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Abstract 

In education, researchers and evaluators are interested in assessing the impact of 

programs or interventions.  Unfortunately, most education programs do not lend 

themselves to random assignment; participants generally self-select into programs.  Lack 

of random assignment limits the claims that researchers can make about the impact of the 

program because individuals who self-select into the program may be qualitatively 

different from individuals who do not self-select into the program.  Propensity score 

matching allows researchers to mimic random assignment by creating a matched 

comparison group that is similar to the treatment group on researcher-identified variables.   

There are a number of matching methods to choose from when employing 

propensity score matching.  Matching methods vary in distance measures, matching 

algorithms, and rules for comparison group member selection that are used.  Thus, the 

purpose of this study was to examine common matching techniques to determine how 

they differed in terms of the quantity and quality of matches and whether the results of 

subsequent group comparisons (e.g., significance test results, estimated effect sizes) 

varied across the different matching techniques.  Differences across effect size, treatment 

group sample size, comparison-to-treatment ratio, and analysis technique were also 

examined.   

To empirically investigate the performance of common matching methods under 

known and systematically manipulated conditions, data were simulated to reflect values 

found in higher education, using a recent study by Jacovidis and her colleagues (in press).  

The choice of matching method dictates both the quality and quantity of the matches 

obtained and the resulting outcome analyses (e.g., statistical significance tests and 
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estimated effect sizes).  Although nearest neighbor matching with calipers produced 

better quality matches than the other matching methods, it also resulted in the loss of 

treatment group members.  If treatment group members are excluded from the matched 

groups, representation of the treatment group could be compromised.  If this happens, the 

researcher may want to select a matching method that does not result in a loss of 

treatment group members.  It is up to the researcher to decide how to best balance the 

quality and quantity of matches, while recognizing that this decision can impact the 

accuracy of the outcome analyses.  

 



 

 

CHAPTER 1 

Introduction 

Throughout the last decade, there has been increased use of propensity score 

matching in education research and evaluation (e.g., Branda & Xieb, 2010; Melguizo, 

Kienzl, & Alfonso, 2011; Schochet, D’Amico, Berk, Dolfin, & Wozny, 2012; Titus, 

2007).  This is largely because education researchers and evaluators are attempting to 

assess the impact of programs or interventions in situations where random assignment is 

not possible.  Propensity score matching is one option for establishing an equivalent 

comparison group when random assignment is not feasible.  Moreover, many federal and 

state agencies that fund education programs have increased their demand for rigorous 

research and evaluation designs, often including the explicit requirement of an equivalent 

comparison group (National Science Foundation, 2016; US Department of Education, 

2015; US Department of Labor, 2014; What Works Clearinghouse, 2014).   

Although there is extensive research related to propensity score matching, there is 

little guidance on some of the decision points in the propensity score matching process.  

Specifically, additional direction is needed on how to select a matching method, how that 

selection may impact the obtained matches, and ultimately, how that selection may 

impact the outcome analyses.  The purpose of this study was to examine common 

matching techniques to determine how they differed in terms of the quantity and quality 

of matches and whether the results of subsequent group comparisons (e.g., significance 

test results, effect sizes) varied across the different matching techniques and conditions. 
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Background Context 

Both K-12 and higher education personnel implement programs to improve 

instruction and pedagogy and promote student learning and development.  Given that 

education agencies (e.g., federal, state, and local departments of education, foundations, 

and other funding agencies) invest substantial resources in these types of programs, it is 

important to evaluate whether the participants change in the expected ways.  More 

importantly, evidence is needed to demonstrate that these changes are attributable to 

program participation, as opposed to maturation or other life experiences.  To make these 

causal claims, research and evaluation on the programs must use rigorous methodologies 

that warrant such claims.  

True experimental design (also called randomized controlled trials) is seen as the 

“gold standard” in research and evaluation methodologies.  At the cornerstone of true 

experimental design is random assignment—participants are randomly placed into the 

treatment or comparison groups.  Theoretically, random assignment ensures that any 

variation between the two groups prior to treatment is random.  That is, treatment and 

comparison group members vary only randomly on background and experience variables, 

effectively controlling for the effect of these variables on the outcome. 

Unfortunately, education programs often do not lend themselves to random 

assignment; generally, participants self-select (or are selected by administrators) into the 

program instead of being randomly assigned.  As such, individuals who self-select into 

the program may be qualitatively different from individuals who do not participant in the 

program (Cook, 1999; Davies, Williams, & Yanchar, 2008).  For example, suppose 

researchers have a teacher professional development program in which teachers volunteer 
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to participate.  First, the researchers would be limited by the fact that only those teachers 

who are interested in the program will participate.  It seems reasonable that teachers 

interested in participating in a professional development program would differ on key 

characteristics that may also relate to the outcome.  For instance, these teachers may be 

more motivated to learn about novel instructional strategies and may be more willing to 

try new strategies in their classrooms, even before participating in the professional 

development program.  If this is the case and the researchers compared participants and 

non-participants, they may erroneously conclude that the program caused teachers to use 

more diverse instructional strategies in their classrooms.  Conversely, suppose that the 

professional development program was focused on teacher confidence and only early 

career teachers self-selected into the program.  If the researchers compared these early 

career teachers to a group comprised of experienced teachers, then they may incorrectly 

conclude that the program was ineffective, as experienced teachers will likely have 

higher confidence levels than early career teachers.  Ultimately, in both scenarios, the two 

groups were qualitatively different prior to the treatment.  As such, researchers cannot 

parse out the effects of the program from preexisting differences—they are confounded.  

Random assignment addresses this issue of confounding and allows researchers 

and evaluators to make causal claims regarding the effects of programs (Shadish, Cook, 

& Campbell, 2002).  However, as already mentioned, true experimental design is often 

impractical in education contexts.  As such, researchers and evaluators are forced to 

employ quasi-experimental designs or observational studies to assess the effectiveness of 

their programming.  This limits the causal claims that researchers can make about the 
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impact of their programs and makes it difficult to differentiate the effect of the program 

from systematic preexisting differences (i.e., self-selection bias; Winship & Mare, 1992). 

Overview of Propensity Score Matching 

Propensity score matching provides one approach for creating comparable groups 

based on students’ propensity for participation in the intervention (regardless of whether 

or not they actually participated).  Propensity score matching creates a matched 

comparison group that is similar to the treatment group on a set of covariates (Austin, 

2011b; Guo & Fraser, 2015; Luellen, Shadish, & Clark, 2005; Rosenbaum & Rubin, 

1983; Stuart, 2010; Stuart & Rubin, 2008).  Thus, propensity score matching allows 

researchers to mimic random assignment by balancing the distributions of the covariates 

across the treatment and matched comparison groups.  Theoretically, balancing the 

groups on the propensity scores controls for the impact of the covariates on the outcome 

and allows for more meaningful group comparisons (e.g., more accurate estimates of the 

treatment effect) than if the propensity scores, and thus, covariates, were unbalanced.   

Propensity score matching involves a series of steps: 1) select appropriate 

covariates, 2) compute a distance measure, 3) select a matching method (e.g., nearest 

neighbor, optimal matching), 4) create matched groups, 5) diagnose the quality of 

matches, and 6) examine group differences on the outcome (Harris & Horst, 2016).  

Although each step in propensity score matching requires careful consideration, this 

study focused on selecting matching methods (Step 3), how selection of the matching 

method influenced the quality of matches (Step 5) and treatment effects estimated in the 

outcome analyses (Step 6). 
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Matching Methods   

Researchers have noted that additional research is needed to systematically 

examine what propensity score matching methods perform well under what data 

conditions (Austin, 2013; Bai, 2015).  Matching methods employ different distance 

measures (i.e., propensity scores or Mahalanobis distances), matching algorithms (i.e., 

greedy or optimal), and rules for comparison group member selection.  Thus, different 

matching methods could result in the selection of different comparison group members 

from the overall comparison pool.  Selection of matching method will not only affect the 

quality of matches, but may also affect the results of any outcome analyses.  As such, it is 

important to understand how the matching methods differ. 

Distance Measure.  There are various ways to compute the distance measure; 

however, two of the most common distance measures are propensity scores calculated via 

logistic regression (Guo & Fraser, 2015; Olmos & Govindasamy, 2015) and Mahalanobis 

distances (Cochran & Rubin, 1973; Guo & Fraser, 2015; Rubin, 1979).  A key difference 

between propensity scores and Mahalanobis distances concerns the weighting of the 

covariates.  Mahalanobis distances equally weight all covariates, taking into 

consideration variances and covariances of the covariates, whereas propensity scores 

weight covariates by how well they predict group membership.   

Matching Algorithm.  Propensity score matching typically employs one of two 

matching algorithms: greedy or optimal.  The distinction between the greedy and optimal 

algorithms is whether matches are re-evaluated and modified throughout the matching 

process.  The greedy algorithm proceeds sequentially, matching each treatment group 

member to the closest available comparison pool member based on the distance measure.  
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Matches are not modified at later stages in the matching process (Gu & Rosenbaum, 

1993; Stuart, 2010; Stuart & Rubin, 2008).  Conversely, the optimal algorithm re-

evaluates the total distance between matched groups at each step and may alter earlier 

matching decisions, if the change will result in the smallest average absolute distance 

across all matched pairs (Gu & Rosenbaum, 1993; Guo & Fraser, 2015; Ho et al., 2007, 

2011; Pan & Bai, 2015; Stuart, 2010).   

Matching Methods.  Variations of four matching methods were included in this 

study: random sampling, nearest neighbor matching, nearest neighbor matching with 

calipers, and optimal matching.  In random sampling, as the name implies, a subset of the 

larger comparison group reservoir is randomly selected; this technique does not consider 

distance measures or covariates.  Nearest neighbor uses a greedy algorithm to match each 

treatment group member to the closest available comparison pool member (Gu & 

Rosenbaum, 1993; Stuart, 2010; Stuart & Rubin, 2008).  Nearest neighbor matching can 

be used with propensity scores or Mahalanobis distances and this study included both.  

When calipers are applied to nearest neighbor matching, treatment group members are 

only matched to comparison pool members if the propensity scores are within the 

researcher-specified caliper distance.  Three calipers were applied in the current study: 

0.1, 0.2, and 0.3 standard deviations of the logit of the propensity score.  Optimal 

matching uses an optimal algorithm to match each treatment group member to the closest 

available comparison pool member, thus matches are re-evaluated and may be modified 

throughout the matching process (Gu & Rosenbaum, 1993; Guo & Fraser, 2015; Ho et 

al., 2007, 2011; Stuart, 2010).  This study examined the performance of optimal matching 
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with one comparison to one treatment group member (optimal 1:1) and two comparison 

to one treatment group members (optimal 2:1).   

Comparing Matching Methods.  Studies comparing the matching methods 

described above are limited.  Typically, performance of matching methods is determined 

by how well the matching method can balance the groups on the distance measure and 

the covariates or by how well the matching method reduces selection bias (Pan & Bai, 

2015; Stuart & Rubin, 2008).  Propensity scores result in better balanced groups than 

Mahalanobis distances when there are a large number of covariates (e.g., 20; Gu & 

Rosenbaum, 1993); however, the two distance measures result in comparable balance 

when there are a small number of covariates (e.g., 2 to 8; Gu & Rosenbaum, 1993; Zhao, 

2004).  Further, when treatment group members compete for comparison group members, 

the optimal algorithm outperforms the greedy algorithm (Gu & Rosenbaum, 1993); 

otherwise, the greedy and optimal matching approaches perform comparably in creating 

groups with balanced covariates (Austin, 2009b, 2013; Bai, 2013; Gu & Rosenbaum, 

1993).   

When calipers are applied to nearest neighbor matching, covariates and 

propensity scores are more balanced than when calipers are not applied (Austin, 2009b, 

2013; Bai, 2015; Jacovidis et al., in press; Rosenbaum & Rubin, 1985).  However, nearest 

neighbor matching with calipers also generally results in a loss of treatment group 

members (e.g., Austin, 2009b, 2013; Bai, 2015; Jacovidis et al, in press), as treatment 

group members who are not able to be matched are excluded from the matched data set.  

Moreover, as the caliper becomes more stringent, propensity score and covariate balance 

improves (Austin, 2009b, 2010a; Dehejia & Wahba, 2002; Jacovidis, in press), but loss of 
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treatment group members tends to be greater (e.g., Austin, 2009b, 2013; Dehejia & 

Wahba, 2002; Jacovidis et al., in press).  This often results in tension between obtaining 

equivalent groups and maintaining representation of the original treatment group. 

Few researchers have included the impact of matching methods on outcome 

analyses as part of the evaluation of matching method performance (Austin, 2013; 

Jacovidis et al., in press; Stone & Tang, 2013).  As such, it is difficult to make general 

conclusions about matching method performance.  Further, different decisions could be 

made about whether there was a statistically significant difference between groups, 

depending on which matching method was used (Jacovidis et al., in press).  However, 

additional research is needed in this area and that is a primary goal of this study.   

Limitations of Current Matching Method Research.  Although comparison of 

matching methods have received some attention in the propensity score literature, there 

are a few limitations of note.  First, studies comparing matching methods have not been 

systematic.  Thus, it is difficult to determine what matching method should be used in 

what situation.  Second, many studies are conducted using applied data.  These studies 

compare matching methods on propensity score and covariate balance and bias reduction; 

however, it is difficult to include an examination of outcome analyses, as true group 

differences are typically unknown.  Finally, in simulation studies, the simulated data are 

often unrealistic in that the simulated covariates are either all continuous or all binary.  

Additionally, the covariates are almost always simulated to be independent (e.g., Austin, 

2011a, 2013).  This may or may not make a difference in matching method performance; 

however, that is an empirical question that has not been investigated.  
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Other Study Conditions 

This study also included an examination of the influence of treatment group 

sample size, comparison-to-treatment group ratio, and type of outcome analysis on 

matching method performance (e.g., covariate and distance measure balance and 

treatment effect estimates).  Relevant information regarding these areas is described 

below. 

Sample Size and Comparison-to-Treatment Ratio.  The propensity score 

matching literature regarding sample size and comparison-to-treatment group ratio is 

unclear.  There appears to be a complex interplay among total sample size, treatment 

group sample size, and comparison-to-treatment group ratio.  This is also intertwined 

with how similar on the covariates the members of the comparison group reservoir are to 

the treatment group members (e.g., common support), as the similarity between groups 

heavily influences whether or not adequate matches can be found.  Although these issues 

have been examined, the examination has not been systematic (e.g., Bai, 2015; Dehejia & 

Wahba, 2002; Rosenbaum & Rubin, 1983; Rubin, 1979).  Thus, clear guidelines do not 

exist for researchers and evaluators as they conduct propensity score matching studies.  

Additional research is needed in this area.  As such, the current study included an 

examination of the performance of the matching methods with different treatment group 

sample sizes and comparison-to-treatment group ratios. 

Outcome Analyses.  Ultimately, the goal of propensity score matching is to 

obtain comparable groups so that the researchers can examine group differences on the 

outcome of interest.  There appears to be misalignment between the recommended 

approach to outcome analyses and the approach that researchers have taken in applied 
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practice.  Propensity score researchers recommend that any covariates included in the 

matching model that remain unbalanced after matching should be included in the 

outcome analyses (Pan & Bai, 2015; Rosenbaum & Rubin, 1985).  This technique has 

been shown to produce accurate estimates of treatment effects regardless of the choice of 

propensity score matching methods (Schafer & Kang, 2008; Shadish, Clark, & Steiner, 

2008).  However, researchers and evaluators using propensity score matching in applied 

settings often conduct group comparisons without including unbalanced covariates (e.g., 

Clark & Cundiff, 2011; Lu, Zanutto, Hornik, & Rosenbaum, 2001; Morgan, Frisco, 

Farkas & Hibel, 2010; Olitsky, 2013).  Although the decision on whether to include 

unbalanced covariates will make little difference if the groups are balanced, it could 

influence the inferences made if the groups are still unbalanced on the covariates after 

matching.  

The Current Study 

Given that matching methods employ different distance measures, algorithms, and 

rules for selecting comparison group members, each technique could potentially lead to 

the selection of different comparison group members from the overall comparison pool to 

create the matched comparison group.  Moreover, matched comparison group 

composition could vary considerably depending on the matching algorithm used.  This 

will not only impact the quality of matches, but may also impact the results of any 

outcome analyses (e.g., Austin, 2013; Jacovidis et al., in press; Stone & Tang, 2913).  As 

noted, additional research is needed on matching methods to provide guidance to 

practitioners on which matching methods perform the best under which conditions, and 

this study was meant to be one in a line of research on matching methods.  The purpose 
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of this study was to examine and compare common matching techniques under 

systematically manipulated conditions, representative of program evaluation and 

effectiveness studies.  Specifically, the current study addressed four research questions.   

Research Question 1: How do the most common matching methods differ, in 

terms of quantity (i.e., number of matches) and quality (i.e., covariate balance) of 

matches?  Each matching method selects comparison units from the comparison pool 

reservoir in a different manner.  Some of the matching techniques result in the best match 

regardless of how close the match is (e.g., nearest neighbor, optimal matching), whereas 

other techniques require that the match fall within a specified distance from the treatment 

unit (e.g., caliper matching).  If no matches can be found within the specified distance, 

then the treatment unit is dropped from further analyses.  It is quite possible for different 

matching techniques to create comparison groups that are each composed of different 

individuals from the overall comparison pool.  Further, it is possible that the matching 

technique that results in the best covariate balance also results in the loss of treatment 

units (e.g., Austin, 2009b, 2013; Bai, 2015; Jacovidis et al, in press).  This research 

question explored these issues. 

Research Question 2: Once matched comparison groups are formed, how do 

the results of group comparisons (e.g., significance tests) on the outcome compare 

across the different matching techniques?  Given that the matched comparison groups 

could be composed of different individuals from the overall comparison pool, it stands to 

reason that the results of any outcome analyses may differ depending on the selected 

matching algorithm (Austin, 2013; Jacovidis et al., in press; Stone & Tang, 2013).  This 

question addressed issues of Type I error and power for various effect sizes. 
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Research Question 3: How well do the matching methods recover the true 

treatment effect (e.g., difference between the group means)?  Of particular interest 

was the bias and root mean squared error of effect size estimates. 

Research Question 4: What conditions are optimal in obtaining accurate 

estimates of parameters?  Specifically, what combinations of true difference between 

the means, matching method, comparison-to-treatment ratio, sample size, and outcome 

analysis affect the treatment effect estimates?  
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CHAPTER 2 

Literature Review 

Often, education researchers and evaluators want to assess the impact of programs 

or interventions in situations where random assignment is not possible.  When 

participants self-select into programs, variables related to participation in the 

intervention, particularly those related to the outcome of interest, can influence the 

inferences drawn from the findings.  If researchers conclude that the intervention is 

impactful (attributing group differences to the intervention when the intervention was not 

impactful), they could be making flawed conclusions.  Propensity score matching 

provides one approach for dealing with this situation by creating comparable groups 

based on an individual’s propensity for participation in the intervention, regardless of 

actual participation.  Although there is extensive research on propensity score matching, 

there is little guidance on how to select a matching method, how that selection may 

impact the obtained matches, and ultimately, how that selection may impact the outcome 

analyses.  The purpose of the current study was to examine and compare the performance 

of common matching techniques under manipulated conditions and make 

recommendations regarding the use of those matching methods. 

Overview of Propensity Score Matching 

Propensity score matching is a technique that allows researchers to create a 

matched comparison group that is similar to the treatment group on a set of researcher-

identified characteristics, called covariates (Austin, 2011b; Guo & Fraser, 2015; Luellen 

et al., 2005; Rosenbaum & Rubin, 1983; Stuart, 2010; Stuart & Rubin, 2008).  Propensity 

score matching reduces selection bias by controlling for covariates related to self-
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selection into the treatment group, the outcome of interest, or both (Austin, 2007a; 

Austin, Grootendorst, & Anderson, 2007; Caliendo & Kopeinig, 2008; Guo & Fraser, 

2015; Stuart & Rubin, 2008).  Propensity score matching allows researchers to mimic 

random assignment by balancing the distributions of the covariates across the treatment 

and matched comparison groups.  That is, propensity scores are calculated from a set of 

covariates, and then matches are created based on those scores, effectively controlling for 

groups differences on the covariates.   

Propensity scores are defined as the probability of treatment group membership, 

conditional upon a set of observed covariates (Joffe & Rosenbaum, 1999; Rosenbaum & 

Rubin, 1983).  The formal definition of a propensity score is shown in Equation 1, 

𝑝(𝑿𝒊) = Pr(𝑇𝑖 = 1|𝑿𝒊)       (1) 

where Pr represents the probability of treatment group membership, Ti represents binary 

group membership (0 for comparison, 1 for treatment) for person i and Xi represents the 

vector of covariates for person i.  Theoretically, balancing on the propensity scores 

controls for the impact of the covariates on the outcome.  This allows for more 

meaningful group comparisons (e.g., more accurate estimates of the treatment effect) than 

if the propensity scores were unbalanced (Rosenbaum & Rubin, 1983).     

Logic of Propensity Score Matching.  In education research and evaluation, 

researchers are interested in estimating the effects of their programs.  Thus, they want to 

make causal statements, attributing group differences on some outcome of interest 

between treatment and comparison groups to their program.  As noted in Rubin’s Causal 

Model, there are two possible outcomes for each individual (Rubin, 1974): each 

individual could serve as a participant or a comparison group member.  Ultimately, 
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researchers want to know the outcome score for each individual under both group 

assignments.  By comparing the two potential outcomes, researchers can obtain an 

estimate of the causal effect (Rubin, 1974).  However, for any one individual, researchers 

can only observe one of the outcomes (Rubin, 1974, 1978).  This is a fundamental 

problem in causal modeling: it is impossible to observe the outcome of interest for the 

same individual in both the treatment and comparison group simultaneously (Rosenbaum 

& Rubin, 1983; Rubin, 1974).   

To make a causal linkage, researchers need to obtain some estimate of how the 

individuals would have performed on the outcome had they not received the treatment, 

known as the counterfactual (Rosenbaum & Rubin, 1983; Rubin, 1974).  Without a viable 

estimate of the counterfactual, researchers cannot rule out that the observed differences 

would have happened regardless of the program.  Thus, researchers attempt to obtain a 

credible estimate of the counterfactual in order to estimate the causal effect (Caliendo & 

Kopeinig, 2008; Holland, 1986; Pattanayak, 2015; Rubin, 1974).   

When random assignment is used, the comparison group serves as a proxy for the 

counterfactual because the two groups vary only randomly on observed and unobserved 

covariates.  Thus, the causal effect can be obtained by directly comparing the outcomes 

of the treatment and comparison groups (Rosenbaum & Rubin, 1983; Rubin, 1974).  

However, when random assignment is not possible, direct comparisons could be 

misleading, as treatment and comparison group members may differ systematically 

(Rosenbaum & Rubin, 1983). 

Propensity score matching is one option for creating a counterfactual group when 

random assignment cannot be employed (Rosenbaum & Rubin, 1983).  As noted 
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previously, propensity score matching allows researchers to create a matched comparison 

group that is similar to the treatment group on a set of researcher-identified 

characteristics, thus mimicking random assignment by balancing the distributions of the 

covariates across the treatment and matched comparison groups.  That is, propensity 

score matching results in an estimate of the counterfactual by allowing researchers to 

create a matched comparison group that is similar to the treatment group on a set of 

covariates.  If propensity score matching assumptions are met, the matching results in a 

comparison group that differs from the treatment group solely on assignment to the 

program.  Thus, balancing on the covariates allows for a direct comparison between the 

participant and matched comparison groups that is more meaningful than if the covariates 

were unbalanced (Rosenbaum & Rubin, 1983). 

There are two indices that are frequently used to estimate the average treatment 

effects in propensity score matching: average treatment effect (ATE) and average 

treatment effect on the treated (ATT; Caliendo & Kopeinig, 2008).  The ATE is the 

average treatment effect estimated for a given population.  That is, ATE is used to make 

inferences about the potential impact of the program for the whole population, if the 

whole population received the treatment (Austin, 2011b; Caliendo & Kopeinig, 2008; Ho 

et al., 2007).  The formula for the ATE is presented as Equation 2 (Ho et al., 2007, p. 

204),   

𝐴𝑇𝐸 = 
1

𝑛
∑ 𝐸[𝑌𝑖(1) − 𝑌𝑖(0)|𝑋𝑖]
𝑛
𝑖=1     (2) 

where Yi (1) is the expected value of the outcome for person i when treated, Yi (0) is the 

expected value of the outcome for person i when untreated, Xi is the vector of covariates 

for person i.  In propensity score analyses, ATE cannot be computed directly.  Instead, 
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estimation of the ATE requires an extrapolation of treatment across levels of the 

covariates and to the whole sample.   

The ATT is an estimate of the average treatment effect for the population 

represented by the group who actually participated in the program.  That is, ATT only 

involves making inferences about the individuals who participated or would be interested 

or eligible in participating in the program (Austin, 2011b; Caliendo & Kopeinig, 2008; 

Ho et al., 2007).  The formula for the ATT is presented as Equation 3 (Ho et al., 2007, p. 

204),   

𝐴𝑇𝑇 = 
1

∑ 𝑇𝑖
𝑛
𝑖=1

∑ 𝑇𝑖𝐸[𝑌𝑖(1) − 𝑌𝑖(0)|𝑋𝑖]
𝑛
𝑖=1          (3) 

where Ti is treatment group membership, Yi (1) is the expected value of the outcome for 

person i when treated, Yi (0) is the expected value of the outcome for person i when 

untreated, Xi is the vector of covariates for person i.  This is the approach that is typically 

taken when propensity score matching is used to create matched groups, and is the 

approach used in the current study.  The ATT is straightforward to estimate: the 

researcher compares the treatment and matched comparison group by conducting the 

appropriate inferential tests dictated by the research question of interest (Caliendo & 

Kopeinig, 2008; Gu & Rosenbaum, 1993; Ho et al., 2007; Stuart, 2010; Stuart & Rubin, 

2008).   

Researchers and evaluators should decide whether the ATE or the ATT is of 

interest in their particular research.  For example, in the teacher professional development 

program discussed earlier, researchers may want to estimate the potential impact of that 

program on all teachers in a given school or district.  In this situation, the researcher 

would be interested in estimating the ATE.  However, researchers may only want to 
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estimate the impact of the program on the teachers like those who participated; 

researchers may not be interested in the effects of the program on those who were not 

eligible to participate or who chose not to participate.  In this situation, the researcher 

would be interested in estimating the ATT.  Generally, in education research and 

evaluation studies and in studies that use propensity score matching to create matched 

groups, researchers are typically interested in the ATT.  Moreover, given that matching is 

the focus of the current study, ATT was estimated as an index of the average treatment 

effects.  

Assumptions.  Although propensity score matching can be a useful technique, it 

relies on strong assumptions.  One assumption of propensity score matching is 

conditional independence.  When conditional independence is assumed, treatment group 

assignment is “strongly ignorable” (Burgette, McCaffrey, & Griffin, 2015; Rosenbaum & 

Rubin, 1983, p. 43).  That is, after controlling for covariates, assignment to the treatment 

group is essentially random and each individual has the same probability of treatment, as 

in random assignment (Rosenbaum & Rubin, 1983).  However, this also requires that all 

relevant covariates related to participation are included in the matching model (e.g., there 

are no unmeasured covariates).  It is this assumption that allows the matched comparison 

group to be used as the counterfactual for the treatment group (Rosenbaum & Rubin, 

1983).  However, this assumption is often unrealistic given that researchers can never be 

certain that all key covariates have been included in the matching model. 

Another related assumption of propensity score matching is common support.  

