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Abstract 

 Performance assessments are an often desired type of assessment due to their 

potential for alignment between the assessment and reality. However, due to the rater-

mediated nature of scoring (Eckes, 2015), performance assessments have psychometric 

challenges that cannot be ignored in testing and assessment work. Specifically, 

performance assessment scores are prone to rater effects, or systematic differences in 

how raters evaluate performance assessment products (Myford & Wolfe, 2003). The 

purpose of this project was to evaluate ethical reasoning essay scores for rater effects. 

The Many-Facets Rasch Measurement (MFRM) model was used to evaluate ethical 

reasoning essay scores for rater leniency/severity effects, restriction of range, and rater 

leniency/severity by rubric element interaction effects. Individual rater leniency/severity 

effects were observed in this sample of raters, as was an interaction effect between rater 

leniency/severity and rubric element. Moreover, a restriction of range effect was 

observed, with scores restricted primarily to the lower end of the rubric score categories. 

To provide a preliminary explanation for differences in rater leniency/severity, the 

relationship between raters’ knowledge of ethical reasoning and their leniency/severity 

was evaluated. No relationship between raters’ knowledge of ethical reasoning and their 

leniency/severity was observed in this study. Based on findings, recommendations are 

made for rater training. Specifically, ethical reasoning program coordinators may 

consider using the MFRM analysis during rating to identify individual raters who are 

exhibiting rater effects. Program coordinators may then work with individual raters on 

additional training and rubric calibration to mitigate individual rater effects. Additionally, 

recommendations are made regarding the statistical adjustment of student scores to 
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mitigate rater leniency/severity effects in the ethical reasoning scores. Though score 

adjustment is attractive if the goal is to mitigate rater leniency/severity effects, it has 

implications for inferences made from scores. Future research may focus on further 

identifying causes of rater effects, as well as methods for mitigating rater effects.
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Chapter 1: Introduction 

Internal and external accountability calls require educators to demonstrate that 

students meet academic degree program and institutional learning outcomes. That is, 

educators must assess whether students are learning the knowledge and skills deemed 

critical by educators and key stakeholders. The manner in which students’ knowledge and 

skills are assessed may vary based on student learning objectives. Content-based 

outcomes may be assessed through selected-response (i.e. multiple-choice, matching, 

true-false) assessments, on which students select the appropriate response from a 

multiple-choice list or match responses to draw connections between ideas. Other 

objectives may be better assessed by asking students to produce a product or engage in a 

process, also known as performance assessment (Johnson, Penny, & Gordon, 2009).  

Higher education is currently in the midst of a push for the use of performance 

assessments to evaluate collegiate student learning objectives. This push is partly due to 

claims in the Spellings Report (US Department of Education, 2006) and other influential 

publications (e.g. Arum & Roksa, 2011; Hart Research Associates, 2015) that students do 

not leave higher education with the knowledge and skills necessary to be successful in the 

workforce. Though there are many advocates for the use of performance assessments in 

higher education, the American Association of Colleges & Universities (AAC&U) is 

perhaps the most prominent voice. To facilitate the use of performance assessments in 

higher education, the AAC&U released the Valid Assessment of Learning in 

Undergraduate Education (VALUE) rubrics in 2009. The VALUE rubrics are a set of 16 

rubrics developed to assess critical learning objectives for higher education (AAC&U, 

2015). In addition to being used to assess student learning objectives, AAC&U proposed 
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that the VALUE rubrics could be adapted for use in classrooms to facilitate formative 

learning, or as large-scale assessment tools to summatively evaluate students’ abilities to 

meet collegiate learning objectives (AAC&U, n.d.). 

Several years later, AAC&U and the State Higher Education Executive Officers 

unveiled The Multi-State Collaborative to Advance Student Learning Outcomes 

Assessment (MSC), a framework developed to promote the use of performance 

assessments in higher education. The MSC initiative was developed to assist institutions 

in using course-embedded performance assessments as part of a nationally-organized 

assessment process (AAC&U, 2017), and was partly developed in response to negative 

perceptions surrounding selected-response exams. The MSC is perhaps the most 

prominent large-scale performance assessment initiative present in today’s higher 

education landscape. Currently, thirteen states and over 70 two- and four-year institutions 

participate in the MSC (AAC&U, 2017). Given the success and popularity of the MSC 

thus far, it is likely that the initiative will continue to scale up, expanding to additional 

states and/or institutions. With the expansion of the MSC will come an increase in the use 

of performance assessments to evaluate institutional learning objectives.  

Though performance assessments are popular in today’s higher education context, 

they are prone to psychometric challenges that hinder widespread adoption and use. 

Perhaps one of the largest challenges is the subjective nature of performance assessment 

scoring. Performance assessments involve carrying out a process or creating a product, 

which can often only be scored by human raters exercising judgment to determine the 

extent to which students met pre-specified scoring criteria. This scoring process is in 

contrast to selected response assessments, where a single option is often correct, resulting 
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in what some consider to be an objective scoring process. Performance assessments are 

often scored by human raters, resulting in scores that are rater-mediated and possibly a 

product of rater judgment in addition to, or instead of, student ability (Engelhard, 2002). 

The subjective nature of rater-mediated scoring raises questions about what it is that 

scores represent (Stiggins, 1987), and educators must provide evidence that performance 

assessment scores are a function of student ability, not a function of raters (AERA, APA, 

& NCME, 2014). Many researchers question whether raters can actually be an objective 

channel through which scores are produced (Guilford, 1954; Schafer, Gagné, & Lissitz, 

2005). Often, evidence suggests that rater characteristics permeate performance 

assessment scores, resulting in decreased psychometric quality of scores, and questions 

regarding score utility (Cizek, 1991a). 

Even the best performance assessment systems are not immune from the 

psychometric challenges. At James Madison University, the same is true for Ethical 

Reasoning in Action: The Madison Collaborative, an institution-wide ethical reasoning 

program. The Madison Collaborative implements several performance assessments, one 

of which is the focus of this dissertation research. As such, a description of the Madison 

Collaborative is provided as context for this study. 

Ethical Reasoning in Action: The Madison Collaborative 

 In 2011, James Madison University adopted Ethical Reasoning in Action: The 

Madison Collaborative as its Quality Enhancement Plan for regional accreditation (James 

Madison University, 2013). The Madison Collaborative has proposed a specific ethical 

reasoning framework, through which students should engage when considering an ethical 

situation. The framework was built on the idea that ethical reasoning involves asking 
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relevant, open-ended questions that assist the decision maker in understanding ethical 

situations and their multi-faceted natures (Sanchez, Fulcher, Smith, Ames, & Hawk, 

2017).  

The framework is operationalized by eight Key Questions (8KQ): Fairness, 

Outcomes, Responsibilities, Character, Liberty, Empathy, Authority, and Rights. Related 

to each Key Question (KQ) word is a question to consider when making an ethical 

decision (Sanchez et al., 2017): 

 Fairness: How can I act equitably and balance legitimate interests? 

 Outcomes: What achieves the best short- and long-term outcomes for me and all 

others? 

 Responsibilities: What duties and/or obligations apply? 

 Character: What action best reflects who I am and the person I want to become? 

 Liberty: How does respect for freedom, personal autonomy, or consent apply? 

 Empathy: What would I do if I cared deeply about those involved? 

 Authority: What do legitimate authorities (e.g. experts, law, my religion/god) 

expect of me? 

 Rights: What rights (e.g. innate, legal, social) apply? 

Note that, though a single question is posed for each KQ, each question is merely an 

example and starting point for using the KQ framework. When exhibiting facility with 

the 8KQs, students determine which KQs are most relevant to their given ethical 

situation, analyze the relevant KQs, and balance multiple questions related to each KQ to 

come to a decision. For example, consider a student who is integral to financially 

supporting his family, and he is faced with the decision to enter the workforce or attend 
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college after his high school graduation. He may consider the key question Outcomes in 

the context of his ethical decision. He may ask what the short- and long-term outcomes 

will be regarding his relationship with this family if he decides to go to college. Will he 

be able to preserve his familial relationships if he goes to college? Will he become the 

family outcast? He may ask what the short- and long-term repercussions will be for his 

family. Will his parents find venues to support themselves? Will they be able to pay their 

rent? He may also consider Authority. He may ask whom the authority figures are in his 

situation and wonder what those figures expect of him. What do his parents expect of 

him? What does his school counselor expect of him? Together, the KQs provide a 

framework for students to use as a guide when making ethical decisions. Each KQ 

provides a base from which students can ask additional questions and deepen their 

understanding of the complexities of their ethical situations.  

Coordinators of the Madison Collaborative develop programs under the premise 

that ethical reasoning is a skill that can be learned through thoughtful and targeted 

interventions (Sanchez et al., 2017). Seven student learning objectives (SLOs) outline 

what students should be able to know, think, or do as a result of participating in Madison 

Collaborative interventions: 

1. Students will be able to state, from memory, all eight Key Questions. 

2. When given a specific decision and rationale on an ethical dilemma, students will 

correctly identify the Key Question most consistent with the decision and 

rationale. 

3. Given a specific scenario, students will identify appropriate considerations for 

each of the Eight Key Questions. 
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4. For a specific ethical situation or dilemma, students will evaluate courses of 

action by applying (weighing and, if necessary, balancing) the considerations 

raised by the Key Questions. 

5. Students will apply SLO 4 to their own personal, professional, and civic ethical 

cases. 

6. Students will report that they view ethical reasoning skills as important. 

7. Students will report increased confidence in their ability to use the ethical 

reasoning process. 

To enable students’ mastery of the objectives, the Madison Collaborative designs and 

implements intentional curricula to guide students’ facilitation with ethical reasoning. A 

key intervention includes It’s Complicated, a 75-minute guided discussion in which 

4,500+ first-year students participate. Students are divided into small groups of less than 

40 students, and trained faculty and staff facilitate a 75-minute guided discussion. 

Though the 75-minute program is the only formal program all students experience, 

students may be exposed to the 8KQs and ethical reasoning in their coursework and/or 

co-curricular experiences. Thus, the level of exposure to the 8KQs varies widely across 

students.  

To assess their seven SLOs, the Madison Collaborative has collected data related 

to their objectives since 2012. Of particular interest in this study is the Ethical Reasoning 

and Writing (ER-WR) essay assessment used to assess SLO 5. The ER-WR is a 

constructed-response assessment on which students are asked to compose an essay 

describing 1) an ethical situation with which they are familiar, 2) the ethical 

considerations relevant to the situation, 3) their ethical reasoning process, and 4) the 
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decision they made (see Appendix A for ER-WR instructions and prompt). Trained raters 

score the ER-WR essays using the ER-WR rubric (see Appendix B). The ER-WR rubric 

was developed by ethical reasoning and assessment experts, and each of the five rubric 

elements was designed intentionally to cover the steps through which students should 

progress when faced with an ethical situation.  

For all ER-WR rubric elements, scores range from 0 – 4, with a score of zero 

considered “insufficient” and typically representing no demonstration of a skill in a 

student’s essay. On the other hand, a score of four is considered “extraordinary,” 

typically representing a deep understanding of all KQs and seamless integration of KQs 

in the ethical decision-making process. Per the JMU Strategic Plan, students should 

achieve, on average, a score of two or better on the ER-WR rubric by 2020 (JMU Office 

of Institutional Research, 2017). Though the Strategic Plan states that students should 

achieve, on average across all elements, a score of two, ideally students will meet a score 

of at least two on each rubric element. If students achieve a score of two on each rubric 

element, it suggests that students can 1) explicitly describe decision options related to a 

personal ethical situation (Element A); 2) reference four KQs (Element B); 3) provide a 

rationale for the applicability or inapplicability of four KQs to their ethical situation 

(Element C); mostly accurately apply at least three KQs to their ethical situation 

(Element D); and weigh the KQs and other relevant factors to come to a decision that can 

conceivably be derived based on the weighing and balancing of KQs and other relevant 

factors (Element E).  

Unfortunately, on average, students historically have not met the university-

determined benchmark. In effect, ethical reasoning has been the focus of various small-
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scale curricular and pedagogical interventions designed to increase students’ ethical 

reasoning skills (e.g. Good, 2015; Smith, 2017). Fortunately, Good (2015) and Smith 

(2017) found that ethical reasoning can in fact be learned, and the new challenge is how 

the institution may scale the curricular interventions to affect more students. Both of the 

aforementioned studies used ER-WR scores as metrics to evaluate the extent to which 

students’ ethical reasoning improved as a result of targeted ethical reasoning 

interventions.  

Clearly there is institutional investment related to students’ ethical reasoning 

skills, and ER-WR scores are the foundation upon which many inferences are made 

regarding students’ ethical reasoning abilities. Thus, to draw accurate inferences from 

ER-WR scores, it is imperative that ER-WR scores have solid psychometric evidence to 

support their uses and interpretations. In the case of the ER-WR, anecdotal and empirical 

evidence suggest there may be concern regarding the meaning of students’ ER-WR 

scores. For example, raters anecdotally report that they find it difficult to distinguish 

between the KQs of Liberty and Rights, and therefore find it challenging to assign scores 

when those KQs are present in students’ essays. If raters cannot distinguish between 

Liberty and Rights, they may assume students are analyzing the same KQ, rather than 

recognizing that students are analyzing two separate KQs. In this situation, students’ 

scores may be lower than they should be.  

Moreover, raters anecdotally report that it is challenging for them to distinguish 

between some scoring criteria. Raters report lack of clarity regarding what it looks like 

for a student to analyze a KQ, and how that differs from providing a rationale for the 

KQ’s applicability or inapplicability to the ethical situation. If raters cannot distinguish 
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between providing a rationale for a KQ and analyzing a KQ, students’ scores may or may 

not be accurate representations of their abilities.  

Empirically, generalizability theory analyses reveal that ratings have had lower 

than desirable inter-reliability over the past several years (Bashkov, Smith, Fulcher, & 

Sanchez, 2014; Holzman, Ames, & Pyburn, 2017; Smith, Fulcher, & Pyburn, 2015; 

Smith, Pyburn, & Ames, 2016). G-coefficients have ranged from 0.69 to 0.75 for first-

year student scores, and 0.57 to 0.66 for second-year student scores. These estimates 

suggest that there is considerable error variability in scores, particularly for second-year 

students. In previous years, variability due to raters ranged from 7%-9%, and variability 

due to differences in how raters rate the same student (i.e. a rater by student interaction) 

accounted for approximately 15% of variability in second-year students’ scores. In sum, 

previous g-theory results suggest that ER-WR scores contain large proportions of error 

variability, seemingly due to rater differences. As such, there is concern regarding the 

extent to which scores represent students’ ethical reasoning abilities. Though there could 

be many reasons for less than adequate reliability, a possible explanation could be that 

raters do not use the rubric in similar ways. For example, some raters may apply the 

scoring criteria more stringently than others, resulting in differential severity/leniency 

across raters. Differences in rater severity contribute to rater error variability, which may 

decrease reliability. Given raters’ reported difficulty distinguishing between some of the 

ER-WR rubric elements, students’ scores may be unnecessarily similar across elements, 

potentially resulting in low reliability due to a restriction of variability among scores.  

Essentially, raters may interpret the ER-WR rubric differently, resulting in 

systematic differences in scores due to raters. These systematic differences in scores due 
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to raters are known as rater effects (Myford & Wolfe, 2003). When rater effects are 

present, scores do not solely represent students’ ethical reasoning abilities, but instead 

represent a mix of students’ ethical reasoning abilities and rater characteristics. Though 

the presence of rater effects in ER-WR scores has been explored via generalizability 

theory analyses, rater effects analyses that allow for an evaluation of individual raters 

have not been explored. Given that ER-WR scores are used to make institution-level 

inferences regarding students’ ethical reasoning abilities, it is warranted to further 

investigate ER-WR scores for rater effects.  

Study Purpose & Research Questions 

The purpose of the current study is to evaluate ER-WR scores for rater effects. Of 

specific interest is the evaluation of rater leniency/severity and restriction of range. 

Additionally, as raters’ knowledge of the 8KQs may influence their scores, an additional 

purpose of the study is to identify whether there are systematic relationships between 

raters’ knowledge of the 8KQs and rater effects.  

Evaluating ER-WR scores for rater effects will be useful for the Madison 

Collaborative moving forward. If scores are not influenced by rater effects, this study 

provides further validity evidence to support that ER-WR scores represent students’ 

ethical reasoning abilities. If scores are influenced by rater effects, this study provides 

further information regarding rater behaviors and the relationship between rater effects 

and rater 8KQ knowledge. This information is useful for the Madison Collaborative, as it 

may have implications for the interpretations of ER-WR scores, as well as rater training 

and selection. 

In this study, the following research questions were addressed: 
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1) Are there statistically significant differences in rater leniency/severity, suggesting a 

group-level leniency/severity rater effect? 

2) Are there statistically significant rater leniency/severity and ER-WR rubric element 

interaction effects?  

3) Is there a lack of distinguishability between score levels, suggesting a restriction of 

range effect? Is this restriction of range suggestive of a central tendency effect? 

