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ABSTRACT 
 

Purpose: Concurrent training attenuates hypertrophy compared to resistance training 

alone, and does so in a fiber-type specific manner. The mechanism responsible for this 

‘interference’ is unclear, and satellite cell physiology, an important hypertrophic factor, 

has not been examined within this context. Therefore, the purpose of this investigation 

was to assess the fiber-type specific satellite cell response to acute resistance, aerobic and 

concurrent exercise. Methods: Eight recreationally active college-aged males (23±1 yrs, 

83.4±3.6 kg, 181±2 cm, and 48.5±1.6 ml/kg/min) performed 3 sets of 10 repetitions with 

a fourth set ! 10 repetitions at 75% of 1RM for both unilateral leg extensions and 

unilateral leg press for acute resistance exercise. Ten days later subjects performed the 

same resistance exercise with the opposite leg followed by 90 minutes of cycling at 60% 

VO2max to represent acute concurrent and aerobic exercise. Muscle biopsies were 

obtained immediately before and 4 days after each exercise session. Muscle samples were 

cross sectioned and stained with for NCAM, Ki-67, DAPI and MHC I via 

immunohistochemistry to assess satellite cells, activated satellite cells and fiber-type, 

respectively. Results: Total satellite cell number per fiber increased only in response to 

acute resistance exercise (+38±10%, p < 0.05), with no change following acute aerobic or 

concurrent exercise. Changes in total satellite cell number per fiber between resistance, 

aerobic and concurrent exercise differed only in MHC I fibers (p < 0.05), with no satellite 

cell number per fiber by mode interaction observed in non-MHC I muscle fibers. No 

changes in activated satellite cells were observed under any condition. Conclusion: 

Acute concurrent exercise blunts the satellite cell response of resistance exercise alone, 

and does so in a fiber-type specific manner by negating the satellite cell response in MHC 
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I, but not non-MHC I fibers. These results suggest that the interference effect of 

concurrent resistance training on MHC I hypertrophy may be regulated at the satellite cell 

level.
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CHAPTER ONE - INTRODUCTION 

 Resistance exercise training (RE) increases myocellular and whole muscle size 

and strength.  Concurrent training, RE combined with aerobic exercise (AE), has been 

shown to disrupt maximum muscle size and strength gains elicited by RE alone (22, 26, 

27).  Skeletal muscle size and strength greatly affect sports performance, occupational 

performance, and quality of life. Skeletal muscle health places a marked burden on the 

healthcare system. For instance, sarcopenia, the age-related loss of muscle mass and 

function, costs the US Healthcare system an estimated $18.5 billion annually (30).  

Concurrent training is common among athletes, individuals in weight loss programs, 

astronauts in space and older individuals.  It would therefore be beneficial to design 

concurrent training programs that elicit size and strength gains more similar on 

magnitude to RE alone.  However, to accomplish this, it is necessary to gain a more 

complete understanding of the mechanisms that underlie concurrent training adaptations. 

 The molecular regulation of muscle growth has gained considerable attention over 

the past 15 years. RE-induced hypertrophy primarily results from an accumulation of 

myofibrillar protein, which is facilitated through alterations in skeletal muscle contractile 

protein balance.  This level of specificity is accomplished through a highly sophisticated 

network of intracellular molecular signals.  Concurrent training has been hypothesized to 

‘confuse’ the signaling events necessary for maximum hypertrophy.  For example, AMP-

activated-protein-kinase (AMPK), an inhibitor of muscle protein synthesis (e.g. mTOR 

pathway), is activated in response endurance exercise (50, 64), which would theoretically 

make it more difficult to accumulate intracellular proteins (Figure 1.1).  Although an 
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attractive hypothesis, Tipton et al. demonstrated that post-exercise mixed muscle protein 

synthesis was heighted with concurrent training compared to RE alone (65).  Carrithers et 

al. was more specific and found that the rate of post-exercise myofibrillar protein 

synthesis does not differ between a concurrent exercise stimulus and RE alone (10).  

These data suggest that mechanisms other than post-exercise protein synthesis rates are 

responsible for the interference effect of concurrent training.    

 

Figure 1.1 

             

 

Proposed intracellular signaling for strength and endurance exercise, highlighting 
the incompatible cellular responses (50) 
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Recent data has implicated the role of satellite cells in skeletal muscle 

hypertrophy (37, 52). For example, the ablation of satellite cells has been shown to 

inhibit muscle growth in a resistance-training model (37).  The term ‘satellite’ cell was 

coined to describe their spatial position around muscle cells, just like satellites in orbit 

around the earth (1).  During muscle fiber hypertrophy (the only multinucleated cell in 

humans) the area surrounding each nucleus, or myonuclear domain, expands while 

satellite cells differentiate into the fiber in a presumable attempt to maintain a healthy 

domain.  To accomplish this, satellite cells are first stimulated from a quiescent (inactive) 

state to an active state.  They then proliferate (divide) and differentiate into the myofiber 

as a new nucleus.  In response to acute RE satellite cells proliferate up to 8 days after a 

single bout (18), with no such evidence following acute AE.  To our knowledge, no 

studies have examined satellite cell proliferation in response to concurrent training.  

Although their magnitude of importance is contentious, satellite cells are active during 

skeletal muscle hypertrophy in a presumable attempt to maintain a healthy myonuclear 

domain.  It is therefore possible that concurrent exercise disrupts the satellite cell 

response to RE, consequently diminishing the magnitude of hypertrophy elicited by RE 

alone.   

 

 

 

 

  
Anatomical orientation of satellite cells (69) 

Figure 1.2 
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 Some of the molecules that regulate and promote muscle growth also regulate 

satellite cell activity (25), namely the two splice variants of IGF-1, and myostatin.  In 

response to mechanical loading (e.g. exercise), mechano-growth factor (MGF) is 

synthesized in skeletal muscle (56), and IGF-1Ea is produced in the liver and circulated 

(15, 25).  MGF stimulates satellite cell activation and proliferation (16, 25) while 

myostatin is a negative regulator of muscle fiber hypertrophy (9, 34, 71) and satellite cell 

proliferation (34, 46).  The genes that encode these proteins are differentially expressed 

in response to RE and AE training.  Both respond to acute resistance exercise in a manner 

that initiates satellite cell activity and promotes hypertrophy (19, 25, 34, 38, 47, 56).  

Specifically, in response to acute RE, MGF mRNA is upregulated in skeletal muscle (19, 

34, 47, 56), and has been shown to remain elevated up to 120 hours after a single bout, 

peaking around 24 hours (47).  Myostatin decreases in response to both acute RE (34, 38, 

59) and AE (38, 43), however the response is exaggerated after RE (38).  Interestingly, 

acute concurrent exercise has been shown to attenuate the gene expression of both IGF-

1Ea and MGF (13, 14).  The post-exercise behavior of genes that regulate skeletal muscle 

hypertrophy and satellite cell activity suggest that concurrent exercise could attenuate the 

satellite cell response to RE alone.   

 Skeletal muscle is comprised of two primary types of muscle fibers: myosin 

heavy chain I (MHC I, slow twitch) and MHC IIa (fast twitch) fibers, with each making 

different but important functional contributions to whole muscle.  Concurrent training has 

been shown to completely negate the MHC I hypertrophy that is traditionally observed 

with RE alone and to attenuate MHC IIa fiber hypertrophy (35, 45, 57, 58) Satellite cell 

numbers do not differ between MCH I and MHC IIa fibers in young untrained individuals 
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(31) and nothing is known about fiber-type specific satellite cell proliferation in response 

to acute exercise. It is plausible that satellite cell proliferation is mediated in a fiber-type 

specific manner similar to the aforementioned hypertrophic tendencies of each fiber type. 

 

Purpose 

 The purpose of this study is to investigate potential mechanisms responsible for 

the attenuated growth response to concurrent AE and RE training when compared to RE 

training alone. 

 

Aims and Hypothesis 

Aim 1 - Quantify the exercise-provoked increase in satellite cell number following RE, 

AE and CE.  

Hypothesis 1 - The exercise-provoked increase in satellite cell number will be mode-

dependant.  Specifically, the extent of the satellite cell response will rank as follows: 

resistance exercise > concurrent exercise > aerobic exercise. 

 

Aim 2 – Quantify the exercise-provoked increase in active satellite cells following RE, 

AE and CE.  

Hypothesis 2 – The exercise-provoked increase in active satellite cells will be mode-

dependant.  Specifically, the extent of the satellite cell response will rank as follows: 

resistance exercise > concurrent exercise > aerobic exercise.  
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Aim 3 - Quantify the exercise-provoked increase in satellite cell number in both MHC I 

and MHC II fibers. 

Hypothesis 3 - The exercise-provoked increase in satellite cell number will vary 

according to fiber type. Specifically, the exercise-provoked increase in satellite cell 

number will be greater in MHC II fibers compared to MHC I fibers.  

 

Aim 4 – Quantify the exercise-provoked increase in active satellite cells in both MHC I 

and MHC II fibers.  

Hypothesis 4 – The exercise-provoked increase in active satellite cells will vary 

according to fiber type. Specifically, the exercise-provoked increase in active satellite 

cells will be greater in MHC II fibers compared to MHC I fibers.  

 

Significance  

 Adaptations elicited by AE and RE training generally do not compliment each 

other at the hormonal, single fiber or whole muscle level, and the maximum training 

adaptations to both are attenuated when performed together (64).  However, the 

molecular physiology that regulates this phenomenon is unknown. The mechanisms by 

which AE interferes with the responses elicited by RE have significant implications not 

only for sports performance, but for the maintenance of astronauts’ health while in space 

and countermeasures against the age related loss of skeletal muscle size and strength. 

Understanding the mechanisms responsible for the attenuated training responses to 

concurrent exercise may aid in the design of more effective interventions that elicit size 
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and strength gains from concurrent training programs that are similar in magnitude to RE 

alone.  
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CHAPTER TWO – REVIEW OF LITERATURE 

Objectives 

 The objectives of this chapter are to provide an overview of: 1) the effects of 

concurrent training on muscle size and strength, 2) the effect of acute concurrent exercise 

on protein synthesis, 3) the role of satellite cells during hypertrophy, 4) the hormonal 

regulation of satellite cells, 5) the hormonal response to acute resistance, aerobic and 

concurrent exercise, 6) the response of satellite cells to acute exercise, 7) the satellite cell 

response to chronic exercise, 8) and the fiber-type specific response of satellite cells to 

chronic exercise. 

 

Skeletal Muscle Size and Strength Adaptations to Concurrent, Aerobic and 

Resistance Training 

 Chronic resistance exercise elicits significant gains in whole muscle size (6, 51) 

and strength (26, 27, 35) while aerobic training confers minimal, if any gains (7, 20, 27). 

Concurrent training, a combination of resistance and aerobic training, has been shown to 

attenuate hypertrophy and strength gains compared to resistance training alone (7, 20, 24, 

27, 35). Interestingly, the impact of concurrent training at the cellular level appears to 

occur in a fiber-type specific manner. Specifically, skeletal muscle is comprised of two 

primary muscle fiber types: slow twitch (MHC I) and fast twitch (MHC II). Although not 

with out some contention (51), it largely appears that resistance training elicits significant 

increases in both MHC I and II fiber cross sectional area (CSA) (7, 24, 35, 45, 58), 
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whereas concurrent training increases CSA only in MHC IIa and blunts MHC I 

hypertrophy (7, 12, 24, 35, 45, 58).  

 Hickson and colleagues were the first to demonstrate that concurrent exercise can 

attenuate the strength gains elicited by resistance training alone (27). The authors 

investigated the impact of aerobic, resistance and concurrent training on peak squat 

strength and reported that resistance training elicited an increase of 44%, whereas 

concurrent training improved strength by only 25%. Others have documented similar 

findings, with squat strength increasing by 47% and 34% in response to resistance and 

concurrent training, respectively (68), bench press strength increasing 21% and 1% in 

response to resistance and concurrent training, respectively (26) and chest press strength 

increasing 24% and 19% in response to resistance and concurrent training, respectively 

(20). Aerobic training does not typically result in large strength gains (26, 27). However, 

a 23% increase in squat strength from 12 weeks of aerobic training has been reported 

(68). In contrast to reports of a concurrent training interference effect on strength, 

McCarthy et al. reported no interference in strength gains when resistance was performed 

concurrently with endurance (44). This finding is generally supported by Sale et al., but 

one leg served as resistance and the contralateral leg served as concurrent, so the 

possibility of an inhibitory systemic effect of concurrent exercise cannot be ignored (62). 

 Resistance training is the most effective method of increasing whole muscle size 

(6). In contrast, aerobic training elicits no increase in whole muscle size (45) with the 

most notable adaptation to aerobic training being an increase in aerobic power (20). 

Interestingly, concurrent training has been shown to interfere with the adaptations elicited 

by both resistance and aerobic training alone (6, 20, 27, 35). The interference effect that 
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concurrent training has on whole muscle growth has provided mixed results. Izquierdo et 

al. found no difference in the magnitude of hypertrophy of the vastus lateralis in response 

to 16 weeks of resistance, concurrent and aerobic training. However, the authors did 

report attenuated hypertrophy in the biceps brachii following concurrent training 

compared to resistance training (29). In this model, aerobic training performed only by 

the lower body interfered with the adaptations of a muscle in the upper body. This 

provides strong evidence of a systemic interference rather than a localized interference. 

In contrast, one study detected no significant differences in the whole muscle size gains 

of the quadriceps femoris between resistance and concurrent training groups following 

10-weeks of concurrent training (45). However, 10 weeks may not be a sufficient 

duration to allow for differences in whole muscle size adaptations to be revealed. 

Differences in the time course of the adaptations have been noted, with a non significant 

plateau in size gains elicited by concurrent training, although there was no difference in 

the overall effect between concurrent and resistance training (6). 

 Resistance training results in significant hypertrophy of both MHC I and IIa fibers 

(7, 24, 35, 45, 58), with some data indicating greater hypertrophy in MHC I fibers 

compared to MHC IIa (24, 58). In contrast, aerobic exercise does not typically increase 

the size of either fiber type (7, 45, 58), although there are exceptions (35). Studies 

investigating fiber type specific size adaptations to resistance and concurrent training 

convincingly indicate that the interference effect of concurrent training is manifested in a 

fiber-type specific manner. Although Bell et al. found that both MHC I and MHC IIa 

muscle fiber hypertrophy is blunted with concurrent training (7), others show minimal or 

no MHC I hypertrophy (12, 24, 35, 45, 58). For example, similar MHC IIa muscle fiber 
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growth has been observed between resistance (26%) and concurrent (22%) training 

programs, with a concomitant attenuation of growth in MHC I fibers (concurrent vs. 

resistance = 13% vs. 46%) (24). McCarthy (45), Putnam (58) and Kraemer (35) all 

reported similar increases in the cross sectional area of MHC IIa fibers from concurrent 

and resistance training programs, MHC I fiber growth only resulting from resistance 

training and no change in MHC I fiber cross sectional area in response to concurrent 

training.  

