James Madison University JMU Scholarly Commons

Masters Theses

The Graduate School

Spring 2013

The ergogenic effects of glucose and fructose coingestion during prolonged cycling

Daniel A. Baur James Madison University

Follow this and additional works at: https://commons.lib.jmu.edu/master201019 Part of the <u>Kinesiology Commons</u>

Recommended Citation

Baur, Daniel A., "The ergogenic effects of glucose and fructose coingestion during prolonged cycling" (2013). *Masters Theses*. 147. https://commons.lib.jmu.edu/master201019/147

This Thesis is brought to you for free and open access by the The Graduate School at JMU Scholarly Commons. It has been accepted for inclusion in Masters Theses by an authorized administrator of JMU Scholarly Commons. For more information, please contact $dc_admin@jmu.edu$.

THE ERGOGENIC EFFECTS OF GLUCOSE AND FRUCTOSE COINGESTION DURING PROLONGED CYCLING

Daniel A. Baur

A thesis submitted to the Graduate Faculty of

JAMES MADISON UNIVERSITY

In

Partial Fulfillment of the Requirements

for the degree of

Master of Science

Department of Kinesiology

May 2013

Acknowledgements

I would like to thank Dr. Michael J. Saunders for serving as my thesis advisor. Your enthusiasm and encouragement has been greatly appreciated throughout this process. Working with you has reinforced my passion for exercise physiology, and I look forward to a lifetime of working in the field.

Thanks also to Dr. Nicholas D. Luden and Dr. Christopher Womack for serving as members of my thesis committee. Your critiques and questions have been extremely helpful in crafting a quality thesis.

Also, many thanks to Katie Gorman, Sarah Smyth, and Jessica Ehrbar. I would have floundered during data collection without your constant awareness and professionalism.

Another thanks to Adam Schroer and Andrew D'Lugos for assisting throughout this whole process. Your constant calm and frequent sarcasm kept me grounded through a marathon of data collection.

Finally, I would like to thank my family. With this thesis, I finally feel that I have entered the family business. Thanks for the encouragement and the excellent example to follow.

Ackno	wledgments	ii
List of	Tables	iv
List of	Figures	V
Abstra	ct	vi
I.	Introduction	1
II.	Review of Literature	8
	Multiple Transportable Carbohydrate Oxidation Rates	
	Multiple Transportable Carbohydrates and Performance	16
	Carbohydrate Dose-Response Effect	20
	Carbohydrates and Performance	
	Glycogen Sparing	
	Carbohydrate Metabolism	
	Mechanisms	45
	Carbohydrate Digestion and Fluid Delivery	
	GI Distress	
	Physiological Variables	66
III.	Methodology	71
IV.	Manuscript	87
V.	Appendices	115
VI.	References	

Table of Contents

List of Tables

Table 4.1 Qualitative Inferences for Time Trial Performance and Power Output	109
Table 4.2 Physiological variables during constant load exercise and the time trial.	110
Table 4.2 Individual Rating of GI Distress during Cycling	111

List of Figures

Figure 4.1Time Trial Performance	112
Figure 4.2 Blood Glucose During Constant-Load Cycling and Time Trial	
Figure 4.3 Blood Lactate During Constant-Load Cycling and Time Trial	114

ABSTRACT

The purpose of this investigation was to examine the effects of glucose and fructose coingestion on cycling time trial performance and physiological responses to exercise. Eight trained male cyclists (age: 25 ± 6.2 yrs, height: 180.2 ± 4.3 cm, weight: 76.9 \pm 9.2 kg, and VO_{2max}: 61.9 \pm 6.2 mL·kg⁻¹·min⁻¹) completed the study. Subjects ingested either an artificially-sweetened placebo (PL), a moderate-glucose beverage (MG: 1.0 g·min⁻¹), a high-glucose beverage (HG: 1.5 g·min⁻¹), or a glucose and fructose beverage (GF: 1.5 g·min⁻¹; 2:1 ratio) during \sim 3 hrs of exercise; consisting of 2 hours of constant load cycling (55% W_{max} , 195 ± 17.3 W), immediately followed by a computersimulated 30-km time trial. Physiological responses (V_E, VO₂, RER, heart rate, blood glucose, blood lactate, and RPE) and incidences of GI distress were assessed during early- (15-20 min), middle- (55-60 min), and late-exercise (115-20 min), and during the time-trial. Treatment differences were analyzed using qualitative inferences. Time trial performances were 'likely' improved with GF (50.4 \pm 2.2 min) and MG (51.1 \pm 2.4) versus PL (52.9 \pm 3.7 min), while differences between HG (52.0 \pm 3.7 min) and PL were 'unclear'. GF resulted in 'likely' (3.0%) improvement versus HG and an 'unclear' (1.2%) benefit relative to MG. MG was 'possibly' beneficial (1.8%) versus HG. Few incidences of GI distress were reported in any trials. GF ingestion appears to enhance performance relative to PL, and HG. However, further study is necessary to determine if GF improves performance versus moderate (currently recommended) doses of glucose.

CHAPTER ONE

INTRODUCTION

Carbohydrate (CHO) ingestion during exercise has generally been shown to enhance performance in prolonged endurance events (>2 hrs) (26, 33, 35, 48, 60, 65, 116, 119). This benefit is likely due to increased CHO availability as a fuel source for working muscles. Indeed, ingesting CHO during exercise maintains blood glucose levels and sustains high rates of CHO oxidation late in exercise (27, 33). Moreover, increased provision of exogenous CHO may result in sparing of endogenous CHO stores such as muscle and/or liver glycogen (11, 80, 152, 158).

There is controversy regarding the 'optimal' dose of CHO to enhance performance. Current recommendations generally advise consuming 30-60 g/hr during prolonged exercise (89, 137), as this range has consistently been shown to improve performance with minimal detrimental effects such as gastrointestinal (GI) distress (26, 33, 35, 48, 60, 65, 116, 119). Conceptually, higher rates of CHO ingestion could elicit larger ergogenic effects by increasing CHO availability to a greater degree. To this end, several studies have analyzed the affects of varied CHO intake rates during prolonged exercise to see if, in fact, 'more is better.' Early studies did not provide evidence supporting a clear CHO dose-response (52, 113, 116, 134), but this may be due to methodological limitations in assessing relatively small, but potentially important differences in performance (i.e. inadequate subject populations). Recent research has provided stronger evidence for a CHO dose-response effect (149, 150). Smith et al. (150), reported that 20km cycling performance (following 2 hrs at 75% VO₂max) improved progressively as the CHO dose increased from 15 g/hr to 60 g/hr. This result was likely due to increased exogenous CHO oxidation at higher CHO doses, resulting in the sparing of endogenous CHO stores. These results suggest that the ergogenic effects of CHO can be augmented by increasing the CHO dose. However, exogenous CHO oxidation rates may not be increased at intake rates exceeding 60 g/hr because CHO absorption rates are limited.

Exogenous CHO oxidation appears to be limited by rates of absorption from the intestine, as studies have shown that CHO readily empties from the stomach (134, 144). Intestinal absorption of CHO is limited by transporters in the brush-border membrane. The glucose (Glu) transporter, SGLT1, becomes saturated at ingestion rates of ~60 g/hr (76, 163). The fructose (Fru) transporter, GLUT5, is saturated at ~35 g/hr (76). These rates appear to be similar with different feeding schedules. Studies have shown mostly uniform oxidation rates whether CHO is ingested in a single large dose at the onset of exercise (90, 132) or with smaller doses evenly distributed during exercise (16, 102, 124).

The co-ingestion of multiple types of CHO (i.e.. Glu and Fru) can increase maximal exogenous CHO oxidation rates (10, 69). Because Glu and Fru are absorbed via different intestinal transporters (14, 49), there is less competition for transporters, and more total CHO can be absorbed from multiple forms of CHO before transporters become saturated (147). Numerous studies (2, 67–72, 77, 95, 141, 164) have reported exogenous CHO oxidation rates in excess of 72 g/hr (and as high as 105 g/hr) when subjects ingested large doses of Glu + Fru. These rates of exogenous CHO oxidation far exceed those observed from ingesting any single CHO source, (60 g/hr for Glu and 35 g/hr for Fru). Moreover, recent evidence suggests that there may be performance benefits from ingesting multiple forms of CHO at higher rates than recommended with Glu alone

(149). Smith and colleagues (149) recently found that as the dose of a maltodextrin/Glu/Fru beverage increased from 0 to 78 g/hr, performance was likely to improve. However, no further performance enhancement was observed at rates above 78 g/hr. Ingesting multiple forms of CHO has also been reported to enhance performance over isocaloric amounts of Glu. In a study by Currell and colleagues (36), subjects cycled for 2 hrs at 55% Wmax and then performed a ~40 km time trial. During exercise, subjects ingested a solution of 72 g/hr of Glu combined with 36 g/hr of Fru, or an isocaloric amount of Glu (108 g/hr). Ingestion of the mixed-CHO solution resulted in an 8% improvement in 40-km time trial time over the Glu solution. Triplett et al. also reported an 8% performance improvement with high doses of Glu+Fru (144 g/hr) versus an isocaloric amount of Glu in a 100-km cycling time trial (156). These performance enhancements appear to illustrate the dose-dependent effects of increased CHO availability.

GI distress is common in endurance sports (13, 79, 125, 128), and symptoms are frequently reported with the ingestion of CHO during exercise (128). Specifically, GI distress seems to be linked to malabsorption of CHO in the intestinal tract (29, 133, 143). As mentioned previously, exogenous CHO oxidation is likely limited by absorption in the intestine (147). When transporters become saturated, any excess CHO remains in the gut and may cause GI distress. Accordingly, studies investigating high rates of CHO ingestion (i.e. which exceed intestinal absorption capacity) commonly report symptoms of GI distress (67, 69, 71, 72, 77, 156, 164).

Ingesting multiple forms of CHO during exercise is associated with reduced symptoms of GI distress. Higher proportions of ingested CHO can be absorbed and oxidized with a mixed Glu/Fru solution than with large doses of Glu alone, resulting in less CHO remaining in the intestine, [i.e. increased 'oxidation efficiency' (83)]. As a result, studies comparing oxidation rates between Glu/Fru and isocaloric amounts of Glu have observed fewer symptoms of GI distress in the mixed CHO trials (67, 69, 71, 72, 77, 140, 156, 164). In these studies, the highest prevalence of symptoms of GI distress have been associated with Glu intake rates $\geq \sim 90$ g/hr, likely due to malabsorption.

The effects of CHO-related GI distress on performance have not been fully addressed. Rowlands and colleagues recently reported enhanced cycling performance when subjects ingested a mixed CHO solution (at ~84 g/hr) over an isocaloric amount of glucose (140). In this study, the best performance times in a field-based mountain bike race were negatively correlated with levels of GI distress. Interestingly, the relationship between GI distress and performance were not as clear during laboratory trials. As mentioned previously, Triplett et al. (156) observed improved time trial performance with Glu+Fru ingestion, versus Glu alone. The authors also reported complaints of severe GI distress in 45% of subjects during the glucose trial. This is not surprising considering that subjects were ingesting glucose at a rate of 144 g/hr. Currell and colleagues (36) did not report rates of GI distress in their study, which also reported enhanced performance with Glu+Fru ingestion. However, it is possible that subjects experienced more symptoms of GI distress in the glucose trial (108 g/hr). Thus, ergogenic effects reported with high rates of Glu/Fru ingestion might not be attributable to increased CHO availability (i.e. a doseresponse effect), but rather, compromised performance in Glu-only trials resulting from malabsorption of excessive Glu. We are aware of no studies comparing the ergogenic effects of Glu+Fru versus Glu ingested at recommended rates (≤ 60 g/hr). Therefore, the

present study was designed to address the following questions: 1) does ingesting a mixed CHO solution (60G + 30F [GF]) during prolonged cycling result in improved performance versus a moderate dose of glucose (G60); and 2) are the putative differences between GF and G60 smaller than those observed between GF and a high dose of glucose (G90)? We hypothesize that performance times will be faster when subjects ingest GF and G60 solutions versus the G90 beverage and a placebo. Secondarily, we hypothesize that performance times will be slightly faster when subjects ingest GF versus G60.

Assumptions

- It is assumed that subjects follow instructions throughout the duration of the study. Specifically, subjects will be asked to follow the same dietary habits the day before each trial, maintain consistent training throughout the duration of the study, and to accurately record their diets and physical activity.
- 2) It is assumed that subjects will give maximal efforts during the time trial portions of each trial.
- 3) It is assumed that the instruments used are valid measurement tools.

Limitations

- Participants will be recruited through personal contacts and flyers at local bike shops. The subjects may not represent a random sample of trained cyclists.
- 2) The results are specific to trained male cyclists and cannot be transferred to other populations.

Delimitations

- 1) Subjects will be restricted to 18-45 years old.
- Subjects will be "regular cyclists", as defined by performing a minimum average of 3 days of cycling each week during the preceding 2 months.
- 3) Subjects will possess a VO_{2peak} of >55 ml/kg/min.
- 4) Only male subjects will be recruited.

Definition of Terms

<u>Moderate Glucose Dose (60G)</u>: Glucose beverage consumed during exercise at a rate of 60 g/hr.

<u>High Glucose Dose (90G)</u>: Glucose beverage consumed during exercise at a rate of 90 g/hr.

<u>Mixed CHO Beverage (GF)</u>: Beverage consumed during exercise containing glucose and fructose. The beverage will deliver glucose at a rate of 60 g/hr and fructose at a rate of 30 g/hr.

Performance: The time taken to complete a 30km time trial.

<u>Steady State</u>: The portion of the trial in which subjects ride at a constant power output corresponding to 55% W_{max} for 2 hrs.

<u>GI Distress</u>: Prevalence of stomach problems, gastrointestinal cramping, bloated feeling, diarrhea, nausea, dizziness, headache, belching, vomiting, urge to urinate, or urge to defecate as measured by a graded scale.

 \underline{W}_{max} : Peak wattage maintained for a complete stage (2 min.) during VO_{2peak} test.

<u>Placebo (P)</u>: A flavor-matched non-caloric beverage.

<u>RPE</u>: Rating of perceived exertion.

 \underline{VO}_{2peak} : A measure of aerobic capacity, the rate that oxygen can be utilized by the working muscles at maximal effort. The unit of measure will be ml/kg/min.

CHAPTER TWO

REVIEW OF LITERATURE

Athletes have a long history of experimentation with nutritional strategies intended to augment athletic performance. Carbohydrates (CHO), in particular, have been heavily researched in this regard. As a result, the effects of CHO ingestion during exercise on metabolism (Table 6), various physiological variables (Table 9), and performance (Table 2, 4) have been well-documented.

Recently, researchers have investigated the effects of ingesting solutions containing more than one type of CHO. For example, the effects of consuming solutions containing varying quantities, concentrations, and ratios of glucose (Glu) and fructose (Fru) on exogenous CHO oxidation rates and performance have been investigated (Table 1, 2). Studies to date have illustrated oxidation rates far exceeding the maximum levels observed when equal amounts of Glu alone are ingested (Table 1). These high rates are likely achieved because Glu and Fru are absorbed in the gut via different transport mechanisms (Table 8).

A few studies have shown a performance enhancement when multiple transportable CHOs are ingested during prolonged cycling exercise (Table 2). The mechanisms for these performance benefits are unclear, as evidence for a CHO doseresponse, until recently, was lacking (Table 3). Some suggest that oxidizing exogenous CHO at high rates results in sparing of muscle glycogen and/or reduced hepatic Glu production, (i.e. from liver glycogen or gluconeogenesis) (Table 5). Various other possible mechanisms by which CHOs enhance performance have also been investigated including enhanced maintenance of muscle energy balance and/or excitation-contraction coupling (Table 7).

Gastrointestinal (GI) distress is common during endurance exercise, and is frequently observed with the ingestion of CHOs during exercise (Table 9). By ingesting multiple transportable CHO, GI distress may be reduced (Table 9). Mixed CHO solutions are more efficiently digested and absorbed than equal amounts of any single source of CHO (Table 8). Indeed, several recent studies in which subjects ingested either a Glu/Fru beverage or a calorically-matched Glu-only beverage reported more severe symptoms of GI distress during the Glu-only trials (Table 9). The effects of GI distress on performance have not been examined thoroughly, yet it is plausible that severe GI distress negatively influences performance. With this in mind, it is possible that reported performance enhancements with multiple transportable CHO ingestion were the result of an ergolytic effect of over-consuming large amounts of Glu, rather than an ergogenic effect derived from maximizing oxidation of exogenous CHO.

Multiple Transportable CHOs Oxidation Rates (Table 1)

Oxidation of exogenous CHOs increases during prolonged exercise and plateaus after around 90 min. As the amount of CHO ingested increases, the rate of exogenous oxidation increases. The highest rate of exogenous oxidation from a single CHO source is around 1 g/min or 60 g/hr. When combining multiple sources of CHOs, oxidation rates can exceed 1 g/min. By combining Glu and/or Maltodextrin (MD) and sucrose (Suc), exogenous CHO can be oxidized at up to 1.25 g/min. The combination of Glu, Suc, and Fru results in oxidation rates of around 1.7 g/min. Finally, combined ingestion of Glu and Fru can result in oxidation rates of up to 1.75 g/min.

Study	Problem	Subjects	Treatments	Protocol	Findings			
	Compare low	12 trained male	-Water	-Fasted	-Oxidation higher for			
	concentration and high	cyclists	-2% MD	-2 hr at 48% VO2max	mixed CHOs than water			
(160)	concentration CHO		-5.75% MD + 2.75% Fru					
(107)	drinks with water for		-3 mL/kg immediately					
	oxidation and glycogen		before, every 15 min.					
	use		during exercise					
	Oxidation rate of Glu	6 healthy males	-50 g glu	-Standardized Breakfast	21% more exogenous			
	and Fru during exercise		-50 g fru	-2 hours at 60%	CHOs oxidized with a			
	when ingested		-100 g glu	VO2max	50/50 mix than with 100			
(2)	simultaneously		-100 g fru		g of Glu			
			- 50 g glu + 50 g fru					
			-Water					
			-500 mL at start					
	-CHOs can be separated in	to two groups based on c	oxidation rates: Glu, Suc, Mal	, MD at 1 g/min; Fru, Gal, A	Amylose at .6 g/min			
	-CHO absorption in the gut seems to be the limiting factor for oxidation							
(76)	-CHO intake at 1 g/min can result in oxidation of ~1g/min; increasing intake further doesn't increase oxidation rate							
	-Liver may also take up Glu making it a limiting factor							
	-Ingesting large amounts o	f Glu can increase CHO	and water absorption	I	1			
	Substrate utilization in	12 boys (11-14 yrs)	-water	-Standardized Breakfast	-Oxidation of Glu/Fru is			
	exercising boys ingesting		-6% Glu	-90 min. 55% VO2max	slightly less than Glu			
	water, Glu, and Glu plus		-3% Fru + 3% Glu	– 30 min. cycling with 5	-Glu/Fru delays fatigue			
(136)	Fru		-25 mL/kg	min. rest repeated 3	at 90% VO2max by 40%			
			-Drinks ingested at 30 and	times	versus Glu at 25%			
			15 min. before, every 15	-Ride to exhaustion at				
			min. during	90% VO2max				
	Effects of drinking	9 trained male	-1.8 g/min Glu	-Fasted	-Glu/Suc results in			
	Glu/Suc and	cyclists	-1.2 Glu + .6 Suc g/min	-150 min. at 50% Wmax	exogenous oxidation of			
	Glu/Maltose versus Glu		-1.2 Glu + .6 Maltose		~1.25 g/min			
(72)	on oxidation rates		g/min		-No difference between			
			-Water		Glu and Glu/Maltose			
			-600 mL at start, 150 mL					
			every 15 min.					

	Effect of ingesting Glu,	8 trained male	-Water	-Fasted	-2.4 g/min of Glu, Suc,
	Suc, and Fru	cyclists	-2.4 g/min Glu	-150 min. at ~60%	and Fru result in
	simultaneously on		-1.2 Glu + .6 Fru + .6 Suc	VO2max	oxidation rates of ~1.7
(67)	oxidation rates		g/min		g/min.
× ,			-600 mL at start, 150mL		-Endogenous CHO
			every 15 min.		oxidation reduced
					compared to Glu alone
	Whether ingestion of	8 trained male	-1.8 g/min Glu	-Fasted	-Peak exogenous
	Glu/Fru would result in	cyclists	-1.2 g/min Glu	-120 min. at 50% Wmax	oxidation was 55%
(60)	oxidation rate >1 g/min	-	-1.2 Glu + .6 Fru g/min		higher with mix
(69)	_		-Water		-~1.3 g/min oxidation
			-600 mL at start 150 mL		with mix
			every 15 min.		
	Whether ingestion of	8 trained male	-Water	-Fasted	-MD/Fru results in
	MD plus Fru leads to exo	cyclists	-1.8 g/min MD	-150 min. at 55% Wmax	exogenous oxidation
(164)	oxidation >1.1 g/min.		-1.2 MD + .6 Fru g/min.		rates of ~1.5 g/min.
			-600 mL at start, 200 mL		
			every 15 min.		
	Whether ingestion of	8 trained male	-1.2 g/min glu (8.7%)	Fasted	6 glu + .6 suc g/min
	glu/suc results in higher	cyclists	-1.2 g/min suc (8.7%)	120 min. at 50% Wmax	results in 21% higher
	oxidation rates than Glu		6 glu $+ .6$ suc		exogenous oxidation
(70)	alone		g/min(8.7%)		than isocaloric amount
(10)			-1.2 glu + 1.2 suc g/min		of glu
			(17.5%)		-2.4 g/min of glu/suc
			-600 mL at start, 150 mL		results in ~1.2 g/min
			every 15 min.		oxidation
	-Exogenous oxidation	8 trained, non-	-1.5 g/min Glu	-Fasted	-Glu/Fru resulted in 36%
	and fluid delivery of	acclimated male	-1 Glu + .5 Fru g/min	-120 min. at 50% Wmax	higher exogenous
(71)	Glu/Fru versus Glu in	cyclists	-Water	-31.9 degrees C	oxidation and greater
()	the heatMuscle		-600 mL at start, 200 mL		fluid delivery than Glu
	glycogen utilization with		every 15 min.		-No difference in
	Glu ingestion in heat.				glycogen utilization

	-Exogenous oxidation	8 endurance trained	-1.5 g/min Glu	-Fasted	-Glu/Fru increases
	rates and Glu kinetics	males	-1 Glu + .5 Fru g/min	-5 hrs cycling at 58%	exogenous oxidation
	during 5 h of exercise		-600 mL at start, 270 mL	VO2max	rates compared to Glu
(77)	-Effect on oxidation of		every 20 min.		-Glu/Fru maintained
	Glu/Fru				RPMs and perception of
					stomach fullness was
					lower versus Glu
	Whether Glu/Fru leads to	8 trained male	-Water	-Fasted	-Glu/Fru at high rates
	oxidation rates >~1.3	cyclists	-1.2 g/min Glu	-150 min. at 50% Wmax	results in ~1.75 g/min
(68)	g/min		-1.2 Glu + 1.2 Fru g/min		exogenous oxidation
			-600 mL at start, 150 mL		rates
			every 15 min.		
	Effect of various ratios	10 trained male	-MD .6 g/min (No Fru)	-Fasted	-Exogenous oxidation
	of Fru to MD on	cyclists and	-MD .6 + Fru .3 g/min	-2 hrs at 50% Wmax	highest with Medium
	oxidation and	triathletes	(Low Fru .5)	-10 max effort sprints (2-	Fru
	performance		-MD .6 + .5 Fru g/min	3 min.) with rest at	-Low and Medium are
(130)			(Medium Fru .8)	~40% VO2max (5-6	most efficiently oxidized
(133)			- MD .6 + .7 Fru g/min	min.) between each	-Lower perceptions of
			(High Fru 1.2)		muscle tiredness, nausea,
					physical exertion,
					attenuated fatigue with
					Medium and High Fru
	Whether moderate	7 trained male	-Water	-Fasted	-Peak oxidation rates not
	amounts of Glu plus Fru	cyclists	-Glu .8 g/min	-150 Min. cycling at	significantly different
(64)	results in higher		-Glu .54g/min + Fru .26	65% VO2max	-Ingesting moderate
	oxidation rate than		g/min.		amounts of Glu/Fru does
	isocaloric amount of Glu		-600 mL to start, 150 mL		not increase oxidation
			every 15 min.		rates over Glu

	Effect of Glu/Fru on	7 trained male	- 2 g/min Glu	-Fasted	-Adding Fru increased			
	oxidation rates, lactate	cyclists	-1.2 Glu + .8 Fru g/min	-120 min. at 60%	exogenous oxidation,			
	production,		-600 mL at start, 280 mL	VO2max	lactate production and			
	gluconeogenesis from		every 20 min.		oxidation, and			
(95)	lactate, and		-		gluconeogenesis from			
	gluconeogenesis from				Fru			
	Fru				-Fru oxidation explained			
					by Fru-derived lactate			
					and Glu oxidation			
	Oxidation rates between	8 trained male	-Gel (1.2 Glu + .6 Fru	-Fasted	-Gels and Drink with			
	mixed CHO gel and	cyclists	g/min.) plus water	-180 min. at 60%	Glu/Fru are oxidized at			
	drink		-Drink – 1.2 Glu + .6 Fru	VO2max	similar rates			
			g/min		-Oxidation >1 g/min			
			-Water		with both methods			
(131)			-400 mL of water and 50					
			g of gel at start, 200 mL					
			and 25 g of gel every 15					
			min.					
			-400 mL of drink at start,					
			200 mL every 15 min.					
	Oxidation rates between	8 trained cyclists	- Bar (.67 Glu + .33 Fru	-Fasted	-Exogenous oxidation			
	mixed CHO solids and		g/min) plus water	-180 min. at 60%	similar between solid			
	drink		- Drink – 1 MD + .5 Fru	VO2max	food and drink.			
			g/min		-Oxidation >1g/min with			
(130)			-Water		both methods			
(150)			-400 mL water + Bar at					
			start, 200 mL water + 32					
			g of Bar every 15 min.					
			-400 mL drink at start,					
			200 mL every 15 min.					
	-Ingesting CHOs which use	e different intestinal tran	sporters results can result in i	ncreased oxidation of exoge	nous CHOs; one can			
	increase exogenous oxidati	on by up to 65% versus	a single CHO source					
(83)	-Increased oxidation is acc	ompanied by enhanced f	luid delivery and oxidation ef	ficiency, which may decreas	e GI distress			
(03)	-Fru and galactose oxidized	d at 50% lower rate than	Glu, Suc, Maltose, and MD					
	-Glu/Fru oxidized as high a	as 1.75						
	-MD/Fru as high as 1.5; good be best option because of lower osmolality and reduced sweetness							

(123)	Impact of the ratio of Glu/Fru on oxidation, absorption and performance	10 trained male cyclists	-Placebo Fru and MD 1.8 g/min -4.5% and 9% (.5) -6% and 7.5% (.8) -7.5% and 6% (1.25)	-Fasted -150 min. at 50% peak power -Incremental test to exhaustion	8 solution oxidized ~10% more than .5 or 1.25 -Best gut comfort with .8
(129)	CHO oxidation from from a drink in running versus cycling	8 trained male cyclists or triathletes	-Water -1 Glu + .5 Fru g/min -300 mL at start, 150 mL every 15 min.	-Fasted -Running 120 min. at 60% VO2max -Cycling 120 min. at 60% VO2max	-Oxidation rates similar between cycling and running
(10)	Oxidation of Glu/Fru versus Glu at rest in the cold	6 non-acclimatized males	- 0.8 g/min Glu -0.4 Glu + 0.4 Fru g/min -Drinks ingested after 60 min. of exposure	-Fasted -150 min. of cold exposure	-Glu/Fru increases exogenous CHO oxidation by 30% over Glu -16% greater total CHO oxidation with Glu/Fru -Endogenous CHO oxidation not different -Glu/Fru results in increased total CHO oxidation without change in fat oxidation

Multiple Transportable CHOs and Performance (Table 2)

Recent research shows that ingesting Glu combined with Fru can result in enhanced cycling performance versus an isocaloric amount of Glu. However, not all studies confirm this performance enhancement. Ingesting mixed CHOs may also result in lower ratings of perceived exertion, less muscle tiredness and fatigue, and higher self-selected cycling cadences. Lower ratings of perceived exertion have also been observed with ingestion of mixed CHOs prior to resistance exercise. GI distress is common in trials where Glu is ingested at a rate exceeding 1 g/min.

