establish activism networks. The cases of strategic social media use for digital activism in recent years are many and range from the Arab Spring (Kharroub & Bas, 2014) to environmental protest activism in Malaysia (Kaur, 2015), to marriage equality (Penney, 2015), to civil society movements in India (Kumar & Thapa, 2015). Indeed, when examining the digital space as a space for activism, public relations and organizational scholars have taken note. Developing a social media strategy has become essential to effective organization to public(s) communication (Ciszek, 2016). So instrumental is digital activism that some scholars have noted “it is not a question of ‘if’ but ‘how’ to use social media in public relations” (Ciszek, 2016, pg. 315). Nonprofit organizations make use of public relations differently than corporate entities. Indeed, public relations, advocacy, and the digital space are strategically leveraged by nonprofit organizations to shift public opinion, raise funds, build coalitions, inform the public(s), and
collaborate to solve social problems (Kaur, 2015; Tkalac & Pavicic, 2003). It is clear that the recent trends in investigating digital activism demonstrate its viability and merit as a having the potential to generate substantial social change and make meaningful contributions to social cause.

Social Cognitive Theory

Bandura (1986), in contrast to prevailing theories of human behavior emphasizing environmental influences and human reaction, developed social cognitive theory (SCT) to offer a more comprehensive explanation for human behavior and thought. Accordingly, SCT frames human behavior as a function of the reciprocal interaction between personal, behavioral, and environmental factors (Pajares, 2002; Bandura, 1986). This approach differed from existing theories of behavior, learning, and personality development. Instead of framing human behavior as purely reactionary to environmental stimuli or as function of biology and development, Bandura argued human behavior requires cognition about environmental stimuli, beliefs and ways of thinking, and behavior. Thus, according to SCT, human behavior is self-referential and self-regulated. Bandura’s theory is “agentic,” steeped in the view that humans possess agency to change their circumstances and behaviors; however, SCT recognizes the substantial role environmental and evolutionary factors play in shaping human behavior. To better understand SCT I will provide an overview of the three influences on human behavior and how SCT yielded self-efficacy as a construct.

To provide evidence for this interplay between personal, behavioral, and environmental influences on human behavior, Bandura developed two related concepts: reciprocal determinism and triadic reciprocality (Bandura, 1986). Reciprocal determinism is Bandura’s term for the interactions between personal factors (cognition, affect, biological events), behavior, and
environmental influences which influence future behavior. For example, a person may try out for a sports team and, despite solid performance, be cut. As a result, the individual would evaluate their own performance through a process of self-reflection and evaluation (Bandura, 1986), then, perhaps, join a recreation league to gain better skills, watch more sports, and shift how they communicate about the sport. The resulting shift in self-belief (more positive) and environmental factors (friends, teammates, coaches, family) are influential on future behaviors. In this scenario, the person would likely try out for the team again, perhaps with elevated confidence in his or her ability to make the team. One’s self-reflection influences the environment (family interaction, friend group, media consumption, etc . . .) and self-belief which can influence future behavior and performance (Bandura, 1986; Pajares, 1997; Pajares, 2002). This triadic (personal, behavioral, environmental) reciprocality is highly influential (reciprocal determinism) on future behaviors and performance. This process, whereby “individuals engage in a behavior, interpret the results of their actions, use these interpretations to create and develop beliefs about their capability to engage in subsequent behaviors in similar domains, and behave in concert with the beliefs created” (Pajares, 1997, p. 2) forms the foundation for self-efficacy.

Self-Efficacy

Self-beliefs allow individuals to shape their environments, behaviors, and selection processes. Of primary interest in this study is the self-belief called self-efficacy. Self-efficacy is “one’s beliefs in one’s capability to organize and execute the courses of action required to manage prospective situations” (Bandura, 1997, pg. 2). Put more simply, self-efficacy is one’s self-beliefs about their ability to succeed in a particular setting or behavior (Eroglu & Unlu, 2015; Pingree, 2011; Bandura, 1977, 1986, 1997). Importantly, self-efficacy is not an overarching personality construct such as confidence or self-esteem. Instead, as Barry and
Finney (2009) note, “it is domain specific, that is, self-efficacy judgements are specific to certain
 tasks in certain situations” (p. 197-198). A great amount of research has been written on
 academic self-efficacy generally (Pajares, 1996); and some authors have further specified by
discipline such as writing (Eklholm, Zumbrunn, & Conklin, 2015), math (Williams & Williams,
2010), statistics (Barry & Finney, 2009), nursing, (Amerson, 2012), and Army Civilian
leadership (Godinez & Leslie, 2015). Narrowing the target behavior in such a way is consistent
with regard to measuring self-efficacy beliefs, as more specific measures have been
demonstrated to be more predictive (Barrey & Finney, 2009).

Self-efficacy, importantly, differs from self-concept, self-esteem, and confidence. Self-
concept and self-esteem are based on the description and evaluation of one’s identity
respectively (Pajares & Schunk, 2001). Self-concept, the descriptive element of self-perception
is the sum total of what a person believes she is while self-esteem is the evaluative element of
self-perception – an evaluation of one’s self-worth (Bandura, 1997; Pajares & Schunk, 2001;
Peixoto & Almeida, 2010; Shavelson & Marsh, 1986; Husen & Postlethwaite, 1985). These two
constructs are socially contingent and result from reflected appraisal about one’s self in
comparison to expectations, peers, social and cultural idiosyncrasies and notions of the ideal self
(Pajares & Schunk, 2001; Swann Jr., Chang-Schneider, & Larsen, 2007). Thus, self-concept and
self-esteem are global descriptions and evaluations of one’s identity (self) while self-efficacy is
an evaluation of one’s abilities to perform a target behavior in a specific context (Pajares &
Schunk, 2001; Bandura, 1997). Confidence, according to Bandura (1997) is a general “colloquial
term” lacking a valence (positive or negative) and lacks a proper theoretical perspective (p. 382).
Additionally, as Bandura points out, one can be confident in one’s ability to fail in a particular
Predicting digital activism behaviors

pursuit; however, self-efficacy, by definition is necessarily positive. These distinctions are important to draw to ensure construct clarity and precision.

In developing self-efficacy related to a particular target behavior one may use any combination of the following information sources: enactive attainment, vicarious experience, verbal persuasion, and physiological state (Bandura, 1986, 1997). It is important to note that self-efficacy is formed iteratively and constructed through performance, memory, and environment. First, enactive attainment, often called mastery experiences (Reubsaet, Brug, De Vet, & Van Den Borne, 2003; Pajares & Schunk, 2001) is the most important source of efficacy behavior. Enactive attainment is the direct experience one has with a target behavior and subsequently their appraisal of their performance related to that behavior (Bandura, 1986). Mastery experiences elevate self-efficacy as the more positive the appraisal of the mastery experience the higher the self-efficacy. This axiom of the theory has been demonstrated in a variety of research from organ donation (Reubsaet, et al., 2003) to cross-cultural efficacy (Liang & Prince, 2008). Second, vicarious experiences elevate self-efficacy when one witnesses a peer master the target behavior (Bandura, 1997). This source of self-efficacy has several caveats from empirical research. First, if one witnesses a peer fail at a target behavior one’s self-efficacy for that target behavior will decrease if one evaluates their own abilities as similar. However, this effect is not nearly as strong when one evaluates their own abilities as superior to the peer they observed (Brown & Inouye, 1978). Additionally, this source of efficacy is particularly important to individuals with little experience with the target behavior (Bandura, 1986).

Third, verbal persuasion and social influence can increase self-efficacy. Motivation is one of the strongest outcomes associated with self-efficacy (Bandura, 1986, 1997; Pajares, 2002). Additionally, in an academic context, teacher confirmation and belief in students is
associated with an increase in student motivation (Ellis, 2004). Social influence, though not as effective as the two previous sources of efficacy (Pajares & Schunk, 2001) is most effective when an individual is predisposed to believe they can successfully engage in the target behavior (Bandura, 1986). Finally, one’s physiological state can influence one’s self-efficacy.

Physiological state refers both to one’s level of stress or anxiety at the thought of engaging in a target behavior and the more literal, physical aspects of a person that provide an inclination they may succeed at a particular task (Bandura, 1986, 1997). With regard to the latter, for example, a weightlifter may have a high degree of self-efficacy about putting pieces of firewood in a truck. With regard to the former, communication apprehension provides useful insight.

Communication apprehension, particularly in relation to public speaking, yields high levels of anxiety and stress (Beatty & Andriate, 1985). In this situation, an individual may perceive their feelings of anxiety and stress as an indication of “dysfunction” (Bandura, 1986, p. 401) thus lowering their self-efficacy. These sources of efficacy combine to provide an individual with information from which to evaluate their ability to be successful given a particular behavior.

Self-efficacy is one of the most widely studied variables in the social sciences. It is studied in a variety of disciplines, domains, and from a variety of perspectives. Self-efficacy has been studied most widely in academic contexts. This research has provided evidence that self-efficacy increases student motivation (Barry & Finney, 2009; Shunk, 1991), performance (Jones, 2015; Feldman & Kubota, 2015; Pajares & Miller, 1995), persistence (Torres & Solberg, 2001), and decreases stress and anxiety (DeWitz & Walsh, 2002). Beyond the academic context, self-efficacy has been found to increase likelihood to register as an organ donor (Reubsaet et al., 2003), effort in new venture development (Trevelyan, 2011), voter turnout among young people, particularly young people from low socioeconomic families (Condon & Holleque, 2013), and
Predicting digital activism behaviors

weight loss (Nezami et al., 2016). The target behavior in this study is social media activism, particularly predicting one’s engagement in social media activism using The Theory of Planned Behavior (TPB) and modifications of TPB which include a measure of self-efficacy specific to the target behavior in question.

Impression Management

Often traced back to Goffman’s (1955, 1959) work on Facework theory and his seminal work *The presentation of self in everyday life*, impression management is conceptualized as “the process by which individuals attempt to control the impressions others form of them” (Leary & Kowalski, 1990, pg. 34). These impressions are a function of our social interaction and are driven by individual notions of ideal self. Impressions are presented through various forms of social interaction, symbolic action, and self-presentation behaviors. Impression management theory has been broadened recently to how organizations (Lillqvist & Louhiala-Salminen, 2014), political candidates (Seiter, Weger, Kinzer, & Jensen, 2009), and other entities strategically construct a public brand or image. However, the level of analysis for this study is on individual impression management on social media.

As individuals interact with others daily they begin to form perceptions of themselves in turn shaping how they intend to portray themselves in subsequent interactions. This reciprocal relationship of self-presentation and self-reflection is the foundation of impression management theory (Rosenberg & Egbert, 2011; Goffman, 1959). Goffman (1959) argued that this self-presentation or impression management behavior is done strategically to uphold a positive image. Impression management occurs in face-to-face and online contexts, particularly via social media sites such as Facebook and Twitter (Zhao et al., 2008). A body of literature is beginning to emerge investigating users’ impression management tactics on social media.
Predicting digital activism behaviors

(Rosenberg & Egbert, 2008; Jeong & Lee, 2013; Zhao, Grasmuck & Martin, 2008; Boyd & Ellison, 2007). The online environment is a particularly congruent context to study impression management because of the public nature of social media. Leary and Kowalski (1990) argue publicity is an essential component of impression management behavior. According to them, “publicity is a function of both the probability that one’s behavior will be observed by others and the number of others who might see or learn about it” (pg. 38). As a result, as the public nature of one’s behavior increases the more motivated a person is to manage self-presentation. Social media is a uniquely public space and, therefore, is more impactful on a how likely an individual is to accomplish their impression management goals (Rosenberg & Egbert, 2011; Leary & Kowalski, 1990). In particular Jeong and Lee (2013) investigated how users may manage their impressions by supporting social causes online.

