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Abstract 

Recent psychoacoustic experiments (Böckmann-Barthel et al., 2014; Deike et al., 2012) 

have re-examined research regarding stream segregation and the build-up effect.  Stream 

segregation is the ability to discern auditory objects within a stream of information, such as 

distinguishing one voice amongst background noise or an instrument within an orchestra.  Initial 

works examining this topic proposed that auditory information is not immediately distinguished 

as various streams, but rather that differences accumulate over time, allowing listeners to 

segregate information following a period of build-up (i.e., the build-up effect); whereas more 

current findings indicate a build-up period is unnecessary for segregation.  This experiment’s 

methods were based on those of older studies of stream segregation and the build-up effect, but 

aimed to gather first perceptual responses to stimuli within a window of time more realistic than 

prior studies, in which subjects seemed to hesitate before giving their first responses of their 

stream perception.  The main differences explored were prompting and training of subjects, 

allowing subjects to become familiar with stimuli prior to data gathering, and re-instructing 

subjects if their response times seemed to indicate they still did not understand the task.  Another 

goal of this experiment was to gather data to further assess current beliefs of an inability of 

cochlear implant-wearing (CI) listeners to harness auditory cues in streaming of information, due 

to degraded information relative to that of normal-hearing (NH) listeners (Cooper & Roberts, 

2009). 

Normal-hearing and cochlear implant listeners in this experiment indicated whether they 

experienced one or two auditory streams during a 24.7 second window of stimuli presentation 

consisting of alternating A and B noise bursts.  This experiment examined correlations between 

spectral difference, amplitude-modulation rate, and initial response of stream number perception.  
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Results from this experiment indicated that spectral cues are often salient enough to result in 

high probabilities of a segregated or integrated perception in NH listeners, though not in CI 

listeners.  These findings are congruent with prior research.  Findings also indicate that in 

conditions without spectral separation, AM-rate differences greater than two-octaves generate a 

build-up of segregated perception in NH listeners.  Overall, while observations of CI listeners 

thus far suggest possible build-up segregation elicited by robust spectral cues, no data indicate 

that AM-rate cues are being harnessed to aid in streaming. 
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Introduction 

 Grouping of auditory components from a common source is one of the essential functions 

of the auditory system, and the degree to which listeners can perform this task greatly influences 

their ability to identify auditory objects in varied listening environments.  A listener’s capability 

to perform this function allows tasks such as listening to one speaker amongst noise or a single 

instrument within an orchestra to be accomplished.  All listeners, with normal hearing (NH) and 

with auditory sensory aids such as cochlear implants (CI) alike, must combat the issue of 

recognizing auditory objects in complex environments.  This operation is thought to be based on 

various processes, one of which is auditory stream segregation. In respect with the time course of 

stream segregation, a traditional notion is that all incoming auditory information is initially 

integrated (combined into one stream of sound), until auditory cues are sufficiently accumulated 

and segregation into multiple streams may occur, showing a build-up effect (Bregman, 1990). 

 Acoustic characteristics examined thus far in relation to auditory stream segregation are 

spectral difference (Böckmann-Barthel et al., 2014; Cooper & Roberts, 2009; Deike et al., 2012), 

temporal envelope (Singh & Bregman, 1997; Vliegen et al., 1999; Vliegen & Oxenham, 1999; 

Grimault et al. 2000, 2001; Roberts et al., 2002), and amplitude-modulation rate (Grimault et al., 

2001; Hong & Turner, 2006, 2009; Nie & Nelson, 2015).  Studies in stream segregation thus far 

have utilized pure tones (Bregman & Campbell, 1971; Warren & Obusek, 1972; van Noorden, 

1975; Dannenbring & Bregman, 1976a), harmonic tone complexes (Deike et. al, 2012; 

Böckmann-Barthel et al., 2014), and bandpass noises (Dannenbring & Bregman, 1976b; 

Bregman et al., 1999; Nie et al., 2014). 