  The interference between resistance and endurance training when 

performed together has profound effects on exercise-induced adaptations when compared 

to resistance training alone. The literature consistently reports attenuated whole muscle 

strength in response to concurrent compared to resistance training alone. Although 

reports of attenuated whole muscle size gains are contentious, the fiber type specific 

interferences are compelling and appear to prevent the hypertrophic effect of resistance 

training on MHC I fibers.  
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Table 2.1 Skeletal Muscle Strength Adaptations to Concurrent, Aerobic and 
Resistance Training 

Author/Year Subjects Duration Group/Design Variables Results 
LP 1RM +56% RE 

" 3 d/wk 
" 2-6 sets 
" 4-10 reps 
" 70-85% 1RM 
 

QF 1RM +40% 

LP 1RM No Change AE 
" cycle ergometer 
" 3 d/wk 
" 30-42 

min/session at 
VT 

QF 1RM No Change 

LP 1RM +53% 

Bell 2000 
(6) 

45 
males/females 

12 Weeks 

CE 
" the above 

protocols 
performed on 
alternate days 

QF 1RM +28% 

RE 
• Low velocity 

resistance 
• 3 d/wk 

QF PF +11% Bell 1991 
(5) 

31 subjects 
with previous 

RE or AE 
experience 

12 Weeks 

CE 
• RE protocol + 3 

days/week 
endurance 

QF PF +8% 

MAP -0.2% 
1RM CP +24% 

RE 
• 3 d/wk 

1RM PS +23% 
MAP +13%* 

1RM CP No Change 
AE 
• 3 d/wk 
• Jogging 1RM PS No Change 

MAP +7% 
1RM CP +19% 

Dolezal 1998 
(20) 

30 physically 
active men 

10 weeks 

CE 
• Combination of 

both RE and 
AE 1RM PS +12% 

AE 
" 6 d/wk 
" Alt days of 

cycling and 
running 

No Change 

RE 
5 d/wk lower 

body lifts 

+44% 

Hickson 1980 
(27) 

recreationally 
active men 

10 Weeks 

CE 
RE+AE separated 

by 2 hours rest 

Parallel Squat 
Strength 

 

+34% 
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Table 2.1 Skeletal Muscle Strength Adaptations to Concurrent, Aerobic and 
Resistance Training (Continued) 

 
 
 

 

 

 

Author/Year Subjects Duration Group/Design Variables Results 
Bench Press 

Strength 
+21% RE 

" d/wk 
" 2-6 set 
" 4-10 reps 
" 70-85% 1RM 

Squat Strength +18% 

Bench Press 
Strength 

No Change AE 
" cycle ergometer 
" 3  d/wk 
" 30-42 min at 

VT 

Squat Strength No Change 

Bench Press 
Strength 

+1% 

Hennessy 1994 
(26) 

56 Rugby 
Players 

8 Weeks 

CE 
RE and AE on 
alternating days Squat Strength +5% 

HS Strength +45% RE 
• 2 d/wk 

CP Strength +37% 

HS Strength +37% CE 
• RE 1 d/wk 
• AE 1 d/wk CP Strength +15% 

HS Strength +9% 

Izquierdo 2005 
(29) 

31 men 40-46 
years old 

16 weeks 

AE 
• 2 d/wk 

CP Strength No Change 

1RM Squat +23% 
1RM CP +18% 

IKE +12% 

RE 
" 3 d/wk 
" 8 exercises 

3 x 5-7 reps VJ +6% 
1RM Squat No Change 

1RM CP No Change 
IKE No Change 

AE 
" 3 d/wk 
" 50 min cycling 

70% HRR VJ No Change 
1RM Squat +22% 

1RM CP +18% 
IKE +7% 

McCarthy 
1995 
(44) 

30 Sedentary 
adult males 

10 weeks 

CE 
• RE+AE 

10-20min rest 
between VJ +9% 
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Table 2.1 Skeletal Muscle Strength Adaptations to Concurrent, Aerobic and 
Resistance Training (Continued) 

RE = Resistance Exercise, AE = Aerobic Exercise, CE = Concurrent resistance and aerobic exercise, RM = 
Repetition Maximum, Ext = Extension, VT = Ventilatory Threshold, Reps = Repetitions, LP = Leg Press, 
Alt = alternating, QF = Quadriceps Femoris, HHR = Heart Rate Reserve, UB = Upperbody, LB = Lower 
Body, PF = Peak Force, CP = Chest Press, HS = Half Squat, d/wk = Days per Weeks, IKE = isometric knee 
extensions, VJ = vertical jump 
 

Author  Subjects Duration Group/Design Variables Results 
CP Strength +23% CE 

• RE protocol 
• AE Protocol 
• 4 d/wk 
• Separated by 5-

6 h 

LP Strength +15% 

CP Strength +27% CE / UB RE Only 
RE protocol for 
UB only LP Strength No Change 

CP Strength +30% RE 
• 3x10 reps 
5 UB / 4 LB LP Strength +29% 

CP Strength No Change 

Kraemer 
1995 
(35) 

35 physically 
active Army 

soldiers 

12 weeks 

AE 
• Long runs 2 

d/wk 
Intervals 2 d/wk 

LP Strength No Change 

Increased Torque QF strength +29% 
Endurance QF strength No Change 

Nelson 1990 
(51) 

14 active 
healthy men 

20 weeks / 4 
training 

sessions per 
week Increased Torque 

+ Endurance 
QF strength +34% 

Strength RE one leg, CE 
on the other Endurance 

Strength 

Sale 1990 
(62) 

22 weeks 21 Weeks 

AE one leg, CE 
on the other Endurance 

No interference 
with strength or 

endurance 

AE 
" 3 d/wk 
" 45 min 
" 60-75% HRR 

+23% except for 
chest press 

RE 
" 3 d/wk 
" 8 exercises 
" 1-2x8-12 reps 
 

+47% 

Wood 2001 
(68) 

36 old but 
healthy 

individuals 

12 Weeks 

CE 
" 3 d/wk 
" AE limited to 

30 min 
" RE limited to 1 

set 

5 RM tests for 
leg ext, leg curl, 
seated row, chest 

press, lateral 
raise, seated dip 
and bicep curl 

+34% 



 

!

15!

Table 2.2 Skeletal Muscle Size Adaptations to Concurrent, Aerobic and Resistance 
Training 

Author  Subjects Duration Group/Design Variables Results 
RE 
• Low velocity 

resistance 
• 3 d/wk 

QF CSA +5.4% 
 

Bell 1991 
(5) 

31 subjects 
with previous 

CE or RE 
experience 

12 Weeks 

CE 
RE protocol + 3 
d/wk endurance 

QF CSA +4.16 

MHC I CSA +27% RE 
" 3 d/wk 
" 2-6 sets 
" 4-10 reps 
" 70-85% 1RM 
 

MHC IIa CSA +28% 

MHC I CSA No Change AE 
" cycle ergometer 
" 3 d/wk 
" 30-42 min per 

session at VT 

MHC IIa CSA No Change 

MHC I CSA +11% 

Bell 2000 
(6) 

45 
males/females 

12 Weeks 

CE 
" RE and AE 

protocols 
performed on 
alternate days 

MHC IIa CSA +14% 

MHC I CSA No Change Chilibeck 
2002 
(11) 

10 untrained; 
5 males and 5 

females 

12 weeks CE 
• Periodized 

training program MHC IIa CSA +15% 

MHC I CSA +46% RE 
" 2 d/wk 
" 3-5 sets 
" 8-12 reps 
" 50-85% 1RM 

MHC IIa CSA +26% 

MHC I CSA +13% 

Hakkinen 
2003 
(24) 

27 healthy 
males 

21 Weeks 

CE 
Above resistance 
program with 2 
d/wk running and 
cycling 

MHC IIa CSA +22% 
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Table 2.2 Skeletal Muscle Size Adaptations to Concurrent, Aerobic and Resistance 
Training (Continued) 

Author  Subjects Duration Group/Design Variables Results 
BB CSA +9% RE 

• 2 d/wk 
QF CSA +14% 

BB CSA No Change CE 
• RE 1 d/wk 
• AE 1 d/wk QF CSA +12% 

BB CSA No Change 

Izquierdo 
2005 
(29) 

31 men 40-
46 years old 

16 weeks 

AE 
• 2 d/wk 

QF CSA +10% 

MHC I CSA No Change CE 
• RE protocol 
• AE Protocol 
• 4 d/wk 
• Separated by 5-

6 h 

MHC IIa CSA +18% 

MHC I CSA No Change CE / UB RE 
RE protocol for 
UB only MHC IIa CSA No Change 

MHC I CSA +11% RE 
• 3x10 reps 
• 5 UB / 4 LB MHC IIa CSA +21% 

MHC I CSA -11% 

Kraemer 
1995 
(35) 

35 physically 
active Army 

soldiers 

12 weeks 

AE 
• Long runs 2 

d/wk 
• Intervals 2 d/wk 

MHC IIa CSA No Change 

MHC I CSA +19% 

MHC IIa CSA +24% 

RE 
" 3 d/wk 
" 8 exercises 
" 3 x 5-7 reps 

QF CSA +6% 

MHC I CSA No Change 

MHC IIa CSA No Change 

AE 
" 3 d/wk 
" 50 min cycling 
70% HRR 

QF CSA No Change 

MHC I CSA No Change 

MHC IIa CSA +28% 

McCarthy 
2002 
(45) 

30 Sedentary 
adult males 

10 Weeks 

CE 
• RE+AE 
• 10-20min rest 

between 
QF CSA +9% 

MHC I CSA +10% Increased Torque 
MHC IIa CSA -4.8% 
MHC I CSA +8.1% Endurance 

MHC IIa CSA +5% 
MHC I CSA +25% 

Nelson 1990 
(51) 

14 active 
healthy men 

20 weeks / 4 
training 

sessions per 
week 

Increased Torque 
+ Endurance MHC IIa CSA -20% 
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Table 2.2 Skeletal Muscle Size Adaptations to Concurrent, Aerobic and Resistance 
Training (Continued) 

Author  Subjects Duration Group/Design Variables Results 
MHC I CSA +17% RE 

" 3 d/wk 
" 4 exercises 
" 2-6 x 4-10 reps 
" 70-85% 1RM 

MHC IIa CSA +13% 

MHC I CSA No Change AE 
" Cycle 

ergometer 
" 3 d/wk 
" 30-42min at VT 

MHC IIa CSA No Change 

MHC I CSA No Change 

Putman  
2004 
(58) 

24 males/16 
femals 

12 weeks 

CE 
" RE+AE on Alt 

days MHC IIa CSA +18% 
RE = Resistance Exercise, AE = Aerobic Exercise, CE = Concurrent resistance and aerobic exercise, MHC 
I = Myosin Heavy Chain I, MHC II = Myosin Heavy Chain II, CSA = Cross Sectional Area, RM = 
Repetition Maximum, Ext = Extension, VT = Ventilatory Threshold, Reps = Repetitions, LP = Leg Press, 
Alt = alternating, QF = Quadriceps Femoris, HHR = Heart Rate Reserve, UB = Upperbody, LB = Lower 
Body, d/wk = Days per Week 
 

 
 
 

The Effects of Concurrent Exercise on Protein Balance 

The proposed mechanism underlying the effects of concurrent exercise centers 

around the molecular pathway involved in muscle protein synthesis (50), which is 

exemplified in Figure 1. Specifically, interference caused by aerobic exercise 

hypothetically inhibits the protein synthesis initiated by resistance exercise through the 

upregulation of AMPK, which inhibits the activity of protein kinase B (PKB), a critical 

step in the pathway leading to protein synthesis. This proposed mechanism is supported 

by Baar et al. who further explains that PKB is up-regulated by resistance exercise and 

may inhibit the downstream pathway initiated by endurance exercise that leads to 

mitochondrial biogenesis via the phosphorylation of FOXO1 (2). This potentially 

explains the attenuated endurance gains reported by Nelson et al. (51). Muscle fiber 
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hypertrophy typically results from an accumulation of myofibrillar proteins and 

interference in molecular pathways initiated by resistance and endurance exercise appears 

to be the most likely culprit for the attenuated hypertrophic response of concurrent 

exercise. However, two studies reported no difference in mixed muscle (65) or 

myofibrillar (10) protein synthesis in response to resistance and concurrent exercise. 

Specifically, Tipton and colleagues were the first to address the impact of concurrent 

exercise on protein synthesis, and reported that concurrent exercise increased mixed 

muscle protein synthesis, with no increase following resistance exercise (65). Most 

relevant to the current project, Carrithers found that myofibrillar protein synthesis 

increased to a similar extent following resistance and concurrent exercise suggesting that 

early post-exercise FSR does not explain the attenuated response (10).  

Dolezal and colleagues assessed urinary nitrogen in response to resistance, 

endurance and concurrent training and found that endurance training significantly 

increased urinary nitrogen while resistance and concurrent training had no effect (20). 

Increased urinary nitrogen is indicative of a negative protein balance. With no differences 

in urinary nitrogen between resistance and concurrent training it can be inferred that 

protein degradation is not differentially affected and cannot explain the differential 

adaptations. Thus, the data above suggests that another factor is likely responsible for the 

attenuated growth response that is characteristic of concurrent training.  
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Table 2.3: The Effects of Concurrent Exercise on Protein Balance 

Author Subjects Group/Design Variables Results 
RE 
" 3 x 6 reps upper-body 

lifts 
" 3 x 10 reps lower body 

lifts 
" 65% 1RM 

No Change 

AE 
" 1.5 hours of high 

intensity work 

No Change 

Tipton 1996 
(65) 

7 collegiate 
swimmers 

CE 
" RE and AE 

Change in FSR of 
Deltoid 

 

+81% 

RE 
" 3 x 10 reps + set to 

failure 
" 85% 1RM for leg ext 

and leg press 

Carrithers 
2007 
(9) 

6 men and 6 
women 

CE 
" RE + 90 mins cycling 

at 60% VO2max 

Myofibrillar synthetic 
rate of Vastus Lateralis 

 

No difference 
between groups 

10 weeks RE 
• 3 days per week 

Urinary Urea Nitrogen No Change 

10 weeks AE 
• 3 days jogging per 

week 

Urinary Urea Nitrogen Increased 

Dolezal 
1998 
(20) 

30 physically 
active men 

10 weeks CE 
• Combination of both RE 

and EE 

Urinary Urea Nitrogen No Change 

RE = Resistance Exercise, AE = Aerobic Exercise, CE = Concurrent Resistance and Aerobic Exercise, 
Reps = Repetitions, RM = Repetition Maximum, Mins = Minutes, FSR = fractional synthetic rate, BMR = 
Basal Metabolic Rate 
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The Role of Satellite Cells in Skeletal Muscle Growth 

 As skeletal muscle hypertrophies, satellite cells differentiate and migrate into the 

myofiber as a new nucleus in a presumable attempt to maintain myonuclear domain, 

which is defined as the area within the muscle fiber that each myonuclei is responsible 

for. The process by which satellite cells become nuclei begins with proliferation, or 

division, followed by differentiation, or the migration of the satellite cell into myofiber. 

The precise role that satellite cells have in muscle growth processes is unclear. However, 

the ablation of satellite cells prevents muscle fiber growth suggesting at least that satellite 

cell differentiation is required for muscle hypertrophy. 