Impression management is a common motive cited by critics of social media activism and those terming this form of activism “slacktivism” (Kristofferson, White & Peloza, 2013; Lim, 2013; Budish, 2012; Morozov, 2009) who often cite it as the primary motivation for engaging in such activism. Given the immediate, selective, and public nature of social media, impression management motives are particularly relevant (Jeong & Lee, 2013; Boyd & Ellison, 2007; Walther, 1996). Additionally, self-interested motives for donating to a charity, often termed warm-glow giving, (Andreoni, 1990), volunteering with a nonprofit organization (Houle, Sagarin, & Kaplan, 2005), and supporting a cause on a social media platform (Jeong & Lee, 2013) have been documented in previous research. Indeed, the nature of online collective efficacy (Velasquez & LaRose, 2015) validates the social connection motives for cause support online. Indeed, impression management motives are a primary motivation for how people engage via social media (Jeong & Lee, 2013; Hall, Pennington, & Lueders, 2013; Kramer &
Winter, 2008). More specifically, the visibility of supporting a social cause on social media has been shown to influence an individual’s intention to join an organization and support the cause online (Jeong & Lee, 2013; White & Peloza, 2009). It seems evident that impression management plays an important role in motivating behavior generally and social support online, specifically. However, these studies have not examined the role impression management plays in comparison to other behavioral motivations such as self-efficacy and the psychological foundations of behavior posited by the Theory of Planned Behavior.

The Theory of Planned Behavior

Predicting behavior is a difficult and tenuous undertaking in social sciences. Many models try to make predictions about behavior such as the transtheoretical model, the theory of reasoned action, and the theory of planned behavior. The focus of the current study is the theory of planned behavior, which attempts to predict behavior from norms, attitudes, control, and intentions (Anderson, Noar, & Rogers, 2013). The theory of planned behavior has been studied extensively in a variety of fields including: health (Godin & Kok, 1996), pro-environmental behavior (Ho, Liao, & Rosenthal, 2015), philanthropy (Kinnally & Brinkerhoff, 2013), and political participation (Kelly & Breinlinger, 1995). Understanding the psychological foundations of engaging in digital activism is essential to building an evidence based body of knowledge about virtual social cause engagement.

The theory of planned behavior (TPB) forecasts behavior by attempting to predict behavioral intention. Realizing it is difficult to predict actual behavior, Fishbein and Azjen (1975) instead sought to predict behavioral intention, what a person plans to do, as it is a strong predictor of actual behavior (Ho, Liao, & Rosenthal, 2015). First, attitudes are central in predicting behavior. Attitudes are the positive or negatively valanced feelings an individual has...
toward an object, behavior, or person (Fishbein & Azjen, 1975; 2010). In particularly, TPB uses specific attitudes toward specific behavior. Extensive research on attitudes has concluded that the more specific an attitude and the more specific its target (the behavior) the more predictive utility (O’Keefe, 1990). Next, subjective norms represent a person’s perception of how significant others will evaluate their “performance or nonperformance of the behavior” (O’Keefe, 1990, p. 80). The approval of significant others in one’s life has an important role in predicting behavioral intention. Behavioral intention is not singularly about a person’s beliefs and attitudes but their own evaluation of how significant others will react to specific behaviors (Fishbein & Azjen, 1975; 2010; Paek, Oh, & Hove, 2012). This axiom of human behavior is rooted in Bandura’s social learning theory (Bandura, 1986). For example, if my parents expect me to go to college and they would have a negative reaction to me not attending college and I’m motivated to please my parents then I’m likely to comply with the normative expectations from my parents. This example reveals an important psychological foundation of the impact of subjective norms – one’s level of motivation to please or comply with the significant others exerting normative pressure. This is such that the more motivated and influenced by what significant others expect of me the more likely I am to act consistent with my subjective norms.

Finally, TPB argues perceived behavioral control also predicts behavioral intention and actual behavior (Fishbein & Azjen, 1975). The concept of perceived control differentiates the theory of planned behavior from the theory of reasoned action. Perceived behavioral control is a person’s confidence that they can and have the agency to complete a specific task or activity (Azjen, 2002) and influences behavioral intention and actual behavior such that the more behavioral control a person perceives, the stronger their intent to engage in a particular behavior. Behavioral control is comprised of both internal and external factors (Azjen, 2002). Internal
factors include intelligence, skills, and confidence while external factors include resources and other circumstances that may prevent or allow completion of a behavior.

Perceived behavioral control is similar to Bandura’s (1982) concept perceived self-efficacy construct. Azjen (1991) suggested that behavioral control had both situational and specific elements. The internal factors, a person’s belief in their ability to perform an activity, are similar to self-efficacy (Kraft, Rise, Sutton, & Roysamb, 2005; Taylor & Todd, 1995; Azjen, 1991). In fact, some researchers (Povey, Conner, Sparks, James, & Shepherd, 2000) have argued that the concepts are so similar self-efficacy can be used as a proxy for behavioral control (ETPB) while others (Armitage, Conner, Loach, & Willetts, 1999; Terry & O’Leary, 1995) have suggested self-efficacy should be added to TPB as a predictor of both behavioral intention and actual behavior. The situational elements, termed facilitating conditions, are those factors, external to a person’s perceived ability, that facilitate or hinder them from being able to engage in an activity. The three theoretical models of TPB (traditional TPB, self-efficacy added to traditional TPB, self-efficacy replacing behavioral control (ETPB)) are tested in this research. In addition to the three TPB models, the same three models including impression management as a predictor of behavior (digital and traditional activism) are also tested.
CHAPTER 3

Methodology

The methodology of this paper proceeds in two sections. First, in order to test the models including a measure of self-efficacy specifically related to the target behavior (digital activism) a new measure had to be created and piloted as no measures have been published. The purpose of Study 1 was to develop and begin to validate a measure of online social cause engagement efficacy. Subsequently, using the measure created in Study 1, the six competing models of TPB could be tested. The purpose of Study 2 was to test the models with regard to their ability to predict online activism behaviors. This study uses a bounded sampling approach, survey research, and structural equation modeling to answer the research questions. As will be described, given the limited representativeness of the sample, conclusions must be bound to this sample and should be tested in other samples.

Study 1: Social Cause Engagement Efficacy Scale Development

The purpose of study one was to develop and begin to validate a measure of social cause engagement efficacy.

Data Collection Procedures and Participants

A sample of 306 students from a large Mid-Atlantic university were recruited using a cloud-based participant management program called SONA Systems. Participation in “research” is a required component of some of the courses and offered as extra credit in others. The SONA system allows students to select a variety of research studies to complete and receive course credit for without collecting individual identity markers within the survey. Students used the online SONA interface to click on a survey they wish to take and are then directed to a Qualtrics
survey to complete. The sample was reduced to include only those participants with no missing data.

Students in the introductory communication course are primarily first year students with some second year and transfer students. The population of this university is heavily Caucasian, middle to upper class, and 60% female. Additionally, in past research at this university, men are even more under represented as participants in survey research. The descriptive statistics are indicative of the population of the university. The survey was primarily first year students (95%), white (82%), 18-19 years old (96%), female (80%), and self-identified as middle – upper middle class (89%).

Measures

Social cause engagement efficacy is measure of self-efficacy applied to online and traditional activism (social cause engagement) developed for testing in this study. Social cause engagement was operationalized using a new 26-item Likert-type measure (1–strongly disagree to 7 – strongly agree). The construction of this scale follows the guidelines for creating self-efficacy scales set forth by Bandura (2006). Self-efficacy is context specific, a measure of capability, and should not be confused with intention or outcome expectations (Bandura, 2006). The scale is separated based on the context in which activism happens. The first 13 items (generic) do not specify an online environment while the second 13 items (online) are the same, but they ask the respondent to answer the questions about their confidence to engage in these activities online. Thus, the two 13-item scales which combine to form the 26-item total scale are identical, with the exception of the description of where the activism behaviors occur. In the generic scale, the context is not specified, it is left generic; while in the online scale, the participants are directly instructed to answer the questions based on their confidence in their
ability to complete the behaviors online. The directions ask the respondent to evaluate their confidence in their capability to effectively engage in the following behaviors. Sample items include, influencing the decisions of others, persuade others, be part of a social movement, persuade others to take action to solve a problem, and enact social change.

Results

To assess the viability of this scale a principal components analysis (PCA), a form of data reduction similar to exploratory factor analysis (EFA) (Field, 2009) was conducted, on all 26 items initially, followed by a PCA on each of the 13 subscales separately. The purpose of PCA is to reduce the data to common components and is best used in the initial stages of survey construction; whereas, EFA and confirmatory procedures, such as confirmatory factor analysis (CFA) are designed to test pre-existing theory (Field, 2009). In this case, PCA was selected instead of EFA because there was no basis for speculating about the dimensionality of this instrument. Following exploratory factor analytic techniques, two criteria were used to determine inclusion of a factor in the solution: the inflexion point of a scree plot (Cattell, 1966) and eigenvalues above 1 (Kaiser, 1960). Upon reaching a conclusion using these two criteria, Steven’s (2002) factor loading guideline for a sample size of 300 (.364) will be used to analyze the items.

First, a PCA was conducted on the 26 items with oblique (direct oblim) rotation. The latent factors are likely correlated; as a result, allowing the factors to correlate, using oblique rotation, will provide a more accurate representation of the items in the data. The KMO (Kaiser-Meywer-Olkin) measure of sampling adequacy (n=306) was KMO = .97. This is well above the cutoff suggested by Field (2009), in fact, indicating superb sampling adequacy for the number of items considered. Additionally, Bartlett’s test of sphericity $\chi^2 (325) = 6582.95, p > .0001$
signified the items have enough correlation to run the PCA. The analysis returned four eigenvalues larger than one, the scree plot indicated three factors prior to inflexion, but no factor loadings were returned because the solution failed to converge after 25 iterations. This convergence failure suggests that the four factors extracted do not adequately represent the data. As a result, the full 26-item scale is not viable.

Next, the 13 item scales representing different domains for social cause engagement (online and generic) were tested. Following Bandura’s (2006) guidelines, the more specific the measure of self-efficacy the more accurate and reliable the results. First, the generic 13 item scale was tested using the same procedures outlined above. The measure of sampling adequacy was again in the superb (Field, 2009) range with KMO = .907, and Bartlett’s test of sphericity indicated sufficient correlation between the items $\chi^2(78) = 2598.34, p < .0001$. The scree plot and eigenvalues both indicated two factors combining to account for 63.97% of the variance. All of the items have factor loadings (see Table 1) consistent with Steven’s (2002) factor loading criteria. The clustering occurred such that it is difficult to suggest naming conventions for the two components. The correlation between the two components was $r = .565$.