 Contradictory findings on whether CI users have been able to segregate auditory 

streams with degraded spectral contrast but well-preserved temporal information have been 
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reported.  These discrepancies could potentially be due to the variety of testing methods used in 

studies.  For example, amplitude-modulation based (Hong & Turner, 2006) and spectral-cue 

based stream segregation (Cooper & Roberts, 2009) have been evaluated.  Other experiments 

have implemented tasks in which performance is reduced (Cooper & Roberts, 2007, 2009) or 

promoted (Hong & Turner, 2009) by stream segregation.  Segregation has been measured using 

self-reported perception (subjective paradigm) (Chatterjee et al., 2006; Deike et al., 2012; 

Böckmann-Barthel et al., 2014; Marozeau et al., 2013) and performance-based (objective 

paradigm) tasks (Hong & Turner, 2006, 2009; Cooper & Roberts, 2007; Micheyl & Oxenham, 

2010a; Nie & Nelson, 2015).  Experiments have also used stimuli presented acoustically (Hong 

& Turner, 2006) and electrically (Chatterjee et al., 2006).  Such fundamental differences in 

methodology complicate the formation of conclusions regarding stream segregation for both NH 

and CI listeners. 

 The presence of a build-up effect, one of the main proposed necessary characteristics of 

stream segregation (Bregman, 1990), is unclear in CI users.  Chatterjee et al. (2006) and Cooper 

and Roberts (2009) did not observe a build-up of stream segregation in CI users based on 

spectral cues, and Cooper and Roberts thus concluded CI users are unable to form auditory 

streams.  Other research has indicated that a build-up effect may not be present in NH listeners 

either (Deike et al., 2012; Micheyl & Oxenham, 2010b).  Böckmann-Barthel et al. (2014) found 

that, like NH listeners, CI users perceived auditory streams as segregated within a few seconds 

post-onset of the stimuli when the streams were sufficiently different, suggesting stream 

segregation in the absence of build-up.  They further noted that, when the difference between the 

auditory streams were ambiguous, a build-up did occur in the CI users, as it did in the NH 
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listeners (Deike, et al 2012).  Consequently, Böckmann-Barthel et al. concluded that both CI 

users and NH listeners likely experience a similar quality of stream segregation.   

 The current study was conducted to examine further the presence of a build-up of 

auditory stream segregation, particularly through defining earlier response times for perception 

in a subjective paradigm that studies such as Böckmann-Barthel et al. (2014) and Deike et al. 

(2012) had not.  If, as proposed by Bregman (1978) and Anstis and Saida (1985), build-up of 

auditory stream segregation occurs somewhere within the initial few seconds of stimuli 

presentation, this data requires accounting for.  Figure 1 displays a recreation of Figure 2C from 

Deike et al. (2012), and shows that their NH listeners often had rather late first response times, 

reaching a 0.8 cumulative probability of first response at approximately 6 seconds.  However, 

these results seemed unlikely, and possibly due to instruction, testing, or training error, as NH 

listeners rapidly assess auditory input and should have displayed markedly short latencies for 

perceptual responses. 

Fig. 1. A recreation of Figure 2 (C) from Deike et al. (2012) showing the 

cumulative probability of first perceptual response over time amongst normal-

hearing listeners. 
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Figure 2, a recreation of Figure 3(A) from Böckmann-Barthel et al. (2014) shows similar 

issue with response times, their CI user with the slowest responses averaging approximately 15 

seconds for a first perceptual response across all conditions, not to mention half of their 

participants averaged greater than 5 seconds.  Even in accounting for delays in response time due 

to transmission of signals through a CI device, these responses seem to miss the window during 

which first perception would actually occur.  As a result, this experiment followed detailed 

instruction and training procedures, outlined later, to account for possibilities of why these 

delays may have occurred in both studies.   

 The current study inspected in NH listeners an auditory experience similar to that of CI 

users, with degraded spectral difference cues and intact AM-rate cues through use of amplitude-

modulated, narrowband noise stimuli, as well as comparing results to CI user results.  Build-up 

of stream segregation was explored based on reaction times and perceptual response in 

correlation to spectral separation and/ or AM-rate separation.  A subjective testing paradigm was 

used to assess stream segregation strength.  In this test, listeners were played an extended 