4) Is there a relationship between raters’ knowledge of the 8KQs and rater 

leniency/severity? 
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Chapter 2: Literature Review 

 Performance assessments are popular in higher education assessment (Kuh et al., 

2015). As mentioned, the American Association of Colleges & Universities (AAC&U) 

has promoted several performance-based assessment systems, including the Valid 

Assessment of Learning in Undergraduate Education (VALUE) rubrics and the Multi-

State Collaborative (MSC). Moreover, many institutions have chosen to implement their 

own home-grown performance assessments, independently of nationally-organized 

higher education performance assessment systems. A primary impetus for the popularity 

of performance assessments is the claim that performance assessments allow for better 

evaluation of higher order thinking and learning, in comparison to selected-response 

assessments. However, there are many challenges related to performance assessments. 

Specifically, because performance assessments often require human raters to score 

students’ products, many psychometric challenges present for performance assessment 

scores. One psychometric challenge is that of rater effects, or systematic differences in 

how raters rate students’ products (Myford & Wolfe, 2003). Rater effects have potentially 

grave implications for the inferences made from performance assessment scores. The 

purpose of this literature review is to describe the advantages and disadvantages of 

performance assessments, leading up to a discussion of rater effects as a concern for 

performance assessment scores.  

Performance Assessments 

Performance assessments are comprised of two main components: 1) the 

performance task and 2) the scoring of that task (Khattri, Reeve, & Kane, 1998). With 

performance assessments, the performance task requires students to construct a product 
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and/or carry out a process. The product or process is then evaluated via a rater, either 

after the product has been completed, or while the process is being carried out by the 

student (Johnson et al., 2009). For example, an art major may be required to assemble a 

portfolio as a capstone project for the major. The portfolio may be evaluated by the 

faculty based on demonstration of color and texture, creative idea, or improvement over 

time. Or, a chemistry 101 student may be asked to perform a titration and be evaluated by 

faculty based on ability to adequately perform the titration process. The common thread 

for both examples is that the student is creating a product or performing a task that is 

scored via trained raters.  

Performance assessments are often referred to as constructed-response 

assessments, alternative assessments, or authentic assessments. Performance assessments 

are described as constructed-response assessments due to the fact that students are 

required to construct a product or construct a process for carrying out a task. This is in 

contrast to selected-response assessments, on which students are asked to select the best 

answer from a list of possible answers (Downing, 2006). The constructed-response nature 

of performance assessments is often thought to be alternative to selected-response 

assessments (Wiley & Haertel, 1996). That is, students must demonstrate their knowledge 

and abilities through action in performance assessments, but must demonstrate their 

knowledge through selection in selected-response assessments, providing the basis for the 

“alternative” language surrounding performance assessments. Because performance 

assessments require engagement in a process or completion of a product, they are often 

thought to have better fidelity to real-life situations than selected-response assessments, 

on which students must simply select correct answers. Critics of selected-response 
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assessments argue that selected-response assessments are decontextualized and do not 

represent true-to-life scenarios. The increased fidelity to real-world situations results in 

performance assessments being coined as authentic assessments (Linn, Baker, & Dunbar, 

1991; Stecher, 2014; Wiggins, 1991).  

As can be evidenced by the language surrounding performance assessments, a 

tension exists between performance assessments and selected-response assessments 

(Cizek, 1991a, 1991b; Wiggins, 1991, 1993). Tensions between these two assessment 

methodologies primarily arise from three arguments: 1) types of knowledge and thinking 

each type of assessment is able to assess, 2) logistical concerns and resources necessary 

to implement each type of assessment, and 3) psychometric properties of scores from 

each type of assessment.  

Types of knowledge best assessed by performance assessments. Selected-

response assessments provide a legitimate means of measuring knowledge (Downing, 

2006; Haladyna, 2004); however, they may fall short when measuring higher-order 

knowledge, skills, and/or abilities. Given that students are required to create a product or 

engage in a process during a performance assessment, performance assessments are 

perceived by some as better than selected-response assessments in eliciting students’ 

higher-order thinking (Lane & Stone, 2006; Wiggins, 1991). Performance assessment 

tasks tend to be complex and integrate real-life context into the assessment, requiring 

students to synthesize and implement knowledge to demonstrate proficiency in a realistic 

situation (Linn et al., 1991). Moreover, students may know something, but being able to 

apply and perform knowledge is an additional skill that is challenging to measure through 

a selected-response format.  
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In addition, performance assessments allow for a scaffolded system of learning 

(Gronlund, 2003), thus representing how students learn and use knowledge to develop 

higher-order thinking and skills (Darling-Hammond, 2014). Moreover, educators 

recognize they cannot teach all knowledge necessary for the workforce, so must instead 

teach students to develop higher-order thinking abilities and skills, as these skills will 

assist students in their success after K-12 and higher education (Lenz, Wells, & Kingston, 

1991). Performance assessments are thought to simulate how students learn, synthesize, 

and apply knowledge and skills, thus mirroring the process in which students must 

engage to be successful in the workforce. The “best” performance assessment systems are 

those in which students learn from the assessment process, possibly by receiving 

feedback and/or allowed the opportunity to revise and re-submit their work (Gronlund, 

2003; Welch, 2006). This iterative process of completing the assessment, receiving 

feedback, and having the opportunity to revise the assessment facilitates students’ 

learning and higher-order thinking capabilities (Wiggins, 1998). 

Many educators advocate for performance assessments on the basis that they are 

more direct measures of students’ higher-level thinking abilities compared to selected-

response assessments (Lane & Stone, 2006; Resnick & Resnick, 1996). However, it is 

also important to consider that a performance assessment in its own right will not 

necessarily evoke desired higher-order thinking, nor will the assessment inherently align 

with real-world context (Linn et al., 1991). A tremendous amount of time, thought, and 

effort must be put into any assessment to ensure that it evokes the necessary skills and 

knowledge (Schmeiser & Welch, 2006), and, if poorly developed, performance 

assessments will not elicit higher-order thinking. Thus, just like any assessment, 
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performance assessments require careful development of the assessment task. Moreover, 

performance assessments require vast resources to administer and score.  

Logistical and resource concerns associated with performance assessments. It 

is generally accepted that performance assessments require more resources than selected-

response assessments (Downing, 2006; Gronlund, 2003; Linn et al., 1991; Madaus & 

Kellaghan, 1993). Similar to selected-response assessment, performance assessment 

development requires highly skilled task writers, piloting of tasks, revising tasks, and 

preliminary data collection for validity evidence (Welch, 2006). However, because 

performance assessments are subjectively scored, they also require the development of a 

scoring guide. The scoring guide most often takes the form of a checklist or rubric 

(Johnson et al., 2009) and is an integral component for ensuring scores are meaningful 

and useful representations of students’ abilities (AERA, APA & NCME, 2014; Khattri et 

al., 1998; Stiggins, 1987).  

 After the development of the assessment prompt and the scoring guide, students 

must complete the assessment. After students complete the assessment, trained raters 

must rate the products. It is generally recommended that at least two raters score each 

product (Johnson et al., 2009). Thus, a considerable amount of time and resources are 

dedicated to the scoring of performance assessment products after students complete the 

assessment.  

The logistical concerns related to performance assessments quickly compound if 

educators desire a broad assessment of student knowledge and skills. Compared to 

selected-response assessments, students are not able to complete as many performance-

based tasks in the same amount of time it takes them to complete selected-response tasks 
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(Downing, 2006; Gronlund, 2003; Linn et al., 1991). Thus, if educators want to evaluate 

students broadly on a construct, students must complete several performance assessments 

and devote an immense amount of time to the testing process. Typically, educators do not 

have the amount of time available that is necessary to broadly cover a construct with a 

performance assessment. Thus, performance assessments provide a logistical challenge if 

the purpose of the assessment is to obtain a broad depiction of student knowledge and 

abilities.  

Though estimates of the cost of performance assessments are variable (Picus, 

Adamson, Montague, & Owens, 2010), substantial costs are associated with the 

development, administration, and scoring of performance assessments (Hardy, 1995). 

Proponents of performance assessments argue that the sustained costs are worthwhile, 

particularly if the data obtained are accurate measures of higher-order learning and 

represent what students are capable of in a real-world context (Hardy, 1996; Picus et al., 

2010; Wiggins, 1993).  However, educators have a responsibility to consider the costs 

associated with performance assessments (Cizek, 1991b; Topol, Olson, & Roeber, 2010). 

This responsibility is particularly important considering that performance assessment 

scores may suffer from poor psychometric quality (Cizek, 1991b; Downing, 2006), in 

effect raising concerns about what scores represent (Bejar, 2012).   

Psychometric properties and trustworthiness of scores from performance 

assessments. Psychometric concerns surrounding performance assessment scores may 

stem from several sources, and there are often more concerns about the psychometric 

properties of scores from performance assessments than selected-response assessments. 

Concerns particularly arise due to the more challenging nature of evaluating performance 
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assessment scores than selected-response scores. For example, it is often more 

challenging to run and interpret polytomous item response theory (IRT) models used for 

performance assessment data than it is to run and interpret dichotomous IRT models 

often used for selected-response assessment data. Moreover, it may be more challenging 

to claim that performance assessment scores adequately represent the construct of interest 

compared to selected-response assessment scores (Brennan, 2001). 

To make valid inferences regarding students’ abilities on the construct of interest, 

the assessment must cover the content of the construct with adequate breadth (AERA, 

APA & NCME, 2014). That is, when considering the meaning of scores, educators must 

consider the extent to which evidence supports the generalization of the scores to the 

construct of interest (Brennan, 2001; Haertel, 1999). As discussed above, it is challenging 

to achieve breadth of a construct with performance assessments. Though performance 

assessments may yield important information regarding students’ depth of understanding 

of a construct, the lack of breadth provides a limitation to the generalizability of 

performance assessment scores to a construct (Brennan, 2001; Messick, 1996).  

In large-scale testing situations, educators may desire to develop several 

performance assessment tasks in order to maintain test security (Picus et al., 2010). 

However, as with all assessments, information regarding task comparability must be 

provided to ensure that students’ scores are not a function of which task they received 

(AERA, APA, & NCME, 2014). Comparability across performance assessment tasks 

may be challenging to achieve, and differences in performance assessment tasks may 

contribute substantially to differences between students’ scores (Shavelson, Baxter, & 

Gao, 1993; Hathcoat, Penn, Barnes, & Comer, 2016). To account for test form 
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differences in selected-response assessment situations, equating is an often go-to 

psychometric fix to remove variability related to minor differences between test items 

(Bandalos, 2018; Wendler & Walker, 2006). However, the same equating procedures are 

challenging with performance assessment tasks (Lane & Stone, 2006; Muraki, Hombo, & 

Lee, 2000), thereby introducing an additional psychometric challenge into the 

performance assessment process.  

 An additional consideration regarding the trustworthiness of scores is the manner 

of scoring. Performance assessments do not typically have a clear correct or incorrect 

response. Rather, scoring is a subjective, rater-mediated process performed by human 

raters or computer algorithms (Engelhard, 2002; Johnson et al., 2009), and the subjective 

nature of the scoring process provides an additional avenue through which error may be 

introduced into scores (Linn, 1993). For performance assessments, evidence must be 

presented to demonstrate that scores primarily reflect students’ abilities, not the rater who 

rated the student work (AERA, APA, & NCME, 2014). A sound development process for 

the scoring guide is a critical first step in providing evidence of score interpretations 

(Welch, 2006). However, even with a well-developed scoring guide and rater training, 

raters tend to interpret and use scoring guides differently from one another (Barkaoui, 

2007; DeRemer, 1998; Holzman, 2016; Huot, 1990; Rezaei & Lovorn, 2010). The extent 

to which raters differ in their use of the scoring guide limits the validity of scores as 

representations of student ability on the construct of interest. Thus, a critical question 

often asked regarding performance assessment scores is if scores actually represent 

student ability, or if they represent some conglomerate of ability and rater characteristics. 
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This question about the validity of the interpretations of scores is exacerbated by 

the confusing nature of reliability for performance assessment scores, as reliability may 

be conceptualized in several ways for performance assessment scores (Stemler, 2004). 

Specifically, reliability is often operationalized as consensus, consistency, or agreement 

between raters. In addition to different types of reliability, information gleaned from 

these types of reliability may contradict themselves. For example, raters may exhibit high 

consistency across students, but poor agreement may be observed between raters (Eckes, 

2015; Stemler, 2004). Such an outcome may occur if one rater is relatively severe while 

another rater is relatively lenient. Students would be rank-ordered similarly across raters, 

resulting in high consistency. However, there would be low agreement between raters, as 

their scores are not perfect matches of one another. This contradictory outcome may be 

confusing for educators and researchers.  

To exacerbate the issue, many researchers do not explicitly state a rationale for 

the type of inter-rater reliability or agreement they use. These seeming contradictions 

between information gleaned from different reliability indices, coupled with the lack of 

explicit reference to types of reliability creates confusion for stakeholders and introduces 

further questions regarding the trustworthiness of performance assessment scores. For 

example, in a review of performance assessment studies, Jonsson and Svingby (2007) 

found that few studies achieved interrater agreement of 0.70 or higher. Such findings 

might suggest that performance assessment scores have limited reliability, thus creating 

distrust around the meaning of scores. However, interrater agreement is a rather stringent 

form of reliability, and for many low-stakes educational assessments, the stringency of 

interrater agreement may not be necessary. Moreover, some interrater agreement indices 
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(e.g. Kappa) are heavily influenced by the prevalence of scores across the score levels 

(i.e. many scores piled up in some score levels), at times making it appear as though 

inter-rater agreement is particularly low, when it may in fact be acceptable (Gwet, 2014). 

In short, reliability for performance assessment scores is a nuanced topic and ambiguity 

in research may lead to confusion and additional psychometric concerns that may or may 

not be founded. 

The additional resources and perceived psychometric challenges of performance 

assessments should not necessarily prompt educators to forgo performance assessments 

in favor of selected-response assessments. Rather, the choice between selected-response 

or performance assessments should stem from the purpose of the assessment; the content, 

cognitive level, breadth, and depth to be assessed; and logistical considerations (Lane & 

Stone, 2006; Schmeiser & Welch, 2006). Moreover, with a sound development process, 

performance assessments may be effectively used to gather information regarding student 

knowledge and abilities. Because the purpose of this study was to evaluate performance 

assessment scores for rater effects, and various rater effects may arise as a function of 

rubric design, rubrics are discussed in more detail.  

Rubrics 

Rubrics are the most common scoring guide used to score performance 

assessments (Saal, Downey, & Lahey, 1980), and rubrics are imperative for achieving 

adequate psychometric properties of scores (Welch, 2006). There are two traditional 

types of rubrics: holistic and analytic. As the name implies, holistic rubrics are used to 

evaluate a performance assessment product or process holistically. That is, the construct 

is not assessed with separate elements, but is instead assessed with only one element, 
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resulting in a single score that is representative of students’ holistic performance on the 

task (Gronlund, 2003; Huot, 1990; Lane, 2014). In contrast, analytic rubrics allow 

various elements of the construct to be evaluated individually (Moskal, 2000; Welch, 

2006), rather than synergistically as one element with a holistic rubric. Thus, multiple 

scores will be generated for a single performance assessment product or process when an 

analytic rubric is used, and only one score will be generated when a holistic rubric is 

used. Neither type of rubric is better nor worse than the other; the type of rubric depends 

on the theory underlying the construct (Wiggins, 1998) and the type of information 

desired from the assessment (Lane & Stone, 2006).  

However, note that it is important that researchers and educators adequately 

consider whether their rubric should be holistic or analytic. If analytic rubric elements are 

too similar to one another, raters may be unable to differentiate between them, resulting 

in similar scores across rubric elements (DeCotiis, 1977; Johnson et al., 2009). 

Conversely, if a holistic rubric is used when there are actually several different elements 

of a construct, raters may be unsure how to prioritize each dimension when deriving a 

score. Or, a product or process may encompass some features of higher scores and some 

features of lower scores for different dimensions, resulting in confusion about how to 

appropriately provide a score to the product or process (Barkaoui, 2007). Thus, if 

developing a rubric, the choice between a holistic or analytic structure is important and 

may influence the psychometric quality of ratings.  

 Scoring criteria may also influence the manner in which raters rate, potentially 

influencing the psychometric properties of scores. If the rubric is holistic, a single scoring 

criterion that encompasses all relevant skills should be developed for each score level. If 
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the rubric is analytic, scoring criteria should be developed for each score level on each 

element. Regardless of whether a rubric is holistic or analytic, a rubric should be 

designed in such a way that raters are able to use the scoring criteria to differentiate 

students of varying abilities (Johnson et al., 2009). Rubrics make explicit the notion that 

there is a continuum of ability underlying most skills (Wiggins, 1998), and the continuum 

of ability should be clearly articulated in the scoring criteria. When using the scoring 

criteria, raters should be able to accurately place students along the ability continuum and 

separate students based on their performance on the task.  

 To best facilitate use of the rubric and consistent scoring across raters, scoring 

criteria must 1) clearly define the qualities at each score level, 2) build upon the previous 

score, and 3) be consistent in language across the score levels (Tierney & Simon, 2004). 