Study	Subjects	Treatments	Protocol	GI Distress	Findings
	8 trained male	-Placebo	-(7 x 12 min.) at	N/A	-No sig. difference in performance
(113)	cyclists	-5% (MD, Glu)	70% VO2max. 3		between CHO trials
		-6%	min. rest in between		
		(MD 2.14 g/100mL,	-12 min. TT at end		
		Fru 1.88 g/100mL,			
		Suc 1.95 g/100mL)			
		-7.5%			
		(MD 5.55 g/100mL,			
		Fru 2g/100mL)			
		-~170 mL prior to			
		each 12 min. bout			
	6 males	-Water	TTE at 70%	"Amounts could not	No differences in performance among
		-Glu	VO2max	be tolerated"	CHO drinks
		-Fru			
		-Glu/Fru			
(105)		-Glu/Electrolyte			
		-36 g/100mL			
		-100mL ingested at			
		the start and every 10			
		minutes			
	10 trained male	-Placebo	-105 min. at 70%	N/A	-12% solution results in improved
	cyclists	-6% (Glu)	VO2max followed		performance over placebo
		-12% (Glu 8.5%/Fru	by 15 min. all out		
(112)		3.5%)	effort		
(112)		-18% (Glu 14.5%/Fru	-1 trial consisted of		
		3.5%)	7 x 15 min. bouts at		
		-150 mL every 15	70% with 3 min. rest		
		min.	between		
	8 trained male	-Placebo	120 min. cycling at	N/A	-8% faster with Glu/Fru compared to Glu.
	cyclists	-Glu 1.8 g/min	55% Wmax		-19% faster with Glu/Fru compared to
(36)		-Glu 1.2 g/min + Fru	followed by		placebo.
(30)		.6 g/min	~1 hour TT		
		-600mL at start, 150			
		mL every 15 min.			

(139)	10 trained male cyclists and triathletes	-MD .6 g/min (No Fru) -MD .6 + Fru .3 g/min (Low Fru .5) -MD .6 + .5 Fru g/min (Medium Fru .8) - MD .6 + .7 Fru g/min (High Fru 1.2)	-Fasted -2 hrs at 50% Wmax -10 max effort sprints (2-3 min.) with rest at ~40% VO2max (5-6 min.) between each	-Questionnaire – nausea and abdominal cramps -Average nausea reduced in Medium and High Fru trials	-No statistically significant performance differences -Lower perceptions of muscle tiredness, nausea, physical exertion, attenuated fatigue with Medium and High Fru
(78)	Effect of Glu/Fru on fluid delivery, gastic emptying, and hydration	8 males	-Water -1.5 g/min Glu -1 Glu + .5 Fru g/min -600 mL at start, 203 mL every 15 min.	-Fasted -120 min. at 60% VO2max	-RPE legs lower with Glu/Fru
(127)	GI tolerance with high CHO intake during exercise	Endurance trained men and women ~75	-Glu/Fru 1.0 g/min every 3.2 kms (Study 1) -Glu/Fru 1.4 g/min (Study 1) -Glu gels 1.4 g/min (Study 2) -Glu/Fru gels 1.4 g/min (Study 2)	-16 km runs outdoors	-No differences in performance
(156)	9 trained male cyclists	-2.4 g/min Glu -1.2 Glu + 1.2 Fru g/min -250 mL to start, 250 mL every 15 min.	-Fasted -simulated 100 km time trial with intermittent 1 km and 4km sprints	-4 of 9 experienced GI distress in Glu trial -2 episodes of diarrhea, 1 vomiting, 1 sour stomach -no complaints in Glu/Fru	8.1% performance improvement with Glu/Fru versus Glu.

(148)	20 aerobically or strength trained men	-Glu 50g -Glu/Fru 50 g + 15g -400mL 15 min. before	-Fasted -10 sets of 10 reps of half squat (90% 10RM, 165 seconds between sets) -30 min. cycling at midpoint between two ventilatory thresholds	N/A	RPE reduced in strength and endurance exercise with glu/fru versus Glu supplementation before exercise
(123)	10 trained male cyclists	-Placebo Fru and MD 1.8 g/min -4.5% and 9% (.5) -6% and 7.5% (.8) -7.5% and 6% (1.25)	-Fasted -150 min. at 50% peak power -Incremental test to exhaustion	-Stomach fullness, ab cramping, nausea lowest with .8 followed by 1.25 solution. -Best gut comfort with .8	-Performance benefits from .8 and 1.25 (3- 4% improved peak power) -Enhanced performance may be due to reduced GI distress
(166)	24 healthy males	-Placebo -Sucrose 50%, Glu 25%, Fru 25% -Solutions – 2%, 4%, and 6% -3 mL/kg immediately before, every 10 min. during	-Fasted (at least 6 hrs) -TTE at 70% VO2max in warm and cool temps	N/A	 -In cool temps, TTE longer with 4% and 6% over Placebo -In cool temps, TTE longer with 6% than 2% -In heat, TTE longer with 6% than placebo

	-7 male, 3 female	-Glu+MD ~1.4 g/min	-Standardized meal	-Reduced GI distress	-Fru+MD outperforms Glu+MD
	mountain bikers	-Fru+MD ~1.4 g/min	evening before race	with Fru+MD	-Gut comfort associated with improved
	(race)		and lab portion, no	-Mean sprint power	performance
	-16 male cyclists		breakfast (fasted)	actually increased	
	(lab)		-Lab portion,	with increased GI	
			subjects consumed	distress in the lab	
(140)			cereal bar 10 min.	-Performance times	
(140)			prior to exercise	in race were	
			-2.5 hr mtn bike race	associated with	
			-~3 hr ride – 94 min.	lower ratings of GI	
			set workload	distress	
			followed by		
			performance test		
			r · · · · · · · · · · · ·		

Dose-Response Effect (Table 3)

CHOs have generally been shown to enhance performance although little evidence exists that illustrates this enhancement occurs in a dose-dependent manner. This may be due to methodological limitations that make it difficult to observe subtle differences in performance. Recent research has provided evidence for a dose-response effect on cycling performance.

Study	Participants	Treatments	Protocol	Findings
	9 males	-Placebo	-Fasted	-Inconclusive dose response
		-10.75 g of sucrose with 200	-4 hrs cycling – 20 min. at	-Performance improved over
		mL of water at every 30 min.	50% VO2max followed by 10	placebo with 21 g/hr; not
(51)		beginning at min. 0	min. of intermittent sprints	improved with 11 g/hr
		-21 g of sucrose with 400 mL	and rest	
		of water every hr starting at	-Sprint ride to exhaustion at	
		min. 0	end of trial	
	8 trained male cyclists	-Water	-Fasted	-No significant difference in
		-MD 3 g/100mL	-2 hr at 90 rpms pushing as	performance
		-MD 5 g/100mL	hard as possible	-No significant difference in
		-MD 7.7g/100mL		glycogen use
(52)		-Fru 5 g/100mL		
(52)		-High Fru corn syrup 2.3		
		g/100mL		
		-Glu 2 g/100 mL		
		-150 mL immediately prior to		
		start, 150 mL every 20 min.		
	8 trained male cyclists	-Placebo	-(7 x 12 min.) at 70%	-No dose-response
		-33 g/hr - 5% (MD, Glu)	VO2max. 3 min. rest in	-No sig. difference in
		-40g/hr - 6%	between	performance
		(MD 2.14 g/100mL, Fru 1.88	-12 min. TT at end	-Beverages containing Fru
(113)		g/100mL, Suc 1.95 g/100mL)		and/or Suc were empytied
(115)		-50 g/hr - 7.5%		better than MD/Glu beverage
		(MD 5.55 g/100mL, Fru		
		2g/100mL)		
		-~170 mL prior to each 12		
		min. bout		
	10 trained male cyclists	-Placebo	-105 min. at 70% VO2max	-Dose response inconclusive
		-37 g/hr - 6% (Glu)	followed by 15 min. all out	-12% solution results in
		-74 g/hr - 12% (Glu 8.5%/Fru	effort	improved performance over
(112)		3.5%)	-1 trial consisted of 7 x 15	placebo
		-111 g/hr - 18% (Glu	min. bouts at 70% with 3	-No glycogen sparing
		14.5%/Fru 3.5%)	min. rest between	
		-150 mL every 15 min.		

(169)	12 trained male cyclists	-Water -2% MD -5.75% MD + 2.75% Fru -3 mL/kg immediately before, every 15 min. during exercise	-Fasted -2 hr at 48% VO2max	-Inconclusive dose response -8.5% sig. different than water but not 2% for oxidation
(116)	8 healthy males, 2 healthy females	-Placebo - 26 g/hr Glu 6% -52 g/hr Glu 12% -78 g/hr Glu 18% - 2 mL/kg every 15 min. starting at min. 12 of exercise (440 mL/hr)	-Standard breakfast -2 hrs of variable-intensity (50%, 65%, 75% VO2max) -Followed by 4.8km TT	-No dose response -Performance enhanced with 26 g/hr and 78 g/hr
(134)	8 trained male cyclists	-Water -4.5% Glu -17% Glu -17% MD -8 mL/kg at start, 3 mL/kg at 20, 40, and 60 min.	-Fasted -80 min. at 70% VO2max	-No dose response -Oxidation rates similar between concentrations -More CHO emptied from stomach with higher concentration -Gastric emptying and fluid absorption don't limit exogenous oxidation
(53)	6 healthy males	-Placebo -2% Glu -6% Glu -12% Glu -7.14 mL/kg immediately before, 1.43 mL/kg every 10 min.	-Fasted -TTE at 80% VO2max	-Dose response for oxidation -Exogenous oxidation sig. lower in 2% than 6% or 12% trials -No sig. difference between endogenous oxidation
(138)	4 healthy males, 1 healthy female	-Water -3% (1% Glu, 2% Suc) -6% (2% Glu, 4% Suc) -325 mL at start, 165 mL every 10 min.	-Fasted -85 min. at ~65% VO2max -Followed by 3 mile time trial	-No dose response for performance

(165)	8 trained female cyclists	-Water 5 g/min Glu 3.2% -1 g/min Glu 6.4% -1.5 g/min Glu 9.6% -600mL at start, smaller doses every 15 min.	-Fasted -2 hrs at 60% VO2max	-Dose response up to 1 g/min for oxidation -Highest oxidation rates and endogenous sparing observed with 1 g/min Glu -Muscle glycogen oxidation highest with 1.5 g.min
(82)	-Evidence for dose-response eff -Improvements in performance transportable CHOs	fect is inconclusive are likely tied to oxidation rates;	higher oxidation rates can be obt	tained with multiple
(150)	12 trained male cyclists	-Placebo -15 g/hr Glu -30 g/hr Glu -60 g/hr Glu -250 mL beginning at min. 15 -No fluid ingested during TT	-Fasted -2 hr at 77% VO2max -Followed by 20km TT	-Dose response -60 g/hr results in mean power output 4.2% and 5.7% higher than 30 g/hr and 15 g/hr respectively -Increasing dose from 15 g/hr to 30 g/hr is less likely to result in performance benefit -Endogenous oxidation reduced with 30 g/hr and 60 g/hr due to inhibition of Glu release from liver
(74)	-Recent evidence (Smith 2010)	illustrates dose response		
(166)	24 healthy males	-Placebo -Sucrose 50%, Glu 25%, Fru 25% -Solutions – 2%, 4%, and 6% -3 mL/kg immediately before, every 10 min. during	-Fasted (at least 6 hrs) -TTE at 70% VO2max in warm and cool temps	-Dose response -In cool temps, TTE longer with 4% and 6% over Placebo -In cool temps, TTE longer with 6% than 2% -In heat, TTE longer with 6% than placebo

best performance occurring with ingestion rate of 78 g/l	(149)	51 male cyclists and triathletes	10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, and 120 g/hr CHO (1:1:1 glucose– fructose–maltodextrin)	-Fasted -2 hrs at 95% of power eliciting 4 mmol of lactate -20km TT	CHO beverage ingestion and performance appear to be related in a curvilinear dose– response manner, with the best performance occurring with ingestion rate of 78 g/br
---	-------	-------------------------------------	--	--	---

CHOs and Performance (Table 4)

Most studies show that CHOs enhance performance. Performance improvements have been observed in prolonged exercise (lasting over 2hrs), high-intensity cycling of ~1 hr duration, and intermittent exercise such as soccer.

Study	Problem	Participants	Treatments	Protocol	Findings	
	Whether CHOs fed	10 trained cyclists (9	-Placebo	-Fasted	-Fatigue is delayed	
	during exercise delays	male, 1 female)	-Glu	-TTE at ~75% VO2max	when fed CHOs	
	fatigue		-Ingested 50% solution		-Effect seen in subjects	
	-		after 20 min. of exercise		whose blood Glu	
(35)			delivering 1 g of		declines in fasted state	
			CHO/kg of body			
			weight. After 60, 90,			
			120 min. ingest 6%			
			solution			
	Effect of Glu on	10 trained males	-Placebo	-Fasted	-Glu enhances	
	walking performance		-20% solution	-TTE at 45% VO2max	endurance capacity	
(65)	and whether it is related		containing 30 g of Glu	walking	-Hypoglycemia and/or	
	to CNS dysfunction		at min. 60, 90, 120, and		CNS dysfunction not	
			150		the cause of exhaustion	
	Effect of CHOs on	10 males	-Placebo	-Fasted	-CHO feedings enhance	
	glycogen and		-43 g of sucrose, 9 g fat,	-4 hrs cycling – 20 min.	sprint performance	
	performance		3 g protein, with 400	at 50% VO2max		
			mL of water at hr 0, 1,	followed by 10 min. of		
(60)			2, 3	intermittent sprints and		
				rest		
				-Sprint ride to		
				exhaustion at end of		
				trial		
	Effect of Glu and Fru on	8 trained cyclists	-Water	TTE at 70% VO2max	-Performance enhanced	
(9)	exercise capacity		-Glu 7%		with Glu ingestion	
			-Fru 7%		-Subjects rode longer	
			-250 mL every 20 min.		with Glu	
	-Long duration moderate	exercise >2 hrs results in liv	ver not being able to keep up	o with muscle Glu uptake: h	ypoglycemia	
	-People who are hypoglycemic don't always display symptoms					
(32)	-CHOs delays but does not prevent fatigue					
	-CHO ingestion at low intensities results in hyperinsulemia and endogenous sparing mostly in the liver					
	-CHO improves endurance in moderate intensity long duration exercise by sparing muscle glycogen					

	Effect of different frequencies and dosages of CHOs on glycogen	9 males	-Placebo -10.75 g of sucrose with 200 mL of water at	-Fasted -4 hrs cycling – 20 min. at 50% VO2max	-CHOs enhance sprint performance -BG levels fluctuate
(51)	and sprint performance		every 30 min. beginning at min. 0 -21 g of sucrose with 400 mL of water every hr starting at min. 0	followed by 10 min. of intermittent sprints and rest -Sprint ride to exhaustion at end of trial	more when fed with less frequency
(33)	Muscle glycogen utilization during exercise when fed CHOs	7 trained male cyclists	-Placebo -Glu- 2 g/kg at min. 20, .4 g/kg every 20 min. thereafter	-Fasted -TTE at 70% VO2max	-CHOs delay fatigue significantly (by 1 hr) -Blood Glu can serve as a major fuel source for exercise
(26)	Effect of CHO on performance after cycling to fatigue	7 trained male cyclists	-Placebo -Glu Polymer 3 g/kg -Glu infusion	-Fasted -TTE at 70% VO2max -20 min. rest -TTE at 70% VO2max	-Fatigue can be reversed with CHO ingestion/infusion -Fatigue partly caused by reduced CHO oxidation; infusion of Glu at a rate of 1 g/min required to maintain 70% intensity
(52)	Effect of different amounts of CHOs on performance and glycogen use	8 trained male cyclists	-Water -MD 3 g/100mL -MD 5 g/100mL -MD 7.7g/100mL -Fru 5 g/100mL -High Fru corn syrup 2.3 g/100mL -Glu 2 g/100 mL -150 mL immediately prior to start, 150 mL every 20 min.	-Fasted -2 hr at 90 rpms pushing as hard as possible	-CHO ingestion does not result in improvement in performance

(119)	Effect of CHO feedings immediately before exercise in fasted and fed state	10 trained male cyclists	-Placebo -Drink – 400mL 8% Glu Polymer, 3.5% Fru (45 g CHO) -Bar – 45 g CHO, 9 g fat, 3 g protein with 400 mL water -Ingested 5 min. prior to exercise	-Fasted -4 hrs after high CHO meal -45 min. at 77% VO2max followed by 15 min. performance ride	-Performance enhanced with CHO prior to exercise -Performance enhanced further when fed a meal 4 hrs prior in combo with solid CHO 5 min. prior
(113)	Effect of CHO feedings on gastric emptying and exercise performance	8 trained male cyclists	-Placebo -33 g/hr - 5% (MD, Glu) -40g/hr - 6% (MD 2.14 g/100mL, Fru 1.88 g/100mL, Suc 1.95 g/100mL) -50 g/hr - 7.5% (MD 5.55 g/100mL, Fru 2g/100mL) -~170 mL prior to each 12 min. bout	-(7 x 12 min.) at 70% VO2max. 3 min. rest in between -12 min. TT at end	-Performance enhanced when fed CHOs
(24)	Effect of CHO feedings during high-intensity exercise	7 trained male cyclists	-Placebo -Glu/Suc (85%, 25%) 1 g/kg in 50% solution after 10 min. of exercise6 g/kg in 20% solution every 30 min. thereafter	-Fasted -Alternating bouts of 15 min. at 60% VO2max and 15 min. of 85% VO2max until exhaustion	 -Performance enhanced -CHO feedings allow subjects to perform 19% more work -CHO allow subjects to maintain 75% VO2max even in latter stages of prolonged intense exercise
(25)	Effect of single CHO feeding late in exercise	6 trained male subjects	-Placebo -Glu Polymer 3 g/kg in 50% solution at min. 135	-Fasted -TTE at 70% VO2max	-Performance enhanced -Subjects given CHO performed 21% longer
	Effects of ingesting Glu,	9 healthy males, 3	-6% Glu	-Standard breakfast and	-Performance enhanced
-------	---------------------------	--------------------------	-------------------------	---------------------------	--------------------------
	Suc, and Fru on	healthy females	-6% Suc	lunch	more with Glu and Suc
	metabolism and	-	-6% Fru	-20 min. at 65%, 20	than Fru
	performance		-6 mL/kg immediately	min. at 75%, 15 min. at	
(117)			before, 3mL/kg during	80%, 10 min at 80%, 15	
			every rest period	min. at 75%, 8 min. at	
				80%, with 4 min. rest	
				between each	
				-600 rpm TT at end	
	Effects of different	6 males	-Water	-Fasted	-Performance enhanced
	CHOs on performance		-Glu	-TTE at 70% VO2max	with Glu ingestion
			-Fru		
			-Glu/Fru		
(105)			-Glu/Electrolyte		
			-36 g/100mL		
			-100mL ingested at the		
			start and every 10		
			minutes		
	Effect of different	10 trained male cyclists	-Placebo	-105 min. at 70%	-12% solution results in
	dosages of CHOs on		-37 g/hr - 6% (Glu)	VO2max followed by	improved performance
	performance and		-74 g/hr - 12% (Glu	15 min. all out effort	over placebo
(112)	glycogen use		8.5%/Fru 3.5%)	-1 trial consisted of 7 x	
			-111 g/hr - 18% (Glu	15 min. bouts at 70%	
			14.5%/Fru 3.5%)	with 3 min. rest between	
			-150 mL every 15 min.		
	Effect of different doses	8 healthy males, 2	-Placebo	-Standard breakfast	-Performance enhanced
	of CHOs on	healthy females	- 26 g/hr Glu 6%	-2 hrs of variable-	with 26 g/hr and 78 g/hr
	performance and		-52 g/hr Glu 12%	intensity (50%, 65%,	
(116)	metabolism		-78 g/hr Glu 18%	75% VO2max)	
			- 2 mL/kg every 15 min.	-Followed by 4.8km TT	
			starting at min. 12 of		
			exercise (440 mL/hr)		

(168)	Effect of ingesting CHO before, during, or before and during on metabolism and performance	8 trained male, 1 trained female cyclist	-Placebo 3 hrs prior – 5g/kg of 25% CHO solution (333 g total) During2g/kg of 8% solution (175 g CHO total) starting at min. 20 and every 20 min. thereafter	-TTE at 70% VO2max -Every 45 min. subjects performed a TT – time taken to complete 3 min. at 90% VO2max	-Performance enhanced with CHO ingestion; effect of ingesting before and during is additive -Fatigue occurs when oxidation falls below 2 g/min
(115)	Effect of different CHO forms on performance	8 trained male triathletes	-Placebo -Solid bananas -Slurried banana drink	-90 min. run followed by 90 min cycling at 70% VO2max -Incremental cycling test to exhaustion	-CHO in solid or liquid form can be equally utilized to improve performance
(93)	Effect of CHO supplementation on finishing time of simulated 80 mile bicycle time trial in FED state	14 trained male cyclists	-Placebo -MD 5% + Fru 2% (37 g/hr) -Every .5 hrs	-80 mile TT	-CHO ingestion enhances performance (by 5%)
(7)	Effect of fluid and CHO ingestion on performance, core temp., and cardiovascular responses	8 trained male cyclists	-Water and electolytes -6% CHO (Gatorade) 1330 ml -40% MD solution 200 ml -Placebo capsules with electrolytes -Immediately before, at 15, 25, 34 min.	-Fasted -50 min. at 80% VO2max -Followed by ~10 min.	Fluid and CHO improve performance by ~6% and effects are additive.
(104)	Effect of an isotonic and hypotonic Glu solution on exercise and metabolism	12 healthy men	-Water -Glu 200 mmol/L -Glu 90 mmol/L -100 mL immediately before and every 10 min. during	-Fasted -TTE at 70% VO2max	-Performance enhanced by ingestion of Glu even if amount is small

	Effects of CHO	8 trained male cyclists	-Water	-Fasted	-Performance enhanced
	ingestion throughout		-CHO 7%	-2 hrs at 70%	when CHOs ingested
	exercise versus feeding		-CHO 21%	-Followed by 15 min.	throughout
(100)	late in exercise		-250 mL at start and	performance ride	-No performance benefit
(108)			every 15 min. thereafter	•	when CHO ingested late
			-21% solution only		in exercise.
			given at 90, 105, and		
			120 min.		
	Effect of CHO ingestion	11 recreational male	-Water	-Fasted	Ingestion CHO in hour
	during the first hour of	runners	-5.5% CHO	-TTE at 70% of	1 of running improves
(1.60)	running on endurance		-6.9% CHO	VO2max	endurance capacity
(160)	capacity		-8 mL/kg immediately		1 2
	1 5		before, 2 mL/kg every		
			20 min. during		
	Effect of CHO ingestion	8 male recreational	-Placebo	-Fasted	-Performance in TTE
	on glycogen and	runners	-5.5% CHO	-TTE at 70% VO2max	enhances with CHO
(158)	performance		-8 mL/kg immediately		ingestion (27%)
	1		before, 2 mL every 20		
			min.		
	Effects of ingesting	9 healthy men, 7 healthy	-Placebo	-Fasted	-Performance enhanced
	CHOs on fatigue during	women	-CHO 4 g/kg	-1 min. bouts at 120-	with CHO ingestion
(38)	intermittent, high-		-18% solution	130% with 3 min. rest in	-RPE lower and time to
	intensity cycling		immediately before, 6%	between until fatigue	fatigue longer with
			every 20 min. during	C C	CHOs
	Effects of CHO	12 trained male runners	-Water	-Fasted	-CHOs enhance
	ingestion before and		-Glu/Suc 6%	-15 km TT with breaks	performance in final 1.6
(111)	during 15 km running		-Glu/Fru, Syrup/MD 8%	at 7.5 km and 13.4 km	km of run
(111)	on metabolism and		-1000 mL 1 hour before,		
	performance		and ad libitum during		
	•		breaks		
	Effect of CHO ingestion	8 trained male cyclists	-Placebo	-Not fasted	-Performance in 1 hr TT
(45)	on 1 hr TT performance		-8% CHO	-As much work as	enhance by 1.2% with
(43)			-25 min. before 4.5	possible in 1 hr	CHO ingestion
			mL/kg		

	Effect of CHO ingestion	7 trained male cyclists	-Placebo	-Fasted	-Performance enhanced
	before and during		-CHO 6.4% 2g/hg	-2 hrs at 65% VO2max	when CHOs are
	exercise on metabolism		-Placebo 30 min. before	-Followed by 7 kJ TT	ingested during exercise
(48)	and performance		and CHO during	-	-CHOs before only
	_		-21% CHO before and		beneficial when CHOs
			placebo during		are ingest during
			-CHO before and during		exercise with it
	Effect of CHO ingestion	13 trained male cyclists	-Placebo	-Fasted	-CHO does not enhance
	on high-intensity ~1 hr	and triathletes	-6% Glu	-TTE at ~83% VO2max	performance in intense
(110)	exercise		-7 mL/kg immediately		~1 hr exercise
(110)			before, 3.5 mL/kg every		-Insufficient CHO gets
			15 min.		into blood to affect
					metabolism
	Effects of pre-exercise	10 trained male runners	-Placebo	TTE at 70% on	-CHO meal and drink
	CHO meal and CHO		-CHO meal before and	treadmill	during had additive
	solution on running		6.9% drink (dextrose,		positive effect (22%) on
	performance		MD, and Glu)		TTE performance in
(23)	-		-CHO solution before		runners
			and water during		
			-5 mL/kg before, 2		
			mL/kg every 20 min.		
			during		
	Effect of low and high	9 trained male cyclists	-Placebo	-Meal 4 hrs before TT	-Performance enhanced
	glycemic CHO intake		-Low glycemic (Honey	-64 km TT	in final 16 km of TT
	on performance in 64		38.5% Fru, 31% Glu,		with low and high
	km TT		17% water, 7.2%		glycemic CHOs
			maltose, 4.2%		-No difference between
(43)			trisaccharides, 1.5%		CHO types
			sucrose, .5% protein)		
			-High glycemic		
			(Dextrose)		
			-15 g gels with 250 mL		
			of water every 16 km		

	1							
	Effect of CHO mouth	9 trained male cyclists	-Placebo	-Fasted	-Performance improved			
(19)	rinse on ~1 hr TT	(7 male, 2 female)	-6.4% MD	-~60 min. TT	with CHO ingestion by			
(1))			-Mouth rinse every		2.7%			
			12.5% of ride					
	Effect of CHO on ~60	9 trained male cyclists	-Placebo	-Standard breakfast 2-	-CHO ingestion has no			
	min. TT		-6% CHO (Gatorade)	hrs before	effect on ~1hr TT			
(40)			-8 mL/kg before, 2	-~60 min. TT	performance			
			mL/kg every 10% of TT					
			starting at 20%					
	-Performance in events las	sting >2hrs and ~1hr enhan	ced with CHOs although me	echanisms unclear				
	-Benefits from small amore	unts (~15 g/hr)						
	-Most studies conducted u	ising overnight fast, which	may produce effects that are	en't seen when in fed state				
(81)	-Mechanisms include mai	ntenance of blood Glu, CH	O oxidation, endogenous sp	aring, central effects				
	-Glu, Mal, MD, Suc 1 g/m	nin; Fru, Gal .6 g/min						
	-Intestinal absorption of C	-Intestinal absorption of CHO greatest limiting factor						
	-Multiple transportable Cl	HOs have higher oxidation	efficiency					
	Effect of CHO ingestion	12 trained males	-No supplementation	-TTE at 70% of	-CHO ingestion			
(88)	on running performance		-5% CHO solution	VO2max	improves performance			
(88)			every 15 min. during		and delays fatigue			
			exercise					
	Effect of ingesting CHO	16 male college soccer	-Placebo	-Fasted	-CHO enables subjects			
	solution on subjects	players	-6.4% CHO	-6 x 15 min. blocks of	in glycogen depleted			
(4)	with low CHO stores on		-5 mL/kg before shuttle	shuttle runs	states to better maintain			
(-)	shuttle running times,		run, 2 mL/kg every 15	-Post-exercise soccers	skill and sprint			
	soccer passing and		min. during	skills test	performance in soccer			
	shooting performance							
	Effect of CHO ingestion	12 trained male cyclists	-Placebo	-3 h fast (Not fasted)	-CHO ingestion during			
	on high-intensity		-6% CHO (Gatorade)	-16 km time trial	~25 minute high			
(75)	cycling performance of		-4 mL/kg immediately		intensity cycling does			
(13)	~25 min.		before, 1.4 mL/kg at 25,		not improve			
			40, and 75% completed		performance.			
			of TT		<u> </u>			
	-CHO intake recommenda	ation of 6-10 g/kg per day						
(137)	-After exercise, 1-1/5 g/kg	g within 30 min. and again o	every 2 hrs for 4-6 hrs to rep	plenish glycogen				
(137)	-CHO restriction can be d	etrimental to performance						
	-Meals consumed 90 to 4hrs prior to competition had no appreciable affect on performance despite hyperglycemia, hyperinsulemia							

	Effects of daily training	16 endurance trained	-High CHO training	28 days training	-No clear benefit on		
	with CHO ingestion on	male cyclists/triathletes	group	-Standard breakfast	performance from		
	oxidation rates:		-Low CHO training	-Test before and after	training with high or		
(21)	trainability of the gut		group	training – 100 min.65%	low CHO availability		
(31)			-During test:	VO2max			
			CHO 10%	-Following by ~30 min.			
			Water	TT			
			5 mL/kg every 20 min.				
	-Athletes should consume	5-10 g/kg per day for glyco	ogen resyntheis				
(80)	-CHO meals require 4 hrs	to be digested and synthesi	zed into glycogen				
(89)	-CHO snacks consumed 30-60 minutes prior to exercise can increase CHO availability in later stages of exercise						
	-Athletes should consume 1-1.5 g/kg within 30 min and at high CHO meal within 2 hrs to maximize glycogen resynthesis						
Effect of CHO versus -Meta Analysis CHO ingestion enhances perfor				erformance in TT (2%), submax +TT (7.5%),			
(153)	placebo on performance	-CHO intakes of ≤8%	takes of $\leq 8\%$ submax + TTE, and TTE even when subjects optimize endogenous stores				
		and between 30-80 g/hr before exercise					
	-CHO availability importa	nt for training and perform	ance; glycogen replenishme	ent essential			
	-Adding protein to CHO during recovery enhances glycogen storage						
(17)	-For events lasting ~1 hr, very small amounts of CHO or mouth rinsing benefits performance						
	-For longer events, 30-60 g/hr of CHO is beneficial and possibly up to 90 g/hr with mixed CHOs						
	-Benefits of training in a glycogen depleted state are unclear						
	-Glycogen loading can be achieved by athletes without the depletion phase; little benefit of loading in events <90 min.						
	-Pre-exercise feeding may not be detrimental to performance; rebound hypoglycemia early in exercise does not effect performance						
(74)	-CHOs beneficial for inter	se exercise of ~1 hr (CNS)	; and over 2 hrs (Metabolic)			
(, , ,	-Multiple transportable CI	HOs can increase oxidation	rates above 60 g/hr				
	-CHO intake independent	of body mass					
	-Training the gut						

Glycogen Sparing (Table 5)

Glycogen sparing is a potential mechanism by which CHOs enhance performance. Many studies show that muscle glycogen is spared when CHO is ingested during prolonged low-intensity exercise (~40% VO2max) and intermittent exercise. During moderate intensity exercise, most research agrees that muscle glycogen sparing occurs during running, but not cycling. Sparing may occur as a result of hyperglycemia and hyperinsulemia, which seems to be more prevalent when CHOs are ingested during running. Liver glycogen sparing and/or reduced hepatic Glu production has also been observed with CHO feedings during exercise.