The 13 items representing online social cause engagement efficacy were then analyzed, again, using the same procedures. Again sampling adequacy was in the superb (Field, 2009) range, KMO = .94 and Bartlett’s test of sphericity indicated enough variance for a PCA $\chi^2(78) = 3532.36$. Two components had eigenvalues above 1 and appear behind the inflexion point on the scree plot. The combination of these two components accounted for 72.83% of the variance, and all of the items have factor loadings (see Table 2) consistent with Steven’s (2002) criteria. The clustering of items to components seems to provide evidence for a persuasive component and an associational component.
The final step in conducting PCA is to remove any problematic items, rerun the PCA, and then assess the reliability of the scale (Field, 2009). Items with similar factor loadings are problematic because they correlate, relatively, equally to both factors. Assessing the pattern and structure matrix provides indications of these, potentially, troublesome items. In the generic social cause engagement efficacy scale two items are similarly correlated to both factors. Be a part of a social movement (.417 & .453) and Inform others about problems in the world (.404 & .438) both correlate significantly according to Steven’s (2002) criteria to both components. As a result, these items will be omitted from the survey moving forward as they do not differentiate the two factors. Having removed these items, I reran the PCA. The eigenvalues and scree plot again suggested two components that accounted for 66.03% of the variance. Without these two items, the pattern matrix factor loadings no longer indicated similar loading on both factors. Next, Conbach’s alpha was calculated for the 11 item generic social cause engagement scale $\alpha = .919$, providing evidence for scale reliability. The two component scales were also reliable with component one $\alpha = .899$ and component two $\alpha = .820$. The reliability coefficients suggest that either a unidimensional or two-factor application would be appropriate.
Table 1. Pattern Matrix and Descriptives for Generic Version

<table>
<thead>
<tr>
<th>Items</th>
<th>Generic All 13 Items</th>
<th>Generic 11 Items</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persuade leaders to take action to solve a problem.</td>
<td>.996</td>
<td>.989</td>
<td>4.63</td>
<td>1.3</td>
</tr>
<tr>
<td>Enact social change.</td>
<td>.927</td>
<td>.926</td>
<td>4.67</td>
<td>1.31</td>
</tr>
<tr>
<td>Have my opinion heard by leaders.</td>
<td>.819</td>
<td>.822</td>
<td>4.83</td>
<td>1.33</td>
</tr>
<tr>
<td>Persuade others to take action to solve a problem.</td>
<td>.580</td>
<td>.600</td>
<td>5.09</td>
<td>1.12</td>
</tr>
<tr>
<td>Shape the public deliberation about an issue.</td>
<td>.574</td>
<td>.557</td>
<td>4.44</td>
<td>1.3</td>
</tr>
<tr>
<td>Connect with other advocates</td>
<td>.545</td>
<td>.574</td>
<td>5.07</td>
<td>1.18</td>
</tr>
<tr>
<td>Change the way others think about an issue.</td>
<td>.521</td>
<td>.532</td>
<td>4.86</td>
<td>1.13</td>
</tr>
<tr>
<td>Participate in the public deliberation about an issue.</td>
<td>.477</td>
<td>.476</td>
<td>4.84</td>
<td>1.23</td>
</tr>
<tr>
<td>Inform others</td>
<td>.881</td>
<td>.838</td>
<td>5.62</td>
<td>1</td>
</tr>
<tr>
<td>Influence the decisions of others.</td>
<td>.865</td>
<td>.885</td>
<td>5.21</td>
<td>1.08</td>
</tr>
<tr>
<td>Persuade others</td>
<td>.728</td>
<td>.750</td>
<td>5.26</td>
<td>1.01</td>
</tr>
<tr>
<td>Be part of a social movement</td>
<td>.453</td>
<td>--</td>
<td>5.11</td>
<td>1.2</td>
</tr>
<tr>
<td>Inform others about problems in the world</td>
<td>.438</td>
<td>--</td>
<td>5.16</td>
<td>1.22</td>
</tr>
<tr>
<td>Eigenvalue</td>
<td>7.15</td>
<td>1.17</td>
<td>6.10</td>
<td>1.16</td>
</tr>
<tr>
<td>% of variance</td>
<td>56%</td>
<td>9%</td>
<td>55%</td>
<td>11%</td>
</tr>
<tr>
<td>α</td>
<td>0.899</td>
<td>0.820</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In the online version of the scale only one item was problematic; Participate in the public deliberation about an issue (.461 & .427). Again, this item was deleted because it loaded on both factors (Stevens, 2002), thus not discriminating between the factors. The analysis of eigenvalues again returned two with values above one and the scree plot confirmed this result. The two components accounted for 73.72% of the variance and the factor loadings did not indicate similar correlations for the two components. Based on this result, reliability analysis was conducted for the 12 item online social cause engagement scale, resulting in a reliable overall scale $\alpha = .949$, an $\alpha = .944$ for the persuasion component, and an $\alpha = .889$ for the associational component.
Again, this provides evidence that this scale could be used with a unidimensional or two-factor application.

Table 2. Pattern Matrix and Descriptives for Online Version

<table>
<thead>
<tr>
<th>Items</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influence the decisions of others.</td>
<td>4.23</td>
<td>1.45</td>
</tr>
<tr>
<td>Persuade leaders to take action to solve a problem.</td>
<td>4.03</td>
<td>1.41</td>
</tr>
<tr>
<td>Shape the public deliberation about an issue.</td>
<td>4.08</td>
<td>1.38</td>
</tr>
<tr>
<td>Persuade others</td>
<td>4.5</td>
<td>1.44</td>
</tr>
<tr>
<td>Change the way others think about an issue.</td>
<td>4.4</td>
<td>1.39</td>
</tr>
<tr>
<td>Enact social change.</td>
<td>4.19</td>
<td>1.46</td>
</tr>
<tr>
<td>Have my opinion heard by leaders.</td>
<td>4.02</td>
<td>1.5</td>
</tr>
<tr>
<td>Persuade others to take action to solve a problem.</td>
<td>4.36</td>
<td>1.4</td>
</tr>
<tr>
<td>Participate in the public deliberation about an issue.</td>
<td>4.41</td>
<td>1.47</td>
</tr>
<tr>
<td>Connect with other advocates</td>
<td>4.91</td>
<td>1.47</td>
</tr>
<tr>
<td>Inform others</td>
<td>5.01</td>
<td>1.35</td>
</tr>
<tr>
<td>Inform others about problems in the world.</td>
<td>4.92</td>
<td>1.41</td>
</tr>
<tr>
<td>Be part of a social movement</td>
<td>4.65</td>
<td>1.46</td>
</tr>
<tr>
<td>Eigenvalue</td>
<td>8.35</td>
<td>1.11</td>
</tr>
<tr>
<td>% of variance</td>
<td>64%</td>
<td>9%</td>
</tr>
<tr>
<td>α</td>
<td>0.944</td>
<td>0.889</td>
</tr>
</tbody>
</table>

The purpose of study 1 was to develop, analyze, and begin to validate a measure of social cause engagement, particularly in an online environment. Bandura’s (1986, 1997) self-efficacy construct has been studied extensively in a variety of fields and domains (Bandura, 2006; Barry & Finney, 2009). Self-efficacy is “domain bound;” that is, it varies from target activity to target activity (Bandura, 1997). Therefore, each domain and field require a unique measure of self-efficacy (Bandura, 2006). This study tested a generic measure of social cause engagement
efficacy and one that asked respondents to answer the questions based on their capabilities in an online environment. The two scales were used to see if any unique differences occurred in the two domains and to require respondents to fully consider that the online survey (which was placed second in the instrument) was unique. The items were written to reflect how capable an individual felt in his/her ability to carry out various aspects of social cause engagement such as persuading others, enacting social change, connecting with advocates, and having their voice heard. These items are, as Bandura’s (2006) guide for writing self-efficacy scales suggested, specific.

The results suggest that these two scales are indeed unique as the initial PCA with the two scales combined failed to converge on a solution. Consequently, each of the scales (generic and online) were tested individually. Both scales returned two-component solutions and contained a couple of problematic items. Stevens (2002) provided factor-loading criteria by sample size. This criteria is meant to help the researcher identify which, if any, items may be problematic or not significantly loading on a factor. The corresponding cutoff for the sample size in this study (n=306) is .364. None of the items fell below this threshold. However, two items on the generic scale and one item on the online scale had nearly equal factor loadings for both factors. These items were discarded as they did not discriminate between the factors and the PCA was run a second time. The results for both the generic and online PCA improved in the subsequent analysis. The results provide evidence for an 11 item two factor measure of generic social cause engagement efficacy and a 12 item two factor measure of online social cause engagement efficacy. While there was not enough evidence to support naming the cluster of items for each component in the generic scale, the online social cause engagement efficacy scale seemed to have two components: persuasion and association. As the purpose of this study
was to develop a measure of online social cause engagement, the generic measure was only used to provide divergent validity. The evidence here suggested that the two, generic and online, are sufficiently different to merit investigation of each independent of the other.

Study 2: Testing Competing Models of the Theory of Planned Behavior

Specification of the Models

The purpose of study two is to test the six models presented in Figure 1 in an attempt to rule out nonplausible models.

Figure 2. Competing models predicting digital & traditional activism

Model 1: Theory of Planned Behavior

![Diagram of Model 1: Theory of Planned Behavior]

- **BA**
- **SN**
- **PBC**
- **BI**
- **ACT**

The diagram shows the relationships between the variables as follows:

- **BA** (Belief) influences **SN** (Social Norm) and **PBC** (Perceived Behavioral Control).
- **SN** and **PBC** both influence **BI** (Behavioral Intention).
- **BI** influences **ACT** (Actual Behavior).

The arrows indicate the direction of influence, with **d** indicating the influence of both variables on **ACT**.
Model 2. TPB with SCE added

Model 3. TPB substituting SCE for Behavioral Control (ETPB)
Model 4. TPB with impression management

Model 5. TPB with SCE and impression management
Model 6. TPB with SCE replacing behavioral control and impression management

Note: BA = Behavioral Attitudes SN = Subjective Norms PBC = Perceived Behavioral Control SCE = Social Cause Engagement Efficacy, BI = Behavioral Intention, ACT = Activism Engagement, IM = Impression Management

Model 1: 3 correlations between the exogenous variables, 3 exogenous variances, 5 path coefficients, and 2 endogenous disturbance terms resulting in 2 degrees of freedom
Model 2: 6 correlations between the exogenous variables, 4 exogenous variances, 7 path coefficients, and 2 endogenous disturbance terms resulting in 2 degrees of freedom
Model 3: estimates the same parameters as Model 1 substituting social cause engagement efficacy for behavioral control resulting in the same 2 degrees of freedom
Model 4: 6 correlations between the exogenous variables, 4 exogenous variances, 6 path coefficients, and 2 endogenous disturbance terms resulting in 3 degrees of freedom
Model 5: 10 correlations between the exogenous variables, 5 exogenous variances, 8 path coefficients, and 2 endogenous disturbance terms resulting in 3 degrees of freedom
Model 6: estimates the same parameters as Model 4 substituting social cause engagement efficacy for behavioral control resulting in the same 3 degrees of freedom

The first model is the original conceptualization of Theory of Planned Behavior (Azjen, 1991). This model predicts attitudes toward digital activism (BA), subjective norms about digital activism (SN), and perceived behavioral control (BC) as correlated exogenous variables with direct effects on behavioral intention. These three variables are each also predicted to indirectly
effect digital activism engagement mediated by behavioral intention. In addition to the indirect effect on digital activism engagement through behavioral intention, behavioral control is also predicted to have a direct effect on digital activism engagement. Finally, behavioral intention has a direct effect on digital activism.

Other theoretical models of TPB have integrated self-efficacy to the model (Povey, Conner, Sparks, James, & Shepherd, 2000; Armitage, Conner, Loach, & Willetts, 1999; Terry & O’Leary, 1995), and Azjen (1991) acknowledged self-efficacy was similar and complimentary to behavioral control. The measure of self-efficacy used in this study is social cause engagement efficacy. Social cause engagement efficacy has its roots in self-efficacy theory first developed by Bandura (1977, 1986). Social cause engagement efficacy is conceptualized as feelings of confidence in one’s ability to engage in social cause activism (Pingree, 2011). Some scholars have added a measure of self-efficacy to the traditional model of TPB (Conner, Loach, & Williams, 1999; Terry & O’Leary, 1995), Model 2 in Figure 1 represents that model. The change from Model 1 to Model 2 is the addition of self-efficacy to the traditional TPB framework such that self-efficacy is a correlated exogenous variable with direct effects on both behavioral intention and digital activism engagement and an indirect effect on digital activism engagement mediated by behavioral intention.