Scoring criteria will build in intensity, quality, or quantity across the score range; 

however, new criteria should not be introduced at different score levels within the same 

dimension (Wiggins, 1998). Moreover, if possible, criteria should be described 

descriptively, rather than quantifying the dimension with judgments such as “a lot” or 

“some” (Moskal, 2000). Descriptors such as “a lot” or “some” require raters to exercise 

judgment, and the meaning of “a lot” or “some” may vary across raters, introducing 

additional subjectivity into the rating process. Instead, rating criteria should describe “a 

lot” or “some,” perhaps numerically. Clear descriptions of the performance criteria at 

various levels assists raters in accurately differentiating students (Moskal & Leydens, 

2000). In sum, across the scoring levels, each of the scoring criteria should evaluate the 

same content within the dimension, the language used to differentiate between scores 

should be clear and consistent, and the score criteria should logically build across the 
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scoring levels. Unfortunately, consistency of rubric criteria is not often discussed in 

rubric development literature, resulting in a lack of understanding of the necessity for 

consistent scoring criteria in rubric development (Tierney & Simon, 2004).  

Closely tied to the scoring criteria is the score range and number of score levels. 

There is no explicit rule for how many score levels a rubric should have. However, it is 

generally accepted that rubrics should include enough scoring levels to clearly 

differentiate between students’ performance on each element, but not so many or so few 

scoring levels that the distinctions between levels is indistinguishable or muddied (Lane 

& Stone, 2006). For example, a rubric with many score levels may create confusion for 

raters and result in an inability to differentiate between the criteria at the score levels, 

ultimately resulting in raters using the same middle score levels (Landy & Farr, 1980).  

In large-scale assessments, the primary intended purpose of rubrics is to guide 

raters through the scoring process (Lane & Stone, 2006). By making explicit the qualities 

that are most valued in the task and specifying what various levels of achievement look 

like for each quality, rubrics aid in systematizing the way in which raters score 

performance assessment products and processes (Johnson et al., 2009; Tierney & Simon, 

2004). Rubrics provide a scoring structure for raters, thus making scoring less subjective 

and, in effect, increasing credibility for performance assessment scores. The extent to 

which the scoring process can be shown to be the same across raters lends support for the 

claim that scores represent student ability rather than rater characteristics (Stiggins, 

1987).  

Despite high-quality rubrics, raters may still have tendencies (e.g. general 

harshness or leniency) that influence their ratings (Gronlund, 2003). Ideally, differences 
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between raters will be negligible (Eckes, 2009). However, differences between raters 

often are not negligible, resulting in repercussions on the psychometric quality of 

students’ scores. To the extent that rater differences are not negligible, construct-

irrelevant rater variance is introduced into scores. These differences may take different 

forms and are referred to as rater effects (Myford & Wolfe, 2003).  

Rater Effects 

Though educational researchers strive to create an objective scoring process 

through rater training and well-developed rubrics, ratings remain deeply rooted in rater 

judgment (Eckes, 2009; Myford & Wolfe, 2003). Performance assessment ratings have 

been referred to as “rater-mediated,” as they represent raters’ perceptions of students 

work, raters’ interpretations of the rubric, and the raters’ analysis of how the student work 

and the rubric align (Engelhard, 2002). Raters’ perceptions of the rubric and how the 

rubric should be applied to student work may or may not align with the intended 

interpretations and uses of the rubric.  

To improve alignment between raters’ interpretations of the rubric and the 

intended interpretations of the rubric, rater training is often implemented. However, even 

with rater training, raters’ interpretations of the rubric may not align with one another, 

resulting in systematic differences in students’ scores across raters. Systematic errors in 

raters’ scores that reflect raters’ personal characteristics and/or personal interpretations of 

the rubric are known as rater effects (Bond & Fox, 2015; Eckes, 2009; Myford & Wolfe, 

2003; Scullen, Mount, & Goff, 2000). The most commonly discussed rater effects are 

leniency/severity, halo, central tendency, and restriction of range (Myford & Wolfe, 

2003).  
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Leniency/severity. As discussed, raters ideally interpret a rubric in the same way. 

Specifically, all raters ideally adopt the same scoring criteria and apply these scoring 

criteria 1) consistently across all students, and 2) in the manner intended by rubric 

developers. However, raters may adopt the same scoring criteria, yet vary in how 

stringently they apply the scoring criteria (Wolfe, 2004). Leniency and severity are 

characterized by raters consistently assigning high or low scores, respectively, across 

examinees (Eckes, 2009, 2015; Engelhard, 1992; Saal et al., 1980). Raters are considered 

severe if they consistently assign low scores across all examinees, and raters are 

considered lenient if they consistently assign high scores across all examinees. Said 

differently, severe raters are those whose average ratings are lower than the average 

ratings assigned by all raters, and lenient raters are those whose average ratings are 

higher than the average ratings assigned by all raters (Bond & Fox, 2015; Eckes, 2015; 

Wolfe, 2004).  

Given that scores are thought to be a proxy for student ability, consistently severe 

or lenient scores are problematic, as students’ abilities are either under- or over-

estimated. Ideally, all raters will be of similar average rating severity (Myford & Wolfe, 

2004). Moreover, raters are often assumed to be of similar rating severity in most 

research (Lunz, Wright, & Linacre, 1990). However, raters are often found to vary 

drastically from one another in their severity (Eckes, 2005; Han, 2014; Lunz et al., 1990).  

Moreover, as discussed above, raters ideally rate in a manner that is consistent 

with the intended interpretations and uses of the rubric. Expert ratings are often used to 

represent scores that reflect the intended interpretations and uses of the rubric. Expert 

raters are most often content experts who are highly familiar with the content of the 
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assessment as well as the rubric (Johnson et al., 2009). Thus, rater severity or leniency 

may be gauged by comparing rater scores back to expert scores. Raters often differ from 

expert raters in their leniency and severity (Engelhard, 1994). Differential severity or 

leniency across raters may have dire consequences, particularly if high-stakes decisions 

are made from scores. In fact, differential severity or leniency across raters may result in 

inaccurate placement decisions for examinees (Lunz et al., 1990; Wu & Tan, 2016; Yan, 

2014).  

 Raters’ leniency or severity may also change over a rating period. Much of the 

literature suggests raters tend to become more severe over time, particularly across rating 

periods of several days or more (Congdon & McQueen, 2000; Leckie & Baird, 2011; 

Pinot de Moira, Massey, Baird, & Morrissy, 2002). However, in a study evaluating rater 

effects in AP English Literature and Composition essays, Wolfe, Myford, Engelhard, and 

Manalo (2007) found that only 5% of raters become more severe over the rating period, 

while 16% of raters became more lenient over the rating period. Thus, it appears that 

raters’ leniency and severity may change over time, and the direction of the change may 

not always be predictable. As such, the design of the rating session is of concern in large-

scale assessment situations where raters are expected to rate over multiple days (Congdon 

& McQueen, 2000). If resources allow, educators or researchers may opt for additional 

raters in order to shorten the rating period.  

Raters’ leniency and severity may also vary across rubric dimensions. That is, 

raters may rate more severely on some rubric dimensions compared to other rubric 

dimensions. In a study related to the writing assessment in the Test of German as a 

Foreign Language, Eckes (2005) found that more than one-third of raters exhibited 
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differential severity across rubric elements. These results suggest that raters may be 

inconsistent in the stringency that they apply across various rubric elements, implying 

potential interaction effects between raters’ leniency and severity and rubric elements. An 

interaction between rater leniency/severity and rubric element may also be referred to as 

differential rater functioning or bias (Eckes, 2015). Such an effect may be particularly 

problematic in compensatory models where students are awarded differential credit by 

rubric element.  

Additionally, raters’ leniency and severity may not be constant across scoring 

levels. In a study related to an Oral English Proficiency Test, Yan (2014) found that 

raters differed in their severity or leniency depending on score level. Specifically, raters 

were more similar to one another for tests that scored on the passing side of the score 

levels than for tests that scored on the failing side of the score levels. As such, raters may 

be unable to consistently determine the meaning of scoring criteria across score levels. 

This effect may be particularly problematic in instances where there is a passing score 

that students must meet in order to be awarded placement into a program, awarded 

certification, awarded scholarship money, etc. Though rater leniency and severity is 

perhaps the most heavily researched rater effect, the halo effect has also been heavily 

researched. 

Halo. When rating student work, raters develop an initial impression of the 

product, and they then have to balance this impression with the proposed scoring criteria 

defined in the rubric (Lumley, 2002). Ideally, raters forego their initial impressions and 

rate the product based on the criteria presented in the rubric. However, raters may 

struggle to objectively consider the product in the context of the scoring criteria. 
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Moreover, they may not recognize the extent to which their initial impression of the 

product influences the scores they assign (Nisbett & Wilson, 1977). Inability to ignore 

overall, initial impressions of students’ products may manifest as a halo effect (Fisicaro 

& Lance, 1990; Humphry & Heldsinger, 2014; Eckes, 2015; Myford & Wolfe, 2003; 

Thorndike, 1920). 

The halo effect is characterized by the phenomenon in which raters cannot 

differentiate between distinct rubric elements, resulting in highly correlated scores across 

elements for a single product (Borman, 1975; Saal et al., 1980). As alluded to above, halo 

most often occurs when raters perceive a general, global impression of the product, and 

this global evaluation hinders raters’ abilities to evaluate distinct rubric elements 

(Thorndike, 1920). When a halo effect occurs, it creates an inaccurate dependency among 

distinct rubric elements, resulting in a scoring schema that more closely resembles a 

holistic schema, rather than an analytic scoring schema (Engelhard, 1994).  

The presence of a halo effect may be readily apparent by a quick visual 

examination of ratings. For example, suppose one rater provided rubric element ratings of 

2, 2, 3, 2 for an essay. Suppose another rater provided rubric element ratings of 2, 4, 1, 4 

for the same essay. Because of the first rater’s similarity in ratings across elements, the 

first rater’s scores are more likely to have been influenced by a halo effect than the 

second rater’s scores. It is important to note that, though similar scores across rubric 

elements is an indicator that a halo effect might be present, it does not absolutely indicate 

that a halo effect is present (Murphy & Cleveland, 1991; Solomonson & Lance, 1997). It 

could be the case that students’ abilities are actually similar across elements, so similar 

scores across elements is warranted and accurate. Consider the previous example. If the 
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student’s abilities were similar across all rubric elements, then the first rater’s scores may 

actually be more accurate than the second rater’s scores. However, if the student’s 

abilities were not similar across the four rubric elements, then the first rater’s scores are 

likely inaccurate and suggest the rater may be exhibiting a halo effect.  

As mentioned, a halo effect often occurs due to a global impression of the product 

that clouds raters’ abilities to rate each rubric element independently. However, a halo 

effect could also occur if the rubric scoring criteria are not clearly differentiable (Nisbett 

& Wilson, 1977). Recall that an analytic rubric should be designed in such a way that the 

important features of a construct are defined through different rubric elements. However, 

there should not be so many rubric elements that raters cannot distinguish between them. 

When raters cannot distinguish between rubric elements due to substantial content 

overlap, similar ratings across the elements will be observed.  

In a similar vein, the number of scoring levels for rubric elements may influence 

halo effects. Specifically, Humphry and Heldsinger (2014) hypothesized that restraining 

the number of scoring levels to be consistent across rubric elements may induce a halo 

effect, as constraining elements to be of the same number of scoring levels may induce a 

conceptual similarity across elements that may not actually be present. When raters used 

a rubric with varying numbers of scoring levels across the rubric elements, a halo effect 

was minimized. Thus, it could be the case that the number of scoring levels influences a 

halo effect, and researchers may minimize halo effects by allowing rubric elements to 

differ in their number of scoring levels. Additionally, halo effects may be minimized by 

asking raters to rate all student products on one element only, before moving on to rate 

subsequent elements (Myford & Wolfe, 2003). 
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A high-quality rubric development process is important for guarding against a 

halo effect. In addition to inability to distinguish between rubric dimensions, raters may 

be unable to distinguish between scoring levels, resulting in other rater effects, such as 

the central tendency rater effect. 

Central Tendency. In normative assessment situations, the goal is to separate 

students along a continuum of ability (Bandalos, 2018; Crocker & Algina, 1986). Thus, 

in normative assessment situations, raters ideally use the entire score range when 

assigning ratings to student work. However, some raters may feel uncomfortable or 

averse to assigning extreme scores, so will exhibit a tendency to assign scores on the mid-

point of the score range (DeCotiis, 1977; Long & Pang, 2015). This tendency is known as 

the central tendency rater effect (Saal et al., 1980). Central tendency effects are often 

prominent within rating sessions where raters are monitored and receive feedback on 

their ratings throughout the rating process, as raters may be less likely to provide low or 

high scores if they know they will receive feedback or be questioned for providing 

extreme scores (Myford & Wolfe, 2004; Wolfe et al., 2007).  

A central tendency effect may also present if raters are unable to differentiate 

between the scoring criteria across score levels (Myford & Wolfe, 2004). For example, if 

scoring criteria are unclear, or raters cannot recognize how the scoring criteria are 

different across score levels, they may tend to assign ratings around the mid-point of the 

score range. Similar to the halo effect, a central tendency effect results in limited score 

variability. Note that a halo effect is closely related to the quality of individual products 

and results in limited score variability across rubric dimensions for individual students. A 

central tendency effect is a rating characteristic across all student products and may result 
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in limited score variability within or across students. Thus, a halo effect often results due 

to quality of student work, whereas a central tendency effect often results due to rater 

characteristics and/or unclear scoring criteria.  

 It appears that the central tendency effect is pervasive in performance assessment 

ratings. In an evaluation of essay scoring, Leckie and Baird (2011) found that, on 

average, most raters in their sample succumbed to the central tendency effect. 

Consequently, raters tended to over-rate low quality essays and under-rate high-quality 

essays. Engelhard (1994) found similar findings in an evaluation of essay scores. In his 

study, nearly 80% of ratings comprised scores from the middle two scoring levels.  

Similar to the halo effect, it is important to note that an influx of scores at the 

mid-point of the rating scale does not necessarily indicate a central tendency rater effect, 

as it could be the case that students are actually of moderate ability. To disentangle 

whether scores are restricted to the mid-point due to student ability or a central tendency 

effect, researchers may evaluate the variability of ratings across students on each 

dimension for a single rater. For example, consider a rater who rated 20 essays on five 

rubric elements. Researchers may consider averaging all scores on each element across 

all 20 student essays and computing a standard deviation around the average for each 

rubric element (Saal et al., 1980). If the average is near the mid-point of the scoring 

levels and the standard deviation is small, it suggests that scores are clustered around the 

mid-point of the scoring levels and a central tendency effect may be present. Though 

central tendency is represented by a clustering of scores around the midpoint of the 

scoring levels, scores may cluster at any part of the rating scale, indicating a restriction of 

range effect. 
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Restriction of Range. Central tendency and restriction of range are sometimes 

discussed together as a single rater effect (e.g. Wolfe & Chiu, 1997). However, though 

central tendency and restriction of range are related, they are not necessarily the same, 

and may present through different patterns in the scores (Saal et al., 1980). Central 

tendency is a type of restriction of range in that it represents a restriction to the middle 

score levels (Myford & Wolfe, 2003). However, restriction of range can occur at any 

score level. Thus, central tendency is a type of restriction of range, but restriction of 

range does not necessarily imply a central tendency effect. Moreover, all rater effects 

previously discussed can result in a restriction of range. For example, if raters are severe, 

their ratings will predominately be restricted to the low end of the score levels. If raters 

are lenient, their ratings will predominately be restricted to the upper end of the score 

levels. If raters demonstrate a halo effect, similar scores will be assigned across rubric 

dimensions, resulting in a restriction of range at any score level. Considering any rater 

effects may manifest more broadly as a restriction of range effect, restriction of range is 

of utmost importance when evaluating ratings (Engelhard, 1994).  

 As with the central tendency effect, restriction of range may occur due to rater 

beliefs about the score levels. For example, the lowest score on a rubric is often the 

absence of a skill. Some raters may philosophically believe that student work is never 

completely devoid of a skill and consequently refrain from assigning scores at the low 

end of the scoring levels. The highest score on a rubric is often represented by the most 

exemplary demonstration of a skill. Some raters may philosophically believe that student 

work can always be improved, in effect refraining from assigning scores at the high end 

of the scoring levels. In a study of creativity assessment, Long and Pang (2015) found 
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that raters tended to modify the scoring levels based on their beliefs about creativity, 

often resulting in a restriction of range. For example, to justify a lack of scores at the low 

end of the scoring levels, one rater noted that “everybody possesses creativity and 

nobody’s response is not creative” (p. 21). This rater’s belief about how creativity 

manifests within students led to a restriction of scores to the middle to upper scoring 

levels.   

 Though all raters may succumb to rater effects, raters’ backgrounds in particular 

may shape the manner in which they interpret student products as well as the scoring 

criteria, in effect inducing rater effects.  