Study	Participants	Treatment	Protocol	Findings
	4 healthy males, 4 healthy	-Water	-CHO rich meal 4 hrs before	-Muscle glycogen spared with
(08)	females	-Glu 75 g	-30 min. running at 75%	Fru ingestion prior to exercise
(98)		-Fru 75 g	VO2max	
		-300 ml 45 min. before,		
	10 males	-Placebo	-Fasted	-Muscle glycogen spared with
		-43 g of sucrose, 9 g fat, 3 g	-4 hrs cycling – 20 min. at	CHO ingestion
		protein, with 400 mL of water	50% VO2max followed by 10	
(60)		at hr 0, 1, 2, 3	min. of intermittent sprints	
			and rest	
			-Sprint ride to exhaustion at	
			end of trial	~
	8 trained cyclists	-Water	TTE at 70% VO2max	-Glu ingestion spares muscle
(9)		-Glu 7%		glycogen
· · · · · · · · · · · · · · · · · · ·		-Fru 7%		-Fru does not
		-250 mL every 20 min.		x 1 1 1
	9 males	-Placebo	-Fasted	-Inconclusive dose response
		-10.75 g of sucrose with 200	-4 hrs cycling - 20 min. at	-Performance improved over
(51)		mL of water at every 30 min.	50% VO2max followed by 10	placebo with 21 g/hr; not
(51)		beginning at min. 0	min. of intermittent sprints	improved with 11 g/hr
		-21 g of sucrose with 400 mL	and rest	
		of water every hr starting at	-Sprint ride to exhaustion at	
		min. 0	end of trial	N 1 1
	8 maies	-Placebo	-Fasted	-Muscle glycogen usage was
(59)		-50 g Glu	-30 min. cycling at 70%	greater with Glu versus
		-50 g Fru	vO2max	Control
		-710 mL 45 min. prior to		- I rend towards less glycogen
		exercise		usage with Fru versus Glu
	/ trained male cyclists	-Placebo	-Fasted	-Muscle glycogen not spared
(33)		-Giu- 2 g/kg at min. 20, .4	-11E at /0% VO2max	with CHO ingestion
		g/kg every 20 min. thereafter		-Blood Glu can serve as a
				major fuel source for exercise

(91)	27 wistar rats -Glycogen depleted -Non glycogen depleted	-Glu	1 hr running	-In non-depleted rats, Glu infusion spared glycogen in the liver -Glycogen depletion stimulates glycogen synthese; not necessarily Glu infusion -Sources other than Glu infused were used for resynthesis (possibly gluconeogenesis)
(92)	7 trained male cyclists	-25% MD, Fru drink -Encouraged to drink 2 L over 2 hrs 45 min.	-Glycogen depleting ride afternoon before -Standard breakfast -2 min. bouts at 90% Wmax followed by 2 min. at 50% Wmax to exhaustion while drinking water -3 hrs at 40% Wmax (Trial A) -Rest 3 hrs (Trial B)	-Glycogen was synthesis during exercise in Type II fibers (32 mmol/kg) -Resynthesis rate during exercise comparable to maximum rates after exercise
(52)	8 trained male cyclists	-Water -MD 3 g/100mL -MD 5 g/100mL -MD 7.7g/100mL -Fru 5 g/100mL -High Fru corn syrup 2.3 g/100mL -Glu 2 g/100 mL -150 mL immediately prior to start, 150 mL every 20 min.	-Fasted -2 hr at 90 rpms pushing as hard as possible	-No significant difference in glycogen use

	1 female and 4 male trained	-Placebo	-90 min. cycling at ~70%	-Glu and Caffeine spare
	cyclists	-Fru before	VO2max	muscle glycogen
		-Caffeine before		-Ingestion of multiple
		-Glu during		substances cause greatest
(46)		-Fru/Caff before; Glu during		variability in glycogen use
		-Every 15 min. starting at		
		min. 15		
		-240 kcal prior and/or during		
	5 trained male cyclists	-Placebo	-Fasted	-CHO ingestion does not
(58)		-30 g Glu polymer	-2 hrs cycling at 70%	spare muscle glycogen
		-250 mL at min. 0, 30, 60, 90	VO2max	
	10 trained male cyclists	-Placebo	-105 min. at 70% VO2max	-Muscle glycogen not spared
		-37 g/hr - 6% (Glu)	followed by 15 min. all out	with CHO ingestion at 12%
		-74 g/hr - 12% (Glu 8.5%/Fru	effort	dosage
(112)		3.5%)	-1 trial consisted of 7 x 15	
		-111 g/hr - 18% (Glu	min. bouts at 70% with 3	
		14.5%/Fru 3.5%)	min. rest between	
		-150 mL every 15 min.		
	12 trained male cyclists	-Water	-Fasted	-Muscle glycogen is spared in
$(1, \mathbb{C})$		-2% MD	-2 hr at 48% VO2max	the heat with CHO ingestion
(169)		-5.75% MD $+ 2.75%$ Fru		
		-3 mL/kg immediately before,		
	7 trained male evolists	Placebo	Fasted	Liquid CHO sparas muscla
	/ trained male cyclists	-10% CHO	200 min of variable	alveogen after 190 min (35%
		-Solid CHO (25 g MD/Fru)	intensity exercise	versus placebo)
		-25% CHO solution 1 g/kg	-30 min at 45% VO2max	-CHO drink results in very
		immediately before 180 mL	$-6 \times 16 \min (8 \min at 75\%)$	high blood Glu and insulin
		every 20 min.	VO2max. 8 min. at 45%	-Low intensity or variable
(170)		-Bar consumed with water	VO2max)	intensity with CHO ingestion
		every 30 min.	-9 x 6 min intervals (3 min. at	seems to spare glycogen
			75%, 3 min. 45%)	because it can cause
			-TTE 80% VO2max	hyperglycemia and
				hyperinsulemia but not during
				Moderate intensity

	6 trained cyclists/triathletes	-Placebo	-Fasted	-CHO intake suppresses			
(107)		-Glu 10%	-2 hrs cycling at ~70%	hepatic Glu production (51%			
(107)		-250 mL at start and every 15	VO2max	reduction in HGP)			
		min. during					
	14 trained male cyclists	-Placebo	-Standard meal 3 hrs before	-CHO either spares liver			
	(glycogen-loaded)	-10% CHO drink	-180 min. cycling at 70%	glycogen or reduces			
(12)		-170 mL at start and every 20	VO2max	gluconeogenesis			
		min.		-CHO does not spare muscle			
				glycogen			
	7 male recreational runners	-Water	-Fasted	-CHO ingestion spares			
		-5.5% CHO (Glu, Fru,	-60 min. running at 70%	glycogen in Type I fibers			
(159)		Maltose, higher saccharides)	VO2max	only (28% sparing)			
		-8 ml/kg immediately before,					
		2 ml/kg at min. 20 and 40					
	8 male recreational runners	-Placebo	-Fasted	-CHO ingestion spares			
		-5.5% CHO	-TTE at 70% VO2max	glycogen in Type I fibers at			
		-8 mL/kg immediately before,		time point equivalent to			
(158)		2 mL every 20 min.		exhaustion in Placebo trial			
		-		-Muscle ATP and			
				phospocreatine maintained in			
				with CHO ingestion			
	-Ingestion of CHOs >45 g/hr ac	companied by significant increas	se in insulin levels could spare m	uscle glycogen			
	-At low intensities. CHO ingest	ion can spare muscle glycogen					
	-During moderate intensity cvc	ling, performance enhanced by m	aintenance of BG and oxidation	but not sparing			
(157)	-In moderate intensity running.	sparing occurs because insulin a	and BG is more elevated with CH	O ingestion			
()	-Glycogen is snared with CHO during intermittent exercise						
	-Fru does not seem to spare gly	cogen: Glu and sucrose do spare	glvcogen				
	-Glycogen loading does not app	pear to inhibit exogenous oxidation	on, and glycogen loading may spa	are glycogen during exercise			
	6 male athletes	-Placebo	-Fasted	-Muscle glycogen spared in			
		-6.9% CHO (dextrose, Fru.	-90 min. of intermittent	Type I and II fibers			
		maltose, higher saccarides)	running (6 x 15 min. bouts	-Utilization reduced by 22%			
(120)		-5 mL/kg immediately before.	with 3 min. rest in between)	when ingesting CHO			
		2mL/kg during rest periods	· · · · · · · · · · · · · · · · · · ·	-Glycogen could have been			
		6 6 6 F F		resynthesized during low			
				intensity periods			

	6 trained cyclists	-Water	-Fasted	-Hepatic Glu output
		-Glu 4%	-120 min. cycling at 50%	completely suppressed with
		-Glu 22%	VO2max	high Glu trial
		-Infusion of Glu		-HGP partially suppressed
(80)		-8 mL/kg at start, 2 mL/kg		with low Glu trial
		every 15 min. during		-No effect on muscle
		-With low Glu trial – 35 g/hr		glycogen
		-With high Glu trial – 175		
		g/hr		
	13 trained male cyclists and	-Placebo	-Fasted	-Muscle glycogen not spared;
	triathletes	-6% Glu	-TTE at ~83% VO2max	usage similar between trials
(110)		-7 mL/kg immediately before,		-Only small percentage (26%)
		3.5 mL/kg every 15 min.		of ingested CHO appeared in
				the blood
	12 boys (11-14 yrs)	-water	-Standardized Breakfast	-Endogenous oxidation was
		-6% Glu	-90 min. 55% VO2max – 30	significantly lower at min. in
		-3% Fru + 3% Glu	min. cycling with 5 min. rest	Glu and Glu/Fru trials, but
(136)		-25 mL/kg	repeated 3 times	not significantly different
		-Drinks ingested at 30 and 15	-Ride to exhaustion at 90%	from each other
		min. before, every 15 min.	VO2max	
		during		
	8 trained, nonacclimated male	-1.5 g/min Glu	-Fasted	-Glu/Fru resulted in
	cyclists	-1 Glu + .5 Fru g/min	-120 min. at 50% Wmax	significantly lower
(71)		-Water	-31.9 degrees C	endogenous oxidation versus
		-600 mL at start, 200 mL		water
		every 15 min.		

	01 11 1			
	8 healthy males	-Placebo	-CHO trial – standard	-CHO ingestion combined
		-MD 15%	breakfast 2 hrs before	before and during results in
		-1 g/kg during exercise	-Or Fasted Trial	sparing of Type IIa fibers
			-2 hrs cycling at 75%	-Glycogen breakdown could
			VO2max	have been slowed in Type I
(11)				early in exercise meaning
(11)				Type II were not recruited till
				later
				-Higher blood insulin, Glu,
				and lower FFA levels may
				contribute to increased
				glycogen synthase activity
	10 trained male cyclists	-Placebo	-Fasted	-CHO spares muscle
		-8% CHO	-180 min. at 50% Wmax	glycogen use during first hour
(150)		7 mL/kg immediately		of 3 hrs cycling resulting in
(152)		before, 2.5 ml/kg every 20		significant sparing after 3 hrs
		min. during		-38% and 57% in Type I and
		C		II respectively
	8 trained female cyclists	-Water	-Fasted	-Muscle glycogen use was
		5 g/min Glu 3.2%	-2 hrs at 60% VO2max	28% lower with Moderate
		-1 g/min Glu 6.4%		does versus water (Not
(165)		-1.5 g/min Glu 9.6%		significant)
		-600mL at start, smaller doses		-CHO at all doses reduces
		every 15 min.		liver Glu output by ~30%
		-		-Endogenous oxidation
				significantly lower.

CHO Metabolism (Table 6)

Glu and Fru provide energy through different pathways. The majority of ingested Glu is absorbed into the circulation. From plasma, this Glu can be taken up by muscle to fuel contraction. This exogenous Glu can represent a large portion of total CHO utilization, 60-90% in some studies. Fru, following absorption in the gut, is mostly taken up by the liver. Although some free Fru remains in the blood to be taken up by muscle, the majority is metabolized in the liver to lactate or converted to Glu. Lactate is either released to be oxidized as a fuel source in active muscles or converted to Glu via gluconeogenesis.

Study	Problem	Participants	Treatments	Protocol	Findings/Mechanisms
(132)	Glu oxidation during prolonged oxidation	7 healthy males	-Glu -100 g in 400 mL of water after 15 min. exercise	-Fasted -4 subjects walked on 10% grade for 2 hrs at 50% VO2max -3 subjects walked for 4 hrs	-Exogenous CHO represented 55% of CHO metabolism and 24% of total energy expenditure -Max exogenous oxidation between .5 and .6 g/min. -Exogenous oxidation increases up to 1-1.5 hrs of exercise
(57)	Fate of Glu ingested during prolonged exercise	6 trained male cyclists	-139 mM of Glu -589 mM of Glu -400 mL consumed after 120 min. of exercise	-Fasted -180 min. cycling at 50% VO2max	-More Glu oxidized from more concentrated solution (Peak contribution of 67% blood Glu) -Oxidation of exogenous low possible because only consumed at start of final hour of exercise
(98)	Substrate utilization after Fru, Glu, and water ingestion during exercise	4 healthy males, 4 healthy females	-Water -Glu 75 g -Fru 75 g -300 ml 45 min. before,	-CHO rich meal 4 hrs before -30 min. running at 75% VO2max	-Blood Glu and insulin do not respond as dramatically with Fru versus Glu -May be because Fru is absorbed and released from liver slower than Glu -Muscle glycogen sparing with Fru

(8)	Absorption rates and metabolism of Glu or Fru ingested in pigs	6 adult Yucatan miniature swine	-1.5 g/kg of Glu -1.5 g/kg of Fru	-Fasted -Observations made every 15 min. during 4 hr period	-More Fru is metabolized in the gut than Glu by intestinal cells (15-20% of lactate) -Small portion of Fru in converted to Glu in gut -Fru taken up by liver more rapidly than Glu -Almost all Glu enters portal vein as Glu, i.e. not metabolized in gut -Fru ingestion increases lactate -12% of Fru absorbed or metabolized was converted to lactate
(90)	Timing of Glu ingestion's effect on exogenous Glu oxidation	9 healthy males	-100 g of Glu after 15 min. of exercise -100 g of Glu after 120 min. of exercise	-Fasted -4 hrs of treadmill at 45% VO2 max	-Oxidation of exogenous Glu is similar if ingested after 15 or 120 min.
(39)	Compare Fru with Glu intake prior to exercise on metabolism	10 trained adults	-Glu -Fru -1 g/kg 1 hr before exercise	-Fasted -45 min. at 60% VO2max -Followed by 15 min. performance test	-Fru oxidized similarly with Glu -Lactate rose more with Fru -Fru has reduced effect on blood Glu and insulin levels versus Glu -Exogenous CHOs represented ~15% of total energy used -No effect on performance with Fru versus Glu

(124)	Percentage of Glu ingested is utilized during exercise	6 healthy males	-200 g Glu in 8 doses every 30 min. -400 g Glu in 8 doses every 30 min.	-Fasted -285 min. at 45% VO2max on treadmill	-100 g/hr of Glu results in exo CHO representing ~90% of total CHO utilization in last hour and permits endogenous sparing
(101)	Metabolic response to Glu and Fru ingestion during exercise	7 healthy males	-Water -Glu (140 g at 7%) -Fru (140 g at 7%) -Ingested every 20 min. starting at min. 0	-Fasted -180 min at 50% VO2max	-Fat utilization greater with Fru than Glu -Less Fru (56%) was oxidized versus Glu (75%) -Blood Glu maintained similarly between Glu and Fru -Lower insulin response with Fru -Endogenous sparing similar between two
(102)	Compare oxidation of Glu, Glu polymer, and Fru during exercise	6 healthy males	-Water -Glu Polymer -Glu -Fru -7% with 235 mL every 20 min. from min. 0 to 100	-Fasted -120 min. cycling 55% VO2max	-Fru less readily oxidation resulting in less sparing than Glu -Fru did not raise plasma insulin higher than water -Water delivery to plasma similar between CHOs
(117)	Effects of ingesting Glu, Suc, and Fru on metabolism and performance	9 healthy males, 3 healthy females	-6% Glu -6% Suc -6% Fru -6 mL/kg immediately before, 3mL/kg during every rest period	-Standard breakfast and lunch -20 min. at 65%, 20 min. at 75%, 15 min. at 80%, 10 min at 80%, 15 min. at 75%, 8 min. at 80%, with 4 min. rest between each -600 rpm TT at end	 -Fru ingested resulted in lower plasma Glu and insulin; higher blood Fru, FFAs, cortisol, RPE, and GI distress -Some Fru escaped hepatic metabolism -Fru resulted in lower lactate during performance bout

	Splanchnic and muscle	12 trained male adults	-8.5 mmol/min Fru	-90 min. cycling at	-Fru taken up by splanchnic		
	Fru metabolism before	-6 received Fru, 6	infusion starting at min.	30% VO2max	tissue (45%), exercising		
	and after exercise	Control	40 till end of rest	followed by 20 min.	muscle (28%), and resting		
				rest	muscle (28%)		
					-Glu uptake was unchanged		
					meaning uptake		
					mechanisms are different		
(3)					-Lactate and pyruvate rose		
					with infusion and was		
					taken up by working		
					muscle		
					-Splanchnic release of		
					lactate and pyruvate		
					accounted for 78% of Fru		
					uptake at 90 min. exercise		
(22)	Conversion of Fru to	-Over 90% of the Fru than	is converted to Glu derives	from cleaving of the Fru c	carbon skeleton		
(22)	Glu in the liver						
	-Fru is rapidly taken up b	y the liver; majority of Fru	taken up by liver meaning v	ery little Fru in blood			
	-Fru enters glycolysis after the phosphofructokinase step allowing for greater flux – increased lactate production						
(106)	-When ingested with Glu	, Fru phosporylation largely	inhibited by Glu				
(100)	-Major products of Fru in the liver are Glu, glycogen, and lactate						
	-Fru combined with Glu may conserve or synthesize liver glycogen						
	-In the fed state, Fru appe	ears to be predominantly con	iverted to lactate rather than	i glycogen or Glu	~ ~ ~		
	Exogenous CHO	8 trained male subjects	-Water	-Fasted	-Soluble CHOs oxidized at		
	oxidation during		-15% Glu, Dextrose	-150 min. cycling at	higher rate than insoluble		
	exercise from different		-15% Amylose,	60% VO2max			
(144)	sources		amylopectin				
			-6 mL/kg immediately				
			before, 2.5mL/kg every				
	1		15 min.	1			

	Ovidation of Glu or	8 trained male evolists	8% galactosa	Standard brackfast	Galactosa oxidizad et 41
	contraction of Giu of	o trained male cyclists		120 min at 65%	-Galaciose Oxidized at .41
	galactose during			-120 min. at 65%	g/min at peak
	exercise		-8 mL/kg immediately	Wmax	-Glu oxidized at .85 g/min
(96)			before, 2 mL/kg every	-60 min. rest	at peak
(15 min. during	-30 min. at 60% Wmax	-46% of ingested Glu was
					oxidized; 21% of galactose
					-Galactose resulted in more
					endogenous use
	Glu, Fru, and	6 healthy males	-Placebo	-Standard breakfast	-Glu and Fru oxidized at
	Galactose oxidation		-Glu	-Snack 2 hrs before	similar rates
	during exercise		-Fru	-120 min. cycling at	-Galactose oxidized at 60%
			-Galactose	65% VO2max	the rate of Glu and Fru
(15)			-100 g total given via		-CHO ingestion reduces
(15)			200 mL every 20 min.		endogenous CHO oxidation
			starting at min. 0		(9-13%)
					-Fru and galactose could be
					preferentially taken up by
					the liver
	Oxidation of sucrose	10 healthy males	-Water	-150 min. cycling at	-Sucrose oxidized a higher
(1)	and isomaltulose		-Sucrose 8.5% 1.1 g/min	65% VO2max	rate than ISO (.92 g/min vs.
	during exercise		-ISO 8.5% 1.1 g/min		.54 g/min.)
	Oxidation of trehalose	9 trained male cyclists	-Water	-Fasted	-Maltose had higher
	and maltose during		-Trehalose 1.1 g/min	-150 min. of cycling at	oxidation than trehalose
	exercise		8.5%	55% Wmax	(1.01 g/min versus .73
(161)			-Maltose 1.1 g/min		g/min)
			8.5%		-Maltose results in greater
			-600 mL at start, 150		endogenous sparing
			mL every 15 min.		

	Effect of Glu and Fru	7 trained male cyclists	-Glu/Fru 1.2 g + .8	-Fasted	-Lactate appearance (~30%
	co-ingestion on lactate		g/min	-120 min. cycling at	higher), disappearance, and
	and Glu fluxes and		-Glu 2 g/min	60% VO2max	oxidation was higher in
	oxidation compared to		-600 mL at start, 280		Glu/Fru versus Glu
	Glu alone during		mL every 20 min.		-Liver may act as carbon
	exercise				reservoir after Fru has been
					converted to lactate; 40%
					of labeled carbons not
(95)					recovered
					-Oxidation higher in
					Glu/Fru
					-Gluconeogenesis from Fru
					higher in Glu/Fru
					-Gluconeogenesis from
					lactate was likely
					suppressed by
					hyperinsulemia

Mechanisms (Table 7)

CHOs may enhance performance by maintaining oxidation rates, preventing hypoglycemia, sparing muscle and/or liver glycogen, and/or by providing an important fuel source late in exercise.

Recent research and technological innovation has allowed the examination of cellular mechanisms. CHO ingestion may help maintain muscle energy balance. Studies show that subjects ingesting CHO during exercise have reduced levels of inosine monophospate (IMP) late in exercise. Thus, it is likely that CHO availability leads to reduced metabolism of adenosine diphospate (ADP) and adenosine monophospate (AMP), which occurs when adenosine triphosphate (ATP) is being utilized faster than it is being produced. CHO ingestion also may help to maintain excitation-contraction coupling late in exercise. This may be due to a better maintenance of Na-K-ATPase activity, and therefore membrane potential, which has been observed with CHO ingestion.