Finally, some researchers (Povey, et al., 2000) have advocated replacing behavioral control with self-efficacy as the measures are redundant and self-efficacy represents a more effective way to predict behavior. This theory is represented by Model 3 in Figure 1. Model 3 and Model 1 are identical except that Model 3 removes behavioral control and replaces it with social cause engagement efficacy. Thus, attitudes toward digital activism, subjective norms, and social cause engagement efficacy are the correlated exogenous variables predicted to have direct
effects on behavioral intention and indirect effects on digital activism engagement mediated by behavioral intention. Additionally, social cause engagement efficacy is predicted to have a direct effect on digital activism engagement.

In addition to adding social cause engagement efficacy, some critics of digital activism argue it is motivated by a desire for affiliation, self-presentation, and other selfish motives referred to as impression management (White & Peloza, 2009; Bal, Archer-Brown, Robson, & Hall, 2013). Impression management is conceptualized as “the process by which individuals attempt to control the impressions others form of them” (Leary & Kowalski, 1990, pg. 34). Impression management theorizes that the more public an act or representation, the more motivated an individual “to manage the impressions” others will see (Jeong & Lee, 2013, pg. 440). Previous research has demonstrated impression management as an extrinsic motivation for supporting a social cause offline; however, the likelihood of impression management playing an important role in supporting social causes online is heightened due to the “malleable and selective” nature of online self-presentation (Jeong & Lee, 2013, pg. 441). This research treats impression management driven support for a social cause as a function of social trends, not as a logical response to intrinsic motivations to support a cause. Therefore, impression management will be tested as an exogenous predictor with a direct effect on behavior, but no indirect effect on behavior through behavioral intention.

As a result, the next three models add impression management as an additional correlated exogenous predictor to all of the first three models. Model 4 is the TPB framework, same as Model 1, with impression management as a correlated exogenous predictor with a direct effect on activism. Model 5 is the TPB framework with the addition of social cause engagement efficacy, same as Model 2, with impression management added as a correlated exogenous
predictor with a direct effect on activism. Finally, Model 6 is the ETPB framework (social cause engagement efficacy replacing behavioral control), same as Model 3, with impression management added as a correlated exogenous predictor with a direct effect on activism.

Data Collection Procedures and Participants

A large (1,366) sample of students from a large Southeastern university was recruited using a cloud-based participant management program called SONA Systems. Participation in “research” is a required component of some of the courses and will be offered as extra credit in others. The SONA system allows students to select a variety of research studies to complete and receive course credit for without collecting individual identity markers within the survey. Students will use the online SONA interface to click on a survey they wish to take and will then be directed to a Qualtrics survey to complete. The sample will be reduced to include only those participants with no missing data.

Students in the introductory communication course are primarily first year students with some second year and transfer students. The population of this university is heavily Caucasian and middle to upper class. The descriptive statistics were indicative of the population from which this sample was taken. The sample consisted of mostly white (80%), middle and upper class (89%), women (71%), who are mostly freshman (95%), and 18-19 years of age (97%). Though this sample is limited in its ability to generalize to the broader millennial population, it is one of the only study’s to investigate and model psychological motivations for engaging in online activism behavior with a millennial sample. As previously detailed, nonprofits have sought increased engagement with millennials, particularly via social media (Pyser, 2014; Briones, Maddens, & Janoske, 2013 Sisco & McCorkindale, 2013; Williams, et al., 2012)
Measures

To operationalize the process underlying the theory of planned behavior a number of subscales will be used: attitudes toward behavior, subjective norms, perceived behavioral control, behavioral intention, and digital activism engagement. The scales to be used in this research are based on previous operationalizations of TPB used by Muzaffar, Chapman-Novakofski, Castelli and Scherer (2014) to test behavioral intention in reducing type 2 diabetes risk behaviors. The scale will be modified to reflect digital activism behaviors. They reported strong alpha reliability scores for each of the measures of theory of TPB ranging from .74 - .87 consistent with previous research using TPB measures (Lautenschlager & Smith, 2007; Rhodes, Macdonald, & McKay, 2006). The subject of the scales will be changed from health behaviors to questions pertaining to digital activism consistent with a previous application of this scale to digital activism (Noland, 2016). The full questionnaire is show in the Appendix.

Behavioral attitudes will be operationalized using seven likert items asking participants about their attitudes toward engaging in digital activism. Sample items include: “For me, sharing advocacy messages is important” and “People should not use social media for activism.”

Subjective norms will be operationalized using nine likert items (1-strongly disagree to 7 – strongly agree) asking the participant to describe how their friends would react to them engaging in various forms of digital activism. Perceived behavioral control is an indication of how much a participant perceives she/he has control over their ability to engage in a particular behavior uninhibited. In this study, it will be operationalized with 12 likert items (1-strongly disagree to 7 – strongly agree) asking participants about their perceived control over target behaviors such as persuading leaders, joining an advocacy organization, and posting messages on social media.

Behavioral intention is a measure of how a person intends to behave and what specific behaviors
they intend to engage in. In this study, behavioral intention will be operationalized using ten likert items (1 – Definitely will not to 5-Definitely Will) asking participants to indicate their intention to engage in activism behavior.

Impression management will be operationalized using seventeen likert items (1-strongly disagree to 5 – strongly agree) asking respondents how they present themselves in online environments. The measure is a modified version of Minas, Dennis, and Subrahmanyam’s (2014) Self Presentation on Facebook Questionnaire (SPFBQ). This questionnaire asks respondents questions specifically about Facebook, but will be modified such that “Facebook” will be replaced with “social media” in the questions. The questionnaire has five factors relating to presentation of different aspects of self online: real self, ideal self, false self-deception, exploration, and compare/impress.

Social cause engagement efficacy is the 12-item online social cause engagement efficacy measure of self-efficacy described in Study 1. *Activism Engagement* will be operationalized by the frequency (1-Never to 5 – Very Frequently) with which a person engages in both digital activism activities such as liking, favoriting, or sharing social media messages, and “traditional” activism activities such as joining, donating to, or volunteering with a social cause organization.

Data Analytic Procedures

Data will be collected in Qualtrics, an online survey tool, and read into SPSS 24.0. Upon reading the data in, data will be cleaned. To clean the data range checks will be completed to ensure no out of range data exist, and any participants with incomplete data will be removed. Recoding of reverse items will also be done in SPSS. After data is cleaned scale total scores,
means, and other descriptive statistics will be calculated. Finally, scale scores and Cronbach’s alpha coefficients for each of the scales will be calculated.

To conduct the path analysis a process called single-item composites will be used. Single-item composites allow the research to, using Cronbach’s alpha, model unreliable portions of variance leaving only the reliable portion left to covary with other constructs in the model. This process is described below. The practice of summing and averaging the scores for each of the scales is consistent with practice using these instruments in previous research as detailed above. The process of using single-item composites for latent constructs allows the researcher to model measurement error associated with the composites, and yields less biased path coefficients (Cole & Preacher, 2014; DeShon, 1999). Using the calculated Cronbach’s coefficient alpha for each composite, the proportion of variance due to measurement error was calculated ($1 - \alpha$). The resulting value was multiplied by the unstandardized variance of the composite (construct scale) and set as the single-item composite’s error variance leaving only the reliable portion of the construct left to relate to the other constructs in the model. Finally, the path from the construct to the single-item composite was set to one to allow for the measurement metric of the construct to be set in the model.
CHAPTER 4

Results

Data collection procedures spanned 9 months from April 2016 to December 2016 and resulted in a total of 1,617 participants, 1,366 of which had no missing data. Participants were deleted listwise so that the 1,366 participants in the sample all had complete data. SPSS 24.0 was used to clean data, calculate mean scale scores, reliabilities, intercorrelations, descriptive statistics, and check for univariate and multivariate normality. Range checks were completed to clean the data and items that required reverse coding were reverse coded.

Reliability analysis was also conducted for each scale in SPSS to determine Cronbach’s alpha for the scales used in the models. Most of the scales yielded strong reliability, subjective norms ($M = 4.48, \alpha = .93$), behavioral control ($M = 5.14, \alpha = .79$), behavioral intention ($M = 3.03, \alpha = .88$), online activism ($M = 2.59, \alpha = .87$), and efficacy ($M = 4.47, \alpha = .94$). Alpha scores for the behavioral attitudes ($M = 4.71, \alpha = .61$) and impression management ($M = 2.62, \alpha = .67$) scales were below the .70 threshold widely acceptable as sufficient reliability.

After preliminary data analysis in SPSS, the raw mean scores for each participant were read into LISREL 9.2 and covariance and asymptotic covariance matrices were generated. As outlined below, the asymptotic covariance matrix is necessary for structural equation modeling techniques when data is nonnormal.

Model Estimation and Fit Indices

To determine the appropriate estimation procedure and fit indices to use in the path analysis, data were screened for normality using SPSS. Structural equation modeling techniques are sensitive to both univariate skew and kurtosis and multivariate skew and kurtosis. Some fit
indices require modification if data is nonnormal, thus data must be screened for univariate and multivariate normality before fit indices and estimation methods can be selected. First, data were screened for univariate skewness and kurtosis. The results indicated no univariate skewness or kurtosis as values were all below $|3|$ or $|8|$, respectively (Finney & DiStefano, 2013). However, because estimation methods assume both univariate and multivariate normality, it is also important to demonstrate multivariate normality as well. To test for multivariate normality Mardia’s test was performed using the DeCarlo (1997) macro. The result of Mardia’s test was 21.32, above the cutoff of 3 suggested by Bentler and Wu (2003), indicating the data for this research was nonnormal.

Maximum Likelihood (ML) is sensitive to model misspecification, appropriate for the sample size, and adjustable for nonnormal data; thus it was used to estimate the models in this research (Olsson, Foss, Troye, & Howell, 2000; Olsson, Troye, & Howell, 1999; Hu & Bentler, 1998). When data are nonnormal, as in this research, the standard errors and fit indices need to be adjusted for nonnormality using the Satorra Bentler adjustment (Hu & Bentler, 1998). As a result, the models were estimated using maximum likelihood with the Satorra Bentler adjustment. To analyze overall model data fit, Hu and Bentler (1998, 1999) recommend a complimentary two fit-index presentation strategy in addition to the χ^2 fit index, and recommend Standardized Root Mean Squared Residuals (SRMR) should always be reported. The two-index strategy should reflect overall model data fit using a global fit index and an incremental fit index to compare the tested model with a null model in which none of the constructs are correlated. Additionally, the selected fit indices should complement on their sensitivity to simple and complex model misspecification. Simple model misspecification is associated with misfit due to factor (construct) correlations while complex model misspecification is associated with misfit
due to path coefficients (Hu & Bentler, 1998; 1999). This strategy provides information about how the tested model compares to a perfectly fitting and a null model (Hu & Bentler, 1999).

The most basic fit index is Chi Square (χ^2). χ^2 is a measure of perfect fit with higher values indicating poorer fit. If a model fits the data well the resulting χ^2 value should approximate the degrees of freedom in the model. A significant χ^2 test indicates the model does not fit the data well. However, χ^2 is very sensitive to sample size overly rejecting plausible models and assessing approximate fit instead of perfect fit is a more realistic goal in social scientific research (Hu & Bentler, 1998, 1999; Marsh, Hau, & Wen, 2004). However, large χ^2 do indicate poor model data fit.