 Barton-Davis et al. provided evidence for the importance of satellite cells during 

hormonally mediated skeletal muscle growth. The authors demonstrated that the ablation 

of satellite cells significantly reduces muscle mass while also inhibiting the anabolic 

effects of IGF-1 (4). The irradiation of satellite cells appears to elicit the same results in 

mechanically loaded muscle. Following ablation of the tibialis anterior to overload the 

extensor digitorum longus (EDL) in rats, Rosenblatt et al. assessed hypertrophy of the 

EDL with and without the irradiation of satellite cells. In agreement with Barton-Davis, 

mechanical load-induced hypertrophy of the EDL was inhibited by satellite cell 

irradiation (60). Further evidence of satellite cell mediated hypertrophy was provided by 

Li et al. who demonstrated that the irradiation of satellite cells in sedentary control mice 

decreases muscle mass, while irradiation again inhibited mechanical load induced 

hypertrophy in exercising mice (37). These studies provide evidence that satellite cells 

are required for significant hypertrophy, at least in animal models.  
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Table 2.4: The Role of Satellite Cells in Skeletal Muscle Growth 

Author/Year Methods Groups Results Conclusion 
SC 

proliferation 
inhibited by 

GR 

Decrease in 
muscle mass 

Viral-
mediated gene 

transfer of 
IGF-1 

Increase in 
muscle mass 

Barton-Davis 
1999 
(4) 

Mice were subjects to one of 
3 treatments and then 

compared to a control group 
to determine the role of 
satellite cells in IGF-1 

induced muscle hypertrophy 

Both 
Treatments 

together 

Hypertrophy was 
prevented 

Hypertrophy is 
predominantly 
mediated by 
satellite cell 
activation 

Irradiation + 
Ablation 

No change in 
muscle mass 

Irradiation 
only 

No change in 
muscle mass 

Ablation only Increase in 
muscle mass 

Rosenblatt 
1994 
(60) 

Ablation of TA was used to 
overlaod the EDL and 

induce hypertrophy in rats. 
Irradiation of satellite cells 
was used to determine their 

role in overload induced 
hypertrophy 

Control No Change 

Satellite cells are 
required for over-

load induced 
muscle 

hypertrophy 

Running + 
Irradiation 

Attenuated 
hypertrophy 

compared to non-
irradiated 

Running Increase in 
muscle mass 

Li 2006 
(37) 

X-ray irradiation of satellite 
cells was used to determine 
their role in running induced 

hypertrophy in mice. 
Measurements of muscle 
weight of the soleus and 

planatris were taken at 2 and 
4 weeks 

Sedentary + 
Irradiation 

less muscle mass 
than controls in 
the soleus, no 

difference in the 
plantaris 

Satellite cells are 
required for 

exercise induced 
muscle 

hypertrophy 

TA = Tibialis Anterior, EDL = Extensor Digitorum Longus, SC = satellite cell, GR = gamma radiation 
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Molecular Regulation of Satellite Cells 

 Many of the hormones that regulate hypertrophy also regulate satellite cell 

activity. Specifically, insulin-like growth factor and myostatin have been reported to 

strongly influence muscle size alterations and satellite cell activity. The IGF-1 isoform 

mechano-growth factor (MGF) initiates both hypertrophy and satellite cell proliferation, 

while the liver produced isoform (IGF-1Ea) stimulates terminal differentiation (70). 

Myostatin disrupts both by inhibiting the IGF-1 signaling pathway (71). 

 Hill et al. assessed the timecourse of MGF and IGF-1Ea mRNA, and satellite cell 

activity following electrical stimulation (28). Hill found that the upregulation of MGF 

mRNA immediately preceded satellite cell proliferation. Although MGF protein was not 

assessed, the mRNA response suggests that MGF may play a role in stimulating 

proliferation. Additionally, the IGF-1Ea mRNA response was delayed, suggesting that 

the liver produced isoform my play a unique role in determining the fate of satellite cells. 

Perhaps a stronger case for the role of the IGF-1 isoforms in satellite cell activity was 

demonstrated by subjecting mouse skeletal muscle cells to MGF and IGF-1Ea in vitro 

(70). When subjected to MGF, satellite cells began to proliferate, while IGF-1Ea 

stimulated their differentiation into new myoblasts. Another study by the same group 

exposed the same line of mouse skeletal muscle cells to myostatin and found that satellite 

cells ceased to proliferate, and the PI3k/Akt pathway initiated by IGF-1 was completely 

inhibited (71). When taken together, these studies exemplify the effects that IGF-1 and 

myostatin have on satellite cell proliferation and differentiation.  
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Table 2.5: Molecular Regulation of Satellite Cells 

Author/Year Design Results 
Yang 2002 

(70) 
C2C12 line of mouse SM cells in vitro 
were subjected to MGF and IGF-1Ea 

• MGF stimulated 
proliferation 

• IGF-1Ea stimulated 
differentiation 

Yang 2007 
(71) 

C2C12 line of mouse SM in vitro were 
subjected to myostatin 

• Cells ceased to proliferate 
• PI3k/Akt pathway inhibited 

Hill 2003 
(28) 

Rats were subjected to electrical 
stimulation of the tibialis; time courses 

for MGF, IGF-1Ea and satellite cell 
proliferation were assessed 

• Expression of MGF mRNA 
immediately preceded 
satellite cell proliferation 

• IGF-1Ea mRNA 
upregulation delayed 

MGF = Mechano Growth Factor, IGF = Insulin-like Growth Factor, SM = skeletal muscle 
 

 

IGF-1 Isoforms and Myostatin mRNA Responses to Acute Exercise 

 In the process of making a specific protein, DNA is transcribed into messenger 

RNA (mRNA), and then translated into protein. The upregulation of mRNA does not 

always translate to a proportional increase in the hormone itself, but does indicate cellular 

intent. Of particular interest to this study are myostatin, a negative regulator of muscle 

mass and satellite cell activity, and the isoforms of IGF-1, which are positive regulators 

of muscle mass and satellite cell activity. 

 The IGF-1 and myostatin mRNA responses to exercise behave in a manner that 

theoretically promotes hypertrophy and satellite cell activity in response to resistance 

training, with an attenuated response to concurrent. MGF mRNA is significantly 

upregulated following acute resistance exercise (25, 34, 47), while myostatin mRNA is 

significantly downregulated (34, 38, 59). The decrease in myostatin mRNA in response 

to acute aerobic exercise is approximately half the response observed following acute 
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resistance exercise (38). Interestingly, the expression of IGF-1 mRNA is attenuated in 

response to concurrent exercise (14). In contradiction, one study reported no change in 

IGF-1 mRNA (3), and another reported lower mRNA levels following acute exercise (8). 

 IGF-1 and myostatin mRNA responses have also been observed in animal models. 

Matsaka et al found that the myostatin mRNA response to aerobic exercise in mice is 

similar to the response to resistance exercise in humans, in that myostatin was 

significantly reduced after an acute bout of swimming (43). This response was also noted 

after 3 and 5 days of training.  

 In summary, if myostatin and IGF-1 protein behave in accordance with their 

respective mRNA responses, satellite cell activity may follow the hormonal and 

hypertrophic tendencies of resistance and concurrent training. When taken together, it 

seems plausible that the magnitude of the satellite cell response to acute exercise would 

display a similar pattern as the hypertrophic responses of resistance and concurrent 

training. Specifically, satellite cell activity should increase to a greater extent following 

resistance exercise compared to concurrent, and to a greater extent following concurrent 

exercise than aerobic. 
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Table 2.6: IGF-1 Isoforms and Myostatin mRNA Responses to Acute Exercise 
Author/Year Subjects Methods Groups Variables Results 

MGF 
mRNA 

" Increase in 
MGF mRNA 
" Peaked at 24 

hours post 
exercise 

McKay 2008 
(47) 

8 males " 30 x 10 maximal IC 
of the VL at 180 
deg/second.  

" Bx were taken pre-
ex, and 4, 24, 72 
and 120 hours post-
ex. IGF-1Ea 

mRNA 

Expression 
after acute 
resistance 
exercise 

 

" Increase in 
IGF-1Ea 
mRNA 

" Peaked at 72 
hours 

MGF mRNA Increase Young 

IGF-1Ea 
mRNA 

No change 

MGF mRNA No change 

Hameed 2003 
(25) 

8 young and 
7 old males 

" 10 x 6 reps of LE at 
80% 1RM.  

" Bx were taken pre-
ex and 2.5 hours 
post-ex. Old 

IGF-1Ea 
mRNA 

No change 

Young Raue 2006 
(59) 

8 young and 
six old 
females 

" 3 x 10 reps at 70% 
1RM for LE 

" Bx taken pre-ex and 
4 hours post-Ex 

Old 

Change in Myo 
mRNA 

expression 

Myo mRNA 
down regulated 
2.2 fold in both 

groups 

IGF-1 mRNA 
Expression 

Non-
Significant 
Decrease  
(p = 0.06) 

RE 
followed 

by SE 

MGF mRNA 
Expression 

No Change 

IGF-1 mRNA 
Expression 

Non-
Significant 
Decrease  
(p = 0.06) 

Coffey 2009 
(12) 

6 males " Cross over design 
" RE (8x5 LE at 80% 

1RM) followed by 
SE (10x6 sec 
sprints) and vice-
versa 

" Bx were taken from 
the VL  pre and 15 
min and 3 hours 
post Ex to assess 
IGF-1 mRNA 
expression 

SE 
followed 

by RE 

MGF mRNA 
Expression 

No Change 
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Table 2.6: IGF-1 Isoforms and Myostatin mRNA Responses to Acute Exercise 
(Continued) 

Author/Year Subjects Methods Groups Variables Results 
Myo -56% Young 

Males 
MGF +91% 

Myo -48% Young 
Females 

MGF No Change 

Myo -40% Old Males 

MGF No Change 

Myo No Change 

Kim 2005 
(34) 

" 10 young 
males 

" 10 young 
females 
" 9 old 

males 
" 9 old 
females 

" 3 x 12 reps for 
squat, LP and LE 

" Bx taken pre-ex and 
24 hours post-ex to 
assess the change in 
Myo and MGF 
mRNA expression 

Old 
Females MGF No Change 

Resistance 
Exercise 

6.3 fold decrease 
from 1 to 24 
hours post 
exercise 

Louis 2007 
(38) 

12 healthy 
subjects 

" 2 women and 4 men 
performed RE 

" 1 woman and 5 men 
performed running.   

" Bx were take pre 
and 1,2,4,8,12 and 
24 hours post-ex to 
determine the time 
course of Myo 
mRNA expression 

Running 

Myo mRNA 
Expression 

post-ex 

3.6 fold decrease 
8-12 hours post 

exercise 

RE 
followed 
by AE 

No Change Coffey 2009 
(13) 

8 males " Cross over design 
" 4 subjects; RE then 

AE 
" 4 subjects; AE then 

RE 
" Switch treatments 

after 1 week  
" RE consisted of 8X5 

LE at 80% 1RM 
" AE consisted of 30 

min of cycling at 
70% VO2max.  

" Bx were taken from 
the VL pre and 15 
min and 3 hours 
post Ex to assess 
IGF-1 mRNA 
expression 

AE 
followed 

by RE 

IGF-1 mRNA 
Expression 

 

" Non 
significant 
increase 

" attenuated 
response 

compared to 
RE followed 

by AE 
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Table 2.6: IGF-1 Isoforms and Myostatin mRNA Responses to Acute Exercise 
(Continued) 

Author/Year Subjects Methods Groups Variables Results 
MGF mRNA 

12 hours 
No Change 

IGF-1 mRNA 
12 hours 

-46% 

MGF mRNA 
24 hours 

No Change 

First bout 
of ES 

IGF-1 mRNA 
24 hours 

No Change 

MGF mRNA 
24 hours 

No Change 

IGF-1 mRNA 
24 hours 

No Change 

MGF mRNA 
48 hours 

No Change 

Bickel 2005 
(7) 

6 men and 
3 women 

" ES of the vastus 
lateralis with knee 
secured at 700 of 
flexion.  

" Bx were taken pre Ex 
and 12 and 24 hours 
after one bout, and 24 
and 48 hours after a 
second bout.  

Second 
bout of ES 

IGF-1 mRNA 
48 hours 

No Change 

Ecc Ex Increase Bamman 2001 
(3) 

7 men and 
3 women 

" 8 x 8 reps 
" 85% of 1RM for CE 
" 110% of 1RM for Ecc 

Ex  
" Bx were taken 48 

before familiarization 
trials, 48 hours post Ecc 
Ex and 48 hours post 
CE 

CE 

Locally 
produced IGF-1 

mRNA in the 
VL 

No Change 

IGF-1 mRNA No Change Acute 
swimming 

Myo mRNA Decrease at 
7 but not 24 

hours 
IGF-1 mRNA No Change 3 days 

swimming 
Myo mRNA Decrease 

IGF-1 mRNA No Change 

Matsakas 2005 
(43) 

Male Rats " End by swimming 
" Myo and IGF-1 mRNA 

was assessed 24h after 
acute bout  

" 24h after 3 days of End 
" 24h after 5 days of End 

5 days 
swimming 

Myo mRNA Decrease 

RE = resistance exercise, AE = Aerobic exercise, SE = sprints, ES = electirical stimulation, LE = leg 
extensions, LP = leg press, 1RM = 1 repetition maximum, Ex = exercise, Ecc = eccentric, CE = concentric 
exercise, IC = isokinetic contractions, VL = vastus lateralis, Bx = muscle biopsies, Reps = repetitions, Myo 
= myostatin, End = Endurance training, h = hours 
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Satellite Cell Responses to Acute Exercise 

 Acute resistance exercise can activate and stimulate the proliferation of satellite 

cells. Satellite cell activation involves the initiation of mitosis, whereas proliferation 

describes the division of the cells and a consequential increase in satellite cell number.  

Significant proliferation has been observed as early as 6 hours following eccentric 

cycling (42) and as late as 8 days in the instance of resistance exercise (17, 18, 48). 

Activated satellite cells have been observed 48 hours following electrical stimulation (40) 

as well as 8 days following exercise (18, 48). Because the activation of satellite cells 

must precede proliferaton, it can be infered that in studies only showing increases in 

satellite cell numbers, the activation of satellite cells coincided.  

 Typically, eccentric resistance exercise is used to elicit a satellite cell response to 

acute exercise (17, 18, 21, 48, 53). However endurance running (36km), inherently 

associated with a large eccentric mechanical loading component, can also initiate satellite 

cell proliferation (41). Activated satellite cells, or those that have entered the proliferative 

phase, respond to eccentric resistance exercise (18) as well as electrical stimulation (40). 

The response has also been shown to vary with age. Dreyer et al. noted a 141% increase 

in NCAM stained satellite cells in young adults in response to eccentric exercise of the 

vastus lateralis, with only a 51% increase for old individuals (21).  