Study	Problem	Participants	Treatments	Protocol	Findings/Mechanisms
	Whether CHOs fed	10 trained cyclists (9	-Placebo	-Fasted	-Delayed fatigue not tied to
	during exercise delays	male, 1 female)	-Glu	-TTE at ~75%	prevention of
	fatigue		-Ingested 50% solution	VO2max	hypoglycemia
	-		after 20 min. of exercise		-Blood Glu may be an
(35)			delivering 1 g of		important fuel source
			CHO/kg of body		-
			weight. After 60, 90,		
			120 min. ingest 6%		
			solution		
	-Prolonged moderated in	tensity exercise reduces blo	od Glu and depletes glycoge	en	
	-Hypoglycemic subjects	often don't display symptor	ns; can't fully explain fatigu	ie	
(32)	-CHO during moderate in	ntensity exercise reduces m	uscle glycogen depletion		
	-During low intensity, Cl	HO causes hyperinsulemia c	causing increase Glu uptake	and oxidation sparing ende	ogenous sources mostly in
	the liver				
	Effect of Fru ingestion	8 males	-Placebo	-Fasted	-Trend towards less
	on muscle glycogen		-50 g Glu	-30 min. cycling at	glycogen usage with Fru
	usage during exercise		-50 g Fru	70% VO2max	versus Glu
			-710 mL 45 min. prior		-Less dramatic increase in
			to exercise		blood Glu with Fru; also
					rapid decline during
(59)					exercise with Glu but not
(59)					Fru
					-Increased blood lactate
					with Fru
					-Fru may better maintain
					liver CHO stores because it
					is more readily taken up by
					liver
	Percentage of Glu	6 healthy males	-200 g Glu in 8 doses	-Fasted	-100 g/hr of Glu results in
	ingested is utilized		every 30 min.	-285 min. at 45%	exo CHO representing
(124)	during exercise		-400 g Glu in 8 doses	VO2max on treadmill	~90% of total CHO
()			every 30 min.		utilization in last hour and
					permits endogenous
					sparing

(26)	Effect of CHO on performance after cycling to fatigue	7 trained male cyclists	-Placebo -Glu Polymer 3 g/kg -Glu infusion	-Fasted -TTE at 70% VO2max -20 min. rest -TTE at 70% VO2max	-BG important energy source for CHO availability late in exercise -Fatigue associated with declines in CHO oxidation or reduced CHO availability -Muscles rely on BG late in exercise as glycogen is depleted; Infusion of Glu at a rate of >1 g/min required to maintain 70% intensity -Likely that majority of infused Glu readily oxidized rather than stored
(151)	Effect of CHO ingestion during exercise on IMP accumulation	9 trained cyclists (8 males, 1 female)	-Placebo -Glu/Fru 7.5% (1.8:1) -3.6 mL/kg after 15 min. exercise and every 15 min. thereafter	-Fasted -TTE cycling at 70% VO2max	-CHO increased kreb's cycle intermediates -CHO reduces IMP accumulation; improved muscle energy balance
(163)	Oxidation rates of orally ingested CHOs during exercise	6 trained male cyclists	-Water -MD 4, 8, 12, 16% -Sucrose 8% -8 mL/kg immediately before; 2mL/kg every 15 min. during	-Standard breakfast -120 min. cycling at 60% VO2max	 -No difference in oxidation between MD and Sucrose; close to 1 g/min -Oxidation rates plateau at 90-120 min. -CHO maintains oxidation rates late in exercise; 50% of all CHO oxidation in last 30 min. -Maximal oxidation and sparing with 8%

	1	1	1		
(12)	Influence of CHO intake during exercise on substrate turnover and oxidation	14 trained male cyclists (glycogen-loaded)	-Placebo -10% CHO drink -170 mL at start and every 20 min.	-Standard meal 3 hrs before -180 min. cycling at 70% VO2max	-CHO provided at a rate (.83 g/min) closely matched by exogenous oxidation (.7 g/min) -CHO did not cause hyperglycemia; plasma insulin remained low -Glu oxidation increased to minute 90 -BG as fuel source: Blood Glu oxidation reached 65% of total late in exercise
(61)	Effects of hyperglycemia and Euglycemia on Glu kinetics	12 trained male cyclists	-Glu (25% Dextrose)	-2 hrs cycling at 70% VO2max	-Liver Glu output completely suppressed by hyperglycemia
(107)	Effect of CHO ingestion during exercise on Glu kinetics	6 trained cyclists/triathletes	-Glu 10% -Placebo -250 mL every 15 min. starting at min. 0	-Fasted -2 hrs cycling at 70% VO2max	-Liver Glu production reduced by 51% -Plasma Glu uptake is enhanced with CHO ingestion, i.e. uptake is increased with increased availability -Exogenous Glu accounted for ~15% of TEE -Glycogenolysis does not inhibit BG uptake due to hyperglycemia

		C (a l a l a l'ata	XX / a d a m	Track 1	
	Effect of CHO on	o trained cyclists	-water	-rasted	-Hepatic Glu output
	endogenous CHO		-Glu 4%	-120 min. cycling at	completely suppressed with
	production		-Glu 22%	50% VO2max	high Glu trial
			-Infusion of Glu		-HGP partially suppressed
			-8 mL/kg at start, 2		with low Glu trial
			mL/kg every 15 min.		-No effect on muscle
			during		glycogen
			-With low Glu trial – 35		-CHO oxidation may be
			g/hr		limited by rate of
(90)			-With high Glu trial –		appearance in the gut
(80)			175 g/hr		-Insulin levels were
					significantly increased
					during High Glu trials;
					possibly inhibits HGP
					-Max oxidation rate94
					g/min.; limited by intestinal
					absorption
					-Ingested Glu nearly
					completely oxidized (close
					to 98%)
	Effect of CHO	8 trained male cyclists	-Placebo	-Fasted	-CHO ingestion resulted in
	ingestion during	5	-CHO 8%	-TTE cycling at 70%	lower levels of IMP at end
	exercise on IMP levels		-250 mL at start and	VO2max	of exercise – CHO
(109)			every 15 min.		improves muscle energy
					balance
					-Levels lower despite
					exercising for longer
	Effect of CHO	13 trained male cyclists	-Placebo	-Fasted	-HGP partially suppressed
	ingestion on high-	and triathletes	-6% Glu	-TTE at ~83%	with CHO ingestion
(110)	intensity ~1 hr exercise		-7 mL/kg immediately	VO2max	-Only 26% of CHO enters
			before, 3.5 mL/kg every		blood; intensity causes less
			15 min.		absorption
	-CHOs improve perform	ance in short ~1hr intense e	xercise possibly my central	mechanisms	•
(81)	-Proposed mechanism -	maintaining blood Glu and	oxidation, sparing liver and/	or muscle glycogen, synth	esizing glycogen during low
	intensity exercise, or cen	tral effects			

(56)	Effects of Glu on Na-K- ATPase pump activity in response to exercise	14 healthy males, 1 healthy female	-Placebo -Glu 6% -240 mL at min. 30, every 15 min. during	-Fasted -TTE cycling at 52% VO2peak	-Na-K-ATPase activity was higher at min. 90 with Glu -Exercise regardless of duration did not result in a decrease activity -Glu may help to maintain membrane excitability -Glu resulted in higher insulin and lower catacholamines -Pump activity up despite lower catacholamines; mechanism independent of catacholamines -These pumps appear to prefer CHO for ATP
					CHO availability may inhibit function
(42)	Exercise's effect with or without Glu on sarcoplasmic reticulum Ca++ handling properties	14 males, 1 female	-Placebo -Glu 6% -240 mL starting at min. 30, every 15 min. thereafter	-Fasted -TTE cycling at 60% VO2max	-Glu ingestion has no effect on SR-Ca++ handling, endogenous glycogen, or muscle metabolic responses -Glu increases insulin, reduces catacholamines -Exercise reduces Ca++- ATPase activity
(82)	-Mechanisms responsible central mechanisms via or	for ergogenic effects – main alpharyngeal receptors (high	tenance of CHO oxidation, n intensity)	glycogen sparing, prevention	n of hypoglycemia,

	-Mechanisms for ergogenic effect – attenuation of central fatigue; maintenance of oxidation rates; muscle glycogen sparing; changes in muscle metabolite levels; reduced exercise-induced strain; better maintenance of excitation- contraction coupling
	-Evidence shows CHO does not reduce muscle glycogen use
	-Little evidence for dose-response effect
(86)	-CHO may maintain muscle function late in exercise by maintaining Na-K-ATPase activity
	-Glu may blunt serotonin release (via blunting of free tryptophan), which may be responsible for central fatigue
	-Hypoglycemia does not necessarily negatively affect performance in prolonged exercise
	-CHO reduces IMP and results in increased PCr levels following exercise
	-CHO may reduce stress hormones and cytokines which lead to central fatigue
	-CHO may reduce oxidative stress

CHO Digestion and Fluid Delivery (Table 8)

CHO oxidation does not seem to be limited by gastric emptying. Although emptying slows as the CHO concentration increases, delivery of CHO to the intestine actually increases with increasing concentration. Moreover, emptying does not slow at a rate that limits absorption. Small doses of CHOs may actually enhance emptying and fluid delivery via solvent drag; however, larger doses of CHO typically slow fluid delivery and gastric emptying, as mentioned. The slowing of gastic emptying and fluid delivery may be attenuated by mixing different forms of CHOs. Mixtures of Glu or MD and Fru result in improved gastric emptying and fluid delivery versus an isocaloric amount of Glu or MD.

The limiting factor for exogenous CHO utilization is likely absorption in the gut. Absorption into the circulation requires transport across two membranes in intestinal cells, first the apical followed by the basolateral membrane. At the apical membrane, Glu is primarily transported via the active transporter, SGLT1. However, it can also be transported via GLUT2. Fru is primarily transported via GLUT5 at the apical membrane, but can also be transported, to a smaller extent, via GLUT2. Interestingly, Glu ingestion has been shown to upregulate GLUT2 translocation to the apical membrane. This may explain why coingesting Glu with Fru stimulates Fru absorption. Both Glu and Fru are transported across the basolateral membrane primarily via GLUT2.

The primary limiting factors for CHO absorption are intensity of exercise and CHO content. High-intensity exercise results in reduced blood flow to the gut which reduces CHO transport. Highly concentrated doses of CHO often result in malabsorption because transporters become saturated. Because Glu and Fru do not share transporters, by coingesting Glu and Fru, more CHO can be absorbed before saturation of transporters occurs.

Study	Problem	Participants	Treatments	Protocol	Findings
(34)	Gastric emptying rates for various sports drinks	3 healthy women, 9 healthy men	-Water -Gatorade -Braketime -Body Punch -400 mL	-Stomach aspiration	-High concentration of CHOs slows gastric empyting -Gatorade emptied slowest, but it delivers most CHOs in 15 min.
(122)	Gastric emptying of CHO drinks during exercise in heat	5 trained male runners	-Placebo -10% Glu -10% Glu Polymer -200mL every 20 min.	-Fed -2 hrs running at 65% VO2max	-No difference in gastric emptying - Trend for Glu drink to empty slower than water-placebo (not significant)
(143)	Capacity to absorb Fru	10 healthy adults	-15, 20, 25, 37.5, 50 g of Fru 10% -100, 75, 50 Suc 10% -50 g Glu, 50 g Fru 10% -50 g Fru, 25 g Glu 10% -50 g Fru, 12.5 g Glu 10%	N/A	-Fru alone isn't absorbed as well as Glu or Suc -Fru and Glu combined absorbed well -Glu stimulates Fru uptake in dose- dependent manner
(113)	Effects of different CHO concentrations on gastic emptying and performance	8 trained male cyclists	-Placebo -5% (MD, Glu) -6% (MD 2.14 g/100mL, Fru 1.88 g/100mL, Suc 1.95 g/100mL) -7.5% (MD 5.55 g/100mL, Fru 2g/100mL) -~170 mL prior to each 12 min. bout	-(7 x 12 min.) at 70% VO2max. 3 min. rest in between -12 min. TT at end	-Beverages containing Fru and/or Suc were empytied better than MD/Glu beverage
(103)	-GE is slowed by CHOs w -With increasing CHO int -Passive water absorption	with more slowing occurring ake fluid delivery is decreation is stimulated by active Glu	g the higher the concentration used, but CHO delivery is induced and sodium absorption	on and osmolality creased	

	Fru transporter – GLUT	-GLUT5 is the Fru transp	orter				
(14)	5	-GLUT5 shows little abili	ty to transport Glu				
		-Uptake up Fru by GLUT2 inhibited by Glu and Galactose					
	Gastric emptying,	8 trained male cyclists	-Water	-Fasted	-More CHO emptied		
	absorption, and		-4.5% Glu	-80 min. at 70%	from stomach with		
	oxidation of CHO		-17% Glu	VO2max	higher concentration		
(134)	during exercise		-17% MD		-Gastric emptying and		
	_		-8 mL/kg at start, 3		fluid absorption don't		
			mL/kg at 20, 40, and 60		limit exogenous		
			min.		oxidation		
	Effect of CHO	10 trained male cyclists	-Placebo	-105 min. cycling at	-No differences in		
	composition on plasma		-Glu/Suc 6%	70% VO2max	gastric emptying or		
	volume and gastric		-8.3% High Fru CS	-Followed by 15 min.	plasma volume		
(28)	emptying		-6.3% HFCS + 2% Glu	performance ride	-Highly concentrated		
			Polymer		drinks deliver more		
			-Consumed every 15		CHOs		
			minutes				
	-30 to 50% of people part	icipating in exhaustive exer	cise experience 1 or more s	ymptoms of GI distress			
	-Ingesting foods high in fiber, fat, protein, or highly concentrated CHOs can cause symptoms						
(13)	-Dilute CHO solutions do not cause GI distress						
	-Reduced blood flow to GI tract during intense exercise causes distress						
	-Exercising training can a	ttenuate the reduction in blo	bod to gut				
	Responses of intestinal	-High Glu diet increases S	SGLT1 and GLUT2 mRNA				
(114)	Glu transporters to	-Galactose and Fru increa	se GLUT2 mRNA				
(114)	different levels of	-GLUT5 mRNA was only	increased by Fru				
	dietary sugars						
(118)	-Gastric emptying and flu	id absorption is reduced wit	th increasing CHO concentr	ation			
(110)	-Small concentrations of C	CHO can actually stimulate	net intestinal absorption				
	Effect of osmolality and	6 healthy males	-Glu 40g/L	-Fasted	-CHO content has more		
	CHO content on gastric		-Glu polymer 40 g/L	-Gastric aspiration	effect on gastric		
(162)	emptying		-Glu 188 g/L		emptying than		
			-Glu polymer 188 g/L		osmolality		
			-600 mL				

	Effect of CHO type and	8 healthy males	-Glu	-75 min. rest	Highest CHO			
	concentration on water	-	-MD		absorption occurred			
	absorption		-Glu + Fru		with Glu and Fru			
	1		-Glu + Suc		-Mixed solution had			
			-All varied from 6-8%;		greater water absorption			
			osmolalities 268-314		despite increased			
			mOsm/kg		osmolalities			
			0		-Effect of osmolality on			
(147)					water absorption is			
					related to CHO type			
					-Water absorption may			
					be limited by CHO			
					transport			
					-When CHOs are			
					mixed, higher			
					concentration does not			
					effect absorption			
	-Diet influences up or dow	vnregulation of intestinal tra	insporters; trainability of the	e gut?				
	-Reserve of unutilized transporters exists because of unpredictability of diet and physiological responses to environment							
	-Hyperglycemia increases turnover of transporters perhaps by turning on inactive ones							
	-High CHO diet can increase Glu absorption rates via increased transport sites within 24 hrs, takes 48hrs to lose these adaptations;							
	same for GLUT5 and Fru	although increases take 48	hrs					
(49)	-Increased transport activity is more sensitive to Fru than Glu (GLUT5)							
	-High fat diets enhances Glu uptake							
	-Starvation/fasting causing increased absorption of nutrients per milligram without an upregulation in transporters; causes higher ratio							
	of mature transporters as fewer new transporters will be made because of lack of energy – thus efficient transporters							
	-Thus, starvation can lead to increased sugar transport							
	-Exercise causes reduced Fru uptake capacity							
	-GLUT5 highly specific to	Fru; upregulation is transc	riptional					
	-SGLT 1 transports Glu ar	nd other sugars						
	-GLUT 2 Glu, Galactose, and Fru?							

	Mechanisms of Fru	7 healthy men	-Fru/Glu	-triple lumen	-Fru/Glu and
	transport		-Fru/Glu/Acarbose		Fru/Glu/Acarbose
	_		-Fru/Mannitol		absorbed fastest
(146)			-Suc/Acarbose		-Fru transported via
			-Suc		facilitated diffusion
			- perfused 15 mL/min.		-Paracellulary,
					transported via Glu-drag
	Effect of CHO ingestion	7 trained male cyclists	-Placebo	-Fasted	-Rate of exogenous Glu
	before and during		-CHO 6.4% 2g/hg	-2 hrs at 65% VO2max	oxidation is limited by
	exercise on metabolism		-Placebo 30 min. before	-Followed by 7 kJ TT	digestion, absorption,
	and performance		and CHO during		and rate of appearance
(48)			-21% CHO before and		in blood
			placebo during		-Higher oxidation with
			-CHO before and during		pre-exercise feeding
					likely tied to
					hyperinsulemia
	Effect of CHO ingestion	13 trained male cyclists	-Placebo	-Fasted	-Only 26% of CHO
	on high-intensity ~1 hr	and triathletes	-6% Glu	-TTE at ~83% VO2max	enters blood; intensity
(110)	exercise		-7 mL/kg immediately		causes less absorption
			before, 3.5 mL/kg every		
			15 min.		
	-CHOs can be separated in	nto two groups based on ox	idation rates: Glu, Suc, Mal	, MD at 1 g/min; Fru, Gal, A	Amylose at .6 g/min
	-CHO absorption in the gu	at seems to be the limiting f	actor for oxidation		
(76)	-CHO intake at 1 g/min ca	an result in oxidation of ~1g	min; increasing intake doe	sn't increase oxidation rate	
	-Liver may also take up G	lu making it a limiting fact	or		
	-Ingesting large amounts of	of Glu can increase CHO and	nd water absorption		
	-Fluid delivery increases v	with increasing ingestion al	though the percentage of tot	al fluid ingested drops with	increasing ingestion
(135)	-Increased fluid intake is a	associated with increased G	I distress		
(155)	-High intensity limits abso	orption			
	-CHO enhances fluid deliv	very			

	-The majority of CHO abs	sorption occurs in the small	intestine meaning absorptio	on depends on the rate at wh	ich CHO is emptied from	
	the stomach					
	-Gastric emptying is slowe	ed by increasing the energy	content. Although low cond	centrations (~2%) of CHO a	are emptied at roughly the	
	same rate as water, increas	sing the content above this s	slows the rate. However, mo	ore CHO is delivered the me	ore the energy content.	
	-Energy density is the limit	iting factor for empyting, no	ot osmolality.			
	-High intensity exercise re	esults in reduced emptying				
	-Absorption is also negative	vely correlated to intensity				
(97)	-CHO can stimulate water	absorption unless the conc	entration is very high; high	concentrations can cause be	ody water to move into the	
	intestine before reaching e	equilibrium and being reabs	orbed with the solute			
	-Intestinal transporters car	be separated into two cate	gories: active transporters a	nd diffusion facilitated tran	sporters	
	-Active transports function	n via the electrochemical gr	adient of a co-transported n	nolecule like Na		
	-Diffusion facilitated trans	sporters function via concer	tration gradients of a partic	ular solute		
	-Glu is mainly actively tra	nsported with sodium via S	GLT1			
	-Fru is transported via the	sodium-independent GLUT	Γ5			
	-Suc is hydrolyzed to Glu	and Fru in the intestine				
	-CHOs improve performance in short ~1hr intense exercise possibly my central mechanisms					
	-Single CHO sources can be absorbed at a max rate of 1 g/min (Glu, Suc, MD, Maltose 1 g/min; Fru, Galactose ~.6 g/min.)					
(81)	-Using multiple CHOs ca	n increase absorption by 20	-50%			
	-Proposed mechanism - maintaining blood Glu and oxidation, sparing liver and/or muscle glycogen, synthesizing glycogen during					
	low intensity exercise, or	central effects				
	High molecular weight	8 trained male cyclists	-water	-Fasted	-Molecular weight has	
	versus low molecular		- 1.8 g/min HMW	-150 min. cycling at	no influence on	
	weight Glu polymers on		11.25%	65% VO2max	absorption and	
(142)	substrate oxidaton		- 1.8 g/min LMW		oxidation	
			11.25%		-Maximum oxidation	
			-600 mL at start, 250		Glu 1 g/min (52% of	
			mL every 15 min.		what was ingested)	
	Whether lowering the	4 healthy males, 1	-Water	-Fasted	-Gastric emptying,	
	concentration of a CHO	healthy female	-3% (1% Glu, 2% Suc)	-85 min. at ~65%	water absorption, and	
	drink influences gastric		-6% (2% Glu, 4% Suc)	VO2max	time trial performance	
(138)	empyting or CHO		-325 mL at start, 165	-Followed by 3 mile	not different	
	absorption		mL every 10 min.	time trial	-CHO absorption and	
					blood Glu highest with	
					6%	

	-Exogenous oxidation	8 trained nonacclimated	-1.5 g/min Glu	-Fasted	-Glu/Fru resulted in		
	and fluid delivery of	male evelists	$1 \text{ Glu} \pm 5 \text{ Fru } \alpha/\text{min}$	120 min at 50% Wmay	greater fluid delivery		
	Glu/fru vorsus Glu in	maic cyclists	-1 Giu + .5 Fiu g/IIIII	-120 mm. at 50% willax	then Glu		
(71)	the heat Musele		- Water	-51.9 degrees C	No difference in		
(71)	divergen utilization		-000 IIIL at start, 200		-NO difference in		
	with Clu ingestion in		IIIL every 15 IIIII.		grycogen utilization		
	with Giu nigestion in						
	Fluid toloron on while	5 famala 2 mala trained	Chy 40/ ad libitum	Fastad	No differences		
	Fluid tolerance while	5 Temale, 2 male trained	-Giu 4% - au Iibituin	-Fasted	-No differences		
(94)	running	runners	every 10 min.	-90 min. at 65%	observed in gastric		
			-Glu 4% - Match sweat	VO2max	emptying		
	V71 · 1 1 1 · · · 1		rate every 10 min.				
	Fluid delivery with	6 males	-Water	-Fasted	-Glu/Fru results in		
	mixed carb beverage		-75 g Glu 12.5%	-Drink	higher fluid delivery		
(37)	versus Glu		- 50 g Glu, 25 g Fru	-Sit for 180 min.	than Glu		
			12.5%		-Fluid delivery for water		
			-Taken in 600 mL bolus		and Glu/Fru not		
					different		
	-Oxidation rates - ~1 g/mi	in – Glu, Suc, Maltose, MD	, Amylopectic, High molecu	alar weight Glu polymer; .5	6 g/min – Fru,		
	Galactose, Isomaltulose, Trehalose, Amylose						
(82)	-Oxidation increased with multiple sources and has higher oxidation efficiency						
	-Body size/mass has little effect on oxidation rates						
	Effects of ingesting	8 healthy males	-Water	-Fasted	-Ingesting Glu/Fru		
	Water, Glu,, and		-1.5 g/min Glu	-120 min. cycling at	results in increased		
(78)	Glu/Fru on gastric		-1 Glu + .5 Fru g/min	50% Wmax	gastric emptying and		
	emptying and fluid		-600 mL at start,		fluid delivery versus		
	delivery		203 mL every 15 min.		Glu		
	-Glu is primarily transport	ted via the active transporte	r SGLT1; however, Glu ing	estion results in movement	of GLUT2 to the apical		
	membrane which facilitate	es Glu transport also					
(87)	-Glu travels across the bas	solateral membrane via GL	UT2				
	-Fru is transported through	h the apical membrane via (GLUT5 but shares GLUT2	with Glu for transport from	the basolateral membrane		
		-					
	-Fru transport through api	cal membrane can be increa	ased with Glu coingestion as	s it results in GLUT2 movin	g to apical membrane		
(02)	-Fru transport through api -Absorption rate not affec	cal membrane can be increated by body mass	ased with Glu coingestion as	s it results in GLUT2 movin	ig to apical membrane		

	-Fru is transported across the apical membrane of intestinal epithelial cell by GLUT5 and possibly by GLUT2
	-Fru is transported across the basolateral membrane is via GLUT2 and GLUT5
(84)	-Upregulation of GLUT5 and GLUT2 mRNA occurs with increases in dietary Fru; GLUT2 also upregulated by dietary Glu
	-Glu seems to stimulate Fru absorption possibly because of the upregulation of GLUT2 (particularly at the apical membrane) by the
	presence of Glu

GI Distress (Table 9)

Gastrointestinal (GI) distress is often reported during endurance exercise. Symptoms include nausea, abdominal cramping, urge to urinate or defecate, bloating, belching, flatulence, etc. GI distress is often observed with the ingestion of CHO during exercise. The cause of these symptoms may be inefficient gastric emptying or absorption of CHO. Indeed, studies show that GI distress is associated with unabsorbed CHO remaining in the gut. Multiple transportable CHOs have been shown to be digested and/or absorbed more efficiently than isocaloric amounts of Glu. Moreover, more symptoms of GI distress have been observed when subjects ingest large amounts of any single CHO source. However, there are individual differences in terms of GI distress. Some can tolerate higher CHO intake rates than others. In fact, one may be able to 'train' his/her gut to absorb more CHOs by training with high CHO availability. The effect of 'training the gut' on the occurrence of GI distress is yet to be examined.
Study	Problem	Subjects	Treatments	Protocol	GI Distress
	Effect of diet on Glu	Adult swiss Webster	-CHOW diet (High in	Measurements on	-Intestinal transport of
	transport in mice	mice	CHOs)	excised everted sleeves	Glu increases nearly 2-
			-MEAT diet (negligible		fold with high Glu diets
(85)			CHOs)		-Most likely because of
					stimulation of unused
					transporters rather than
					formation of new ones
	Absorption of Fru	16 healthy adults	Various amounts of Fru	N/A	-Malabsorption
(133)					associated with GI
					distress
	Capacity to absorb Fru	10 healthy adults	-15, 20, 25, 37.5, 50 g	N/A	-Unabsorbed CHO
			of Fru 10%		could cause GI distress
(142)			-100, 75, 50 Suc 10%		
(143)			-50 g Glu, 50 g Fru 10%		
			-50 g Fiu, 25 g Giu 10%		
			-50 g Fiu, 12.5 g Oiu		
	Effect of sorbitol	30 healthy men and	-20 g 8%	N/A	-Malabsorption can
(29)	ingestion on GL distress	women	-10 g 4%	1.0/1.	cause GI distress
(2))	ingestion on of distress	women	-5 g 2%		
	Effects of ingesting Glu,	9 healthy males, 3	-6% Glu	-Standard breakfast and	-Fru ingested resulted in
	Suc, and Fru on	healthy females	-6% Suc	lunch	more GI distress
	metabolism and		-6% Fru	-20 min. at 65%, 20	
	performance		-6 mL/kg immediately	min. at 75%, 15 min. at	
(117)			before, 3mL/kg during	80%, 10 min at 80%, 15	
			every rest period	min. at 75%, 8 min. at	
				80%, with 4 min. rest	
				between each	
				-600 rpm TT at end	
	Responses of intestinal	-High Glu diet increases S	SGLT1 and GLUT2 mRNA		
(114)	Glu transporters to	-Galactose and Fru increa	se GLUT2 mRNA		
(***)	different levels of	-GLUT5 mRNA was only	y increased by Fru		
	dietary sugars				

	-30 to 50% of people par	-30 to 50% of people participating in exhaustive exercise experience 1 or more symptoms of GI distress						
(13) -30 to 50% of people participating in exhaustive exercise experience 1 or more symptoms of GI di (13) -Ingesting foods high in fiber, fat, protein, or highly concentrated CHOs can cause symptoms -Dilute CHO solutions do not cause GI distress -Reduced blood flow to GI tract during exercise causes distress -Exercising training can attenuate the reduction in blood to gut -Diet influences up or downregulation of intestinal transporters; trainability of the gut? -Reserve of unutilized transporters exists because of unpredictability of diet and physiological resp -Hyperglycemia increases turnover of transporters perhaps by turning on inactive ones -High CHO diet can increase Glu absorption rates via increased transport sites within 24 hrs, takes same for GLUT5 and Fru although increases take 48 hrs -Increased transport activity is more sensitive to Fru than Glu (GLUT5) -High fat diets enhances Glu uptake -Starvation/fasting causing increased absorption of nutrients per milligram without an upregulation of mature transporters as fewer new transporters will be made because of lack of energy – thus eff -Thus, starvation can lead to increased sugar transport -Exercise causes reduced Fru uptake capacity -GLUT 5 highly specific to Fru; upregulation is transcriptional -SGLT 1 transports Glu and other sugars -GLUT 2 Glu, Galactose, and Fru? Prevalence of GI 606 trained endurance Various Questionnaire	Ingesting foods high in fiber, fat, protein, or highly concentrated CHOs can cause symptoms							
(13)	-Dilute CHO solutions de	o not cause GI distress						
	-30 to 50% of people participating in exhaustive exercise experience 1 or more symptoms of GI distress -Ingesting foods high in fiber, fat, protein, or highly concentrated CHOs can cause symptoms -Dilute CHO solutions do not cause GI distress -Reduced blood flow to GI tract during exercise causes distress -Exercising training can attenuate the reduction in blood to gut -Diet influences up or downregulation of intestinal transporters; trainability of the gut? -Reserve of unutilized transporters exists because of unpredictability of diet and physiological responses to environment -Hyperglycemia increases turnover of transporters perhaps by turning on inactive ones -High CHO diet can increase Glu absorption rates via increased transport sites within 24 hrs, takes 48hrs to lose these adapt same for GLUT5 and Fru although increases take 48 hrs -Increased transport activity is more sensitive to Fru than Glu (GLUT5) -High fat diets enhances Glu uptake -Starvation/fasting causing increased absorption of nutrients per milligram without an upregulation in transporters; causes h of mature transporters as fewer new transporters will be made because of lack of energy – thus efficient transporters -Thus, starvation can lead to increased sugar transport -Exercise causes reduced Fru uptake capacity -GLUT5 highly specific to Fru; upregulation is transcriptional -SGLT 1 transports Glu and other sugars -GLUT2 Glu, Galactose, and Fru? Prevalence of GI distress symptoms in runners, cyclists, triathletes -Runners exper more lower G -Runners exper -Runners exper -Runn							
	-Exercising training can	50% of people participating in exhaustive exercise experience 1 or more symptoms of GI distress ting foods high in fiber, fat, protein, or highly concentrated CHOs can cause symptoms e CHO solutions do not cause GI distress ced blood flow to GI tract during exercise causes distress ting training can attenuate the reduction in blood to gut influences up or downregulation of intestinal transporters; trainability of the gut? ve of unutilized transporters exists because of unpredictability of diet and physiological responses to environment rglycemia increases turnover of transporters perhaps by turning on inactive ones CHO diet can increase Glu absorption rates via increased transport sites within 24 hrs, takes 48hrs to lose these ada for GLUT5 and Fru although increases take 48 hrs ased transport activity is more sensitive to Fru than Glu (GLUT5) fat diets enhances Glu uptake ation/fasting causing increased absorption of nutrients per milligram without an upregulation in transporters; causes .ure transporters as fewer new transporters will be made because of lack of energy – thus efficient transporters .ise causes reduced Fru uptake capacity T5 highly specific to Fru; upregulation is transcriptional F1 transports Glu and other sugars T2 Clu, Galactose, and Fru? lence of GI as symptoms in is						
	-Diet influences up or downregulation of intestinal transporters; trainability of the gut?							
	-Reserve of unutilized tra	ansporters exists because of	unpredictability of diet and	physiological response	s to environment			
	-Hyperglycemia increase	s turnover of transporters pe	erhaps by turning on inactiv	ve ones				
	-High CHO diet can incr	ease Glu absorption rates via	a increased transport sites v	vithin 24 hrs, takes 48hr	s to lose these adaptations;			
	same for GLUT5 and Fru	although increases take 48	hrs					
	-Increased transport activity is more sensitive to Fru than Glu (GLUT5)							
(49)	-High fat diets enhances	-High fat diets enhances Glu uptake						
(49)	-Starvation/fasting causing increased absorption of nutrients per milligram without an upregulation in transporters; causes higher ratio							
of mature transporters as fewer new transporters will be made because of lack of energy – thus efficient transporters			of mature transporters as fewer new transporters will be made because of lack of energy – thus efficient transporters					
	-Thus, starvation can lead to increased sugar transport							
-Exercise causes reduced Fru uptake capacity					ercise causes reduced Fru uptake capacity			
	-GLUT5 highly specific to Fru; upregulation is transcriptional							
	-GLUT5 highly specific to Fru; upregulation is transcriptional -SGLT 1 transports Glu and other sugars							
	-GLUT 2 Glu, Galactose	of people participating in exhaustive exercise experience 1 or more symptoms of GI distress bods high in fiber, fat, protein, or highly concentrated CHOs can cause symptoms D solutions do not cause GI distress lood flow to GI tract during exercise causes distress training can attenuate the reduction in blood to gut nees up or downregulation of intestinal transporters; trainability of the gut? unutilized transporters exists because of unpredictability of diet and physiological responses to environment mia increases turnover of transporters perhaps by turning on inactive ones diet can increase Glu absorption rates via increased transport sites within 24 hrs, takes 48hrs to lose these adaptation JUT5 and Fru although increases take 48 hrs ransport activity is more sensitive to Fru than Glu (GLUT5) ets enhances Glu uptake fasting causing increased absorption of nutrients per milligram without an upregulation in transporters; causes higher ansports as fewer new transporters will be made because of lack of energy – thus efficient transporters ation can lead to increased sugar transport uses reduced Fru uptake capacity ghly specific to Fru; upregulation is transcriptional unsports Glu and other sugars lu, Galactose, and Fru? of GI ghtoms in :lists, itists						
	Prevalence of GI	606 trained endurance	Various	Questionnaire	-Most symptoms			
	distress symptoms in	athletes			reported by cyclists			
	runners, cyclists,				-GI distress during			
	triathletes				exercise correlates with			
(125)					GI distress issues when			
(123)					at rest			
					-Runners experience			
					more lower GI distress			
					-Cyclists upper and			
					lower GI symptoms			