Common support addresses the extent to which the participant and comparison groups are 

similar on their distributions of propensity scores (Caliendo & Kopeinig, 2008; Stuart, 
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2010).  Common support is required to find adequate matches and is a necessary, but not 

sufficient, condition for local independence.  A lack of common support may result in too 

few matched pairs (Caliendo & Kopeinig, 2008; Stuart, 2010).  However, when there is 

adequate overlap in the distribution of propensity scores, most matching techniques will 

produce similar results (Bai, 2015).  Researchers can examine the densities of the 

propensity scores to determine whether there is sufficient common support to produce 

adequate matches.  Although there is no standard for common support, Rubin (2001) 

suggested that there should be less than a 0.5 standard deviation unit difference between 

the groups on their average propensity scores.  If there are large differences between the 

minimum and maximum propensity scores between groups, some researchers (e.g., 

Caliendo & Kopeinig, 2008; Guo & Fraser, 2015) suggest removing cases from the 

comparison group that lie outside of the region of support for the treatment distribution.   

As with any study designed to make causal inferences, propensity score matching 

studies must also meet the stable unit treatment value assumption (Rosenbaum & Rubin, 

1983; Rubin, 1986).  This assumption essentially deals with contamination of the 

comparison group.  Ultimately, if participants share information about the program with 

comparison group members, this could lead to an effect on the outcome of interest.  For 

example, in the teacher professional development program scenario, if participating 

teachers shared instructional strategies with teachers in the comparison group, then this 

may impact the instructional strategies that comparison teachers use in their classroom, 

thus the outcome of interest has been contaminated by the sharing of information. 

Advantages and Disadvantages.  Propensity score matching has a few notable 

advantages and disadvantages.  One advantage of propensity score matching is that it 
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uses a linear combination of covariates to form a composite that can be used to balance 

the treatment and comparison groups.  As such, researchers can match on a large number 

of covariates without the decrement in treatment group sample size that would occur if 

the researcher matched treatment and comparison group members only when individuals 

had identical values on the covariates (e.g., exact matching).  Another advantage of 

propensity score matching is that it allows researchers to obtain a credible estimate of the 

counterfactual, when random assignment is not possible.  Propensity score matching 

results in a more precise estimate of the treatment effect than comparing groups with 

unbalanced covariates.  However, this is only true if propensity score matching 

assumptions are met (Rosenbaum & Rubin, 1983).   

One disadvantage is that propensity score matching relies on fairly stringent 

assumptions.  Researchers can never be certain that all key covariates have been included 

in the matching model.  Another related disadvantage of propensity score matching is that 

it only accounts for observed covariates (Austin, 2011b).  Variables that influence self-

selection into treatment or the outcome that have not been measured cannot be accounted 

for in the matching procedure.  Thus, any hidden bias due to the unmeasured variables 

may remain after matching.  Further, it is important to note that propensity score 

matching does not establish causation (Austin, 2011b).  Another disadvantage of 

propensity score matching is that it requires large samples with substantial overlap 

between the treatment and comparison groups on the covariates (Bai, 2015; Rubin, 1979).  

Propensity Score Matching Steps 

Numerous researchers have outlined the steps involved in propensity score 

matching (e.g., Caliendo & Kopeinig, 2008; Guo & Fraser, 2015; Harris & Horst, 2016; 
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Pan & Bai, 2015; Stuart & Rubin, 2008).  The general steps are shown in Figure 1.  

Specifically, when conducting a propensity score matching study, researchers must 

consider the following: 1) selecting appropriate covariates, 2) computing the distance 

measure, 3) selecting a matching method (e.g., nearest neighbor, optimal matching),  

4) creating matched groups, 5) diagnosing the quality of matches, and 6) examining 

group differences on the outcome (Harris & Horst, 2016).  Although each step requires 

careful consideration, this study focused on selecting matching methods (Step 3), 

diagnosing matches (Step 5), and examining group differences on the outcome (Step 6).  

For a guide to the decisions at each step of the propensity score matching process, see 

Harris and Horst (2016). 

 

Figure 1. Steps in propensity score matching.  

Step 1: Select appropriate covariates.  The first step in propensity score 

matching is selecting appropriate covariates.  As noted above, covariates should be 

related to selection into the treatment group, the outcome of interest, or both (Austin, 

2007a; Austin et al., 2007; Caliendo & Kopeinig, 2008; Guo & Fraser, 2015; Stuart & 

Rubin, 2008).  Unlike random assignment, propensity score matching does not balance 
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on unmeasured covariates (i.e., variables not used in the matching model; Austin, 2011b).  

If all relevant covariates were included in the matching model, then researchers could 

completely control for self-selection bias (Steyer, Gabler, von Davier, & Nachtigall, 

2000), and propensity score matching would produce a more precise estimate of the 

treatment effect than would be obtained without matching (Rosenbaum & Rubin, 1983; 

Rosenbaum & Rubin, 1984).  However, if researchers omit important covariates, the 

treatment and matched comparison group may still be qualitatively different on the 

unmeasured covariates (Austin, 2011; Steiner et al., 2010; Steiner, Cook, & Shadish, 

2011).  Thus, excluding key covariates can lead to biased estimates of the treatment effect 

if those covariates are related to self-selection into the treatment group or the outcome of 

interest (Austin et al., 2007; Brookhart et al., 2006; Steiner et al., 2010).  Although the 

selection of covariates was not of interest in the current study, selection of appropriate 

covariates is vital to the meaningfulness of the obtained matches (Caliendo & Kopeinig, 

2008; Steiner et al., 2010), and subsequently the inferences about the outcome measures 

made from the matched groups.   

Selection of covariates has received considerable attention in literature and a 

number of researchers have made recommendations on when to include or exclude 

certain covariates (Brookhart et al., 2006; Caliendo & Kopeinig, 2008; Rubin, 2001; 

Steiner et al., 2010; Steiner et al., 2011).  Researchers have suggested that covariates that 

influence the self-selection process should be included in the matching model.  For 

example, in a study comparing experimental and quasi-experimental estimates of 

treatment effects for mathematics and vocabulary training programs, researchers 

examined common categories of covariates: demographic variables, proxy-pretest 
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variables, prior academic achievement, topic preference, and psychological 

predisposition (Steiner et al., 2010).  Researchers found that self-selection into the 

mathematics training program could be fully explained by topic preference; however, 

self-selection into the vocabulary training program was more complex, requiring both 

topic preference and proxy pretest covariates to fully explain self-selection.  Further, 

although the researchers acknowledged that demographic and prior achievement 

variables were frequently included as covariates in in education, these covariates had 

little impact on removing self-selection bias (Steiner et al., 2010).  Although the 

importance of these particular covariates may not generalize to other programs, this study 

illustrates the importance of understanding which covariates are related to the self-

selection process. 

Other researchers have recommended that covariates that are unrelated to self-

selection but are related to the outcome of interest should always be included in the 

matching model; however, covariates that are related to self-selection, but unrelated to 

the outcome of interest can bias estimates of the treatment effect.  Additionally, the 

inclusion of variables that are strongly related to self-selection, but only weakly related to 

the outcome can bias estimates of the treatment effect when total sample size is small 

(Brookhart et al., 2006).  Thus, it is important that researchers understand the literature 

and program theory to select theoretically sound covariates (Brookhart et al., 2006; 

Rubin, 2001; Steiner, Cook, Shadish, & Clark, 2010).   

Researchers generally recommended that propensity score matching models 

include a large set of covariates (Austin et al., 2007; Brookhart et al., 2006; Stuart, 2010; 

Stuart & Rubin, 2008).  However, use of a large set of covariates should be balanced with 
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the fact that covariates need to be observable and measureable (i.e., covariates cannot be 

included if they have not been measured).  This often results in education researchers 

including covariates that are readily available or easy to measure such as demographic 

variables (e.g., gender, ethnicity), experience variables (e.g., age, grade, number of years 

of teaching experience), standardized test scores (e.g., SAT, ACT, GRE, state 

standardized test scores), dispositional measures (e.g., motivation), and personality traits 

(e.g., conscientiousness, openness to experience).  Given that this is a typical approach to 

selecting covariates and the goal of this study was to provide recommendations for 

propensity score matching methods under typical circumstances, the data for this study 

were modeled using this approach.  

Step 2: Compute distance measure.  Once covariates have been selected, they 

can be used to compute the distance measure used for creating matched groups.  There 

are various ways to compute the distance measure, such as logistic regression (Guo & 

Fraser, 2015; Olmos & Govindasamy, 2015), Mahalanobis distances (Guo & Fraser, 

2015; Zhao, 2004), discriminant analysis (Pan & Bai, 2015), boosted regression (Burgette 

et al., 2015; McCaffrey et al., 2013), Bayesian regression (Stone & Tang, 2013), and 

classification and regression trees (Lee, Lessler, & Stuart, 2010).  The most frequently 

used method for creating propensity scores, and one of the methods that was used in the 

current study, is logistic regression (Austin, 2011b; Stuart, 2010).  Thus, the propensity 

score is the probability of participating in a program, given a set of covariates (Luellen et 

al., 2005).  As shown in Equation 4, to compute propensity scores via logistic regression, 

the researcher simply includes the covariate scores as predictors of treatment group 

membership.   
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𝑝�̂� =
1

1+𝑒−(𝛽0+𝛽1(𝑋1𝑖)+⋯+𝛽𝑘(𝑋𝑘𝑖))
     (4) 

In Equation 4, �̂�𝑖 is the predicted probability of being in the treatment group and 𝛽0 +

𝛽1(𝑋1𝑖) + ⋯+ 𝛽𝑘(𝑋𝑘𝑖) represent the unique contribution of each of the k covariates to 

treatment group membership (Cohen, Cohen, West, & Aiken, 2003, p. 486). 

A propensity for treatment (e.g., propensity score) is estimated for each treatment 

and comparison group member.  Individuals with the same propensity score are 

considered to have the same propensity for participating in the program, regardless of 

whether or not they actually participated.  Moreover, members from different groups with 

the same propensity score have identical distributions on the set of covariates (Austin, 

2011b; Caliendo & Kopeinig, 2008; Ho et al., 2007; Stuart, 2010).  Thus, researchers can 

compare outcomes between individuals who did participate in the program with 

individuals who did not participate but who have the same propensity for treatment, 

conditional upon the covariates included in the model. 

Another distance measure frequently used to create matched groups, and the 

second distance measure included in the current study, is Mahalanobis distances 

(Cochran & Rubin, 1973; Guo & Fraser, 2015; Rubin, 1979).  Mahalanobis distance 

matching is not a propensity score technique.  Instead, Mahalanobis distances are used to 

match treatment and comparison group members.  Mahalanobis distance matching was 

developed prior to propensity score matching (Cochran & Rubin, 1973; Guo & Fraser, 

2015).  The formula for calculating Mahalanobis distances is presented in Equation 5 

(Guo & Fraser, 2015, p. 146),  

𝑀𝐷(𝑖, 𝑗) = (𝒖 − 𝒗)𝑇𝑪−1(𝒖 − 𝒗)     (5) 
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where the distance MD(i, j) is the Mahalanobis distance between treatment group 

member i and comparison group member j, u and v are vectors of covariates for treatment 

group member i and comparison group member j, respectively, and C is the sample 

covariance matrix from the full comparison group reservoir.    

A primary difference between propensity scores and Mahalanobis distances 

pertains to the weighting of the covariates.  Mahalanobis distance matching equally 

balances all covariates, also taking into consideration variances and covariances of the 

covariates, regardless of their relationship with group membership.  That is, all covariates 

are equally important in the calculation of the distance measure and contribute equally to 

matching (Rosenbaum & Rubin, 1983; Rubin, 1979; Stuart, 2010).  Conversely, in 

propensity score matching, the covariates are weighted by how well they predict 

treatment group membership.  Thus, covariates that have a stronger relationship with 

treatment group membership are weighted more heavily than covariates that have a 

weaker relationship with treatment group membership (Gu & Rosenbaum, 1993).  That 

is, covariates are not equally important.  

Researchers do not agree on whether propensity scores or Mahalanobis distances 

should be used for matching.  Results from simulation studies have suggested that if there 

are a large number of covariates (e.g., 20), then propensity score matching results in 

better balanced matches than Mahalanobis distance matching.  When there are few 

covariates (e.g., 2 to 8), the two distance measures result in comparable balance (Gu & 

Rosenbaum, 1993; Zhao, 2004).  Intuitively, this makes sense.  Propensity score 

matching weights covariates, giving greater importance to the ones that can better 

differentiate between groups (Rosenbaum & Rubin, 1983).  Mahalanobis distance 



27 

 

matching balances all covariates equally, which becomes more difficult as the number of 

covariates increases (Gu & Rosenbaum, 1993).  However, some researchers (e.g., King & 

Nielsen, 2016; Zhao, 2004) still advocate for Mahalanobis distance matching over 

propensity score matching.  Thus, the current study included both propensity score and 

Mahalanobis distance matching techniques. 

Step 3: Select Matching Method.  The next step is to select the matching method 

that will be used to create the matched groups.  There are general considerations for 

researchers irrespective of which matching method they choose.  These considerations 

include one-to-one versus one-to-many matching, matching with or without replacement, 

sample size, and comparison-to-treatment group ratio.  Additionally, there are a variety of 

matching methods, each employing different algorithms and matching rules.  This section 

provides a discussion of the general considerations, followed by a description of each 

matching method employed in the current study.  

When selecting a matching method, researchers should consider the number of 

comparison group members that will be matched to each treatment group member (i.e., 

one-to-one matching or one-to-many matching).  Generally, each treatment group 

member is matched to one comparison group member (one-to-one or pair-matching; 

Austin, 2013).  However, treatment group members can be matched to multiple 

comparison group members (one-to-many matching; Austin, 2010b).  Many of the 

matching methods apply one-to-one matching by default; however, one-to-many 

matching can easily be specified in current software packages (e.g., the R package 

‘MatchIt’; Ho, Imai, King, & Stuart, 2011). 
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Another consideration is whether to match with or without replacement.  When 

matching without replacement, each comparison pool group member can only be matched 

to one treatment group member.  When matching with replacement, there is the potential 

for the same comparison pool group member to be matched to multiple treatment group 

members.  Findings from simulation studies have suggested that if the treatment group 

size is less than half of the comparison group reservoir, treatment group members rarely 

compete for the same comparison group member (Carpenter, 1977).  

Some researchers have suggested that matching with replacement can result in 

better quality matches than matching without replacement (Caliendo & Kopeinig, 2008; 

Stuart, 2010).  However, there is mixed evidence on whether matching with replacement 

is more effective at reducing bias than matching without replacement (Austin, 2013; Bai, 

2015; Dehejia & Wahba, 2002).  Further, matching with replacement may cause a 

violation of the assumption of independence of observations (i.e., each match is unrelated 

to the other matches), as some comparison group members could be included more than 

once (Austin, 2007a, 2009b; Bai, 2015; Caliendo & Kopeinig, 2008; Stuart, 2010).  

Matching with replacement is rarely used in practice (Austin, 2009b; Caliendo & 

Kopeinig, 2008).  Therefore, the current study employed matching without replacement 

for all methods. 

Researchers should also consider sample size and comparison-to-treatment group 

ratio.  It is important to note upfront, the literature regarding sample size and comparison-

to-treatment group ratio is unclear.  Much of the confusion centers around whether 

researchers are focused on the total sample size (treatment and comparison group, 

collectively), the treatment group sample size, or the comparison group sample size 
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compared to the treatment group sample size (comparison-to-treatment ratio).  This is 

further complicated by the different definitions of “small” that researchers use when 

discussing sample size, without articulating whether they mean total or treatment group 

sample size.  Moreover, it is difficult to disentangle the effect of sample size and 

comparison-to-treatment group ratio because common support heavily influences whether 

or not adequate matches can be found.  

Propensity score matching was developed to be a large sample size technique; 

however, it has been applied in small sample size situations (e.g., small-scale program 

evaluations; Stone & Tang 2013).  There are mixed perspectives on whether propensity 

score matching should be used with small sample sizes and what constitutes a small 

sample size (e.g. Bai, 2015; Dehejia & Wahba, 2002; Rubin, 1979, 1997; Stone & Tang, 

2013; Zhao, 2004).  For example, findings from one study suggested that propensity 

score matching did not perform well when total sample size was “small” (defined by the 

researcher as n = 500) and the comparison-to-treatment group ratio was 5:1 for all sample 

sizes.  However, the correlations between the covariates and group membership was low 

(Zhao, 2004).  Thus, it likely that propensity score matching failed because the researcher 

violated the assumption of common support, not because the sample size was “small.” 

There is contradictory evidence about whether propensity score matching 

performs well with small treatment group sample sizes.  For example, results from one 

study indicated that when treatment group sample size was “small” (defined by the 

researcher as n = 30 or 60), propensity score matching did not perform well (Stone & 

Tang, 2013).  The comparison group reservoir for this study contained more than 300 

group members, a minimum comparison-to-treatment group ratio of 5:1 (Stone & Tang, 
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2013).  However, results from another study showed that when the treatment group was a 

little larger (n = 100), but the comparison-to-treatment group ratio was smaller (2:1), 

propensity score matching still performed well with some matching methods, namely 

caliper matching (Bai, 2015).   

Researchers have suggested that the size of the comparison group reservoir is 

more influential in matching than the total sample size (Bai, 2015; Dehejia & Wahba, 

2002; Rosenbaum & Rubin, 1983; Rubin, 1979).  Researchers have examined 

comparison-to-treatment group ratios from 2:1 to 6:1 and 9:1 and have consistently 

shown that as comparison-to-treatment group ratio increases, the quality of matches 

obtained with propensity score matching improves (Bai, 2015; Dehejia & Wahba, 2002; 

Rosenbaum & Rubin, 1983; Rubin, 1979).  This makes sense intuitively—the larger the 

comparison pool, the more likely an adequate match can be found for the treatment group 

members, assuming adequate common support.  However, the improvements in percent 

bias reduction from 2:1 to 9:1 were modest (Rubin, 1979). 

The interplay among total sample size, treatment group sample size, and 

comparison-to-treatment group ratio is complex.  Although researchers have examined 

these issues, the examination has not been systematic.  As such, there are no clear 

guidelines for researchers and evaluators as they conduct propensity score matching 

studies.  Additional research is needed to determine the appropriateness of propensity 

score matching with small total and treatment group sample sizes, as well as the 

minimum acceptable comparison-to-treatment group ratio.  Thus, the current study 

examined the performance of the matching methods with different treatment group 

sample sizes and comparison-to-treatment group ratios. 
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Finally, researchers should consider which matching method to employ.  The 

current study explored some of the most common matching techniques used in applied 

educational research: random sampling, nearest neighbor (with propensity scores and 

Mahalanobis distances), nearest neighbor with a caliper, and optimal matching (Austin, 

2011a; Caliendo & Kopeinig, 2008; Stuart, 2010; Stuart & Rubin, 2008).  Although 

random sampling and nearest neighbor matching with Mahalanobis distances are not 

propensity score techniques, they are included because they are commonly used in 

practice and allow for the comparison of propensity score techniques to non-propensity 

score matching techniques. 

It is worth noting that in recent years, there has been increased interest in other 

matching methods such as genetic matching (Diamond & Sekhon, 2013), stratification or 

subclassification (Rosenbaum & Rubin, 1984), and full matching (Gu & Rosenbaum, 

1993; Hansen, 2004).  These matching methods involve a different philosophical 

approach than nearest neighbor and optimal matching.  These methods are used to 

estimate ATE, not ATT.  As such, these techniques do not result in a matched 

comparison group; instead, comparison group members are weighted (e.g., all 

comparison group members are retained, but weighted according to the estimate obtain 

through the matching method).  As such, discussion of these techniques is beyond the 

scope of the current study.  A brief description of the matching methods included in this 

study is included below. 

Random Sample.  Random sampling involves randomly selecting a sample from 

the larger comparison group pool.  Random sampling is not a matching technique, per se.  

Further, this technique does not involve propensity scores or covariates.  Random 
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sampling is primarily used to create groups of comparable size, rather than to obtain 

comparable covariate distributions.  For example, if a researcher has a treatment group 

that consists of 50 students and comparison pool greater than 50, equally-sized groups 

could be created by taking a random sample of 50 students from the comparison pool.   

Given that covariates are not considered with random sampling, if the treatment 

group and comparison pool differ on the covariates, then the treatment group and 

randomly-sampled comparison group will also differ on the covariates (Rosenbaum & 

Rubin, 1985).  That is, the randomly sampled comparison group will typically resemble 

the full comparison pool on the covariates.  Creating groups of equal size can help 

researchers meet certain assumptions of outcome analyses; however, this technique does 

not control for selection bias.  If there is uncontrolled selection-bias, the treatment effect 

estimates will also be biased.  Although random sampling is not recommended, this 

technique was included as another point of comparison because of its prevalent use in 

applied practice. 

Nearest Neighbor.  One approach to creating a matched comparison group is to 

use the nearest neighbor matching method.  Nearest neighbor uses a greedy algorithm to 

sequentially match each treatment group member to the closest available comparison 

pool member (Gu & Rosenbaum, 1993; Stuart, 2010; Stuart & Rubin, 2008).  Nearest 

neighbor matching can be used with propensity scores or Mahalanobis distances, and this 

study examined the performance of the nearest neighbor matching method with both 

propensity score and Mahalanobis distance measures.  The formula for nearest neighbor 

matching is provided in Equation 6 (Pan & Bai, 2015, p. 7),   

𝑑(𝑖, 𝑗) = 𝑚𝑖𝑛𝑗{|𝑒(𝑋𝑖) − 𝑒(𝑋𝑗)|}           (6)  
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where d(i, j) is the distance (e.g. propensity score or Mahalanobis distance, depending on 

the selected distance measure) between treatment group member i and comparison group 

member j and 𝑚𝑖𝑛𝑗{|𝑒(𝑋𝑖) − 𝑒(𝑋𝑗)|} results in the selection of the comparison group 

member with the minimum absolute difference in the distance measure for treatment 

group member i. 

Conceptually, nearest neighbor matching involves similar steps regardless of 

which distance measure is used.  For propensity score matching, the nearest neighbor 

matching method starts with a treatment group member and selects the comparison pool 

member with the closest absolute difference between propensity scores (as defined in 

Equation 6).  Once the match is created, the algorithm proceeds sequentially in the same 

manner until all treatment group members have been matched.  For Mahalanobis 

distance, the matching algorithm starts with a treatment group member and calculates the 

Mahalanobis distance between that treatment group member and every comparison pool 

member on the vector of covariates.  The comparison pool member with the minimum 

distance is chosen as the match for the treatment group member (i.e., Equation 6), and 

both are removed from the matching pool.  This is repeated until all treatment group 

members have been matched (Guo & Fraser, 2015).  It is important to note that even 

though Mahalanobis distances are computed for each pair of treatment and comparison 

group members, current software packages do not save or report this information.   

The starting point for the matching algorithm varies depending on the software 

package used.  The default in the MatchIt package matches treatment group members 

with the largest distance measures first and those with the smallest distance measures 

matched last (Ho et al., 2011).  Research has shown minimal differences in the 
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performance of the greedy algorithm for different orderings of treatment group members 

for propensity score matching (e.g., high to low vs. low to high propensity scores; Austin, 

2013).  Regardless of distance measure, the nearest neighbor matching algorithm does not 

re-evaluate matches once a match has been made (i.e., a subsequent member could have a 

closer match, but the nearest neighbor algorithm will not adjust the matches; Stuart, 

2010).   

Nearest neighbor matching has been described as the most “straightforward” 

(Caliendo & Kopeinig, 2008, p. 41; Schuler, 2015) and understandable matching 

technique.  Unsurprisingly, nearest neighbor matching is one of the more commonly used 

matching algorithms (Austin, 2007a, 2009b).  However, the use of nearest neighbor 

matching can result in poor quality matches (Smith, 1997).  As noted, nearest neighbor 

with the greedy algorithm selects the best available match.  That does not necessarily 

mean that the absolute difference between the propensity scores is small; it just means 

that it is the smallest out of the available matches.   

Nearest Neighbor with caliper.  Given that nearest neighbor matching may not 

minimize the absolute difference between treatment and comparison group members on 

the distance measure (propensity scores or Mahalanobis distances), researchers often 

specify a caliper when conducting nearest neighbor matching (Austin, 2011a; Caliendo & 

Kopeinig, 2008; Stuart, 2010; Stuart & Rubin, 2008).  A caliper limits the maximum 

distance allowed for creating matches on the metric of the distance measure.  The 

formula for nearest neighbor matching with calipers is provided in Equation 7 (Pan & 

Bai, 2015, p. 7),   

𝑑(𝑖, 𝑗) = 𝑚𝑖𝑛𝑗{|𝑒(𝑋𝑖) − 𝑒(𝑋𝑗)| < 𝑏}     (7) 
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where d(i, j) is the distance (e.g. propensity score or Mahalanobis distance, depending on 

the selected distance measure) between treatment group member i and comparison group 

member j and 𝑚𝑖𝑛𝑗{|𝑒(𝑋𝑖) − 𝑒(𝑋𝑗)|} specifies, for treatment group member i, select the 

comparison group member that results in the minimum absolute difference in the distance 

measure but only if the absolute difference is less than b, where b is the research-specified 

distance. 

The matching process employs the same algorithm as nearest neighbor matching; 

however, treatment group members are only matched to comparison pool members if the 

propensity scores are within the specified caliper distance (typically in standard deviation 

units of the logit of the propensity score).  Calipers tend to result in matches that are more 

similar on the covariates (e.g., better quality matches) than nearest neighbor matching.  

However, the use of calipers could result in decreased sample size, as unmatched 

treatment group members are excluded from the matched data sets if there are no matches 

within the specified distance (Austin, 2013; Jacovidis et al., in press; Stuart, 2010).   

Calipers can be applied to almost any matching method; however, it is most 

common to use calipers with nearest neighbor matching (Austin, 2009b, 2011a; Stuart, 

2010).  Further, the current study only applied calipers to nearest neighbor matching on 

the propensity score distance measure.  Although researchers can employ the caliper of 

their choice, results from simulation studies have suggested that calipers of 0.2 standard 

deviations of the logit of the propensity score, or 0.02 or 0.03 standard deviations of the 

propensity score are preferred (Austin, 2009b, 2010a).  The current study examined the 

performance of nearest neighbor matching (using propensity scores as the distance 

measure) with three different calipers: 1) the recommended caliper of 0.2 standard 
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deviations of the logit of the propensity score, 2) a more liberal caliper of 0.3 standard 

deviations of the logit of the propensity score and 3) a more stringent caliper of 0.1 

standard deviations of the logit of the propensity score. 

Optimal matching.  Another approach to creating a matched comparison group is 

to use the optimal matching method, which employs an optimal algorithm (Gu & 

Rosenbaum, 1993; Guo & Fraser, 2015; Ho et al., 2007, 2011; Stuart, 2010).  Optimal 

matching considers the overall set of matches when choosing individual matches, with 

the goal of minimizing the global distance measure (Rosenbaum, 2002).  The optimal 

matching method starts with a treatment group member and selects the comparison pool 

member with the closest absolute difference between propensity scores.  Once a match is 

created, the optimal algorithm proceeds to the next match.  However, optimal matching 

evaluates the total distance between matched groups at each step and may alter earlier 

matching decisions, if the change will yield the smallest average absolute distance across 

all matched pairs (Gu & Rosenbaum, 1993; Guo & Fraser, 2015; Ho et al., 2007, 2011; 

Pan & Bai, 2015; Stuart, 2010).  That is, matched pairs made earlier in the process may 

be modified at later stages if the modification will minimize the overall distance between 

the matched groups.  Thus, the key distinction between the greedy algorithm used in 

nearest neighbor matching and the optimal algorithm used in optimal matching is whether 

or not the matches are re-evaluated and modified throughout the matching process. 

If researchers have a large reservoir of potential comparison group members, it is 

not uncommon for researchers to use optimal matching to create matches with a 2 to 1 

ratio – that is, two comparison group members are matched to every one treatment group 

member (Smith 1997; Stuart, 2010).  Further, some researchers have recommended 
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matching each treatment group member to two comparison group members (2:1), 

suggesting that the 2:1 match is more efficient (Haviland, Nagin, & Rosenbaum, 2007).  