Fig. 2. A partial recreation of Figure 3 (A) from Böckmann-Barthel et al. (2014) 

showing the average first response time at various spectral conditions from different 

subjects.  This image displays only the fastest and slowest of their 8 CI users, but 

displays the variability in response time. 
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window (24.7 s) of un-altering stimuli; where perception would presumably be allowed to 

experience any shifts it would naturally undergo (Anstis & Saida, 1985; Cooper & Roberts, 

2007; Böckmann-Barthel et al., 2014), and allowed to respond over the time course whether they 

were experiencing a 1 or 2-stream perception. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

12 

Materials and Methods 

Participants 

 Five normal-hearing adult listeners between the ages of 19 and 22, all female, and one 

adult unilateral cochlear-implant wearing listener, a 22-year old female, participated in this 

study.  All NH listeners had symmetric (no greater than 10dB discrepancy between across ears) 

hearing thresholds no greater than 20 dB HL at 250, 500, 1000, 2000, 4000, 6000, and 8000 Hz.  

The CI-using participant was confirmed to have no residual hearing.  The Institutional Review 

Board at James Madison University approved the research procedure to conduct the experiment 

on human participants. Informed consent was obtained from all participants. 

  

Apparatus 

 For all experiments, stimuli were generated via a customized Matlab (R2013a) script, 

which, in conjunction with PsychToolbox (version 3) (Brianard, 1997; Pelli, 1997), controlled 

stimulus presentation and response recording. An RTbox (Li et al., 2010) was used as the 

hardware interface to record participants’ responses.  The computer that was used was a Dell 

Optiplex 9010, with a Lynx 22 soundcard, which then ran through a DAC1 device, and was 

finally presented through a Klipsch RB-51 II bookshelf speaker. 

 

Stimulus Sequences 

 The stimuli, digitally synthesized at a sampling rate of 44,100 Hz in Matlab, were 

narrowband noise bursts, with bandwidths determined by methods described later in this section.    

The noise bursts were presented in ABAB sequences, where the full sequence duration was 24.7 

seconds, each burst lasting 80 s, and having a 50 ms gap between bursts.  Bursts had onset and 
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offset ramps of 8ms.  “B” noise bursts were centered at 1803Hz, the equivalent of the center 

frequency of electrode 10 on an Advanced Bionics cochlear implant device.  “B” bursts were 

presented at an amplitude-modulation (AM) rate of either 0 or 50 Hz.  “A” noise bursts were 

presented at 1803, 3022, or 6665Hz, the equivalent of an Advanced Bionics device’s 10th, 13th, 

and 16th electrodes, and had AM-rates of either 0, 50, 100, 200, or 300Hz.  Bandwidths of the 

bursts were determined based upon the center frequency, resulting in bandwidths of 162Hz for 

10th and 13th electrode conditions, and 216Hz for 16th electrode conditions, as outlined by Walker 

et al. (1984), to create a relatively uniform intensity in soundfield. In the conditions with AM, to 

eliminate spectral “splatter”, following the superimposition of AM, the narrowband noise was 

reprocessed through the identical bandpass filter that was used to create the unmodulated 

narrowband noise.  Table 1 displays all stimuli conditions that were examined in this 

experiment.  Amplitude modulation rates for stimuli were based upon prior research determining 

elicitation of nonspectral pitch for sinusoidal amplitude modulation (SAM) between frequencies 

of 40 and 850Hz (Burns & Viemeister, 1976; Burns & Viemeister, 1981; Fitzgerald & Wright, 

2005).  To account for perceived loudness difference in presentation of varied-frequency stimuli, 

adaptive procedures from Jesteadt (1980) were adopted, approximating the loudness for A bursts 

at the 13th (A13) and 16th (A16) electrode equivalents to the loudness for the 10th (A10 and/or 

B10) electrode equivalent, registered at 60dB A within the soundfield. 
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Table 1. Displays all possible test conditions through a matrix of parameters.  B AM-Rates are displayed in the left 

column, and A rates in the top row.  B-bursts were always presented at 10th electrode equivalent, and either 0 or 

50Hz AM-rate, whereas A-bursts could be presented at one of 5 AM-rates and one of the 3 electrode equivalent 

frequencies. 