(79)	Whether gastrointestinal problems are related to endotoxemia in ironman triathletes	29 male triathletes, 1 female triathlete	Various	-Blood samples immediately after and 1, 2, and 16 hrs after competition	 -93% of participants experienced GI distress; 7% had to quit because of them -Endotoxin LPS does leak into the circulation and may be responsible for cytokine release and GI distress -68% of subjects had endotoxemia
(136)	Substrate utilization in exercising boys ingesting water, Glu, and Glu plus Fru	12 boys (11-14 yrs)	-water -6% Glu -3% Fru + 3% Glu -25 mL/kg -Drinks ingested at 30 and 15 min. before, every 15 min. during	-Standardized Breakfast -90 min. 55% VO2max - 30 min. cycling with 5 min. rest repeated 3 times -Ride to exhaustion at 90% VO2max -Stomach fullness scale	-Similar in all trials
(145)	Effect of intravenous Glu infusion on gastric motility	Adult male Sprague- Dawley rats	25%Glu at 2 mL/hr	N/A	-Gastric motility inhibited by Glu infusion, but only when rats were hypoglycemic to begin with. -Site of inhibition is in CNS not periphery
(67)	Effect of ingesting Glu, Suc, and Fru simultaneously on oxidation rates	8 trained male cyclists	-Water -2.4 g/min Glu -1.2 Glu + .6 Fru + .6 Suc g/min -600 mL at start, 150mL every 15 min.	-Fasted -150 min. at ~60% VO2max	-More severe complaints in Glu trial -1 subject in Glu trial vomited after 120 min.

	Effects of drinking Glu/Suc and	9 trained male cyclists	-1.8 g/min Glu -1.2 Glu + .6 Suc g/min	-Fasted -150 min. at 50% Wmax	-More subjects reported severe problems in Glu
	Glu/Maltose versus Glu		-1.2 Glu + .6 Maltose		and Glu/Maltose trials
(72)	on oxidation rates		g/min		
()			-Water		
			-600 mL at start, 150		
			mL every 15 min.		
	Whether ingestion of	8 trained male cyclists	-1.8 g/min Glu	-Fasted	-Severe GI complaints
	Glu/Fru would result in		-1.2 g/min Glu	-120 min. at 50% Wmax	in high Glu trial
(60)	oxidation rate >1 g/min		-1.2 Glu + .6 Fru g/min		-Questionnaire used
(69)			-Water		
			-600 mL at start 150 mL		
			every 15 min.		
	Whether ingestion of	8 trained male cyclists	-Water	-Fasted	-4 severe complaints in
	MD plus Fru leads to		-1.8 g/min MD	-150 min. at 55% Wmax	MD trial
(164)	exo oxidation >1.1		-1.2 MD + .6 Fru g/min.		-1 sever complaint in
	g/min.		-600 mL at start, 200		MD/Fru
	0		mL every 15 min.		
	Role of tension	6 healthy men, 8 healthy	N/A	-Induce gastric	-Stomach volume and
	receptors in gastric	women		contraction or relaxation	subsequent stretch is
(19)	perception			-Scale of fullness and	more likely the cause of
(18)				hunger	fullness
				_	-Tension receptors do
					not signal fullness
	Whether ingestion of	8 trained male cyclists	-1.2 g/min glu (8.7%)	Fasted	-No obvious differences
	glu/suc results in higher		-1.2 g/min suc (8.7%)	120 min. at 50% Wmax	between trials
	oxidation rates than Glu		6 glu + .6 suc		-More distress with
(70)	alone		g/min(8.7%)		CHOs
(70)			-1.2 glu + 1.2 suc g/min		
			(17.5%)		
			-600 mL at start, 150		
			mL every 15 min.		

(77)	-Exogenous oxidation rates and Glu kinetics during 5 h of exercise -Effect on oxidation of Glu/Fru	8 endurance trained males	-1.5 g/min Glu -1 Glu + .5 Fru g/min -600 mL at start, 270 mL every 20 min.	-Fasted -5 hrs cycling at 58% VO2max	-Perception of stomach fullness lower with Glu/Fru compared to Glu
(71)	-Exogenous oxidation and fluid delivery of Glu/fru versus Glu in the heatMuscle glycogen utilization with Glu ingestion in heat.	8 trained, nonacclimated male cyclists	-1.5 g/min Glu -1 Glu + .5 Fru g/min -Water -600 mL at start, 200 mL every 15 min.	-Fasted -120 min. at 50% Wmax -31.9 degrees C	-2 severe complaints in Glu trial -No severe complaints in Glu/Fru or water
(154)	Effect of ingestion of high fat energy supplements on gastric distress	9 trained male cyclists	 -2 week diet high in esterified oils -2 week diet high in long-chain fatty acids During: 1) CHO + esterified oils 2) Placebo following long chain fatty acid diet 3) CHO only following long chain fatty acid diet 	-Fasted -3 hrs cycling at 50% VO2max -Followed by 10 min. maximal sprints	-Some attenuation of gastric distress with CHOs and esterified oils, but detrimental effect on performance
(68)	Whether Glu/Fru leads to oxidation rates >~1.3 g/min	8 trained male cyclists	-Water -1.2 g/min Glu -1.2 Glu + 1.2 Fru g/min -600 mL at start, 150 mL every 15 min.	-Fasted -150 min. at 50% Wmax	-No difference in number of complaints or number of subjects complaining between trials -1 subject in Glu/Fru trial had severe problem

(139)	Effect of various ratios of Fru to MD on oxidation and performance	10 trained male cyclists and triathletes	-MD .6 g/min (No Fru) -MD .6 + Fru .3 g/min (Low Fru .5) -MD .6 + .5 Fru g/min (Medium Fru .8) - MD .6 + .7 Fru g/min (High Fru 1.2)	-Fasted -2 hrs at 50% Wmax -10 max effort sprints (2-3 min.) with rest at ~40% VO2max (5-6 min.) between each -Questionnaire – nausea and abdominal cramps	-Average nausea reduced in Medium and High Fru trials
(94)	Fluid tolerance while running	5 female, 2 male trained runners	-Glu 4% - ad libitum every 10 min. -Glu 4% - Match sweat rate every 10 min.	-Fasted -90 min. at 65% VO2max	-Drinking to match sweat rate results in fewer complaint of GI distress
(127)	GI tolerance with high CHO intake during exercise	Endurance trained men and women ~75	-Glu/Fru 1.0 g/min every 3.2 kms (Study 1) -Glu/Fru 1.4 g/min (Study 1) -Glu gels 1.4 g/min (Study 2) -Glu/Fru gels 1.4 g/min (Study 2)	-16 km runs outdoors	-No significant differences between trials for GI distress -Few had severe complaints meaning individualized feeding strategies may be required
(131)	Oxidation rates between mixed CHO gel and drink	8 trained male cyclists	-Gel (1.2 Glu + .6 Fru g/min.) plus water -Drink – 1.2 Glu + .6 Fru g/min -Water -400 mL of water and 50 g of gel at start, 200 mL and 25 g of gel every 15 min. -400 mL of drink at start, 200 mL every 15 min.	-Fasted -180 min. at 60% VO2max	-No severe GI symptoms -No difference in stomach fullness

(130)	Oxidation rates between mixed CHO solids and drink	8 trained cyclists	- Bar (.67 Glu + .33 Fru g/min) plus water - Drink - 1 MD + .5 Fru g/min -Water -400 mL water + Bar at start, 200 mL water + 32 g of Bar every 15 min. -400 mL drink at start, 200 mL every 15 min.	-Fasted -180 min. at 60% VO2max	-No severe symptoms in any trial -Stomach fullness highest with bar
(156)	Effect of Glu/Fru versus isocaloric Glu on performance	9 trained male cyclists	-2.4 g/min Glu -1.2 Glu + 1.2 Fru g/min -250 mL to start, 250 mL every 15 min.	-Fasted -simulated 100 km time trial with intermittent 1 km and 4km sprints	 -4 of 9 experienced GI distress in Glu trial -2 episodes of diarrhea, 1 vomiting, 1 sour stomach -no complaints in Glu/Fru
(31)	Effects of daily training with CHO ingestion on oxidation rates: trainability of the gut	16 endurance trained male cyclists/triathletes	-High CHO training group -Low CHO training group -During test: CHO 10% Water 5 mL/kg every 20 min.	28 days training -Standard breakfast -Test before and after training – 100 min.65% VO2max -Following by ~30 min. TT	-Training with high CHO availability resulted in increased Glu oxidation during submaximal exercise and increased citrate synthase activity -This occurred despite no increase in GLUT4 content -No clear benefit on performance
(129)	CHO oxidation from from a drink in running versus cycling	8 trained male cyclists or triathletes	-Water -1 Glu + .5 Fru g/min -300 mL at start, 150 mL every 15 min.	-Fasted -Running 120 min. at 60% VO2max -Cycling 120 min. at 60% VO2max	-No severe problems recorded in either trial

	Nutritional and fluid intake of endurance	221 ironman triathletes, marathon runners, or	N/A	-Post-race questionnaires for intake	-High CHO intake related to more GI
	athletes and GI	professional cyclists		and GI symptoms	symptoms, but also
	symptoms				better performance
(128)					-GI distress most
(120)					prevalent in Ironman
					-GI distress correlated
					with history of problems
					-Triathletes ingest more
					CHOs than runners
	Impact of the ratio of	10 trained male cyclists	-Placebo	-Fasted	-Stomach fullness, ab
	Glu/Fru on oxidation,		Fru and MD 1.8 g/min	-150 min. at 50% peak	cramping, nausea lowest
(123)	absorption and		-4.5% and 9% (.5)	power	with .8 followed by 1.25
	performance		-6% and 7.5% (.8)	-Incremental test to	solution.
			-7.5% and 6% (1.25)	exhaustion	
		-7 male, 3 female	-Glu+MD ~1.4 g/min	-Standardized meal	-Reduced GI distress
		mountain bikers (race)	-Fru+MD ~1.4 g/min	evening before race and	with Fru+MD
		-16 male cyclists (lab)		lab portion, no breakfast	-Mean sprint power
				(fasted)	actually <i>increased</i> with
				-Lab portion, subjects	increased GI distress in
(140)				consumed cereal bar 10	the lab
(140)				min. prior to exercise	-Performance times in
				-2.5 hr mtn bike race	race were associated
				$-\sim$ 3 hr ride – 94 min. set	with lower ratings of GI
				workload followed by	distress
				performance test	
					1

Physiological Variables (Table 10)

The effect of CHO on various physiological variables has been reported on extensively. CHO ingestion during exercise generally does not alter VO₂ or VE compared to placebo or water ingestion. RER and blood glucose typically rise with CHO ingestion. Moreover, as a result of increased CHO availability, RER is maintained late in exercise with CHO ingestion compared to water or placebo. HR is not affected at the onset or during the early stages of exercise. However, late in exercise, via the enhanced ability to maintain intensity, HR is often higher with CHO ingestion. Ratings of perceived exertion (RPE) are lower with CHO ingestion, particularly late in exercise. These differences may be due to depletion of endogenous CHO stores. Recent studies have reported lower RPE with ingestion of a Glu/Fru beverage versus a Glu beverage. The authors have speculated that this may be due to greater CHO availability when subjects ingest Glu/Fru. It may also be due to reduced GI distress with Glu/Fru relative to Glu.

The effect of CHO ingestion on blood lactate (LA) and blood glucose seems to be dependent on the CHO type. When comparing Glu to placebo or water, there is no difference in LA. Fru ingestion results in increased LA versus Glu and placebo/water. This is likely due to differences in metabolism between Glu and Fru. Glu is readily available to be taken up and oxidized by the muscle after being absorbed; Fru is diverted to the liver where is it converted either to LA or Glu via gluconeogenesis. These differences are also likely responsible for the effect of Fru on blood glucose. There is a delay in the rise of blood glucose with Fru ingestion. This is likely due to the time it takes to convert Fru to Glu via gluconeogenesis. Glu and Fru coingestion results in enhanced CHO oxidation versus ingestion of an isocaloric Glu beverage. This is due to enhanced absorption via separate intestinal transporters for Glu and Fru. Not surprisingly, this enhanced CHO oxidation results in higher RER values with Glu/Fru versus Glu and placebo/water. LA is also higher with Glu/Fru because of the above-mentioned nature of Fru metabolism.

Study	Problem	Participants	Treatments	Protocol	Findings
	Fate of Glu ingested	6 trained male cyclists	-139 mM of Glu	-Fasted	-Plasma glucose rises
(57)	during prolonged	_	-589 mM of Glu	-180 min. cycling at	within 5 min. of
(37)	exercise		-400 mL consumed after	50% VO2max	exercise and plateaus
			120 min. of exercise		after 20 min.
	Whether CHOs fed	10 trained cyclists (9	-Placebo	-Fasted	-CHO ingestion leads to
	during exercise delays	male, 1 female)	-Glu	-TTE at ~75% VO2max	blood glucose level
	fatigue		-Ingested 50% solution		being maintained at
			after 20 min. of exercise		higher than pre-exercise
(35)			delivering 1 g of		levels throughout
			CHO/kg of body		exercise
			weight. After 60, 90,		-RER was not different
			120 min. ingest 6%		between trials
			solution		
	Compare Fru with Glu	10 trained adults	-Glu	-Fasted	-Fructose results in
	intake prior to exercise		-Fru	-45 min. at 60%	lower RER, blood
(39)	on metabolism		-1 g/kg 1 hr before	VO2max	glucose, and LA (in
			exercise	-Followed by 15 min.	hour rest before
				performance test	exercise)
	Effect of Fru ingestion	8 males	-Placebo	-Fasted	-No differences in RER
	on muscle glycogen		-50 g Glu	-30 min. cycling at 70%	-Blood glucose decline
	usage during exercise		-50 g Fru	VO2max	more rapidly with Glu
(59)			-710 mL 45 min. prior		than Fru with onset of
			to exercise		exercise
					-Blood glucose elevated
					more with Glu than Fru
	Metabolic response to	7 healthy males	-Water	-Fasted	-Blood glucose remains
	Glu and Fru ingestion		-Glu (140 g at 7%)	-180 min at 50%	stable with Glu and Fru
	during exercise		-Fru (140 g at 7%)	VO2max	-HR rose more with
			-Ingested every 20 min.		Water
			starting at min. 0		-Fructose has delayed
(101)					affect on Glu
					availability—increase in
					blood glucose and RER
					occurs after 40 min.
					rather than 20 min with
					Glu

(33)	Muscle glycogen utilization during exercise when fed CHOs	7 trained male cyclists	-Placebo -Glu- 2 g/kg at min. 20, .4 g/kg every 20 min. thereafter	-Fasted -TTE at 70% VO2max	-Blood glucose and RER maintained with Glu -LA the same -RPE higher with placebo late in exercise
(26)	Effect of CHO on performance after cycling to fatigue	7 trained male cyclists	-Placebo -Glu Polymer 3 g/kg -Glu infusion	-Fasted -TTE at 70% VO2max -20 min. rest -TTE at 70% VO2max	-Glu ingestion or infusion raises blood glucose and RER -LA similar between trials -RPE lower with CHO
(102)	Compare oxidation of Glu, Glu polymer, and Fru during exercise	6 healthy males	-Water -Glu Polymer -Glu -Fru -7% with 235 mL every 20 min. from min. 0 to 100	-Fasted -120 min. cycling 55% VO2max	-Plasma glucose rose with Glu ingestion only -HR maintained with CHO
(117)	Effects of ingesting Glu, Suc, and Fru on metabolism and performance	9 healthy males, 3 healthy females	 -6% Glu -6% Suc -6% Fru -6 mL/kg immediately before, 3mL/kg during every rest period 	-Standard breakfast and lunch -20 min. at 65%, 20 min. at 75%, 15 min. at 80%, 10 min at 80%, 15 min. at 75%, 8 min. at 80%, with 4 min. rest between each -600 rpm TT at end	-Plasma glucose lower with Fru than Suc or Glu -Lower LA and HR during TT with Fru compared to Suc and Glu
(3)	Splanchnic and muscle Fru metabolism before and after exercise	12 trained male adults -6 received Fru, 6 Control	-8.5 mmol/min Fru infusion starting at min. 40 till end of rest	-90 min. cycling at 30% VO2max followed by 20 min. rest	-RER rose with Fru infusion -Lactate rose 2-fold with Fru infusion

(68)	Whether Glu/Fru leads to oxidation rates >~1.3 g/min	8 trained male cyclists	-Water -1.2 g/min Glu -1.2 Glu + 1.2 Fru g/min -600 mL at start, 150 mL every 15 min.		-No differences between VO2 -RER was higher with CHO -RER higher with Glu/Fru than Glu -Plasma glucose higher with CHO -LA higher with Glu/Fru than Glu or water
(139)	10 trained male cyclists and triathletes	-MD .6 g/min (No Fru) -MD .6 + Fru .3 g/min (Low Fru .5) -MD .6 + .5 Fru g/min (Medium Fru .8) - MD .6 + .7 Fru g/min (High Fru 1.2)	-Fasted -2 hrs at 50% Wmax -10 max effort sprints (2-3 min.) with rest at ~40% VO2max (5-6 min.) between each	-Questionnaire – nausea and abdominal cramps -Average nausea reduced in Medium and High Fru trials	-Lower perceptions of muscle tiredness, nausea, physical exertion, attenuated fatigue with Medium and High Fru
(78)	Effect of Glu/Fru on fluid delivery, gastic emptying, and hydration	8 males	-Water -1.5 g/min Glu -1 Glu + .5 Fru g/min -600 mL at start, 203 mL every 15 min.	-Fasted -120 min. at 60% VO2max	-RPE legs lower with Glu/Fru
(148)	20 aerobically or strength trained men	-Glu 50g -Glu/Fru 50 g + 15g -400mL 15 min. before	-Fasted -10 sets of 10 reps of half squat (90% 10RM, 165 seconds between sets) -30 min. cycling at midpoint between two ventilatory thresholds	N/A	RPE reduced in strength and endurance exercise with glu/fru versus Glu supplementation before exercise

	Effect of Glu and Fru	7 trained male cyclists	-Glu/Fru 1.2 g + .8	-Fasted	-LA higher with Fru
	co-ingestion on lactate		g/min	-120 min. cycling at	-Plasma glucose not
	and Glu fluxes and		-Glu 2 g/min	60% VO2max	different between CHO
	oxidation compared to		-600 mL at start, 280		trials
(95)	Glu alone during		mL every 20 min.		-Plasma fructose
	exercise				increased with Fru
					-RER was higher with
					Glu/Fru than Glu
					-HR the same

CHAPTER THREE

METHODOLOGY

Subjects

Approximately 10-12 endurance-trained male cyclists will be recruited from James Madison University and the surrounding area. A minimum of 10 subjects will ensure adequate statistical power. Subjects will be recruited through personal contacts and flyers posted at local bike shops. Information provided to potential subjects will include the following: basic criteria for inclusion in the study, a brief description of the study demands, and benefits of participation.

Subjects will undergo initial screening to ensure they meet inclusion criteria. Subjects must be "regular cyclists" (i.e. perform cycling a minimum of 3 times per week for the preceding two months). Each subject needs to possess a VO_{2peak} of \geq 55 ml/kg/min or 4.5 L/min in pre-trial physical assessments. Subjects will be asked to complete a health history questionnaire. To ensure the subjects' safety, all subjects must be characterized as "low risk" for exercise complications using criteria from the American College of Sports Medicine's Guidelines for Exercise Testing and Prescription (7th Ed., ACSM, 2006). Finally, prior to any testing, subjects will be required to read and sign informed consent forms, which provide details describing the study, the risks and benefits of the study, and confidentiality of the study. IRB approval will be obtained before proceeding with the study.

Experimental Design

Subjects who meet the above criteria will complete 6 total trials, each separated by 5-7 days. Specifically, subjects will complete 1 pre-testing trial, 1 familiarization trial, and 4 experimental trials. During the 4 experimental trials, subjects will ingest a carbohydrate solution or a flavored placebo.

Preliminary Testing

Subjects will report to the Human Performance Laboratory where their height (nearest 0.5 cm) and weight (nearest 0.1 kg) will be recorded. Their VO_{2peak} and associated W_{max} will be assessed using a graded exercise test on an electronically braked cycle ergometer. Subjects will ride at a self-selected workload estimated as "a comfortable, but not easy pace for a 1-hour ride." The workload will be increased by 25 watts every 2 minutes until subjects voluntarily request to stop due to fatigue or are unable to continue at a cadence >50 rpms. Metabolic measurements will be assessed at each stage during this test using a Moxus Modular Metabolic System (Bastrop, TX). Heart rate will be assessed throughout using a Suunto heart rate monitor (Vaanta, Finland).VO_{2peak} and W_{max} will be determined from data obtained during the test and used to establish intensities for subsequent exercise protocols as well as to establish inclusion criteria as described above.

Familiarization Trial

Before performing the experimental trials, subjects will complete one familiarization trial. The familiarization trial will be identical to experimental trials, with the exception that subjects will consume only water during the trial.

Experimental Trials

Subjects will complete 4 separate experimental trials on an electronically braked cycle ergometer (Velotron, Inc.). Trials will be double-blind, randomly counterbalanced, and placebo controlled. Each trial will consist of two exercise phases. The first phase will consist of 120 min. of steady-state cycling at 55% W_{max} . The steady-state portion will be immediately followed by a simulated 30-km TT (~50 min.).

All trials will be conducted at ambient room temperature (72-76°F). Subjects will be asked to void their bladders prior to all trials. A fan will be utilized on "high" speed setting and placed 2 meters from the handlebars for uniform cooling during trials. Subjects will be encouraged to treat the TT portion of each trial as a competitive event and provide a maximal effort. Subjects will receive no feedback regarding performance during the TT except for distance completed and distance remaining. Researchers will provide no verbal encouragement during the TT.

Treatments

As outlined above, subjects will perform 4 experimental trials. During these trials, subjects will consume 4 different solutions. Subjects will receive 60 g/hr of glucose (MG), 90 g/hr of glucose (HG), 60 g/hr of glucose + 30 g/hr of fructose (GF), or a non-caloric artificially sweetened placebo (P). Immediately prior to each trial, subjects will receive 600 ml of an experimental beverage. Thereafter, subjects will receive 150 ml every 15 min. during the steady state portion of the trial. Another 150 ml will be provided at 3 points during the 30 km TT (TT), (7.5, 15, and 22.5 km).

Dietary and Exercise Controls

Subjects will be asked to record food intake 24 hours prior to their first experimental trial. The subjects will then be provided with a copy of their initial dietary log, which they will be asked to use in order to replicate their food intake for the 24 hrs preceding each subsequent experimental trial. Subjects will be asked to refrain from heavy exercise for 48 hrs prior to each experimental trial. Moreover, subjects will be asked to record all physical activity performed during the 72-hr preceding each experimental trial and be instructed to maintain consistent exercise habits between trials. Additionally, subjects will be asked to abstain from any alcohol and caffeine for 24 hrs and 12 hrs prior to the experimental trials, respectively.

Subjects will perform the trials in the fed state. On the night prior to each trial (7-9 hrs prior), subjects will consume a liquid meal replacement (Ensure® Shakes) at an amount corresponding to 20-25% of their daily caloric intake. 2 hrs prior to all experimental trials, subjects will consume a standardized breakfast consisting of ~500 kcals. Consuming the meal replacement shakes and standardized breakfast will standardize the nutritional intake leading up to each trial. Two previous studies, (Currell et al. 2008; Triplett et al. 2010), standardized pre-trial nutrition by having subjects perform after an overnight fast. During pilot testing, fasted subjects became severely hypoglycemic and, in some cases, could not complete the trial without consuming CHOs. Exercising in the post-prandial state will help to prevent hypoglycemia and better emulate real-world racing conditions.

Measurement of Performance and Physiological Data

Performance – Exercise performance will be measured using cycling time and mean power output (watts) for the simulated 30-km TT.

Metabolic Measurements – Metabolic measurements will be assessed using a Moxus Modular Metabolic System (Bastrop, TX) at the following time points: minutes 15, 35, 55, 75, 95, and 115 of the 120-min steady state phase, and at 20-km into the 30-km time trial (TT). At each of these points, 5 minutes of expired gas collection will be performed and an average of the last three minutes will be recorded. Dependent

measurements obtained/derived from expired gases will include *oxygen uptake* (VO_2) , *ventilation rate* (VE), and *respiratory exchange ratio* (*RER*; indicating relative contributions of fat and carbohydrate to energy expenditure).

Blood Glucose and Lactic Acid – Finger-stick blood samples (~0.5 ml) will be obtained at the following time points: minutes 20, 40, 60, 80, 100, and 120 of the 120-min steady state phase, and at 20-km into the 30-km TT. Glucose and lactate levels will be determined immediately from whole blood using an automated analyzer (YSI 2300 STAT glucose/lactate analyzer).

Heart Rate – Heart rate will be recorded at the time-points above (Blood glucose and lactic acid time points) using a Suunto heart rate monitor. In addition, average heart rate for the 30-km TT will be recorded.

Ratings of Perceived Exertion (RPE) – Subjective ratings of exertion will be obtained by having subjects point to a corresponding level of exertion (rated numerically from 6-20) on a Borg RPE scale. RPE will be obtained at the time-points indicated (Blood glucose and lactic acid time points). Subjects will receive instructions regarding how to utilize the RPE scale during the familiarization trial, consisting of the following: "Please describe your current level of exertion using the following scale. This level should represent your overall perception of effort, and not localized to a specific group of muscles, etc. For reference, a 6 would represent your effort when you are resting or watching TV, while 20 would represent the highest level of exertion you are capable of producing during exercise".