 Satellite cells appear to respond to acute exercise in a manner that follows the 

hypertrophic tendencies of training with respect to the type of exercise and the age of the 

individual. In general, the response is analogous to the strength and hypertrophic 

tendencies of exercise; the response greatest with high intensity resistance compared to 

endurance exercise, and greater in young individuals compared to old. 
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Table 2.7: Satellite Cell Responses to Acute Exercise 

Author Subjects Study Design Variables Results 
O’Reilly 2008 

(53) 
8 healthy, 

recreationally 
active males 

" 300 Ecc Con at 
1800/s  

NCAM stained 
satellite cells 

Increase at 24 and 
72h post exercise 

Crameri 2007 
(16) 

8 healthy sedentary 
males 

" Max Ecc Con 
" 10x10 reps at 

300/s 
" 11x10 reps at 

1800/s 

NCAM stained 
satellite cells 

Increase at 4 and 8 
days post Ex 

Crameri 2004 
(17) 

8 healthy sedentary 
males 

" 50x one-leg 
“drop-down 
jumps”  

" 8x10 at 300/s  
" 8x10 at 1800/s  
" all Ecc Con 

NCAM and FA1 
stained satellite 

cells 

Increase at 4 and 8 
days post Ex 

Dreyer 2006 
(21) 

10 young and 9 old 
healthy males 

" 6x16 Ecc reps at 
600/s 

NCAM stained 
satellite cells in 
young and old 

Increase 24h post 
Ex for both young 

(141%) and old 
(51%) 

Mackey 2007 
(41) 

 
 

14 endurance 
trained males 

" 36 km run NCAM stained 
satellite cells 

27% increase 8 
days post Ex 

Mikkelsen 2009 
(48) 

8 healthy males " 200 max Ecc 
Con 

" 100 at 300/sec 
" 100 at 1200/s 

Pax7 stained 
satellite cells 

96% increase at  
day 8 post Ex 

Mackey 2009 
(40) 

 
 

7 healthy males " ES Ki-67 Stained 
satellite cells 

Increase 48h post 
ES 

Malm 2000 
(42) 

 

13 healthy males 
19-32 Years old 

" 30 minutes of 
Ecc cycling 

NCAM stained 
satellite cells 

Increase at 6, 24 
and 48h post Ex 

Reps = repetitions, km = kilometers, Ecc = eccentric, Con = contractions, ES = electrical stimulation, h = 
hours, Ex = exercise 
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Satellite Cell Response to Acute Exercise - Animal Models 

The satellite cell response to acute exercise appears to be similar between humans 

and animals. Tanaka et al. reported that satellite cell proliferation results only from high 

intensity exercise, as satellite increased following downhill running but not walking, 

presumablly a result of the exaggerated eccentric mechanical loading of downhill running 

(63). This suggests that the magnitude of the satellite cell response, or the presence of a 

response at all, may be dependant on the intensity of the exercise. In a study assessing the 

role of estrogen in female rats, it was found that regardless of estrogen the number of 

total, activated and proliferating satellite cells increased 72 hours after 90 minutes of 

downhill running (23). Like human models, satellite cells respond to acute exercise, and 

the response appears to be dependant on the intensity.  
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Table 2.8: Satellite Cell Response to Acute Exercise - Animal Models 

Author Subjects Design Groups Variable Results 
DR Increase 

DW No change 

Tanaka 2009 
(63) 

4 week old 
Male Sprague-
Dawley Rats 

" SC assessed 
in the soleus 
of rats 

" Acute DR 
(n=4) 

" Acute DW 
(n=4) 

Control 

SC per 1000 
fibers 

No change 

Total No Change 

Activated No Change 

No Estrogen 
Controls 

Proliferating No Change 

Total Increase 

Activated Increase 

Exercised 
Controls 

Proliferating Increase 

Total Increase 

Activated No Change 

Estorgen 
supplimented 

controls 
Proliferating No Change 

Total Increase 

Activated Increase 

Enns 2007 
(23) 

44 
ovariectomized 

femal rats 

Effects of 
estrogen on 

satellite cells 
72 hours after 
90 minutes of  

DR 

Estrogen 
supplimented 
with exercise 

Proliferating Increase 

SC = satellite cells, DR = downhill running, DW = downhill walking, Ex = Exercise 

 

Satellite Cell Adaptations to Exercise Training 

As previously mentioned, satellite cell adaptations to exercise training coincide 

with hypertrophy, most likely in an attempt to maintain myonuclear domain.  Chronic 

training increases the number of satellite cells per muscle fiber, the total number of 

activated satellite cells, as well as the number of myonuclei per fiber.  Kadi et al. 

documented this in the trapezius muscles of women during a 10-week resistance training 

study, where myonuculear number increased by 70% (33). The authors reported that 

muscle fiber cross sectional area increased by 36% along with a 46% increase in the 
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number of satellite cells per fiber. In a subsequent study, Kadi assessed satellite cell 

number and myonuclear domain in response to training followed by detraining, and 

found that satellite cells increased in response to training and were largely maintained 

following 30 days of detraining (32). In this study however, Kadi observed that 

myonuclei per fiber did not increase following training, while myonuclear domain did. 

This implies that myonuclear domain is not completely maintained during hypertrophy.  

In agreement with Kadi, Charifi et al. (11) and Roth et al. (61) also reported no 

change in myonuclei per fiber following training despite increases in satellite cells 

density, meaning that there was proliferation with out differentiation. The same results 

were found in elderly men. However, increases in myonuclei density following resistance 

training have been reported in elderly women (39). Petrella et al. found that myonuclear 

domain expansion coincided with increases in myonuclei per fiber in extreme and 

moderate responders, while only extreme responders showed increases in satellite cells 

per fiber (55).  

As previously mentioned, the exact role of satellite cells during hypertrophy is not 

well understood, but do appear to play an important role in the hypertrophic process. 

However, disproportional increases in myonuclear domain compared to myonuclei per 

fiber suggest that the maintenance of myonuclear domain may not be the most important 

function of satellite cells during hypertrophy.  
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Table 2.9: Satellite Cell Adaptations to Exercise Training 

Author/Year Subjects Design Groups Variable Results 
Per fiber Increase Satellite Cell 

frequency 
Per 

Myonuclei 
Increase 

Charifi 2003 
(10) 

11 aged men 
(70-80 y.o.) 

14 wks of ET, 4 
d/wk for 45 (4 min 
at 65-75% VO2max 
followed by 1 min 
at 85-95%) Myonuclei Per Fiber No Change 

Fiber Cross 
Sectional 

Area 

+36% 

Number of 
Satellite 

Cells 

+46% 

Kadi 2000 
(33) 

9 Women " 10 wks of RT 
" Bx taken from 

trapezius before 
and after training 

Physiological 
affects 

Myonuclear 
Number 

+70% 

After 30 days 
training 

+19.3% 

After 90 days 
training 

+31.4% 

Satellite Cells 

After 30 days 
detraining 

Non 
significant 
decrease 
(p=0.07) 

 
After 30 days 

training 
No Change 

After 90 days 
training 

No Change 

Myonuclei 

After 30 days 
detraining 

No change 

After 90 days 
training 

Increase 

Kadi 2004 
(32) 

15 Young Men " 90 days of RT, 
followed by 30 
days of 
detraining 

" Bx taken pre 
training, at 30 
days, 90 days 
and 30 days post 
training  

Myonuclear 
domain 

After 30 days 
detraining 

Return to 
pre-training 

values 
 

SC per fiber Increase Elderly Men 

Myonuclei 
per fiber 

No Change 

SC per fiber Increase 

Mackey 2007 
(39) 

13 healthy 
elderly men and 

16 healthy 
elderly women 

12 wks of lower 
body RT, 3x/wk. 
Bx collected from 
VL pre and post 
training 

Elderly 
Women 

Myonuclei 
per fiber 

Increase 
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Table 2.9: Satellite Cell Adaptations to Exercise Training (Continued) 

Author/Year Subjects Design Groups Variable Results 
Myonuclei 
per fiber 

+26% 

Myonuclear 
domain 

Increase 

Extreme 
Responders 

Satellite Cell 
per Fiber 

+117% 

Myonuclei 
per fiber 

+9% 

Myonuclear 
domain 

Increase 

Moderate 
Responders 

Satellite Cell 
per Fiber 

No 
Change 

Myonuclei 
per fiber 

No 
Change 

Myonuclear 
domain 

No 
Change 

Petrella 2008 
(55) 

66 Humans (no 
discrimination 

between age and 
sex) 

16 wks of RT, 
Subjects were 

clustered as extreme 
responders, moderate 
responders and non 

responders 

Non 
Responders 

Satellite Cell 
per Fiber 

No 
Change 

 
Young Men Increase 

Young 
Women 

Increase 

Old Men Increase 

Old Women 

SC 
Proportions 

Increase 

Activated 
SCs 

+31% 

Roth 2001 
(61) 

7 young men 
7 young women 

8 old men 
7 old women 

9 wks of heavy RT of 
the VL, with non 

exercising leg serving 
as control 

Average 

Myonuclei 
Per Fiber 

No 
Change 

Wk = week, d/wk = days per week, RT = resistance training, ET = endurance training, VL = vastus 
lateralis, SC = satellite cell, Bx = muscle biopsies 
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Fiber-Type Specific Satellite Cell Activity With Training 

 Fiber type specific satellite cell activity levels have been reported following 

chronic resistance and concurrent training. Verney et al. examined the impact of upper 

body resistance exercise combined with lower body endurance training in elderly men on 

deltoid and vastus lateralis fiber type specific satellite cell activity, myonuclear domain 

and myonuclei per fiber (67). They found a 38% increase in total satellite cell number 

around MHC IIa muscle fibers of both the deltoids and vastus lateralis, an increase in 

cross sectional area only for the MHC IIa fibers in the VL, and no change in MHC I fiber 

satellite cell numbers, myonuclear domain or myonuclei per fiber. These data suggest that 

satellite cells proliferate to a greater extent around MHC IIa fibers. This concept is 

complimented by a recent resistance training study also showing increases in satellite 

cells around MHC IIa but not MHC I fibers (66). No change in myonuclear domain or 

myonuclei per fiber for either fiber type was reported in either study, however Verdijk et 

al. did report a non-significant increase for both myonuclear domain and myonuclei per 

fiber in MHC IIa fibers but not in MHC I.  
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Table 2.10: Fiber-Type Specific Satellite Cell Activity With Training 

Author Subjects Design Groups Variable Results 
SCs around 

MHC I Fibers 
No Change 

SCs around 
MHC IIa 

+38% 

MD No Change 

Deltoids 

M/F No Change 

SCs around 
MHC I Fibers 

No Change 

SCs around 
MHC IIa 

+38% 

MD No Change 

Verney 2008 
(67) 

10 active 
elderly men 

14 wks of 
concurrent 
lower body 

endurance and 
upper body 

resistance. Bx 
of the VL and 
deltoid taken 
before and 

after training 
Vastus 

Lateralis 

M/F No Change 

SC Content No Change 

M/F No Change 

MD No Change 

MHC I 

CSA No Change 

SC Content Increase 

M/F No Change 

MD No Change 

Verdijk 2009 
(66) 

13 healthy old 
men 

12 wks RT. 
Bx taken pre 

and post 
training from 

the quadriceps. 

MHC II 

CSA +24% 

Wks = weeks, VL = vastus lateralis, Bx = muscle biopsies, SC = satellite cell, RT = resistance training, 
MHC = myosin heavy chain, MD = myonuclear domain, M/F = myonuclei per fiber, CSA = Cross 
sectional area 
 

 

Summary 

 Concurrent training attenuates size and strength gains compared to resistance 

training alone, and the differential responses appear to be mediated according to fiber 

type. The proposed mechanism of molecular interference facilitating the attenuated 

responses is interference in the PI3K/Akt signaling pathway leading to muscle protein 
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synthesis. However, rates of muscle protein synthesis following acute resistance and 

concurrent exercise do not differ, nor does protein degradation and basal metabolic rate 

following resistance and concurrent training. This suggests that the interference effect is 

elicited by another mechanism, such as satellite cell dynamics. Their role during 

hypertrophy is not clearly defined. However their importance is well documented as the 

ablation of satellite cells completely blunts hypertrophy. The hormones that regulate 

satellite cell activity, as implied by their mRNA, behave in a manner that would suggest 

differential satellite cell activity in response to resistance and concurrent exercise, with 

satellite cell activity following the hypertrophic tendencies of resistance and concurrent 

exercise. Furthermore, satellite cells proliferate to a greater extent in MHC II fibers 

compared to MHC I fibers following resistance training, also suggesting that their 

activity follows hypertrophy as MHC II fibers hypertrophy more than MHC I fibers 

following resistance and concurrent training. Thus, the aim of this study is to quantify 

fiber-type specific satellite cell dynamics following acute resistance, aerobic and 

concurrent exercise to gain insight into the possible role the satellite cells have in the 

interference effect of concurrent exercise.  
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CHAPTER THREE - METHODS 

Subjects 

Following IRB approval, eight young, recreationally active males were recruited 

for participation; characteristics summarized in Table 3.1. Prior to any testing, subjects 

were informed of the experimental procedures and their requirements via an informed 

consent approved by the James Madison University Institutional Review Board.  

 

Table 3.1: Subject Characteristics 
 

 Age (yrs) Height (cm) Weight (kg) VO2max 
(ml/kg/min) 

Mean ± SE 23 ± 1 181 ± 2 83.4 ± 3.6 48.5 ± 1.6 

 
 

Experimental Design 

 VO2max testing preceded the experimental trials by 7 to 14 days and was 

conducted to assess cardiorespiratory capacity in addition to the workload that was 

utilized during the cycling portion of the concurrent exercise protocol. Each experimental 

trial is noted in order of occurrence as T1, T2, T3 and T4. During T1, a pre-exercise 

skeletal muscle biopsy was obtained from the vastus lateralis prior to unilateral resistance 

exercise (RE). Four days following T1, a post-RE muscle biopsy was obtained from the 

same leg (T2). During T3, skeletal muscle biopsies were obtained from the vastus 

lateralis of both legs. Immediately following the biopsy procedure, the same unilateral 

resistance exercise protocol was performed on the opposing leg, which was then followed 

by 90 minutes of cycling. The non-RE leg served as the aerobic exercise leg (AE), 
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whereas the resistance exercise leg represented concurrent exercise (CE). Four days 

following T3 (T4), post-exercise biopsies were obtained from each leg.  

 

Preliminary Testing (n=1 trial) 

Subjects reported to the laboratory and completed an informed consent and 

health-screening questionnaire. Subjects then performed a cardiorespiratory (VO2max) test 

on a cycle ergometer. Subjects completed a 5-minute warm up on an electronically 

braked cycle ergometer (Velotron RacerMate Inc, Seattle WA, USA) at a self-selected 

pace. Following the warm up, workload increased by 25 watts (W) every two minutes 

until a cycling cadence of ! 50 revolutions per minute could no longer be maintained. 

Expired respiratory gasses were measured via metabolic Sensor Medic cart 

(SensorMedics, San Diego, CA, USA). The peak workload subjects achieved during the 

VO2max trial was used to assign workload during the concurrent exercise trial.  

 

Experimental Trials (n=2 trials) 

Subjects were divided into two groups of 4 subjects. One group performed the RE 

trial with their dominant leg only while the other group used their non-dominant leg. 