Rater Effects and Rater Background 

 Despite the fact that there is often an intended interpretation of a rubric and an 

intended manner in which the scoring criteria will be applied to student work, raters do 

not always follow the intended interpretations and applications of rubrics. Often, rubric 

scoring criteria and raters’ backgrounds synthesize to form their own scoring schemas 

that they ultimately use to score the products (Bejar, 2012; Eckes, 2008; Wolfe, Kao, & 

Ranney, 1998). Backgrounds may be influenced by age, experience with rating, 

proficiency with rating, experience with the content, etc. Using their personal scoring 

schema, raters derive an intuitive interpretation of the product and then often use the 

provided scoring criteria to justify their scores (Baker, 2012; Lumley, 2002).  

 The extent to which raters develop their own scoring schemas may differ based on 

rater background. For example, in a study of raters ranging from 29 to 70 years in age, 

older raters perceived scoring criteria as generally less important than younger raters 

(Eckes, 2008). Such a finding suggests that older raters may deviate from the stated 
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scoring criteria more than younger raters, potentially resulting in quite different meanings 

of scores from older raters compared to younger raters. In the same study, older, more 

experienced raters placed differential emphasis on various scoring criteria compared to 

younger, less experienced raters who placed similar emphasis on all scoring criteria 

(Eckes, 2008). That is, older, more experienced raters may develop their own 

interpretations about which scoring criteria are most important, placing additional 

emphasis on certain scoring criteria when rating student work. This is in contrast to 

younger raters who may consider all scoring criteria to be equally important when rating. 

Again, such a finding suggests that scores from older raters may have quite different 

meanings than scores from younger raters.  

 Rater proficiency may also relate to how closely raters follow scoring criteria. 

Wolfe and colleagues (1998) defined proficient raters as those who 1) focus only on 

essay features explicitly described in the scoring criteria; 2) can understand and apply the 

scoring criteria in a general way, rather than focusing on individual essay features; 3) rely 

on the rubric to frame their scoring process; and 4) can handle high cognitive demand and 

consider an essay as a whole, rather than breaking the essay down into small pieces to 

evaluate. Wolfe and colleagues (1998) found that more proficient raters tend to follow the 

scoring criteria closer than less proficient raters. As such, it seems that it may be 

desirable to select more proficient raters to rate student work, as their ratings may better 

reflect the intended interpretation and use of the rubric compared to those of less 

proficient raters. 

As previously mentioned, expert ratings may be collected from content experts in 

order to compare raters’ scores to expert ratings that should theoretically align with the 
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intended interpretation and use of the rubric criteria. The extent to which non-content 

expert raters can provide adequate scores for performance assessments is mixed. 

Schoonen, Vergeer, and Eiting (1997) found that non-expert raters (i.e. raters with no 

specific training in the content area) provided less reliable scores than expert raters (i.e. 

raters with educational training and professional experience in the content area) when 

assessing writing ability. However, Powers and Kubota (1998) found that, after training, 

non-expert raters provided scores within an acceptable range of accuracy and could be 

interchangeable with expert raters. Consequently, educators and researchers may consider 

the type of training they offer to raters and think critically about whether the training is 

capable of adequately guiding raters who are unfamiliar with the content of the 

assessment.  

In fact, rater training is often cited as an avenue by which to mitigate rater effects. 

Some researchers suggest that implementing and improving rater training mitigates rater 

effects (Borman, 1975; Elder, Knoch, Barkhuizen, & von Randow, 2005; McIntyre, 

Smith, & Hassett, 1984).  However, others suggest that rater training may not mitigate 

rater effects to the desired levels (Engelhard, 1992; Lumley & McNamara, 1993; 

McNamara, 1996; Weigle, 1998). For example, implementing a rater training was found 

to successfully increase consistency of individual raters’ scores, but was not found to 

adequately decrease differences in severity between new and old raters (Weigle, 1998). 

Though the relationship between rater training and rater effects is often discussed in the 

literature, detailed examples of rater training are lacking, and protocols for effective 

training remain largely unknown. Lack of training examples is problematic, especially 

considering that many researchers (e.g. Congdon & McQueen, 2000; Eckes, 2008; 
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Myford & Wolfe, 2004; Schaefer, 2008; Wu & Tan, 2016) suggest the presence of rater 

effects has implications for rater training.  

It is important to remember it is unlikely that rater effects will ever be eliminated 

(Cronbach, 1990; McNamara, 1996; Wu & Tan, 2016). When rater effects are present in 

performance assessment scores, raters are not exchangeable with one another (Bejar, 

2012). However, raters are often assumed to be interchangeable (Lunz et al., 1990). 

When raters are not interchangeable, the students’ scores depend on which rater rated 

their products. A lack of exchangeability among raters is particularly problematic in the 

case of criterion-referenced assessments. The goal of a criterion-referenced assessment is 

to accurately place students into categories, typically regarding their proficiency with a 

particular construct (Crocker & Algina, 1986). However, if students’ scores depend upon 

the rater, inaccurate classification decisions may be made regarding students’ 

proficiencies (Wolfe, 2004; Wu & Tan, 2016). Thus, it is important that appropriate steps 

be taken to ensure exchangeability of raters. A first step is the evaluation of scores for 

rater effects. 

Evaluating Scores for Rater Effects 

When evaluating scores for rater effects, it is first important to remember that the 

absence of rater effects does not indicate score accuracy (Murphy & Balzer, 1989). Rater 

effects analyses simply allow researchers to evaluate the patterns present within ratings. 

The patterns of scores could be similar across raters and students, but the scores may not 

reflect students’ actual abilities. For example, all raters may interpret the rubric similarly, 

resulting in similar score patterns across raters and students, but their interpretation of the 

rubric could be incorrect, resulting in inaccurate scores.  
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Moreover, the presence of rater effects does not necessarily indicate score 

inaccuracy (Wolfe, 2004). Because many rater effects analyses allow for the evaluation 

of score patterns in relation to a selected pool of raters, the prominence of rater effects is 

dependent upon the raters in the sample. Consequently, it could potentially be the case 

that “good” raters appear to have drastic rater effects if they are compared to a sample of 

“poor” raters, even though the “good” raters exhibit the most accurate rating tendencies 

(Wolfe, 2004). Thus, rater effects analyses should be interpreted cautiously and in the 

context of multiple sources of evidence. 

Additionally, it could be the case that there is evidence of rater effects, but the 

scores exhibit a pattern accurate for students’ abilities. For example, a rater may 

consistently assign low scores to student products, suggesting a severity effect. However, 

it could be the case that the rater happened to receive products from students of low 

ability, thus warranting a similar pattern of low scores across students. Or, a rater may 

assign similar scores across rubric elements, suggesting the presence of a halo effect. 

However, it could be the case that the student is of similar ability on all rubric elements, 

thus warranting similar scores across rubric elements. Or, a rater may assign moderate 

scores to student products, suggesting a restriction of range/central tendency effect. 

However, it could be the case that the students are of moderate ability, thus warranting a 

pattern of scores at the mid-point of the scoring levels across students.  

Thus, in rater effects research, it is helpful to know the score most accurate for 

students, given their abilities and the scoring criteria. However, a limitation of much rater 

effects research is that the most accurate scores are often unknown (Engelhard, 1996; 

Wolfe, 2004). Researchers generally approach this issue in two ways: obtain expert rater 
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scores that are thought to represent the most accurate score for each student (e.g. 

Engelhard, 1996), or use statistical modeling techniques that allow researchers to glean 

an expected score for each student than can represent the most accurate score (e.g. Wolfe, 

2004; Wu & Tan, 2016).  

The Many-Facets Rasch Measurement (MFRM; Linacre, 1989) model allows 

researchers to glean students’ expected scores and has been proposed for the evaluation 

of rater effects in performance assessment scores (e.g. Eckes, 2015; Engelhard, 1992, 

1994; Myford & Wolfe 2003). The MFRM model allows for the inclusion of facets, or 

sources of variability thought to influence students’ scores (Eckes, 2009). To obtain 

estimates of the extent to which rater effects are present in student scores, researchers can 

include a rater facet in the MFRM model. Inclusion of the rater facet allows for statistical 

tests and effect size measures that indicate variability in rater harshness/leniency or 

central tendency (Myford & Wolfe, 2004). Researchers can also include a rubric element 

facet to evaluate how the entire rubric or individual rubric elements function. Inclusion of 

the element facet allows for statistical tests and effect size measures that indicate 

variability across dimensions, suggesting whether or not a halo effect is present (Myford 

& Wolfe, 2004).  

The MFRM model produces model-implied scores, which are estimated based on 

all facets present in the model and are thought to be invariant across raters (Engelhard, 

1992). That is, the model-implied score is thought to represent the score a student should 

have received if rated by a rater of average leniency/severity. Students’ model-implied 

scores are produced by taking into account how individual raters may have influenced the 

students’ score (Stemler, 2004). Moreover, because the MFRM model provides estimates 
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of students’ scores, researchers can compare students’ model-implied scores and the raw 

scores students actually received from the rater. Researchers may then use the MFRM-

generated model-implied score to statistically adjust raw scores generated by severe or 

lenient raters (Eckes, 2005; Wu & Tan, 2016). The MFRM model has gained popularity 

due to its versatility in the ability to include rater and rubric element facets. However, the 

MFRM model is not the only statistical technique that can be used to evaluate rater 

effects.   

Generalizability theory (g-theory; Shavelson & Webb, 1991) may be used to 

evaluate scores for rater effects, and g-theory is perhaps one of the most common 

methods of evaluating the psychometric quality performance assessment scores. To 

appreciate g-theory, a brief interlude to classical test theory (CTT) and its shortcomings is 

necessary. In a traditional CTT framework, assessment scores are thought to be 

composed to two parts: “true” score variability and error variability (Haertel, 2006). In 

CTT, all error is considered to be unsystematic and all systematic error is considered to 

be “true” score variability. However, as mentioned, rater effects result from systematic 

variability in raters’ ratings. Thus, it is possible that systematic errors due to raters are 

confounded with students’ “true” score variability in a CTT framework. Thus, CTT has 

limitations when it comes to accurately determining the proportion of score variability 

due to differences in students’ abilities. Moreover, because error is considered to be one 

lump sum of unsystematic variance in a CTT framework, CTT is not useful for 

identifying sources of systematic error variability. That is, researchers cannot parse out 

whether error results from differences in raters, differences in performance assessment 

tasks, or differences due to testing occasion (Bandalos, 2018). 
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G-theory provides a unique solution to the shortcomings of CTT. Specifically, in 

a g-theory framework, systematic error variability can be decomposed into different 

variance components via an analysis of variance (ANOVA; Shavelson & Webb, 1991). 

By computing variance components from assessment scores, systematic error variability 

due to facets such as rater, assessment task, rubric element, testing occasion, and their 

interactions can be parsed out. Variability related to each facet may then be compared to 

identify which facet(s) contribute the most systematic variability to scores. Researchers 

may specify relevant facets to be included in a g-theory analysis. For example, consider a 

performance assessment system in which students respond to a single performance task 

and all tasks are scored by the same two raters using a rubric with five dimensions. In this 

design, score variability may be decomposed into the proportion of total variability due to 

differences in student ability (e.g. student facet as the object of measurement) and two 

error facets: 1) proportion of total variability due to differences in raters (e.g. rater facet), 

and 2) proportion of total variability due to differences in rubric element difficulty (e.g. 

element facet). The decomposition of error variability into specific variance components 

can be useful to identify evidence of rater effects.  

 For example, if there is a main effect due to raters, it suggests that there may be 

differences in raters’ leniency/severity. Though information from g-theory analyses can 

be helpful for identifying the presence of rater effects, results cannot indicate which 

individual raters are problematic. That is, g-theory provides evidence of rater effects at 

the group level, which is not particularly useful if researchers want to identify individual 

raters and provide feedback or recalibration for those raters. Because the courses of 

action to mitigate rater effects may vary depending on whether the effect occurs at the 
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group or individual level, it is important to evaluate scores for both group and individual 

rater effects.  

For example, it is possible that, as a group, raters exhibit a central tendency effect. 

In this instance, the group-level effect could be due to issues with the rubric that result in 

raters being unable to differentiate between scoring criteria (Myford & Wolfe, 2004). As 

such, an appropriate avenue of action may be to reevaluate the rubric and make scoring 

criteria clearer, perhaps by reducing the number of scoring levels so raters can more 

easily differentiate between them. A group-level effect could also indicate the need for a 

more detailed rater training. 

Conversely, evidence of individual-level rater effects may warrant further training 

with only a few raters.  By identifying only certain raters to train further, researchers can 

save resources and train only specific raters, rather than the entire rater pool. Moreover, if 

there are individual-level effects, there may be implications for selection of raters. For 

example, if there is only evidence of rater effects with raters who are non-content experts, 

then researchers may use this information to justify selecting only content expert raters. 

Finally, evaluating the scores for individual rater effects is important because group-level 

analysis may “wash out” individual rater effects (Myford & Wolfe, 2003). Thus, there are 

many benefits to evaluating scores for individual rater effects. However, as discussed, g-

theory is unable to detect individual rater effects. Instead, the MFRM model is proposed 

in order to obtain results for individual raters (Myford & Wolfe, 2003; Sudweeks, Reeve, 

& Bradshaw, 2005). In this study, an MFRM approach was used to evaluate Madison 

Collaborative ethical reasoning scores for group- and individual-level rater effects.  
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Study Purpose & Research Questions 

This study served several purposes. First, no known studies have evaluated the 

presence of rater effects in the domain of ethical reasoning. Thus, this study serves as a 

contribution to the ethical reasoning literature. Second, given that students’ ER-WR 

scores are used to make institution-level inferences regarding students’ ethical reasoning 

abilities, it is important that scores are psychometrically sound and backed with evidence 

to support their interpretations and uses. Thus, a second purpose of this study was to 

determine the extent to which individual- and group-level rater effects influenced first- 

and second-year students’ ER-WR scores. Results provide useful information for the 

Madison Collaborative in regard to rater selection and training. Finally, given that 

research suggests raters’ content knowledge of the assessment may be related to rater 

effects, this study serves to evaluate whether there was a relationship between raters’ 

knowledge of the 8KQs and their leniency or severity.  

In this study, the following research questions were addressed:  

1) Are there statistically significant differences in rater leniency/severity, 

suggesting a group-level leniency/severity rater effect? 

2) Are there statistically significant rater leniency/severity and ER-WR 

rubric element interaction effects?  

3) Is there a lack of distinguishability between score levels, suggesting a 

restriction of range effect? Is this restriction of range suggestive of a 

central tendency effect? 

4) Is there a relationship between raters’ knowledge of the 8KQs and rater 

leniency/severity?  
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Chapter 3: Method 

Participants 

Student participants. Student participants were first- and second-year students at 

James Madison University. Essays were collected from 484 students, with 330 essays 

from first-year students and 154 essays from second-year students.  

Raters. Eighteen raters were recruited to rate ER-WR essays. All raters were 

employed at James Madison University at the time of rating. Raters were recruited from 

the academic affairs and student affairs divisions, with representation from several 

colleges and student affairs offices. All raters were familiar with the 8KQs prior to rating; 

however, experience with the 8KQs varied.  

Measures 

 Ethical Reasoning and Writing (ER-WR) essay assessment. The ER-WR essay 

assessment consists of the ER-WR essay prompt and the ER-WR rubric. The ER-WR 

essay assessment is a performance assessment on which students are asked to describe 1) 

an ethical situation with which they were familiar, 2) the ethical considerations relevant 

to the situation, 3) their ethical reasoning process, and 4) the decision they made (See 

Appendix A for ER-WR instructions and prompt). The ER-WR essay prompt was 

developed by an ethical reasoning expert on campus. The ER-WR rubric (see Appendix 

B) was used by trained raters to score students’ ER-WR essays. The ER-WR rubric was 

developed jointly by an assessment expert and ethical reasoning expert on campus. 

Scores range from 0 – 4 on five elements designed to encompass the five elements of 

students’ ethical reasoning processes when using the 8KQ framework. As previously 

discussed, the five elements are thought to be sequential in the ethical reasoning process. 
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Element A. Element A is labeled “Ethical situation: Identifying an ethical issue in 

its context.” In this element, students are rated on their abilities to 1) identify and 

describe an ethical situation they have faced, and 2) describe relevant contextual features 

surrounding the situation. Element A is the first element on the rubric because, before 

students can evaluate an ethical dilemma, they must be able to delineate between an 

ethical decision and a difficult decision. Most ethical decisions are difficult, but not all 

difficult decisions are ethical in nature. To receive credit for Element A, students must 

delineate between difficult and ethical situations. Essays in which students do not provide 

an ethical situation are considered unrateable and do not receive scores for any ER-WR 

rubric elements. If a student provides an ethical situation, the distinguishing factors 

between scores on Element A are related to the ability of the student to 1) explicitly 

describe the potential decision options and 2) describe the relevant details of the ethical 

situation.  