Conversely, other researchers argue that selecting multiple comparison group members 

could result in unbalanced groups, as the second, third, or forth closest matches are less 

similar to the treatment group member than the first closest match (Stuart, 2010).  This 

study examined the performance of one comparison to one treatment group member 

(optimal 1:1) and two comparison to one treatment group members (optimal 2:1).   

Step 4: Create Matched Groups.  The next step is to create the matched 

comparison group.  There are a number of software options available to perform 

matching including SPSS, SAS, STATA, and R (R Core Team, 2016).  The MatchIt (Ho 

et al., 2011) package in R is one of the most comprehensive matching packages available 

and can implement a wide variety of matching methods (Schuler, 2015).  Among other 

matching methods, the MatchIt (Ho et al., 2011) package can be used to conduct nearest 

neighbor, nearest neighbor with caliper, optimal, and Mahalanobis distance matching.  

Thus, the current study used the MatchIt (Ho et al., 2011) package in R.  For more 

information on the software available to perform propensity score matching, see Schuler 

(2015). 

Step 5: Diagnose Matches.  The purpose of matching is to balance the 

distributions of the covariates for the treatment and matched comparison groups.  As 

such, it is paramount that researchers compare propensity scores and covariates across 

groups to ensure that the groups are properly balanced.  Recall that propensity scores are 

the probability of treatment, given a set of covariates (Luellen et al., 2005) and one 

assumption of propensity score matching is that all relevant covariates have been 
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included in the matching model.  Thus, after controlling for the covariates, assignment to 

the treatment group is essentially random and each individual has the same probability of 

treatment (e.g., propensity scores; Rosenbaum & Rubin, 1983).  However, if after 

matching, the propensity scores are not balanced, then the propensity score model must 

be misspecified (Diamond & Sekhon, 2013).  That is, the matching model does not 

include all relevant covariates.   

Diagnosing matches directly relates to Rubin’s Causal Model (Rubin, 1974).  If 

assumptions are met, propensity score matching results in an estimate of the 

counterfactual when the matched comparison group is similar to the treatment group on a 

set of covariates (Rosenbaum & Rubin, 1983).  However, if assumptions are not met 

(e.g., the matching model is misspecified), then the comparison group is not similar to the 

treatment group on the covariates, and the comparison group cannot serve as an accurate 

estimate of the counterfactual (Diamond & Sekhon, 2013).  Thus, it is important to 

diagnose the quality and quantity of matches. 

Quality of Matches.  Once matched sets have been created, researchers should 

evaluate the quality of their matches.  This should include an examination of both 

propensity score balance and individual covariates balance.  There are several approaches 

to assessing the quality of matches numerically and visually (Caliendo & Kopeinig, 2008; 

Pan & Bai, 2015; Stuart, 2010).  The most commonly used approaches are described 

below.   

Numeric Diagnosis of Balance.  Numeric diagnosis of balance can be examined 

via 1) the standardized mean difference, 2) the variance ratio, and 3) the percent bias 

reduction.  Each of these techniques can be used with propensity scores or the individual 
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covariates.  The techniques are described below along with recommendations for what 

constitutes balance with each index. 

Standardized mean difference.  The standardized mean difference can be used to 

evaluate both propensity score balance and individual covariate balance (Austin, 2009a; 

Stuart, 2010).  Equation 8 provides the computation the standardized mean difference for 

propensity scores and continuous covariates (Cohen’s d; Austin, 2009a),  

𝑑 = 
(�̅�𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡−�̅�𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛)

√
𝑠𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡
2 +𝑠𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛

2

2

      (8) 

where �̅� is the respective group mean on the propensity scores or the individual covariate 

and s2 is the respective group variance of the propensity scores or the individual 

covariate.  For propensity scores, the standardized mean difference should be close to 

zero (Austin, 2011b).  For continuous covariates, the standardized mean difference 

should be less than 0.25 standard deviation units (Stuart, 2010; What Works 

Clearinghouse, 2014); however, the closer to zero, the better.   

The standardized mean difference for categorical covariates is provided in 

Equation 9 (Austin, 2009a), 

𝑑 = 
(𝑝𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡−𝑝𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛)

√
�̂�𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡(1−�̂�𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡)+�̂�𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛(1−�̂�𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛)

2

       (9) 

where �̂� is the respective group mean of the dichotomous categorical covariate (e.g., the 

proportion of individuals in the group coded 1).  The standardized mean difference for 

categorical covariates should be less than 0.10 (Austin, 2009a); however, values closer to 

zero indicate better balance.  Additionally, frequencies or odds ratios should be examined 

to determine whether the comparison group has over- or underrepresentation compared to 

the treatment group (Austin, 2009a). 
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Variance ratio.  Another approach to assessing balance is to compare the 

variances of the propensity scores between groups (Stuart, 2010).  Equation 10 displays 

the formula for calculating the variance ratio,  

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑟𝑎𝑡𝑖𝑜 = 
𝑠𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡
2

𝑠𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛
2      (10) 

where s2 is the respective group variance on the propensity scores.  Ideally, the variance 

ratio should be close to one (Rubin, 2001; Stuart, 2010), indicating that the variances of 

the propensity scores between the two groups are about equal.  Although it is more 

common to use this technique to assess propensity score balance, it can be used to assess 

individual covariate balance. 

Percent bias reduction.  Another approach to assessing balance is to examine the 

percent bias reduction (Bai, 2015; Cochran & Rubin, 1973; Pan & Bai, 2015).  The 

percent bias reduction can be calculated using Equation 11, 

𝑃𝐵𝑅 = 
𝑏𝑖𝑎𝑠𝑏𝑒𝑓𝑜𝑟𝑒𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔−𝑏𝑖𝑎𝑠𝑎𝑓𝑡𝑒𝑟𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔

𝑏𝑖𝑎𝑠𝑏𝑒𝑓𝑜𝑟𝑒𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔
∗ 100    (11) 

where bias is the difference between treatment and comparison group propensity scores 

before and after matching, respectively.  Adequate percent balance reduction is typically 

considered 80% and above (Bai 2013; Cochran & Rubin, 1973).  Percent balance 

reduction can be used to assess the balance of individual covariates and propensity 

scores.   

Visual diagnosis of balance.  In addition to numeric balance, there are several 

options to visually assess propensity score and individual covariate balance, including 

jitter graphs, cumulative density plots, quantile-quantile (QQ) plots, standardized 

difference (effect size) plots and histograms (Ho et al., 2007; Schuler, 2015; Stuart, 2010; 

Stuart & Rubin, 2008).  Visual inspection involves a subjective decision from the 
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researchers on whether the groups are balanced.  The current study did not include visual 

diagnosis of balance; however, these graphs can be easily created with the MatchIt 

package in R (Ho et al., 2011).  For guidance on jitter graphs, QQ plots, standardized 

difference (effect size) plots, and histograms, see Ho, Imai, King, and Stuart (2011) or 

Schuler (2015), which provide step-by-step instructions.  R code for creating cumulative 

density plots may be found in Harris and Horst (2016). 

Quantity of Matches.  As noted above, some matching methods will exclude 

unmatched treatment group members from the matched data sets.  Further, it is possible 

that one matching technique will create closely matched groups (i.e., high quality 

matches), yet only maintain a portion of the original treatment group (i.e., low quantity 

matches).  It is worth noting that the creation of quality matches should not come at the 

expense of decreased treatment group sample size and subsequent loss of information 

(Austin, 2013; Jacovidis et al., in press; Stuart, 2010).  However, assessing the quantity of 

matches is straightforward.  Researchers should simply examine the number of treatment 

group members (e.g., raw numbers, percentages, or proportions) who were able to be 

successfully matched.  The researcher, then, needs to weigh the benefit of having closely 

balanced groups against the cost of losing information or sample size (Austin, 2013; 

Jacovidis et al., in press; Stuart, 2010).  More importantly, if any treatment group 

members were dropped from the matched data sets, the researcher should ensure that this 

does not affect the representation of the treatment group (Austin, 2013; Jacovidis et al., in 

press; Rosenbaum & Rubin, 1985; Stuart, 2010).  Loss of representation may limit the 

generalizability of the results to a subset of the treatment group, instead of the entire 

treatment group.  For example, if all treatment group members from one racial group 
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were dropped from the matched data sets, then the researcher could no longer generalize 

the results back to that racial group.  The current study examined the tradeoffs that arise 

between the quantity and quality of matches created and how that tradeoff influences the 

resulting outcomes analyses. 

Step 6: Examine Group Differences on the Outcome.  Researchers are typically 

interested in examining whether the treatment group differs from the comparison group 

on some outcome of interest.  The previous steps ultimately help researchers get to the 

point where they can examine group differences on the outcome of interest.  To avoid 

knowledge of the outcome influencing researchers’ decisions throughout the propensity 

score matching process, it is best practice for the outcome variable to be merged onto the 

data set after matched groups are created and the quality of matches are evaluated.  If 

researchers are interested in examining the relationship between the covariates and the 

outcome variable, this should be done after groups are matched to maintain alignment 

with best practices (Stuart & Rubin, 2008). 

As noted previously, there are two indices that are frequently used to estimate the 

average treatment effects in propensity score matching: the ATE and the ATT (Caliendo 

& Kopeinig, 2008).  In education research and evaluation studies, researchers are 

typically interested in the ATT.  Further, the ATT is the approach that is typically taken 

when propensity score matching is used to create matched groups.  Given that the current 

study focused on comparing matching methods, the ATT was estimated as an index of 

the average treatment effect.  

Once the matched group is created, the outcomes analyses to estimate ATT are 

straightforward.  Researchers compare the treatment and matched comparison group by 
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conducting the appropriate inferential tests dictated by the research question of interest 

(Caliendo & Kopeinig, 2008; Gu & Rosenbaum, 1993; Ho et al., 2007; Stuart, 2010; 

Stuart & Rubin, 2008).  However, it has been recommended in the propensity score 

literature that any covariates included in the matching model that remain unbalanced after 

matching should be included in the outcome analyses (Pan & Bai, 2015; Rosenbaum & 

Rubin, 1985).  Further, including unbalanced covariates in the outcome analyses has been 

shown to produce accurate estimates of treatment effects regardless of the choice of 

propensity score matching methods (Schafer & Kang, 2008; Shadish et al., 2008).  

However, this technique does not appear to be a recommendation that researchers use 

very often in applied practice (e.g., Clark & Cundiff, 2011; Lu, Zanutto, Hornik, & 

Rosenbaum, 2001; Morgan, Frisco, Farkas & Hibel, 2010; Olitsky, 2013).  As such, the 

current study included two outcome analyses to estimate the ATT: regression with no 

covariates and regression with unbalanced covariates. 

Research Comparing Matching Methods 

Given that matching methods employ different distance measures (i.e., propensity 

scores or Mahalanobis distances), matching algorithms (i.e., greedy or optimal), and rules 

for comparison group member selection, each technique could potentially select different 

comparison group members from the overall comparison pool to create the matched 

comparison groups.  Moreover, matched comparison group composition could vary 

considerably depending on the matching algorithm used.  This will not only affect the 

quality of matches, but the selection of matching method may also affect the results of 

any outcome analyses.   
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There are a few notable studies that have examined the performance of matching 

methods under various conditions.  Most of these studies assessed performance in terms 

of how well the matching methods were able to balance the groups on the distance 

measure and the covariates or selection bias reduction.  Only a few studies have extended 

the evaluation of the matching methods to the impact it has on the outcome analyses 

(Austin, 2013; Jacovidis et al., in press; Stone & Tang, 2013).  However, researchers 

have noted that there are few studies that have been conducted to systematically examine 

which propensity score matching methods perform well under which data conditions 

(Austin, 2013; Bai, 2015).   

Again, it is worth noting that a discussion of matching techniques that result in a 

weighted comparison group is beyond the scope of the current study.  Thus, the 

comparison of matching methods focused solely on those that result in a matched 

comparison group (e.g., nearest neighbor matching with and without calipers and optimal 

matching).  Research on distance measures and matching algorithms has been discussed 

previously; however, they are summarized here for convenience.   

The differences among the matching methods are largely a result of the distance 

measure and matching algorithm employed.  Recall that Mahalanobis distances equally 

weights all covariates, while propensity sores weight covariates by how well they predict 

group membership.  Simulation studies have shown that when there are a small number 

of covariates (e.g., 2 to 8), the two distance measures result in comparable balance (Gu & 

Rosenbaum, 1993; Zhao, 2004); however, when there are a large number of covariates 

(e.g., 20), propensity scores result in better balanced group than Mahalanobis distances 

(Gu & Rosenbaum, 1993).   
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Also, recall that the key distinction between the greedy and optimal algorithms is 

whether or not the matches are re-evaluated and modified throughout the matching 

process.  Research has shown that greedy and optimal matching approaches generally 

result in selection of the same comparison group members from the overall comparison 

group.  Consequently, greedy and optimal matching approaches perform comparably in 

creating groups with balanced covariates (Austin, 2009b, 2013; Bai, 2013; Gu & 

Rosenbaum, 1993).  However, when treatment group members compete for comparison 

group members, the optimal algorithm outperforms the greedy algorithm (Gu & 

Rosenbaum, 1993).  Further, optimal matching performs better at reducing the distance 

between matching pairs (e.g., a direct comparison-to-treatment group member match).  

Thus, if the researcher is interested in well-matched pairs, instead of just well-matched 

groups, then optimal matching may be preferable (Gu & Rosenbaum, 1993; Schuler, 

2015; Stuart, 2010).   

In one study, researchers examined how well the greedy and optimal algorithms 

recover simulated treatment group effects (d = 0.2).  The algorithms performed similarly 

in recovery of the treatment effect; however, optimal performed slightly better than the 

greedy algorithm with the smallest treatment group sample size (n = 30).  Further, power 

was low, but comparable between the two algorithms.  Low power is unsurprising given 

the small sample sizes (n = 30 and 60) and small effect size (d = 0.2; Stone & Tang, 

2013). 

There is contrary evidence on the number of comparison group members to be 

matched to each treatment group member (e.g., Haviland et al., 2007; Stuart, 2010) when 

the optimal algorithm is used.  It is important to note that the quality of matches obtained 
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when matching multiple comparison group members to each treatment group member 

will likely depend on common support.  That is, if there is sufficient overlap in the 

propensity scores between the two groups, then selecting multiple matches should still 

result in balanced groups; however, if there is not sufficient overlap in the propensity 

scores between the two groups, then selecting multiple matches should result in 

unbalanced groups, as subsequent matches are likely to be less similar than the first 

match that this made (Stuart, 2010).  

Researchers have consistently shown that covariates and propensity scores are 

more balanced and percent bias reduction is greater when nearest neighbor matching with 

calipers is employed, compared to nearest neighbor matching without calipers (Austin, 

2009b, 2013; Bai, 2015; Jacovidis et al., in press; Rosenbaum & Rubin, 1985).  Further, 

the more stringent the caliper, the better balance between the matched groups (Austin, 

2009b, 2010a; Dehejia & Wahba, 2002; Jacovidis, in press).  Moreover, researchers have 

noted that the order in which treatment group members are matched does not affect the 

performance of nearest neighbor matching with and without calipers (Austin, 2013).   

As noted previously, calipers can be applied when Mahalanobis distances are used 

as the distance measure.  Mahalanobis distances matching with calipers resulted in better 

quality matches than were obtained without calipers (Bai, 2013; Rosenbaum & Rubin, 

1985).  However, it is worth noting that in one of the studies (Rosenbaum & Rubin, 

1985), propensity scores were included as a variable in the calculation of the 

Mahalanobis distances.  This is a key distinction as propensity scores weight the 

covariates and Mahalanobis distances balance covariates equally.  Thus, if propensity 
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scores are used in the calculation of Mahalanobis distances, then covariates are no longer 

equally weighted.  

Conversely, nearest neighbor matching with calipers also results in a loss of 

treatment group members (e.g., Austin, 2009b, 2013; Bai, 2015; Jacovidis et al., in press).  

Moreover, as the caliper becomes more stringent, the loss in treatment group members is 

greater (e.g., Austin, 2009b, 2013; Dehejia & Wahba, 2002; Jacovidis et al, in press).  For 

example, in one simulation study where common support was manipulated, the nearest 

neighbor matching with a 0.25 caliper resulted in only 35% to 55% of the treatment 

group members being retained.  That is, 45% to 65% of the treatment group members 

could not be matched (Bai, 2015).  Additionally, in an applied study, 81% to 84% of the 

treatment group was retained when calipers of 0.1 to 0.3 were applied.  Although, the 

majority of the treatment group members were retained, there was substantial loss of 

minority representation in the treatment group (Jacovidis et al., in press).   

It is up to the researcher to balance the quality and quantity of matches when 

creating a matched comparison group.  This is a difficult task.  Obviously, researchers 

want to balance groups on the covariates, while also maintaining the treatment group 

sample size.  However, this may not always be possible.  If researchers are concerned 

with equity and representativeness (e.g., generalizability), they may wish to choose a 

matching technique that does not compromise quantity (e.g., nearest neighbor, optimal).  

However, as noted above, matching techniques that select the closest available match 

may still result in unbalanced groups.  Additionally, there may be expectations from 

funding agencies that require close balance (quality).  Thus, researchers may choose a 

matching technique that does not compromise quality (e.g., caliper matching).  Further, 
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when groups are not balanced, the comparison group may not be a viable estimate of the 

counterfactual.  However, applying a caliper may result in a decrease in the treatment 

group sample size, as treatment group members who do not have an adequate match are 

excluded from the matched data set.  When treatment group members are excluded, it is 

important for researchers to examine the representativeness of the samples.  For example, 

if the matching procedure results in the loss of a minority group representation, then 

researchers are no longer generalizing the findings back to the same population (Austin, 

2013; Jacovidis et al., in press; Rosenbaum & Rubin, 1985).  However, because the 

outcome variable of interest is not used in the matching procedure, any number of 

matching methods can be evaluated.  Researchers can then select the matching technique 

that results in the best balance (Ho et al., 2011).   

As noted, few researchers have extended the examination of matching method 

performance to include outcome analyses (Austin, 2013; Jacovidis et al., in press; Stone 

& Tang, 2013).  In a simulation study comparing 12 matching methods (different 

variations of nearest neighbor matching with and without calipers and optimal matching), 

caliper matching resulted in more accurate estimates of the simulated treatment effect  

(d = -0.02) than the nearest neighbor matching without calipers and optimal matching 

(Austin, 2013).  In an applied study, it was demonstrated that different decisions could be 

made about whether there was a statistically significant difference between groups, 

depending on which matching method was used; however the true difference between the 

treatment and comparison groups was unknown (Jacovidis et al., in press).  Thus, it was 

difficult to know which matching technique performed best (Jacovidis et al., in press). 
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There are a number of limitations regarding the matching methods literature that 

are necessary to address.  First, many of the studies examining propensity score matching 

methods have focused on comparing matched comparison group methods used to obtain 

ATT estimates with weighted comparison group methods used to obtain ATE (e.g., 

Austin, 2007b; Austin, Grootendorst, Normand, & Anderson, 2007; Austin & Schuster, 

2016; Harder et al., 2010).  Although this is a much needed line of research, it is not 

particularly helpful for researchers who are interested in choosing among matching 

methods used to obtain ATT estimates.  Second, the studies focusing on comparing 

matching methods used to obtain ATT estimates have not been systematic.  Given the 

disorganization in the research, it is difficult to make a cohesive case for the use of 

specific matching methods under specific conditions.  Third, most studies examining 

matching methods compare propensity score and covariate balance and bias reduction, 

but do not include an examination of outcome analyses.  Fourth, in many studies, applied 

data are used.  Although this is not problematic when evaluating balance, it is difficult to 

examine treatment effects, as true group differences are unknown.   

Finally, in simulation studies, the data are not simulated realistically.  For 

example, covariates are simulated to be all continuous or all binary (e.g., Austin, 2011a, 

2013), when in reality, most researchers use a combination of the two.  Perhaps certain 

matching methods perform better with certain kinds of covariates (e.g., maybe it is easier 

to match binary covariates than it is to match continuous covariates).  Further, the 

covariates in simulation studies are often simulated to be independent (e.g., Austin, 

2011a, 2013); however, in social sciences, constructs are rarely independent.  Perhaps 



50 

 

matching methods perform better when covariates are independent (e.g., collinearity in 

regression).  Both of these issues are empirical questions that researchers could explore.   

Some researchers have noted that selecting a matching method is less important 

than selecting the covariates used in the propensity scores matching model (Steiner et al., 

2010).  However, this has led to the current mindset in propensity score matching: as long 

as the researcher has selected appropriate covariates, the matching method does not 

matter.  Although matching method may be less important than covariate selection, given 

the results of the studies comparing matching methods, it does not appear that matching 

method is of no concern. 

The Current Study 

As described above, there are a number of decisions that researchers make at each 

step in the propensity score matching process.  This study focused mainly on the 

decisions related to the selection of the matching method.  Matching methods employ 

different distance measures (i.e., propensity scores or Mahalanobis distances), matching 

algorithms (i.e., greedy or optimal), and rules for comparison group member selection.  

Thus, each technique could result in matched comparisons groups that vary considerably 

depending on the matching algorithm used.  Selection of matching method not only 

affects the quality of matches, but may also affect the results of any outcome analyses.  

Further, there are key limitations to the current matching method literature that make it 

difficult to recommend the use of specific matching methods under specific conditions.  

Clearly, one study is not going to be able to address all of the current limitations, but a 

collective, more coherent program of research is needed to provide guidance to 

practitioners on which matching methods perform the best under which conditions.  This 
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study was one in a line of research on matching method performance.  Thus, the purpose 

of this study was to examine and compare common matching techniques used to estimate 

ATT.  Specifically, the current study addressed four research questions.   

1. How do the most common matching methods differ, in terms of quantity (i.e., 

number of matches) and quality (i.e., covariate balance) of matches?   

2. Once matched comparison groups are formed, how do the results of group 

comparisons (e.g., significance tests) compare across the different matching 

methods?   

3. How well do the various matching methods recover the true treatment effect 

(e.g., difference between the group means)?   

4. What conditions (e.g., true difference between the means, matching method, 

comparison-to-treatment ratio, sample size, and outcome analysis) are optimal 

in obtaining accurate estimates of parameters? 
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CHAPTER 3 

Method 

In the current study, data were simulated to empirically investigate the 

performance of common matching methods under known and systematically manipulated 

conditions.  Because population parameters, such as differences between group means, 

are not known in applied studies, simulation is needed to compare the accuracy of 

matching methods.  Applied studies can show that matching methods yield different 

estimates; however, they cannot show which matching method produces the most 

accurate estimates.  Although simulation studies can never completely capture the 

complexities of real data situations, the utility of simulation results are dependent on the 

representativeness of the conditions that are being modeled.  If the conditions are not 

similar to those found in real data, the utility of the study is limited.  The current study 

focused on comparing matching methods under manipulated conditions that were 

representative of program evaluation and effectiveness studies.   

Data Generation 

Data were simulated to reflect values found in higher education, using a recent 

study by Jacovidis and her colleagues (in press).  In the Jacovidis et al., (in press) study, 

the data were gathered from 3,287 undergraduate first-year students from a public 

university in the mid-Atlantic US, which included 3,201 comparison group members and 

86 treatment group members.  The study by Jacovidis and her colleagues (in press) 

focused on group differences between the treatment group and a matched comparison 

group on an information literacy test that was administered to all first-year students.  The 

treatment group consisted of a subset of the population that has historically 



53 

 

underperformed on the information literacy test and had received targeted interventions 

in recent years.  Jacovidis and her colleagues (in press) noted that a discussion of the 

nature of the treatment was intentionally omitted from their article, as the study focused 

on comparing matching methods, rather than on the impact of treatment program.  

The study by Jacovidis and her colleagues (in press) included 12 covariates: 4 

continuous covariates (SAT math, SAT verbal, conscientiousness, and work avoidance) 

and 8 categorical covariates (gender and race/ethnicity).  The measure of 

conscientiousness, work avoidance, and information literacy was completed in a secure, 

proctored environment, which helped to provide a standardized testing experience for all 

students completing the measure.  Demographic information and SAT scores were 

retrieved from student records.  The covariates were selected using a similar method to 

that used in applied practice.  That is, of the variables that the researchers had available, 

they chose the ones that best aligned with theory and previous research (Jacovidis et al., 

in press).  Following the procedures recommended by Stuart and Rubin (2008), the 

relationships between the covariates and group membership or the outcome of interest 

were not examined prior to matching.  However, after matched groups were created, 

Jacovidis and her colleagues (in press) examined those relationships to ensure that the 

selected covariates were related to both group selection and the outcome of interest.   

In the current study, 6 covariates (4 continuous covariates and 2 categorical 

covariates) were simulated based on the data presented by Jacovidis and her colleagues 

(in press).  The four continuous covariates represented SAT math (X1), SAT verbal (X2), 

work avoidance (X3), and conscientiousness (X4).  The two categorical covariates 

represented gender (X5) and race/ethnicity (X6).   
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The correlations among the covariates, and between the covariates and the 

outcome, were calculated for the real data.  For the categorical covariates, the correlations 

were dependent on the proportion within each group.  For example, the expected 

correlation between X6 and X1 should increase if the split on X6 was change from  

5%-95% to 15%-85%.  Thus, for any correlation between a categorical covariate and a 

continuous covariate, the correlation was replaced with the biserial correlation.  

Similarly, the correlation between X5 and X6 was replaced with the tetrachoric 

correlation.  These correlations are shown in Table 1.  The resulting regression 

coefficients (predicting either the propensity scores or the outcome) represent the 

coefficients from a probit regression.  These covariances and regression coefficients were 

then used to simulate the data for the current study. 

Table 1  

Generating Variances and Covariances  

 X1 X2 X3 X4 X5 X6 

X1 1.0000      

X2 0.4300 1.0000     

X3 -0.1220 -0.1160 1.0000    

X4 0.1520 0.0940 -0.3720 1.0000   

X5 -0.3297 -0.0984 0.2121 -0.3054 1.0000  

X6 -0.4058 -0.2664 0.0143 -0.0389 -0.0260 1.0000 

All data were simulated using R version 3.3.2 (R Core Team, 2016).  First, six 

continuous covariates were simulated.1  All covariates were drawn from a multivariate 

normal distribution with means of 0 and variance-covariance displayed in Table 1 using 

the RMVNORM function in the MTVNORM package (Genz et al., 2016). 

To obtain group assignment, the underlying likelihood of treatment group 

membership in probits was simulated as a function of the six continuous covariates and a 
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random error term drawn from a standard normal distribution.  Equation 12 specifies the 

equation used to obtain probits, with coefficients obtained using the correlations in Table 

1 and the correlation between the covariates and group membership in the data from 

Jacovidis et al. (in press),2 

𝑃(𝑥𝑖) = −0.015(𝑋1𝑖) − 0.301(𝑋2𝑖) + 0.088(𝑋3𝑖) + 0.084(𝑋4𝑖) 

−0.117(𝑋5𝑖) + 0.308(𝑋6𝑖) + 𝑒𝑖      (12) 

where P(xi) is the underlying likelihood of treatment group membership (e.g., probit) 

based on the covariates for person i, X1i-X6i represent person i’s scores on the covariates, 

and ei ~N(0,1).  Then, simulees were assigned to treatment and comparison groups using 

a cut point based on the percentiles corresponding to the proportion of the sample 

assigned to the treatment group, which varied by condition.  In later analyses, X5 and X6 

were not used in their continuous form. Specifically, the two covariates representing 

gender and race (X5 and X6 in Table 1, respectively) were dichotomized such that X5 

(gender) was split 60%-40% and X6 (race/ethnicity) was split 15%-85%.  The cut point 

was determined based on the z-score corresponding to 60% (for X5) or 15% (for X6) in a 

cumulative normal distribution.3  This resulted in four continuous covariates (X1-X4) and 

two dichotomous covariates (X5-X6). 