Subjects exercised the contralateral leg for the RE portion of the CE trial. The RE trial 

took place 7 to 14 days after preliminary VO2max testing, and RE and CE trials were 

separated by 10 days to avoid and residual satellite cell responses to heavy resistance 

exercise. Prior each exercise trial, a one-repetition max (1RM) test was performed to 

determine resistance. The protocols for the 1RM tests, RE and CE trials are as follows: 
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One Repetition Maximum Test (1RM) 

Immediately prior to each exercise protocol subjects performed unilateral 1RM 

tests for both leg extension and leg press. Subjects performed a 5-min warm up on a 

treadmill at a self-selected walking pace. Subjects then performed 10 repetitions at 20% 

of their body weight for a one-legged leg extension on a standard leg extension device 

(Cybex V3 Series, Medway MA, USA). Following 4 min of passive recovery subjects 

performed 2 repetitions at 50-70% of their perceived 1RM. This was again followed by 4 

min of passive recovery, after which subjects attempted a resistance that was perceived as 

their 1RM. This was repeated with 4 minutes passive recovery in between attempts until 

failure. This protocol was then immediately followed by a unilateral one-legged leg press 

1RM test. The protocol was identical with the exception of the warm up and with 30% of 

their body weight for the first set of 10 repetitions.  

 

One-Legged Resistance Exercise Trial (RE) 

Following 1RM testing, subjects performed 3 sets of 10 repetitions, with a 4th set 

to ! 10 repetitions (to exhaustion) at 75% of their 1RM for the one-legged leg extension. 

The protocol was immediately repeated for unilateral leg press at the same intensity. 

Subjects were provided with 2 minutes of passive rest between each set and were given 

assistance when necessary to achieve all 10 repetitions. The subjects were provided with 

constant feedback in attempt to maintain a 2 second concentric phase and a 3 second 

eccentric phase for each repetition. 
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Concurrent Exercise Trial (CE) 

Ten minutes following an RE protocol identical to the aforementioned protocol, 

subjects cycled for 90 min on an electronically braked cycle ergometer at 60% of their 

wattage maximum (Wmax) that was established during preliminary testing.  

 

Biopsies 

Six skeletal muscle biopsies were obtained from the vastus lateralis at 4 different 

time points throughout the experimental procedure: immediately before both exercise 

trials (T1 and T3), and 4 days after each exercise trial (T2 and T4). Only one muscle 

biopsy was obtained from the exercised leg both pre and post RE (T1 and T2). Muscle 

biopsies from both legs were taken pre and post CE (T3 and T4)(Figure 3.2). Once 

samples were obtained, they were quickly immersed in isopentane at -200C, then frozen 

in liquid nitrogen and stored at -80C until cutting. 10!m serial cross sections were cut at 

a temperature of -25’C.  

 

Figure 3.1: Study Design 
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Immunohistochemistry 

Two serial cross sections were selected and stained for MHC I or fluorescent 

double staining for NCAM and Ki-67 with a DAPI counter stain. NCAM (Santa Cruz 

Biotechnology, Santa Cruz California, USA) was used to locate satellite cells, Ki-67 

(Santa Cruz Biotechnology, Santa Cruz California, USA) was used to identify activated 

satellite cells, while DAPI (Invitrogen, Carlsbad CA, USA) was used to locate DNA 

content. All secondary antibodies were obtained from Jackson Immunoresearch (West 

Grove PA, USA). MHC I antibody (Sigma Aldrich, St Louis MO, USA) was used to 

identify MHC I muscle fibers to determine fiber type specific satellite cell dynamics. We 

did not use a MHC IIa antibody. Therefore, fibers that stained positive for MHC I will be 

referred to as MHC I fibers and fibers that were negative for MHC I will be referred to as 

non-MHC I fibers. Notably, muscle fibers that stained positive for MHC I does not infer 

that the fibers are pure MHC I fibers, as there was most definitely a subpopulation of the 

MHC I fibers that were comprised of both MHCI/MHCIIa proteins (i.e. hybrid fibers).  

 Following sectioning, samples were placed on slides and allowed to dry for 30 

minutes. Each sample was circled with a PAP pen to localize incubation. Samples were 

then fixed in methanol, and rinsed with 0.05% tween-20 in PBS for 2 x 2 minutes. 

Samples were then incubated for one hour with 10% normal goat serum and again 

washed with PBS/Tween-20. The primary antibodies were first diluted to a 1:50 dilution 

in PBS with 2% normal goat serum and applied to the sample. Samples were then 

incubated for one hour at room temperature and washed in PBS/Tween-20 for 3 x 5 

minutes. The secondary antibody (1:300 dilution in PBS with 2% normal goat serum) 

was then applied to the sample. Samples are incubated for one hour at room temperature 
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in a dark room to avoid photo bleaching and again washed in PBS/Tween-20. Samples 

stained for MHC I were then covered with an aqueous mounting medium and a cover slip 

and stored in the dark at 4C until viewing. For NCAM, Ki-67 and DAPI, this procedure is 

done twice: once for each primary antibody with it’s respective secondary antibody, then 

counterstained with DAPI (1:300 dilution in PBS for 5 minutes in the dark), rinsed with 

PBS then mounted with a cover slip using the aqueous mounting medium and stored until 

viewing. 

 

Imaging and Quantification 

 Imaging was conducted via fluorescent microscopy (Nikon Eclipse TE2000-E, 

Tokyo Japan). Within each sample, areas with the highest quality fibers and stains were 

selected for analysis. Images were initially captured at 4x magnification. The three serial 

cross sections were then superimposed. For determination of satellite cells and their 

location, samples were viewed at 40x magnification. The criteria for satellite cell 

determination was as follows: positive staining for both NCAM and DAPI, and located at 

the periphery of the muscle fiber. Activated satellite cells were determined by the same 

criteria with the addition of a positive stain for Ki-67. Within each cross section, an 

average of 359 ± 30 fibers were counted per sample, including 142 ± 22 MHC I fibers 

and 217 ± 24 non-MHC I fibers. 
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Figure 4.2 Superimposed Serial Cross Sections 

 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

Superimposed serial cross-sections; one cross section stained with DAPI 
and for NCAM, the other stained for MHC I. This represents the 
distribution of MHC I fibers throughout the whole cross section. 
Superimposed images were used for fiber-type specific analysis. 
!
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   Figure 4.3 Satellite Cells That Meet the Criteria for Determination (40x)     

 
 

 

 

 

 

 

 

 

 

 

Satellite cells double stained for NCAM and with DAPI. Satellite cell 
determination required the presence of both DAPI and NCAM staining. 
This image illustrates two cells that meet the satellite cell criteria, as 
indicated by the arrows. Note the presence of both blue and green staining 
!
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Dietary and Physical Activity Controls 

 Subjects were instructed to maintain normal dietary habits throughout the study 

and were also provided with a standardized breakfast that was consumed 2 hrs prior to 

each trial. Subjects were also instructed to refrain from physical activity outside of the 

exercise trials to ensure there was no residual satellite cell activity. 

 

Statistical Analysis 

A 2x3 (time x mode) repeated-measures ANOVA was used to analyze total 

number of satellite cells and the number of activated satellite cells before and after RE, 

AE and CE. This same approach was taken to assess MHC I and MHC II satellite cell 

numbers and activated satellite cells before and after RE, AE and CE. To specifically 

address potential differences in the satellite cell response between each mode, percent 

changes from pre- to post-exercise, for each parameter, were analyzed with a One-Way 

ANOVA. During the CE trial, the AE leg also served as 10 days post RE. Thus, a 

repeated measures ANOVA was utilized to assess the timecourse of satellite cell 

activation and proliferation following a single bout of RE. Statistical significance was set 

at p ! 0.05 and a Bonferonni post-hoc test was performed where appropriate.  
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CHAPTER FOUR - MANUSCRIPT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

!

48!

 

 

 

 

Concurrent Aerobic Exercise Interferes With the Satellite Cell Response to Acute 

Resistance Exercise in MHC I Muscle Fibers 

 

 

Lyle W. Babcock, Matthew Escano, Andrew D’Lugos, Kent Todd, Kevin Murach, and 

Nicholas D. Luden* 

 

 

Department of Kinesiology, MSC 2302, James Madison University, Harrisonburg, VA 

22807. 

 

* Corresponding author 

 

Running Head: Concurrent Exercise and Satellite Cell Dynamics 

Key Words: Concurrent training, muscle stem cells 

 
 
 
 
 
 
 
 



 

!

49!

ABSTRACT 
 
Purpose: Concurrent training attenuates hypertrophy compared to resistance training 

alone, and does so in a fiber-type specific manner. The mechanism responsible for this 

‘interference’ is unclear, and satellite cell physiology, an important hypertrophic factor, 

has not been examined within this context. Therefore, the purpose of this investigation 

was to assess the fiber-type specific satellite cell response to acute resistance, aerobic and 

concurrent exercise. Methods: Eight recreationally active college-aged males (23±1 yrs, 

83.4±3.6 kg, 181±2 cm, and 48.5±1.6 ml/kg/min) performed 3 sets of 10 repetitions with 

a fourth set ! 10 repetitions at 75% of 1RM for both unilateral leg extensions and 

unilateral leg press for acute RE. Ten days later subjects performed the same resistance 

exercise with the opposite leg followed by 90 minutes of cycling at 60% VO2max to 

represent acute concurrent and aerobic exercise. Muscle biopsies were obtained 

immediately before and 4 days after each exercise session. Muscle samples were cross 

sectioned and stained with for NCAM, Ki-67, DAPI and MHC I via 

immunohistochemistry to assess satellite cells, activated satellite cells and fiber-type, 

respectively. Results: Total satellite cell number per fiber increased only in response to 

acute resistance exercise (+38±10%, p < 0.05), with no change following acute aerobic or 

concurrent exercise. Changes in total satellite cell number per fiber between resistance, 

aerobic and concurrent exercise differed only in MHC I fibers (p < 0.05), with no satellite 

cell number per fiber time by mode interaction observed in non-MHC I muscle fibers. No 

changes in activated satellite cells were observed under any condition. Conclusion: 

Acute concurrent exercise blunts the satellite cell response of resistance exercise alone, 

and does so in a fiber-type specific manner by negating the satellite cell response in MHC 
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I, but not non-MHC I fibers. These results suggest that the interference effect of 

concurrent resistance training on MHC I hypertrophy may be regulated at the satellite cell 

level. 
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INTRODUCTION 

 Concurrent resistance and aerobic training is popular among athletes, the elderly, 

individuals in weight loss programs, and astronauts attempting to counter the detrimental 

affects of microgravity in space. However, concurrent training has been shown to 

attenuate the size (7, 24, 29, 35, 45) and strength gains (20, 26, 27, 29) that can be 

achieved with resistance training alone. Interestingly, this appears to be manifested in a 

fiber-type specific manner. Following sufficient resistance training, both MHC I (slow-

twitch) and MHC IIa (fast-twitch) muscle fibers hypertrophy (7, 24, 35), with minimal 

hypertrophy in MHC I fibers following aerobic training (35). Concurrent training 

however largely negates MHC I fiber hypertrophy, attenuates MHC IIa fiber 

hypertrophy, which consequently attenuate whole muscle growth (7, 12, 24, 35, 45). The 

underlying biological mechanism for this interference effect is unknown. 

 Muscle fiber hypertrophy most often results from the accumulation of muscle 

contractile proteins. One proposed mechanism for the effects of concurrent training is 

interference of the molecular signaling pathways leading to muscle protein synthesis. In 

response to aerobic exercise (AE), AMPK is upregulated, which inhibits the activity of 

protein kinase B (PKB), a critical step in the molecular pathway leading to muscle 

protein synthesis. This mechanism could hypothetically attenuate size gains in response 

to concurrent training compared to resistance training alone. However, this hypothesis 

has been tested and there are no difference in the rates of mixed muscle (65) or 

myofibrillar (10) protein synthesis following acute resistance (RE) and concurrent 

exercise (CE), at least in the early hours following a single session. This implies that 
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other mechanisms are responsible for the attenuated size and strength grains of 

concurrent training. 

 Satellite cells, undifferentiated muscle stem cells, have gained considerable 

attention over the past several years for their influence on skeletal muscle growth. The 

specific role of satellite cells in the growth process may lie in their capacity to maintain 

myonuclear density. Specifically, each myonuclei is responsible for a given amount of 

physical space with in the muscle fiber – termed myonuclear domain. As muscle fibers 

hypertrophy, the myonuclear domain expands, ultimately to an extent that is thought to 

limit any firther growth. Thus, to facilitate greater hypertrophy, satellite cells proliferate, 

or divide by mitosis, and differentiate into the myofiber as a new nucleus (1). This 

process does appear to be critical for skeletal muscle growth, as evidence by reports that 

hypertrophy is inhibited following satellite cell ablation (4, 37, 60) 

 Many of the hormones that regulate muscle hypertrophy also regulate satellite cell 

activity, namely mechano-growth factor (MGF) and myostatin. MGF stimulates both 

hypertrophy and satellite cell proliferation (70) while myostatin is a negative regulator of 

both hypertrophy and satellite cell activity by the inhibition of  MGF’s signaling pathway 

(71). The behavior of these hormones, as implied by their mRNA, creates an anabolic 

environment following RE (25, 38, 47, 59), and an attenuated response following CE (13, 

14). Although measurements of mRNA reflect transcription and not necessarily the 

presence of a physiologically relevant protein, it at least reflects cellular intent, and 

suggests that satellite cell dynamics could mimic the patterns of hypertrophy seen in 

response to RE, AE and CE. 
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 Satellite cell population has been shown to increase as early as 6 hours post (42) 

and as late as 8 days following acute resistance exercise (17, 18, 48, 53). Activated 

satellite cells have been observed 48 hours- (40) and 8 days following resistance exercise 

(18). Eccentric resistance exercise is the most prevalent model used to study satellite cell 

physiology (17, 18, 21, 53). However long distance running (36km), which is inherently 

eccentric in nature, can also stimulate satellite cell proliferation (41). In general, the 

response of satellite cells to acute exercise mimics the hypertrophic tendencies of 

training. To date, satellite cell proliferation and activation following acute concurrent 

exercise has not been examined. The training response of satellite cells to resistance and 

concurrent training is similar to the fiber-type specific hypertrophic response. Increases in 

satellite cell number per fiber are observed in MHC IIa fibers following both resistance 

and concurrent training, whereas MHC I fibers display no response to either but still 

hypertrophy in response to resistance training (66, 67). 

 To provide insight into the possible mechanism(s) responsible for attenuated size 

and strength gains with CE training, the primary aim of this investigation was to examine 

satellite cell physiology before and after acute resistance, aerobic, and concurrent 

exercise. Specifically, we tested the hypothesis that satellite cell activation and 

proliferation will reflect the hypertrophic and hormonal tendencies of resistance, aerobic 

and concurrent exercise - specifically that, both satellite cell numbers and the number of 

activated satellite cells will increase to a greater extent following resistance compared to 

aerobic and concurrent exercise, and will increase to a greater extent in MHC IIa fibers 

compared to MHC I fibers.  
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METHODS 

Subjects 

Following IRB approval, eight young, recreationally active males were recruited 

for participation; characteristics summarized in Table 3.1. Prior to any testing, subjects 

were informed of the experimental procedures and their requirements via an informed 

consent approved by the James Madison University Institutional Review Board.  