Element B. Element B is labeled “Key question reference: Mentioning the 8KQs 

or equivalent terms.” After students identify an ethical situation, they must identify 

relevant considerations. Scores on Element B are directly related to how many KQs 

students explicitly reference in their essays. Explicit references include the direct mention 

of the KQs by name (e.g. Fairness, Outcomes, Responsibility, Character, Liberty, 

Empathy, Authority, and Rights). Students can also implicitly reference the KQs in their 

essays by using synonyms or phrases that get at the gist of the KQs. However, if students 

only implicitly reference KQs, they cannot receive above a score of one on Element B.  

Element C. Element C is labeled “Key question applicability: Describing which 

of the 8KQs are applicable or not applicable to the situation and why.” After students 



46 

 

 

identify relevant considerations, they must provide a rationale for the applicability or 

(in)applicability of considerations to their ethical situations. Scores on Element C are 

directly related to the number of KQs for which students provide a rationale for their 

(in)applicability to their ethical situation. Theoretically, Element C builds upon Element 

B, as students must mention the KQs to be able to provide a rational for their 

(in)applicability to their ethical situation. Thus, students cannot score higher on Element 

C than Element B. However, students may score lower on Element C than Element B, as 

they can merely mention KQs to receive credit for Element B, but students must provide 

a rationale for the (in)applicability of each of those KQs to their ethical reasoning 

situation to receive credit for Element C.   

Element D. Element D is labeled “Ethical reasoning: Analyzing individual KQs.” 

After students identify which KQs are relevant to their ethical situations, they must 

analyze the KQs within the context of their ethical situations. Thus, in this element, 

students are rated on their abilities to analyze the KQs in the context of their ethical 

situations. Element D is theoretically tied to Element C in the sense that students must 

reason through which KQs are applicable before they can effectively analyze the KQs in 

the context of their ethical situations. Element D is also empirically tied to Element C 

through a “special note” on the rubric that indicates students must identify three or more 

applicable KQs (i.e. receive a score of 1.5 or higher on element C) to achieve a score 

higher than one on element D.  

Element E. Element E is labeled “Ethical reasoning: Weighing the relevant 

factors and deciding.” After students analyze the KQs in the context of their ethical 

situations, they must come to a decision regarding their ethical situation. Thus, in this 
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element, students are rated on their abilities to weigh the KQs and other relevant factors 

to come to decisions regarding their ethical situations. Element E is theoretically tied to 

Element C in the sense that students cannot provide a rationale for the applicability of at 

least three KQs, then they cannot balance KQs to come to a logical ethical decision. 

Thus, similar to the relationship between Elements C and D, Element E is also 

empirically tied to Element C through a “special note” on the rubric that indicates 

students must identify three or more applicable KQs (i.e. receive a score of 1.5 or higher 

on Element C) to achieve a score higher than one on Element E. Moreover, Element E is 

theoretically tied to Element D, as if students are not able to accurately analyze at least 

three KQs, then they cannot effectively weigh the KQs to come to a logical decision. 

Thus, Element E is empirically tied to Element D through a “special note” on the rubric 

that indicates students must accurately analyze three or more key questions (i.e. receive a 

score of 1.5 or higher on Element D) to achieve a score higher than one on Element E.  

Typically, students score highest, on average, on Element A and second-highest, 

on average, on Element B. Elements C, D, and E typically yield the lowest scores, on 

average, across the five rubric elements. On average, across all rubric elements, first-year 

students typically score higher than second-year students, likely because first-year 

students take the ER-WR the day after participating in It’s Complicated. Since 2013, 

first-year students’ average scores across all rubric elements have ranged from 1.11 to 

1.51, and second-year students’ average scores across all rubric elements have ranged 

from 0.88 to 1.21.  

 Ethical Reasoning Identification Test (ERIT). The ERIT is a 50-item multiple 

choice assessment typically administered to students to measure their abilities to identify 
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relevant KQs when provided with a brief scenario. Specifically, the ERIT consists of 42 

multiple choice items on which examinees are asked to select the KQ most relevant to 

ethical scenarios, as well as two testlets, with each testlet having four items related to one 

ethical scenario. On all items, students are provided eight response options (Fairness, 

Outcomes, Responsibilities, Character, Liberty, Empathy, Authority, and Rights) from 

which to choose. 

 Confirmatory factor analyses suggested that a unidimensional model provided 

adequate fit to student scores (Bashkov et al., 2014; Holzman et al., 2017; Smith et al., 

2015; Smith et al., 2016). Cronbach’s alpha as a measure of internal reliability has been 

above 0.79 each year (Bashkov et al., 2014; Holzman et al., 2017; Smith et al., 2015; 

Smith et al., 2016), suggesting adequate internal consistency reliability for student scores. 

The ERIT has never been administered to populations other than undergraduate students. 

Thus, psychometric information for scores from other populations, such as the 

faculty/staff raters in the current study, is unavailable.  

In this study, only the first 42 items were administered to raters. Scores were a 

proxy of raters’ knowledge of the 8KQs. Possible scores ranged from 0 – 42, with higher 

scores representing more knowledge of the 8KQs than lower scores. The average score 

on the ERIT was 36.17, with a standard deviation of 3.54. As only eighteen raters 

participated in this study, sample size was not large enough to conduct a confirmatory 

factor analysis to evaluate the factor structure of scores. As a form of validity evidence, 

Cronbach’s alpha was estimated. Cronbach’s alpha was 0.65 for this sample of raters. 
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Procedure 

 ER-WR essay collection. All essays were collected on university-wide 

assessment days. Assessment day is a proctored, low-stakes, standardized testing 

occasion during which students are administered a battery of cognitive and non-cognitive 

assessments that can be completed within two-hours. Assessment day is designed for 

longitudinal data collection. Thus, students will take the same assessments as second-year 

students that they took as first-year students. However, note that all data in this study 

were cross-sectional. That is, data were from the 2017-2018 academic year, with a cohort 

of first-year students assessed in August of 2017 and a different cohort of second-year 

students assessed in February 2018.  

 First-year students completed the ER-WR assessment in August 2017 prior to 

beginning first-semester courses. On the day before taking the assessment, first-year 

students experienced It’s Complicated. Second-year students completed the ER-WR 

assessment in February 2018 after completing 45 – 70 credit hours. Second-year students 

experienced It’s Complicated as first-year students and may or may not have had 

Madison Collaborative or 8KQ interventions in their coursework and/or co-curricular 

activities. 

Using campus computer labs, all essays were written electronically on a 

university-developed testing platform. Students were granted 55 minutes to complete the 

ER-WR essay. Trained proctors walked throughout the testing rooms, encouraging 

students to take the full amount of time, check their work, and expand upon their essays. 

Though there is no minimum word count for the ER-WR essay, students were 

encouraged to write no fewer than 250 words.  
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Rating. After rating, all raters completed an IRB-approved informed consent to 

allow their scores to be analyzed and reported in various contexts, both within and 

external to James Madison University.  

The rating process occurred over two days in May 2018 (see Appendix D for 

rating timeline).  Breakfast and lunch were provided each day. First-time raters were 

remunerated at a rate of $250/day and returning raters were remunerated at a rate of 

$300/day. Raters were placed into anonymous rater teams, ensuring that all essays were 

rated by two raters. Historically, raters indicated that they feel fatigued 1) by the end of 

each rating day, and 2) by the end of the entire rating session. Thus, to mitigate rater 

effects due to fatigue, essays were counterbalanced within rater pairs. That is, raters 

within each rater team rated essays in reverse order (e.g. the first essay rater one rated 

was the last essay rater two rated). 

All student essays were de-identified prior to rating. Historically, the Madison 

Collaborative has rated both first- and second-year student essays in the same rating 

session. The Madison Collaborative justifies the combined rating on two accounts: 1) 

raters are unaware as to which essays were written by which students, and thus do not 

know which essays are from first-year students and which essays are from second-year 

students; and 2) though first- and second-year student essays may vary in quality, the ER-

WR rubric was designed with a wide range of scoring criteria, so the same rubric can be 

used across essays of varying ethical reasoning quality and with college students of 

different ages.  

Day one. All raters participated in a two-hour rater training. The rater training 

was conducted by one facilitator, who was a quantitative psychology faculty member and 
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assessment liaison to the Madison Collaborative. This facilitator was selected to maintain 

consistency with previous MC rater trainings, as she was the primary rater training 

facilitator in previous years. During rater training, raters were introduced to the ER-WR 

rubric and the 8KQ synonyms (see Appendix E) deemed acceptable by ethical reasoning 

experts on campus. After raters were introduced to the ER-WR rubric and 8KQ 

synonyms, raters rated two practice essays. 

Prior to training, each practice essay was rated by an ethical reasoning content 

expert using the ER-WR rubric. The expert provided scores and a rationale for the scores 

for each ER-WR rubric element. In the training, the facilitator used the expert rater’s 

scores and rationales to guide raters as they rated the practice essays. The first practice 

essay was of excellent ethical reasoning quality (e.g. received a score of about three or 

higher on each ER-WR rubric element). This particular practice essay was chosen to 

demonstrate to raters the qualities of a high-scoring essay. A high scoring essay was 

selected because, historically, raters participating in MC rating sessions indicated not 

having an adequate conception of high-quality ethical reasoning essays from the training 

process. Raters indicated that, when they rated students’ essays, they tended to provide 

scores that were higher than appropriate because they did not have an example of what 

high-quality ethical reasoning looks like in the training. To improve raters’ conceptions 

of the skills that warrant high scores on the ER-WR rubric, a high scoring essay was 

selected. 

Individually, raters scored Element A. Guided by the facilitator, raters then had 

large-group discussion regarding the Element A score. Several raters shared their scores 

and rationale for their scores. The facilitator then shared the expert rating for Element A 
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and discussed why the expert rating was the most appropriate score. Where necessary, the 

facilitator assisted raters in making distinctions between scoring criteria. This same 

process ensued for ER-WR rubric Elements B – E. For all elements, raters were 

encouraged to calibrate within a half-point of the expert rater (i.e. if the expert rater 

provided a score of 2, raters were instructed that scores between 1.5 and 2.5 were 

acceptable). This half-point calibration and calibration process resembled trainings from 

prior years. Note that raters did not submit scores for the facilitator to check that they 

were calibrating to the expert rater. It was assumed that raters recognized the logic behind 

the expert rater’s scores and would attempt to mimic the same logic when scoring 

students’ essays.  

 The second practice essay was of good ethical reasoning quality (i.e. an average 

score of about two on the ER-WR rubric). This practice essay was of lower ethical 

reasoning quality than the first practice essay and was selected to provide raters practice 

with distinguishing between the middle score levels of the ER-WR rubric. Raters were 

allotted approximately fifteen minutes to rate all ER-WR rubric elements. Raters then 

discussed their ratings in pairs or small groups, based on where they were sitting. To 

ensure that raters did not discuss their ratings with their anonymous rater pair, raters were 

assigned seats. Seat assignment was important because if raters compared with their 

partner, they ran the risk of calibrating to their partner, rather than the expert rater. If rater 

pairs calibrate to one another, students’ scores may become biased (e.g. if both raters 

become harsh, the student will receive a lower score than is warranted, given the 

student’s ability, and scores will not balance across raters). Ratings were then discussed 

as a large group. The facilitator shared the expert rating for each rubric element and 
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discussed why the expert rating was most appropriate. Where necessary, the facilitator 

assisted raters in making distinctions between scoring criteria. Just as with the first 

training essay, raters were encouraged to calibrate within a half-point of the expert rater.   

After the training, raters completed the ERIT. Recall, the ERIT was administered 

as test of raters’ 8KQ knowledge. The ERIT was completed via a paper-and-pencil 

scantron form. All raters completed the ERIT prior to beginning the rating process. After 

completing the ERIT, raters were given lunch. After lunch, three hours remained, during 

which raters began rating student essays. Over the course of days one and two, sixteen 

raters were assigned 59 essays to rate and two raters were assigned 57 essays to rate. 

Raters’ assigned essays included first- and second-year student essays. As previously 

mentioned, first- and second-year student essays were randomly dispersed among the 

raters’ essays and raters were unaware as to which essays were written by first-year 

students and which essays were written by second-year students.  

As part of raters’ assigned essays, five plant essays were administered to each 

rater. Thus, raters rated either 52 or 54 essays unique to their rater pair, and five essays 

that were common across all raters. The plants were administered in the same order for 

all raters (i.e. plant 1 was administered as the 6th essay raters would rate, plant 2 was 

administered as the 12th essay raters would rate, plant 3 was administered as the 18th 

essay raters would rate, plant 4 was administered as the 24th essay raters would rate, and 

plant 5 was administered as the 30th essay raters would rate). Plants were administered to 

create links across raters, which was necessary for the analyses described later in this 

chapter. Without common essays rated by all raters, model parameters cannot be 
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calibrated together, resulting in an inability to compare the parameters necessary to 

evaluate the research questions of this study (Eckes, 2009, 2015; Linacre, 2017a).  

In the three hours of rating on day one, raters completed as many essays as they 

were able, without an expectation of the number of essays they would rate. Raters 

returned on day two to complete their remaining essays. 

Day two. On day two, raters participated in a one-hour refresher training for the 

ER-WR rubric. Individually, raters were allotted approximately fifteen minutes to rate 

one practice essay of excellent ethical reasoning quality. Similar to the rationale for 

selecting an essay of high ethical reasoning quality on day one, a high quality essay was 

selected to remind raters of the essay characteristics that warrant the highest scores on the 

ER-WR rubric. Raters then discussed their ratings in pairs or small groups. Like day one, 

seating was assigned to ensure that raters did not compare practice ratings with their 

partner. Ratings were discussed as a large group, with the facilitator sharing the expert 

rating for each rubric element. The facilitator also discussed why the expert rating was 

most accurate. Where necessary, the facilitator assisted raters in making distinctions 

between scoring criteria. Just as in day one, raters were encouraged to calibrate within a 

half-point of the expert rater.   

After rating the practice essay, raters continued to rate in the same manner as they 

did on day one. As such, raters remained in the same rater pairs as day one, and they 

began rating the essay on which they left off the previous day. Raters had two hours to 

rate essays before lunch. Raters were then allowed a thirty-minute lunch break. After 

lunch, raters had four hours to complete their assigned essays. All raters completed their 

assigned essays by 2pm on the second rating day.  
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Data Analysis 

 Unless otherwise stated, all data screening and preparation was conducted using 

SAS Software Version 9.4 (SAS Institute, 2015). Unless otherwise stated, all data 

analysis was conducted using FACETS (Linacre, 2017b). 

 Data screening. First, data were screened to remove essays that were considered 

“unrateable” because the student did not present an ethical dilemma. These essays were 

identified by raters commenting that the essays were not ethical dilemmas. I reviewed the 

essays that were flagged for not having an ethical dilemma, and if an ethical dilemma was 

not present, scores for that essay were removed from the analysis. If an ethical dilemma 

was present, the scores were retained. Twenty essays did not have an ethical dilemma 

present, resulting in 464 remaining student essays, and a total of 4,640 scores in addition 

to the 450 scores from the plant essays.  

 Next, data were screened to ensure that raters used the special notes on the ER-

WR rubric. Because ER-WR rubric developers consider use of the special notes 

necessary for generating valid scores, any scores in which the raters did not use the 

special notes (i.e. assigned a score of 1.5 or higher on elements D and/or E when 

assigning a score of 1 or lower on element C), were removed from the analysis. There 

were eight instances in which raters did not follow the special notes, resulting in a total of 

4,560 ratings in addition to the 450 ratings from the plant essays. In total, there were 

5,010 ratings for analysis. 

 Next, data were screened for missingness. When screening for missingness, I 

checked to ensure that all raters completed at least one of the five plant essays. Because 

the plants are necessary to facilitate comparisons of parameters across raters (Eckes, 
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2009, 2015; Linacre, 2017a), the data were screened specifically to identify any raters 

who had not completed at least one of the five plant essays. All raters completed all five 

plant essays. No other missing data were present.  

 Data preparation. First, a total score was computed for the ERIT in order to 

evaluate research question 4. To compute the total score, first raters’ responses to the 

ERIT questions were scored correct/incorrect, where incorrect scores were provided a 

score of zero and correct scores were provided a score of one. Next, raters’ scores were 

summed across all ERIT items, yielding a single total score thought to be a proxy for 

raters’ knowledge of the 8KQs.  

FACETS (Linacre, 2017b) requires data to be in integer form. Because raters 

could provide half-point scores for all ER-WR rubric elements, all ER-WR scores were 

multiplied by two. Thus, analyzed scores ranged from 0 – 8.  