Next, outcome scores were simulated as a function of group membership, six 

covariates,4 and a random term representing unexplained variance and error.  The 

coefficients in Equation 13 were based on the relationship between the covariates and 

information literacy scores in the data from Jacovidis et al. (in press),   

𝑌𝑖 = 𝑑(𝐺𝑟𝑜𝑢𝑝𝑖) + 0.158(𝑋1𝑖) + 0.418(𝑋2𝑖) + 0.049(𝑋3𝑖) + 

0.029(𝑋4𝑖) + 0.087(𝑋5𝑖) − 0.035(𝑋6𝑖) + 𝑒𝑖       (13) 
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where Yi is the simulated outcome score based on the covariates for person i, d represents 

the simulated effect size (specified at one of four levels, described further below), Groupi 

is the group membership for person i, X1i-X6i represent person i’s scores on the four 

continuous and two dichotomous covariates, and ei ~N(0, 0.7401388).  Finally, Y was 

standardized.  This was done so that the within-group standard deviation was one.5  With 

the pooled within-group standard deviation of Y set to one in the population, the 

difference between the means was on the Cohen's d metric.  Appendix A includes the 

syntax used to simulate and analyze the data. 

Conditions 

In the current study, five factors were manipulated: effect size, matching method, 

comparison-to-treatment ratio, treatment group sample size, and type of outcome 

analysis.  A description of each of the manipulations and rationale for the selected 

conditions are provided below.  

Effect size.  The true effect size was systematically manipulated at four levels: 

0.0, 0.2, 0.5, and 0.8.  These values align with the effect size benchmarks suggested by 

Cohen (1988) for small, medium, and large effects.  Although Cohen’s benchmarks have 

become the standard in interpreting the magnitude of effect sizes, some researchers (e.g., 

Hill, Bloom, Black, & Lipsey, 2008) have suggested that the magnitude of the effect size 

should be interpreted based on the research or evaluation context, as Cohen originally 

urged.  Thus, what may be viewed as a small effect size for one context, can be viewed as 

a large effect size in another context.   

Hill and her colleagues (2008) provided three empirical benchmarks that consider 

the research and evaluation context specific to achievement.  The first empirical 
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benchmark relied on the expectations for growth over time.  The researchers examined 

seven nationally normed reading tests and six nationally normed math tests across 

elementary and secondary grades.  Standardized effect sizes (i.e., Cohen’s d) between 

grades ranged from 0.00 to 1.03, with the effect sizes decreasing from first to twelfth 

grade.  The second empirical benchmark involved examining demographic group or 

school performance differences.  Thus, the researchers examined reading and math 

differences by gender, race/ethnicity, socioeconomic status, and school performance.  

Standardized effect sizes between groups ranged from 0.04 to 1.04.  The third empirical 

benchmark involved comparing the observed effect sizes to effect size results from past 

research for similar interventions and target populations.  Hill and her colleagues (2008) 

presented a summary of student achievement effect sizes for random assignment studies 

of educational interventions by elementary, middle, and high school.  The mean effect 

sizes ranged from 0.07 to 0.51 (Hill et al., 2008).  Contextually, these effect sizes are 

particularly relevant for this study given the focus on student achievement.  Moreover, 

the range of effect sizes for the three empirical benchmarks are not substantially different 

than the range of benchmarks suggested by Cohen (1988).   

The study by Jacovidis and her colleagues (in press) provided further context for 

expected effect sizes for the current study.  In the original study, the observed effect sizes 

ranged from 0.25 to 0.76, across the total sample and the various matched groups.  Thus, 

it seems reasonable that the current study should examine effect sizes close to these 

values.  It is also worth noting that these effect sizes align with Cohen’s benchmarks 

(1988) and the student achievement empirical benchmarks of Hill and her colleagues 

(2008). 
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One goal of the current study was to generalize beyond student achievement and 

information literacy interventions to a larger context of program evaluation studies.  

Thus, it is important to ensure that the manipulated effect sizes are typical for a variety of 

program evaluation contexts.  In an extensive review of 302 meta-analyses across a range 

of psychological, educational, and behavioral interventions, researchers found a mean 

effect size of 0.50 (SD = 0.29; Lipsey, 2002).  Accordingly, the mean effect size reported 

by Lipsey (2002) aligned with Cohen’s benchmark for a medium effect, one standard 

deviation above the mean aligned with Cohen’s benchmark for a large effect, and one 

standard deviation below the mean effect size aligned with Cohen’s benchmark for a 

small effect.   

Regardless of whether Cohen’s benchmarks should be interpreted as small, 

medium, and large, the range of the benchmarks represent the magnitude of effect sizes 

observed in student achievement, the specific context of information literacy in first-year 

collect students, and the broader context of program evaluation.  Thus, effect sizes for 

this study were manipulated to be 0.0, 0.2, 0.5, and 0.8.  The effect size was defined as 

the mean difference (between treatment and comparison) in the outcome, divided by the 

pooled within-group standard deviation.    

Matching method.  Eight matching methods were used to create matched 

comparison groups for the treatment group: random sampling, nearest neighbor (using the 

default order of matching treatment group members with the highest propensity scores 

first and those with the lowest propensity scores matched last; Ho et al., 2011), nearest 

neighbor with calipers (0.3, 0.2, and 0.1 times the standard deviation of the propensity 
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scores), optimal (1:1 and 2:1 ratios), and Mahalanobis distance matching without 

calipers.  All matching was conducted without replacement.   

Estimated propensity scores computed via logistic regression served as the 

distance measures for all of the propensity score techniques.  Propensity scores represent 

the probability of participation, given the set of covariates.  It is important to note that 

random sampling and Mahalanobis distance matching are not propensity score 

techniques.  The random sampling technique was included because it is commonly used 

in practice and allowed for a comparison of the propensity score techniques to a more 

traditional technique.  Mahalanobis distance matching was included because it is 

advantageous over propensity score matching in certain situations (e.g., King & Nielsen, 

2016; Zhao, 2004).  The MatchIt (Ho et al., 2011) R package was used to conduct nearest 

neighbor, nearest neighbor with caliper, optimal, and Mahalanobis distance matching.  

Additional R code was written for random sampling, as this technique is not offered via 

the MatchIt package.   

Comparison-to-treatment ratio.  The ratio of comparison group members to 

treatment group members before matching was manipulated at four levels: 3:1, 4:1, 5:1, 

and 6:1.  The selected ratios were not meant to be exhaustive; they were meant to serve as 

a starting point.  Although there is some research on comparison-to-treatment ratios, there 

is little practical guidance in the literature on how much larger the comparison pool needs 

to be than the treatment group.  That is, there is no consensus on the minimum ratio of 

comparison-to-treatment group members.  Researchers recommend that the larger the 

comparison pool, the better (Bai, 2015; Rubin, 1979).  This makes sense intuitively—the 
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larger the comparison pool, the more likely an adequate match can be found for the 

treatment group members, assuming adequate common support.   

It also seems reasonable that there would be a point of diminishing returns.  Thus, 

it may not be worthwhile to increase the comparison pool past a certain point.  Moreover, 

increasing the comparison pool may be cost prohibitive if the researcher has to collect 

covariate data rather than or in addition to using extant data, especially if the researcher is 

using a proprietary measure.  For example, suppose a researcher is evaluating a retention 

intervention for students who have low institutional commitment.  The researcher should 

match students on variables related to institutional commitment.  It is unlikely that this 

information is already being collected by the institution and will likely need to be 

collected by the researcher.  Further, say the researcher uses a proprietary measure that 

costs $5 per administration to obtain the covariates of interest.  If the treatment group was 

composed of 100 students, then the cost of administering the measure to the potential 

comparison group would range from $1500 (3:1 ratio) to $3000 (6:1 ratio) depending on 

the comparison-to-treatment group ratio.  Thus, the researcher would spend twice as 

much obtaining a 6:1 ratio than obtaining a 3:1 ratio.  Moreover, this is based on the 

recommendation that larger comparison pools are better than smaller comparison pools, 

even though the improvements in percent bias reduction from 2:1 to 9:1 is modest 

(Rubin, 1979). 

In sum, the comparison-to-treatment ratio was manipulated at four levels (3:1, 

4:1, 5:1, and 6:1).  The inclusion of optimal 2:1 matching required a minimum ratio of 

3:1 to avoid matching every comparison group member to a treatment group member.  

That is, the 2:1 ratio was not included because it would result in the selection of the full 
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comparison pool when the optimal 2:1 matching method was used.   The ratio was 

increased incrementally for the remaining ratios.  Again, these ratios are meant to serve 

as a starting point and additional ratios may be necessary in future studies.  

Treatment group sample size.  Sample size of the treatment group was 

manipulated at two levels: 30 and 100.  Given the comparison-to-treatment ratio was also 

manipulated, this resulted in the generation of 90 to 600 comparison group members.  

The total sample size varied based on the sample size of the treatment group and the 

comparison-to-treatment ratio.  The comparison pool sample size for each treatment 

group sample size and comparison-to-treatment ratio is presented in Table 2. 

Table 2 

Comparison Pool Sample Size by Treatment Group Sample Size and Comparison-to-

Treatment Ratio 

Treatment Sample Size Comparison-to-Treatment Ratio 

3:1 4:1 5:1 6:1 

30 90 120 150 180 

100 300 400 500 600 

Sample size was examined because propensity score matching was developed as a 

large sample size technique; however, it has been applied in small sample situations (e.g., 

small-scale program evaluations; Stone & Tang 2013).  For example, the National 

Science Foundation’s Handbook for Mixed Method Evaluations provides an illustrative 

example of a program evaluation for education researchers on using mixed method 

approaches in their evaluation design.  The example describes an undergraduate faculty 

enhancement program focusing on preservice mathematics.  The two-year intervention 

involves workshops throughout the academic year, summer sessions, demonstrations of 

model teaching, and individual coaching; it is designed to serve 25 faculty members 



62 

 

(National Science Foundation, 1997).  Larger samples sizes are often not practical when 

programs offer more direct and intensive services.   

In a propensity score matching study, Stone and Tang (2013) manipulated 

treatment group samples sizes at 30 and 60 stating that these values were “chosen to 

represent smaller treatment group sizes that are consistent with typical educational 

program evaluations,” (p. 4).  In a meta-analysis of randomized and quasi-experiments 

evaluating education programs, almost 30% of the reviewed studies (published and 

unpublished or “gray literature”) involved sample sizes below 100 (Cheung & Slavin, 

2016).  Further, there are mixed perspectives on whether propensity score matching 

should be used with smaller sample sizes (e.g. Bai, 2015; Dehejia & Wahba, 2002; 

Rubin, 1979, 1997; Stone & Tang, 2013).  Thus, additional research is needed to 

determine the appropriateness of propensity score matching with small treatment group 

sample sizes.  The two sample sizes investigated in this study were selected to represent a 

small sample size (30) that might be seen in a small-scale program evaluation study with 

one cohort and a larger sample size (100) that might be more characteristic of a program 

evaluation study with multiple cohorts.   

Outcome Analyses.  The outcome analyses were manipulated at two levels: 

regression with group membership predicting the outcome variable and regression with 

group membership and any unbalanced covariates predicting the outcome variable.  

Recommendations in the propensity score literature are that when conducting the 

outcome analyses, any covariates included in the matching model that remain unbalanced 

after matching should be included as predictors in the model (Rosenbaum & Rubin, 

1985).  However, this does not appear to be a recommendation that researchers use in 
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practice (e.g., Clark & Cundiff, 2011; Lu, Zanutto, Hornik, & Rosenbaum, 2001; 

Morgan, Frisco, Farkas & Hibel, 2010; Olitsky, 2013).  Thus, the two approaches to 

outcome analyses were examined to determine which approach produces more accurate 

estimates of the group differences.  Equation 14 displays the regression equation for 

group membership predicting the outcome variable, 

𝑌�̂� = 𝛼 + 𝛽1(𝐺𝑟𝑜𝑢𝑝𝑖)      (14) 

where �̂�𝑖is the predicted outcome score for person i, α is the predicted outcome score for 

the comparison group, β1 is the unstandardized regression coefficient associated with 

group, and Groupi represents group membership for person i.  Equation 15 displays the 

regression equation for group membership and any unbalanced covariates predicting the 

outcome variable,   

𝑌�̂� = 𝛼 + 𝛽1(𝐺𝑟𝑜𝑢𝑝𝑖) + ∑𝛽𝑘(𝑋𝑘𝑖)     (15) 

where β1 is the unstandardized regression coefficient associated with group after 

controlling for the other variables in the model, βk is the unstandardized regression 

coefficient associated with the unbalanced covariate included in the model after 

controlling for the other variables included in the model, and Xki represents the score on 

the unbalanced covariate for person i.  Each unbalanced covariate has its own βk and Xki 

term.  All other terms are defined above.  Theoretically, if the matching technique results 

in unbalanced covariates after matching, then the estimated treatment effects obtained 

using Equation 15 should be more accurate than the estimated treatment effects obtained 

in Equation 14; however, if the matching method balanced the covariates well, then the 

two equations should result in comparable estimates. 
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Summary. The five conditions were fully crossed to explore potential 

interactions among the conditions.  Specifically, data were generated for each of the 

effect sizes by comparison-to-treatment ratios by sample sizes combinations (32 

conditions).  The simulation process was replicated 1,000 times for each condition, 

resulting in 32,000 unique data sets.  For each simulated data set, the eight matching 

methods were employed to create matched comparison groups, then the two outcome 

analysis approaches were applied to examine the group differences between the treatment 

group and matched comparison groups.  Appendix B displays the simulated conditions. 

Evaluation Criteria 

Performance of the matching methods was evaluated in a number of ways.  First, 

matches were diagnosed in terms of quantity and quality (propensity score and covariate 

balance) of matches.  Then, outcome analyses were conducted.  Both significance tests 

and effect sizes were of interest in outcome analyses.  Each of the criteria used to 

diagnoses matches and evaluate outcome analyses are described in further detail below.   

Diagnosing Matches.  The purpose of matching is to balance the distributions of 

the covariates for the treatment and matched comparison groups.  As such, it is 

paramount that researchers examine the quality of matches to ensure that groups are 

properly balanced on covariates and propensity scores.  Further, if treatment group 

members were excluded because an adequate comparison match was not available, 

researchers need to ensure that the matched treatment group is representative of the 

original treatment group sample.  Two criteria were used to diagnosis matches. 

Quality of Matches.  Quality of matches was determined by examining propensity 

score balance and individual covariate balance.  Propensity score balance was evaluated 
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via the standardized mean difference, variance ratio, and percent bias reduction in 

propensity scores.  High quality matches are evidenced by mean differences on the 

propensity scores near zero (Austin, 2011b), propensity score variance ratios near one 

(Stuart, 2010), and percent bias reduction values at 80% or above (Bai, 2013; Cochran & 

Rubin, 1973).   

Covariate balance was examined by comparing the treatment and matched 

comparison group on each covariate after matching.  For continuous covariates, an effect 

size (Cohen’s d) was examined; groups should be less than 0.25 standard deviation units 

apart (Stuart, 2010) to be considered balanced.  For categorical covariates, the 

standardized difference (similar for Cohen’s d for categorical covariates) was examined; 

groups should be less than 0.10 standard deviation units apart (Austin, 2009a) to be 

considered balanced.  Additionally, frequencies on the categorical covariates were 

examined to determine whether the comparison group had over- or underrepresentation 

compared to the treatment group.  The current study did not include visual diagnosis of 

balance. 

Quantity of Matches.  Quantity of matches can be assessed by examining the 

number of treatment group members who were successfully matched.  As noted 

previously, a matching algorithm may result in adequate covariate balance (i.e., quality of 

matches); however, it may come at the cost of sample size (i.e., quantity of matches).  

Thus, it is the responsibility of the researcher to balance these competing goals.  This 

study included an examination of the tradeoff between the quality and quantity of the 

matched and how it impacts the results of the outcomes analyses. In the current study, the 



66 

 

proportion of treatment group members who were successfully matched was examined to 

facilitate comparisons across replications and conditions. 

Outcome Analyses.  Outcome analyses were the primary focus of this study.  

Regression analyses were used to examine group differences on the outcomes between 

the treatment group and their matched comparison group.  Type I error, power, and the 

estimated effect sizes were used to evaluate the accuracy of the resulting group 

comparisons.  Outcome analyses were conducting using SAS, version 9.4.   

Type I Error.  Type I error is the probability of rejecting the null hypothesis when 

the null is true.  In simulations, Type I error can be empirically determined when data are 

simulated under the null distribution.  Type I error was defined as the proportion of 

replications where the groups were flagged as significantly different when there was no 

true difference (d = 0.0).  The nominal alpha was set to 0.05.  As such, it was expected 

that a Type I error would be observed about 5% of the time.   

Power.  Power is the probability of detecting an effect, given that an effect exists.  

Again, in simulations, power can be empirically determined when data are simulated 

under an alternative distribution (i.e., there is a true effect).  Power was defined as the 

proportion of replications where the groups were flagged as significantly different when 

there was a true difference (d = 0.2, 0.5, and 0.8).  Table 3 displays what the expected 

power would be under random assignment, which provides a benchmark for the power 

that could be achieved with propensity score matching; alpha was set to 0.05 for all 

power analyses.  Power was calculated using an online power calculator (Soper, 2017).  It 

is important to note that the significance tests are underpowered in the current study; 

however, significance tests were still conducted as a precursor for examining estimated 
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effect size, as is typically done in practice.  The primary interest was on the accuracy of 

the estimated effect sizes.   

Table 3 

Statistical Power for Each Effect Size and Sample Size Combination 

Sample Size Per Group 0.2 0.5 0.8 

30 0.1151 0.4764 0.8602 

100 0.2900 0.9402 0.9999 

Estimated Effect Size.  The unstandardized effect size was defined as the 

difference between the group means.  In the population, the unstandardized effect size 

was equivalent to Cohen’s d (a standardized effect size) because the pooled within-group 

standard deviation was scaled to equal one.  The unstandardized effect size was used to 

avoid confounding errors in estimating the mean with errors in estimating the standard 

deviation.  Two indices were reported for the difference between the means: bias and root 

mean squared error (RMSE). 

Bias.  Bias is the difference between the estimated parameter and the generating 

true parameter value, averaged across replications.  Bias should be close to 0, indicating 

that on average, the estimated parameter is approximately the same as the true parameter 

value.  To calculate bias for each parameter, the true population value is subtracted from 

the average estimate value across replications.  Equation 16 presents this computation, 

𝐵𝑖𝑎𝑠𝜃 =
∑ (�̂�𝑟−𝜃)
𝑅
𝑟=1

𝑅
      (16) 

where 𝜃𝑟 is the parameter estimate from the rth replication, θ is the true parameter value, 

and R is the total number of replications.  In the current study, the parameter (θ) is the 

difference between the group means. 
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RMSE.  RMSE combines both bias and sampling variability of parameter 

estimates across replications.  It is calculated by taking the difference between the 

estimated parameter and the generated true parameter value.  These values are squared 

and averaged across replications.  The squaring is done so negative values do not cancel 

out positive values.  This value is the mean squared error (MSE).  The square root is 

taken to obtain the RMSE.  RMSE values should be close to 0.  The computational 

formula is presented in Equation 17, 

𝑅𝑀𝑆𝐸𝜃 = √∑ (�̂�𝑟−𝜃)2
𝑅
𝑟=1

𝑅
= √𝐵𝑖𝑎𝑠𝜃

2 + 𝑆𝐸𝜃
2           (17) 

where 𝑆𝐸𝜃
2 is the empirical standard error of the parameter (i.e., the standard deviation of 

the parameter estimates across replications).  The other elements in the equation are 

defined above.  Further, the variance explained in mean difference and squared mean 

difference was examined to determine which factors or interactions made a meaningful 

difference in parameter recovery using ANOVAs.  Statistical significance was not 

examined, as the significance tests were overpowered.  An effect size, specifically 2, 

was used to determine which conditions were meaningful.  Finally, taken together, these 

results were used to provide preliminary recommendations regarding which matching 

method to use under which conditions.  Table 4 presents the alignment of the evaluation 

criteria described above with the research questions for the current study.  
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Table 4 

Alignment of the Evaluation Criteria with Research Questions 

Evaluation Criteria Research Question 

1 2 3 4 

Quality of Matches X    

Standardized mean difference X    

Variance Ratio X    

Percent Bias Reduction X    

Quantity of Matches X    

Percentage of successful matches X    

Type I Error  X   

Power  X   

Bias   X  

RMSE   X  

Partitioning Variance    X 
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CHAPTER 4 

Results 

The purpose of the current study was to examine and compare common matching 

techniques used to estimate ATT.  First, matching methods were compared in terms of 

the quantity and quality of matches.  Then, outcome analyses were conducted to 

determine whether conclusions regarding group differences and estimated effect sizes 

depended on the matching technique used.  Differences across effect size, treatment 

group sample size, comparison-to-treatment ratio, and analysis technique were also 

examined.  The results are summarized in the following sections. 

Research Question 1: Quality and Quantity of Matches 

The first research question was aimed at exploring how the matches created from 

the various matching techniques differed in terms of quality and quantity of matches.  

Quality of matches was determined by examining propensity score balance and 

individual covariate balance.  Quantity of matches was assessed by examining the 

percentage of treatment group members who were successfully matched.  Given that the 

covariates were simulated independently of the treatment effects, quality and quantity of 

the matches were consistent across effect sizes.  

Quality of matches. As shown in Table 5, propensity score balance was 

evaluated using three metrics: average standardized mean difference, variance ratio, and 

percent bias reduction.  The standardized mean difference of the treatment and 

comparison propensity scores was calculated by dividing the average mean difference in 

the propensity scores across replications by the square root of the average pooled 

variance across replications.  The standardized mean difference of the propensity scores 
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should be close to 0 (Austin, 2011b).  Although the standardized mean difference was 

small across all propensity score matching methods, it was the smallest for the nearest 

neighbor matching with calipers.  Moreover, as the caliper became more stringent, the 

standardized mean difference decreased, indicating that smaller calipers result in better 

quality matches than larger calipers.  The standardized mean differences for nearest 

neighbor and optimal 1:1 matching were comparable, suggesting that treatment group 

members did not compete for comparison group matches.  Additionally, the standardized 

mean difference for optimal 2:1 matching was consistently larger than the other matching 

methods.  This is unsurprising, given that subsequent matches are not as similar to the 

treatment group member as the first match (Stuart, 2010), thus introducing additional 

imbalance in the propensity scores.  Also worth noting, there is little variability around 

the mean difference across replications.  These patterns were consistent across simulation 

conditions.  Further, the mean difference generally decreased as treatment group sample 

size increased and as comparison-to-treatment group ratio increased.   

Table 5 

Propensity Score Balance Before and After Matching Across Conditions 

Method Std. Mean 

Difference 

SD of Std. 

Mean 

Difference 

Variance Ratio Percent Bias 

Reduction 

Treatment Group Sample Size = 30 

Comparison-to-Treatment = 3:1 

Before Matching 0.1496 0.0623 1.9189 -- 

NN 0.0382 0.0328 1.5692 74.4% 

NN3 0.0007 0.0014 1.0030 99.5% 

NN2 0.0004 0.0009 1.0013 99.8% 

NN1 0.0001 0.0005 0.9999 99.9% 

Op1 0.0363 0.0339 1.5441 75.8% 

Op2 0.0935 0.0550 2.0098 37.5% 

(continued)  
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Method Std. Mean 

Difference 

SD of Std. 

Mean 

Difference 

Variance Ratio Percent Bias 

Reduction 

Comparison-to-Treatment = 4:1 

Before Matching 0.1370 0.0569 2.1487 -- 

NN 0.0254 0.0243 1.4601 81.5% 

NN3 0.0005 0.0011 1.0018 99.6% 

NN2 0.0003 0.0007 1.0005 99.8% 

NN1 0.0001 0.0004 1.0000 99.9% 

Op1 0.0233 0.0253 1.4254 83.0% 

Op2 0.0624 0.0440 1.9527 54.5% 

Comparison-to-Treatment = 5:1 

Before Matching 0.1264 0.0528 2.3942 -- 

NN 0.0186 0.0201 1.4049 85.3% 

NN3 0.0004 0.0009 1.0011 99.7% 

NN2 0.0002 0.0007 1.0007 99.8% 

NN1 0.0001 0.0003 1.0000 99.9% 

Op1 0.0169 0.0207 1.3749 86.6% 

Op2 0.0450 0.0375 1.8759 64.4% 

Comparison-to-Treatment = 6:1 

Before Matching 0.1155 0.0484 2.5121 -- 

NN 0.0135 0.0154 1.3379 88.3% 

NN3 0.0003 0.0008 1.0013 99.7% 

NN2 0.0002 0.0006 0.9998 99.8% 

NN1 0.0000 0.0003 0.9999 100.0% 

Op1 0.0118 0.0159 1.3025 89.8% 

Op2 0.0325 0.0301 1.7311 71.9% 

Treatment Group Sample Size = 100 

Comparison-to-Treatment = 3:1 

Before Matching 0.1097 0.0308 1.7136 -- 

NN 0.0164 0.0121 1.3325 85.1% 

NN3 0.0007 0.0005 1.0051 99.3% 

NN2 0.0004 0.0003 1.0027 99.6% 

NN1 0.0002 0.0002 1.0006 99.9% 

Op1 0.0152 0.0127 1.3115 86.2% 

Op2 0.0586 0.0251 1.8247 46.6% 

(continued)  
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Method Std. Mean 

Difference 

SD of Std. 

Mean 

Difference 

Variance Ratio Percent Bias 

Reduction 

Comparison-to-Treatment = 4:1 

Before Matching 0.1034 0.0287 1.9195 -- 

NN 0.0102 0.0088 1.2501 90.1% 

NN3 0.0005 0.0004 1.0042 99.5% 

NN2 0.0003 0.0003 1.0018 99.7% 

NN1 0.0001 0.0001 1.0007 99.9% 

Op1 0.0090 0.0093 1.2247 91.3% 

Op2 0.0367 0.0205 1.7179 64.5% 

Comparison-to-Treatment = 5:1 

Before Matching 0.0967 0.0257 2.0715 -- 

NN 0.0068 0.0062 1.1959 92.9% 

NN3 0.0004 0.0004 1.0026 99.6% 

NN2 0.0002 0.0002 1.0015 99.8% 

NN1 0.0001 0.0001 1.0004 99.9% 

Op1 0.0058 0.0064 1.1718 94.0% 

Op2 0.0243 0.0154 1.5774 74.9% 

Comparison-to-Treatment = 6:1 

Before Matching 0.0910 0.0252 2.2235 -- 

NN 0.0051 0.0051 1.1686 94.4% 

NN3 0.0003 0.0003 1.0020 99.7% 

NN2 0.0002 0.0002 1.0012 99.8% 

NN1 0.0001 0.0001 1.0003 99.9% 

Op1 0.0043 0.0052 1.1453 95.3% 

Op2 0.0173 0.0131 1.4820 81.0% 

Note. NN = nearest neighbor matching, NN3 = nearest neighbor matching with a caliper of 0.3, 

NN2 = nearest neighbor matching with a caliper of 0.2, NN1 = nearest neighbor matching with a 

caliper of 0.1, Op1 = optimal 1:1 matching, and Op2 = optimal 2:1 matching.  Propensity scores 

were not calculated for random sampling and Mahalanobis distance matching.  As such, these 

matching methods were not included above. The standardized mean differences were calculated 

by subtracting the mean propensity score for the comparison group from the mean propensity 

score for the treatment group.  The variance ratios were calculated by taking the average 

propensity score variance for the treatment group across replications and dividing it by the 

average propensity score variance for the comparison group across replications. 