 A AM-Rate: 

0Hz 

A AM- Rate: 

50Hz 

A AM-Rate: 

100Hz 

A AM-Rate: 

200Hz 

A AM-Rate: 

300Hz 

B10 AM-Rate: 0Hz A10, A13, 

A16 

    

B10 AM-Rate: 50Hz A10, A13, 

A16 

A10, A13, A16 A10, A13, A16 A10, A13, A16 A10, A13, A16 

 

Procedure 

 To begin testing, each subject performed adaptive loudness balancing procedures, 

outlined by Jesteadt (1980), to eliminate loudness as a confounding variable between conditions 

with spectral difference (i.e., B at 1803Hz and A at 3022 or 6665Hz).  In this procedure, subjects 

sat at a meter’s distance from a single loudspeaker, were presented two consecutive noise bursts, 

and were tasked to press either 1 or 2 on a keyboard depending on whether the first or second 

bursts was perceived to be louder. The intensity of the target noise burst was adaptively adjusted 

based on the participant’s response. In conditions in which subjects did not perceive any 

loudness difference, they were told that they were allowed to guess which burst was louder.  This 

test continued until noise bursts were loudness matched.  The first set of tasks in loudness 

balancing were 13th electrode equivalent against 10th electrode equivalent conditions, where a 

10th electrode equivalent burst and  a 13th electrode equivalent burst would be presented, the 

participant would respond which was louder, and this would continue until loudness matching 

was achieved.  Next, the subject would repeat the same task, balancing the loudness of 16th 

electrode equivalent against 10th electrode equivalent. 
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 The next step, initial training, consisted of presenting stimuli outlined earlier.  Subjects 

would then receive the following prompt: 

 “You are going to hear a sequence of noise bursts, alternating between an A and B burst, 

over and over.  The A and B may differ in some characteristics, which will cause you to hear 

them as either one or two sound streams, this will not be the same as just recognizing the sounds 

as being different (allow them to experience during training).  As soon you have a perception of 

whether you hear one or two, respond with your perception by pressing the 1 or 2 button on the 

Response box, you should not hold the button.  Do not wait to be sure of what you hear; there is 

no correct response that is being looked for.  Over the time that you are hearing the sound 

sequence, if how many streams you hear changes, just press the appropriate Response box button 

once to indicate the change.” 

 Furthermore, a computer screen within the booth displayed a visual progress bar to 

inform subjects of progression through each individual trial sequence.  This measure was 

implemented to encourage self-awareness of the amount of time subjects were requiring to make 

their first responses.  After completing approximately 12-18 sequences of stimuli, response files 

would be viewed, and if initial responses approximated 700 ms or less, data collection would 

begin.  For subjects with later response times, inquiry was made as to their perception, and often 

they replied something to the effect of, “I think I know what I’m hearing, but I’m not quite 

certain, so I wait a little bit to respond.”  In these instances, it was re-emphasized that there was 

no correct response for these tasks, and that if upon perception subjects believed it to be one way 

or the other, that was how they ought to respond at that time.  Following this repetition of 

prompting, all subjects would respond within more appropriate windows for initial response.  

During data collection (post-training) subjects were presented, in random order, each possible 
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condition sequence a total of 10 times (not grouped together), with 3-second gaps between 

presentation of sequences, and 6 sequences per group before a break or continuation was offered 

to subjects.  Subjects were prompted to take restroom or water breaks as needed, to allow them 

to remain attentive. 
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Data Analysis 

 IBM SPSS statistics version 21 was used for data analysis, means, and errors reported 

within results.  Data were analyzed using the univariate analysis tool, and a Bonferroni 

correction was applied. 
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Results and Discussions 

 In this experiment, all responses for a condition sequence in which the initial response 

occurred prior to 360 ms were discarded.  This is because these results could not have been valid, 

as it takes 260 ms for the beginning of the second AB burst set to occur, and approximately  

100 ms response time, thus neither integration nor segregation would have rationally occurred 

beforehand. 

 Compared to the earlier results from Figure 1, initial responses were shown to occur 

much earlier in this experiment, Figure 3 below shows the probability of a first response having 

occurred over the initial time course, averaged over all 5 NH listeners.  Unlike in Deike et al. 