Many-Facets Rasch Measurement. All research questions were evaluated using 

Many-Facets Rasch Measurement (MFRM; Linacre, 1989). The MFRM model features 

two key advantages to researchers. First, all facets are placed on the same logit 

measurement scale, allowing for comparisons to be made across facets (Bond & Fox, 

2015). Second, the MFRM model provides model expected estimates of the scores 

students should have received, after accounting for measurement error related to all 

included facets. Researchers may compare model-implied scores and raw scores to make 

inferences regarding the extent to which rater-assigned raw scores represent students’ 

scores after correcting for measurement error (Eckes, 2009; Engelhard, 1994; Wu & Tan, 

2016).   
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The MFRM model is an extension of the single-facet rating scale model (Andrich, 

1978) and single-facet partial-credit model (Masters, 1982) and allows for multiple facets 

to be included in the evaluation of polytomously-scored assessment items. Specifically, 

rater and rubric element facets can be included to evaluate performance assessment 

scores. With student, rater, and rubric element facets, a rating scale model may be defined 

as  

𝑙𝑛
𝑃𝑛𝑖𝑗𝑘

𝑃𝑛𝑖𝑗𝑘−1
=  𝜃𝑛 −  𝛿𝑖 −  𝛼𝑗 −  𝜏𝑘,    (1)  

where 𝑃𝑛𝑖𝑗𝑘 is the probability of student n being rated k on element i by rater j, 𝑃𝑛𝑖𝑗𝑘−1 is 

the probability of student n being rated k-1 on element i by rater j, 𝜃𝑛 is the ability of 

student n, 𝛿𝑖 is the difficulty of ER-WR rubric element i, 𝛼𝑗 is the severity of rater j, and 

𝜏𝑘 is the difficulty of score level k compared to score level k-1 (Eckes, 2015; for a list of 

equations, see Appendix F). When a rating scale model is specified, the researcher 

assumes that all raters use the set of rubric elements in the same way when rating. When 

a rating scale model is specified, all rubric elements must also have the same number of 

score levels (Bond & Fox, 2015; Myford & Wolfe, 2003).   

With student, rater, and rubric element facets, a partial credit model may be 

defined as  

𝑙𝑛
𝑃𝑛𝑖𝑗𝑘

𝑃𝑛𝑖𝑗𝑘−1
=  𝜃𝑛 −  𝛿𝑖 −  𝛼𝑗 −  𝜏𝑖𝑗𝑘,    (2)  

where 𝑃𝑛𝑖𝑗𝑘 is the probability of student n being rated k on element i by rater j; 𝑃𝑛𝑖𝑗𝑘−1 is 

the probability of student n being rated k-1 on element i by rater j; 𝜃𝑛 is the ability of 

student n, 𝛿𝑖 is the difficulty of ER-WR rubric element i; 𝛼𝑗 is the severity of rater j; and 

𝜏𝑖𝑗𝑘 is the difficulty of score level k compared to score level k-1, which is free to vary 
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across ER-WR rubric element i and rater j (Eckes, 2015).When a partial credit model is 

specified, the researcher assumes each rater uses each rubric element in their own 

individual ways. Thus, the partial credit model is a more complex model than the rating 

scale model and allows for the estimation of additional parameters for both raters and 

rubric element thresholds (Bond & Fox, 2015; Eckes, 2015; Myford & Wolfe, 2003). 

Regardless of whether a rating scale or partial credit MFRM model is used, the 

log-odds of students obtaining scores of k are a function of the additive effects of their 

abilities, the difficulty of the ER-WR rubric element, rater severity, and the difficulty of 

scoring in score level k compared to k-1 (Eckes, 2009, 2015; Linacre, 2017a; Myford & 

Wolfe, 2003). In this study, variations of a hybrid of equation 1 and equation 2 were 

used. The hybrid MFRM model for this study may be defined as 

𝑙𝑛
𝑃𝑛𝑖𝑗𝑘

𝑃𝑛𝑖𝑗𝑘−1
=  𝜃𝑛 −  𝛿𝑖 −  𝛼𝑗 −  𝜏𝑖𝑘,    (3)  

where 𝑃𝑛𝑖𝑗𝑘 is the probability of student n being rated k on element i by rater j, 𝑃𝑛𝑖𝑗𝑘−1 is 

the probability of student n being rated k-1 on element i by rater j, 𝜃𝑛 is the ability of 

student n, 𝛿𝑖 is the difficulty of ER-WR rubric element i, 𝛼𝑗 is the severity of rater j, and 

𝜏𝑖𝑘 is the difficulty of score level k compared to score level k-1 for ER-WR rubric 

element i (Eckes, 2015).  

 All MFRM models were estimated using joint-maximum likelihood estimation 

via FACETS 3.80.0 (Linacre, 2017b). The model used for each research question is 

defined below with each respective research question. Upon analyzing the data using the 

appropriate model, various indices were used to evaluate each research question. These 

indices are commonly used in the literature to evaluate rater-mediated scores for rater 

effects (e.g. Engelhard, 1992, 1994; Eckes, 2005, 2008; Weigle, 1998; Wu & Tan, 2016). 
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First, a brief overview of each index and its computation is provided. Note that each 

index is provided in FACETS (Linacre, 2017b) output. However, equations are provided 

for the benefit of the reader. Specific interpretations and ideal outcomes for each index 

are provided with each research question, where appropriate.  

Fixed-effect chi-square. The fixed-effect chi-square is a significance test used to 

test the null hypothesis that there are no differences in the logit values for an object of 

measurement (e.g. student, rater, ER-WR element), after controlling for measurement 

error (Eckes, 2015; Myford & Wolfe, 2003). For example, a non-significant chi-square 

for students suggests that all students exhibit the same ability, after controlling for 

measurement error. In this study, the object of measurement was either student or rater. 

The fixed-effect chi-square is defined as 

𝑥2 =  ∑(𝑤𝑜 ∗ 𝐷𝑜
2) −

(∑ 𝑤𝑜∗𝐷𝑜)
2

∑ 𝑤𝑜
 ,     (4) 

where 𝐷𝑜 is the estimated logit of the object of measurement (i.e. difficulty of ER-WR 

rubric element, severity/leniency of rater, or student ability) and 𝑤𝑜 =  
1

𝑆𝐸𝑜
2 (Myford & 

Wolfe, 2003). Degrees of freedom equal L – 1, where L = the number of observations of 

the object of measurement (Myford & Wolfe, 2003). Note that the fixed-effect chi square 

is sensitive to sample size. Thus, in large samples, the fixed-effect chi square may be 

statistically significant, even with small differences in the object of measurements’ logits 

(Eckes, 2015).  

Separation ratio. Note that the separation ratio will not be reported directly to 

evaluate research questions; however, it is described because it provides the foundation 

upon which subsequent indices are computed. The separation ratio quantifies the 

precision of the spread of the logits associated with the object of measurement in relation 
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to the measurement error associated with the object of measurement’s logit values 

(Eckes, 2015; Myford & Wolfe, 2003). Said differently, the separation ratio indicates 

how precisely the object of measurement is able to be spread across the logit continuum. 

The separation ratio requires the computation of the true SD, defined as 

𝑆𝐷𝑡
2 =  𝑆𝐷𝑜

2 − 𝑀𝑆𝐸,      (5) 

where 𝑆𝐷𝑜
2

 is the standard deviation of the observed logits for a given object of 

measurement, and 𝑀𝑆𝐸 is the average measurement error associated with a given object 

of measurement (Eckes, 2015). The separation ratio (Go) may then be defined as 

𝐺𝑜 =  √ 𝑆𝐷𝑡
2

𝑀𝑆𝐸
 .      (6) 

Go ranges from 0 to positive infinity, with values near 0 indicating less spread of the 

object of measurement across the logit continuum, compared to higher values (Eckes, 

2015; Myford & Wolfe, 2003).  

 Separation index. The separation index (Ho) is an extension of the separation 

ratio and is defined as 

𝐻𝑜 =  
4√𝑆𝐷𝑡

2

𝑀𝑆𝐸
+1

3
 .      (7) 

Ho ranges from 0 to positive infinity and indicates the number of statistically significantly 

different levels there are of the object of measurement (Bond & Fox, 2015; Eckes, 2015; 

Myford & Wolfe, 2003). For example, an Ho of 5.3 suggests that five distinct strata of the 

object of measurement exist. A value of Ho near 1.0 suggests that only one strata of the 

object of measurement is distinguished (Eckes, 2015). 

 Reliability of separation. The reliability of separation (Ro) is also an extension of 

the separation ratio and is defined as  
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𝑅𝑜 =  
𝑆𝐷𝑡

2

𝑀𝑆𝐸

1+
𝑆𝐷𝑡

2

𝑀𝑆𝐸

 .      (8) 

Ro ranges from 0.0 to 1.0 and is analogous to traditional reliability indices, such as 

Cronbach’s alpha (Myford & Wolfe, 2003). Conceptually, similar to how Cronbach’s 

alpha is an estimate of how reliably students can be separated along the ability 

continuum, the Ro is an estimate of how reliably the object of measurement can be 

separated along the logit continuum. Higher reliability of separation values indicate more 

reliable separation of the object of measurement than lower values (Bond & Fox, 2015; 

Eckes, 2015). Moreover, the reliability of separation may be interpreted as the proportion 

of an object of measurement’s observed score variability that is not due to measurement 

error (Eckes, 2015). 

Evaluation of MFRM assumptions. Prior to analysis, three MFRM assumptions 

were evaluated: local independence, unidimensionality, and correct model form.  

Local independence. Local independence refers to the assumption that item 

responses are independent from one another after controlling for the construct of interest 

(DeMars, 2010). When local independence is violated, it may be that a secondary 

construct is measured with the item, or it may be that an item influences responses to 

subsequent items (Marais & Andrich, 2008). In this study, local independence would be 

met if students’ probabilities of receiving a certain score on an ER-WR rubric element 

were not related to the score they received on a previous element, after controlling for 

students’ ethical reasoning abilities. However, due to the special notes on the rubric, it 

was plausible that scores would not suffice the local independence assumption. 

Specifically, scores on Elements D and E were expected to be dependent on Element C, 

and scores on Element E were expected to be dependent on Element D.  
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Violations of local independence are problematic because they may influence 

parameter estimates (Li, Li, & Wang, 2010; Smith, 2005) as well as inflate reliability 

estimates (Marais & Andrich, 2008; Wainer & Thissen, 1996; Wang & Wilson, 2005). 

When local independence is violated, a common response is to sum the dependent items 

to create a single polytomous item (DeMars, 2010; Marais & Andrich, 2008; Stone & 

Zhu, 2015). Given that the purpose of this study was to evaluate the presence of rater 

effects in scores across all ER-WR rubric elements, it was not advantageous to sum 

students’ scores on Elements C, D, and E to create a single polytomous rubric element. 

Thus, to address the likely violation of local independence, Elements D and E were each 

split into two elements, resulting in Elements D lower, D upper, E lower, and E upper 

(M. Linacre, personal communication, February 26, 2018). Scores were then assigned to 

respective upper or lower elements based on the special notes. The range of the upper and 

lower elements matched the range of scores available to students, based on the special 

notes. That is, Element D lower and E lower ranged from 0 – 1 (0 – 2 when transformed 

to integers for FACETS), as the special notes do not allow students to obtain a score 

higher than one on Elements D or E if they receive a score of one or lower on Elements C 

or D. Element D upper and E upper ranged from 0 – 4 (0 – 8 when transformed to 

integers for FACETS), as students are able to obtain scores across the full spectrum of 

score levels if they receive a score above one on Elements C or D.  

As an example of how data were structured in FACETS (Linacre, 2017b), 

consider the three possible cases of scoring: 1) students receive above a score of one on 

Elements C and D, thus voiding the special notes; 2) students receive above a score of 

one on Element C, but receive a score of one or less on Element D, thus voiding the 
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special note for Element C but maintaining the special note for Element D; or 3) students 

receive a score of one or less on Element C, thus maintaining the special notes for 

Elements C and D and requiring scores of one or less on Elements D and E. In the first 

case, students received scores for Elements D upper and E upper, and data were 

considered missing for Elements D lower and E lower. In the second case, students 

received a score for Element D upper and E lower, and data were considered missing for 

Elements D lower and E upper. In the third case, students received scores for Elements D 

lower and E lower, and data were considered missing for Elements D upper and E upper. 

See figure 1 for an example of how the data were structured in FACETS for each case. 

Note that figure 1 is for illustrative purposes only and the rater facet was left out of figure 

1 for simplicity. 

 To determine whether the local independence assumption was violated for these 

data, two models were run: 1) one analysis in which the MFRM hybrid model (equation 

3) was specified for the data where the five-element structure (i.e. Elements A, B, C, D, 

and E) was maintained, and 2) one analysis in which the MFRM hybrid model (equation 

3) was specified for the data where Elements D and E were each split into two elements 

(i.e. Elements A, B, C, D lower, D upper, E lower, and E upper). The first model will be 

referred to as the five-element structure model, and the second model will be referred to 

as the seven-element structure model. Given that local independence violations inflate 

reliability estimates, local independence was considered violated if the student reliability 

of separation index was at least 0.05 higher for the five-element structure than the seven-

element structure (Marais & Andrich, 2008). Note that there are no thresholds presented 

in the literature for this comparison. However, Marais and Andrich (2008) found an 
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increase of at least 0.05 in the student reliability of separation when they introduced 

dependencies, so this value was used in this study as a threshold for determining whether 

local independence was violated.  

 Given that missingness is induced due to students’ scores on Element C and/or 

Element D, a brief discussion of missing data is warranted. Specifically, because 

missingness was created due to students’ scores on Element C and/or Element D, and 

students’ scores for those elements were included in the analysis, missing scores for 

Element D lower, Element D upper, Element E lower, and Element E upper were 

considered missing at random (MAR; Enders, 2010). Joint-maximum likelihood 

estimation may be used with MAR data (Linacre, 2017b), mitigating concerns about 

biased results due to missingness. 

Unidimensionality. Unidimensionality is related to local independence and refers 

to the assumption that all assessment items measure only one, common construct 

(Bandalos, 2018; DeMars, 2010). Unidimensionality was evaluated by conducting a 

Principal Components Analysis (PCA) on the standardized residuals. The PCA was 

conducted using SAS Software Version 9.4 (SAS Institute, 2015). Standardized residuals 

were estimated via  

𝑍𝑛𝑖𝑗 =
𝑥𝑛𝑖𝑗− 𝑒𝑛𝑖𝑗

√𝑤𝑛𝑖𝑗
       (9) 

where 𝑥𝑛𝑖𝑗 is the observed rating for student n on element i assigned by rater j; 𝑒𝑛𝑖𝑗 is the 

expected rating for student n on element i assigned by rater j, given the model; and 𝑤𝑛𝑖𝑗 

is the variability of the observed rating around its expected rating, given the model, 

otherwise known as model variance (Eckes, 2015).  

The expected rating may be further defined as 



65 

 

 

𝑒𝑛𝑖𝑗 =  ∑ 𝑘𝑝𝑛𝑖𝑗𝑘
𝑚
𝑘=0       (10) 

where k is a rating and 𝑝𝑛𝑖𝑗𝑘 is the probability of student n obtaining score k on element i 

from rater j, given a specified MFRM model (Eckes, 2015). The model variance may be 

further defined as 

𝑤𝑛𝑖𝑗 =  ∑ (𝑘 − 𝑒𝑛𝑖𝑗)2𝑚
𝑘=0 𝑝𝑛𝑖𝑗𝑘    (11) 

where all components are as defined in equation 10 (Eckes, 2015). The square root of 

model variance is the statistical information contributed by a particular rating (Myford & 

Wolfe, 2003).  

PCA analyses in the Rasch framework are used to evaluate whether there are 

systematic patterns in the residuals. If there are patterns in the residuals, a secondary 

dimension, often referred to as a “contrast,” may be present. It is assumed that all 

elements are grouped on the first contrast, and the PCA specifically tests whether any 

elements group on secondary contrasts (“Dimensionality: Contrasts and Variances,” n.d.). 

Each contrast has an associated eigenvalue, and the eigenvalues represent the number of 

elements that make up the respective contrast. If eigenvalues for secondary contrasts are 

less than 2.0, indicating there are fewer than two elements on the secondary contrasts, 

then the researcher has evidence of unidimensionality (“Dimensionality: Contrasts and 

Variances,” n.d.). In this study, unidimensionality was considered to be met if the 

eigenvalues for the secondary contrasts were less than 2.0. 

Correct model form. Correct model form refers to the idea that an appropriate 

model is used to analyze the data. Data will never fit the model perfectly (Linacre, 2003). 

However, fit indices may be used to determine whether the data fit the model enough to 
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yield estimates useful for evaluating research questions. Correct model form was 

evaluated in two ways: 1) overall model fit, and 2) rater fit. 

Overall model fit. To evaluate overall model fit, the absolute value of the 

standardized residuals were evaluated. Standardized residuals indicate how many 

standard deviations the observed score deviated from the expected score. Given that 

standardized residuals of |2.0| indicate that the observed score deviated by two standard 

deviations from the expected score, standardized residuals greater than |2.0| indicate 

highly unexpected scores, as they would be expected to appear less than 5% of the time 

in data that are consistent with the chosen MFRM model (Bond & Fox, 2015; Eckes, 

2015; Myford & Wolfe, 2003; Wright & Masters, 1982). Thus, data were thought to fit 

the model well overall if fewer than 5% of the standardized residuals were greater than or 

equal to |2.0|.  