The variance ratio of the treatment and comparison propensity scores was 

calculated by taking the average propensity score variance for the treatment group across 

replications and dividing it by the average propensity score variance for the comparison 

group across replications.  The variance ratio should be close to 1 (Stuart, 2010), 



74 

 

indicating that the variance of the propensity scores is about the same across the two 

groups.  There was more variability in the variance ratios across the matching methods 

than there was for the standardized mean differences.  Variance ratios were most 

balanced (e.g., closest to 1) for the nearest neighbor matching method with calipers.  

Moreover as the caliper decreased (e.g., became more stringent), the variance ratio was 

closer to 1.  The variance ratios for nearest neighbor and optimal 1:1 matching were 

comparable.  This, again, suggests that treatment group members did not compete for 

comparison group matches.  Additionally, the variance ratio for optimal 2:1 matching 

was consistently larger than the other matching methods.  These patterns were consistent 

across simulation conditions.  Further, for the optimal and nearest neighbor matching 

without calipers, the variance ratio was closer to 1 as treatment group sample size 

increased and as comparison-to-treatment group ratio increased.   

Percent bias reduction should be 80% or above (Bai, 2013; Cochran & Rubin, 

1973).  Although the percent bias reduction was above 80% for most propensity score 

matching methods, it was largest for nearest neighbor matching with calipers.  Moreover, 

as the caliper decreased (e.g., became more stringent), the percent bias reduction 

increased, suggesting better quality matches than with the larger calipers.  Percent bias 

reduction for nearest neighbor and optimal 1:1 matching were comparable, with optimal 

1:1 consistently resulting in slightly larger percent bias reduction than nearest neighbor 

matching.  Again, this suggests that treatment group members did not compete for 

comparison group matches.  Additionally, the percent bias reduction for optimal 2:1 

matching was consistently smaller than the other matching methods.  These patterns held 

across simulation conditions.  Further, the percent bias reduction generally increased as 
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treatment group sample size increased and as comparison-to-treatment group ratio 

increased, except when using the nearest neighbor matching with calipers, where the 

percent bias reduction was nearly always close to 100%.   

Covariate balance was examined by comparing the treatment and matched 

comparison group on each continuous covariate after matching.  The average 

standardized mean differences (e.g., Cohen’s d) between treatment and comparison 

groups for the continuous covariates were examined; the groups should be less than 0.25 

standard deviation units apart (Stuart, 2010) to be considered balanced.  Tables 6 and 7 

present the covariate balance across the different matching methods.  The absolute value 

of the standardized differences for the continuous covariates before matching ranged 

from 0.06 to 0.65 standard deviation units; the differences for the continuous covariates 

in the random sample were about the same as before matching.  The standardized mean 

difference between groups on the continuous covariates increased as treatment group 

sample size and comparison-to-treatment ratio increased for random sampling; this was 

also true regarding group differences on the covariates before matching.  

Table 6 

Continuous Covariate Balance Before and After Matching Across Conditions 

Method Treatment N = 30 Treatment N = 100 

X1 X2 X3 X4 X1 X2 X3 X4 

Comparison-to-Treatment = 3:1 

Before Matching -0.35 -0.60 0.10 0.08 -0.35 -0.59 0.11 0.07 

Ran -0.35 -0.61 0.11 0.06 -0.35 -0.58 0.11 0.07 

NN -0.06 -0.09 0.02 0.01 -0.04 -0.05 0.01 0.00 

NN3 0.01 0.00 0.01 -0.01 0.00 0.00 0.00 0.00 

NN2 0.01 0.01 0.01 -0.01 0.00 0.00 0.00 0.01 

NN1 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 

(continued)  
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Method Treatment N = 30 Treatment N = 100 

X1 X2 X3 X4 X1 X2 X3 X4 

Op1 -0.06 -0.08 0.01 0.00 -0.03 -0.04 0.01 0.00 

Op2 -0.17 -0.28 0.04 0.03 -0.15 -0.22 0.03 0.02 

Mah -0.15 -0.28 0.05 0.03 -0.10 -0.20 0.05 0.02 

Comparison-to-Treatment = 4:1 

Before Matching -0.36 -0.61 0.13 0.07 -0.36 -0.61 0.12 0.06 

Ran -0.37 -0.61 0.13 0.06 -0.36 -0.61 0.12 0.06 

NN -0.04 -0.06 0.02 0.01 -0.02 -0.03 0.01 0.01 

NN3 -0.01 0.00 0.00 0.01 0.00 0.01 0.01 0.00 

NN2 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 

NN1 -0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 

Op1 -0.04 -0.06 0.01 0.00 -0.01 -0.03 0.00 0.01 

Op2 -0.12 -0.17 0.03 0.01 -0.08 -0.12 0.02 0.00 

Mah -0.12 -0.24 0.06 0.03 -0.08 -0.17 0.04 0.02 

Comparison-to-Treatment = 5:1 

Before Matching -0.38 -0.64 0.11 0.08 -0.37 -0.63 0.12 0.07 

Ran -0.39 -0.63 0.10 0.07 -0.37 -0.63 0.12 0.07 

NN -0.03 -0.04 0.00 0.00 -0.01 -0.02 0.00 0.00 

NN3 -0.01 0.00 -0.01 0.00 0.00 0.00 0.00 -0.01 

NN2 -0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00 

NN1 -0.02 0.01 -0.01 0.02 -0.01 0.00 0.00 0.00 

Op1 -0.02 -0.04 0.00 0.01 -0.01 -0.02 0.01 0.00 

Op2 -0.08 -0.11 0.01 0.01 -0.05 -0.07 0.01 0.00 

Mah -0.10 -0.22 0.04 0.03 -0.07 -0.16 0.04 0.02 

Comparison-to-Treatment = 6:1 

Before Matching -0.37 -0.65 0.12 0.07 -0.38 -0.64 0.12 0.07 

Ran -0.37 -0.64 0.13 0.06 -0.38 -0.65 0.12 0.07 

NN -0.02 -0.04 0.01 0.01 -0.01 -0.01 0.00 0.00 

NN3 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

NN2 0.00 0.00 0.01 -0.01 0.00 0.00 0.00 0.00 

NN1 -0.01 0.00 0.01 -0.01 0.00 0.00 0.00 -0.01 

Op1 -0.02 -0.03 0.01 0.00 -0.01 -0.01 0.00 0.00 

Op2 -0.06 -0.09 0.02 0.00 -0.04 -0.05 0.01 0.00 

Mah -0.09 -0.21 0.05 0.02 -0.07 -0.15 0.04 0.01 
Note. Ran = random sampling, NN = nearest neighbor matching, NN3 = nearest neighbor 

matching with a caliper of 0.3, NN2 = nearest neighbor matching with a caliper of 0.2, NN1 = 

nearest neighbor matching with a caliper of 0.1, Op1 = optimal 1:1 matching, Op2 = optimal 2:1 

matching, and Mah = Mahalanobis distance matching.   
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Most of the matching techniques resulted in average standardized mean 

differences between the groups on the continuous covariates less than 0.25 standard 

deviation units.  However, nearest neighbor matching with the calipers produced the most 

equivalent matched comparison group, with standard deviation unit differences for the 

continuous covariates of 0.02 or less.  Continuous covariate balance for nearest neighbor 

and optimal 1:1 matching were comparable and performed only slightly worse than 

nearest neighbor matching with calipers.  Optimal 2:1 and Mahalanobis distance 

matching were comparable, and performed worse than the other matching methods at 

balancing the continuous covariates.  Again, these patterns were consistent across 

simulation conditions.  Further, the standardized mean difference between treatment and 

comparison groups on the continuous covariates generally decreased as treatment group 

sample size and comparison-to-treatment group ratio increased, with the exception of 

nearest neighbor matching with calipers, where the standardized mean difference was 

nearly zero in all conditions.   

Categorical covariate balance was assessed by comparing the proportion of 

treatment group members to the proportion of comparison group members after matching 

and by examining standardized mean difference (similar to Cohen’s d for categorical 

covariates).  The standardized mean difference between the treatment and comparison 

groups for categorical covariates should be less than 0.1 (Austin, 2009a).  Table 7 

presents the covariate balance for the categorical covariates across the different matching 

methods.  The absolute value of the standardized mean difference for the categorical 

covariates ranged from 0.11 to 0.45 standard deviation units before matching; the 
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differences for the categorical covariates in the random sample were about the same as 

the full sample before matching.   

Table 7  

Categorical Covariate Balance Before and After Matching Across Conditions 

Method X5 X6 

Treatment 

Proportion 

Comparison 

Proportion 

Std. Mean 

Difference 

Treatment 

Proportion 

Comparison 

Proportion 

Std. Mean 

Difference 

N=30 

Comparison-to-Treatment = 3:1 

Before 

Matching 

0.56 0.62 -0.12 0.27 0.11 0.41 

Ran 0.56 0.62 -0.12 0.27 0.11 0.42 

NN 0.56 0.57 -0.02 0.27 0.21 0.13 

NN3 0.59 0.59 -0.01 0.16 0.16 0.01 

NN2 0.59 0.59 -0.01 0.14 0.14 0.01 

NN1 0.60 0.59 0.00 0.13 0.13 0.01 

Op1 0.56 0.57 -0.01 0.27 0.22 0.12 

Op2 0.56 0.59 -0.05 0.27 0.15 0.29 

Mah 0.56 0.57 -0.02 0.27 0.22 0.10 

Comparison-to-Treatment = 4:1 

Before 

Matching 

0.55 0.61 -0.12 0.28 0.12 0.43 

Ran 0.55 0.61 -0.12 0.28 0.12 0.44 

NN 0.55 0.56 -0.01 0.28 0.25 0.09 

NN3 0.58 0.58 -0.01 0.18 0.17 0.01 

NN2 0.59 0.59 -0.01 0.16 0.16 0.02 

NN1 0.59 0.60 -0.01 0.14 0.14 0.01 

Op1 0.55 0.56 -0.01 0.28 0.25 0.08 

Op2 0.55 0.57 -0.03 0.28 0.19 0.22 

Mah 0.55 0.57 -0.03 0.28 0.27 0.04 

Comparison-to-Treatment = 5:1 

Before 

Matching 

0.55 0.61 -0.12 0.30 0.12 0.44 

Ran 0.55 0.61 -0.13 0.30 0.12 0.46 

NN 0.55 0.55 -0.01 0.30 0.27 0.06 

(continued)  
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Method X5 X6 

Treatment 

Proportion 

Comparison 

Proportion 

Std. Mean 

Difference 

Treatment 

Proportion 

Comparison 

Proportion 

Std. Mean 

Difference 

NN3 0.57 0.58 0.00 0.19 0.18 0.02 

NN2 0.58 0.58 0.00 0.17 0.17 0.01 

NN1 0.58 0.59 -0.02 0.15 0.14 0.02 

Op1 0.55 0.55 -0.01 0.30 0.27 0.06 

Op2 0.55 0.56 -0.02 0.30 0.23 0.16 

Mah 0.55 0.56 -0.02 0.30 0.29 0.02 

Comparison-to-Treatment = 6:1 

Before 

Matching 

0.55 0.61 -0.13 0.31 0.12 0.45 

Ran 0.55 0.61 -0.13 0.31 0.12 0.47 

NN 0.55 0.55 0.00 0.31 0.29 0.04 

NN3 0.57 0.56 0.01 0.20 0.20 0.01 

NN2 0.57 0.58 -0.01 0.18 0.18 0.03 

NN1 0.58 0.58 -0.01 0.16 0.15 0.03 

Op1 0.55 0.55 -0.01 0.31 0.29 0.04 

Op2 0.55 0.55 -0.02 0.31 0.25 0.11 

Mah 0.55 0.56 -0.02 0.31 0.30 0.01 

 N=100 

Comparison-to-Treatment = 3:1 

Before 

Matching 

0.56 0.61 -0.11 0.26 0.11 0.40 

Ran 0.56 0.61 -0.11 0.26 0.11 0.40 

NN 0.56 0.56 -0.01 0.26 0.23 0.08 

NN3 0.57 0.57 0.00 0.19 0.18 0.02 

NN2 0.58 0.58 0.00 0.17 0.17 0.01 

NN1 0.58 0.59 -0.01 0.15 0.15 0.01 

Op1 0.56 0.56 -0.01 0.26 0.23 0.07 

Op2 0.56 0.58 -0.04 0.26 0.16 0.26 

Mah 0.56 0.57 -0.02 0.26 0.25 0.03 

Comparison-to-Treatment = 4:1 

Before 

Matching 

0.55 0.61 -0.12 0.28 0.12 0.42 

Ran 0.55 0.61 -0.12 0.28 0.12 0.43 

NN 0.55 0.56 -0.01 0.28 0.27 0.04 

(continued)  
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Method X5 X6 

Treatment 

Proportion 

Comparison 

Proportion 

Std. Mean 

Difference 

Treatment 

Proportion 

Comparison 

Proportion 

Std. Mean 

Difference 

NN3 0.57 0.57 0.00 0.21 0.21 0.01 

NN2 0.57 0.57 0.00 0.19 0.19 0.01 

NN1 0.58 0.58 0.00 0.17 0.17 0.01 

Op1 0.55 0.56 -0.01 0.28 0.27 0.04 

Op2 0.55 0.56 -0.02 0.28 0.21 0.18 

Mah 0.55 0.56 -0.02 0.28 0.28 0.01 

Comparison-to-Treatment = 5:1 

Before 

Matching 

0.55 0.61 -0.13 0.30 0.12 0.44 

Ran 0.55 0.61 -0.12 0.30 0.12 0.45 

NN 0.55 0.55 0.00 0.30 0.28 0.03 

NN3 0.56 0.56 0.00 0.23 0.22 0.01 

NN2 0.57 0.57 0.00 0.21 0.21 0.02 

NN1 0.57 0.57 0.00 0.18 0.18 0.01 

Op1 0.55 0.55 0.00 0.30 0.29 0.03 

Op2 0.55 0.56 -0.01 0.30 0.24 0.12 

Mah 0.55 0.55 -0.01 0.30 0.30 0.00 

Comparison-to-Treatment = 6:1 

Before 

Matching 

0.55 0.61 -0.12 0.31 0.12 0.45 

Ran 0.55 0.61 -0.12 0.31 0.12 0.46 

NN 0.55 0.55 -0.01 0.31 0.30 0.02 

NN3 0.56 0.56 0.00 0.24 0.24 0.01 

NN2 0.56 0.57 0.00 0.23 0.22 0.01 

NN1 0.57 0.57 0.00 0.20 0.19 0.02 

Op1 0.55 0.55 0.00 0.31 0.30 0.02 

Op2 0.55 0.55 -0.01 0.31 0.27 0.08 

Mah 0.55 0.55 0.00 0.31 0.31 0.00 

Note. Ran = random sampling, NN = nearest neighbor matching, NN3 = nearest neighbor 

matching with a caliper of 0.3, NN2 = nearest neighbor matching with a caliper of 0.2, NN1 = 

nearest neighbor matching with a caliper of 0.1, Op1 = optimal 1:1 matching, Op2 = optimal 2:1 

matching, and Mah = Mahalanobis distance matching.   

Although propensity score and Mahalanobis distance matching techniques created 

more balanced groups than before matching, nearest neighbor matching with the calipers 

produced the most equivalent matched comparison group, with absolute standard 
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deviation unit differences for the categorical covariates of 0.03 or less.  Categorical 

covariate balance for nearest neighbor, optimal 1:1, and Mahalanobis distance matching 

were comparable, and performed only slightly worse than nearest neighbor matching with 

calipers.  Moreover, Mahalanobis distance matching resulted in slightly better balanced 

categorical covariates than nearest neighbor and optimal 1:1 when treatment group 

sample size was 100.  For X5, optimal 2:1 matching performed comparably to nearest 

neighbor, optimal 1:1, and Mahalanobis distance matching for the 4:1 to 6:1 comparison-

to-treatment ratios.  However, optimal 2:1 matching performed worse than the other 

matching methods at balancing X6. 

All matching methods balanced X5 well; however, it was more difficult to 

balance X6.  Further, it is important to note that in some replications, the entire 

representation of one group on X6 was excluded from analysis due to lack of an adequate 

match.  This is particularly problematic for generalizability.  That is, when the 

representation of one group is lost, then the results no longer generalize back to the 

original treatment group.  Thus, the generalizability of the results is limited by the 

representation of the matched treatment group.   

Covariates were considered unbalanced if the absolute value of the standardized 

mean difference was greater than 0.25 for continuous covariates (Stuart, 2010) or 0.10 for 

categorical covariates (Austin, 2009a).  The percentage of replications in which each 

covariate was unbalanced was examined by condition and is presented in Table 8.  

Random sampling had the highest percentage of replications with unbalanced covariates 

across all covariates, with X4 and X5 being unbalanced less frequently than the other 

covariates.  This pattern held across treatment group sample sizes and comparison-to-
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treatment group ratios.  Across the other matching methods, the percentages of 

unbalanced covariates was larger when treatment group sample size was small. 

Table 8  

Proportion of Replications with Unbalanced Covariates by Covariate and Conditions  

Method X1 X2 X3 X4 X5 X6 

Treatment Group Sample Size = 30 

Comparison-to-Treatment = 3:1 

Ran 67% 92% 35% 31% 71% 88% 

NN 8% 10% 6% 8% 45% 57% 

NN3 21% 17% 24% 24% 69% 70% 

NN2 29% 24% 30% 30% 79% 71% 

NN1 40% 33% 46% 44% 77% 65% 

Op1 8% 10% 6% 7% 44% 53% 

Op2 28% 55% 5% 4% 46% 83% 

Mah 26% 56% 10% 10% 25% 33% 

Comparison-to-Treatment = 4:1 

Ran 68% 92% 40% 35% 74% 90% 

NN 10% 7% 8% 9% 45% 47% 

NN3 21% 14% 25% 24% 61% 72% 

NN2 26% 22% 30% 28% 74% 73% 

NN1 36% 30% 43% 40% 80% 70% 

Op1 9% 6% 8% 10% 46% 45% 

Op2 11% 27% 2% 2% 40% 76% 

Mah 16% 49% 11% 9% 20% 14% 

Comparison-to-Treatment = 5:1 

Ran 70% 93% 38% 36% 73% 93% 

NN 8% 5% 9% 10% 50% 43% 

NN3 22% 12% 24% 23% 58% 70% 

NN2 27% 19% 29% 30% 71% 72% 

NN1 36% 24% 38% 38% 82% 69% 

Op1 8% 5% 9% 9% 47% 41% 

Op2 6% 12% 1% 1% 36% 67% 

Mah 13% 43% 7% 6% 17% 6% 

(continued)  
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Method X1 X2 X3 X4 X5 X6 

Comparison-to-Treatment = 6:1 

Ran 67% 94% 41% 37% 73% 93% 

NN 9% 4% 11% 11% 50% 37% 

NN3 21% 13% 23% 23% 57% 68% 

NN2 25% 17% 27% 28% 68% 75% 

NN1 34% 23% 39% 35% 81% 73% 

Op1 8% 5% 10% 10% 48% 38% 

Op2 3% 6% 2% 1% 37% 56% 

Mah 11% 37% 7% 5% 10% 1% 

Treatment Group Sample Size = 100 

Comparison-to-Treatment = 3:1 

Ran 74% 99% 17% 11% 62% 99% 

NN 0% 0% 0% 0% 22% 35% 

NN3 1% 0% 1% 1% 26% 23% 

NN2 1% 0% 1% 1% 30% 30% 

NN1 2% 0% 3% 3% 38% 33% 

Op1 0% 0% 0% 0% 22% 31% 

Op2 8% 38% 0% 0% 15% 94% 

Mah 2% 28% 0% 0% 7% 8% 

Comparison-to-Treatment = 4:1 

Ran 80% 100% 19% 11% 64% 99% 

NN 0% 0% 0% 0% 25% 18% 

NN3 1% 0% 1% 1% 27% 24% 

NN2 1% 0% 1% 2% 32% 23% 

NN1 2% 0% 3% 4% 38% 38% 

Op1 0% 0% 0% 0% 26% 16% 

Op2 1% 4% 0% 0% 8% 80% 

Mah 0% 14% 0% 0% 4% 1% 

Comparison-to-Treatment = 5:1 

Ran 81% 99% 17% 12% 64% 100% 

NN 0% 0% 1% 0% 28% 16% 

NN3 0% 0% 1% 1% 27% 25% 

NN2 1% 0% 2% 2% 29% 28% 

NN1 3% 0% 3% 2% 41% 36% 

Op1 0% 0% 0% 0% 28% 15% 

Op2 0% 0% 0% 0% 5% 58% 

Mah 0% 8% 0% 0% 1% 0% 

(continued)  
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Method X1 X2 X3 X4 X5 X6 

Comparison-to-Treatment = 6:1 

Ran 82% 100% 19% 12% 64% 100% 

NN 0% 0% 1% 1% 29% 14% 

NN3 1% 0% 1% 1% 28% 22% 

NN2 2% 0% 2% 2% 31% 27% 

NN1 2% 0% 3% 4% 42% 33% 

Op1 0% 0% 0% 1% 26% 16% 

Op2 0% 0% 0% 0% 7% 34% 

Mah 0% 5% 0% 0% 0% 0% 

Note. Ran = random sampling, NN = nearest neighbor matching, NN3 = nearest neighbor 

matching with a caliper of 0.3, NN2 = nearest neighbor matching with a caliper of 0.2, NN1 = 

nearest neighbor matching with a caliper of 0.1, Op1 = optimal 1:1 matching, Op2 = optimal 2:1 

matching, and Mah = Mahalanobis distance matching.   

Nearest neighbor matching also had a high percentage of replications with 

unbalanced covariates.  Moreover, as the caliper became more stringent, the percentage 

of replications with unbalanced covariates increased.  This pattern held across 

comparison-to-treatment group ratios for a treatment group sample size of 30.  When the 

treatment group sample size was 100, the percentage of replications with unbalanced 

continuous covariate was much smaller; however, the percentages of replications with 

unbalanced categorical covariates were still large.   

The percentage of replications with unbalanced covariates varied across 

conditions (e.g. treatment group sample size and comparison-to-treatment group ratio) for 

nearest neighbor, optimal 1:1 and 2:1, and Mahalanobis distance matching.  Thus, these 

methods were compared within treatment group sample sizes. 

When the treatment group sample size was 30, nearest neighbor and optimal 1:1 

matching were comparable for both continuous and categorical covariates.  Mahalanobis 

distance matching resulted in a higher percentage of unbalanced continuous covariates 

than nearest neighbor and optimal 1:1 matching; however, Mahalanobis distance 
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matching resulted in a smaller percentage of unbalanced categorical covariates (X5 and 

X6) than nearest neighbor and optimal 1:1 matching.  The performance of optimal 2:1 

matching varied by covariate.  Specifically, the percentage of replications when X3 and 

X4 were unbalanced was consistently smaller than the other covariates and smaller than 

the other matching methods.  The percentage of replications when X1 and X2 were 

unbalanced was larger when the comparison-to-treatment group ratio was smaller; 

however, the percentages were comparable to nearest neighbor and optimal 1:1 matching 

when the comparison-to-treatment group ratio was at least 5:1.  Finally, optimal matching 

resulted in a higher percentage of unbalance for X6 than X5 for comparison-to-treatment 

group ratios of 3:1 to 5:1.   

When the treatment group sample size was 100, the percentage of replications 

with unbalanced continuous covariates (X1, X3, and X4) was comparable for nearest 

neighbor, optimal 1:1, optimal 2:1, and Mahalanobis distance matching; however, the 

percentage of replications where X2 was unbalanced was higher for Mahalanobis 

distance matching than the other matching methods.  Optimal 2:1 was comparable to 

these other methods when the comparison-to-treatment group ratio was at least 4:1.  

However, the percentage of replications with unbalanced categorical covariates was 

much smaller for Mahalanobis distance matching than nearest neighbor, optimal 1:1, and 

optimal 2:1 matching.  Additionally, optimal 2:1 resulted in a smaller percentage of 

replications with unbalanced X5 than nearest neighbor and optimal 1:1 matching.  

Conversely, optimal 2:1 resulted in a larger percentage of replications with unbalanced 

X6 than nearest neighbor and optimal 1:1 matching.   
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Quantity of matches. Quantity of matches was assessed by examining the 

percentage of treatment group members who were successfully matched.  Table 9 lists 

the average percentage of treatment group members who were retained after matching by 

condition.  The percentage of the comparison group that was retained was a function of 

the sample size of the treatment group and matching method used.  The full treatment 

sample was retained for all of the matching techniques except for the nearest neighbor 

with calipers.6  For the nearest neighbor with caliper methods, as the caliper size 

decreased (e.g., became more stringent) so did the proportion of the treatment group that 

was successfully matched.  This pattern held across conditions (e.g., treatment group 

sample size and comparison-to-treatment group ratio).  Additionally, a larger percentage 

of treatment group members were successfully matched as the comparison-to-treatment 

group ratio increased.  Further, a smaller percentage of treatment group members were 

retained when the treatment group sample size was smaller (e.g., 30).  This is particularly 

problematic as the treatment group was already fairly small so the loss of treatment group 

members may result in too few matches to conduct the outcome analyses of interest, as 

well as loss of power.    

Table 9  

Quantity of Matches After Matching Across Conditions 

Method Treatment N = 30 Treatment N = 100 

 M SD M SD 

Comparison-to-Treatment = 3:1 

Ran 100% 0% 100% 0% 

NN 100% 0% 100% 0% 

NN3 66% 7% 83% 3% 

NN2 58% 7% 79% 3% 

NN1 43% 8% 69% 4% 

(continued)  
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Method Treatment N = 30 Treatment N = 100 

 M SD M SD 

Op1 100% 0% 100% 0% 

Op2 100% 0% 100% 0% 

Mah 100% 0% 100% 0% 

Comparison-to-Treatment = 4:1 

Ran 100% 0% 100% 0% 

NN 100% 0% 100% 0% 

NN3 70% 7% 86% 3% 

NN2 62% 7% 82% 3% 

NN1 48% 8% 73% 3% 

Op1 100% 0% 100% 0% 

Op2 100% 0% 100% 0% 

Mah 100% 0% 100% 0% 

Comparison-to-Treatment = 5:1 

Ran 100% 0% 100% 0% 

NN 100% 0% 100% 0% 

NN3 72% 7% 87% 3% 

NN2 66% 7% 84% 3% 

NN1 52% 8% 76% 3% 

Op1 100% 0% 100% 0% 

Op2 100% 0% 100% 0% 

Mah 100% 0% 100% 0% 

Comparison-to-Treatment = 6:1 

Ran 100% 0% 100% 0% 

NN 100% 0% 100% 0% 

NN3 74% 7% 88% 3% 

NN2 68% 7% 85% 3% 

NN1 55% 8% 77% 3% 

Op1 100% 0% 100% 0% 

Op2 100% 0% 100% 0% 

Mah 100% 0% 100% 0% 

Note. Ran = random sampling, NN = nearest neighbor matching, NN3 = nearest neighbor 

matching with a caliper of 0.3, NN2 = nearest neighbor matching with a caliper of 0.2, NN1 = 

nearest neighbor matching with a caliper of 0.1, Op1 = optimal 1:1 matching, Op2 = optimal 2:1 

matching, and Mah = Mahalanobis distance matching.   

Research Question 2: Type I Error and Power  

The second research question concerned how the results of group comparisons 

(e.g., significance tests) compared across the matching techniques and conditions.  Type I 
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error was examined when the true effect between the groups after matching was 

simulated to be zero (i.e., d = 0).  Power was examined when the true effect between the 

groups after matching was simulated to be greater than zero (i.e., d = 0.2, 0.5, and 0.8).   