(2012), where a 0.8 cumulative probability of first response having occurred was registered at 

Fig. 3. Probability of a first perceptual response having occurred across the 5 NH listeners. 
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approximately 6 seconds, this experiment showed 0.8 cumulative probability at only 0.67 

seconds. 

In comparison to Böckmann-Barthel et al. (2014), results from one CI user in the present 

study thus far cannot show significant results.  However, by adhering to testing procedures 

outlined earlier, the one CI user which has been examined displayed initial response times 

comparable to the quickest of results from CI users in Böckmann-Barthel et al. (2014), shown in 

Figure 4 below. 

 

Having achieved earlier response times in NH listeners, the Analysis of Variance 

(ANOVA) was performed to examine the effect of spectral separation and amplitude-modulation 

rate upon the time and perceptual decision of the first response.  Figure 5 shows the relation 

between average first response time and spectral separation.  Spectral separation was not shown 

Fig. 4. A chart displaying the probability of a CI user’s first perceptual response having 

occurred, divided by each spectral separation and AM-rate condition. 
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to have any significance in relation to first response time [F (2, 89)= 1.087, p= 0.342], though 

further testing could reveal otherwise.  Figure 6 shows no significant effect of initial stream 

perception (1 or 2-stream) on first response time [F (1, 89= 0.780), p= 0.380].  AM-rate similarly 

showed no significant effect on first response time [F (4, 89)= 0.813, p= 0.520], though not 

displayed in the figures. 
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Fig. 5. displays the average first response time across all 5 NH subjects for each spectral separation 

condition.  Conditions did not show significant difference from one another. 

Fig. 6. displays the average first response time across all 5 NH subjects for each perceptual response.  

Lack of significance shows that subjects were not delaying responses to gain confidence in a 2-stream 

response. 
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 No statistical interaction existed between spectral separation and the initial response of 

perceived stream [F (2, 89)= 0.522, p= 0.595], showing that for each condition of spectral 

separation, subjects would respond initially at the same time with perceptual responses, whether 

the perception was segregated or integrated (Figure 7).   

 

 Figure 8, an analysis of the probability of 1 or 2-stream perception over the entire time 

course of each condition, averaged across trials and NH participants show mostly results which 

would be expected.  In conditions with spectral separation (i.e., 10th to 13th and 10th to 16th 

electrode equivalent), initial responses showed high probability of two-stream perception, 

experienced a small increase of probability, and remained fairly static for the remaining time 

course.  This finding indicates absence of build-up. In the condition lacking spectral separation 

(i.e., 10th to 10th electrode equivalent), conditions without large AM-rate cues all initiated and 

Fig. 7. Average first response time as a function of spectral separation for 1 and 2-stream perception. 

No interaction on response time between spectral separation and initial stream perception was shown. 
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remained at a high probability of 1-stream perception.  However, in instances with AM-rate 

difference greater than two octaves, a build-up effect was present.  In these instances of build-up, 

initial response tended towards 1-stream, and then 2-stream perception gained approximately .2 

probability above initial probability over the first 6 seconds of stimuli presentation. 

 

 Though requiring further collection of data from CI users, Figure 9 displays results in the 

same manner as Figure 8 for the sole CI user tested in this experiment.  While conditions with 

spectral separation (13th to 10th and 16th to 10th electrode equivalent) did not show a tendency 

towards rapid 2-stream perception comparable to that of NH listeners, a trend was seen with an 

increasing probability of 2-stream perception over time. In other words, the preliminary data 

suggest that even with large spectral separations between the A and B burst sequences, it takes 

approximately 6 seconds for a CI user to start perceptually segregating them, manifesting build-

Fig. 8. displays the probability of perceptual response per each condition over the time course of stimuli 

presentation, collapsed across all five NH subjects. 
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up stream segregation with large spectral separations. This implies that CI users may not be able 

to make use of the cues that are salient for normal hearing immediately, although over time they 

are likely to make use of these cues to some extent.  With respect to the effect of AM-rate 

separation upon perceptual likelihood, unlike NH listeners, no clear trend can be seen, as no 

consistent effect of a given AM-rate separation is observed across the three spectral separation 

conditions. In addition, the preliminary observation of the sole build-up stream segregation is 

inconsistent with Böckmann-Barthel et al. (2014), where build-up was absent in some 

conditions. Further data will be collected to examine this inconsistency.   