Three additional fit indices will be used in this research, SRMR, Root Mean Square Error of Approximation (RMSEA), and Comparative Fit Index (CFI). SRMR and RMSEA are both global fit indices, comparing the theoretical model to a model with perfect fit, while CFI is an incremental fit index, comparing the theoretical model to a null model in which none of the constructs are correlated. The SRMR is very sensitive to simple model misspecification due to factor correlations and moderately sensitive to path coefficient misspecification. Hu and Bentler (1998) recommend always reporting the SRMR, which ranges from 0-1, and recommend a cutoff of .08 with higher values indicating poorer fit (Hu & Bentler, 1999). RMSEA is very sensitive to complex model misspecification due to path coefficients making it complimentary to SRMR (Hu & Bentler, 1998); however, RMSEA can overly reject correct models when sample sizes are small (Rigdon, 1996). Another strength of RMSEA, is it isolates misfit due to model misspecification by adjusting for sampling error using the noncentrality parameter based on degrees of freedom. That is, RMSEA provides a measure of misfit per degree of freedom making it sensitive to parsimonious models. RMSEA also ranges from 0-1 with higher values indicating
poorer fit. Hu and Bentler (1999) recommend a cutoff of .06 while Brown and Cudek indicate values between .05 - .08 suggest close fit while values above .10 indicate poor fit. Finally, CFI is an incremental fit index that assesses fit compared to a null model. CFI is very sensitive to complex model misspecification and moderately sensitive to simple misspecification (Hu & Bentler, 1998). Values of the CFI range from 0 – 1 with higher values indicating stronger fit (Hu & Bentler, 1998), and Hu and Bentler (1999) recommend a cutoff of .95. It should be noted that Marsh, Hau, and Wen (2004) argued all of the cutoffs proposed by Hu and Bentler (1999) may be too strict and should be interpreted in conjunction with domain specific considerations in mind. Finally, if fit indices indicate a model is plausible the researcher will then examine covariance residuals to investigate areas of local misfit with residuals above |3| or |4| indicating local misfit (France & Finney, 2010; Bryne, 1998). Local misfit provides information on the specific paths (or missing paths) that are sources of model misfit. Analyzing covariance residuals and the variance explained in the endogenous variables represent the second step of model comparison. The goal of model analysis is to discount implausible models and test the theory represented in each of the models under investigation.

Descriptive Statistics and Foreshadowing Results

Descriptive statistics, correlations, and scale statistics are shown in Table 3. Respondents indicated neutral responses to most the scales and the sample had moderate levels of variability. Scores for most scales were around the scale mean. In particular, attitudes about engaging in online activism ($M = 4.71$ $SD = .93$), normative expectations from friends and family about them engaging in slacktivism ($M = 4.48$, $SD = 1.08$), their personal intentions to engage in online activism ($M = 3.03$ $SD = .86$), their impression management motives ($M = 2.62$ $SD = .40$), their efficacy to engage in online activism ($M = 4.47$ $SD = 1.12$), and the frequency with
which respondents engaged in online activism \((M = 2.59 \ SD = .96)\) However, students reported higher levels of behavioral control \((M = 5.14 \ SD = .94)\).

| Table 3. Intercorrelations, descriptive, and scale statistics for variables |
|--------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| | Attitude | Norms | Control | Intention | Activism | Efficacy | Imp Mgt. | Mean | SD |
| Attitude | -- | | | | | | | | |
| Norms | .496** | -- | | | | | | | |
| Control | .451** | .412** | -- | | | | | | |
| Intention | .441** | .523** | .298** | -- | | | | | |
| Activism | .356** | .432** | .190** | .712** | -- | | | | |
| Efficacy | .380** | .437** | .380** | .395** | .322** | -- | | | |
| Imp Mgt. | - .210** | -.113**| -.232** | -.011 | .095** | -.104** | -- | | |
| Mean | 4.71 | 4.48 | 5.14 | 3.03 | 2.59 | 4.47 | 2.62 | | |
| SD | 0.93 | 1.08 | 0.94 | 0.86 | 0.96 | 1.12 | 0.40 | | |
| Skew (SE = .066) | - .04 | -.018 | -.26 | 0.04 | 0.34 | -.46 | -.33 | | |
| Kurtosis (SE = .132) | 0.02 | 0.72 | 0.10 | - .25 | .39 | .54 | .04 | | |
| Cronbach’s \(\alpha\) | 0.61 | 0.93 | 0.79 | 0.88 | 0.87 | 0.94 | 0.67 | | |

** \(p<.01\)**

The correlation matrix can be used to foreshadow results of the path model. While the large sample size (1,366) yielded significant correlations in terms of their \(p\) values, the strength of the correlations are not all practically significant. The magnitude of the correlations will be evaluated using Cohen’s (1988) conventions: .10 - .30 (weak), .30 - .50 (moderate), .50 – 1.0 (strong). As predicted, behavioral attitudes (.441) and subjective norms (.523) were significantly correlated with behavioral intention. Behavioral control (.298) yielded a weak but nearly moderate correlation with behavioral intention and social cause engagement efficacy (.395) was also moderately correlated to intention. Finally, impression management has little to no relationship (- .011) to intention or engaging in activism (.095), and weak negative correlations with attitudes (- .210), norms (- .113), control (- .232), and efficacy (- .104). Intention, as predicted, has a strong correlation (.712) and social cause engagement efficacy (.322) was moderately correlated with engaging in activism. This indicates that, with regard to engaging in
online activism, perceived control and impression management may not be as influential as intention and efficacy. Further, the strongest correlation control has is with efficacy have. This finding supports the contention by some scholars (Kraft, Rise, Sutton, & Roysamb, 2005; Taylor & Todd, 1995) that efficacy and behavioral control may be somewhat redundant.

Path Analysis

The six a priori specified models (shown in Figure 1) were estimated using Maximum Likelihood with the Satorra Bentler adjustment in LISREL 9.2 (Jöreskog & Sörbom, 2013). To conduct and interpret the path analysis results, the four fit indices were analyzed using the Hu and Bentler (1999) and Brown and Cudek’s (1993) guidelines. However, it should be noted that Marsh, Hau, and Wen (2004) argued all of the cutoffs proposed by Hu and Bentler (1999) may be too strict and should be interpreted in conjunction with domain specific considerations in mind. The data in this study were analyzed by looking at the battery of fit indices used, such that models with values close to the suggested cutoffs were kept for consideration while those models with values not close to the suggested cutoff were removed from consideration. Fit indices and comparisons are shown in Table 4.

Table 4. Fit Indices for Competing Models (n=1,366)

<table>
<thead>
<tr>
<th>Model</th>
<th>χ^2_{df}</th>
<th>df</th>
<th>p-value</th>
<th>CFI</th>
<th>SRMR</th>
<th>RMSEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>47.99</td>
<td>2</td>
<td><.001</td>
<td>0.962</td>
<td>0.036</td>
<td>0.130</td>
</tr>
<tr>
<td>2</td>
<td>17.03</td>
<td>2</td>
<td><.001</td>
<td>0.992</td>
<td>0.013</td>
<td>0.074</td>
</tr>
<tr>
<td>3</td>
<td>96.30</td>
<td>2</td>
<td><.001</td>
<td>0.923</td>
<td>0.066</td>
<td>0.186</td>
</tr>
<tr>
<td>4</td>
<td>30.40</td>
<td>3</td>
<td><.001</td>
<td>0.986</td>
<td>0.024</td>
<td>0.082</td>
</tr>
<tr>
<td>5</td>
<td>31.28</td>
<td>3</td>
<td><.001</td>
<td>0.987</td>
<td>0.021</td>
<td>0.083</td>
</tr>
<tr>
<td>6</td>
<td>108.76</td>
<td>3</td>
<td><.001</td>
<td>0.946</td>
<td>0.056</td>
<td>0.161</td>
</tr>
</tbody>
</table>
Models 1 (traditional Theory of Planned Behavior), 3 (Planned Behavior replacing behavioral control with self-efficacy), and 6 (Planned behavior replacing behavioral control with self-efficacy and adding impression management) did not fit the data well. Model 1’s RMSEA was above the suggested cutoff (.08) suggesting Model 1’s paths were misspecified. Model 3 and 6’s CFI and RMSEA were below (.95) and above (.08) their respective cutoffs. Again, this suggests complex misspecification due to path coefficients. As these models are not plausible representations of the data, it is not proper to interpret path coefficients. However, an examination of the correlation matrix can prove useful. For Model 1, the low correlation of behavioral control to intention (.298) and engaging in activism (.190) are likely the cause of misspecification in this model. For Model 3, the moderate correlations between efficacy and intention (.395) and online activism (.322) may have split the impact of efficacy in this model. Finally, Model 6, had the same efficacy paths as model 3 and added a direct path from impression management to activism. Given the weak correlation between impression management and the other constructs in the study, this is likely the source of misspecification.

However, the three other a priori models yielded better model data fit. Model 4 is the same as Model 2 with the addition of a direct path between impression management and online activism. Model 4 fit the data relatively well ($\chi^2_{sb} (3) = 30.40, p < .001$, SRMR = .024, RMSEA = .082, CFI = .986). In examining the structural equations to analyze path coefficients and the relative impact of each endogenous variable on the exogenous variables interesting results emerged. In predicting behavioral intention, attitudes ($\beta = .218, p < .001$), norms ($\beta = .294, p < .001$), and control ($\beta = .218, p < .001$) were all significant combining to explain 33.4% of the variance. In predicting activism, contradictory to predictions, behavioral intent ($\beta = .069, p < .001$), was statistically, but not practically significant while behavioral control ($\beta = .225, p < .001$),
Predicting digital activism behaviors

.001), and impression management ($\beta = .549, p < .001$) emerged as practically significant explaining 73% of the variance.

Further examining the model using χ^2 and covariance residuals, one immediate cause for concern is the relatively large value of the χ^2. Additionally, the covariance residuals ranged from -3.91 to 2.56 with the residual between impression management and intention (-3.91) the largest. This indicates the model was misspecified between impression management and intention given the set of constructs included in Model 4. Additionally, there were a total of 4 covariance residuals above |1| and only a few approached zero. Because of the covariance residuals and the high χ^2 Model 4 can be rejected in favor of stronger models for this data.

Model 5 is the most complex model, including all the constructs under investigation. Model 5 fit the data relatively well ($\chi^2_{sb} (3) = 31.28, p < .001$, SRMR = .021, RMSEA = .083, CFI = .987). Attitudes ($\beta = .243, p < .001$), norms ($\beta = .309, p < .001$), and control ($\beta = .193, p < .001$) were all significant predictors of behavioral intention. Efficacy, on the other hand, was a negative, but not practically significant ($\beta = -.120, p < .001$) predictor of behavioral intention. The combination of attitudes, norms, control, and efficacy explained 36% of the variance in behavioral intention. Again, contradictory to predictions, behavioral intent ($\beta = .065, p < .001$), was statistically, but not practically significant while behavioral control ($\beta = .206, p < .001$), and efficacy ($\beta = .577, p < .001$) were significant predictors of online activism. Interestingly, in contrast to Model 4, impression management’s impact on online activism becomes negative and practically insignificant when efficacy is added to the model ($\beta = -.113, p < .001$). The combination of behavioral intention, behavioral control, efficacy, and impression management explained 73% of the variance in online activism.
Again, the χ^2 is relatively high, but all the covariance residuals are well below [3] ranging from -.036 to .037 with many values approaching zero. Model 2 fit the data better than any of the other tested models ($\chi^2_{sb} (2) = 17.03, p=.001, \text{SRMR} = .013, \text{RMSEA} = .074, \text{CFI} = .99$). The RMSEA value is slightly above the value (.06) proposed by Hu and Bentler (1999), but within the range (.05 - .08) used by Brown and Cudek (1993). RMSEA weights misfit per degree of freedom; thus, because Model 2 only has 2 degrees of freedom, the RMSEA value may be inflated. When viewed in conjunction with χ^2, SRMR, and CFI the RMSEA is acceptable. All the covariance residuals were between -.006 to .039 indicating near perfect model data fit as indicated by the CFI and SRMR. The χ^2 is nearly half the value of Model 5 indicating stronger fit. As these models, (2 and 5) are nested, we can calculate a χ^2 difference test to determine if Model 5 fits the data significantly worse than Model 2. The result of a χ^2 difference test ($\chi^2_{sb} (1) = 14.25, p<.001$) is significant indicating that Model 2 fits the data significantly better than Model 5. Next, path coefficients for Model 2 will be discussed. Direct, indirect, and total effects, standard errors, z-tests, are shown in Table 5 while the path coefficients, disturbance terms, and variance explained are shown in Figure 3.
Figure 3. Model 2 with coefficients, disturbance terms, and error variances