Gastrointestinal Distress Scale – Subjects will be asked to complete a questionnaire (verbally) at minutes 30, 60, 90, and 120 of the 120-min steady state phase

of the exercise trials. Subjects will also be asked to complete the questionnaire at 20 and 30-km of the 30-km TT. The questionnaire contains questions regarding the presence of GI problems at that moment and addresses the following complaints: stomach problems, GI cramping, bloated feeling, diarrhea, nausea, dizziness, headache, belching, vomiting, and urge to urinate or defecate. The items will be scored on a 10-point scale (1 = not at all, 10 = very, very much). The severity of the GI symptoms will be divided into two categories, severe and nonsevere symptoms. Symptoms will only be registered as severe symptoms when a score of \geq 5 out of 10 is reported. When a score of <5 is given, they will be registered as nonsevere.

Statistics

Univariate ANOVAs (randomized complete block design) were used to determine differences between treatment conditions for all variables unless otherwise stated. Simple contrasts between treatment conditions were used to generate P values for subsequent analysis as has been done previously (67). Residuals from ANOVA analyses were visually inspected for non-uniformity of variance. In cases of heteroscedasticity, variables were log-transformed prior to analysis. Statistical analyses were performed using Statistical Package for Social Sciences (SPSS) 20.0 for Windows (SPSS Inc., Chicago, IL, USA).

Due to limitations in examining performance-related measurements with traditional null hypothesis testing, magnitude-based inferences about the data were made using methods described by Hopkins and colleagues (25). 90% confidence intervals (CI) are presented to illustrate uncertainly in treatment effects. Threshold values for a substantial change were calculated as $0.2 \times SD$ (from PL trial), while thresholds for log-

transformed data were held constant at 0.2; as described previously (1, 67).. A published spreadsheet (26) was used to classify treatment effects as beneficial/positive, harmful/negative, or trivial/neglible. Likelihoods were classified as <1% almost certainly no chance, 1-5% = very unlikely, 5-25% = unlikely, 25-75% = possible, 75-95% = likely, 95-99% = very likely, and >99\% = almost certain (67). If confidence intervals overlapped, effects were classified as unclear. Effects were described as trivial/negligible when the majority of the CI lay between the threshold for a substantially positive and negative effect (67). All data was presented as means \pm SD.

GI distress scores were analyzed with a frequency table for severe symptoms (a score of \geq 5), as described previously (32).

CHAPTER FOUR

MANUSCRIPT

THE ERGOGENIC EFFECTS OF GLUCOSE AND FRUCTOSE COINGESTION DURING PROLONGED CYCLING

Daniel A. Baur, Adam B. Schroer, Nicholas D. Luden, Christopher J.

Womack, Sarah Smyth, and Michael J. Saunders*

Department of Kinesiology, MSC 2302, James Madison University, Harrisonburg, VA 22807

*Corresponding author

Running head: carbohydrate, glucose, fructose, and cycling performance

ABSTRACT

The purpose of this investigation was to examine the effects of glucose and fructose coingestion on cycling time trial performance and physiological responses to exercise. Eight trained male cyclists (age: 25 ± 6.2 yrs, height: 180.2 ± 4.3 cm, weight: 76.9 \pm 9.2 kg, and VO_{2max}: 61.9 \pm 6.2 mL·kg⁻¹·min⁻¹) completed the study. Subjects ingested either an artificially-sweetened placebo (PL), a moderate-glucose beverage (MG: 1.0 g·min⁻¹), a high-glucose beverage (HG: 1.5 g·min⁻¹), or a glucose and fructose beverage (GF: 1.5 g·min⁻¹; 2:1 ratio) during \sim 3 hrs of exercise; consisting of 2 hours of constant load cycling (55% W_{max} , 195 ± 17.3 W), immediately followed by a computersimulated 30-km time trial. Physiological responses (V_E, VO₂, RER, heart rate, blood glucose, blood lactate, and RPE) and incidences of GI distress were assessed during early- (15-20 min), middle- (55-60 min), and late-exercise (115-20 min), and during the time-trial. Treatment differences were analyzed using qualitative inferences. Time trial performances were 'likely' improved with GF (50.4 \pm 2.2 min) and MG (51.1 \pm 2.4) versus PL (52.9 \pm 3.7 min), while differences between HG (52.0 \pm 3.7 min) and PL were 'unclear'. GF resulted in 'likely' (3.0%) improvement versus HG and an 'unclear' (1.2%) benefit relative to MG. MG was 'possibly' beneficial (1.8%) versus HG. Few incidences of GI distress were reported in any trials. GF ingestion appears to enhance performance relative to PL, and HG. However, further study is necessary to determine if GF improves performance versus moderate (currently recommended) doses of glucose.

INTRODUCTION

Carbohydrate ingestion is recommended during prolonged exercise (37, 47) because it maintains blood glucose levels (9, 10), spares endogenous carbohydrate stores (2, 32, 55, 58), sustains high rates of carbohydrate oxidation late in exercise (7, 44), enhances motor output (5), and improves performance (9, 14, 16). Recent evidence suggests that the ergogenic effects of carbohydrate are dose-dependent. Smith and colleagues reported progressive improvements in prolonged cycling performance with increasing glucose dosages up to 60 g·hr⁻¹ (54); and up to 78 g·hr⁻¹ with co-ingestion of glucose, maltodextrin, and fructose (53).

The dose-response effects of carbohydrate ingestion likely results from augmented exogenous carbohydrate oxidation, which is limited by intestinal absorption (46, 51). Glucose is absorbed via the SGLT1 transporter at a peak rate of ~60 g·hr⁻¹; while fructose is absorbed via GLUT5 at rates up to ~35 g·hr⁻¹ (29, 51). When glucose (and/or glucose polymers) and fructose are consumed simultaneously, absorption and oxidation rates increase up to ~90 g·hr⁻¹ (23, 59) likely as a result of non-competitive intestinal transport (3, 15, 52). This enhanced oxidation may be responsible for reported improvements in cycling performance with glucose and fructose co-ingestion (11, 48, 57).

Two studies have reported that glucose+fructose ingestion during prolonged cycling augments performance by a substantial degree (~8%) in comparison to isocaloric amounts of glucose (11, 57). However, the volume of glucose consumed in these studies (90-122 g·hr⁻¹) exceeded maximal intestinal uptake rates (60 g·hr⁻¹), likely resulting in considerable glucose malabsorption. Carbohydrate malabsorption often results in

gastrointestinal distress (45, 50). This supposition is supported by observations from Triplett (57), that 4 of their 9 subjects reported substantial GI symptoms during the glucose trial. Alternatively, numerous studies have reported fewer incidences of GI distress with glucose+fructose ingestion during cycling versus isocaloric amounts of glucose presumably as a result of enhanced absorption of glucose and fructose (24, 30, 48, 57). Thus, it is plausible that the reported performance benefits of glucose+fructose were larger than would be expected if compared to recommended amounts of glucose (\leq 60 g·hr⁻¹). Furthermore, subjects in the previous studies completed all cycling trials following an overnight fast, which might magnify performance benefits of carbohydrate ingestion in comparison to trials conducted in the post-prandial state (1).

The purpose of the current study was to examine the effects of glucose+fructose ingestion on prolonged cycling performance under conditions that were consistent with current sports nutrition recommendations. Specifically, we tested cyclists in the post-prandial state, and examined the efficacy of glucose+fructose in comparison to a moderate dose of glucose, an isocaloric high-dose of glucose, as well as a placebo beverage.

MATERIALS AND METHODS

Subjects

Ten male endurance trained cyclists and triathletes ($VO_{2max} > 55 \text{ ml} \cdot \text{kg}^{-1} \cdot \text{min}^{-1}$) from James Madison University and the Harrisonburg area volunteered to participate in this study. Two subjects withdrew prior to completion because of circumstances unrelated to the study, resulting in complete data from eight subjects. Subjects were provided written and oral information about experimental procedures and potential risks prior to giving informed consent. All procedures were approved by the James Madison University Institutional Review Board prior to any testing.

Cardiorespiratory Fitness

Subjects performed an incremental exercise test to exhaustion on a bicycle ergometer (Velotron, Racermate, Inc., Seattle, WA, USA) to determine VO_{2max} . Subjects began the test at a self-selected workload estimated as "a comfortable, but not easy pace for a 60-min ride". Power was then increased by 25 W every two-min until the subject reached volitional exhaustion. Metabolic measurements were assessed throughout each stage of the test using a Moxus Modular Metabolic System (AEI Technologies, Pittsburgh, PA, USA). VO_{2max} was determined by the highest 30-sec mean oxygen uptake value. Peak power at VO_{2max} (W_{max}) was defined by the power corresponding to the final completed stage, and was used to prescribe exercise intensity for the 120-min constant-load segment of subsequent trials.

Exercise Trials

Subjects completed five trials (one familiarization trial, followed by four experimental trials) on the aforementioned cycle ergometer. Trials consisted of 120 min of constant-load cycling at 55% W_{max} (195 ± 6 W) followed by a simulated 30-km TT, each separated by 6-14 days. The familiarization trial was identical to the experimental trials (see below), except that no blood samples were obtained, and subjects received only water while cycling. Subjects were asked to void their bladder prior to all trials. A pedestal fan was placed ~2 m from the handlebars and utilized on high speed setting for uniform cooling during each trial. Subjects were encouraged to treat the TT portion of each trial as a competitive event and provide a maximal effort. Subjects did not receive performance feedback during the TT other than elapsed- and remaining distance, and no verbal encouragement was provided during the TT.

Treatments

A randomly counterbalanced, double-blind, placebo-controlled design was implemented to compare the effects of four separate treatment conditions on performance, cardiovascular, and metabolic physiology. The treatments were: 1) glucose+fructose (GF): 80 g·L⁻¹ glucose + 40 g·L⁻¹ fructose (Tate and Lyle, Decatur, IL, USA), 2) a moderate-dose of glucose (MG): 80 g·L⁻¹glucose, 3) a high-dose of glucose, calorically-matched to GF (HG): 120 g·L⁻¹ glucose, 4) non-caloric artificially sweetened placebo (Splenda, Fort Washington, PA, USA) (PL). Each solution also contained 470 mg·L⁻¹ sodium chloride (Morton Salt, Chicago, IL, USA) and 200 mg·L⁻¹ potassium chloride (NOW Foods, Bloomingdale, IL, USA). Immediately prior to each trial, subjects received 600 ml of treatment beverage. Thereafter, subjects received a 150 ml feeding every 15 minutes during the constant-load portion of the trial, and at three points during the 30 km TT (7.5, 15, and 22.5 km). The MG ingestion rate of 60 g·hr⁻¹ (1.0 g·min⁻¹) was chosen as it falls at the upper end of recommended ranges for carbohydrate intake rates (47). A carbohydrate delivery rate for GF and HG of 90 g·hr⁻¹ (1.5 g·min⁻¹) was chosen for comparison with studies using similar amounts (26, 30, 31).

30-km TT Performance

Finishing time and mean power output (watts) during the pre-loaded 30-km TT were used as performance criteria. We have previously assessed the reproducibility of cycling time/power measurements using identical equipment in our laboratory. Using a similar performance trial (20-km of cycling over a simulated hilly course) and a comparable set of male subjects (n=10; 28 ± 8 y, 73 ± 6 kg, 65 ± 9 ml·kg⁻¹·min⁻¹), the coefficient of variation (CV) between repeated trials (under placebo conditions, following a familiarization trial) was 1.4% for time, and 2.6% for power output (18). Similarly, we obtained repeatability data from three pilot subjects, who performed repeated trials using the exact trial utilized in this study (i.e. 30-km trial, following two hours of constant-load cycling), and obtained CV's of ~3%.

Physiological Measurements

Oxygen uptake (VO₂), expired ventilation (VE) and respiratory exchange ratio (RER) were assessed using a Moxus Modular Metabolic System (AEI Technologies, Pittsburgh, PA, USA) at the following time points: minutes 15-20, 55-60, and 115-120 of

the constant-load phase, and at 20-km of the TT. These time points were selected to correspond with early, middle, and late exercise, and a representative value from the TT. Aggregates of the final 3 minutes of each phase were recorded.

Heart rate (Suunto, Vaanta, Finland) and ratings of perceived exertion (RPE; Borg Scale) were recorded at minutes 20, 60, and 120 of constant-load cycling, and at 20-km of the TT. Finger-stick blood samples (~0.5 ml) were obtained at rest, and at the time points indicated above. Glucose and lactate levels were determined immediately from whole blood using automated instrumentation (YSI 2300 STAT glucose/lactate analyzer, Yellow Springs, OH, USA).

Total carbohydrate oxidation during the time trial was analyzed as described previously (33).

Gastrointestinal Distress Scale

Subjects verbally indicated their perceived level of upper-GI distress at minutes 30, 60, and 120 of constant-load cycling and at 20-km of the TT. Utilizing a 10-point scale (1 = not at all, 10 = very, very much), subjects rated the following symptoms: stomach problems, GI cramping, bloated feeling, diarrhea, nausea, dizziness, headache, belching, and vomiting (28).

Dietary and Exercise Controls

Subjects were instructed to: 1) Maintain consistent dietary habits for 72 hours prior to each trial, 2) Record food intake 24 hours prior to their first experimental trial, 3) Replicate their exact food intake for the 24 hours preceding each subsequent experimental trial, 4) Refrain from heavy and/or unaccustomed exercise for 48 hours prior to each experimental trial, 5) Maintain consistent exercise habits between trials and record all physical activity performed during the 72 hours preceding each experimental trial, and 6) Abstain from alcohol and caffeine for 24 hours and 12 hours prior to the experimental trials, respectively. Subjects performed all trials in the fed state. Specifically, subjects consumed 20-25% of their estimated daily caloric expenditure (Harris-Benedict equation) in the form of a liquid meal replacement (Ensure® Shakes, Abbott Laboratories, Abbott Park, IL, USA) in the evening prior to each trial (8-10 hours prior). Two hours prior to all exercise trials, subjects consumed a standardized meal consisting of ~500 kcals (cereal with milk, orange juice, and strawberry yogurt).

Statistical Analyses

Univariate ANOVAs (randomized complete block design) were used to determine differences between treatment conditions for all variables unless otherwise stated. Simple contrasts between treatment conditions were used to generate P values for subsequent analysis as has been done previously (60). Residuals from ANOVA analyses were visually inspected for non-uniformity of variance. Statistical analyses were performed using Statistical Package for Social Sciences (SPSS) 20.0 for Windows (SPSS Inc., Chicago, IL, USA).

Due to limitations in examining performance-related measurements with traditional null hypothesis testing, magnitude-based inferences about the data were made using methods described by Hopkins and colleagues (20). 90% confidence intervals (CI) are presented to illustrate uncertainly in treatment effects. Threshold values for a substantial change were calculated as $0.2 \times SD$ (from PL trial). A published spreadsheet (21) was used to classify treatment effects as beneficial/positive, harmful/negative, or trivial/negligible. Likelihoods of reaching the substantial change threshold were classified as <1% almost certainly no chance, 1-5% = very unlikely, 5-25% = unlikely, 25-75% = possible, 75-95% = likely, 95-99% = very likely, and >99\% = almost certain (60). If confidence intervals overlapped, effects were classified as unclear. Effects were described as trivial/negligible when the majority of the CI lay between the threshold for a substantially positive and negative effect (60). All data was presented as means ± SD.

GI distress scores were analyzed with a frequency table for severe symptoms (a score of \geq 5), as described previously (27).

RESULTS

Subject Characteristics

Eight trained male cyclists and triathletes (Age: 25 ± 6.2 yrs, Height: 180.2 ± 4.3 cm, Weight: 76.9 ± 9.2 kg, and VO₂max: 61.9 ± 6.2 ml·kg⁻¹·min⁻¹) participated in this study.

30-km Time Trial Performance

Time trial performance data is shown in Figure 4.1 and qualitative inferences regarding time trial performance and power output are summarized in Table 4.1. Respectively, GF and MG resulted in 'very likely' and 'likely' improvements in TT finishing time of 4.7% and 3.5% versus PL, while differences between HG and PL were 'unclear' (1.7%). GF also resulted in a 'likely' 3.0% improvement versus HG. Differences between GF and MG (1.2%) were 'unclear.' Finally, performance with MG was 'possibly beneficial' (1.8%) versus HG.

Metabolic Measurements

 VO_2 and V_E data are displayed in Figures 4.2 and 4.3. There were no systematic differences between treatments during the constant-load portion of the trials. Differences in VO_2 during the TT closely matched performance differences. Specifically, VO_2 during all carbohydrate treatments were 'likely' (MG and HG) or 'very likely' (GF) higher than PL. VO_2 during GF was also 'likely' higher versus MG/HG. VO_2 differences between MG and HG were 'unclear.' V_E during the TT was 'likely higher' with all carbohydrate treatment versus PL. Among the carbohydrate treatments, a 'possibly trivial' increase in V_E with GF versus MG during the TT was the only apparent difference between beverages.

RER data are displayed in Figure 4.4. Carbohydrate ingestion (all treatments) resulted in higher RER values versus PL at 55 min and 115 min of steady-state cycling. 'Unclear' differences were observed in late-exercise (115 min) of the constant-load portion between GF and MG as well as between MG and HG. There was a 'possibly trivial' increase in RER with GF versus HG at the same time point. During the TT, all carbohydrate treatments resulted in 'most likely' higher RER values than PL. Differences between carbohydrate treatments were 'unclear.'

All carbohydrate treatments, (MG = $2.74 \pm 0.69 \text{ g} \cdot \text{min}^{-1}$; HG = $2.57 \pm 0.58 \text{ g} \cdot \text{min}^{-1}$; and GF = $2.79 \pm 0.34 \text{ g} \cdot \text{min}^{-1}$), resulted in 'most likely' higher total carbohydrate oxidation versus PL ($1.77 \pm 0.46 \text{ g} \cdot \text{min}^{-1}$) during the time trial. Differences between carbohydrate treatments were 'unclear.'

Heart Rate and Ratings of Perceived Exertion

Heart rate data are displayed in Figure 4.5. There was no evidence of any systematic differences between treatments during the constant-load portion of the trials. All carbohydrate treatments resulted in 'likely' higher heart rate values during the TT. Differences in heart rate between carbohydrate treatments was 'unclear.' No 'likely' differences were observed between treatments for ratings of perceived exertion.

Blood Glucose and Lactate

Blood glucose data are displayed in Figure 4.6. With all carbohydrate treatments, blood glucose was 'very likely' increased versus PL during both constant-load cycling and the TT. HG was 'very likely' and 'likely' to increase late-exercise blood glucose (120 min) relative to MG and GF, respectively. However, differences in blood glucose with HG versus MG and GF were 'unclear' during the TT. Differences in late-exercise blood glucose were 'unclear' between GF and MG. However, blood glucose was 'likely' increased with GF versus MG during the TT.

Blood lactate data are presented in Figure 4.7. There were no systematic differences observed between treatments throughout constant-load cycling, with one exception: late-exercise blood lactate was 'likely' higher with GF and MG versus HG. During the TT, lactate was 'likely' higher with GF versus HG, and 'likely' higher with GF and MG versus PL. All other differences were unclear.

GI Distress Symptoms

Reported symptoms of GI distress were generally low in all trials (average values were ≤ 1.75 for all individual symptoms, evaluated at all individual time-points). Only two subjects reported any GI distress symptoms ≥ 5 ('severe' or higher) in the constant-load portion of any of the trials. These included symptoms in the following areas: stomach problems, stomach cramping, nausea, dizziness, headache, and vomiting (no ratings ≥ 5 were reported for: bloated feeling, diarrhea, and belching). During the TT portion of the trials, three subjects (including the two aforementioned participants) reported GI distress symptoms ≥ 5 . These ratings were observed for the same symptoms as those reported during constant-load cycling, with the exception that no

moderate/severe ratings were observed in the category of stomach cramping. Individual GI distress ratings are displayed for representative symptoms for the three individuals who reported moderate-severe symptoms (Table 4.3). No systematic differences in GI distress ratings were observed between individual treatments during constant-load cycling. Similarly, no systematic differences in symptoms were observed during the TT, other than the observation that dizziness ratings during the PL trial were higher than baseline levels in all three subjects.
DISCUSSION

Several recent studies have examined the effects of glucose+fructose coingestion on cycling performance, versus isocaloric amounts of glucose (11, 48, 57). The present investigation was the first to compare the ergogenic effects of a glucose+fructose beverage (GF) to a recommended moderate dose of glucose (MG; 60 g·hr⁻¹). GF was also compared to an isocaloric glucose beverage (HG) and a placebo (PL). Unlike previous studies (11, 48, 57), all trials were performed in the postprandial state in order to replicate the conditions in which athletes typically compete. The primary finding of the current study was that GF 'very likely' and 'likely' improved performance versus PL (4.7%) and HG (3.0%), respectively, while potential performance benefits for GF versus MG (1.2%) were 'unclear.'

Our finding of a 'likely' 3.0% improvement with GF versus HG is in general agreement with prior studies investigating cycling performance with glucose+fructose consumption. Currell and colleagues (11) reported that high rates of glucose and fructose co-ingestion (108 g·hr⁻¹; 2:1 ratio) resulted in 8% faster completion times during a 40-km time trial (following 2 hours of constant-load cycling) in comparison to a calorically-matched glucose-only beverage. Similarly, Triplett et al. (2010) observed 8% improvements in power output during 100 km of intermittent cycling with glucose+fructose intake (144 g·hr⁻¹; 2:1 ratio) versus isocaloric amounts of glucose (57). These performance enhancements have been primarily attributed to augmented exogenous carbohydrate oxidation, which is influenced by intestinal absorption (46, 51). Glucose transport occurs predominantly via the sodium-dependent SGLT1 transporter, at rates up to ~60 g·hr⁻¹; whereas fructose is transported predominantly by GLUT5 at peak

rates of ~35 g·hr⁻¹ (29, 51). Co-ingestion of glucose and fructose at high rates have resulted in exogenous oxidation rates exceeding 90 g·hr⁻¹ (23, 59), likely as a result of non-competitive intestinal transport (52). These rates are considerably higher than those reported with isocaloric amounts of glucose alone (22, 24, 30).

It is possible that the ergogenic effects of GF ingestion are derived from increased total carbohydrate oxidation, allowing for greater energy turnover. However, despite the 'likely' enhancement in time-trial performance with GF versus HG in the present study, treatment differences in total carbohydrate oxidation were 'unclear' (GF = 2.79 ± 0.34 $g \cdot min^{-1}$, HG = 2.57 ± 0.58 $g \cdot min^{-1}$). Similarly, Triplett et al. (2010), found no differences in total carbohydrate oxidation during an intermittent 100-km time trial. Despite these findings, there is other evidence to suggest that total carbohydrate oxidation increases with glucose+fructose coingestion versus glucose alone (22, 38). The source of this added carbohydrate oxidation is somewhat unclear, but could be the result of endogenous in early-exercise, allowing greater carbohydrate sparing contributions from hepatic/muscle glycogen stores (and higher total carbohydrate availability) in lateexercise. Although a majority of studies have reported no muscle glycogen sparing with carbohydrate ingestion during constant-load cycling (9, 16, 19, 41), there is some recent evidence that it occurs (2, 55). Furthermore, hepatic glucose output can be completely suppressed with high rates of carbohydrate ingestion (i.e. liver glycogen sparing) (32). The higher exogenous carbohydrate oxidation rates achieved with glucose+fructose ingestion should logically result in a concomitant sparing of endogenous carbohydrate reserves. However, there is little evidence at present to directly support this conclusion. Although a prior study reported a trend towards decreased endogenous carbohydrate

utilization with glucose+fructose intake (24), most have reported no differences versus isocaloric glucose beverages (22, 26, 59). It is worth noting that these studies examined carbohydrate oxidation, but not performance, during 2-2.5 hours of constant-load (55% W_{max}) cycling. Conceivably, the added duration and intensity of a time trial (as in the present study, and others reporting performance benefits with glucose+fructose) might increase total carbohydrate utilization to an extent that could reveal meaningful differences in carbohydrate sparing between beverages. However, Currell et al. (2008) and Triplett et al. (2010) did not measure liver/muscle glycogen levels, nor was it assessed in the current study.

Another possible candidate for increased total carbohydrate oxidation is increased lactate production and metabolism, which has been shown to be elevated with fructose ingestion (24, 25, 38). Fructose phosphorylation in the liver increases pyruvate production (via increased concentrations of fructose-1-phosphate), resulting in increased lactate production (38). Fructose-derived lactate is released from the liver, and the majority is subsequently oxidized in active skeletal muscle (38). We observed late-exercise blood lactate with GF was "very likely" higher than the HG trial, which could have contributed to augmented performance. However, it should be noted that lactate in the MG trial was also "very likely" higher than HG at this time point. An alternative explanation for added total carbohydrate oxidation could be enhanced gluconeogenesis, either from lactate or fructose. We found 'unclear' differences in blood glucose between GF and HG during the time trial. Nevertheless, this may be explained by the combination of enhanced hepatic output with glucose+fructose, combined with increased muscular uptake in response to increased energy demand (36).

Although generally consistent with previous studies, the 3.0% improvement in TT performance observed with our GF treatment (versus the isocaloric HG beverage) is notably lower than the 8% improvements reported by Currell et al. (2008) and Triplett et al. (2010). Additionally, our novel finding of a 1.2% benefit of GF versus MG ('unclear') indicates that the ergogenic effects of glucose+fructose ingestion may be more modest than previously reported (11, 57). One explanation for the reduced benefit observed in the current study is the lower total carbohydrate intake rate compared to the above studies (90 $g \cdot hr^{-1}$ vs. 108-144 $g \cdot hr^{-1}$). Enhanced delivery of carbohydrate via non-competitive glucose and fructose transport results in increased oxidation of exogenous carbohydrate (23, 59), which appears to be dose-dependent (53, 54). Perhaps the larger doses of glucose+fructose administered by Currell et al. (2008) and Triplett et al. (2010) resulted in greater absorption and subsequent oxidation of carbohydrate, resulting in a larger performance improvement. However, Smith and colleagues (2013), reported a curvilinear dose-response effect with maltodextrin/glucose/fructose, with optimal performance occurring at intake rates of $\sim 78 \text{ g} \cdot \text{hr}^{-1}$. Moreover, oxidation efficiency (i.e. proportion of ingested carbohydrate that are oxidized) likely decreases at high carbohydrate ingestion rates ($\geq 80 \text{ g}\cdot\text{hr}^{-1}$) (35, 43, 49). Thus, our chosen carbohydrate delivery rate of 90 g $\cdot\text{hr}^{-1}$ would seem to approximate theoretically optimal levels.

Differences in the magnitude of benefits between the current study and prior studies (11, 57) could also be attributed to GI distress. Prior studies used higher rates of carbohydrate ingestion in their glucose-only trials (108 and 144 g·hr⁻¹ [11, 53]), which exceeded the presumed maximal absorption rates of glucose (60 g·hr⁻¹) (34). This likely resulted in greater carbohydrate accumulation in the gut, which has been associated with

GI distress (45, 50). High incidences of substantial GI distress in glucose-only trials reported by Triplett and colleagues (4 out of 9 subjects, versus 0 of 8 subjects registering 'severe' symptoms in our HG trials) support this notion (57). Assuming severe GI distress limits performance (48, 56), the large performance differences reported by Currell and Triplett (8%) may be partly explained by GI distress related to 'excess' glucose in the glucose-only comparison beverages. This hypothesis is supported by findings of Rowlands and colleagues (2012), who reported 1.4 - 1.8% performance enhancements with maltodextrin+fructose (versus an isocaloric maltodextrin+glucose beverage), after statistically eliminating the effects of GI distress (48). These values are similar to our observed differences between GF and MG treatments (1.2% 'unclear' effect).

The potentially negative influences of excess glucose on performance likely explain why the ergogenic effects of GF were larger versus HG (compared to GF versus MG). It may also explain why differences between HG and PL beverages (1.7%) were 'unclear.' However, very few symptoms of severe GI distress were reported in our HG trials, possibly as a result of lower intake rates (90 g·hr⁻¹) versus previous studies (11, 57). Thus, the 'possible/likely harmful' effects of HG on performance in our study (compared to MG/GF, respectively) cannot be directly attributed to GI distress symptoms per se. However, we cannot dismiss the possibility that our subjects anticipatorily selected lower time-trial intensities during the HG trial, in order to prevent severe GI distress. Furthermore, others (43) have speculated that nausea, [presumably caused by carbohydrate malabsorption (8, 45)], may blunt motor output via stimulation of receptors in the gut. To this end, gut receptors that respond to distension (4) and taste (13) have been identified. Moreover, the appearance of GLUT2 transporters in the intestine seem to increase in response to highly concentrated amounts of glucose, presumably the result of chemoreceptors (39). This raises the possibility that receptors in the gut (responding to glucose concentration) may have preemptively blunted motor drive during the HG trials, contributing to the larger differences between GF/HG beverages ('likely' 3.0%), versus those observed between GF/MG ('unclear' 1.2%), although this idea is purely speculative.