 

 

 

  

 

Fig. 9. displays the probability of perceptual response per each condition over the time course of stimuli 

presentation, for the CI-user. 
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Summary 

 Addressing the methodological limitations in previous studies, our study has revealed 

interesting trends. Consistent with the previous studies, our preliminary data in NH listeners 

showed that salient spectral separation cues elicited stream segregation with an absence of build-

up (Deike et al., 2012; Nie et al., 2014), and that weak cues such as AM-rate separation (Nie & 

Nelson, 2015) elicited stream segregation with the presence of build-up (Deike et al., 2012). 

Given the presence of this phenomenon prior to response times elicited from subjects amongst 

similar experiments, implementation of prompting and training similar to this experiment would 

likely yield further interesting results. Systematic statistical analysis will be performed to achieve 

a conclusion.  

 Though current observation indicates discrepancy with prior research findings (Roberts et 

al., 2007; Böckmann-Barthel et al., 2014) amongst CI listeners, additional data are needed before 

conclusive claims can be made.  However, if these findings were to be supported, it would 

indicate that CI users are not using available cues that promote stream segregation in normal-

hearing listeners.  This inability may partly account for difficulties CI users face in noisy 

environments, as well as poor speech comprehension scores.   

 

 

 

 

 

 

 



 

26 

References 

Anstis, S., Saida, S., 1985. Adaptation to auditory streaming of frequency modulated tones. J. 

Exp. Psychol.: Hum. Percept. Perform. 11, 257–271. 

Böckmann-Barthel, M., Deike, S., Brechmann, A., Ziese, M., & Verhey, J. L. (2014). Time 

course of auditory streaming: do CI users differ from normal-hearing listeners? Front. 

Psychol. 5:775. doi: 10.3389/fpsyg.2014.00775 

Burns, E. M., & Viemeister, N. F. (1976). Nonspectral pitch. J. Acoust. Soc. Am. 60, 863–869. 

Burns, E. M., & Viemeister, N. F. (1981). Played-again SAM: Further observations on the pitch 

of amplitude-modulated noise. J. Acoust. Soc. Am. 70, 1655–1659. 

Bregman, A.S., 1978. Auditory streaming is cumulative. J. Exp. Psychol.: Hum. Percept. 

Perform. 4, 380–387. 

Bregman, A. S. (1990). Auditory Scene Analysis: The Perceptual Organization of Sound (MIT, 

Cambridge, MA). 

Bregman, A. S., & Campbell, J. (1971). Primary auditory stream segregation and perception of 

order in rapid sequences of tones. J. Exp. Psychol. 89,244–249. doi: 10.1037/h0031163 

Bregman, A. S., Colantonio, C., & Ahad, P. A. (1999). Is a common grouping mechanism 

involved in the phenomena of illusory continuity and stream segregation? Percept. 

Psychophys. 61, 195–205. doi: 10.3758/BF03206882 

Brainard, D. H. (1997) The Psychophysics Toolbox, Spatial Vision 10:433-436. 

Chatterjee, M., Sarampalis, A. ,& Oba, S. I. (2006). Auditory stream segregation with 

cochlear implants: a preliminary report. Hear. Res. 222, 100–107. doi: 

10.1016/j.heares.2006.09.001 



 

27 

Cooper, H. R., & Roberts, B. (2009). Auditory stream segregation in cochlear implant listeners: 

measures based on temporal discrimination and interleaved melody recognition. J. 

Acoust. Soc. Am. 126, 1975-1987. doi: 10.1121/1.3203210 

Dannenbring, G. L., & Bregman, A. S. (1976a). Effect of silence between tones on auditory 

stream segregation. J. Acoust. Soc. Am. 59,987–989.doi: 10.1121/1.380925 

Dannenbring, G. L., & Bregman, A. S. (1976b). Stream segregation and the illusion of overlap. 