The results indicate behavioral attitude ($\beta = .238$, $p < .001$) and subjective norms ($\beta = .307$, $p < .001$) were strong positive predictors of behavioral intention. Behavioral control ($\beta = .192$, $p < .001$) and efficacy ($\beta = -.115$, $p < .001$) while significant predictors of behavioral intention had smaller path coefficients, and efficacy had a negative path coefficient when combined with the other predictors in the model. In analyzing how the model predicts online activism an interesting result emerged. When combined with behavioral control and self-efficacy, the relative impact of behavioral intention in predicting online activism was diminished. Though still statistically significant, behavioral intention ($\beta = .072$, $p = .002$) was not practically significant predictor of online activism. However, behavioral control ($\beta = .215$, $p < .001$) and efficacy ($\beta = .566$, $p < .001$) were both strong predictors. This suggests that, when combined with self-efficacy and behavioral control, behavioral intention’s predictive utility for online
activism is diminished. The model accounted for significant variance in both behavioral intention (35%) and online activism (73%).

Table 5. Direct, Indirect, and Total Effects, Standard Error, and Z-Tests for Model 2

<table>
<thead>
<tr>
<th>Variable</th>
<th>Intention</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Activism</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Effect</td>
<td>SE</td>
<td>z-test</td>
<td>Effect</td>
<td>SE</td>
<td>z-test</td>
<td>Effect</td>
<td>SE</td>
<td>z-test</td>
</tr>
<tr>
<td>Attitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.017</td>
<td>0.01</td>
<td>2.54</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Indirect</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.017</td>
<td>0.01</td>
<td>2.54</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Total</td>
<td>0.238</td>
<td>0.05</td>
<td>5.29</td>
<td>0.238</td>
<td>0.05</td>
<td>5.29</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Norms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.02</td>
<td>0.01</td>
<td>2.72</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Indirect</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.02</td>
<td>0.01</td>
<td>2.72</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Total</td>
<td>0.307</td>
<td>0.04</td>
<td>7.69</td>
<td>0.307</td>
<td>0.04</td>
<td>7.69</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.215</td>
<td>0.03</td>
<td>7.92</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Indirect</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.215</td>
<td>0.03</td>
<td>7.92</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Total</td>
<td>0.192</td>
<td>0.04</td>
<td>4.37</td>
<td>0.229</td>
<td>0.03</td>
<td>8.97</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Efficacy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>-0.01</td>
<td>0.04</td>
<td>-2.24</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Indirect</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>-0.01</td>
<td>0.04</td>
<td>-2.24</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Total</td>
<td>-0.115</td>
<td>0.03</td>
<td>-3.55</td>
<td>0.556</td>
<td>0.02</td>
<td>24.11</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Intention</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.724</td>
<td>0.024</td>
<td>3.06</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Indirect</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.724</td>
<td>0.024</td>
<td>3.06</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Total</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.0724</td>
<td>0.02</td>
<td>3.06</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
CHAPTER 5

Discussion

The models tested in this research provide important information that will help organizations understand how to target millennial stakeholders more effectively. This research provides several key contributions to the Theory of Planned Behavior literature, literature about online activism, and for nonprofit leaders, from which some recommendations can be drawn. While the contributions are many and significant, there are some key limitations that must be considered when drawing these conclusions. Finally, the research has yielded important directions for future research in this domain.

This research aimed to test six competing models of the Theory of Planned Behavior in predicting online activism among a sample of millennial students. It represents a starting point in helping nonprofit organizations understand why millennials engage in online activism and how organizations can use this knowledge to more effectively generate online support. This research will help organizations navigate the strategic dilemma they face with isomorphic pressure to use social media while lacking an understanding of why people, particularly the millennial generation, engage online. Additionally, this research tests the theorizing that online activism (termed slacktivism by some) is primarily motivated by impression management motives.

The Theory of Planned Behavior has been used to predict behavioral intention and behavior extensively in a variety of domains. This research tested the traditional TPB model that predicts behavioral intention as a function of behavioral attitudes, subjective norms, and perceived behavioral control. However, some researchers have advocated that TPB can be
modified to include a measure of self-efficacy as either a replacement (Povey, et al., 2000) for, or supplement (Conner, Loach, & Williams, 1999; Terry & O’Leary, 1995) to, perceived behavioral control. In order to test these three models of TPB, a measure of self-efficacy related to online activism had to be created.

The first study in this research set out to develop a measure of online social cause engagement efficacy. Using the principles from Bandura’s (2006) guide for developing self-efficacy measures, a scale of 13 questions was developed and tested using a Principal Components Analysis. The result of the scale development was a reliable 12-item measure of social cause engagement efficacy. This newly developed highly reliable (in this sample) measure of social cause engagement efficacy represents an important contribution of this research. Self-efficacy is domain specific and varies from target behavior to target behavior. Developing a self-efficacy scale specific to online social cause engagement will allow additional research to continue to study the role online self-efficacy has on other variables of interest.

The development of this scale also allowed this research to more accurately test the three competing models of TPB. Prior research (Noland, 2016), tested these three models including a previously existing measure of political self-efficacy, but called for a measure of self-efficacy more directly related to online activism behaviors. The measure of online social cause engagement efficacy developed here is specifically targeted at online activism behaviors. As Bandura (2006) theorized, the more accurately the measure of self-efficacy represents the target behavior, the more its predictive utility. The new measure was used in the model testing done in this research.

Six models of TPB and modifications including self-efficacy and impression management were analyzed to test their ability to predict online activism behaviors. After a full
analysis of the models including fit indices, path coefficients, and parsimony considerations, the only model left viable is Model 2 (TPB with self-efficacy added). While this model fit the data well and explained a significant amount of variance in behavioral intention and online activism behaviors, some of the relationships were still not strong. For example, the relationship between self-efficacy and behavioral intention was not practically significant. The relationship between behavioral control and intention was also small. The combination of a negative direct effect between self-efficacy and intention, a strong correlation between self-efficacy and control, and the small effect of control on intention yielded some model misspecification. However, the model, overall, fit the data very well and explained significant variance in the exogenous variables. Perhaps, the direct effect between control and intention was moderated by the strong correlation between control and efficacy. Furthermore, contrary to other studies of planned behavior in the health domain, behavioral control did not emerge as a strong predictor of behavioral intention and behavioral intention was not as strong, comparatively, a predictor of activism behavior. In fact, while intention was still a significant predictor of behavior, the direct effect of behavioral control on behavior was near zero. The addition of self-efficacy to the model seems to have reduced the direct effects of both behavioral control on intention and of intention on behavior. These theoretical differences bolster the conclusion that a model without a direct path between control and behavior and without a direct path between efficacy and intention may result in better model data fit.

The reduced importance of behavioral control in this research may provide evidence of a possible context effect with regard to TPB. In the health domain, behavioral control is an important element of empirical models, but it did not emerge as such in this domain. It is possible that control is not an important variable when considering online activism because of
the high degree of proficiency in using social media among the sample, particularly in comparison to adapting a low-fat diet or trying to stop smoking (Muzaffar, Chapman-Novakofski, Castelli, & Scherer 2014; Babrow, Black, & TiVany, 1990). It is particularly important to consider this context effect given the addition of self-efficacy to the model. Testing the utility of control with self-efficacy added to TPB in more difficult tasks would provide additional evidence for (or against) a context effect for behavioral control.

In addition to testing the competing models of TPB, this research sought to test a theory that online activism is motivated by impression management advanced by some critics (White & Peloza, 2009; Bal, Archer-Brown, Robson, & Hall, 2013). These critics argue that online activism is a reaction to prevailing trends, millennial’s need for association and to manage their online impression. These critics argue that engaging in online activism is not intentional or strategic, but, instead, a reaction to what their peers are doing (Jeong & Lee, 2013; Boyd & Ellison, 2007; Walther, 1996). To test the predictive utility of impression management motives, impression management was added as a direct predictor to online activism behavior in all of the models described above. Previous research using impression management to predict online behavior has done so without adding other predictors to the models (Rosenberg & Egbert, 2011). Adding impression management to a well-established social scientific behavior prediction model allowed this research to investigate the role impression management has in shaping online activism relative to other predictors. The results of the models including impression management are telling. Model 6 (TPB with self-efficacy replacing behavioral control and impression management added) did not fit the data. However, Model 4 (TPB with impression management added) and Model 5 (TPB with self-efficacy and impression management added) had fit indices that fit the data relatively well and merited more in depth analysis of the data.
To explore the impact of impression management on online activism, path coefficients were analyzed for Model 4 and 5. An interesting finding emerged. In Model 4 (TPB with impression management added), in the absence of self-efficacy, impression management was a significant positive predictor of online activism behavior. However, in Model 5 (TPB with impression management and self-efficacy added), the impact of impression management became practically insignificant and negative while self-efficacy was a strong positive predictor. This is an important finding for theory and practice. It can be concluded in this sample that in the presence of self-efficacy, the impact of impression management is negated and negligible. That is, if participants believed they were able to positively influence social change via online activism behaviors, their impression management motives provided no value in predicting online activism behaviors.

Another important theoretical contribution is the role of self-efficacy in relation to behavioral intention. In Model 2, the direct effect from intention to online activism behavior is much smaller than the direct effect from self-efficacy to behavior. Instead of testing a fully moderated model through behavioral intention, testing a moderated model through self-efficacy may also provide interesting conclusions. Self-efficacy has been demonstrated to have a strong positive relationship with target behaviors (Pajares & Schunk, 2001), but no research, to this point, has examined self-efficacy as a moderating variable for TPB. Adding a direct effect from self-efficacy to behavior, consistent with social learning theory, strengthened the predictive utility of TPB, but many other relationships to self-efficacy remain uninvestigated in this research.

To summarize, the primary findings and theoretical contributions of this research are, first, a newly developed measure of online social cause engagement efficacy. A case for validity
has been started in this research, both for a multidimensional and unidimensional application of the scale. Secondly, models of TPB were tested to predict online social cause advocacy. While the traditional model of TPB did not fit the data well, the addition of self-efficacy, consistent with previous theoretical amendments to TPB, did fit the data well. In fact, the only viable model after analysis is TPB with self-efficacy added. Self-efficacy emerged as the most powerful direct effect on behavior. Third, evidence of a potential context effect for behavioral control emerged such that its predictive utility is lower when predicting online activism compared to a dietary or other health change. Finally, impression management was tested in addition to the other predictors in TPB to assess its predictive utility in relation to other predictors. When impression management was included in TPB with self-efficacy, the impact of impression management on behavior was insignificant. Though these findings represent important contributions and offer advancements in theoretical models predicting behavior, they are not without limitations.

Limitations

First, any cross-sectional research cannot make causal predictions or be interpreted as such. This research represents the attitudes, beliefs, and self-reported behaviors of respondents at a particular moment in time. Thus, it provides a snapshot into self-perception related to these constructs. As such, it is limited in its capacity to provide concrete causal attributions about the models. It should also be noted that socio-political environments and recent events may impact results. However, this research does provide important contributions to the study of online activism and predicting these behaviors using TPB that can be studied using different methodological approaches to provide additional evidence of the conclusions offered here.
Longitudinal and experimental methods would bolster the claims and allow for testing directional hypotheses needed to draw causal conclusions.