Type I Error. Type I error was defined as the proportion of replications where 

the groups were significantly different when there was no true difference (d = 0.0).  The 

nominal alpha was set to 0.05, thus it was expected that a Type I error would be observed 

about 5% of the time.  Figures 2 and 3 display the Type I error across conditions for the 

treatment group sample sizes of 30 and 100, respectively.  Type I error was within the 

nominal rate for most of the matching methods across all conditions.  Regardless of 

treatment group sample size and comparison-to-treatment ratio, the inclusion of the 

unbalanced covariates resulted in a Type I error rate around 5%.  When unbalanced 

covariates were not included in the analyses, random sampling resulted in a Type I error 

rate of about 25% for a treatment group sample size of 30 and about 60% to 70% for a 

treatment group sample size of 100.  Optimal 2:1 matching also resulted in in a Type I 

error rate that was slightly above 5% when the comparison-to-treatment group ratio was 

3:1 (treatment N = 30 and 100) and 4:1 (treatment N = 100).  Additionally, Mahalanobis 

distance matching resulted in a Type I error rate slightly over 5% for most comparison-

to-treatment ratio when treatment group sample size was 100.  
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Figure 2. Type I error across conditions, treatment N = 30. Negative direction indicates 

the estimated treatment effect favored the comparison group. 
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Figure 3. Type I error across conditions, treatment N = 100. Negative direction indicates 

the estimated treatment effect favored the comparison group. 
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Power. Power was defined as the proportion of replications where the groups 

were significantly different when there was a true difference (d = 0.2, 0.5, and 0.8).  It is 

worth noting that, because the significance tests was two-tailed, a literal definition of 

power includes significance in either direction.  However, the results below include a 

differentiation between power in the correct direction (the mean on the outcome for the 

treatment group was significantly higher than the mean on the outcome for the 

comparison group) and power in the incorrect direction (the mean on the outcome for the 

treatment group was significantly lower than the mean on the outcome for the 

comparison group).  Figures 4 and 5 display power in the correct direction across 

conditions for the treatment group sample sizes of 30 and 100, respectively.   

Unsurprisingly, power was lower for the smaller effect sizes.  Additionally, power 

was lower when treatment group sample size was 30 than when treatment group sample 

size was 100.  When treatment group samples size was 30, power was lower for nearest 

neighbor matching with calipers than for the other matching methods (except random 

sampling); power was lower for more stringent calipers than for more liberal calipers.  

This is unsurprising given that there was a loss of sample size when calipers were 

applied.  Although still low, power was higher for nearest neighbor and optimal 1:1 and 

2:1 matching.  Power was higher for Mahalanobis distance matching when unbalanced 

covariates were included in the analyses than when no covariates were included in the 

analyses; analysis did not impact power for the other matching methods.  Moreover, 

comparison-to-treatment group ratio did not affect power across the matching methods.   

When the sample size was 100 and the effect size was 0.5 or 0.8, power across the 

different matching methods was close to 1, expect for random sampling.  When effect 
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size was 0.2, power was around 0.25 for all matching methods, except for random 

sampling and Mahalanobis distance matching; power was a little lower for these 

methods.  Generally, this pattern held regardless of comparison-to-treatment ratio.  Power 

was lower for random sampling when no covariates were included in the analyses than 

when unbalanced covariates were included in the analyses; including unbalanced 

covariates in the analysis affected power minimally for the other matching methods.   

As noted previously, power can also be in the incorrect direction.  In the current 

study, power in the incorrect direction meant that the mean of the outcome for the 

treatment group was statistically significantly lower than the mean of the outcome for the 

comparison group.  Random sampling had a higher proportion of power in the incorrect 

direction than the other matching methods, except when treatment group sample size was 

100 and unbalanced covariates were included in the group comparisons on the outcome.  

When sample size was 30 and effect size was 0.2, most matching methods had some 

power in the incorrect direction.  However, the power in the wrong direction was small 

(e.g., less than 1%).  Additionally, when the effect size was 0.5, a small number of 

matching methods has some power in the incorrect direction.  The pattern was 

inconsistent across matching methods.  When sample size was 100, there were fewer 

instances of power in the wrong direction; however, power in the wrong direction for 

random sampling increased with the larger treatment group sample size.  Appendix C 

presents graphs for power in the incorrect direction across conditions. 
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Figure 4. Power in the correct direction across conditions, treatment N = 30.  
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Figure 4. Power in the correct direction across conditions, treatment N = 100.  
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Research Question 3: Treatment Effect Recovery  

The third research question was aimed at exploring how well the matching 

methods recovered the true treatment effect (e.g., differences between the group means).  

Recovery of the true treatment effect was determined by examining bias and RMSE of 

the effect size estimates.  Bias and RMSE did not differ across effect sizes, thus, the 

results summarized below apply across effect sizes.  

Bias. Bias is the difference between the estimated parameter and the generating 

true parameter value, averaged across replications.  Thus, bias values closer to 0 are 

desirable, indicating that on average, the estimated parameter is approximately the same 

as the true parameter value.  Given that the parameter of interest was the estimated 

treatment effect, bias is on a Cohen’s d metric.  As shown in Figure 5, bias was 

consistently negative.  For an effect size of 0, negative bias indicated that the comparison 

group scored higher on the outcome than the treatment group.  For other effect sizes (i.e., 

0.2, 0.5, and 0.8), negative bias indicated that the treatment effect was estimated to be 

lower than the true treatment effect, which was simulated to be positive (favoring the 

treatment group).  Prior to matching, the comparison group had higher values on the 

covariates.  Thus, when matching did not completely balance the covariates, the 

comparison group's higher values on the covariates led to negatively biased estimates of 

the treatment effect.     

Overall, bias was negligible for most of the matching methods.  Random sampling 

was the most biased when covariates were not included in the outcome analysis; however 

when unbalanced covariates were included in the outcome analysis, bias for random 

sampling was close to 0.  Additionally, bias for random sampling was comparable across 
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treatment group sample sizes and comparison-to-treatment ratios.  Nearest neighbor 

matching without calipers was slightly negatively biased when covariates were not 

included in the outcome analyses.  The inclusion of the unbalanced covariates resulted in 

bias closer to 0.  Bias for nearest neighbor matching was smaller when treatment group 

sample size and comparison-to-treatment group ratio was larger.  Additionally, the bias 

for nearest neighbor matching with calipers was close to 0 regardless of treatment group 

sample size, comparison-to-treatment ratio, and whether unbalanced were included in the 

outcome analyses.  Optimal 1:1 matching was slightly biased, with greater bias when the 

treatment group sample size was 30 and when unbalanced covariates were not included in 

the outcome analyses.  Optimal 2:1 and Mahalanobis distance matching had the largest 

bias (other than random sampling) and were comparable.  Bias for these two matching 

techniques decreased as treatment group sample size and comparison-to-treatment ratio 

increased.  Additionally, optimal 2:1 and Mahalanobis distance matching was less biased 

when unbalanced covariates were included in the outcome analyses.  
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Figure 5. Treatment effect bias across conditions.  
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RMSE. RMSE is an index the combines bias and the average variability between 

the true and estimated parameters, across replications.  Thus, RMSE values closer to 0 

are desirable.  Overall, there was more variability in RMSE across matching methods 

when the treatment group sample size was 30 than when the treatment group sample size 

was 100.  When treatment group sample size was 100, the matching methods were 

comparable, except random sampling with no covariates in the outcome analyses. 

However, when treatment group sample size was 30, nearest neighbor matching with 

calipers resulted in the largest RMSE values.  RMSE was smaller when treatment group 

sample size was larger (N = 100).  Moreover, comparison-to-treatment ratio did not 

impact RMSE.  Generally, whether unbalanced covariates were included in the outcome 

analysis did not affect RMSE, except for when random sampling was used.  For random 

sampling, including unbalanced covariates in the outcome analyses resulted in smaller 

RMSE values than when unbalanced covariates were not included in the outcome 

analyses, largely due to the decrease in bias.  
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Figure 6. Treatment effect RMSE across conditions.  
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Research Question 4: Explaining Variability 

The fourth research question concerned what conditions were optimal in obtaining 

accurate estimates of the effect size parameter.  That is, how much of the variability in 

the difference between the estimated and true parameters could be explained by the 

manipulated conditions (e.g., effect size, matching method, comparison-to-treatment 

ratio, sample size, and outcome analysis)?  This was assessed by examining the 

variability in the mean difference (similar to bias, but for one replication) and squared 

difference (similar to MSE, but for one replication) across replications.  Most of the 

findings described below were hinted at in the descriptions of Figures 5 and 6; however, 

this analysis gives more precise values to how much variance was explained by each 

condition.   

Table 10 presents the variance explained in the difference and square difference.  

Overall, most of the conditions did not impact true effect size recovery.  Only three 

conditions explained more than 1% of the variance in the difference between the 

estimated and true effect sizes.  The interaction of method by analysis (2 = 5.68%) and 

the main effect for method (2 = 5.63%) explained the most variance in the estimated and 

true parameter differences.  Intuitively, this makes sense: the inclusion of unbalanced 

covariates in the outcome analysis (i.e., analysis) was more beneficial for some matching 

methods than others (e.g., including unbalanced covariates made more of a difference for 

random sampling than for nearest neighbor matching).  The main effect for method 

indicates that the difference between the estimated and true effect sizes varied across 

methods, which is also to be expected.  Further, the main effect for analysis (2 = 1.64%) 

suggests that even though analysis interacted with matching method, averaging over the 
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methods the difference between the estimated and true effect sizes was closer to 0 when 

unbalanced covariates were included in the outcome analyses.  

Only four conditions explained more than 1% of the variance in the squared 

difference between the estimated and true effect sizes.  The main effect for treatment 

group sample size (2 = 7.61%) and the main effect for method (2 = 4.76%) explained 

the most variance in the squared difference between the estimated and true parameters 

across replications.  The main effect for treatment group sample size indicates that the 

squared difference between the estimated and true effect sizes varied across the treatment 

group sample sizes.  Again, this makes sense, as more variability would be expected 

when the sample size was smaller.  The main effect for method suggests that the squared 

difference between the estimated and true effect sizes varied across methods, which is 

also to be expected.  The interaction of method by analysis (2 = 3.70%) indicates that the 

inclusion of unbalanced covariates in the outcome analysis (i.e., analysis) was more 

beneficial for some matching methods than others.  Finally, the interaction of method by 

treatment group sample size (2 = 1.27%) suggests that the squared difference between 

the estimated and true effect sizes across replication for the methods depended on the 

treatment group sample size.   
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Table 10  

Variance Explained in the Estimated and True Effect Size Difference and Squared 

Difference Across Conditions 

Condition Difference 

Squared 

Difference 

d 0.02% 0.00% 

Method 5.63% 4.76% 

Treatment N 0.01% 7.61% 

Ratio 0.03% 0.02% 

Analysis 1.64% 0.61% 

d * Method 0.00% 0.00% 

d * Treatment N 0.00% 0.00% 

d * Ratio 0.00% 0.00% 

d * Analysis 0.00% 0.00% 

Method * Treatment N 0.01% 1.27% 

Method * Ratio 0.11% 0.12% 

Method * Analysis 5.68% 3.70% 

Treatment N * Ratio 0.00% 0.02% 

Treatment N * Analysis 0.04% 0.00% 

Ratio * Analysis 0.02% 0.00% 

d * Method * Treatment N 0.00% 0.00% 

d * Method * Ratio 0.00% 0.00% 

d * Method * Analysis 0.00% 0.00% 

d * Treatment N * Ratio 0.00% 0.00% 

d * Treatment N * Analysis 0.00% 0.00% 

d * Ratio * Analysis 0.00% 0.00% 

Method * Treatment N * Ratio 0.01% 0.06% 

Method * Treatment N * Analysis 0.05% 0.02% 

Method * Ratio * Analysis 0.08% 0.04% 

Treatment N * Ratio * Analysis 0.00% 0.00% 

d * Method * Treatment N * Ratio 0.00% 0.00% 

d * Method * Treatment N * Analysis 0.00% 0.00% 

d * Method * Ratio * Analysis 0.00% 0.00% 

d * Treatment N * Ratio * Analysis 0.00% 0.00% 

Method * Treatment N * Ratio * Analysis 0.00% 0.01% 

d * Method * Treatment N * Ratio * Analysis 0.00% 0.00% 
Note. d = standardized effect size (Cohen’s d), method = matching method, Treatment N = 

treatment group sample size, ratio = comparison-to-treatment ratio, and analysis = type of 

analysis (regression with no covariates or regression with unbalanced covariates). 



103 

 

CHAPTER 5 

Discussion 

The purpose of this study was to examine common matching techniques to 

determine how they differ in terms of the quantity and quality of matches and whether the 

results of subsequent group comparisons (e.g., significance test results, effect sizes) vary 

across the different matching techniques and manipulated conditions (i.e., effect size, 

treatment group sample size, comparison-to-treatment group ratio, and inclusion of 

unbalanced covariates in the outcome analyses). 

Summary of Results 

The first research question addressed how the matching methods differed in terms 

of the quality and quantity of matches.  Although most of the matching techniques 

created matched comparison groups that were more equivalent to the treatment group 

than before matching, nearest neighbor matching with calipers resulted in the best quality 

matches (e.g., propensity score and individual covariate balance) compared to the other 

matching methods.  Balance on the propensity scores and individual covariates was more 

favorable as the caliper became more stringent.  Additionally, nearest neighbor and 

optimal 1:1 matching resulted in similar balance on the propensity scores and individual 

covariates.  This suggests that treatment group members did not compete for comparison 

matches during the matching process.  If there were insufficient overlap in propensity 

scores between the treatment and comparison group, the matches made earlier in the 

nearest neighbor matching process might be much better than the matches made later in 

the nearest neighbor matching process.  Optimal matching would help balance this and 

thus might result in better matches overall.  The relative comparability of matching for 
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nearest neighbor and optimal matching suggests that this was not the case.  Moreover, 

optimal 2:1 and Mahalanobis distance matching resulted in comparable propensity score 

and individual covariate balance and performed worse than the other matching methods.  

Across matching methods, propensity score and individual covariate balance was slightly 

improved when the treatment group sample size was larger and when the comparison-to-

treatment ratio was larger.   

Importantly, X6 (the covariate representing race/ethnicity) was the least balanced 

across the matching methods.  This may be due to the proportion of individuals in that 

group.  It appears that matching methods balance better when group membership for 

categorical covariates are more equal (e.g., closer to a 50/50 split) than when group 

membership for the categorical covariates are unequal (e.g., closer to a 15/85 split).  

Further, in some replications, the entire representation of one group on X6 (in this case, 

African American representation) was excluded from analysis due to lack of an adequate 

match.  This is particularly problematic for generalizability.  That is, when the 

representation of one group is lost, then the results no longer generalize back to the 

original treatment group.  Thus, the generalizability to the results are limited to the 

representation of the matched treatment group. 

The full treatment group was retained for all of the matching techniques, except 

nearest neighbor with calipers.  As the caliper became more stringent, the proportion of 

the treatment group that was successfully matched decreased. As the treatment group 

sample size and comparison-to-treatment group ratio decreased, the percentage of 

treatment group members who were successfully matched also decreased.  This is 

particularly problematic as the treatment group was already fairly small.  The loss of 
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treatment group members results in a loss of power, and could result in too few matches 

to conduct the outcome analyses of interest (e.g., in some replications, only seven 

treatment group members were successfully matched).  Further, when treatment group 

members are excluded from the matched data, not only do researchers risk a loss in 

representativeness in the treatment group, but the treatment group members who are 

excluded likely had a higher propensity for treatment, thus the treatment group members 

that remain are the ones who had a lower propensity for being in the treatment group in 

the first place. 

The second research question explored how the results of group comparisons 

varied across the matching methods, with a focus on Type I error and power.  Type I 

error was highest for random sampling; however, the Type I error was close to 5% when 

unbalanced covariates were included in the outcome analyses.  Additionally, optimal 2:1 

and Mahalanobis distance matching resulted in slightly inflated Type I error rates.  Type I 

error was within the nominal rate (e.g., around 5%) for the other matching methods.  

Treatment group sample size and comparison-to-treatment ratio made little difference in 

Type I error rates for all matching methods, except random sampling. 

Unsurprisingly, power was lower when effect size and treatment group sample 

size was smaller.  When the sample size was 100 and the effect size was 0.5 or 0.8, power 

across the different matching methods was close to 1, except for random sampling.  

Overall, nearest neighbor matching with calipers resulted in lower power than the other 

matching methods.  Additionally, power decreased as the calipers became more stringent.  

This is unsurprising given that there was a loss of sample size when calipers were 

applied.  Comparison-to-treatment group ratio did not affect power across the matching 
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methods.  Further, when the effect size was 0.2, many of the matching methods had 

power in the incorrect direction; this was more problematic for random sampling than the 

other matching methods. 

The third research question was concerned with the recovery of the true effect 

size, with a focus on bias and RMSE.  Overall, bias was close to 0 for most of the 

matching methods, with optimal 2:1 and Mahalanobis distance matching being the most 

biased.  Additionally, random sampling was biased when unbalanced covariates were not 

included in the outcome analyses.  Inclusion of unbalanced covariates did not affect bias 

for the other matching methods.  Further, treatment group sample size and comparison-

to-treatment group ratio had little impact on bias across the matching methods. 

RMSE was larger when the treatment group sample size was small.  This was to 

be expected, as smaller sample sizes tend to result in more variability due to sampling 

error.  There was more variability in RMSE across matching methods when the treatment 

group sample size was small.  Matching methods were comparable when the treatment 

group sample size was large.  Nearest neighbor matching with calipers resulted in the 

largest RMSE values when treatment group sample size was small.  Moreover, RMSE 

was not affected by comparison-to-treatment ratio.  Further, RMSE was not impacted by 

whether unbalanced covariates were included in the outcome analysis, except for random 

sampling. 

The fourth research question addressed whether the variability in the differences 

between the estimated and true parameters across replications could be explained by the 

manipulated conditions (e.g., effect size, matching method, comparison-to-treatment 

ratio, sample size, and analysis technique).  Method and analysis explained the most 
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variability in the difference and squared difference between the estimated and true 

parameters.  Treatment group sample size also explained a notable percentage of the 

variability in the squared difference between the estimated and true parameters.  These 

results make sense intuitively and relate to the implications for practice presented below.  

Study Limitations and Future Research 

As noted, this study was one in a line of research that is needed to provide 

guidance for practitioners on the selection of matching methods.  The findings from this 

study demonstrated that matching method impacted Type I error, power, and estimated 

effect size; however; as with all studies, this study has a few notable limitations.  First, 

this study included a small number of conditions.  Also some conditions were adequately 

represented (e.g., comparison-to-treatment group ratio, effect sizes, and whether 

unbalanced covariates were included in the outcome analyses); other conditions were 

limited.  For example, this study only examined two treatment group sample sizes.  

Additional treatment group sample sizes should be examined to ensure that these findings 

generalize.  It would be useful to identify the minimum treatment group sample size 

necessary to obtain accurate effect size estimates.   

Similarly, this study only included a limited number of matching methods, all of 

which are used to estimate ATT.  It may be beneficial to examine how methods used to 

estimate ATE impacts Type I error, power, and estimated effect size.  Additionally, 

nearest neighbor and optimal matching performed comparably, suggesting that treatment 

group members did not compete for comparison matches.  This will not always be the 

case.  Thus, it would be beneficial to determine how the competition for matches impacts 

the Type I error, power, and estimated effect size for these two techniques.  Moreover, 
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when nearest neighbor matching with calipers was used, treatment group members were 

lost, but more importantly, representation of certain groups was decreased or lost, thus 

limiting generalizability.  It would be useful to examine whether the same impacts on 

Type I error, power, and estimated effect size are observed when treatment group 

members are lost, but representation is not jeopardized.  

A second limitation of this study was that the covariance matrix of the covariates 

was held constant across effect sizes.  This might be realistic if the effect sizes 

corresponded to different dosages of the treatment; in this context, the size of the 

treatment effect should not be related to the correlations between the covariates and the 

outcome.  However, if the varying effect sizes corresponded to the effect sizes in 

different populations, then the correlations might not be the same across effect sizes.  The 

relationships among the covariates could be manipulated in future studies.  Additionally, 

the relationships between the covariates and the outcome were held constant.  It might 

also be useful to manipulate the relationships between the covariates and group selection, 

the outcome, or both.  For example, if the covariates are highly correlated with group 

membership, but have low correlations with the outcome, then this may lead to more 

biased effect size estimates.  This is an empirical question that could be answered in a 

future study. 

A third limitation of this study is that it included a small number of covariates.  

Research has shown that the difference between Mahalanobis distance and propensity 

score matching is more pronounced when a large number (e.g., at least 8) of covariates 

are included in the matching model.  Thus, future studies should include a larger number 

of covariates.  Moreover, this study only included two categorical covariates—one with 
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about equal group proportions (60% and 40% split) and one with unequal group 

proportions (85% and 15% split).  Future studies should include a larger number of 

categorical covariates with more variety in the group proportions. 

A fourth limitation of this study, and propensity score matching studies in general, 

is that fit of the logistic regression model to predict group membership was not examined.  

Further, some of the covariates included in the matching model were not significant 

predictors of group membership.  Although it is not common to examine fit in propensity 

score matching studies, this information is available to researchers who are interested in 

examining model-data fit.  Future studies could include an examination of fit, as well as 

an examination of the utility of covariates for matching.  Moreover, model-data fit and 

predictive utility of the covariates could be manipulated in future studies. 

Implications for Practice 

Although nearest neighbor with caliper resulted in the best propensity score and 

individual covariate balance (quality), the loss of treatment group members was 

concerning (quantity).  Ultimately, it is up to the researcher to balance the quality and 

quantity of matches when creating a matched comparison group. If researchers are 

concerned with equity and representativeness (e.g., generalizability, internal validity), a 

matching technique that does not compromise quantity may be the most appropriate 

option.  However, if researchers are concerned with obtaining groups that are equivalent 

on background and experience variables, then the use of a caliper may be most 

appropriate (e.g., external validity).  Additionally, there may be expectations from 

funding agencies that require close balance.  When treatment group members are 

excluded due to lack of an adequate match, it is important for the researcher to examine 
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the representativeness of the samples to ensure that generalizability is not limited.  

Researchers may opt for a combination of matching methods to ensure representativeness 

in the matched groups.  For example, in some cases, it may be beneficial to use exact 

matching on certain variables (e.g., X6 in the current study), and then use propensity 

score matching with calipers to balance on the remaining covariates.  This approach 

would help to ensure that X6 is represented and balanced in the final matched data set.    

Matching method had an impact on Type I error, power, and estimated effect size 

but only in certain situations.  This is unsurprising, given that different matching 

techniques may create comparison groups that are composed of different subsets of 

individuals from the entire comparison pool.  Overall, random sampling, optimal 2:1 

matching, and Mahalanobis distance matching performed worse than the other matching 

methods. Findings from this study suggest that they should not be used.  Additionally, 

nearest neighbor matching with calipers did not perform as well as nearest neighbor and 

optimal 1:1 matching.  This is likely due to the loss of the treatment group sample size 

and potentially the loss of representation among the treatment group members who were 

successfully matched.  Matching method did not affect the outcome analyses (i.e., Type I 

error and power) when there was no effect (d = 0) or when there was at least a moderate 

effect (d ≥ 0.5) and a large treatment group sample size (N = 100). 

Treatment group sample size made some difference in the quality and quantity of 

matches and the significance tests and estimated effect sizes.  Additional research is 

needed to determine the minimum sample size necessary to obtain accurate effect size 

estimates.  Although comparison-to-treatment ratio resulted in some improvements across 

the conditions, the difference was minimal for this study.  This provides some evidence 
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that a 3:1 ratio may be sufficient.  Moreover, effect size made very little difference in this 

study, aside from its effect on power.  If the researcher suspects that the effect size may 

be small, then the researcher should consider whether power should be addressed in other 

ways (e.g., increasing sample size or alpha).  Further, whether unbalanced covariates 

were included in the outcome analyses made some difference in the quality and quantity 

of matches and the resulting effect size estimates.  When unbalanced covariates are 

included in the analyses, the techniques becomes an ANCOVA.  Thus, the researcher 

should only use this technique when the assumptions of ANCOVA are met.   

Conclusions 

In sum, the choice of matching technique is not without consequence. It dictates 

both the quality and quantity of the matches obtained and the resulting outcome analyses 

and estimated effect sizes.  Although nearest neighbor matching with calipers tends to 

result in better matches, it can also result in the loss of treatment group members.  When 

treatment group members are excluded from the matched groups due to lack of adequate 

match, the researcher should ensure that this does not impact generalizability of the 

results.  If representation is compromised, the researcher may want to select a different 

matching method, such as nearest neighbor or optimal 1:1 matching.  Otherwise, the 

matching methods appear to be comparable.  Given that outcome variables are not used 

in the matching procedure, researchers can examine propensity score and covariates 

balance for the different matching methods and select the method that results in the best 

balance between the quality and quantity of matches (Ho et al., 2011).  Although this is a 

difficult decision, it is up to the researcher to decide how to best balance the quality and 
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quantity of matches, while recognizing that this decision can impact the accuracy of the 

outcome analyses.  
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Endnotes 

1 Six continuous covariates were simulated; however two of the six covariates were 

dichotomized later in the data generation process.  This resulted in four continuous 

covariates and two categorical covariates. 

2 The coefficients for Equation 12 were calculated as 𝛽 = 𝑆𝑥𝑥
−1𝑆𝑝𝑥, where Sxx is the 

covariance matrix for the covariates in Table 1 and Spx is the vector of correlations 

between each covariate and probit, calculated by changing the observed point-biserial 

correlations to biserial correlations and the phi correlations to tetrachoric correlations. 

Thus, coefficients were equivalent to the standardized coefficients from a probit 

regression (where the error term is standard normal). 

3 This dichotomization was done after simulating the underlying likelihood of treatment 

group membership so that the coefficients could be left in terms of the continuous X5 and 

X6.  Alternatively, the coefficients could have been transformed for the specific 

proportions used here, and the transformed coefficients could have been substituted in 

Equation 12 and applied to the dichotomous X5 and X6. 

4 Dichotomized covariates were used to simulate outcome scores.  

5 With an effect size of 0, the ~N(0, 0.74) distribution yielded a total variance of 1 in Y.  

Because the mean value of Y was slightly lower in the treatment group, due to 

differences on the covariates, the within-group variance was slightly less than 1 before 

the final standardization. 