Rater fit. Because the primary object of analysis in this study is raters, rater fit 

was evaluated. To evaluate rater fit, the unweighted mean square (MSU) and weighted 

mean square (MSW) indices were evaluated. MSU is an average of raters’ squared 

standardized residuals (equation 9) for all students and elements and is defined as  

𝑀𝑆𝑈𝑗
=

 ∑ ∑ 𝑍𝑛𝑖𝑗
2𝐼

𝑖=1
𝑁
𝑛=1

𝑁𝐼
,      (12) 

where N = the number of students rated by that rater, and I = the number of elements 

(Eckes, 2015).  

MSW is defined as  

𝑀𝑆𝑊𝑗
=

 ∑ ∑ 𝑧𝑛𝑖𝑗
2𝐼

𝑖=1
𝑁
𝑛=1 𝑤𝑛𝑖𝑗

∑ ∑ 𝑤𝑛𝑖𝑗
𝐼
𝑖=1

𝑁
𝑛=1

 ,     (13) 

where all terms are as defined in equation 9 (Eckes, 2015). MSW values are weighted by 

statistical information, resulting in differential weighting of ratings. Specifically, ratings 
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assigned in score levels further from the examinees’ ability are weighted less heavily than 

ratings assigned to the other score levels, as less information is contributed to the model 

by these extreme scores (Bond & Fox, 2015; Eckes, 2015). Thus, though MSU and MSW 

are similar, they provide slightly different information to researchers and both were 

evaluated in this study. Note that MSU and MSW may be referred to as Mean Square outfit 

and Mean Square infit, respectively, in other references (e.g. Bond & Fox, 2015; Eckes, 

2005; Engelhard, 1994, 2002; Myford & Wolfe, 2003). 

MSU and MSW range from 0 to positive infinity, with values of 1.0 indicating 

perfect fit of the data to the model (Linacre, 2003). Values less than 1.0 indicate that the 

observed ratings are more similar to the model-implied ratings than would be predicted 

by the model (i.e. overfit of the model), and values greater than 1.0 indicate that the 

observed ratings are less similar to the model-implied ratings than would be predicted by 

the model (i.e. underfit of the model; Eckes, 2015; Linacre, 2003). Note that MSU and 

MSW indices may be transformed to a t-distribution to test the statistical significance of 

perfect model-data fit (Eckes, 2015). Or, MSU and MSW may be left untransformed and 

used as effect sizes. Using MSU and MSW as indicators of both statistical significance and 

effect size is not common in Rasch measurement (DeMars, 2010). For purposes of this 

study, MSU and MSW were maintained as untransformed measures of effect size. 

 Researchers have proposed various benchmarks for acceptable fit. Linacre (2003) 

proposed that MSU and MSW measures between 0.5 – 1.5 are often accepted as indicators 

of acceptable fit. However, Bond and Fox (2015) suggested that narrower limits between 

0.7 – 1.3 are appropriate. Given that use of scores is relatively low stakes for this study, 

MSU and MSW values between 0.5 and 1.5 were considered acceptable. Though there are 
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no hard benchmarks for acceptable MSU and MSW values, values above 2.0 are 

considered major distortions in model fit (Eckes, 2015; Linacre, 2003). As such, MSU and 

MSW values greater than 2.0 were flagged as indications of major rater misfit.  

 After assumptions were evaluated for each MFRM model, data were analyzed in 

accordance with each research question. In all analyses, facets were oriented such that 

greater logits for student ability represented more ability than lower logits, greater rater 

logits represented more severity in rating than lower logits, and greater element logits 

represented more difficulty than lower logits. The average logits of the rater and element 

facets were fixed to 0.00, and the average student ability logit was freely estimated. In the 

following section, I describe data analysis procedures and indices relevant to evaluate 

each research question. 

Research Questions 

Research question 1: Are there statistically significant differences in rater 

leniency/severity, suggesting a group-level leniency/severity rater effect? The hybrid 

MFRM model (equation 3) was used to evaluate this research question. First, the fixed-

effect chi-square was evaluated as a global test of whether leniency/severity differed 

across raters. The fixed-effect chi-square (equation 4) was estimated to evaluate the null 

hypothesis that, after controlling for measurement error, there were no differences in rater 

severity. A statistically significant chi-square (p<.05) suggests that at least two raters are 

statistically significantly different in their leniency/severity logit scores (Myford & 

Wolfe, 2004).  

 Next, the rater separation index and reliability of rater separation were evaluated 

with raters as the object of measurement. In the rater separation ratio (equation 6), the 
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true SD was computed using the observed standard deviation of the rater logits and the 

standard error associated with the rater logits. Further, the rater separation index 

(equation 7) was estimated and indicates the number of statistically significantly different 

levels of rater leniency/severity (Myford & Wolfe, 2003). Ideally, the rater separation 

index will be small, as smaller values indicate fewer statistically distinct levels of rater 

leniency/severity compared to larger values (Myford & Wolfe, 2004).  

 The rater reliability of separation (equation 8) was estimated for raters and is an 

estimate of how reliably raters can be separated along the severity continuum (Myford & 

Wolfe, 2003). Ideally, the rater reliability of separation will be low, suggesting that raters 

have similar leniency/severity logits and thus cannot be reliably separated along the 

ability continuum (Myford & Wolfe, 2003; Myford & Wolfe, 2004).  

Additionally, individual raters’ logits were evaluated via visual inspection with a 

Wright map, also known as a vertical ruler or variable map (Bond & Fox, 2015; Eckes, 

2015; Myford & Wolfe, 2004). The Wright map provided a visual depiction of raters’ 

leniency/severity and the rank-ordering of raters by their leniency/severity logits. Ideally, 

raters will be clustered around a logit score of 0.0 (i.e. average leniency/severity) on the 

Wright Map. If raters are dispersed across the logit continuum, it suggests that raters 

differ in their leniency/severity. Raters who had logit values greater than 0.0, and thus 

were higher than 0.0 on the Wright map, were considered to be more severe than the 

average rater. Raters who had logit values less than 0.0, and thus were lower than 0.0 on 

the Wright map, were considered to be more lenient than the average rater (Bond & Fox, 

2015; Eckes, 2015; Linacre, 2017a; Myford & Wolfe, 2004).   
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As a second visual supplement, confidence intervals were estimated around 

raters’ logit leniency/severity scores using  

Rater logit ± 1.96(𝑆𝐸𝑟𝑎𝑡𝑒𝑟)     (14) 

where 𝑆𝐸𝑟𝑎𝑡𝑒𝑟 is the standard error of the rater leniency/severity logits (Wolfe, 2004). 

Because logits are on a continuous scale and will presumably be normally distributed, a 

critical value of 1.96 was used. Confidence intervals were plotted using SAS Software 

Version 9.4 (SAS Institute, 2015) to visually determine the extent to which raters differed 

in their leniency/severity.  

In sum, rater leniency/severity were evaluated overall via the fixed-effect chi 

square, rater separation index, and rater reliability of separation. Each of these 

aforementioned indices indicate the degree to which raters differ in their 

leniency/severity. After assessing rater leniency/severity differences globally, individual 

raters were evaluated visually via the Wright map and confidence intervals. Raters will 

not be identified by name, but will instead remain as “rater 1,” “rater 2,” “rater 3,” etc. in 

all results.  

Research question 2: Are there statistically significant rater leniency/severity 

and ER-WR rubric element interaction effects? The hybrid MFRM model (equation 

3) was modified to include an interaction term in order to evaluate this research question. 

When evaluating interactions in the MFRM framework, interactions may be tested in an 

exploratory or confirmatory manner (Eckes, 2015). Exploratory interaction analyses are 

appropriate when there are no a priori hypotheses about the nature of the interaction. 

Given that there are no a priori hypotheses regarding the nature of a possible interaction 

between ER-WR rubric elements and rater leniency/severity, an exploratory interaction 
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analysis was conducted. One additional interaction term between rater and element was 

added to equation 3  

 𝑙𝑛
𝑃𝑛𝑖𝑗𝑘

𝑃𝑛𝑖𝑗𝑘−1
=  𝜃𝑛 −  𝛿𝑖 −  𝛼𝑗 − 𝜑𝑖𝑗 −  𝜏𝑖𝑘,    (15) 

where 𝑃𝑛𝑖𝑗𝑘 is the probability of student n being rated k on element i by rater j, 𝑃𝑛𝑖𝑗𝑘−1 is 

the probability of student n being rated k-1 on element i by rater j, 𝜃𝑛 is the ability of 

student n, 𝛿𝑖 is the difficulty of ER-WR rubric element i, 𝛼𝑗 is the severity of rater j, 𝜑𝑖𝑗 

is the interaction between the severity of rater j and ER-WR rubric element i, and 𝜏𝑖𝑘 is 

the difficulty of score level k compared to score level k-1 on ER-WR rubric element i 

(Eckes, 2015). The interaction parameter, 𝜑𝑖𝑗, may also be referred to as a bias 

parameter, as a significant interaction suggests differential functioning of raters across 

ER-WR rubric elements, or rater bias via ER-WR rubric element (Eckes, 2015). 

 A two-step calibration procedure was used (Eckes, 2015; Linacre, 2017a; Myford 

& Wolfe, 2003). In the first calibration, all parameters except 𝜑𝑙𝑗were estimated. In the 

second calibration, the parameters from the first calibration were fixed and parameters for 

𝜑𝑖𝑗 were estimated. To evaluate the null hypothesis that rater leniency/severity does not 

depend on ER-WR rubric elements after controlling for measurement error, the statistical 

significance of the t statistic was evaluated 

𝑡𝑖𝑗 =  
�̂�𝑖𝑗

𝑆𝐸𝑖𝑗
,       (16) 

where �̂�𝑖𝑗 is the estimated parameter for the interaction between the severity of rater j 

and ER-WR rubric element i, and 𝑆𝐸𝑖𝑗 is the standard error of �̂�𝑖𝑗 (Eckes, 2015). A t 

value for each rater and each ER-WR rubric element was obtained. A statistically 

significant (p<0.05) t value suggested a rater differed in his or her leniency/severity 
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across rubric elements, after controlling for measurement error (Bond & Fox, 2015; 

Eckes, 2015). To evaluate the ubiquity of rater bias by ER-WR rubric element, the 

number of 𝑡𝑖𝑗 indices statistically significant were summed and converted to a percentage 

that represented the percentage of raters exhibiting leniency/severity bias by ER-WR 

rubric elements (Eckes, 2005, 2015).   

 The interaction between rater leniency/severity and ER-WR rubric element was 

also evaluated visually with a bias diagram. A bias diagram depicts each raters’ t values 

for ER-WR rubric elements. Ideally, raters’ t values for each element will be close 

together, suggesting minimal bias. If raters’ t values differ, it suggests that they did not 

exhibit the same leniency/severity across ER-WR rubric elements (Eckes, 2015). Raters 

will not be identified by name, but will instead remain as “rater 1,” “rater 2,” “rater 3,” 

etc. in all results. 

Research question 3: Is there a lack of distinguishability between score levels, 

suggesting a restriction of range effect? Is this restriction of range suggestive of a 

central tendency effect? The hybrid MFRM model (equation 3) was used to evaluate 

this research question. First, the fixed-effect chi-square was evaluated as a global test of 

whether students’ abilities, as defined by their logit scores, differed. The fixed-effect chi-

square (equation 4) was estimated to evaluate the null hypothesis that, after controlling 

for measurement error, there were no differences in student ability. A statistically 

significant chi-square (p<.05) suggests that at least two students are statistically 

significantly different in their ability logit scores (Myford & Wolfe, 2004). If students’ 

abilities are indistinguishable (i.e. a non-significant fixed-effect chi square), it suggests 

that students receive similar scores from raters, revealing a possible restriction of range 
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effect. Ideally, students will be spread across the logit continuum, suggesting students 

differ in their ability estimates. Thus, ideally, the chi-square will be significant, 

suggesting students are spread across the ability continuum, and thus providing evidence 

that a restriction of range effect may not be present (Myford & Wolfe, 2004).  

Next, the student separation ratio, student separation index, and reliability of 

student separation were estimated with students as the object of measurement. In the 

student separation ratio (equation 6), the true SD (equation 5) was estimated using the 

observed standard deviation of the student ability logits and the standard error associated 

with the student ability logits. Further, the student separation index (equation 7) was 

estimated. The student separation index indicates the number of statistically significantly 

different levels of student ability (Bond & Fox, 2015; Eckes, 2015; Myford & Wolfe, 

2003). Ideally, the student separation index will be large, as larger values indicate more 

statistically distinct levels of student ability compared to smaller values. If distinct levels 

of student ability are present, it is unlikely that there is a group-level restriction of range 

effect.   

 The student reliability of separation (equation 8) was estimated and is an estimate 

of how reliably students can be separated along the ability continuum. Ideally, the student 

reliability of separation will be high, suggesting that students vary in their estimated 

ability logits and thus can be reliably separated along the ability continuum (Myford & 

Wolfe, 2003).  

Additionally, students’ ability logits were visually evaluated via a Wright map. 

Ideally, students will be spread across the logit continuum, suggesting that students differ 

in their abilities. The average student ability logit was estimated to be -1.40. Thus, 
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students who had logit values greater than -1.40 were considered to be of higher ability 

than the average student, and students who had logit values less than -1.40 were 

considered to be of lower ability than the average student (Myford & Wolfe, 2004).  

As an additional supplement to the student separation index and student reliability 

of separation, frequencies of the scores in each score level for each rubric element were 

computed. Frequency analyses could have been obtained using a partial credit version of 

the MFRM model, allowing both the rater and element facets to be partial credit (Myford 

& Wolfe, 2003). However, for model simplicity, the rater facet was modeled as rating 

scale, and follow-up frequency analyses were conducted instead. The frequencies were 

evaluated to determine whether some score levels on the rubric were used more than 

other score levels. A histogram of the scores was graphed using SAS Software Version 

9.4 (SAS Institute, 2015) 

Additionally, a cross-tabulation between rater and score level was generated. The 

frequencies were evaluated to determine whether certain raters used some score levels 

more than other scores levels. Moreover, frequency and cross-tabulation analyses 

provided insight regarding the nature of any restriction of range effects. That is, 

frequency and cross-tabulation analyses provided insight as to whether scores were 

restricted to 1) the lower or upper ends of the scoring levels, suggesting extreme scoring; 

or 2) the middle scoring levels, suggesting a central tendency effect. The overall 

frequency analysis across all raters provides further evidence for a possible restriction of 

range group-level effect while the cross-tabulation analyses provided further insight into 

possible restriction of range effects for individual raters.  
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In sum, central tendency was evaluated overall via the fixed-effect chi square, 

student separation indices, and student reliability of separation. Each of these 

aforementioned indices indicates the degree to which students differ in their abilities, thus 

providing evidence of the extent to which a restriction of range effect may be present. 

The Wright map provided further visual support for assessing the degree to which 

students differed in their abilities. As a method for evaluating individual raters’ 

tendencies to exhibit a restriction of range effect, cross-tabulations of raters and score 

levels were generated. Raters will not be identified by name, but will instead remain as 

“rater 1,” “rater 2,” “rater 3,” etc. in all results. 

Research question 4: Is there a relationship between raters’ knowledge of the 

8KQs and rater leniency/severity? The hybrid MFRM model (equation 3) was used to 

evaluate this research question. To evaluate the relationship between rater 

leniency/severity and 8KQ knowledge, raters’ leniency/severity logits were correlated 

with ERIT total scores. A Pearson correlation was evaluated for statistical and practical 

significance. The correlation was considered statistically significant if p<0.05. Cohen’s 

(1992) guidelines for small (r = 0.1), medium (r = 0.3), and large (r = 0.5) effect sizes 

were used as criteria to interpret the magnitude of the correlation. The relationship 

between rater leniency/severity and 8KQ knowledge was considered practically 

significant if it met the guideline for a medium effect size or larger. A visual inspection 

of the relationship was obtained via a scatterplot of rater leniency/severity and 8KQ 

knowledge. 
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In sum, the relationship between rater leniency/severity and 8KQ knowledge was 

evaluated via a Pearson correlation and visual inspection via a scatterplot of rater 

leniency/severity by 8KQ knowledge.  
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Chapter 4: Results 

 Four research questions were addressed in this study: 

1) Are there statistically significant differences in rater leniency/severity, 

suggesting a group-level leniency/severity rater effect? 

2) Are there statistically significant rater leniency/severity and ER-WR 

rubric element interaction effects?  

3) Is there a lack of distinguishability between score levels, suggesting a 

restriction of range effect? Is this restriction of range suggestive of a 

central tendency effect? 

4) Is there a relationship between raters’ knowledge of the 8KQs and rater 

leniency/severity? 

To address these research questions, an MFRM analysis was conducted on ER-WR 

scores. In this chapter, findings for each individual research question are presented. 

However, prior to presenting results, outcomes from assumption testing are provided. To 

evaluate the formal assumptions of IRT, three MFRM models were estimated: 1) one 

model in which the MFRM hybrid model (equation 3) was specified for the seven-

element structure (i.e. Elements A, B, C, D lower, D upper, E lower, and E upper), 2) one 

model in which the MFRM hybrid model was specified for five-element structure (i.e. 