Secondly, measurement can always be improved. The reliability, though modeled as error in this research, for some of the scales was not particularly strong. Despite modeling the unreliable portions of the measures, some concern for validity may be merited. As a result, the findings in this research related to impression management, though striking, should be interpreted as the result of one study with a specific scale and replicated in other populations with other, hopefully more reliable, measures. Other approaches to modeling impression management on social media including other constructs like self-monitoring, self-promotion, and other self-oriented goals could be pursued (Rosenberg & Egbert, 2011).

Additionally, adapting previously validated scales for use in a different context, as done here, may result in unintended context effects. A potential conclusion of the model tests in this research is a context effect for behavioral control, but it is possible this exists in the measurement as well. Specific measures of behavioral attitudes, subjective norms, and behavioral control developed for this domain may be more reliable than previously validated versions used in different domains.

Third, there are a number of models that were not tested and variables not in the models that were. When variables are omitted from a model the results will not fully represent the relationships among those variables. For example, in previous models, a measure of political self-efficacy was used yielding different results because the measure of self-efficacy was too distal from the target behavior. Additional influences on online activism behaviors exist beyond those studied in this research. For example, attitudes toward social media, social media usage intensity, political and social awareness, apathy, and cynicism may impact the results if included
in the model. As structural equation modeling is a confirmatory technique for testing theoretical models and no theoretical models include these potential influences, including them in the models tested here would be inappropriate. Before using these variables in structural equation modeling, exploratory correlational research should be done to better understand the relationships among these variables. Subsequently, models can be tested using structural equation modeling techniques if appropriate. Despite the lack of a theory predicting these omitted variables, it is reasonable to assume they are out there. As a result, interpretation should be done with caution and the recognition that no model will capture all of the potential predictors.

Finally, perhaps the largest limitation of this research is the representativeness of the sample. The aim of this research is to begin to understand how online social advocacy can be predicted, particularly in the millennial population, by studying the psychological elements that predict behavior. To begin to explore this, TPB was selected because of its widespread application in behavior prediction. The millennial population represents a difficult population to access, but an important population for social media influence, and current and future nonprofit stakeholders. This population’s merit is evident. However, the sample used in this research does not fully represent the population. The sample is skewed young, white, wealthy, privileged, and highly educated. Though these demographics may not fully represent the broader millennial population, this sample does represent a start in understanding how millennials engage in online activism. Nonetheless, it is important that the results of this research and any conclusions drawn be limited to this particular sample. Some selection bias may influence the results as this group of respondents may be more inclined to participate in the target behaviors given their social media competence and frequency of use. Prior to any generalizations being made, replication
Predicting digital activism behaviors

with other millennial samples, and particularly those with better representation of the larger population, should be investigated. Despite these important limitations and proceeding with the aforementioned warning, several implications for nonprofit organizations and recommendations for nonprofit leaders can be generated from the findings.

Implications for Nonprofit Organizations & Leadership

Nonprofit organizations and their leaders can draw several conclusions from this research. First, nonprofit organizations, faced with a strategic dilemma about online engagement, can begin to understand why a person would engage online. With this information a more strategic online presence can be developed. The findings here are also particularly relevant to the highly sought after millennial population. By understanding the psychological motivations of individuals, organizations can more effectively target their stakeholders to increase online engagement. Secondly, nonprofit leaders, faced with competing demands and tight budgets (LeRoux, 2009; Balser & McClusky, 2005), with an imperative to develop vision and strategy (Kilpatrick & Silverman, 2005) while maintaining flexibility to meet emerging trends (Bryson, 2011; Mintzberg & Waters, 1985) should have a better understanding of which initiatives to pursue and which do not fit the organization’s online strategy. Additionally, leaders should be better equipped to articulate, drive support for, and resource an online strategy.

As research has indicated (Briones, Maddens, & Janoske, 2013), many nonprofit organizations know they need to utilize the reach of social media, but they do so nonstrategically. The result is a missed opportunity. Organizations have a presence online, but are left without an ability to maximize the resources allocated (Krug & Weinberg, 2004). Additionally, ineffective social media usage can have more negative consequences as users “scroll past” and ignore messages without impact. In an increasingly online environment, and
one with increasing demands on nonprofit organizations, these organizations must develop and execute an impactful online strategy. Much research exists to examine different message strategies online (Paulin, et al., 2014), but relatively little exists to address a more basic question – what motivates individuals to engage in online activism? This research sought to begin to answer this question by testing psychological motivations that undergird human behavior. Before an organization develops strategy, they must know whom they are targeting and understand what motivates that audience to engage in the target behavior (Smith, 2009).

Audience analysis and research is a fundamental building block, a necessary input, to strategy formation (Smith, 2009).

The results of this study suggest the psychological constructs tested, namely self-efficacy, subjective norms, and attitudes toward behavior, do predict a person’s behavioral intention and actual behavior. This key finding should help nonprofit organizations in pursuit of millennial stakeholders develop an online strategy. Indeed, the frequency of social media activism found in this study among the millennial sample should provide an incentive for nonprofit organizations to value setting a social media strategy. The evidence found here, and in other studies (Briones, Maddens, & Janoske, 2013), demonstrates that millennials are engaged in social media activism online. Millennials represent the next wave of stakeholders; thus, nonprofit organizations need and have been seeking to engage with this population. This research helps to provide organizations with more concrete information to build a strategy that can meet millennials where they are already engaged. Specifically, a social media strategy that builds community, develops positive attitudes toward social change achieved via online activism, capitalizes on social norms that support online activism, and increases participant’s belief in their ability to create positive social change online should be particularly effective in increasing online engagement.
Organizations can use these themes to build social campaigns and develop messages to increase these beliefs. Recognizing that individuals are motivated by these three key constructs, organizations have a strategy roadmap. Once decisions about mediums (Facebook, Twitter, Instagram, Tumblr, etc...) are made, organizations can begin to develop these campaigns knowing their strategies are based on research about what motivates their millennial stakeholders.

Nonprofit leaders operate in particularly tight budgets with competing demands. Reaching stakeholders and communicating with them about issues from development to accountability is a particularly important focus for nonprofit leaders (Smith, 2009). The Internet generally, and social media specifically, provide an opportunity for leaders to expand organizational reach to diverse stakeholders at relatively low cost (Joyce, 2010). However, leaders must be particularly concerned with the effectiveness of this communication. Social media not only provides a way for organizations to communicate to stakeholders, but for stakeholders to communicate to organizations, and to share an organization’s message to their own networks. An online presence that is not dialogic, strategic, impactful, or reaching the right stakeholders is not effective. Armed with information about what motivates individuals to engage online, leaders can help provide the proper strategic vision for their organization’s online strategy.

Developing, driving support for, and resourcing organizational strategy is a key function of leadership (Kilpatrick & Silverman, 2005). As previously mentioned, understanding what motivates individuals to engage online is a foundational element in strategy development, and this research provides leaders with important insights. However, leaders also must remain flexible, always scanning the environment for shifting trends and new opportunities. One of the
most effective ways of monitoring the environment is to maintain an ongoing dialogue with stakeholders. Leaders need information to understand the dynamic environments in which they operate. Crowd-sourcing key environmental trends (Saxton, Oh, & Kishore, 2013; Amtzis, 2014) is an emerging benefit of digital media. If an organization has a strong online presence they can mine their stakeholders for information. Staying current with stakeholders will help organizations understand upcoming shifts and develop emergent strategy (Mintzberg & Waters, 1985) accordingly. In this case, nonprofit leaders achieve multiple benefits from a strong online presence. First, leaders are able to speak directly to stakeholders and increase their reach beyond traditional networks. Second, by engaging stakeholders in dialogue online, organizations can stay current on upcoming trends allowing them to adjust or develop new strategies.

A final implication for nonprofit organizations is a stronger relationship with and more access to millennial stakeholders. With an aging volunteer and donor population, nonprofit leaders are faced with a challenge of finding, developing, and cultivating new supporters (Crosby, 2015). Nonprofit organizations continue to seek the influence, passion, and resources millennial stakeholders bring, but lack an understanding of how to effectively engage this unique population. This research, exclusively focused on millennials, can help provide leaders with a better understanding of these important stakeholders. The findings of this research indicate that positive attitudes toward the target behavior, positive social norms about the behavior, and self-efficacy about the behavior motivate millennial social media users. That is, millennials, in this study, were more likely to engage in online activism if they felt positively about engaging in this form of activism, if their friends and family expected that they would be online activists, and if they felt a high degree of confidence in their ability to help bring about positive change through online activism behaviors. These key motivating factors were more important than their
perceived control over their ability to engage in these behaviors and their impression management motives. Therefore, nonprofit leaders should develop online strategies that increase these key factors.

These findings extend existing research on millennials (Feldmann, et al., 2016) and present a theory nonprofit organizations can put to the test knowing it is based on research about how millennials are motivated to engage in online activism behaviors. An important element of these findings centers on the relative low cost and expansive reach of social media strategy. Given nonprofits function with tight budgets and, often, scarce resources available to allocate to new programs, social media activism is promising. Compared to new programs, grants that require new infrastructure, or other potential changes, the barriers for developing and executing are relatively small. The costs associated with social media campaigns are relatively low. Organizations, however, will need to hire staff with expertise in designing social media campaigns and engaging in dialogue with stakeholders online. Compared with other, more burdensome change efforts, social media activism does not limit small, local, or regional organizations. Instead, these strategies can be deployed by any organization with the expertise to capitalize on social media activism. Organizations that want to pursue these strategies should look to other, similar (in size, scope, focus, and geographic location). Learning from the success of other similar resources is an effective way to build organizational self-efficacy through vicarious experience (Brown & Inouye, 1978). The combination of these findings and previous research that indicates online activists are also engaged in other, more traditional, forms of activism (Center for Social Impact Communication, 2011) represent a tremendous opportunity for nonprofit organizations and leaders as they use social media more strategically and effectively in pursuit of organizational missions.
Directions for Future Research

The results of this study yielded multiple areas of additional inquiry. Future research should continue to explore the role of psychological constructs in predicting human behavior including extensions of TPB, measurement studies should continue to build the case for valid assessment of these variables, and the implications for messaging should be tested. First, TPB should be extended. The options for extending this model are extensive. Future research should continue to expand related psychological predictors of human behavior such as socioeconomic status, education, perceived collective efficacy, cynicism, and prior social involvement. Adding these predictors will allow both academic researchers and practitioners to better understand and predict social activism behavior. Improving these predictions will allow nonprofit leaders to better target social media campaigns and increase online engagement.

TPB should also be extended to include next steps. That is, what happens after one engages in online activism? Does engaging in online activism increase or decrease their likelihood to engage in more traditional activism or engage in online activism again? Research on these next steps can help practitioners draw conclusions on what social media strategies result in continued and further engagement. This is a potentially rich area of exploration particularly valuable for nonprofit organizations. If research can help to understand if and how social media users go from online issue activists to volunteers and donors, nonprofit organizations should be able to improve outreach and marketing initiatives.