6 It is important to note that only the caliper methods can result in the loss of treatment 

group members; the other methods in the current study result in a match regardless of 

how close the matches are.  
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Appendix A 

Syntax for Data Simulation and Analysis 

R Code for Generating Data Sets 

###################################################################### 

# 

# DISSERTATION: Propensity Score Matching Simulation Study 

# Jessica Jacovidis 

# February 10, 2017 

# 

###################################################################### 

###################################################################### 

 

# Setting working directory 

setwd("E:/PSYC 900 - Dissertation/Syntax") 

 

# Check working directory 

# getwd() 

 

source("simFunctions_DIS.R") #activate functions 

 

###################################################################### 

 

# Installing and loading necessary packages 

 

#install.packages("mvtnorm") 

require(mvtnorm) 

 

#install.packages("psych") 

require(psych) 

 

#install.packages("OpenMx") 

require(OpenMx) 

 

#install.packages("MatchIt") 

require(MatchIt) 

 

#install.packages("optmatch") 

require(optmatch) 

 

#for write.fwf 

#install.packages("gdata") 

require(gdata) 

 

###################################################################### 

###################################################################### 

 

# Preliminary Stuff before data simulation 

 

# DO NOT MODIFY 

 

###################################################################### 
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# before simulating anything, get the MREST-specific correlations 

# get biserial rs from point biserial, and tetrachorics from phis 

# math, verbal, cons, WA, MREST; 

# observed correlations are condCorr, latent are corrCond 

 

MfemP=.628 

MblackP=.055 

MfbCorr=-.01 

MftCorr=-.03 

MbtCorr=.128 

MtreatP=86/3200 

MfbP=(MfbCorr)*sqrt(MfemP*(1-MfemP)*MblackP*(1-MblackP))+MfemP*MblackP 

#percent female and black 

MftP=(MftCorr)*sqrt(MfemP*(1-MfemP)*MtreatP*(1-MtreatP))+MfemP*MtreatP 

#percent female and treatment 

MbtP=(MbtCorr)*sqrt(MtreatP*(1-MtreatP)*MblackP*(1-

MblackP))+MtreatP*MblackP #percent black and treatment 

MgenderCorr=c(-.258,-.077,.166,-.239,.015) 

MblackCorr=c(-.198,-.130,.007,-.019,-.113) 

MtreatCorr=c(-.088,-.146,.028,.017) 

z=qnorm(MfemP) 

ordinate=1/sqrt(2*pi)*exp(-z^2/2) 

corrGender=sqrt(MfemP*(1-MfemP))*MgenderCorr/ordinate 

z=qnorm(MblackP) 

ordinate=1/sqrt(2*pi)*exp(-z^2/2) 

corrBlack=sqrt(MblackP*(1-MblackP))*MblackCorr/ordinate 

temp=tetrachoric(c(MfemP,MblackP,MfbP)) 

corrFB=temp$rho 

temp=tetrachoric(c(MfemP,MtreatP,MftP)) 

corrFT=temp$rho 

temp=tetrachoric(c(MtreatP,MblackP,MbtP)) 

corrBT=temp$rho 

 

#corrGender 

#corrBlack 

#c(corrFB,corrFT,corrBT) 

 

#corrX1: categorical variables are latent 

#use this only for the multivariate normal draws 

#corrX2: categorical variables are observed categories, so depends on 

choice of simulated percent 

 

corrX1=matrix(c(1,.430,-.122,.152,corrGender[1],corrBlack[1], 

              .430,1, -.116,.094,corrGender[2],corrBlack[2], 

              -.122,-.116,1,-.372,corrGender[3],corrBlack[3], 

               .152,.094,-.372,1,corrGender[4],corrBlack[4], 

               corrGender[1:4],1,corrFB, 

               corrBlack[1:4],corrFB,1),6,6) 

covX1=corrX1 

#now correlation with outcome; 

corrXY1=c(.323,.482,-.015,.054,corrGender[5],corrBlack[5]) 

Ycoef1=solve(corrX1) %*% corrXY1  #solve means inverse 

Ycoef1  #this is the model for simulating MREST scores, with gender and 

Black as continuous latent variables 

 

#now correlation with propensity, as a normal variable, not a logistic 

variable 
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#start with observed correlation with treatment 

obscorrXP=c(-.088,-.146,.028,.017) 

temp=MtreatP 

z=qnorm(MtreatP) 

ordinate=1/sqrt(2*pi)*exp(-z^2/2) 

temp=sqrt(MtreatP*(1-MtreatP))*obscorrXP/ordinate 

corrXP=c(temp,corrFT,corrBT) 

Pcoef=solve(corrX1) %*% corrXP #solve means inverse 

Pcoef  #this is the model for simulating propensity scores, with gender 

and Black as continuous latent variables 

covX1=corrX1   #because standardized variables 

#theoretical cov between normalp and Y estimated when cat variables 

latent   

temp=Pcoef %*% t(Ycoef1) 

temp2=temp*covX1 #If some covariates are used only for predicting 

propensity or only for Y, need to pull out the appropriate elements 

from X 

covnormPY=sum(temp2) 

 

###################################################################### 

###################################################################### 

 

# Additional Preliminary Stuff before data simulation 

 

# NEED TO MODIFY: 

 

# treatP to reflect the proportion of the sample that is treatment 

# VARIES BY CONDITION  

 

###################################################################### 

 

#now work out population values for specific conditions 

treatP=.142857  

femP=.60 

blackP=.15 

lbound <- c(-Inf, -Inf ) # Integrate from -Infinity to 0 on first 

variable 

ubound <- c(qnorm(femP), qnorm(blackP)) # From 0 to +Infinity on 

second, and from 1 to 2.5 on third 

fbP=omxMnor(matrix(c(1,corrFB,corrFB,1),nrow=2,ncol=2), c(0,0), lbound, 

ubound) 

#expected value of the observed r between dichotomous female and black 

fbCorr=(fbP-femP*blackP)/sqrt(femP*(1-femP)*blackP*(1-blackP)) 

z=qnorm(femP) 

ordinate=1/sqrt(2*pi)*exp(-z^2/2) 

genderCorr=corrGender*ordinate/sqrt(femP*(1-femP)) 

z=qnorm(blackP) 

ordinate=1/sqrt(2*pi)*exp(-z^2/2) 

blackCorr=corrBlack*ordinate/sqrt(blackP*(1-blackP)) 

 

 

#now observed correlation matrix in the population 

#if the continuous covariates have error, divide by reliability here 

#otherwise, just replace tetrachorics with phis for a given condition 

corrX2=matrix(c(1,.430,-.122,.152,genderCorr[1],blackCorr[1], 

              .430,1, -.116,.094,genderCorr[2],blackCorr[2], 

              -.122,-.116,1,-.372,genderCorr[3],blackCorr[3], 
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               .152,.094,-.372,1,genderCorr[4],blackCorr[4], 

               genderCorr[1:4],1,fbCorr, 

               blackCorr[1:4],fbCorr,1),6,6) 

corrX2 #this wont vary with the treatment proportion 

#now correlation with outcome; #could adjust for unreliability in X or 

Y 

corrXY2=c(.323,.482,-.015,.054,genderCorr[5],blackCorr[5]) 

 

 

Ycoef2=solve(corrX2) %*% corrXY2  

Ycoef2 #observed coefficients for simulating MREST 

covX2=corrX2  #this will only work if categorical variables have been 

std too 

#explained variance in Y--expected value of the observed variables--

need this later for simulation 

temp=Ycoef2 %*% t(Ycoef2)*covX2 #NOT matrix multiplication 

varExpY=sum(temp) 

 

#variance in normalP 

temp=Pcoef%*%t(Pcoef)*covX1 #NOT matrix multiplication  #adjust if not 

all covariates used in propensity 

normPvar=sum(temp)+1  #add in error variance  

Yvar=1 #because working with correlation matrix -- have to calculate if 

cov matrix 

corrnormPY=covnormPY/sqrt(Yvar*normPvar) #biserial correlation 

#now theoretical point-biserial corr between observed group and Y 

z=qnorm(treatP) 

ordinate=1/sqrt(2*pi)*exp(-z^2/2) 

corrGY=corrnormPY*ordinate/sqrt(treatP*(1-treatP)) 

##std group difference on Y due ONLY to the covariates (does not 

include d) 

#YdiffCov=2*corrGY/sqrt(1-corrGY^2) 

YdiffCov=corrGY/sqrt((1-corrGY^2)*treatP*(1-treatP)) 

#YdiffCov 

 

 

###################################################################### 

###################################################################### 

 

###########  Now simulate data. Loop for replications will start here 

 

###################################################################### 

###################################################################### 

 

# NEED TO MODIFY: 

 

# d to reflect effect size 

# VARIES BY CONDITION  

 

# Nexaminee to reflect the total sample size 

# VARIES BY CONDITION 

 

# THERE IS A NOTE BELOW THAT WE NEED TO CHANGE d IN THE SIMFUN_DIS FILE 

# BUT I DON'T THINK WE DO.  IT SEEMS THAT d AND Nexaminee IS PASSED TO  

# THE SIMFUN_DIS FILE, SO WE ONLY NEED TO SET IT HERE.  

 

# NEED TO ADD TO THE NAMING CONVENTION BELOW (TO SAVE OUT FILE)  
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# HOW DO WE DO THAT? 

 

###################################################################### 

 

#remember to change d (second argument to simfun) 

 

d=0.8 

Nexaminee=700 

 

set.seed(80313) 

for (rep in 1:1000) { 

   #rm(X)  #because I kept regenerating X and wanted to clear it out--

move to end of loop 

 

   simdat<-simfun(Nexaminee,d) 

 

   random<-RandomSamp(simdat) 

   random=subset(random,select=c(ID,random)) 

   colnames(random)=c("ID","random")   

 

   NN<-NNmatch(simdat) 

   NN=subset(NN,select=c(ID,distance, weights)) 

   colnames(NN)=c("ID","NNdist","NNwgt") 

 

   # Compute the SD of the Propensity Scores to create calipers 

   ps.sd = sd(NN$NNdist) 

   ps.sd 

 

   NN3<-NN3match(simdat) 

   NN3=subset(NN3,select=c(ID,distance, weights)) 

   colnames(NN3)=c("ID","NN3dist","NN3wgt") 

    

   NN2<-NN2match(simdat) 

   NN2=subset(NN2,select=c(ID,distance, weights)) 

   colnames(NN2)=c("ID","NN2dist","NN2wgt") 

    

   NN1<-NN1match(simdat) 

   NN1=subset(NN1,select=c(ID,distance, weights)) 

   colnames(NN1)=c("ID","NN1dist","NN1wgt") 

    

   Opt1<-Opt1Match(simdat) 

   Opt1=subset(Opt1,select=c(ID,distance, weights)) 

   colnames(Opt1)=c("ID","Opt1dist","Opt1wgt") 

 

   Opt2<-Opt2Match(simdat) 

   Opt2=subset(Opt2,select=c(ID,distance, weights)) 

   colnames(Opt2)=c("ID","Opt2dist","Opt2wgt") 

 

   Mahal<-MahalMatch(simdat) 

   Mahal<-subset(Mahal,select=c(ID, weights)) 

   colnames(Mahal)=c("ID", "Mahalwgt") 

 

   #Merge together files 

   alldat<-AllMerge() 

    

#save(alldat, file=paste0("resultsD", as.integer(d), rep, ".Rdata")) 

#or 
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#write.fwf(data.frame(rep,d,alldat), file=paste0("resultsD", d*10, "r", 

rep, ".dat"), 

# append=TRUE, colnames=TRUE) 

write.table(data.frame(rep,d,alldat), file=paste0("resultsD", d*10, 

"N", Nexaminee, "r", rep, ".dat"), 

 quote=FALSE, sep="\t", row.names=FALSE, col.names=TRUE,na = ".") 

} 

 

###################################################################### 

###################################################################### 

 

 

R Code for Simulation Function 

###################################################################### 

###################################################################### 

 

# SIMULATION FUNCTION STARTS HERE 

 

###################################################################### 

###################################################################### 

 

simfun <- function(Nexaminee,d) { 

X=rmvnorm(Nexaminee, rep(0,6), covX1, method="chol")  

#X=data.frame(X) #so I can just use the name X1, etc. 

#str(X) #checking 

mycut=qnorm(1-femP) 

female01=ifelse(X[,5]>mycut,1,0) 

mycut=qnorm(1-blackP) 

black01=ifelse(X[,6]>mycut,1,0) 

oldX=X #backup 

female=(female01-mean(female01))/sd(female01) 

black=(black01-mean(black01))/sd(black01) 

X[,5]=female 

X[,6]=black 

#table(X[,6]) 

Perr=rnorm(Nexaminee) # "error" in propensity score 

normalP= as.vector(oldX %*% Pcoef + Perr) #these are the coefficients 

for the latent categorical variables 

#Pcoef 

#standardize 

#variance in logitP 

temp=Pcoef%*%t(Pcoef)*covX1 #NOT matrix multiplication  #adjust if not 

all covariates used in propensity 

normPvar=sum(temp)+1  #add in error variance approximating logistic 

error 

normalP=normalP/sqrt(normPvar) 

#var(normalP) 

#mean(normalP) 

mycut=quantile(normalP,1-treatP) 

group=ifelse(normalP>mycut,1,0) 

#mean(group) 

#by(X,group,colMeans) 

#Pb=glm(formula=group ~ X1+X2+X3+X4+X5+X6, data=data.frame(oldX),  

family=binomial) 

#Pb$coefficients 
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#temp=Pb$coefficients[2:7] 

#temp/Pcoef 

e=rnorm(Nexaminee)*sqrt(1-varExpY) 

#this makes the within-group variance 1 

Y=as.vector((d*group +(X %*% Ycoef2 +e)/sqrt(Yvar))*sqrt(1+treatP*(1-

treatP)*YdiffCov^2)) 

mydata=data.frame(1:Nexaminee,Y,X,female01,black01,group) 

colnames(mydata)[1]="ID" 

mydata 

}   #end simulate data function 

 

 

###################################################################### 

###################################################################### 

 

# MATCHING FUNCTIONS START HERE  

 

###################################################################### 

###################################################################### 

 

# Random Matching 

 

RandomSamp <- function(mydata) { 

random2<-subset(mydata,group==1) 

temp=dim(random2) 

numTreat=temp[1] 

random1<-subset(mydata,group==0) 

random1<-random1[sample(1:nrow(random1), numTreat, replace=FALSE),] 

tryrandom<-rbind(random1,random2) 

tryrandom$random<-1 

tryrandom 

} #end random match function 

 

###################################################################### 

 

# Nearest Neighbor PSM 

 

NNmatch <- function(mydata) { 

try1_NN = matchit(group~X1+X2+X3+X4+X5+X6,method="nearest", 

data=mydata, ratio=1) 

try1_NN 

summary(try1_NN) 

NN<-match.data(try1_NN) 

#tapply (NN$distance,NN$ATHLETE, var) 

#plot(try1_NN, type="jitter") 

#write.csv(NN, file="try1_NN.csv") 

} #end NN match function 

 

###################################################################### 

 

# Nearest Neighbor PSM with .3 caliper 

 

NN3match <- function(mydata) { 

try1_NNCAL3=matchit(group~X1+X2+X3+X4+X5+X6,method="nearest", 

data=mydata, ratio=1, caliper = 0.30*ps.sd) 

try1_NNCAL3 

summary(try1_NNCAL3) 
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NN3<-match.data(try1_NNCAL3) 

#tapply (NNCL3$distance,NNCL3$ATHLETE, var) 

#plot(try1_NNCAL3, type="jitter") 

#write.csv(NNCL3, file="try1_NNCAL3.csv") 

} #end NN .3 caliper match function 

 

###################################################################### 

 

# Nearest Neighbor PSM with .2 caliper 

 

NN2match <- function(mydata) { 

try1_NNCAL2=matchit(group~X1+X2+X3+X4+X5+X6,method="nearest", 

data=mydata, ratio=1, caliper = 0.20*ps.sd) 

try1_NNCAL2 

summary(try1_NNCAL2) 

NN2<-match.data(try1_NNCAL2) 

#tapply (NNCL2$distance,NNCL2$ATHLETE, var) 

#plot(try1_NNCAL2, type="jitter") 

#write.csv(NNCL2, file="try1_NNCAL2.csv") 

} #end NN .2 caliper match function 

 

###################################################################### 

 

# Nearest Neighbor PSM with .1 caliper 

 

NN1match <- function(mydata) { 

try1_NNCAL1=matchit(group~X1+X2+X3+X4+X5+X6,method="nearest", 

data=mydata, ratio=1, caliper = 0.10*ps.sd) 

try1_NNCAL1 

summary(try1_NNCAL1) 

NN1<-match.data(try1_NNCAL1) 

#tapply (NNCL1$distance,NNCL1$ATHLETE, var) 

#plot(try1_NNCAL1, type="jitter") 

#write.csv(NNCL1, file="try1_NNCAL1.csv") 

} #end NN .1 caliper match function 

 

###################################################################### 

 

# Optimal Matching (1:1) 

 

Opt1Match <- function(mydata) { 

try1_OPTIMAL = matchit(group~X1+X2+X3+X4+X5+X6,method="optimal", 

data=mydata, ratio=1) 

try1_OPTIMAL #1:1 ratio 

summary(try1_OPTIMAL) 

Opt1<-match.data(try1_OPTIMAL) 

} #end Optimal 1:1 match function 

 

###################################################################### 

 

# Optimal Matching (2:1) 

 

Opt2Match <- function(mydata) { 

try1_OPTIMAL2 = matchit(group~X1+X2+X3+X4+X5+X6,method="optimal", 

data=mydata, ratio=2) 

try1_OPTIMAL2 #2:1 ratio 

summary(try1_OPTIMAL2) 
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Opt2<-match.data(try1_OPTIMAL2) 

} #end Optimal 2:1 match function 

 

 

###################################################################### 

 

# Mahalanobis Distance Matching 

# This is the syntax suggested by Kosuke Imai on the MatchIt listserve 

 

MahalMatch <- function(mydata) { 

try1_Mahal = matchit(group~X1+X2+X3+X4+X5+X6, data=mydata, 

method="nearest", distance="mahalanobis", 

mahvars=c("X1","X2","X3","X4","X5","X6"),ratio=1, caliper=1000) 

try1_Mahal 

summary(try1_Mahal) 

Mahal<-match.data(try1_Mahal) 

} #end Mahalanobis Distance match function 

 

###################################################################### 

###################################################################### 

 

# MERGING FUNCTION STARTS HERE 

 

###################################################################### 

###################################################################### 

 

AllMerge<-function(){ 

   alldat=merge(simdat,random,by="ID",all=TRUE) 

   alldat=merge(alldat,NN,by="ID",all=TRUE) 

   alldat=merge(alldat,NN3,by="ID",all=TRUE) 

   alldat=merge(alldat,NN2,by="ID",all=TRUE) 

   alldat=merge(alldat,NN1,by="ID",all=TRUE) 

   alldat=merge(alldat,Opt1,by="ID",all=TRUE) 

   alldat=merge(alldat,Opt2,by="ID",all=TRUE) 

   alldat=merge(alldat,Mahal,by="ID",all=TRUE) 

alldat 

} 

 

###################################################################### 

###################################################################### 

 

 

SAS Syntax for Data Analysis 

options nocenter; 

options nonotes; 

%let path=E:\PSYC 900 - Dissertation\Data; 

libname lib1 "E:\PSYC 900 - Dissertation"; 

 

*Macro to read in the data; 

*Need to change the value of d; 

*Will save out a complete file for each d; 

%macro readin(values); 

%let D=8; 

%let count=%sysfunc(countw(&values));  

%do i = 1 %to &count; 
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%let value=%qscan(&values,&i,%str(,)); 

%put &value; 

%do rep=1 %to 1000; 

data d1; 

infile "&path\resultsD&D.N&value.r&rep..dat" missover firstobs=2 

dlm='09'x ; 

input rep d ID Y X1 X2 X3 X4 X5 X6 female01 black01 group random  

NNdist NNwgt NN3dist NN3wgt NN2dist NN2wgt NN1dist  

NN1wgt Opt1dist Opt1wgt Opt2dist Opt2wgt Mahalwgt; 

totalN=&value; 

run; 

proc datasets nolist; append base=lib1.D&d data=d1; run; 

proc datasets nolist;  delete d1; run; 

%end; 

%end; 

%end; 

%mend; 

 

%readin(%str(120,150,180,210,400,500,600,700)); 

 

*Concatenating SAS files for each effect size; 

*make each matching method into a record; 

*Creating a new variable for treatment group sample size and 

comparison-to-treatment ratio; 

data d0(drop=i random NNwgt NN3wgt NN2wgt NN1wgt Opt1wgt Opt2wgt 

Mahalwgt 

  randist NNdist NN3dist NN2dist NN1dist Opt1dist Opt2dist Maldist); 

set lib1.D0 lib1.D2 lib1.D5 lib1.D8;   

length method $3; 

randist=.; *no distance measures for random, but want variable; 

Maldist=.; 

treatN=.; 

ratio=.; 

if totalN=120 then treatN=30; 

if totalN=120 then ratio=3; 

if totalN=150 then treatN=30; 

if totalN=150 then ratio=4; 

if totalN=180 then treatN=30; 

if totalN=180 then ratio=5; 

if totalN=210 then treatN=30; 

if totalN=210 then ratio=6; 

if totalN=400 then treatN=100; 

if totalN=400 then ratio=3; 

if totalN=500 then treatN=100; 

if totalN=500 then ratio=4; 

if totalN=600 then treatN=100; 

if totalN=600 then ratio=5; 

if totalN=700 then treatN=100; 

if totalN=700 then ratio=6; 

array mwgt[*] random NNwgt NN3wgt NN2wgt NN1wgt Opt1wgt Opt2wgt 

Mahalwgt; 

array dist[*] randist NNdist NN3dist NN2dist NN1dist Opt1dist Opt2dist 

Maldist; 

array mname[8] $ _temporary_ ("Ran", "NN0", "NN3", "NN2", "NN1", "Op1", 

"Op2", "Mal"); 

do i = 1 to 8; 

 method=mname[i]; 
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 if mwgt[i]=1 then select=1; else select=0; 

 distance=dist[i]; 

 output; 

end; 

run; 

 

data lib1.raw; set d0; run; 

proc datasets library=lib1; 

 modify raw; 

 index create method ; 

  index create d ; 

   index create treatN ; 

    index create ratio ; 

  index create rep ; 

   index create select; 

 run; 

 

proc sort; by method d treatN ratio rep group; 

run; 

 

data Pred1; set d0; 

 proc means noprint; 

 by method d treatN ratio rep group; 

 var X1; 

 output out=PreX1Res mean=PreX1mean var=PreX1var min=PreX1min 

max=PreX1max; 

 run; 

 data PreX1a(drop=_type_ _freq_ PreX1mean PreX1var PreX1min PreX1max); 

set PreX1Res; 

 if group=0; 

 cX1meanPre=PreX1mean; 

 cX1varPre=PreX1var; 

 cX1minPre=PreX1min;  

 cX1maxPre=PreX1max; 

 data PreX1b(drop=_type_ _freq_ PreX1mean PreX1var PreX1min PreX1max); 

set PreX1Res; 

 if group=1; 

 tX1meanPre=PreX1mean; 

 tX1varPre=PreX1var; 

 tX1minPre=PreX1min;  

 tX1maxPre=PreX1max; 

run; 

 

data Pred2; set d0; 

 proc means noprint; 

 by method d treatN ratio rep group; 

 var X2; 

 output out=PreX2Res mean=PreX2mean var=PreX2var min=PreX2min 

max=PreX2max; 

 run; 

 data PreX2a(drop=_type_ _freq_ PreX2mean PreX2var PreX2min PreX2max); 

set PreX2Res; 

 if group=0; 

 cX2meanPre=PreX2mean; 

 cX2varPre=PreX2var; 

 cX2minPre=PreX2min;  

 cX2maxPre=PreX2max; 
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 data PreX2b(drop=_type_ _freq_ PreX2mean PreX2var PreX2min PreX2max); 

set PreX2Res; 

 if group=1; 

 tX2meanPre=PreX2mean; 

 tX2varPre=PreX2var; 

 tX2minPre=PreX2min;  

 tX2maxPre=PreX2max; 

run; 

 

data Pred3; set d0; 

 proc means noprint; 

 by method d treatN ratio rep group; 

 var X3; 

 output out=PreX3Res mean=PreX3mean var=PreX3var min=PreX3min 

max=PreX3max; 

 run; 

 data PreX3a(drop=_type_ _freq_ PreX3mean PreX3var PreX3min PreX3max); 

set PreX3Res; 

 if group=0; 

 cX3meanPre=PreX3mean; 

 cX3varPre=PreX3var; 

 cX3minPre=PreX3min;  

 cX3maxPre=PreX3max; 

 data PreX3b(drop=_type_ _freq_ PreX3mean PreX3var PreX3min PreX3max); 

set PreX3Res; 

 if group=1; 

 tX3meanPre=PreX3mean; 

 tX3varPre=PreX3var; 

 tX3minPre=PreX3min;  

 tX3maxPre=PreX3max; 

run; 

 

 data Pred4; set d0; 

 proc means noprint; 

 by method d treatN ratio rep group; 

 var X4; 

 output out=PreX4Res mean=PreX4mean var=PreX4var min=PreX4min 

max=PreX4max; 

 run; 

 data PreX4a(drop=_type_ _freq_ PreX4mean PreX4var PreX4min PreX4max); 

set PreX4Res; 

 if group=0; 

 cX4meanPre=PreX4mean; 

 cX4varPre=PreX4var; 

 cX4minPre=PreX4min;  

 cX4maxPre=PreX4max; 

 data PreX4b(drop=_type_ _freq_ PreX4mean PreX4var PreX4min PreX4max); 

set PreX4Res; 

 if group=1; 

 tX4meanPre=PreX4mean; 

 tX4varPre=PreX4var; 

 tX4minPre=PreX4min;  

 tX4maxPre=PreX4max; 

run; 

 

data Pred5; set d0; 

proc means noprint; 
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 by method d treatN ratio rep group; 

 var female01 black01; 

 output out=PreCatRes mean=PreX5mean PreX6mean var=PreX5var PreX6var; 

 run; 

 data PreX5a(drop=_type_ _freq_ PreX5mean PreX5var PreX6mean PreX6var); 

set PreCatRes; 

 if group=0; 

 cX5meanPre=PreX5mean; 

 cX5varPre=PreX5var; 

 cX6meanPre=PreX6mean; 

 cX6varPre=PreX6var; 

 data PreX5b(drop=_type_ _freq_ PreX5mean PreX5var PreX6mean PreX6var); 

set PreCatRes; 

 if group=1; 

 tX5meanPre=PreX5mean; 

 tX5varPre=PreX5var; 

 tX6meanPre=PreX6mean; 

 tX6varPre=PreX6var; 

run; 

 

 data Pred7; set d0; 

 proc means noprint; 

 by method d treatN ratio rep group; 

 var Y; 

 output out=PreYRes mean=PreYmean var=PreYvar N=PreN; 

 run; 

 data PreYa(drop=_type_ _freq_ PreYmean PreYvar PreN); set PreYRes; 

 if group=0; 

 cmeanPre=PreYmean; 

 cvarPre=PreYvar; 

 cNPre=PreN; 

 data PreYb(drop=_type_ _freq_ PreYmean PreYvar PreN); set PreYRes; 

 if group=1; 

 tmeanPre=PreYmean; 

 tvarPre=PreYvar; 

 tNPre=PreN; 

 

data d1prop; set d0; 

 if select=1; 

 proc means noprint; 

 by method d treatN ratio rep group; 

 var distance; 

 output out=prop mean=Propmean var=Propvar; 

 run; 

data temppropa(drop=_type_ _freq_ Propmean Propvar); set prop; 

 if group=0; 

 cPropmean=Propmean; 

 cPropvar=Propvar; 

 data temppropb(drop=_type_ _freq_ Propmean Propvar); set prop; 

 if group=1; 

 tPropmean=Propmean; 

 tPropvar=Propvar; 

run; 

 

data d1; set d0; 

 if select=1; 

 proc means noprint; 
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 by method d treatN ratio rep group; 

 var X1; 

 output out=X1results mean=X1mean var=X1var min=X1min max=X1max; 

 run; 

 data tempX1a(drop=_type_ _freq_ X1mean X1var X1min X1max); set 

X1results; 

 if group=0; 

 cX1mean=X1mean; 

 cX1var=X1var; 

 cX1min=X1min;  

 cX1max=X1max; 

 data tempX1b(drop=_type_ _freq_ X1mean X1var X1min X1max); set 

X1results; 

 if group=1; 

 tX1mean=X1mean; 

 tX1var=X1var; 

 tX1min=X1min;  

 tX1max=X1max; 

run; 

 

data d2; set d0; 

 if select=1; 

 proc means noprint; 

 by method d treatN ratio rep group; 

 var X2; 

 output out=X2results mean=X2mean var=X2var min=X2min max=X2max; 

 run; 

 data tempX2a(drop=_type_ _freq_ X2mean X2var X2min X2max); set 

X2results; 

 if group=0; 

 cX2mean=X2mean; 

 cX2var=X2var; 

 cX2min=X2min;  

 cX2max=X2max; 

 data tempX2b(drop=_type_ _freq_ X2mean X2var X2min X2max); set 

X2results; 

 if group=1; 

 tX2mean=X2mean; 

 tX2var=X2var; 

 tX2min=X2min;  

 tX2max=X2max; 

run; 