Another factor which may have affected the magnitude of our treatment effects was that our trials were conducted in the postprandial state. Previous studies have reported that the ergogenic effects of carbohydrate observed in high-intensity cycling trials (i.e. ~60 min at > 85% VO_{2max}) were likely the result of improved motor output via stimulation of oral carbohydrate receptors (6, 17). As others have speculated (48), beverages containing fructose may produce greater stimulation of oral carbohydrate receptors, possibly contributing to performance enhancements with glucose+fructose ingestion. However, the influence of carbohydrate on the CNS appears to be blunted in the postprandial state (1), which could have reduced potential performance benefits from glucose+fructose in the current study. Furthermore, the ingestion of a pre-exercise meal would likely have an impact on endogenous carbohydrate stores at the onset of exercise (42), and potentially influence substrate utilization (12, 40). Collectively, it is possible these factors could explain the larger treatment effects reported in prior studies reporting ergogenic effects with glucose+fructose, which were conducted following an overnight fast, (11, 57).

In summary, ingesting a beverage containing glucose and fructose at a rate of 90 gCHO·hr⁻¹ was 'very likely'/'likely' beneficial for enhancing prolonged cycling performance versus placebo/isocaloric glucose solutions, respectively. However. differences in performance for glucose+fructose versus a glucose beverage containing 60 gCHO·hr⁻¹ were 'unclear'. Current sports nutrition guidelines recommend ingesting 30 -60 g of carbohydrate per hour during exercise lasting ≥ 2 hrs (47). Recent studies reporting performance enhancements with glucose+fructose coingestion at rates ≥ 80 g·hr⁻¹ (11, 48, 49, 57) have led some to argue for revisions in the current recommendations (39). Our findings suggest that the ergogenic effects of glucose+fructose ingestion may be more modest than previously reported, particularly in the postprandial state and when compared to moderate doses of glucose. Notably, our observed performance benefit for GF versus MG (1.2%) is also in line with recent findings (48) which have statistically corrected for differences in GI tolerance. Despite our reported statistical inference that this is an 'unclear' effect, further study of the ergogenic effects of glucose+fructose beverages is warranted, as this would be deemed a functionally meaningful improvement to athletes if upheld in future studies.

	30 km TT Performance		Difference in Performance (min)*			
	Time (min)	Power (W)	MG	HG	GF	
PL	52.9 ± 3.7	217 ± 40	-1.88, -0.6 to -3.2 (1.3); 93.1% likely beneficial, P = 0.029	-0.92, -2.4 to 0.5 (1.4); unclear, P = 0.263	-2.48, -3.6 to -1.3 (1.2); 98.8% very likely beneficial, P = 0.005	
MG	51.1 ± 2.4	237 ± 30		0.96, 2.4 to 0.5 (1.4); possibly harmful, P = 0.247	-0.61, -2.4 to 0.9 (1.5); unclear, P = 0.458	
HG	52.0 ± 3.7	229 ± 38	-0.96, -2.4 to 0.5 (1.4); possibly beneficial, P = 0.245		1.56, -2.8 to 0.3 (1.2); likely beneficial, P = 0.065	
GF	50.4 ± 2.2	244 ± 27	0.61, 0.9 to -2.4 (1.5); unclear, P = 0.458	1.56, 0.3 to 2.8 (1.2); likely harmful, P = 0.065		

Table 4.1. Treatment Effects on Time-Trial Performance with Qualitative Inferences.

2 Data is presented as mean ± SD for performance times and power output during the 30km time trials with ingestion of PL, MG, HG,

3 and GF. Time differences between treatments are presented as mean differences (min.), 90% confidence interval (effect size), %

4 chance and qualitative inference, and exact P value from means comparisons).

5 * Performance differences not shown for power output, but inferences were identical in all cases.

6

1

7

	15 min.	60 min.	120 min.	TT
V _E (L/min.)				
PL	68.1 ± 5.8	69.5 ± 5.5	72.2 ± 6.5	79.0 ± 20.9
MG	67.8 ± 5.6	70.4 ± 5.0	71.6 ± 5.1	$88.9\pm20.0*$
HG	68.4 ± 8.3	70.7 ± 8.5	72.6 ± 9.2	$88.5 \pm 23.8*$
GF	67.3 ± 6.8	71.9 ± 7.0	70.8 ± 5.3	$92.0 \pm 14.6^{**^{\#}}$
VO ₂ (L/min.)				
PL	2.8 ± 0.3	2.9 ± 0.3	3.0 ± 0.3	3.2 ± 0.6
MG	2.8 ± 0.2	2.9 ± 0.2	2.9 ± 0.2	$3.4 \pm 0.4*$
HG	2.9 ± 0.4	2.9 ± 0.3	3.0 ± 0.4	$3.4 \pm 0.6*$
GF	2.8 ± 0.2	2.9 ± 0.3	2.9 ± 0.3	$3.6\pm0.4^{\ast\ast\ast^+}$
RER				
PL	0.91 ± 0.03	0.87 ± 0.03	0.84 ± 0.03	0.84 ± 0.02
MG	0.94 ± 0.02	$0.91 \pm 0.02^{\$}$	$0.89 \pm 0.02^{\$}$	$0.90\pm0.04^{\$}$
HG	0.92 ± 0.02	0.90 ± 0.03 **	$0.88 \pm 0.02^{\$}$	$0.89\pm0.02^{\$}$
GF	0.94 ± 0.02	$0.92\pm0.02^{\$}$	$0.89 \pm 0.02^{\$^{\#}}$	$0.89\pm0.02^{\$}$
HR (bpm)				
PL	118 ± 8	122 ± 10	129 ± 12	140 ± 13
MG	124 ± 8	126 ± 9	130 ± 11	$150\pm14^{\$}$
HG	125 ± 10	128 ± 12	133 ± 13	$152 \pm 15^{**}$
GF	121 ± 9	124 ± 8	127 ± 10	$149 \pm 14*$

Table 4.2: Ventilation (VE), Oxygen Uptake (VO2), Respiratory Exchange Ration (RER), and heart rate (HR) during constant load exercise and the time trial.

* denotes "likely" positive versus PL.
** denotes "very likely" positive versus PL.
[#] denotes "possibly trivial" higher value versus HG.

⁺ denotes "likely" positive versus MG and HG. [§] denotes "most likely" positive versus PL.

	Constant-Load Exercise*				Time-Trial			
Stomach Problems	PL	MG	HG	GF	PL	MG	HG	GF
Subject 3	6	1	3	1	3	1	3	1
Subject 5	1	5	1	4	1	1	1	1
Subject 7	1	1	1	1	1	6	1	1
Nausea								
Subject 3	7	1	1	1	7	1	3	1
Subject 5	1	1	1	1	1	1	1	1
Subject 7	1	1	1	1	1	7	1	1
Dizziness								
Subject 3	1	1	1	1	4	1	1	1
Subject 5	1	1	1	1	5	1	1	1
Subject 7	2	1	1	1	3	6	1	3

Table 4.3: Individual Ratings of GI Distress during Cycling

Ratings shown only for subjects reporting ratings ≥ 5 during any of the trials. *Ratings represent the highest values reported during constant-load cycling

Figure 4.1. Mean time trial completion times. Data is presented as Mean + SD.

Figure 4.2. Blood glucose over time with PL, MG, HG, and GF. Data is presented as Mean + SD.

Figure 4.3. Blood lactate over time with PL, MG, HG, and GF. Data is presented as Mean + SD.

James Madison University

Department of Kinesiology Informed Consent

Purpose

You are being asked to volunteer for a research project conducted by Dr. Mike Saunders, Dr. Nick Luden, Dan Baur, Adam Schroer, Katie Gorman, and Sarah Smyth from James Madison University titled "Influence of Mixed Carbohydrate Solutions on Performance during Prolonged Cycling".

The primary goal of this study is to determine the effectiveness of different carbohydrate sports beverages on cycling performance.

Experimental Procedures

You will be asked to report to James Madison University's Human Performance Laboratory (Godwin 209) on six occasions. Specifically, you will be asked to participate in one preliminary trial, one familiarization trial, and four experimental exercise trials, each separated by 5 to 7 days. The preliminary trial will require approximately 45 minutes, whereas the familiarization trial and each experimental exercise trial will require approximately 3 hrs each, for a total time commitment of 15 hrs 45 min. Detailed information for each of these trials is provided below:

Preliminary Trial – Visit 1 – 45 minutes

Prior to any data collection, you will be asked to complete health history and screening questionnaires to ensure that you meet the study criteria and that you do not have any risk factors that would prevent you from performing heavy exercise. In the process of completing these forms, you will be asked to share information regarding your general health and lifestyle with the researchers. If you meet the criteria for the study, the researchers will measure your height and body weight and you will then be asked to perform a cardiovascular fitness test on a bicycle ergometer to determine your peak oxygen consumption (VO_{2peak}). At the beginning of the test, you will be asked to ride the stationary bicycle ergometer at an initial workload that is 'fairly easy'. The workload will be increased every two minutes during the test. You will be encouraged to continue to cycle until you request to stop due to fatigue or are unable to continue at a cadence of >50 revolutions per minute.

Familiarization Trial and Experimental Exercise Trials – Visits 2, 3, 4, and 5 – 3 hrs each

You will be asked to complete each trial on a stationary bicycle ergometer. Each trial will consist of two distinct exercise phases. Specifically, each trial will include an initial steady-state segment of 120 min at 55% W_{max} ('moderate intensity'). The steady-state ride will be immediately followed by a simulated 30-km time trial (~50 minutes). Total exercise time will be approximately 3 hrs. During each of these five trials, you will

receive water or a carbohydrate sports beverage at various time-points. Each of the trials will be separated by a minimum of 5-7 days. A different beverage will be provided during each trial. You will consume the beverages according to the following schedule:

- 600 ml of the assigned beverage will be provided in a bottle immediately prior to exercise.
- 150 ml will be provided every 15 min during the steady state portion of the trial.
- 150 ml will also be provided at 7.5, 15, and 22.5 km of the time trial.

You will be instructed to consume the beverages within 2 minutes during exercise. The beverages will have slightly different ingredients during each trial (see *Study Treatments* below).

You will be asked to void your bladder prior to each trial. You will also be encouraged to treat all time trials as a competitive event, and provide a maximal effort. You will receive no feedback regarding performance during the time-trials, except for the distance completed and distance remaining in the trial. The researchers will not provide any verbal encouragement.

You will be asked to complete the following procedures during each protocol:

Exercise Performance

Performance will be measured by your finishing times (and average power output) in the 30-km time trial. Again, these are to be approached as competitions.

Metabolic Measurements

Metabolic measurements such as oxygen uptake, ventilation, etc. will be measured with a metabolic cart at the following time points: minutes 15, 35, 55, 75, 95, and 115 of the 120-min steady state phase, and at 20-km into the 30-km time trial. At each of these points, 5 minutes of expired gas will be collected. To do this, you will be asked to breathe through a mouthpiece/breathing apparatus that collected your expired breath. This apparatus will NOT be worn during exercise other than at the indicated time points.

Blood Glucose and Lactic Acid

A total of 8 finger-stick blood samples (~0.5 ml) will be obtained at the following time points: minutes 20, 40, 60, 80, 100, and 120 of the 120-min steady state phase, and at 20-km into the 30-km time trial. Each of these samples will be obtained by puncturing your fingertip with a small lancet. A very small amount of blood (~2 drops) will be collected at each time point.

Heart Rate

You will be asked to wear a heart rate monitor around your chest. Heart rate will be monitored throughout each exercise session.

Ratings of Perceived Exertion (RPE)

You will be asked to provide subjective ratings of your exertion level. You will do this by pointing to a corresponding level of exertion (rated numerically from 6-20) on a Borg RPE scale.

Gastrointestinal Distress Scale

You will be asked to complete a questionnaire (verbally) at several points throughout the exercise session. The questionnaire contains questions regarding the presence of GI problems at that moment and addresses the following complaints: stomach problems, GI cramping, bloated feeling, diarrhea, nausea, dizziness, headache, belching, vomiting, and urge to urinate or defecate.

Dietary and Exercise Controls

You will be asked to complete a diet record for the 24-hr preceding each treatment trial. You will also be asked to bring your initial diet record with you to the laboratory on the morning of your first experimental trial (diet record from previous day). You will be provided with a copy of this dietary log, which is to be used as a template when replicating your dietary habits for the 24-hrs leading up to each of the following trials. You are also asked to refrain from heavy exercise for 48-hours prior to each trial. You will be asked to keep a record all physical activity performed during the 72-hr preceding each treatment trial and to maintain consistent exercise habits between each of these trials. You are to consume your final 'self-selected' meal no less than 12 hours prior to the start of the exercise trials (i.e. dinner on the evening prior to testing). Approximately 7-9 hrs prior to each trial (the night before), you will consume a liquid meal replacement (Ensure® Shakes) at an amount corresponding to 20-25% of daily caloric intake. 2 hrs prior to all experimental trials, you will consume a standardized breakfast consisting of ~500 kcals (provided by the researchers). Finally, you will be asked to abstain from alcohol for 24 hrs preceding each trial and caffeine for 12 hrs preceding each trial.

Risks

Participants are expected to be honest about disclosing all known risk factors to the researchers.

According to the American College of Sports Medicine, the risks associated with maximal exercise/testing for healthy individuals are very minimal. To be included in this study, you will need to meet the criteria for "low risk". In the unlikely event of cardiac or

other complications during exercise, an emergency plan is in place. This includes immediate access to a phone to call emergency personnel. In addition, at least one investigator present at all testing sessions will be CPR certified.

The exercise protocol may result in minor-moderate levels of muscle soreness and fatigue for 1-2 days following each exercise session. However, the level of muscle soreness is expected to be lower than levels normally experienced when you perform other 'normal' activities that are not part of your regular exercise routine (i.e. if a cyclist played a game of basketball with friends for 2 hours).

The consumption of relatively large amounts of sports drinks can increase the risk of digestive issues; include symptoms such as nausea, stomach cramping, bloated feeling, vomiting, dizziness, and diarrhea. These symptoms may cause mild discomfort for a short-term period, but are not life-threatening. Digestive symptoms will be monitored throughout testing, and tests will be terminated if your symptoms become severe enough to require you to cease exercise.

The risks of finger stick blood sampling include possible mild bruising, and the risk of transfer of blood-borne pathogens. This risk is considered to be very minimal, and all safety precautions for handing blood samples will be followed according to OSHA protocols. The investigators have been trained in phlebotomy and completed JMU blood-borne pathogen training.

Benefits

The benefits associated with this project include a free VO_{2peak} assessment, and a \$125 payment for study completion. In the case of withdrawal, payments will be pro-rated such that you will receive \$25 for the completion of each exercise trial (steady-state + TT). Participation in this novel research project will also contribute to our understanding of nutritional influences on recovery from endurance exercise.

Inquiries

If you have any questions or concerns, please contact Dr. Mike Saunders at saundemj@jmu.edu and (540) 568-8121 or Dr. Nicholas Luden at <u>ludennd@jmu.edu</u> and (540) 568-4069.

Questions about Your Rights as a Research Subject

Dr. David Cockley Chair, Institutional Review Board James Madison University (540) 568-2834 cocklede@jmu.edu

Confidentiality

All data and results will be kept confidential. You will be assigned an identification code. At no time will your name be identified with individual data. The researchers retain the right to use and publish non-identifiable data. All data will be kept secured in a locked cabinet. Upon completion of the study, all information that matches up individual respondents with their answers will be destroyed. Final aggregate results will be made available to you upon request.

Freedom of Consent

Your participation is entirely voluntary. You are free to choose not to participate. Should you choose to participate, you can withdraw at any time without consequences of any kind.

I have read this consent form and I understand what is being requested of me as a participant in this study. I freely consent to participate. I have been given satisfactory answers to my questions. The investigator provided me with a copy of this form. I certify that I am at least 18 years of age.

Name of Subject (Printed)

Name of Researcher (Printed)

Name of Subject (Signed)

Name of Researcher (Signed)

Date

Date

CYCLISTS WANTED FOR CARBOHYDRATE STUDY

The Human Performance Laboratory at JMU will be conducting a study examining the effects of ingesting carbohydrate on cycling performance.

Who Are We Looking For?

- 18-45 years old
- Experienced cyclists (performing cycling exercise on a regular basis)

What Will You Be Asked to Do?

- Complete preliminary fitness testing/screening
- Participate in five exercise protocols, each of which will consist of 3 hrs of cycling on a computerized bicycle ergometer. Carbohydrate beverages will be provided during each session
- Receive laboratory assessments (including finger stick blood sampling) during each session
- Each of the 5 exercise protocols above will be separated by 5-7 days

What are the benefits of participation?

- Free evaluation of aerobic capacity (VO $_{2peak}$) and physiological data from a race simulation
- \$125 for study completion

For more information, please contact Dr. Mike Saunders at 568-8121), saundemj@jmu.edu ((540) or Dan Baur at baurda@dukes.jmu.edu ((540)-460-7122).

Subject Prescreening Information

Age: _____

Height: _____ Weight: _____

Average Exercise Habits over the Past 2 Months:

Avg. # days of exercise per week:

Avg. # of days of aerobic exercise per week:

Avg. # of days of cycling per week:

Do you have a muscle or joint injury/condition that precludes the completion of exercise protocol?

Do you have any food allergies?

AHA/ACSM Health/Fitness Facility Pre-participation Screening Questionnaire

Assess your health status by marking all true statements

History	
You have had:	
a heart attack	
heart surgery	
cardiac catheterization	
coronary angioplasty (PTCA)	
pacemaker/implantable cardiac	
defibrillator/rhythm disturbance	If you marked any of these statements
heart valve disease	in this section, consult your physician
heart failure	or other appropriate health care
heart transplantation	provider before engaging in exercise.
congenital heart disease	You may need to use a facility with a
	medically qualified staff.
Symptoms	
You experience chest discomfort with exertion	
You experience unreasonable breathlessness	
You experience dizziness, fainting, or blackouts	
You take heart medications	
Other Health Issues	
You have diabetes	If you marked that you have diabetes
You have asthma or other lung disease	but did not mark any other statements,
You have burning or cramping sensation in your lower	physician's approval will be necessary
legs when walking short distances	before engaging in the study.
You have musculoskeletal problems that limit your	
physical activity	
You have concerns about the safety of exercise	
You take prescription medication(s)	

Cardiovascular risk factors

_____ None of the above

 You are a man older than 45 years
 You are a woman older than 55 years, have had a
hysterectomy, or are postmenopausal
 You smoke, or quit smoking within the previous 6 months
 Your blood pressure is $> 140/90$ mmHg
 You do not know your blood pressure
 You take blood pressure medication
 Your blood cholesterol level is > 200 mg/dl
 You do not know your cholesterol level
 You have a close blood relative who had a heart attack or
heart surgery before age 55 (father or brother) or age 65
(mother or sister)
 You are physically inactive (i.e. you get < 30 minutes of
physical activity on at least 3 days of the week)
 You are > 20 pounds overweight
- •

If you marked two or more of the statements in this section, you should consult your physician or other appropriate health care provider before engaging in exercise. You might benefit from using a facility with a *professionally qualified exercise staff* to guide your exercise program.

You should be able to exercise safely without consulting your physician or other appropriate health care provider in a self-guided program or almost any facility that meets your exercise program needs.

References

- 1. Achten J, Jentjens RL, Brouns F, Jeukendrup AE. Exogenous oxidation of isomaltulose is lower than that of sucrose during exercise in men. *J Nutr* 137: 1143-8, 2007.
- 2. Adopo E, Péronnet F, Massicotte D, Brisson GR, Hillaire-Marcel C. Respective oxidation of exogenous glucose and fructose given in the same drink during exercise. *J Appl Physiol* 76: 1014-9, 1994.
- 3. **Ahlborg G, Björkman O**. Splanchnic and muscle fructose metabolism during and after exercise. *J ApplPhysiol* 69: 1244-51, 1990.
- 4. Ali A, Williams C, Nicholas CW, Foskett A. The influence of carbohydrateelectrolyte ingestion on soccer skill performance. *Med Sci Sports Exerc* 39: 1969-76, 2007.
- 5. **Batterham AM, Hopkins WG**. Making meaningful inferences about magnitudes. *Sport Sci* 1: 50-7, 2006.
- 6. **Beelen M, Berghuis J, Bonaparte B, Ballak SB, Jeukendrup AE, van Loon LJ**. Carbohydrate mouth rinsing in the fed state: lack of enhancement of time-trial performance *Int J Sport Nutr Exerc Metab* 19: 400-409, 2009.
- 7. Below PR, Mora-Rodriguez R, Gonzalez-Alonso J, Coyle EF. Fluid and carbohydrate ingestion independently improve performance during 1 h of intense exercise *Med Sci Sports Exerc* 27: 200-210, 1995.
- 8. **Bjorkman O, Crump M, Phillips RW**. Intestinal metabolism of orally administered glucose and fructose in Yucatan miniature swine. *J Nutr* 114: 1413-20, 1984.
- 9. **Bjorkman O, Sahlin K, Hagenfeldt L, Wahren J**. Influence of glucose and fructose ingestion on the capacity for long-term exercise in well-trained men *Clin Physiol* 4: 483-494, 1984.
- Blondin DP, Péronnet F, Haman F. Coingesting Glucose and Fructose in the Cold Potentiates Exogenous CHO Oxidation. *Med Sci Sports Exerc* 44: 1706-14, 2012.
- 11. **De Bock K, Derave W, Ramaekers M, Richter E a, Hespel P**. Fiber typespecific muscle glycogen sparing due to carbohydrate intake before and during exercise. *J Appl Physiol* 102: 183-188, 2007.

- 13. **Brouns F, Beckers E**. Is the gut an athletic organ? Digestion, absorption and exercise *Sports Med* 15: 242-257, 1993.
- 14. **Burant CF, Takeda J, Brot-Laroche E, Bell GI, Davidson NO**. Fructose transporter in human spermatozoa and small intestine is GLUT5. *J Bio Chem* 267: 14523-6, 1992.
- 15. **Burelle Y, Lamoureux M-C, Pèronnet F, Massicotte D, Lavoie C**. Comparison of exogenous glucose, fructose and galactose oxidation during exercise using C-labelling. *Br J Nutr* 96: 56, 2007.
- 16. **Burelle Y, Peronnet F, Charpentier S**. Oxidation of an oral glucose load at rest and prolonged exercise in trained and sedentary subjects. *J Appl Physiol* 86: 52-60, 1999.
- 17. **Burke LM, Hawley J a, Wong SHS, Jeukendrup AE**. Carbohydrates for training and competition. *J Sport Sci* 1-11, 2011.
- 18. **Carmagnola S, Cantù P, Penagini R**. Mechanoreceptors of the proximal stomach and perception of gastric distension. *Am J Gastroenterol* 100: 1704-10, 2005.
- 19. Carter JM, Jeukendrup AE, Jones DA. The effect of carbohydrate mouth rinse on 1-h cycle time trial performance. *Med Sci Sports Exerc* 36: 2107-2111, 2004.
- 20. **Carter JM, Jeukendrup AE, Mann CH, Jones DA**. The effect of carbohydrate mouth rinse on 1-h cycle time trial performance. *Med Sci Sports Exerc* 36: 1543-1550, 2004.
- 21. **Chambers ES, Bridge MW, Jones DA**. Carbohydrate sensing in the human mouth: effects on exercise performance and brain activity. *J Physiol* 587: 1779-1794, 2009.
- Chandramouli V, Kumaran K, Ekberg K, Wahren J, Landau BR. Quantitation of the pathways followed in the conversion of fructose to glucose in liver. *Metabol* 42: 1420–1423, 1993.
- 23. Chryssanthopoulos C, Williams C, Nowitz A, Kotsiopoulou C, Vleck V. The effect of a high carbohydrate meal on endurance running capacity. *Int J Sport Nutr Exerc Metabol* 12: 157-171, 2002.
- 24. **Coggan AR, Coyle EF**. Effect of carbohydrate feedings during high-intensity exercise. *J Appl Physiol* 65: 1703-9, 1988.

- 25. Coggan AR, Coyle EF. Metabolism and performance following carbohydrate ingestion late in exercise. *Med Sci Sports Exerc* 21: 59-65, 1989.
- 26. **Coggan AR, Coyle EF**. Reversal of fatigue during prolonged exercise by carbohydrate infusion or ingestion *J Appl Physiol* 63: 2388-2395, 1987.
- 27. **Coggan AR, Coyle EF**. Carbohydrate ingestion during prolonged exercise: effects on metabolism and performance *Exerc Sport Sci Rev* 19: 1-40, 1991.
- 28. **Cole KJ, Grandjean PW, Sobszak RJ, Mitchell JB**. Effect of carbohydrate composition on fluid balance, gastric emptying, and exercise performance *Int J Sport Nutr* 3: 408-417, 1993.
- 29. Corazza GR, Strocchi A, Rossi R, Sirola D, Gasbarrini G. Sorbitol malabsorption in normal volunteers and in patients with coeliac disease. *Gut* 29: 44-8, 1988.
- 30. **Costill DL, Coyle E, Dalsky G, Evans W, Fink W, Hoopes D**. Effects of elevated plasma FFA and insulin on muscle glycogen usage during exercise *J Appl Physiol* 43: 695-699, 1977.
- 31. Cox GR, Clark SA, Cox AJ, Halson SL, Hargreaves M, Hawley JA, Jeacocke N, Snow RJ, Yeo WK, Burke LM. Daily training with high carbohydrate availability increases exogenous carbohydrate oxidation during endurance cycling. *J Appl Physiol* 109: 126-34, 2010.
- 32. **Coyle E**. Effectiveness of carbohydrate feeding in delaying fatigue during prolonged exercise *Sports Med* 1: 446-458, 1984.
- 33. **Coyle EF, Coggan AR, Hemmert MK, Ivy JL**. Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. *J Appl Physiol* 61: 165-172, 1986.
- 34. Coyle EF, Costill DL, Fink WJ, Hoopes DG. Gastric emptying rates for selected athletic drinks [Online]. *Res Q* 49: 119-124, 1978.
- 35. **Coyle EF, Hagberg JM, Hurley BF, Martin WH, Ehsani AA, Holloszy JO**. Carbohydrate feeding during prolonged strenuous exercise can delay fatigue. *J Appl Physiol* 55: 230-235, 1983.
- 36. **Currell K, Jeukendrup AE**. Superior endurance performance with ingestion of multiple transportable carbohydrates. *Med Sci Sports Exerc* 40: 275-281, 2008.
- 37. **Currell K, Urch J, Cerri E, Jentjens RLPG, Blannin AK, Jeukendrup AE**. Plasma deuterium oxide accumulation following ingestion of different carbohydrate beverages. *Appl Physiol Nutr Metabol* 33: 1067-72, 2008.

- 38. **Davis J, Jackson D, Broadwell M, Queary JL, Lambert C**. Carbohydrate drinks delay fatigue during intermittent, high-intensity cycling in active men and women. *Int J Sport Nutr* 7: 261-273, 1997.
- 39. **Decombaz J, Sartori D, Arnaud M**. Oxidation and metabolic effects of fructose or glucose ingested before exercise. *Int J Sports* 6: 282-286, 1985.
- 40. **Desbrow B, Anderson S, Barrett J, Rao E, Hargreaves M**. Carbohydrateelectrolyte feedings and 1 h time trial cycling performance. *Int J Sport Nutr Exerc Metabol* 14: 541-9, 2004.
- 41. **Diboll DC, Boone WT, Lindsey LR**. Cardiovascular and Metabolic Responses During 30 Minutes of Treadmill Exercise Shortly After Consuming a Small, High-Carbohydrate Meal. *Int J Sports Med* 20: 384-389, 1999.
- 42. **Duhamel TA, Green HJ, Stewart RD, Foley KP, Smith IC, Ouyang J**. Muscle metabolic, SR Ca(2+) -cycling responses to prolonged cycling, with and without glucose supplementation. *J Appl Physiol* 103: 1986-98, 2007.
- 43. Earnest CP, Lancaster SL, Rasmussen CJ, Kerksick CM, Lucia A, Greenwood MC, Almada AL, Cowan PA, Kreider RB, others. Low vs. high glycemic index carbohydrate gel ingestion during simulated 64-km cycling time trial performance. *J Stren Con Res* 18: 466–472, 2004.
- 44. **Egan JM, Margolskee RF**. Taste Cells of the Gut and Gastrointestinal Chemosensation. *Mol Interv* 8: 78-81, 2009.
- 45. **El-Sayed M, Balmer J, Rattu A**. Carbohydrate ingestion improves endurance performance during a 1h simulated cycling time trial. *J Sport Sci* 15: 223–230, 1997.
- 46. Erickson M, Schwarzkopf R. Effects of caffeine, fructose, and glucose ingestion on muscle glycogen utilization during exercise. *Med Sci Sports Exerc* 19: 579-583, 1987.
- 47. **Febbraio M, Stewart K**. CHO feeding before prolonged exercise: effect of glycemic index on muscle glycogenolysis and exercise performance. *J Appl Physiol* 81: 1115-1120, 1996.
- 48. **Febbraio MA, Chiu A, Angus DJ, Arkinstall MJ, Hawley JA**. Effects of carbohydrate ingestion before and during exercise on glucose kinetics and performance. *J Appl Physiol* 89: 2220-2226, 2000.
- 49. **Ferraris RP, Diamond J**. Regulation of intestinal sugar transport. *Physiol Rev* 77: 257–302, 1997.