Another important theoretical consideration, and potential benefit of this program of research could consider what, if any, externalities are realized when a person engages in online activism? Shifting the focus away from the instrumental impact (raised awareness, donations, successful advocacy) to personal benefits of online activism is consistent with research
examining benefits donors and volunteers receive for their philanthropic efforts (Paulini, et al., 2014; Andreoni, 1990). While it is hard to predict what externalities may result, drawing from research on donors and volunteers, research could test social connection, a “warm glow,” (Andreoni, 1990), increased self-esteem, and increased collective efficacy. Nonprofit leaders can leverage these potential benefits of social cause activism in social campaigns to persuade passive stakeholders to engage. Additionally, experiencing these benefits and increasing engagement with social causes and nonprofit organizations may increase a person’s willingness to engage in the future. Future research could test nonrecrusvie models in which engaging in social cause activism and receiving positive personal benefits is used to predict intention to engage in the future.

Another important area for future research is to test the conclusions of this study using real users in a real nonprofit social activism campaign. Nonprofit leaders should conclude from this study that increasing stakeholder self-efficacy related to online activism should result in increased online activism behavior. This conclusion should be tested using different message strategies from nonprofit organizations. Experimental research could evaluate the impact of different message strategies such as increasing self-efficacy, impression management, and norms on stakeholder activism behavior. Triangulating the results of this study with experimental research using real online activism campaigns would strengthen the results of this study for practitioners. It would also build the existing exploratory research that has evaluated social activism message strategies with regard to organizational outcomes (Preston, 2010).

Finally, future research should continue to develop valid measurement for the constructs related to these studies and test these findings on different samples. Future research should develop new measures for TPB specific to this behavioral domain instead of adapting previously
validated measures. The newly developed social cause efficacy engagement online measure should be tested using appropriate procedures. Exploratory factor analysis should be used to test the theory advanced by this measure in this specific sample and confirmatory factor analysis should be used to test the unidimensional and two-factor solution to determine which solution bests fits the data. Different measures of impression management should also be tested, particularly given the low reliability found in this study. Other measures of impression management that also measure “selfish” motives should be included in the model to continue to test the theory of many critics that social media activism is less activism and more slacktivism (Lim, 2013; Budish, 2012; Morozov, 2009). It is important, however, that these studies investigate these “selfish” motives in combination with other competing predictors, such as self-efficacy, so their impact can be examined in comparison to other predictors of human behavior.

Finally, as previously mentioned, the sample used in this research does not fully represent the millennial population. While young, educated, affluent stakeholders may be highly sought after, the findings of this research should be interpreted with caution. This is true of any nonrandom sample, but is particularly true of this sample. Future research should seek to replicate this study on more diverse samples. Replication with a diversified sample will strengthen the generalizability of findings. This research also did not investigate gender differences or other demographic impacts on the model. Future research could test invariance between different demographic variables to assess the viability of these models in different groups. For example, the model could be compared for men and women, among socioeconomic status groups, and other demographic variables.

Conclusion
This research sought to understand the psychological constructs that can help predict a person’s intention to and actual engagement in online activism behavior using the Theory of Planned Behavior. Gaining a better understanding of how and why stakeholders make decisions to engage or not in social media activism can help organizations more strategically use social media in pursuit of their missions. For nonprofit organizations, the question is not if, but how to use social media. Therein lies the strategic dilemma many organizations face – demand for a social media presence without an understanding of why or how to use social media strategically. This research aimed to provide an understanding of what can predict online social activism. The findings support TPB with self-efficacy added to the model as a viable way to predict online activism behavior.

Nonprofit leaders can use the findings of this research to begin to test social media campaigns that aim to increase positive attitudes toward social activism, create social norms that support social activism, and increase self-efficacy toward generating social change via online activism. The combination of these findings and previous research outlining message strategy (Preston, 2010), a dialogic approach (Sisco & McCorkindale, 2013), and consistency can begin to help organizations formulate social media strategies that should produce increased engagement. Online activists are engaged online, and emerging research has indicated they are also active in offline activities such as donating, calling on representatives, and volunteering (Center for Social Impact Communication, 2011). These stakeholders represent a promising group of potential supporters organizational leaders should be strategically engaging, and this study is a step toward helping organizations develop appropriate strategies.
References

Crosby, J. (2015, January 26). As older Minnesota volunteers leave, who will replace them?

http://evidencebasedmarketing.net/cause-marketing-moving-beyond-corporate-slacktivism/

Predicting digital activism behaviors

http://dx.doi.org/10.1016/j.pubrev.2014.12.005

http://dx.doi.org/10.1108/eb047413

Predicting digital activism behaviors

Predicting digital activism behaviors

doi:10.1080/08824090802636959

doi:10.1080/15348423.2015.1131044

Predicting digital activism behaviors

doi:10.1002/nvsm.1474

Appendix

Social Cause Engagement Efficacy (Traditional)

Indicate your level of confidence in your ability with regard to the statements about your ability to engage in / accomplish the following:

1-Strongly Disagree 2-Disagree 3- Somewhat disagree 4 - Neither Agree or Disagree 5 – Somewhat Agree 6 – Agree 7-Strongly Agree

1. Influence the decisions of others.
2. Shape the public deliberation about an issue.
3. Participate in the public deliberation about an issue.
4. Persuade others
5. Inform others
6. Be part of a social movement
7. Connect with other advocates
8. Have my opinion heard by leaders.
9. Change the way others think about an issue.
10. Inform others about problems in the world.
11. Persuade others to take action to solve a problem.
12. Persuade leaders to take action to solve a problem.
13. Enact social change.

Social Cause Engagement Efficacy (Online)

Indicate your level of confidence in your ability with regard to the statements about your ability to engage in / accomplish the following ONLINE:

1-Strongly Disagree 2-Disagree 3- Somewhat disagree 4 - Neither Agree or Disagree 5 – Somewhat Agree 6 – Agree 7-Strongly Agree

1. Influence the decisions of others.
2. Shape the public deliberation about an issue.
3. Participate in the public deliberation about an issue.
4. Persuade others
5. Inform others
6. Be part of a social movement
7. Connect with other advocates
8. Have my opinion heard by leaders.
9. Change the way others think about an issue.
10. Inform others about problems in the world.
11. Persuade others to take action to solve a problem.
12. Persuade leaders to take action to solve a problem.
13. Enact social change.
Impression Management

Indicate your level of agreement with the following questions.

1-Strongly Disagree 2-Disagree 3- Somewhat disagree 4 - Neither Agree or Disagree 5 – Somewhat Agree 6 – Agree 7-Strongly Agree

1. I sometimes try to be someone other than my true self on social media
2. I am a completely different person online than I am offline
3. I post information about myself on my social media profile that is not true
4. Sometimes I feel like I keep up a front on social media.
5. I have a good sense of who I am and many of the things I do on my social media profile is a way of showing that
6. Who I am online is similar to who I am offline
7. I have a good sense of what I want in life and using social media is a way to express my views and beliefs
8. The way I present myself on social media is how I am in real life
9. I like myself and am proud of what I stand for and I show it on my social media profile
10. On social media I can tryout many aspects of who I am much more than I can in real life
11. I change my photos on my social media profile to show people the different aspects of who I am
12. I feel like I have many sides to myself and I show it on my social media profile
13. I compare myself to others on social media
14. I try to impress others with the photos I post of myself on my social media profile
15. I only show the aspects of myself on social media that I know people would like
16. I post things on my social media to show aspects of who I want to be
17. Who I want to be is often reflected in the things I do on my social media profile (e.g., statuses, posts, comments, photos, etc.)

Behavioral Attitudes

Indicate your level of agreement with the following questions.

1-Strongly Disagree 2-Disagree 3- Somewhat disagree 4 - Neither Agree or Disagree 5 – Somewhat Agree 6 – Agree 7-Strongly Agree

1. For me, sharing advocacy or social cause messages is important.
2. For me, participating in a social media advocacy or social cause campaign is important.
3. For me, volunteering with advocacy or social cause organizations is important.
4. People should not use social media for activism or social causes.
5. For me, advocating for social change is important.
6. For me, attending advocacy events is important.
7. For me, donating to money is important.
Subjective Norms

Indicate your level of agreement with the following questions.

1 - Strongly Disagree
2 - Disagree
3 - Somewhat disagree
4 - Neither Agree or Disagree
5 - Somewhat Agree
6 - Agree
7 - Strongly Agree

1. My friends view me liking or favoriting a social cause or advocacy social media post positively.
2. My friends view me sharing or retweeting a social cause or advocacy social media post positively.
3. My friends view me joining a social cause or advocacy Facebook group positively.
4. My friends view me commenting on a social cause or advocacy social media post positively.
5. My friends think I should volunteer with advocacy or social cause organizations.
6. My friends view me engaging in advocacy positively.
7. My friends think I should donate money to charity.
8. My friends think I should join an advocacy or social cause organization.
9. My friends view me engaging with social causes positively.

Behavioral Control

Indicate your level of agreement with the following questions.

1 - Strongly Disagree
2 - Disagree
3 - Somewhat disagree
4 - Neither Agree or Disagree
5 - Somewhat Agree
6 - Agree
7 - Strongly Agree

1. Making a positive change in lives of others is within my control
2. Helping to change public policy is within my control
3. Volunteering is within my control
4. Joining an advocacy organization within my control
5. Participating in a social media advocacy or social cause campaign is within my control
6. Donating money to a charity is within my control
7. Changing the public deliberation is within my control
8. Spreading advocacy or social cause messages is within my control
9. Persuading leaders is within my control.
10. Persuading others is within my control.
11. Enacting social change is within my control
12. Changing the way others think about social issues is within my control
Behavioral Intention

When answering these questions consider what you intend to do.

1 – Definitely will not 2–Probably will not 3–Don’t know 4–Probably Will 5–Definitely Will

1. Like or favorite a social media post about a social issue
2. Share or retweet a social media post about a social issue
3. Join the Facebook group related to a message about a social issue
4. Comment on a social media post about a social issue
5. Write a post on my page or profile about a social issue I care about
6. Volunteer with the organization that puts out a message about a social issue I care about
7. Engage in advocacy or activism about a social issue I care about
8. Join the advocacy organization that works on a social issue I care about
9. Donate money to the organization that works on a social issue I care about
10. Talk with my family or friends about a social issue I care about

Social Cause Engagement

In the past year I have …

1–Never 2–Rarely 3–Sometimes 4–Often 5–Very Frequently

1. engaged in advocacy or activism
2. joined an advocacy or nonprofit organization
3. donated money to an advocacy organization, nonprofit organization, or social issue
4. liked or favorited an advocacy related social media post, tweet, or Instagram picture
5. shared or retweeted social media advocacy or social issue messages
6. joined an advocacy or social issue Facebook group
7. commented on advocacy or social issue related social media posts
8. tried to persuade others about a social issue
9. tried to influence leaders about a social issue
10. connected with other advocates

Impression Management

Indicate your level of agreement with the following questions.

1–Strongly Disagree 2–Disagree 3–Neither Agree or Disagree 4 – Agree 5–Strongly Agree

1. I sometimes try to be someone other than my true self on social media.
2. I am a completely different person online than I am offline.
3. I post information about myself on my social media profile that is not true
4. Sometimes I feel like I keep up a front on social media.
5. I have a good sense of who I am and many of the things I do on my social media profile is a way of showing that.
6. Who I am online is similar to who I am offline.
7. I have a good sense of what I want in life and using social media is a way to express my views and beliefs.
8. The way I present myself on social media is how I am in real life.
9. I like myself and am proud of what I stand for and I show it on my social media profile.
10. On social media I can tryout many aspects of who I am much more than I can in real life.
11. I change my photos on my social media profile to show people the different aspects of who I am.
12. I feel like I have many sides to myself and I show it on my social media profile.
13. I compare myself to others on social media.
14. I try to impress others with the photos I post of myself on my social media profile.
15. I only show the aspects of myself on social media that I know people would like.
16. I post things on my social media to show aspects of who I want to be.
17. Who I want to be is often reflected in the things I do on my social media profile (e.g., statuses, posts, comments, photos, etc.).