 

Table 4.1: Subject Characteristics 
 

 Age (yrs) Height (cm) Weight (kg) VO2max 
(ml/kg/min) 

Mean ± SE 23 ± 1 181 ± 2 83.4 ± 3.6 48.5 ± 1.6 

 
 

Experimental Design 

 VO2max testing preceded the experimental trials by 7 to 14 days and was 

conducted to assess cardiorespiratory capacity in addition to the workload that was 

utilized during the cycling portion of the concurrent exercise protocol. Each experimental 

trial is noted in order of occurrence as T1, T2, T3, T4. During T1, a pre-exercise skeletal 

muscle biopsy was obtained from the vastus lateralis prior to unilateral resistance 

exercise (RE). Four days following T1, a post-RE muscle biopsy was obtained from the 

same leg (T2). During T3, skeletal muscle biopsies were obtained from the vastus 

lateralis of both legs. Immediately following the biopsy procedure, the same unilateral 

resistance exercise protocol was performed on the opposing leg, which was then followed 

by 90 minutes of cycling. The non-RE leg served as the aerobic exercise leg (AE), 
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whereas the resistance exercise leg represented concurrent exercise (CE). Four days 

following T3 (T4), post-exercise biopsies were obtained from each leg.  

 

Preliminary Testing (n=1 trial) 

Subjects reported to the laboratory and completed an informed consent and 

health-screening questionnaire. Subjects then performed a cardiorespiratory (VO2max) test 

on a cycle ergometer. Subjects completed a 5-minute warm up on an electronically 

braked cycle ergometer (Velotron RacerMate Inc, Seattle WA, USA) at a self-selected 

pace. Following the warm up, workload increased by 25 watts (W) every two minutes 

until a cycling cadence of ! 50 revolutions per minute could no longer be maintained. 

Expired respiratory gasses were measured via a Sensor Medics metabolic cart 

(SensorMedics, San Diego, CA, USA). The peak workload subjects achieved during the 

VO2max trial was used to assign workload during the concurrent exercise trial.  

 

Experimental Trials (n=2 trials) 

Subjects were divided into two groups of 4 subjects. One group performed the RE 

trial with their dominant leg only while the other group used their non-dominant leg. 

Subjects exercised the contralateral leg for the RE portion of the CE trial. The RE trial 

took place 7 to 14 days after preliminary VO2max testing, and RE and CE trials were 

separated by 10 days to avoid any residual satellite cell responses to heavy resistance 

exercise. Prior each exercise trial, a one-repetition max (1RM) test was performed to 

determine resistance. The protocols for the 1RM tests, RE and CE trials were as follows: 
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One Repetition Maximum Test (1RM) 

Immediately prior to each exercise protocol subjects performed unilateral 1RM 

tests for both leg extension and leg press. Subjects performed a 5-min warm up on a 

treadmill at a self-selected walking pace. Subjects then performed 10 repetitions at 20% 

of their body weight for a one-legged leg extension on a standard leg extension device 

(Cybex V3 Series, Medway MA, USA). Following 4 min of passive recovery subjects 

performed 2 repetitions at 50-70% of what they perceived their 1RM to be. This was 

again followed by 4 min of passive recovery, after which subjects attempted a resistance 

that was perceived as their 1RM. This was repeated with 4 minutes passive recover 

between attempts until failure. This protocol was then immediately followed by a 

unilateral one-legged leg press 1RM test. The protocol was identical to the leg extension 

protocol with the exception of the warm up and with 30% of their body weight for the 

first set of 10 repetitions.  

 

One-Legged Resistance Exercise Trial (RE) 

Following 1RM testing, subjects performed 3 sets of 10 repetitions, with a 4th set 

to ! 10 repetitions (to fatigue) at 75% of their 1RM for the one-legged leg extension. The 

protocol was immediately repeated for unilateral leg press at the same intensity. Subjects 

were provided with 2 minutes of passive rest between each set and were given assistance 

when necessary to achieve all 10 repetitions. The subjects were provided with constant 

feedback in attempt to maintain a 2 second concentric phase and a 3 second eccentric 

phase for each repetition. 
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Concurrent Exercise Trial (CE) 

Ten minutes following an RE protocol identical to the aforementioned protocol, 

subjects cycled for 90 min on an electronically braked cycle ergometer at 60% of their 

Wmax that was established during preliminary testing.  

 

Biopsies 

Six skeletal muscle biopsies were obtained from the vastus lateralis at 4 different 

time points throughout the experimental procedure: immediately before both exercise 

trials (T1 and T3), and 4 days after each exercise trial (T2 and T4). Only one muscle 

biopsy was obtained from the exercised leg both pre and post RE (T1 and T2). Muscle 

biopsies from both legs were taken pre and post CE (T3 and T4)(Figure 3.2). Once 

samples were obtained, they were quickly immersed in isopentane at -200C, then frozen 

in liquid nitrogen and stored at -80C until cutting. 10!m serial cross sections were cut at 

a temperature of -25’C.  

Figure 4.1: Study Design 
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Immunohistochemistry 

Two serial cross sections were selected and stained for MHC I or fluorescent 

double staining for NCAM and Ki-67 with a DAPI counter stain. NCAM (Santa Cruz 

Biotechnology, Santa Cruz California, USA) was used to locate satellite cells, Ki-67 

(Santa Cruz Biotechnology, Santa Cruz California, USA) was used to identify activated 

satellite cells, while DAPI (Invitrogen, Carlsbad CA, USA) was used to locate DNA 

content. All secondary antibodies were obtained from Jackson Immunoresearch (West 

Grove PA, USA). MHC I antibody (Sigma Aldrich, St Louis MO, USA) was used to 

identify MHC I muscle fibers to determine fiber type specific satellite cell dynamics. We 

did not use a MHC IIa antibody. Therefore, fibers that stained positive for MHC I were 

referred to as MHC I fibers and fibers that were negative for MHC I were referred to as 

non-MHC I fibers. Notably, muscle fibers that stained positive for MHC I does not infer 

that the fibers are pure MHC I fibers, as there was most definitely a subpopulation of the 

MHC I fibers that were comprised of both MHCI/MHCIIa proteins (i.e. hybrid fibers).  

 Following sectioning, samples were placed on slides and allowed to dry for 30 

minutes. Each sample was circled with a PAP pen to localize incubation. Samples were 

then fixed in methanol, and rinsed with 0.05% tween-20 in PBS for 2 x 2 minutes. 

Samples were then incubated for one hour with 10% normal goat serum and again 

washed with PBS/Tween-20. The primary antibodies were first diluted to a 1:50 dilution 

in PBS with 2% normal goat serum and applied to the sample. Samples were then 

incubated for one hour at room temperature and washed in PBS/Tween-20 for 3 x 5 

minutes. The secondary antibody (1:300 dilution in PBS with 2% normal goat serum) 

was then applied to the sample. Samples were incubated for one hour at room 



 

!

59!

temperature in a dark room to avoid photo bleaching and again washed in PBS/Tween-

20. Samples stained for MHC I were then covered with an aqueous mounting medium 

and a cover slip and stored in the dark at 4C until viewing. For NCAM, Ki-67 and DAPI, 

this procedure is done twice: once for each primary antibody with it’s respective 

secondary antibody, then counterstained with DAPI (1:300 dilution in PBS for 5 minutes 

in the dark), rinsed with PBS then mounted with a cover slip using the aqueous mounting 

medium and stored until viewing. 

 

Imaging and Quantification 

 Imaging was conducted via fluorescent microscopy (Nikon Eclipse TE2000-E, 

Tokyo Japan). Within each sample, areas with the highest quality fibers and stains were 

selected for analysis. Images were initially captured at 4x magnification. The three serial 

cross sections were then superimposed. For determination of satellite cells and their 

location, samples were viewed at 40x magnification. The criteria for satellite cell 

determination was as follows: positive staining for both NCAM and DAPI, and located at 

the periphery of the muscle fiber. Activated satellite cells were determined by the same 

criteria with the addition of a positive stain for Ki-67. Within each cross section, an 

average of 359 ± 30 fibers were counted per sample, including 142 ± 22 MHC I fibers 

and 217 ± 24 non-MHC I fibers. 

 

 

 

 



 

!

60!

                     Figure 4.2 Superimposed Serial Cross Sections 

 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

Superimposed serial cross-sections; one cross section stained with DAPI 
and for NCAM, the other stained for MHC I. This represents the 
distribution of MHC I fibers throughout the whole cross section. 
Superimposed images were used for fiber-type specific analysis. 
!
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       Figure 4.3 Satellite Cells That Meet the Criteria for Determination (40x)     

 
 

 

 

 

 

 

 

 

 

 

Satellite cells double stained for NCAM and with DAPI. Satellite cell 
determination required the presence of both DAPI and NCAM staining. 
This image illustrates two cells that meet the satellite cell criteria, as 
indicated by the arrows. These samples were identified as satellite cells 
because they were double stained with both DAPI and NCAM, and located 
on the periphery of the muscle fiber 
!
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Dietary and Physical Activity Controls 

 Subjects were instructed to maintain normal dietary habits throughout the study 

and were also provided with a standardized breakfast that was consumed 2 hrs prior to 

each trial. Subjects were also instructed to refrain from physical activity outside of the 

exercise trials to ensure there was no residual satellite cell activity. 

 

Statistical Analysis 

A 2x3 (time x mode) repeated-measures ANOVA was used to analyze total 

number of satellite cells and the number of activated satellite cells before and after RE, 

AE and CE. This same approach was taken to assess MHC I and MHC II satellite cell 

numbers and activated satellite cells before and after RE, AE and CE. To specifically 

address potential differences in the satellite cell response between each mode, percent 

changes from pre- to post-exercise, for each parameter, were analyzed with a One-Way 

ANOVA. During the CE trial, the AE leg also served as 10 days post RE. Thus, a 

repeated measures ANOVA was utilized to assess the time course of satellite cell 

activation and proliferation following a single bout of RE. Statistical significance was set 

at p ! 0.05 and a Bonferonni post-hoc test was performed where appropriate.  
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RESULTS 

Table 4.2 Workloads 

  RE RE(CE) 

1RM (lbs) 156  
± 9 

144 
± 9 

Workload (lbs) 119  
± 7 

110 
± 7 Leg Extension 

Notes 
All subjects needed assistance by the 

second set. All subjects performed 10 reps 
on the final set 

1RM (lbs) 210 
± 10 

194 
± 14 

Workload (lbs) 159 
± 10 

148 
± 10 

Leg Press 

Reps on Final Set 11 ± 1 14 ± 2 

Cycling Workload 
(W) 152 ± 6 

Notes 4 subjects reduced cycling workload to complete the protocol 

 

 

Satellite Cell Activation 

 The number of active satellite cells was unaffected by exercise. Satellite cell 

activation data are displayed in table 4.2 

 

Mixed Fiber Satellite Cell Proliferation 

 A 2x3 ANOVA revealed an overall effect of p = 0.065. The percent change in the 

number of satellite cells per fiber from pre- to post-exercise significantly varied between 

modes (p = 0.01). Specifically, exercise modified total satellite cells per fiber by 38 ± 9, -
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10 ± 10, and 9 ± 10% for RE, AE and CE, respectively. Post-hoc analyses revealed a 

significant difference in satellite cell proliferation between RE and CE (p = 0.008). Total 

satellite cells per fiber and percent changes in satellite cells are displayed in Table 4.3.  

 

Fiber-Type Specific Satellite Cell Proliferation 

 A 2x3 ANOVA of satellite cell proliferation in MHC I fibers revealed an overall 

effect between exercise modes (p = 0.046). The percent change in satellite cell numbers 

in MHC I fibers from pre- to post-exercise also revealed a significant overall effect (p = 

0.006). Specifically, RE increased satellite cells in MHC I fibers by 46 ± 14%, while AE 

and CE decreased satellite cells in MHC I fibers by 7 ± 17% and 22 ± 10%, respectively. 

Post-hoc analysis revealed a difference in satellite cell proliferation between RE and CE 

(p = 0.006) and between RE and AE (p = 0.035). The number of satellite cells and 

percent changes in MHC I fibers are displayed in Table 4.3. Satellite cell proliferation in 

non-MHC I fibers were unaffected by exercise modality. Satellite cell number per fiber 

and percent changes in non-MHC I fibers are listed in Table 4.3. 
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Time Course of Satellite Cell Proliferation Following Acute Resistance Exercise 

 During the concurrent exercise trial, pre-AE also represented 10 days post-RE, 

allowing a comparison between pre RE, 4 days post RE and 10 days post RE. The 

number of satellite cells per fiber was different across the three time points (p = 0.017). 

Post-hoc analysis revealed differences between pre-RE and 4 days post-RE (p = 0.007), 

and between 4 days post RE and 10 days post RE (p = 0.047). Non-MHC I proliferation 

was also different across the three time points (p = 0.021). Post-hoc analysis revealed 

significant differences between pre RE and 4 days post RE (p = 0.033), and between 4 

days post RE and 10 days post RE (p = 0.043). A trend towards significance was detected 

in MHC I fibers (p = 0.073). The time course of the satellite cell proliferative response to 

RE is displayed in Table 4.4 

 

Time Course of Satellite Cell Activation Following Acute Resistance Exercise 

 Satellite cell activation was not different between the RE time points, with the 

exception of trend among non-MHC I muscle fiber (p = 0.078). The time course of the 

satellite cell activation response to RE is displayed in Table 4.4. 

 

 

 

 



 

!

69!

 !

"#
!

 
Fi

gu
re

 4
.5

 Q
ua

nt
ifi

ca
tio

n 
of

 P
re

 a
nd

 P
os

t R
E

 S
am

pl
es

 
    

 
 

R
ep

re
se

nt
at

iv
e 

im
ag

es
 fr

om
 b

ef
or

e 
an

d 
af

te
r r

es
is

ta
nc

e 
ex

er
ci

se
 in

 th
e 

sa
m

e 
su

bj
ec

t. 
Y

el
lo

w
 a

nd
 re

d 
ar

ro
w

s 
in

di
ca

te
 s

at
el

lit
e 

ce
lls

 a
nd

 

ac
tiv

e 
sa

te
lli

te
 c

el
ls

, r
es

pe
ct

iv
el

y.
 L

ef
t: 

Pr
e 

R
E.

 R
ig

ht
: P

os
t R

E 

 



 

!

70!

 

 

 

 !

"#
!

    
T

ab
le

 4
.5

 T
im

e 
C

ou
rs

e 
of

 S
at

el
lit

e 
C

el
l A

ct
iv

ity
 F

ol
lo

w
in

g 
A

cu
te

 R
es

is
ta

nc
e 

E
xe

rc
is

e 
 

 
Pr

e-
R

E
 

4 
D

ay
s P

os
t-

R
E

 
10

 D
ay

s P
os

t-
R

E
 

M
ai

n 
T

im
e 

E
ff

ec
t 

M
ix

ed
 S

C
/F

ib
er

 
0.

06
1 

± 
0.

00
5 

0.
08

5 
± 

0.
01

0*
*#  

0.
06

2 
± 

0.
01

3 
p 

= 
0.

01
7 

M
H

C
 I 

SC
/F

ib
er

 
0.

06
7 

± 
0.

01
3 

0.
08

9 
± 

0.
00

8 
0.

06
8 

+ 
0.