- 50. **Fielding R, Costill D, Fink D, King D, Kovaleski J, Kirwan J**. Effects of preexercise carbohydrate feedings on muscle glycogen use during exercise in welltrained runners. *Eur J Appl Physiol* 56: 225-229, 1987.
- 51. Fielding RA, Costill DL, Fink WJ, King DS, Hargreaves M, Kovaleski JE, others. Effect of carbohydrate feeding frequencies and dosage on muscle glycogen use during exercise. *Med Sci Sports Exerc* 17: 472-476, 1985.
- Flynn MG, Costill DL, Hawley JA, Fink WJ, Neufer PD, Fielding RA, Sleeper MD. Influence of selected carbohydrate drinks on cycling performance and glycogen use. *Med Sci Sports Exerc* 19: 37-40, 1987.
- 53. Galloway SD, Wootton SA, Murphy JL, Maughan RJ. Exogenous carbohydrate oxidation from drinks ingested during prolonged exercise in a cold environment in humans. *J Appl Physiol* 91: 654-660, 2001.
- 54. Gant N, Stinear CM, Byblow WD. Carbohydrate in the mouth immediately facilitates motor output. *Brain Res* 1350: 151-8, 2010.
- 55. Goh Q, Boop CA, Luden ND, Smith AG, Womack CJ, Saunders MJ. Recovery from cycling exercise: effects of carbohydrate and protein beverages. *Nutrients* 4: 568-84, 2012.
- 56. **Green HJ, Duhamel TA, Foley KP, Ouyang J, Smith IC, Stewart RD**. Glucose supplements increase human muscle in vitro Na+-K+-ATPase activity during prolonged exercise. *Am J Physiol* 293: R354-62, 2007.
- 57. Handel PV, Fink W, Branam G. Fate of (14C) glucose ingested during prolonged exercise. *Int J Sports Med* 1: 127-131, 1980.
- 58. **Hargreaves M, Briggs CA**. Effect of carbohydrate ingestion on exercise metabolism. *J Appl Physiol* 65: 1553-1555, 1988.
- 59. Hargreaves M, Costill DL, Katz A, Fink W. Effect of fructose ingestion on muscle glycogen usage during exercise. *Med Sci Sports Exerc* 17: 360-363, 1985.
- 60. Hargreaves M, Costill DL, Coggan A, Fink WJ, Nishibata I, others. Effect of carbohydrate feedings on muscle glycogen utilization and exercise performance. *Med Sci Sports Exerc* 16: 219-222, 1984.
- 61. **Hawley JA, Bosch AN, Weltan SM, Dennis SC, Noakes TD**. Glucose kinetics during prolonged exercise in euglycaemic and hyperglycaemic subjects. *Pflügers Archiv Eur J Physiol* 426: 378–386, 1994.

- 62. Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. *Med Sci Sports Exerc* 41: 3-13, 2009.
- 63. **Hopkins WG**. A spreadsheet for deriving a confidence interval, mechanistic inference and clinical inference from a p value. *Sport Sci* 16-9, 2007.
- 64. **Hulston CJ, Wallis GA, Jeukendrup AE**. Exogenous CHO oxidation with glucose plus fructose intake during exercise. *Med Sci Sports Exerc* 41: 357-63, 2009.
- 65. **Ivy J, Miller W, Dover V, Goodyear L**. Endurance improved by ingestion of a glucose polymer supplement. *Med Sci Sports Exerc* 15: 465-471, 1983.
- 66. **Jentjens RLPG, Jeukendrup AE**. High rates of exogenous carbohydrate oxidation from a mixture of glucose and fructose ingested during prolonged cycling exercise. *Br J Nutr* 93: 485-492, 2005.
- 67. Jentjens RLPG, Achten J, Jeukendrup AE. High Oxidation Rates from Combined Carbohydrates Ingested during Exercise. *Med Sci Sports Exerc* 36: 1551-1558, 2004.
- 68. **Jentjens RLPG, Jeukendrup AE**. High rates of exogenous carbohydrate oxidation from a mixture of glucose and fructose ingested during prolonged cycling exercise. *Br J Nutr* 93: 485, 2007.
- Jentjens RLPG, Moseley L, Waring RH, Harding LK, Jeukendrup AE. Oxidation of combined ingestion of glucose and fructose during exercise. *J Appl Physiol* 96: 1277-1284, 2004.
- Jentjens RLPG, Shaw C, Birtles T, Waring RH, Harding LK, Jeukendrup AE. Oxidation of combined ingestion of glucose and sucrose during exercise. *Metabolism: Clinical and Experimental* 54: 610-8, 2005.
- 71. Jentjens RLPG, Underwood K, Achten J, Currell K, Mann CH, Jeukendrup AE. Exogenous carbohydrate oxidation rates are elevated after combined ingestion of glucose and fructose during exercise in the heat. *J Appl Physiol* 100: 807-16, 2006.
- 72. Jentjens RLPG, Venables MC, Jeukendrup AE. Oxidation of exogenous glucose, sucrose, and maltose during prolonged cycling exercise. *J Appl Physiol* 96: 1285-1291, 2004.
- 73. Jentjens RLPG, Wagenmakers AJM, Jeukendrup AE. Heat stress increases muscle glycogen use but reduces the oxidation of ingested carbohydrates during exercise. *J Appl Physiol* 92: 1562-72, 2002.

- 74. **Jeukendrup A**. Nutrition for endurance sports: Marathon, triathlon, and road cycling. *J Sport Sci* 37-41, 2011.
- 75. **Jeukendrup AE, Hopkins S, Aragón-Vargas LF, Hulston C**. No effect of carbohydrate feeding on 16 km cycling time trial performance. *Eur J Appl Physiol* 104: 831-7, 2008.
- 76. **Jeukendrup AE, Jentjens R**. Oxidation of carbohydrate feedings during prolonged exercise: current thoughts, guidelines and directions for future research. *Sports Med* 29: 407-424, 2000.
- 77. Jeukendrup AE, Moseley L, Mainwaring GI, Samuels S, Perry S, Mann CH. Exogenous carbohydrate oxidation during ultraendurance exercise. *J Appl Physiol* 100: 1134-1141, 2006.
- 78. **Jeukendrup AE, Moseley L**. Multiple transportable carbohydrates enhance gastric emptying and fluid delivery. *Scand J Med Sci Sports* 20: 112-121, 2008.
- 79. Jeukendrup AE, Vet-Joop K, Sturk A, Stegen JH, Senden J, Saris WH, Wagenmakers AJ. Relationship between gastro-intestinal complaints and endotoxaemia, cytokine release and the acute-phase reaction during and after a long-distance triathlon in highly trained men. *Clin Sci (Lond)* 98: 47-55, 2000.
- Jeukendrup AE, Wagenmakers AJ, Stegen JH, Gijsen AP, Brouns F, Saris WH. Carbohydrate ingestion can completely suppress endogenous glucose production during exercise. *Am J Physiol* 276: E672-83, 1999.
- 81. **Jeukendrup AE**. Carbohydrate intake during exercise and performance. *Nutrition* 20: 669-677, 2004.
- 82. **Jeukendrup AE**. Carbohydrate feeding during exercise. *Eur J Sport Sci* 8: 77-86, 2008.
- 83. **Jeukendrup AE**. Carbohydrate and exercise performance: the role of multiple transportable carbohydrates. *Cur Opin Clin Nutr and Metabol Care* 13: 452-7, 2010.
- 84. **Jones H, Butler R, Brooks D**. Intestinal fructose transport and malabsorption in humans. *Am J Physiol* 300: G202-6, 2011.
- 85. **Karasov WH, Pond RS, Solberg DH, Diamond JM**. Regulation of proline and glucose transport in mouse intestine by dietary substrate levels. *Proceedings of the National Academy of Sciences of the United States of America* 80: 7674-7, 1983.

- 86. **Karelis AD, Smith JW, Passe DH, Péronnet F**. Carbohydrate administration and exercise performance: what are the potential mechanisms involved? *Sport Med* 40: 747-63, 2010.
- 87. Kellett GL, Brot-Laroche E, Mace OJ, Leturque A. Sugar absorption in the intestine: the role of GLUT2. *An Rev Nutr* 28: 35-54, 2008.
- 88. **Khanna GL, Manna I**. Supplementary effect of carbohydrate-electrolyte drink on sports performance, lactate removal & cardiovascular response of athletes. *In J Med Res* 121: 665-9, 2005.
- 89. Kreider RB, Wilborn CD, Taylor L, Campbell B, Almada AL, Collins R, Cooke M, Earnest CP, Greenwood M, Kalman DS, Kerksick CM, Kleiner SM, Leutholtz B, Lopez H, Lowery LM, Mendel R, Smith A, Spano M, Wildman R, Willoughby DS, Ziegenfuss TN, Antonio J. ISSN exercise & sport nutrition review: research & recommendations. J Int Soc Sports Nutr 7: 7, 2010.
- 90. Krzentowski G, Jandrain B, Pirnay F, Mosora F, Lacroix M, Luyckx a S, Lefebvre PJ. Availability of glucose given orally during exercise. *J Appl Physiol* 56: 315-20, 1984.
- 91. **Kuipers H, Costill DL, Porter DA, Fink WJ, Morse WM**. Glucose feeding and exercise in trained rats: mechanisms for glycogen sparing. *J Appl Physiol* 61: 859-863, 1986.
- 92. Kuipers H, Keizer HA, Brouns F, Saris WH. Carbohydrate feeding and glycogen synthesis during exercise in man. *Pflugers Arch* 410: 652-656, 1987.
- 93. Langenfeld ME, Seifert JG, Rudge SR, Bucher RJ. Effect of carbohydrate ingestion on performance of non-fasted cyclists during a simulated 80-mile time trial. *J Sport Med Phys Fit* 34: 263-270, 1994.
- 94. Lambert GP, Lang J, Bull A, Eckerson J, Lanspa S, O'Brien J. Fluid tolerance while running: effect of repeated trials. *Int J Sports Med* 29: 878-882, 2008.
- 95. Lecoultre V, Benoit R, Carrel G, Schutz Y, Millet GP, Tappy L, Schneiter P. Fructose and glucose co-ingestion during prolonged exercise increases lactate and glucose fluxes and oxidation compared with an equimolar intake of glucose. *Am J Clin Nutr* 92: 1071-1079, 2010.
- 96. Leijssen D, Saris W, Jeukendrup AE, Wagenmakers AJ. Oxidation of exogenous galactose and glucose during exercise. *J Appl Physiol* 79: 720-725, 1995.

- 98. Levine L, Evans WJ, Cadarette BS, Fisher EC, Bullen B a. Fructose and glucose ingestion and muscle glycogen use during submaximal exercise. *J Appl Physiol* 55: 1767-71, 1983.
- 99. **Mace OJ, Affleck J, Patel N, Kellett GL**. Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2. *J Physiol* 582: 379-92, 2007.
- 100. Marmy-Conus N, Fabris S. Preexercise glucose ingestion and glucose kinetics during exercise. *J Appl Physiol* 81: 853-857, 1996.
- 101. Massicotte D, Péronnet F, Allah C, Hillaire-Marcel C, Ledoux M, Brisson G. Metabolic response to [13C]glucose and [13C]fructose ingestion during exercise. [Online]. J Appl Physiol 61: 1180-4, 1986.
- 102. **Massicotte D, Péronnet F, Brisson G, Bakkouch K, Hillaire-Marcel C**. Oxidation of a glucose polymer during exercise: comparison with glucose and fructose. *J Appl Physiol* 66: 179-83, 1989.
- 103. **Maughan R**. Fluid and electrolyte loss and replacement in exercise. *J Sport Sci* 9: 117-142, 1991.
- 104. **Maughan RJ, Bethell LR, Leiper JB**. Effects of ingested fluids on exercise capacity and on cardiovascular and metabolic responses to prolonged exercise in man. *Exp Physiol* 81: 847-859, 1996.
- Maughan RJ, Fenn CE, Leiper JB. Effects of fluid, electrolyte and substrate ingestion on endurance capacity. *Eur J Appl Physiol Occup Physiol* 58: 481-486, 1989.
- 106. Mayes P. Intermediary metabolism of fructose. Am J Clin Nutr 754S-65S, 1993.
- 107. McConell G, Fabris S, Proietto J, Hargreaves M. Effect of carbohydrate ingestion on glucose kinetics during exercise. *J Appl Physiol* 77: 1537–1541, 1994.
- 108. McConell G, Kloot K, Hargreaves M. Effect of timing of carbohydrate ingestion on endurance exercise performance. *Med Sci Sports Exerc* 28: 1300-1304, 1996.
- 109. McConell G, Snow R, Proietto J, Hargreaves M. Muscle metabolism during prolonged exercise in humans: influence of carbohydrate availability. *J Appl Physiol* 87: 1083-1086, 1999.

- 110. McConell GK, Canny BJ, Daddo MC, Nance MJ, Snow RJ. Effect of carbohydrate ingestion on glucose kinetics and muscle metabolism during intense endurance exercise. *J Appl Physiol* 89: 1690-1698, 2000.
- 111. **Millard-Stafford M, Rosskopf L, Snow T**. Water versus carbohydrate-electrolyte ingestion before and during a 15-km run in the heat. *Int J Sport Nutr* 26-38, 1997.
- 112. Mitchell JB, Costill DL, Houmard JA, Fink WJ, Pascoe DD, Pearson DR. Influence of carbohydrate dosage on exercise performance and glycogen metabolism. *J Appl Physiol* 67: 1843-1849, 1989.
- 113. Mitchell JB, Costill DL, Houmard JA, Flynn MG, Fink WJ, Beltz JD, others. Effects of carbohydrate ingestion on gastric emptying and exercise performance. *Med Sci Sports Exerc* 20: 110-115, 1988.
- 114. **Miyamoto K, Hase K, Takagi T, Fujii T, Taketani Y, Minami H, Oka T, Nakabou Y**. Differential responses of intestinal glucose transporter mRNA transcripts to levels of dietary sugars. *Biochem J* 295 (Pt 1: 211-5, 1993.
- 115. **Murdoch SD, Bazzarre TL, Snider IP, Goldfarb AH**. Differences in the effects of carbohydrate food form on endurance performance to exhaustion. *Int J Sport Nutr* 3: 41-54, 1993.
- 116. **Murray R, Paul G, Seifert J, Eddy D**. Responses to varying rates of carbohydrate ingestion during exercise. *Med Sci Sports Exerc* 23: 713-718, 1991.
- Murray R, Paul GL, Seifert JG, Eddy DE, Halaby GA, others. The effects of glucose, fructose, and sucrose ingestion during exercise. *Med Sci Sports Exerc* 21: 275-282, 1989.
- 118. **N. J. Rehrer, F. Brouns, E. J. Beckers WHMS**. The influence of beverage composition and gastrointestinal function on fluid and nutrient availability during exercise. *Scan J Med Sci Sports* 4: 159-172, 1994.
- 119. Neufer PD, Costill DL, Flynn MG, Kirwan JP, Mitchell JB, Houmard J. Improvements in exercise performance: effects of carbohydrate feedings and diet. *J Appl Physiol* 62: 983-988, 1987.
- 120. Nicholas CW, Tsintzas K, Boobis L, Williams C. Carbohydrate-electrolyte ingestion during intermittent high-intensity running. *Med Sci Sports Exerc* 31: 1280-1286, 1999.
- 121. **Nilsson LH, Hultman E**. Liver glycogen in man--the effect of total starvation or a carbohydrate-poor diet followed by carbohydrate refeeding. *Scand J Clin Lab Invest* 32: 325-30, 1973.

- 122. Owen MD, Kregel KC, Wall P, Gisolfi CV. Effects of ingesting carbohydrate beverages during exercise in the heat. *Med Sci Sports Exerc* 18: 568-575, 1986.
- 123. O'Brien WJ, Rowlands DS. Fructose-maltodextrin ratio in a carbohydrateelectrolyte solution differentially affects exogenous carbohydrate oxidation rate, gut comfort, and performance. *Am J Physiol Gastrointest Liv Physiol* 300: G181-9, 2011.
- 124. **Pallikarakis N, Jandrain B**. Remarkable metabolic availability of oral glucose during long-duration exercise in humans. *J Appl Physiol* 60: 1035-1042, 1986.
- 125. Peters HP, Bos M, Seebregts L, Akkermans LM, van Berge Henegouwen GP, Bol E, Mosterd WL, de Vries WR. Gastrointestinal symptoms in long-distance runners, cyclists, and triathletes: prevalence, medication, and etiology. *Am J Gastroenterol* 94: 1570-1581, 1999.
- 126. Peters HP, van Schelven FW, Verstappen PA, de Boer RW, Bol E, Erich WB, van der Togt CR, de Vries WR. Gastrointestinal problems as a function of carbohydrate supplements and mode of exercise. *Med Sci Sports Exerc* 25: 1211-1224, 1993.
- 127. **Pfeiffer B, Cotterill A, Grathwohl D, Stellingwerff T, Jeukendrup AE**. The effect of carbohydrate gels on gastrointestinal tolerance during a 16-km run. *Int J Sport Nutr Exerc Metab* 19: 485-503, 2009.
- 128. Pfeiffer B, Stellingwerff T, Hodgson AB, Randell R, Pottgen K, Res P, Jeukendrup AE. Nutritional Intake and Gastrointestinal Problems during Competitive Endurance Events. *Med Sci Sports Exerc* EPub Ahead of Print, 2011.
- 129. **Pfeiffer B, Stellingwerff T, Zaltas E, Hodgson AB, Jeukendrup AE**. Carbohydrate oxidation from a drink during running compared with cycling exercise. *Med Sci Sports Exerc* 43: 327-34, 2011.
- Pfeiffer B, Stellingwerff T, Zaltas E, Jeukendrup AE. Oxidation of Solid versus Liquid Carbohydrate Sources during Exercise. *Med Sci Sports Exerc* 42, 11: 2030-7, 2010.
- Pfeiffer B, Stellingwerff T, Zaltas E, Jeukendrup AE. CHO oxidation from a CHO gel compared with a drink during exercise. *Med Sci Sports Exerc* 42: 2038-45, 2010.
- Pirnay F, Lacroix M, Mosora F, Luyckx A, Lefebvre P. Glucose oxidation during prolonged exercise evaluated with naturally labeled glucose. *J Appl Physiol* 43: 258-261, 1977.

- 133. Ravich WJ, Bayless TM, Thomas M. Fructose: incomplete intestinal absorption in humans. Gastroenterol 1983.
- 134. Rehrer N, Wagenmakers A, Beckers E, Halliday D, Leiper J, Brouns F, Maughan R, Westerterp K, Saris W. Gastric emptying, absorption, and carbohydrate oxidation during prolonged exercise. *J Appl Physiol* 72: 468–475, 1992.
- 135. **Rehrer NJ**. Fluid and electrolyte balance in ultra-endurance sport. *Sports Med* 31: 701-715, 2001.
- 136. Riddell M, Bar-Or O, Wilk B, Parolin M, Heigenhauser G. Substrate utilization during exercise with glucose and glucose plus fructose ingestion in boys ages 10– 14 yr. J Appl Physiol 90: 903-911, 2001.
- Rodriguez NR, Di Marco NM, Langley S. American College of Sports Medicine position stand. Nutrition and athletic performance. *Med Sci Sports Exerc* 41: 709-731, 2009.
- 138. **Rogers J, Summers RW, Lambert GP**. Gastric emptying and intestinal absorption of a low-carbohydrate sport drink during exercise. *Int J Sport Nutr Exerc Metabol* 15: 220-35, 2005.
- 139. Rowlands DS, Rossler K, Thorp RM, Graham DF, Timmons BW, Stannard SR, Tarnopolsky MA. Effect of dietary protein content during recovery from high-intensity cycling on subsequent performance and markers of stress, inflammation, and muscle damage in well-trained men. *Appl Physiol Nutr Metab* 33: 39-51, 2008.
- 140. **Rowlands DS, Swift M, Ros M, Green JG**. Composite versus single transportable carbohydrate solution enhances race and laboratory cycling performance. *Applied Physiology, Nutrition, and Metabolism* 37: 1-12, 2012.
- 141. Rowlands DS, Thorburn MS, Thorp RM, Broadbent S, Shi X. Effect of graded fructose coingestion with maltodextrin on exogenous 14C-fructose and 13Cglucose oxidation efficiency and high-intensity cycling performance. *J Appl Physiol* 104: 1709-1719, 2008.
- 142. Rowlands DS, Wallis G a., Shaw C, Jentjens RLPG, Jeukendrup AE. Glucose Polymer Molecular Weight Does Not Affect Exogenous Carbohydrate Oxidation. *Med Sci Sports Exerc* 37: 1510-1516, 2005.
- 143. **Rumessen JJ, Gudmand-Høyer E**. Absorption capacity of fructose in healthy adults. Comparison with sucrose and its constituent monosaccharides. *Gut* 27: 1161-8, 1986.

- 144. Saris WH, Goodpaster BH, Jeukendrup a E, Brouns F, Halliday D, Wagenmakers a J. Exogenous carbohydrate oxidation from different carbohydrate sources during exercise. *J Appl Physiol* 75: 2168-72, 1993.
- 145. Shi M, Jones AR, Niedringhaus MS, Pearson RJ, Biehl AM, Ferreira M, Sahibzada N, Verbalis JG, Gillis RA. Glucose acts in the CNS to regulate gastric motility during hypoglycemia. *Am J Physiol* 285: R1192-202, 2003.
- 146. Shi X, Schedl HP, Summers RM, Lambert GP, Chang RT, Xia T, Gisolfi CV. Fructose transport mechanisms in humans. *Gastroenterol* 113: 1171-1179, 1997.
- 147. Shi X, Summers RW, Schedl HP, Flanagan SW, Chang R, Gisolfi CV, others. Effects of carbohydrate type and concentration and solution osmolality on water absorption. *Med Sci Sports Exerc* 27: 1607, 1995.
- 148. Da Silva-Grigoletto ME, Fernández JM, de Sá CA, Gómez-Puerto JR, Vaamonde D, Pérez-Jiménez F. Fructose Addition to a Glucose Supplement Modifies Perceived Exertion During Strength and Endurance Exercise. J Stren Cond Res 24: 3334-3342, 2010.
- 149. Smith JW, Pascoe DD, Passe DH, Ruby BC, Stewart LK, Baker LB, Zachwieja JJ. Curvilinear Dose-Response Relationship of Carbohydrate (0-120 g·h-1) and Performance. *Med Sci Sports Exerc* 45: 336-41, 2013.
- 150. Smith JW, Zachwieja JJ, Péronnet F, Passe DH, Massicotte D, Lavoie C, Pascoe DD. Fuel selection and cycling endurance performance with ingestion of [13C]glucose: evidence for a carbohydrate dose response. *J Appl Physiol* 108: 1520-9, 2010.
- 151. **Spencer MK, Yan Z, Katz A**. Carbohydrate supplementation attenuates IMP accumulation in human muscle during prolonged exercise. *Am J Physiol* 261: C71-6, 1991.
- 152. Stellingwerff T, Boon H, Gijsen AP, Stegen JH, Kuipers H, van Loon LJ. Carbohydrate supplementation during prolonged cycling exercise spares muscle glycogen but does not affect intramyocellular lipid use. *Pflugers Arch* 454: 635-647, 2007.
- 153. **Temesi J, Johnson NA, Raymond J, Burdon CA**. Carbohydrate ingestion during endurance exercise improves performance in adults. *J Nutr* 141: 890–897, 2011.
- 154. Thorburn Vistisen, B., Thorp, R.M., Rockell, M.J., Jeukendrup, A.E., Xu, X., Rowlands, D.S. MS. No attenuation of gastric distress or benefit to performance with adaptation to octanoate-rich esterified oils in female cyclists. *Eur J Sport Sci* 7: 179-192, 2007.

- 155. Thorburn MS, Vistisen B, Thorp RM, Rockell MJ, Jeukendrup AE, Xu X, Rowlands DS. Attenuated gastric distress but no benefit to performance with adaptation to octanoate-rich esterified oils in well-trained male cyclists. *J Appl Physiol* 101: 1733-1743, 2006.
- 156. **Triplett D, Doyle JA, Rupp JC, Benardot D**. An isocaloric glucose-fructose beverage's effect on simulated 100-km cycling performance compared with a glucose-only beverage. *Int J Sport Nutr Exerc Metab* 20: 122-31, 2010.
- 157. **Tsintzas K, Williams C**. Human muscle glycogen metabolism during exercise. Effect of carbohydrate supplementation. *Sports Med* 25: 7-23, 1998.
- 158. **Tsintzas O, Williams C, Boobis L, Greenhaff P**. Carbohydrate ingestion and single muscle fiber glycogen metabolism during prolonged running in men. *J Appl Physiol* 81: 801-809, 1996.
- Tsintzas OK, Williams C, Boobis L, Greenhaff P. Carbohydrate ingestion and glycogen utilization in different muscle fibre types in man. *J Physiol* 489 (Pt 1: 243-250, 1995.
- Tsintzas OK, Williams C, Wilson W, Burrin J. Influence of carbohydrate supplementation early in exercise on endurance running capacity. *Med Sci Sports Exerc* 28: 1373-1379, 1996.
- Venables MC, Brouns F, Jeukendrup AE. Oxidation of maltose and trehalose during prolonged moderate-intensity exercise. *Med Sci Sports Exerc* 40: 1653-1659, 2008.
- 162. Vist GE, Maughan RJ. The effect of osmolality and carbohydrate content on the rate of gastric emptying of liquids in man. *J Physiol* 486 (Pt 2: 523-531, 1995.
- Wagenmakers AJ, Brouns F, Saris WH, Halliday D. Oxidation rates of orally ingested carbohydrates during prolonged exercise in men. *J Appl Physiol* 75: 2774-80, 1993.
- 164. Wallis GA., Rowlands DS, Shaw C, Jentjens RLPG, Jeukendrup AE. Oxidation of combined ingestion of maltodextrins and fructose during exercise. *Med Sci Sports Exerc* 37: 426-432, 2005.
- Wallis GA, Yeo SE, Blannin AK, Jeukendrup AE. Dose-response effects of ingested carbohydrate on exercise metabolism in women. *Med Sci Sports Exerc* 39: 131-138, 2007.
- 166. Watson P, Shirreffs S, Maughan R. Effect of Dilute Carbohydrate Beverages on Performance in Cool and Warm Environments. *Med Sci Sports Exerc* 336-343, 2012.

- Witard OC, Jackman SR, Kies AK, Jeukendrup AE, Tipton KD. Effect of increased dietary protein on tolerance to intensified training. *Med Sci Sports Exerc* 43: 598-607, 2011.
- 168. Wright DA, Sherman WM, Dernbach AR. Carbohydrate feedings before, during, or in combination improve cycling endurance performance. *J Appl Physiol* 71: 1082-8, 1991.
- 169. **Yaspelkis B, Ivy JL**. Effect of carbohydrate supplements and water on exercise metabolism in the heat. *J Appl Physiol* 71: 680–687, 1991.
- 170. **Yaspelkis BB, Patterson JG, Anderla PA, Ding Z, Ivy JL, Anderla PA**. Carbohydrate supplementation spares muscle glycogen during variable-intensity exercise. *J Appl Physiol* 75: 1477-1485, 1993.