J. Exp. Psychol. Hum. Percept. Perform. 2,544–555. doi: 10.1037/0096-1523.2.4.544 

Deike, S. Heil, P., Böckmann-Barthel, M., & Brechmann, A. (2012). The build-up of auditory 

stream segregation: a different perspective. Front. Psychol. 3:461. doi: 

10.3389/fpsyg.2012.00461 

Fitzgerald, M. B., & Wright, B. A. (2005). A perceptual learning investigation of the pitch 

elicited by amplitude-modulated noise. J. Acoust. Soc. Am., 118(6), 3794-3803. doi: 

10.1121/1.2074687 

Grimault, N., Bacon, S. P., & Micheyl, C. (2002). Auditory stream segregation on the basis of 

amplitude-modulation rate. J. Acoust. Soc. Am. 111, 1340. doi: 10.1121/1.1452740 

Hong, R. S., & Turner, C. W. (2006). Pure-tone auditory stream segregation and speech 

perception in noise in cochlear implant recipients.  J. Acoust. Soc. Am. 120(1), 360-374. 

Doi: 10.1121/1.2204450 

Hong, R. S., & Turner, C. W. (2009). Sequential stream segregation using temporal periodicity 

cues in cochlear implant recipients. J. Acoust. Soc. Am. 126, 291–299. doi: 

10.1121/1.3140592 

Jesteadt, W. (1980). An adaptive procedure for subjective judgments. Percept. Psychophys. 28, 

85-88. http://dx.doi.org/10.3758/BF03204321 



 

28 

Li, X., Liang, Z., Kleiner, M., & Lu, Z. L. (2010). RTbox: a device for highly accurate response 

time measurements. Behav Res Methods, 42(1), 212-225. 

Marozeau, J., Innes-Brown, H., & Blamey, P. J. (2013). The acoustic and perceptual cues 

affecting melody segregation for listeners with a cochlear implant. Front. Psychol. 4:790. 

doi: 10.3389/fpsyg.2013.00790 

Micheyl, C., & Oxenham, A. J. (2010a). Objective and subjective psychophysical measures of 

auditory stream integration and segregation. J. Assoc. Res. Otolaryngol. 11, 709–724. 

doi: 10.1007/s10162-010-0227-2 

Micheyl, C., & Oxenham, A. J. (2010b). Pitch, harmonicity and concurrent sound segregation: 

psychoacoustical and neurophysiological findings. 

Nie, Y., & Nelson, P. (2015). Auditory stream segregation using amplitude modulated bandpass 

noise. Front. Psychol. 6. doi: 10.3389/fpsyg.2015.01151 

Pelli, D. G. (1997) The VideoToolbox software for visual psychophysics: Transforming numbers 

into movies, Spatial Vision 10:437-442.  

Roberts, B., Glasberg, B. R., & Moore, B. C. J. (2002). Primitive stream segregation of tone 

sequences without differences in fundamental frequency or passband. J. Acoust. Soc. 

Am. 112, 2074.doi: 10.1121/1.1508784 

Singh, P. G., & Bregman, A. S. (1997). The influence of different timbre attributes on the 

perceptual segregation of complex-tone sequences. J. Acoust. Soc. Am. 102, 1943–1952. 

doi: 10.1121/1.419688 

Van Norden, L. (1975). Temporal Coherence in the Perception of Tone Sequences. Unpublished 

Ph.D. dissertation, Eindhoven University of Technology. 



 

29 

Vliegen, J., Moore, B. C., & Oxenham, A. J. (1999). The role of spectral and periodicity cues in 

auditory stream segregation, measured using a temporal discrimination task. J. Acoust. 

Soc. Am. 106, 938–945. doi: 10.1121/1.427140 

Vliegen, J., & Oxenham, A. J. (1999). Sequential stream segregation in the absence of spectral 

cues. J. Acoust. Soc. Am. 105, 339–346. doi: 10.1121/1.424503 

Walker, G., Dillon, H., & Byrne, D. (1984). Sound field audiometry: recommended stimuli and 

procedures.  Ear Hear. 5(1): 13-21.  

Warren, R., & Obusek, C. (1972). Identification of temporal order within auditory sequences. 

Percept. Psychophys. 12, 86–90. doi: 10.3758/BF03212848 


	James Madison University
	JMU Scholarly Commons
	Spring 2016

	Build-up effect of auditory stream segregation using amplitude-modulated narrowband noise
	Harley J. Wheeler
	Recommended Citation


	Annotated Outline