01
6 

p 
= 

0.
26

2 

N
on

-M
H

C
 I 

SC
/F

ib
er

 
0.

06
1 

± 
0.

00
6 

0.
08

6 
± 

0.
01

4*
#  

0.
05

6 
± 

0.
01

0 
p 

= 
0.

02
1 

M
ix

ed
 A

SC
/F

ib
er

 
0.

01
1 

± 
0.

00
1 

0.
01

1 
± 

0.
00

2 
0.

01
0 

± 
0.

00
2 

p 
= 

0.
68

5 

M
H

C
 I 

A
SC

/F
ib

er
 

0.
01

1 
± 

0.
00

2 
0.

00
8 

± 
0.

00
3 

0.
01

4 
± 

0.
00

3 
p 

= 
0.

36
3 

N
on

-M
H

C
 I 

A
SC

/F
ib

er
 

0.
01

1 
± 

0.
00

2 
0.

01
4 

± 
0.

00
4 

0.
00

7 
± 

0.
00

2 
p 

= 
0.

07
8 

 
* 

p 
! 

0.
05

 v
s 

pr
e 

R
E,

 *
* 

p 
! 

0.
01

 v
s 

pr
e 

R
E,

 # 
p 
! 

0.
05

 v
s 

10
 d

ay
s 

po
st

 R
E,

 ##
 p 
! 

0.
01

 v
s 

10
 d

ay
s 

po
st

 R
E 

  



 

!

71!

 

 

 !

"#
!

 
Fi

gu
re

 4
.6

 T
im

e 
C

ou
rs

e 
of

 S
at

el
lit

e 
C

el
l P

ro
lif

er
at

io
n 

 
  

 
* 

p 
! 

0.
05

 v
s 

Pr
e 

R
E,

 *
* 

p 
! 

0.
01

 v
s 

Pr
e 

R
E,

 #  p
 !

 0
.0

5 
vs

 1
0 

D
ay

s 
Po

st
 R

E,
 † 

p 
= 

0.
07

3 
vs

 P
re

 R
E 



 

!

72!

DISCUSION 

 The primary objective of the current investigation was to assess satellite cell 

dynamics following acute RE, AE and CE. Specifically, we quantified the total number 

of satellite cells and active satellite cells per muscle fiber in a mixed and fiber type 

specific fashion. The most novel finding from this study is that acute concurrent exercise 

blunts the satellite cell response to acute resistance exercise and that this effect is 

preferentially manifested in MHC I muscle fibers. These findings suggest that satellite 

cell physiology, particularly among MHC I muscle fibers, may partially explain why 

concurrent training can interfere with the whole muscle and fiber type specific 

hypertrophy observed with RE alone (24, 35, 45). Further, we observed for the first time 

that a single non-injurious session of RE results in transient proliferation of satellite cells 

– more abundant satellite cells at 4 days but returns back to pre-exercise levels 10 days 

following exercise.  

  The satellite cell response to acute RE was comparable to previous reports (17, 

18, 21, 53). The resistance exercise employed in the current study elicited a 38% increase 

in satellite cell numbers per fiber. This value is lower than the >80% increase in satellite 

cells found in previous studies (96–141%) (17, 18, 21, 53). However, this is consistent 

with the less demanding exercise stimuli implemented in the present study. Although 

there is a paucity of dose-response satellite cell data, the >80% gains in satellite cell 

numbers have followed > 90 maximum eccentric contractions (96-300 repetitions) (17, 

18, 21, 48, 53). This is in contrast to the 80 total repetitions at 75% 1RM used in the 

current study. Although we provided assistance when needed, our model was less intense 

and closer to a conventional resistance exercise session.  
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 The response of satellite cells to acute AE in the current study does not agree with 

the one other study that has assessed satellite cell proliferation following acute AE. Here, 

90 min of cycling at 60% of Wmax did not influence satellite cells population, however a 

single 36km run increased satellite cells by 27% in endurance trained males (41). This is 

not necessarily surprising as running inherently involves a substantial eccentric 

component. Also, aerobic training is not typically associated with muscle fiber 

hypertrophy, and thus would not be expected to elicit a satellite cell response.  

 Satellite cell proliferation following RE was negated when an identical RE 

protocol was followed by 90 min of cycling (CE). Notably, for unknown reasons, the 

baseline CE values were high compared to pre RE and pre AE values. Although unlikely, 

it is conceivable that RE performed on one leg affected proliferation in the other leg, with 

differentiation occurring only in the RE leg which brought satellite cell numbers back to 

baseline. Regardless, the response following CE is in agreement with the hypertrophic 

adaptations to resistance and concurrent training. Although speculative and beyond the 

scope of the current study, the similarities in these responses may be explained by the 

behavior of mechano-growth factor (MGF), an isoform of insulin-like growth factor 

(IGF-1) that stimulates both hypertrophy and satellite cell proliferation, and insulin-like 

growth factor binding protein (IGFBP-3), a binding protein that inhibits the effects of 

IGF-1. IGFBP-3 is present in both circulation (36) and skeletal muscle (54), binds to 

IGF-1 isoforms, preventing it from binding to it’s receptor and ultimately, prevents it 

from eliciting a cellular response (5, 54). IGFBP-3 is upregulated in response to aerobic 

exercise, but not resistance exercise (49), thereby decreasing the bioavailability of IGF-1 

(15).  
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 To our knowledge, this is the first information gathered on the fiber-type specific 

response to acute resistance, concurrent and aerobic exercise. The attenuated satellite cell 

response in the current study appears to have been driven by MHC I fibers. The MHC I 

fiber satellite cell response to RE (46%), and AE (-7%) and CE (-22%) were clearly 

divergent, as the number of satellite cells per MHC I fiber increased with RE but not AE 

or CE. In contrast, the non-MHC I fiber satellite cells responded similarly following each 

form of exercise, although was only statistically elevated from baseline following RE. 

These findings support the fiber-type specific effects of concurrent training on 

hypertrophy. Specifically, the interference effect is facilitated by the attenuation of MHC 

I fiber growth. MHC IIa fibers appear to be fairly responsive to both resistance and 

concurrent training (7, 12, 24, 35, 45), whereas MHC I growth observed with resistance 

training is virtually negated with the addition of aerobic exercise. When combined with 

the current data, it appears that the MHC I satellite cell response to concurrent exercise 

may partially explain the reduction in whole muscle and cellular hypertrophy with 

concurrent training compared to resistance training alone.  

 The fiber-type specific results generally agree with a recent study conducted by 

Verney and colleagues. The authors found that MHC IIa satellite cells, but not MHC I, 

proliferate with resistance and concurrent training in old men (67). Following resistance 

training only, Verdijk et al. also observed adaptations in MHC IIa satellite cells, and not 

in MHC I fibers of old men (66). Our data follows a similar pattern, with significant 

satellite cell proliferation observed in MHC IIa fibers following acute resistance exercise, 

although a very strong trend towards significance was observed in MHC I fibers (p = 

0.073). The satellite cell response to acute exercise is markedly different between young 
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and old individuals (21), and the fiber-type specific adaptations to training in young men 

are currently unknown. 

 Notwithstanding a trend within MHC II muscle fibers, there were no changes in 

the number of activated satellite cells observed at any time point during this study. 

Because activation must precede proliferation, it can only be assumed that the satellite 

cells were activated at an earlier time point. Although significant satellite cell activation 

has been observed up to 8 days post exercise (17, 18, 48), activation has been reported as 

early as 48 hours post electrical stimulation (40). Because the magnitude of the satellite 

cell response may be dependant on intensity (63), future studies assessing satellite cell 

dynamics should consider the use of multiple post exercise time points when using more 

conventional modes of resistance exercise. 

 As previously mentioned, increases in satellite cell numbers have been observed 8 

days post RE (17, 18), but no study has documented the acute satellite cell response past 

8 days. When assessing the time course of satellite cell dynamics in response to acute RE, 

we observed an increase in mixed, MHC I (0.073), and non-MHC I fibers after 4 days, 

with a return to pre exercise values at 10 days. Although this is the first assessment of the 

satellite cell response 10 days post acute RE, the return to baseline could have occurred at 

any time following day 4. With the use of a less intense, and more conventional mode of 

resistance exercise, the increase that we observed may have peaked and returned to pre 

exercise values much earlier than 10 days post, as opposed to a continual increase 

through 8 days post RE as seen with high intensity eccentric contractions (17, 18). This 

information is useful for future studies and suggests that physical activity control for 10 
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days prior to a ‘baseline’ measure is suitable, at least in recreationally active, college-

aged males.  

 Our results provide the first evidence that acute concurrent exercise attenuates the 

satellite cell response to resistance exercise alone, and does so by preferentially blunting 

MHC I satellite cell proliferation, albeit for unknown reasons. The satellite cell response 

to acute resistance and concurrent exercise mimic the fiber-type specific adaptations to 

training. Whether or not the MHC I fiber satellite cell response to concurrent exercise can 

be manipulated to respond more similarly to RE is unknown. Future insight into how 

altering the order of exercise (aerobic followed by resistance), mode, duration, and 

intensity of the aerobic exercise component are warranted. Also of note is that a more 

conventional resistance exercise stimulus, as opposed to eccentric only, is sufficient to 

stimulate a significant satellite cell response. Most importantly, the current data provide a 

compelling biological mechanism for the interference effect of concurrent exercise.  
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CHAPTER FIVE – SUMMARY 

 The primary aim of this study was to assess the fiber-type specific satellite cell 

response to acute resistance, aerobic and concurrent exercise to provide insight into 

possible mechanisms for why concurrent training can attenuate whole muscle size and 

strength adaptations compared to those elicited by resistance exercise alone.  

 In response to RE, satellite cell number per fiber increased 38%, with no increase 

following AE or CE. Although the number of activated satellite cells per fiber did not 

change with exercise, CE markedly interfered with satellite cell proliferation, and did so 

by preferentially blunting the response in MHC I fibers. This response coincides with 

fiber-type specific patterns of hypertrophy and satellite cell dynamics elicited by 

resistance and concurrent training.  

 When assessing the time course of satellite cell dynamics following RE our 

findings show an increase in total, MHC I (0.073) and MHC II fibers, with a return to 

baseline by 10 days. This in particular is useful for future studies when determining a 

period of inactivity before baseline satellite cell assessments.  

 In conclusion, our findings demonstrate that acute concurrent exercise interferes 

with the satellite cell response of acute resistance exercise by preferentially blunting the 

response in MHC I fibers. This follows the fiber-type specific patterns of hypertrophy 

resulting from resistance and concurrent training. We also conclude that increases in 

satellite cells from an acute bout of conventional resistance exercise will return to 

baseline by 10 days. Most importantly, the current data provide a compelling biological 

mechanism for the interference effect of concurrent exercise. 
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!
7,8! '(%! 9%/+2! '0:%5! ),! ;,18+)%%(! -,(! '! (%0%'(<=! &(,>%<)! <,+58<)%5! 93! $(?! @/<:! A85%+! '+5! A31%!
B'9<,<:!-(,*!C'*%0!D'5/0,+!E+/;%(0/)3!)/)1%5!FG/9%(!H3&%!I&%</-/<!I')%11/)%!6%11!J(,1/-%(')/,+K!$,%0!
6,+<8((%+)!L%(,9/<!MN%(</0%!4+)%(-%(%!O/)=!)=%!4+)%+)/,+0!,-!P%0/0)'+<%!MN%(</0%QR!
!
H=%!&(/*'(3!2,'1!,-!)=/0!0)853!/0!),!%N'*/+%!=,O!)=%!S*80<1%!98/15/+2T!*'<=/+%(3!/+!)=%!)=/2=!*80<1%!
(%0&,+50! ),! (%0/0)'+<%! %N%(</0%! '+5! =,O! )=/0! (%0&,+0%! <='+2%0! O=%+! 3,8! &%(-,(*! <,+<8((%+)!
(%0/0)'+<%!'+5!'%(,9/<!%N%(</0%?!!!
!
!
Experimental Procedures 
!
7,8! O/11! 9%! '0:%5! ),! ;/0/)! )=%! U8*'+! J%(-,(*'+<%! A'9,('),(3! VW,5O/+! XY#Z! '! ),)'1! ,-! [! )/*%0?!!
I&%</-/<'113\!3,8!O/11!9%!'0:%5!),!(%&,()!),!)=%!1'9,('),(3!-,(!,+%!&(%1/*/+'(3!)(/'1\!)O,!%N&%(/*%+)'1!
)(/'10\!'+5!)O,!-,11,O!8&]9/,&03!)(/'10!^!5'30!'-)%(!)=%!%N&%(/*%+)'1!)(/'10?!H=%!&(%1/*/+'(3!)%0)!O/11!
%'<=! (%_8/(%!'&&(,N/*')%13!^[!*/+8)%0\! )=%!%N&%(/*%+)'1! )(/'10!O/11! (%_8/(%!'&&(,N/*')%13!`Yab[Y!
*/+8)%0\!VPM!c!`Y!*/+8)%0!'+5!LM!d!PM!b[Y!*/+8)%0Z!'+5!)=%!)O,!-,11,O!8&]9/,&03!)(/'10!O/11!(%_8/(%!
'&&(,N/*')%13! eY! */+8)%0\! -,(! '! ),)'1! )/*%! <,**/)*%+)! ,-! '&&(,N/*')%13! `! =,8(0?! ! $%)'/1%5!
/+-,(*')/,+!-,(!%'<=!,-!)=%0%!)(/'10!/0!&(,;/5%5!9%1,OK!
!
J(%1/*/+'(3!H%0)!b!!V+!c!b!;/0/)Z!
!
Before any physical evaluation is given, you will be asked to complete screening forms and an 
informed consent, to ensure that you meet the study criteria, that you do not have any risk factors 
for heavy exercise, and that you do not have any known allergies to local anesthesia.   In the 
process of filling out these forms, you will be asked to share information regarding your general 
health and lifestyle with the researchers.   If you meet the criteria for the study, the researchers 
will measure your height and weight and you will perform a cardiorespiratory fitness test.  During 
this assessment, an exercise test will be conducted to determine your maximal oxygen uptake 
(VO2max).  To do this, you will ride a stationary cycle ergometer at an initial workload that is ‘fairly 
easy’.   Workload will be increased by 25 watts every 2 minutes during the test.   You will be 
encouraged to continue to cycle until you request to stop due to fatigue or are unable to continue 
at a cadence >50 revolutions per minute. 
 

!"#$%&'$()*+,-%&*+.,/(,0,1,2&.&).3,4,56.)7!"$%8&.$,9&6#.:,-%&*+.,/(,0,1,2&.&).3,/)6)*+,(,0,;,2&.&).3,

,

Experimental trial - RE: You will be asked to perform a one-legged one-repetition maximum 
strength test for both a leg press and leg extension. Following a 5-minute self selected warm-up 
on a treadmill, you will complete a warm-up set of 10 to 12 repetitions followed by 4 minutes of 
rest.  This will be followed by another set of 2 repetitions at 50-70% of your perceived one 
repetition maximum. The following trials with be one repetition until a one-repetition maximum is 
achieved. This protocol will be used for both a one-legged leg extension then a one-legged leg 
press. You will rest for 4 minutes in between each set. The one-repetition maximum will be used 
to prescribe the resistance used for the following RE protocol. You will then be asked to perform 3 
sets of 10 one-legged leg extension repetitions of a weight corresponding to 75% of your one-
repetition maximum. This will be followed by a fourth set of repetitions until you are unable to 
complete a full repetition (~8 to 15 repetitions).  Each of the four sets will be separated by 2 
minutes.  Following the one-legged leg extension protocol, you will perform, with the same leg, 4 
sets of one-legged leg presses as previously described (RE-only leg). 