 

data d3; set d0; 

 if select=1; 

 proc means noprint; 

 by method d treatN ratio rep group; 

 var X3; 

 output out=X3results mean=X3mean var=X3var min=X3min max=X3max; 

 run; 

 data tempX3a(drop=_type_ _freq_ X3mean X3var X3min X3max); set 

X3results; 

 if group=0; 

 cX3mean=X3mean; 

 cX3var=X3var; 

 cX3min=X3min;  

 cX3max=X3max; 
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 data tempX3b(drop=_type_ _freq_ X3mean X3var X3min X3max); set 

X3results; 

 if group=1; 

 tX3mean=X3mean; 

 tX3var=X3var; 

 tX3min=X3min;  

 tX3max=X3max; 

run; 

 

 data d4; set d0; 

 if select=1; 

 proc means noprint; 

 by method d treatN ratio rep group; 

 var X4; 

 output out=X4results mean=X4mean var=X4var min=X4min max=X4max; 

 run; 

 data tempX4a(drop=_type_ _freq_ X4mean X4var X4min X4max); set 

X4results; 

 if group=0; 

 cX4mean=X4mean; 

 cX4var=X4var; 

 cX4min=X4min;  

 cX4max=X4max; 

 data tempX4b(drop=_type_ _freq_ X4mean X4var X4min X4max); set 

X4results; 

 if group=1; 

 tX4mean=X4mean; 

 tX4var=X4var; 

 tX4min=X4min;  

 tX4max=X4max; 

run; 

 

data d5; set d0; 

 if select=1; 

proc means noprint; 

 by method d treatN ratio rep group; 

 var female01 black01; 

 output out=CatRes mean=X5mean X6mean var=X5var X6var; 

 run; 

 data tempX5a(drop=_type_ _freq_ X5mean X5var X6mean X6var); set 

CatRes; 

 if group=0; 

 cX5mean=X5mean; 

 cX5var=X5var; 

 cX6mean=X6mean; 

 cX6var=X6var; 

 data tempX5b(drop=_type_ _freq_ X5mean X5var X6mean X6var); set 

CatRes; 

 if group=1; 

 tX5mean=X5mean; 

 tX5var=X5var; 

 tX6mean=X6mean; 

 tX6var=X6var; 

run; 

 

data d7; set d0; 

 if select=1; 
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 proc means noprint; 

 by method d treatN ratio rep group; 

 var Y; 

 output out=Yresults mean=Ymean var=wvar N=nstud; 

 run; 

 data tempYa(drop=_type_ _freq_ Ymean wvar nstud); set Yresults; 

 if group=0; 

 cmean=Ymean; 

 cvar=wvar; 

 cN=nstud; 

 data tempYb(drop=_type_ _freq_ Ymean wvar nstud); set Yresults; 

 if group=1; 

 tmean=Ymean; 

 tvar=wvar; 

 tN=nstud; 

 

data d8; merge PreX1a PreX1b PreX2a PreX2b PreX3a PreX3b PreX4a PreX4b 

PreX5a PreX5b PreYa PreYb temppropa temppropb  

tempX1a tempX1b tempX2a tempX2b tempX3a tempX3b tempX4a tempX4b tempX5a 

tempX5b tempYa tempYb; 

by method d treatN ratio rep; 

 PreX1diff=tX1meanPre-cX1meanPre; 

 PreX2diff=tX2meanPre-cX2meanPre; 

 PreX3diff=tX3meanPre-cX3meanPre; 

 PreX4diff=tX4meanPre-cX4meanPre; 

 PreX5diff=tX5meanPre-cX5meanPre; 

 PreX6diff=tX6meanPre-cX6meanPre; 

 PreYdiff=tmeanPre-cmeanPre; 

 Propdiff=tPropmean-cPropmean; 

 VarRatio=tPropvar/cPropvar; 

 X1diff=tX1mean-cX1mean; 

 X2diff=tX2mean-cX2mean; 

 X3diff=tX3mean-cX3mean; 

 X4diff=tX4mean-cX4mean; 

 X5diff=tX5mean-cX5mean; 

 X6diff=tX6mean-cX6mean; 

 X1pooledVar=((tN-1)*tX1var+(cN-1)*cX1var)/(tN+cn-2); 

 X2pooledVar=((tN-1)*tX2var+(cN-1)*cX2var)/(tN+cn-2); 

 X3pooledVar=((tN-1)*tX3var+(cN-1)*cX3var)/(tN+cn-2); 

 X4pooledVar=((tN-1)*tX4var+(cN-1)*cX4var)/(tN+cn-2); 

 Ydiff=tmean-cmean; 

 pooledsd=sqrt( ((tN-1)*tvar+(cN-1)*cvar)/(tN+cn-2) ); 

 df=tN+cN-2; 

 ttest=Ydiff/(pooledsd*sqrt(1/tN+1/cN)); 

 p=(1-probt(abs(ttest),(tN+cN-2)))*2; 

 flag=0; 

 if p<.05 then do; 

  if Ydiff<0 then flag=-1; 

  else flag=1; 

 end; 

 run; 

proc means; class method d treatN ratio; var Ydiff preYdiff; run; 

proc freq; tables method*d*treatN*ratio*flag/list; run; 

 

*Quantity of Matches; 

data d8; set d8; 

tMatch=tN/tNPre; 
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cMatch=cN/cNPre; 

proc means; class method d treatN ratio; var cNPre tNPre cN tN cMatch 

tMatch; run; 

 

*Quality of Matches; 

 

*Propensity Score Mean Difference; 

 data d8; set d8; 

 proc means; class method d treatN ratio; var Propdiff; run; 

 

 *Propensity Score Variance Ratio; 

 proc means; class method d treatN ratio; var cPropvar; run; 

 proc means; class method d treatN ratio; var tPropvar; run; 

  

 *Continuous Covariates; 

 proc means; class method d treatN ratio;  

    var X1diff X2diff X3diff X4diff X1pooledVar X2pooledVar X3pooledVar 

X4pooledVar;  

run; 

 

 proc means; class method d treatN ratio;  

    var tX1meanPre tX2meanPre tX3meanPre tX4meanPre tX5meanPre 

tX6meanPre cX1meanPre cX2meanPre cX3meanPre cX4meanPre cX5meanPre 

cX6meanPre;  

run; 

 

 *Categorical Covariates; 

 proc means data=d8; class method d treatN ratio; var tX5meanPre 

tX6meanPre tX5mean tX6mean cX5meanPre cX6meanPre cX5mean cX6mean; run; 

 

 *Save out the working file because it takes forever to create...; 

data lib1.psm; set d8; 

run; 

 

data d8; set lib1.psm; run; 

 

data lib1.psm; set d8; run; 

proc datasets library=lib1; 

 modify psm; 

 index create method ; 

  index create d ; 

   index create treatN ; 

    index create ratio ; 

  index create rep ; 

 run; 

 

data d8; set d8; 

if tX5mean=0 AND cX5mean=0 then X5SB=0; 

else X5SB=((tX5mean-cX5mean)/(sqrt(((tX5mean*(1-tX5mean))+(cX5mean*(1-

cX5mean)))/2))); 

if tX6mean=0 AND cX6mean=0 then X6SB=0; 

else X6SB=((tX6mean-cX6mean)/(sqrt(((tX6mean*(1-tX6mean))+(cX6mean*(1-

cX6mean)))/2))); 

run; 

 

 *if unbalanced, use covariates, otherwise covariate string is empty; 
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  %unbalance(Ran, 0, 30); 

  %unbalance(Ran, 0, 100); 

  %unbalance(NN0, 0, 30); 

  %unbalance(NN0, 0, 100); 

  %unbalance(NN1, 0, 30); 

  %unbalance(NN1, 0, 100); 

  %unbalance(NN2, 0, 30); 

  %unbalance(NN2, 0, 100); 

  %unbalance(NN3, 0, 30); 

  %unbalance(NN3, 0, 100); 

  %unbalance(Op1, 0, 30); 

  %unbalance(Op1, 0, 100); 

  %unbalance(Op2, 0, 30); 

  %unbalance(Op2, 0, 100); 

  %unbalance(Mah, 0, 30); 

  %unbalance(Mah, 0, 100); 

  %unbalance(Ran, 0.2, 30); 

  %unbalance(Ran, 0.2, 100); 

  %unbalance(NN0, 0.2, 30); 

  %unbalance(NN0, 0.2, 100); 

  %unbalance(NN1, 0.2, 30); 

  %unbalance(NN1, 0.2, 100); 

  %unbalance(NN2, 0.2, 30); 

  %unbalance(NN2, 0.2, 100); 

  %unbalance(NN3, 0.2, 30); 

  %unbalance(NN3, 0.2, 100); 

  %unbalance(Op1, 0.2, 30); 

  %unbalance(Op1, 0.2, 100); 

  %unbalance(Op2, 0.2, 30); 

  %unbalance(Op2, 0.2, 100); 

  %unbalance(Mah, 0.2, 30); 

  %unbalance(Mah, 0.2, 100); 

  %unbalance(Ran, 0.5, 30); 

  %unbalance(Ran, 0.5, 100); 

  %unbalance(NN0, 0.5, 30); 

  %unbalance(NN0, 0.5, 100); 

  %unbalance(NN1, 0.5, 30); 

  %unbalance(NN1, 0.5, 100); 

  %unbalance(NN2, 0.5, 30); 

  %unbalance(NN2, 0.5, 100); 

  %unbalance(NN3, 0.5, 30); 

  %unbalance(NN3, 0.5, 100); 

  %unbalance(Op1, 0.5, 30); 

  %unbalance(Op1, 0.5, 100); 

  %unbalance(Op2, 0.5, 30); 

  %unbalance(Op2, 0.5, 100); 

  %unbalance(Mah, 0.5, 30); 

  %unbalance(Mah, 0.5, 100); 

  %unbalance(Ran, 0.8, 30); 

  %unbalance(Ran, 0.8, 100); 

  %unbalance(NN0, 0.8, 30); 

  %unbalance(NN0, 0.8, 100); 

  %unbalance(NN1, 0.8, 30); 

  %unbalance(NN1, 0.8, 100); 

  %unbalance(NN2, 0.8, 30); 

  %unbalance(NN2, 0.8, 100); 

  %unbalance(NN3, 0.8, 30); 
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  %unbalance(NN3, 0.8, 100); 

  %unbalance(Op1, 0.8, 30); 

  %unbalance(Op1, 0.8, 100); 

  %unbalance(Op2, 0.8, 30); 

  %unbalance(Op2, 0.8, 100); 

  %unbalance(Mah, 0.8, 30); 

  %unbalance(Mah, 0.8, 100); 

 

 

 *regression stuff follows; 

 %macro unbalance(method, d, treatN); 

 %do rep=1 %to 1000; 

 %do ratio=3 %to 6; 

 data temp; set d8; 

 length mycov $20; 

 if method = "&method"; 

 if d=&d;  

 if ratio=&ratio; 

 if treatN=&treatN; 

 if rep=&rep; 

mycov=" "; 

/*check my cutting and pasting here;*/ 

if abs(X1diff/sqrt(X1pooledvar))>.25 then do; 

   substr(mycov,1)="X1"; badX1=1; end; 

   else badX1=0;  *want to keep a record of which covariates were 

unbalanced; 

if abs(X2diff/sqrt(X2pooledvar))>.25 then do; 

    substr(mycov,4)="X2"; badX2=1; end; 

    else badX2=0; 

if abs(X3diff/sqrt(X3pooledvar))>.25 then do; 

   substr(mycov,7)="X3"; badX3=1; end; 

   else badX3=0; 

if abs(X4diff/sqrt(X4pooledvar))>.25 then do; 

   substr(mycov,10)="X4"; 

   badX4=1; end; 

   else badX4=0; 

if abs(X5SB)>.1 then do; 

   substr(mycov,13)="X5"; 

   badX5=1; end; 

   else badX5=0; 

if abs(X6SB)>.1 then do; 

   substr(mycov,16)="X6"; 

   badX6=1; end; 

   else badX6=0; 

run; 

data bad; set temp; 

 keep badX1-badX6; run; 

data _null_; set temp; 

 call symput('keepcov', mycov); 

 run; 

 %put &keepcov;  

data temp2; set lib1.raw(where=(select=1 and method = "&method" and 

d=&d and ratio=&ratio and treatN=&treatN and rep=&rep)); 

*if select=1; 

run; 

proc reg; model Y = group &keepcov;  

 ods output  ParameterEstimates=parmest  FitStatistics=MSE; 
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 run; 

 quit; 

 options nocenter; 

data parmest; set parmest; 

 if variable = "group"; 

data MSE; set MSE; 

if label1 ="Root MSE"; 

MSE=nvalue1**2; *adjusted within group variance; 

data parmest2; merge parmest MSE bad; 

method = "&method"; 

d=&d;  

ratio=&ratio; 

treatN=&treatN; 

rep=&rep; 

keep d method rep ratio treatN Estimate  StdErr tValue Probt MSE badX1-

badX6; 

run; 

proc datasets nolist; append base=lib1.adjD0b data=parmest2; run; 

proc datasets nolist;  delete temp temp2 parmest parmest2 MSE; run; 

%end; /*end rep loop; */ 

%end; /*end ratio loop; */ 

 %mend; 

 

 

 *Read in files and create a final adj file; 

 data partA; set lib1.adjD0; run; 

 data partB; set lib1.adjD2; run; 

 data partC; set lib1.adjD5; run; 

 data partD; set lib1.adjD8; run; 

 

 data all; set partA partB partC partD; run;  

 

proc sort data=all; by method d treatN ratio rep; 

run; 

 

 data lib1.adj; set all; 

 run; 

 

 

 proc means data=all;  

 class method d treatN ratio;  

 var badX1 badX2 badX3 badX4 badX5 badX6;  

 run; 

 

 

data adj; set lib1.adj;  

 flag=0; 

 if probt<.05 then do; 

  if Estimate<0 then flag=-1; 

  else flag=1; 

 end; 

 run; 

 

 proc freq; tables method*d*treatN*ratio*flag/list; run; 

 

 data lib1.adj; set adj; 

 run; 
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 data prop; set lib1.propensity; 

 run; 

 

  proc means data=prop;  

   class d treatN ratio group;  

   var propensity;  

  run; 

 

 

proc sort data=prop; by d treatN ratio rep group; 

run; 

 

 proc means data=prop noprint; 

 by d treatN ratio rep group; 

 var propensity; 

 output out=prop2 mean=Propmean var=Propvar; 

 run; 

data temppropa(drop=_type_ _freq_ Propmean Propvar); set prop2; 

 if group=0; 

 cPropmean=Propmean; 

 cPropvar=Propvar; 

 data temppropb(drop=_type_ _freq_ Propmean Propvar); set prop2; 

 if group=1; 

 tPropmean=Propmean; 

 tPropvar=Propvar; 

run; 

 

data prop3; merge temppropa temppropb; 

 by d treatN ratio rep; 

 Propdiff=tPropmean-cPropmean; 

 VarRatio=tPropvar/cPropvar; 

 run; 

 

*Propensity Scores for everyone; 

data temp2; set lib1.raw(where=(method = "NN0")); 

run; 

proc logistic data=temp2; 

 by method d treatN ratio rep; 

model group(Event='1')=X1 X2 X3 X4 X5 X6; 

output out=lib1.propensity predprobs=I P=propensity; 

run; 

 

 *Propensity Score Mean Difference; 

 proc means data=prop3; class d treatN ratio; var Propdiff; run; 

 

 *Propensity Score Variance Ratio; 

 proc means data=prop3; class d treatN ratio; var cPropvar; run; 

 proc means data=prop3; class d treatN ratio; var tPropvar; run; 

 

 

data d8; set d8; 

 X1PrepooledVar=((tN-1)*tX1varPre+(cN-1)*cX1varPre)/(tN+cN-2); 

 X2PrepooledVar=((tN-1)*tX2varPre+(cN-1)*cX2varPre)/(tN+cN-2); 

 X3PrepooledVar=((tN-1)*tX3varPre+(cN-1)*cX3varPre)/(tN+cN-2); 

 X4PrepooledVar=((tN-1)*tX4varPre+(cN-1)*cX4varPre)/(tN+cN-2); 

run; 
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  proc means; class treatN ratio;  

    var PreX1diff PreX2diff PreX3diff PreX4diff X1PrepooledVar 

X2PrepooledVar X3PrepooledVar X4PrepooledVar;  

run; 

 

 

*ANOVAs; 

 

proc glm data=all; 

class method treatN analysis d ratio; 

model bias=method|treatN|analysis|d|ratio; 

run; 

quit; 

 

proc glm data=all; 

class method treatN analysis d ratio; 

model sqdiff=method|treatN|analysis|d|ratio; 

run; 

quit; 

 

data all; set all; 

absdiff=sqrt(sqdiff); 

 

proc glm data=all; 

class method treatN analysis d ratio; 

model absdiff=method|treatN|analysis|d|ratio; 

run; 

quit; 

 

 

 

data trad; set lib1.psm;  

keep method d treatN ratio rep Ydiff ttest p flag analysis; 

analysis=0; 

run; 

 

data trad; set trad; 

rename ttest=tValue; 

run; 

 

data trad; 

retain method d treatN ratio analysis rep Ydiff tValue p flag; 

set trad; 

run; 

 

data adj; set lib1.adj;  

analysis=1; 

keep method d treatN ratio rep Estimate tValue probt flag analysis; 

run; 

 

data adj; set adj; 

rename Estimate=Ydiff; 

rename probt=p;  

run; 

 

data adj; 
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retain method d treatN ratio analysis rep Ydiff tValue p flag; 

set adj; 

run; 

 

data all; set trad adj; run; 

 

data all; set all; 

bias=ydiff-d; 

sqdiff=bias**2; 

run; 

 

proc freq data=all noprint; tables 

method*d*treatN*ratio*analysis*flag/out=d9; run; 

 

data d10; set d9; 

 by method d treatN ratio analysis; 

count=count/1000; 

select(flag); 

 when(-1) which='neg'; 

 when(1) which='pos'; 

 otherwise; 

end; 

if flag=0 then delete; 

run; 

 

libname lib2 xport "d:\PSYC 900 - Dissertation\Power.xpt";  

data lib2.d9; set d10; run; 

 

*get raw data; 

data d9; set d8; 

 if flag ne 0; 

keep rep method d treatN ratio flag; 

run; 

libname lib2 xport "d:\PSYC 900 - Dissertation\Power.xpt";  

data lib2.d9; set d9; run; 

 

data d8; set all; 

proc means; by analysis method d treatN ratio;  

var bias sqdiff;  

output out=d9 mean=; run; 

data d9; set d9; 

 RMSE=sqrt(sqdiff); 

 run; 

 

 libname lib2 xport "d:\PSYC 900 - Dissertation\bias.xpt";  

data lib2.d9; set d9; run; 

 

 

R Code for Graphing 

library(Hmisc) 

library(foreign) 

 

mydata <- sasxport.get("E:/PSYC 900 - Dissertation/Power.xpt") 

str(mydata) 

mydata <- transform(mydata,  
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 analysis = factor(analysis, levels=c(0,1), labels=c("No 

Covariates","Unbalanced Covariates")), 

 ratio = factor(ratio, levels=c(3,4,5,6), 

labels=c("3:1","4:1","5:1","6:1")), 

 method = factor(method, levels=c("Ran", "NN0", "NN3", "NN2", "NN1", 

"Op1", "Op2", "Mal"), labels=c("Ran", "NN", "NN3", "NN2", "NN1", "Op1", 

"Op2", "Mah")) ) 

 

 

bs=12 # or 18 or 24 #most text will be 80% of this--manually change the 

things that aren't, below 

theme_set(theme_bw(base_size=bs)) 

theme_update(axis.title.x=element_text(size=.8*bs), 

axis.title.y=element_text(size=.8*bs), 

 plot.title=element_text(size=.8*bs), panel.grid.minor=element_blank(), 

legend.background = element_blank(), strip.background = 

element_rect(fill = 'white')) 

 

################################# 

#Type I Error 

################################# 

 

temp=subset(mydata,subset=(d==0 & treatn==30)) 

png(file ="E:/PSYC 900 - Dissertation/Graphs/TypeI30.png", units="in", 

width = 6, height = 9,res=600) 

ggplot(temp,aes(method,count)) + facet_grid(ratio~analysis)+ 

  geom_bar(stat="identity",aes(fill=which),colour="black")+ 

  geom_hline(aes(yintercept=0.05)) + xlab("Method")+ 

  ylab("Proportion Flagged")+ ylim(0,0.8) + theme(legend.position = 

"bottom")+ 

  scale_fill_manual(values=c("gray90","gray10"), name="Direction", 

breaks=c("neg", "pos"), labels=c("Negative", "Positive")) 

dev.off() 

 

temp=subset(mydata,subset=(d==0 & treatn==100)) 

png(file ="E:/PSYC 900 - Dissertation/Graphs/TypeI100.png", units="in", 

width = 6, height = 9,res=600) 

ggplot(temp,aes(method,count)) + facet_grid(ratio~analysis)+ 

  geom_bar(stat="identity",aes(fill=which),colour="black")+ 

  geom_hline(aes(yintercept=0.05)) + xlab("Method")+ 

  ylab("Proportion Flagged")+ ylim(0,0.8) + theme(legend.position = 

"bottom")+ 

  scale_fill_manual(values=c("gray90","gray10"), name="Direction", 

breaks=c("neg", "pos"), labels=c("Negative", "Positive")) 

dev.off() 

 

################################# 

#Power 

################################# 

 

#Correct Direction 

  

temp=subset(mydata,subset=(treatn==30 & which=="pos"& d>0)) 

png(file ="E:/PSYC 900 - Dissertation/Graphs/Power30.png", units="in", 

width = 6, height = 9,res=600) 

ggplot(temp,aes(method,count)) + 

geom_point(aes(method,shape=as.factor(d)),size=2) + 
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 facet_grid(ratio~analysis) + theme(legend.position = "bottom")+ 

scale_shape_manual(values=c(0,17,1),name="Effect Size")+  

 xlab("Method")+ ylab("Proportion Flagged") + 

scale_y_continuous(limits=c(0,1))  

dev.off() 

 

temp=subset(mydata,subset=(treatn==100 & which=="pos"& d>0)) 

png(file ="E:/PSYC 900 - Dissertation/Graphs/Power100.png", units="in", 

width = 6, height = 9,res=600) 

ggplot(temp,aes(method,count)) + 

geom_point(aes(method,shape=as.factor(d)),size=2) + 

 facet_grid(ratio~analysis) + theme(legend.position = "bottom")+ 

scale_shape_manual(values=c(0,17,1),name="Effect Size")+  

 xlab("Method")+ ylab("Proportion Flagged") + 

scale_y_continuous(limits=c(0,1))  

dev.off() 

 

#Incorrect Direction 

 

temp=subset(mydata,subset=(treatn==30 & which=="neg"& d>0)) 

png(file ="E:/PSYC 900 - Dissertation/Graphs/IncorrectPower30.png", 

units="in", width = 6, height = 9,res=600) 

ggplot(temp,aes(method,count)) + 

geom_point(aes(method,shape=as.factor(d)),size=2) + 

 facet_grid(ratio~analysis) + theme(legend.position = "bottom")+ 

scale_shape_manual(values=c(0,17,1),name="Effect Size")+  

 xlab("Method")+ ylab("Proportion Flagged") + 

scale_y_continuous(limits=c(0,1))  

dev.off() 

 

temp=subset(mydata,subset=(treatn==100 & which=="neg"& d>0)) 

png(file ="E:/PSYC 900 - Dissertation/Graphs/IncorrectPower100.png", 

units="in", width = 6, height = 9,res=600) 

ggplot(temp,aes(method,count)) + 

geom_point(aes(method,shape=as.factor(d)),size=2) + 

 facet_grid(ratio~analysis) + theme(legend.position = "bottom")+ 

scale_shape_manual(values=c(0,17,1),name="Effect Size")+  

 xlab("Method")+ ylab("Proportion Flagged") + 

scale_y_continuous(limits=c(0,1))  

dev.off() 

 

################################# 

#Bias 

################################# 

 

bias <- sasxport.get("E:/PSYC 900 - Dissertation/bias.xpt") 

bias <- transform(bias,  

 analysis = factor(analysis, levels=c(0,1), labels=c("No 

Covariates","Unbalanced Covariates")), 

 ratio = factor(ratio, levels=c(3,4,5,6), 

labels=c("3:1","4:1","5:1","6:1")), 

 treatn = factor(treatn, levels=c(30,100), labels=c("Treatment N = 

30","Treatment N = 100")), 

 method = factor(method, levels=c("Ran", "NN0", "NN3", "NN2", "NN1", 

"Op1", "Op2", "Mal"), labels=c("Ran", "NN", "NN3", "NN2", "NN1", "Op1", 

"Op2", "Mah")) ) 
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temp=subset(bias,subset=(d==0)) 

png(file ="E:/PSYC 900 - Dissertation/Graphs/Bias0.png", units="in", 

width = 6, height = 9,res=600) 

ggplot(temp) + geom_point(aes(method,bias,shape=analysis),size=2)  + 

 scale_shape_manual(values = c(0,17),name="Analysis") + 

 facet_grid(as.factor(ratio)~as.factor(treatn))+ 

 theme(legend.position = "bottom")+geom_hline(aes(yintercept=0.0))+ 

 xlab("Method")+ ylab("Bias") 

dev.off() 

 

################################# 

#RMSE 

################################# 

 

rmse <- sasxport.get("E:/PSYC 900 - Dissertation/bias.xpt") 

rmse <- transform(rmse,  

 analysis = factor(analysis, levels=c(0,1), labels=c("No 

Covariates","Unbalanced Covariates")), 

 ratio = factor(ratio, levels=c(3,4,5,6), 

labels=c("3:1","4:1","5:1","6:1")), 

 treatn = factor(treatn, levels=c(30,100), labels=c("Treatment N = 

30","Treatment N = 100")), 

 method = factor(method, levels=c("Ran", "NN0", "NN3", "NN2", "NN1", 

"Op1", "Op2", "Mal"), labels=c("Ran", "NN", "NN3", "NN2", "NN1", "Op1", 

"Op2", "Mah")) ) 

 

temp=subset(rmse,subset=(d==0)) 

png(file ="E:/PSYC 900 - Dissertation/Graphs/RMSE0.png", units="in", 

width = 6, height = 9,res=600) 

ggplot(temp) + geom_point(aes(method,rmse,shape=analysis),size=2)  + 

 scale_shape_manual(values = c(0,17),name="Analysis") + 

 facet_grid(as.factor(ratio)~as.factor(treatn))+ 

 theme(legend.position = "bottom")+geom_hline(aes(yintercept=0.0))+ 

 xlab("Method")+ ylab("RMSE") 

dev.off() 
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Appendix B 

Simulated Conditions 

Table B1 

Simulated Conditions 

 Effect Size Treatment N = 30 

3 to 1 4 to 1 5 to 1 6 to 1 

0.0 1 2 3 4 

0.2 5 6 7 8 

0.5 9 10 11 12 

0.8 13 14 15 16 

 Effect Size  Treatment N = 100 

3 to 1 4 to 1 5 to 1 6 to 1 

0.0 17 18 19 20 

0.2 21 22 23 24 

0.5 25 26 27 28 

0.8 29 30 31 32 

Note. Data files were simulated 1,000 times for each effect size, treatment group sample size, and 

comparison-to-treatment group ratio combination, resulting in 32,000 data sets.  Then, within 

each data set, the eight matching methods were applied, resulted in 256,000 matched groups.  

Finally, two sets of analyses (regression with no covariates and regression with unbalanced 

covariates) were conducted for each matched group, resulting in 512,000 regressions. 
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Appendix C 

Power in the Incorrect Direction 

 
Figure C1. Power in the incorrect direction across conditions, treatment N = 30.  
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Figure C2. Power in the incorrect direction across conditions, treatment N = 100.  
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