Appendix II 

!

"#!

Experimental trial - AE+RE: You will first perform RE identical to the RE trial outlined above (1RM 
followed by 4 sets of one-legged leg extensions followed by 4 sets of one-legged leg presses).  
The RE protocol will then be followed by 10 minutes of rest and 90 minutes of cycling at 60% of 
peak power at VO2max (determined during preliminary test 1).  Thus, one leg will be exposed to 8 
total sets of resistance exercise followed by 90-minutes of cycling (AE + RE leg), while the other 
leg will be exposed to only 90 minutes of cycling (AE-only leg).   
 
Skeletal muscle biopsies: Muscle biopsies of the exercised vastus lateralis will be obtained 
immediately prior to- and 4 days following exercise.  Thus, for the RE trial, one biopsy will be 
obtained from the exercised leg before and 4 days after RE (n = 2 biopsies).  For the AE + RE 
trial, biopsies will be obtained from each leg before and 4 days after exercise (4 biopsies), for a 
grand total of 6 skeletal muscle biopsies.  
 
Five minutes following the injection of local anesthesia (Xylocaine – a common local anesthetic), 
using sterile procedures (towels, gloves, gauze, needles, scalpels, autoclaved biopsy needles, 
etc.), a scalpel is used to make a small incision (~1/4 inch length) through the skin, subcutaneous 
fat layer, and epimysium (fascia or connective tissue wrapping around the whole muscle).   The 
biopsy needle is then inserted into the belly of the muscle for 2-3 seconds for muscle tissue 
sampling.   Each biopsy sample weighs approximately 50-100 milligrams - the size of a small 
pea.   Immediately following the procedure, light manual pressure is applied to the biopsy site 
using sterile gauze.   Once bleeding from the incision has subsided (typically 3-5 minutes), a 
band-aid is applied over the incision and covered with an elastic pressure bandage.  
Approximately 10 minutes following the biopsy, you will begin the respective exercise protocol 
with 5 minutes of self-selected warm-up on a treadmill as stated above. 
 

!!!
$%&'()&*(!+&%,-./0!
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!"#$%&'(%)*(+,#&-".#(/0)$&01.(!!

$%&!'())!*+!,-.+/!0%!1,(20,(2!3%2-(-0+20!/(+0,45!6,*(0-!7%4!8!/,5-!94(%4!0%!+,36!+:9+4(1+20,)!04(,)!,2/!

7%4! 06+! ;! /,5-! 7%))%'(2<! +,36! +:9+4(1+20,)! 04(,)=! $%&! ,4+! 0%! 3%19)+0+! ,! /(+0! 4+3%4/! 7%4! 06+! >;! 64-!

94+3+/(2<!+,36!04(,)!+,36!*(%9-5=!!$%&!'())!,)-%!*+!,-.+/!0%!,?%(/!965-(3,)!,30(?(05!7%4!#@!/,5-!94(%4!0%!

+,36! +:9+4(1+20,)! 04(,)A! ,2/! 0%! 4+3%4/! ,))! 965-(3,)! ,30(?(05! 9+47%41+/!/&4(2<! 06+! B>! 64-! 94+3+/(2<!

+,36!04(,)=!$%&!'())!*+!,-.+/!0%!3%2-&1+!5%&4!7(2,)!C-+)7D-+)+30+/E!1+,)!2%!)+--!06,2!#@!64-!94(%4!0%!06+!

-0,40!%7! 06+! 04+,01+20! 04(,)-! F(=+=!/(22+4!%2! 06+!+?+2(2<!94(%4! 0%! 0+-0(2<G=!H70+4! 06(-! 0(1+A!5%&!,4+! 0%!

3%2-&1+!%2)5!06+!-0,2/,4/(I+/!1+,)!F94%?(/+/!*5!06+!(2?+-0(<,0%4-G!>!6%&4-!94(%4!0%!06+!-0,40!%7!06+!

04(,)!,2/!',0+4!%*(1"2"$34(&20()!06+!+2/!%7!+,36!04+,01+20!04(,)=!!
!
!
"#$%$!
!
$%&!,4+!+:9+30+/!0%!*+!6%2+-0!,*%&0!/(-3)%-(2<!,))!.2%'2!4(-.!7,30%4-!0%!06+!4+-+,436+4=!H33%4/(2<!0%!

06+! H1+4(3,2! J%))+<+! %7! K9%40-! L+/(3(2+A! 06+! 4(-.-! ,--%3(,0+/! '(06! 1,:(1,)! +:+43(-+M0+-0(2<! 7%4!

6+,)065!(2/(?(/&,)-!,4+!?+45!1(2(1,)=!! !N7!5%&!/%!2%0!1++0!06+!34(0+4(,!7%4!O)%'!4(-.PA!5%&!'())!2%0!*+!

,))%'+/!0%!9,40(3(9,0+! (2! 06+!-0&/5=! ! ! N2! 06+!&2)(.+)5!+?+20!%7!3,4/(,3!%4!%06+4!3%19)(3,0(%2-!/&4(2<!

+:+43(-+A!,2!+1+4<+235!9),2!(-!(2!9),3+=!!!Q6(-!(23)&/+-!(11+/(,0+!,33+--!0%!,!96%2+!0%!3,))!+1+4<+235!

9+4-%22+)=!!!N2!,//(0(%2A!+,36!%7!06+!(2?+-0(<,0%4-!(-!JRS!3+40(7(+/=!!!!

!

Q6+! +:+43(-+! 94%0%3%)!1,5! 4+-&)0! (2!1(2%4D1%/+4,0+! )+?+)-! %7!1&-3)+! -%4+2+--! ,2/! 7,0(<&+! 7%4! #D>!

/,5-!7%))%'(2<!+,36!+:+43(-+!-+--(%2=!!!T%'+?+4A!06+!)+?+)!%7!1&-3)+!-%4+2+--!(-!+:9+30+/!0%!*+!)%'+4!

06,2!)+?+)-!2%41,))5!+:9+4(+23+/!'6+2!9+%9)+!9+47%41!%06+4!C2%41,)E!,30(?(0(+-!06,0!,4+!2%0!9,40!%7!

06+(4!4+<&),4!+:+43(-+!4%&0(2+!F(=+=!(7!,!353)(-0!9),5+/!,!<,1+!%7!*,-.+0*,))!'(06!74(+2/-!7%4!>!6%&4-G=!!!

!
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,/1(2(-04,0(%2!%7!06+!,2+-06+0(3!,2/!06+!*(%9-5!94%3+/&4+A!,2/!/+),5+/!-%4+2+--!7%4!%2+!0%!0'%!/,5-!

7%))%'(2<!06+!*(%9-5=!!K0+4()+!94%3+/&4+-!'())!*+!&-+/!/&4(2<!06+!*(%9-5!94%3+/&4+!0%!1(2(1(I+!06+-+!
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06+! -.(2! 2+,4! 06+! *(%9-5! -(0+! %33&4-! 4,4+)5=! ! $%&!1,5! 7++)! )(<606+,/+/! ,2/! 06+4+! (-! ,! -)(<60! 4(-.! %7!

7,(20(2<=! ! V%))%'(2<! 06+! *(%9-5! 5%&!'())! *+! 94%?(/+/!'(06! ,! C*(%9-5! 3,4+! 9,3.,<+E! 06,0!'())! (23)&/+!

(2-04&30(%2-! 7%4!3,4+A!*,2/D,(/-A!,2/!,)3%6%)!9,/-=!$%&!,4+!,)-%!+23%&4,<+/!0%!3%20,30!,!1+1*+4!%7!

%&4!4+-+,436!0+,1!(7!5%&!6,?+!,25!3%23+42-!,*%&0!5%&4!4+3%?+45=!!!Q6+4+!(-!,!-1,))!4(-.!%7!,2!,))+4<(3!

4+,30(%2!0%!06+!)%3,)!,2+-06+0(3!&-+/!/&4(2<!06+!1&-3)+!*(%9-5!94%3+/&4+=!!!K5190%1-!1,5!(23)&/+!,2!

(036(2<!-+2-,0(%2!%7!06+!-.(2A!/(77(3&)05!*4+,06(2<A!7,(20(2<A!,2/!-6%3.=! !H))+4<(3!4+,30(%2-!0%!06+!)%3,)!

,2+-06+0(3! &-+/! ,4+! +:04+1+)5! 4,4+=! ! ! $%&! '())! *+! 94+D-34++2+/A! ,-! 9,40! %7! 06+! 1+/(3,)! 6(-0%45!

/%3&1+20A!7%4!,25!.2%'2!,))+4<(3!4+,30(%2!0%!)%3,)!,2+-06+0(3-=!!!

!
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$%! &'(! )*+,! *-&! .(,/01'-/! '2! 3'-3,2-/! 45,*/,! 3'-0*30! 627! 813)'5*/! 9(:,-! *0! 5(:,--:;<=(7,:(! '2!
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3'-0*30!627!9(:,-!'-!)1/!3,55!4)'-,!>?@AB!H@CDCIJ@7!!!
!
K(,/01'-/!*L'(0!M'(2!N1F)0/!*/!*!N,/,*23)!O(L<,30!
627!6*+1:!P'3Q5,&!!
P)*12G!$-/010(01'-*5!N,+1,R!S'*2:!
T*=,/!U*:1/'-!V-1+,2/10&!
>?@AB!?C"D#"J@!
3'3Q5,:,;<=(7,:(!
)
)
*+",%-'".%/0%.1)
)
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!
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!
!"#$%&'(
5()!+,6&!+,78!
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Do you currently use cardiac medications (Digoxin, Digitalis, etc)? 
 
 
Are you allergic to local anesthetics (numbing agents) such as Lidocaine (Xylocaine, Novocain, 
etc)? 
 
 
Have you had Novocain administered at the dentist? 
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Time Food and/or Drink Method of Preparation Quantity Consumed Brand Name 

     

     

     

     

     

     

     

     

     

 
 
24-HOUR DIET RECORD 
Subject number____________ Date______________ Day of Week______________ 
Adapted From: Lee RD, Nieman DC. Nutritional Assessment. 2nd ed. United States of 

America: Mosby; 1996 
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!

                                      PLEASE SPECIFY 

$%&%'()%*!

Sugar or creamer? 

+%),-('!.'!*,)('/0'%%1!
2-3.4.-!3.56%561!
7(8%!.0!9':5;!(59!:5)'%9:%56*!<:0!8:=%9!9':5;>!

$'%(9*! Butter or margarine added? 

?%'%(-@A:-;!

Milk, sugar, or fruit added? 

The type of milk? (skim, 1%, 2%, whole) 

Cereal:  dry or cooked measure? 

B(:'C!

Is yogurt fruited or plain? 

% fat of milk or yogurt? 

Indicate brand name of cheese substitute and/or     nondairy creamer. 

B%**%'6*!

Whipped topping added? 

Frosting? 

Fat modified (i.e., reduced)? 

Sugar-free? 

D))*!
Preparation method (scrambled, hard-boiled, etc)? 

Fat used in cooking? 

E(*6!E..9!

What restaurant? 

If not a national fast food chain, describe food in detail 

Size order of fries?  Super-size? 

ExtRa toppings on sandwich? 

E(6*@F:-*!

Regular or salt-free? 

Stick, tub, or liquid margarine? 

Reduced calorie or diet product? 

E:*4!

Water or oil packed (fresh or canned)? 

Baked or fried (With batter or without)? 

Type of fat added? 

Raw or cooked weight? 

E',:6!

Sweetened or unsweetened? 

Fresh, canned, or frozen? 

With or without skin? 

A%(6*!
Visible fat removed? 

Light or dark meat?  Raw or cooked? 

Sugars and Sweets 
Regular or reduced-calorie? 

Don’t forget hard candy as well as chocolate. 

G%)%6(H-%*!

Raw or cooked? 

Fresh, frozen, or canned? 

Low-sodium or regular? 

Added fat or sauce? 
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Inventory of Supplies Necessary to Complete this Project 

Muscle Biopsies 

 

Supplies Needed Brand and Item Number 

Biopsy Needle Stille: 119-29187 

Crosstex self-sealing sterilization pouch Fisher Brand: 01-312-51 

Lidocaine HCl 0.1% Hospira: NDL 0409-4276-02 

BD 3 mL Syringe, Luer-Lok Tip Becton Dickinson: 309585 

23G TW Needles, Precision Glide Becton Dickinson: 305193 

Monoject Safety Needles, 20G x 1” Tyco Healthcare: 8881850010 

Safety Lock carbon steel surgical blades Bard-Parker: 371151 

1” Durapore Tape 3M: 1538-1 

Kendal Curity Gauze Sponges 4 x 4 Tyco Healthcare: 2187 

Kendal Versalon All-Purpose Sponges, 2x2 Tyco Healthcare Group: 9022 

Betadine Swab Stick Purdue Products: NDC 67618-153-01 

Poly lined sterile field Basse: 696 

Elastikon Tape Johnson and Johnson: 005171 

Coban 3M: NDC 8333-1582-01 

Maxizyme Henry Schein: 101-9031 

Kenal 140 mL Luer-Lok Syringe Tyco Healthcare: 8881114063 

33” Tubing, latex free Smiths Medical: 2009-12 
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Tissue Processing 

 

Supplies Needed Brand and Item Number 

Disposable Scalpel, #10 Feather: 2975 

Cryo Tube Vials Nunc: 375418 

Petri Dishes for 47 mm cultures Fisher Brand: 09-720-500 

Kendal Curity gauze Sponges 4 x 4 Tyco Healthcare: 2187 

Dulmont Medial Tweezers, 110mm, #5 Ted Pella, Inc.: 38125 

Liquid Nitrogen JMU Chemistry 
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Tissue Staining 

 

Supplies Needed Brand and Item Number 

NCAM Primary Antibody Santa Cruz Biotechnology sc-7326 

Ki-67 Primary Antibody Santa Cruz Biotechnology sc-15402 

MYC I Primary Antibody Santa Cruz Biotechnology m8421 

Dylight 488 Secondary Antibody Jackson ImmunoResearch 115-485-062 

Dylight 488 Secondary Antibody Jackson ImmunoResearch 115-485-146 

Cy5 Secondary Antibody Jackson ImmunoResearch 111-165-144 

Normal Goat Serum Jackson ImmunoResearch 005-000-121 

Methanol JMU Biology 

DAPI Invitrogen D3571 

Glass Slides Fisher Scientific 99-910-01 

Cover Slides Fisher Scientific 12-542B 

Tragacanth Gum BakeDeco CC500-2 

Isopentane Fisher Chemical O35514 

PBS Invitrogen AM9624 

Tween 20 Invitrogen 00-3005 

Mounting Solution Invitrogen 8030 

Gel Mount Fisher Scientific NC9034735 

Pap Pen Fisher Scientific 12-542B 
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