Elements A, B, C, D, and E), and 3) one model in which the MFRM rating scale model 

(equation 1) was specified for five-element structure. Results from the assumptions 

testing influenced the choice of the final model and the results interpreted for this study. 
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Assumption Testing 

 Local independence. To determine whether the local independence assumption 

was violated for these data, two analyses were conducted: 1) one analysis in which the 

MFRM hybrid model (equation 3) was specified for the five-element structure, and 2) 

one analysis in which the MFRM hybrid model (equation 3) was specified for the seven-

element structure. Student reliability of separation indices were compared across each 

model, and differences less than 0.05 were considered evidence that there was not 

violation of local independence in these data. Student reliability of separation estimates 

were nearly identical across both models. Moreover, parameter estimates were compared 

for Elements A, B, and C across both models, and parameter estimates were similar 

across both analyses. Correlations between the location and threshold estimates for the 

five- and seven-element models were greater than 0.99. See Appendix F for a comparison 

of the reliability and parameter estimates for the two analyses. Similarity of results across 

models provided evidence that local independence was not violated with these data, so all 

subsequent analyses and reported results represent the five-element structure.  

 Correct model form. Recall, there were two ways for evaluating fit: 1) overall 

model fit, and 2) rater fit. 

 Overall model fit. Recall, the element facet was freed to be partial credit due to 

the different number of possible score options when Elements D and E were split into 

upper and lower elements. However, because of evidence that the five-element structure 

adequately met the local independence assumption, there was the option for constraining 

the element facet to be rating scale. As such, overall model fit was compared for two 

models: 1) one in which the element facet was treated as partial credit, and 2) one in 
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which the element facet was treated as rating scale. To evaluate overall model fit, the 

absolute value of the standardized residuals were evaluated. Residuals greater than |2.0| 

indicated highly unexpected scores, and data were thought to fit the model well overall if 

fewer than 5% of the standardized residuals were greater than or equal to |2.0|. For both 

models, less than 4% of the standardized residuals were greater than or equal to |2.0|. As 

such, the simpler model where the element facet was constrained to be rating scale was 

considered adequate. All subsequent analyses and reported results represent the five-

element structure with all facets specified as rating scale (equation 1).  

Rater fit. Recall, to evaluate rater fit, the unweighted mean square (MSU) and 

weighted mean square (MSW) indices were evaluated for the model in which the five-

element structure was maintained and all facets were treated as rating scale. MSU and 

MSW values greater than 2.0 were flagged as indications of major rater misfit. No MSU 

nor MSW values were greater than 2.0. All MSU values ranged from 0.64 – 1.64, and all 

MSW values ranged from 0.67 – 1.76 (see Table 1). Rater three had MSU and MSW 

estimates slightly larger than the preferred range of 0.5 to 1.50, suggesting rater three’s 

ratings were less similar to the model-implied ratings than predicted by the model. 

However, because rater three’s MSU and MSW were less than 2.0, rater three’s ratings 

were not considered to be a major distortion in the model. As such, rater fit was 

considered acceptable for these data. 

 Unidimensionality. Recall that unidimensionality was assessed via conducting a 

principal components analysis on the standardized residuals. Unidimensionality was 

assessed using the standardized residuals from the five-element structure with all 

elements treated as rating scale. Unidimensionality was considered met if there were 
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fewer than two elements on any secondary contrast. For this study, evidence suggests that 

ER-WR scores were unidimensional, as all elements loaded on to the first contrast, and 

eigenvalues were less than 1.0 for each secondary contrast.  

Evaluation of Research Questions 

 All research questions were answered via results from the model in which the 

five-element structure was maintained and all elements were treated as rating scale.  

 Research question 1: Are there statistically significant differences in rater 

leniency/severity, suggesting a group-level leniency/severity rater effect? First, the 

fixed-effect chi-square was evaluated to determine whether there were statistically 

significant differences in rater leniency/severity, after controlling for measurement error. 

The fixed-effect chi-square was statistically significant (2(17) = 2037.3, p < .001), 

suggesting at least one rater differed significantly in leniency/severity from the other 

raters. The rater separation index suggested ten statistically distinct levels of rater 

leniency/severity in this sample of raters. Moreover, the rater reliability of separation was 

0.99, suggesting near-perfect separation and rank-ordering of raters’ leniency/severity 

along the leniency/severity continuum. 

Because the rater facet was centered at 0.00, leniency/severity estimates of 0.00 

indicated average leniency/severity, values less than 0.00 indicated relatively more 

lenient raters, and values greater than 0.00 indicated relatively more severe raters. For a 

visual representation of the rank-ordering of raters by their leniency/severity estimates, 

see the Wright Map (Figure 2). Rater one, rater eleven, rater sixteen, and rater eighteen 

were of approximately average leniency/severity in this sample of raters (see Table 2). 

With the exception of rater three and rater seven, raters’ leniency/severity were within 
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one standard deviation (0.68 logits) of average leniency/severity. Rater three and rater 

seven were both at least one logit more lenient than the average rater. Rater five was the 

most severe rater, though still within one standard deviation from the average rater. For 

the extent to which raters differed from one another in their leniency/severity estimates, 

see Figure 3.  

Leniency/severity estimates may be further interpreted in the context of observed 

scores provided by raters. The average score provided by raters ranged from 0.77 to 2.09 

points out of a possible four points on the ER-WR rubric (see Table 2). Based on average 

observed score estimates, rater four was the most severe and rater three was the most 

lenient. Note that observed score interpretations do not necessarily align with 

interpretations from MFRM analyses because the observed scores are not adjusted for the 

quality of student responses assigned to different raters, as rater five was the most severe 

according to MFRM estimates, but rater four was the most severe according to the 

average observed score.  

In sum, raters in this sample differed in their leniency/severity. Given that the 

rater separation index suggested there were ten distinct strata of leniency/severity 

estimates, it is not surprising that the rater reliability of separation suggested raters could 

be separated and rank-ordered by their leniency/severity along the leniency/severity 

continuum. Though no raters were particularly severe in their ratings, two raters were 

particularly lenient in their ratings.  

 Research question 2: Are there statistically significant rater leniency/severity 

and ER-WR rubric element interaction effects? To address this research question, a 

bias parameter was included in the five-element rating scale MFRM model. A bias 
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parameter was estimated for each rater for each ER-WR rubric element, and the 

significance of these parameters was evaluated to determine the extent to which raters 

differed in their leniency/severity across ER-WR rubric elements. Ideally, raters exhibit 

similar, and average, leniency/severity across ER-WR rubric elements, resulting in non-

significant bias parameters across rubric elements. The bias diagram (see Figure 4) was 

used as a visual depiction of raters’ interaction parameters (see Table 3). Bias parameters 

greater than 0 indicated raters’ scores were more lenient than expected by the model, and 

bias parameters less than 0 indicated raters’ scores were more severe than expected by the 

model (Eckes, 2015). If the bias parameters differed across ER-WR rubric elements for 

individual raters, it suggested that raters’ leniency/severity differed depending on ER-WR 

rubric element. Many raters exhibited differential leniency/severity across ER-WR rubric 

elements. There were 90 total bias parameters (18 raters*5 elements). If bias were not 

present in scores, we might expect approximately four bias parameters to be significant 

by chance alone. However, of the 90 total bias parameters, 33.33% were statistically 

significant, suggesting that, after controlling for measurement error, raters differed in 

their leniency/severity across rubric elements about one-third of the time. Thus, many 

more raters exhibited bias across the ER-WR rubric elements than would be expected by 

chance. Interestingly, of the 30 statistically significant bias parameters, 11 were for 

Element A.  

 Rater seven, rater eight, rater twelve, rater thirteen, rater fourteen, and rater 

eighteen were relatively consistent in their leniency/severity across elements and did not 

exhibit statistically significant bias across any elements. Rater three differed extensively 

in leniency/severity across rubric elements and exhibited statistically significant bias on 
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all elements. Compared to other elements, rater three was the most severe on Element E 

and the most lenient on Element B. Several raters (i.e. rater two, rater six, rater nine, rater 

eleven, and rater seventeen) were similar in their leniency/severity across Elements B, C, 

D, and E, but differed in their leniency/severity for Element A compared to the other 

elements. Rater two, rater eleven, and rater seventeen were much more lenient on 

Element A compared to the other elements and rater six and rater nine were more severe 

on Element A compared to the other elements.  

 In sum, several raters’ observed scores were more lenient or more severe than 

expected by the model, resulting in significant bias parameters. Whether the raters’ 

observed scores were more lenient or more severe than expected differed across ER-WR 

rubric elements for many raters, suggesting differential leniency/severity across ER-WR 

rubric elements for several raters in this sample. Of the five ER-WR rubric elements, 

Element A in particular appeared to be problematic for raters, as over one-third of the 

significant bias parameter estimates were for Element A.  

 Research question 3: Is there a lack of distinguishability between score levels, 

suggesting a restriction of range effect? Is this restriction of range effect suggestive 

of a central tendency effect? The fixed-effect chi-square was statistically significant 

(2(464) = 5723.7, p < .001), suggesting that, after controlling for measurement error, 

students differed significantly in their abilities. The student separation index suggested 

there were 2.73 distinct groups of students. A student reliability of separation of 0.88 

suggests that students’ abilities are rank-ordered fairly consistently (across raters and 

rubric elements) along the ability continuum. For a visual depiction of the separation of 



84 

 

 

students’ abilities along the ability continuum, see Figure 2. The student facet was not 

centered and thus the average student ability was estimated to be -1.40 logits.  

 Observed score frequencies provided by raters in each score category indicated 

approximately two-thirds of scores provided by raters were between 0 – 1, and few scores 

were provided in the 3.5 and 4 score categories (see Table 4). Moreover, this same 

pattern was present in many raters’ scores. Thus, it appears that a restriction of range 

effect was present for many raters, with the restriction limited to the lowest three score 

categories. Note that though these results suggest a restriction of range effect for raters, it 

could be the case that students were of low abilities, resulting in an accurate restriction of 

raters’ scores to the lowest score categories.  

 Ideally, raters provide similar scores to the same student essays, such as was the 

case with rater seventeen and rater eighteen (see Table 4). Most rater pairs were fairly 

similar in the scores they provided to student essays. However, rater three and rater four 

greatly differed in the scores they provided to student essays. Rater three did not exhibit a 

restriction of range effect, as rater three provided scores across the spectrum of the rubric. 

On the other hand, rater four exhibited restriction of range, as rater four provided scores 

primarily in the lower score categories of 0, 0.5, and 1. 

 In sum, the student reliability of separation and student separation index 

suggested that a restriction of range effect was not present in these data. However, 

observed score frequencies suggested that most raters restricted their scores to the lowest 

score categories of the ER-WR rubric. Together, this information suggests that, though 

raters exhibited some restriction of range, as was evidenced by review of the observed 
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score frequencies, students’ scores still differed enough to allow for students’ abilities to 

be adequately separated and rank-ordered along the ability continuum. 

 Research question 4: Is there a relationship between raters’ knowledge of the 

8KQs and rater leniency/severity? Total scores from the Ethical Reasoning 

Identification Test (ERIT) and raters’ leniency/severity estimates were correlated to 

determine whether there was a relationship between raters’ knowledge of the 8KQs and 

their leniency/severity. The Pearson correlation representing the relationship between 

raters’ knowledge of the 8KQs and rater leniency/severity was non-significant (r = 0.37, 

p = 0.14). By Cohen’s (1992) effect size guidelines, the relationship between raters’ 

knowledge of the 8KQs and their leniency/severity is a medium effect. However, because 

of the small sample size of the rater pool, the magnitude of the relationship between 

raters’ 8KQ knowledge and leniency/severity should be interpreted cautiously. Moreover, 

review of the scatterplot between raters’ ERIT scores and leniency/severity logits (see 

Figure 5) illuminates that the correlation between raters’ ERIT scores and 

leniency/severity was inflated by rater seven. If rater seven was removed from the 

analysis, the relationship between raters’ ERIT scores and leniency/severity dropped to 

0.08, a negligible effect size. Thus, the moderate effect size found in this study was likely 

due to rater seven, who appeared to be an outlier. 

 Additionally, when evaluating the scatterplot between raters’ ERIT scores and 

leniency/severity logits, it is difficult to distinguish a discernible pattern. Rater eleven, 

who achieved a perfect score on the ERIT and had the highest ERIT total score, was of 

average leniency/severity. However, rater nine and rater sixteen were also of average 

leniency/severity, yet achieved two of the three lowest ERIT total scores. Rater three, 
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who was the most lenient rater, achieved an ERIT total score of 34, which was similar to 

raters five and rater fourteen who were the two most severe raters.  

 In sum, a strong relationship between raters’ 8KQ knowledge and 

leniency/severity was not discernible, especially if rater seven was not included in the 

analysis. Though the overall relationship was positive on average across all raters, 

knowing raters’ 8KQ knowledge did not necessarily provide useful information about 

raters’ leniency/severity, or vice versa. 
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Chapter 5: Discussion 

 This study was designed to evaluate the extent to which rater effects influence 

students’ ER-WR scores. Specifically, I examined differences in raters’ leniency/severity, 

the extent to which raters’ leniency/severity differed across ER-WR rubric elements, and 

whether raters exhibited restriction of range through their scores. Though these findings 

provide some context regarding how raters behave, the MFRM analyses do not provide 

information regarding why raters’ leniency/severity may differ. Thus, in a preliminary 

effort to explain why raters may differ in their leniency/severity, I evaluated whether 

raters’ knowledge of the 8KQs was related to their leniency/severity. A discussion of 

each research question and general findings is presented below. Implications of the 

results and directions for future research are discussed.  

Research question 1: Are there statistically significant differences in rater 

leniency/severity, suggesting a group-level leniency/severity rater effect?  

 In this study, raters differed in their leniency/severity. At least ten distinct strata 

of raters were identified from the MFRM analysis. Ideally, raters will not be separable 

into distinct strata, suggesting raters are interchangeable. If raters are interchangeable, 

then the score students receive do not depend upon the rater who scores their essay. 

Findings from this study are not ideal and suggest that students’ unadjusted scores may 

depend upon which rater evaluated their essay.  

 Interestingly, no raters were especially severe in their ratings. However, rater 

three was particularly lenient compared to other raters, receiving a leniency/severity logit 

1.5 standard deviations below the average rater. Additionally, rater three was the only 

rater to have an average observed score across all student essays above two points on the 



88 

 

 

zero to four ER-WR rubric scale, double the observed sum score of several other raters. 

For another perspective, rater three’s scores may be compared to rater four’s scores, as 

raters three and four were rating partners and rated the same essays. Despite rating the 

same essays, rater three provided an average observed score that was more than twice the 

average observed score provided by rater four. Clearly, there are large discrepancies 

between rater three and rater four’s scores, raising questions about the meaning of 

students’ scores for their essays.  

 Often, essay scores are averaged across rater partners before providing descriptive 

information about students’ scores to stakeholders. Rater three and rater four rated so 

differently from one another that their average score likely fails to accurately represent 

students’ abilities. For example, consider for Element A that rater three provided a score 

of three to an essay, and rater four provided a score of one to the same essay, resulting in 

an average score of two on Element A for that student. According to the ER-WR rubric, 

stakeholders could interpret a score of two as a representation that the student explicitly 

referenced ethical decision options, but did so in a disorganized manner. However, given 

the discrepancies between rater three and rater four’s scores, is the student’s ability truly 

indicative of a score of two? If a score of three is accurate, then the student explicitly 

referenced ethical decision options and provided a clear and organized account of the 

ethical decision options. If a score of one is accurate, then the student did not provide an 

explicit reference to ethical decision options. Thus, the interpretations stakeholders make 

vary depending on whether they interpret rater three’s score, rater four’s score, or the 

average score. Ideally, stakeholders use results to create targeted interventions that 

improve students’ skills and abilities. If discrepant scores are averaged and do not 
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represent students’ true ethical reasoning abilities, it is challenging for stakeholders to use 

the results in meaningful ways. In short, when raters are as discrepant as raters three and 

four, it is difficult to know which score reflects a student’s ethical reasoning abilities, 

creating implications for score interpretation and educational programming. 

Research question 2: Are there statistically significant rater leniency/severity and 

ER-WR rubric element interaction effects? 

 In this study, several raters differed in their leniency/severity across ER-WR 

rubric elements, thereby exhibiting bias. Some raters (e.g. rater seven, rater eight, rater 

twelve, rater thirteen, rater fourteen, and rater eighteen) did not exhibit significant bias 

across any ER-WR rubric elements, suggesting consistent application of the rubric 

criteria across all rubric elements. However, other raters varied drastically in their 

leniency/severity across ER-WR rubric elements, suggesting inconsistent application of 

the rubric criteria across all rubric elements. Of any rater, rater three differed the most in 

leniency/severity across elements and exhibited significant bias on all rubric elements.  

 Interestingly, raters’ scores were the most biased for Element A compared to 

other elements. Historically, raters anecdotally suggest that Element A is challenging to 

rate, and given that nearly half of the significant bias parameters across raters were for 

Element A, empirical results from this study support anecdotes from previous raters. 

Several raters (e.g. rater six, rater nine, rater seventeen) were relatively consistent in their 

leniency/severity across Elements B, C, D, and E, but exhibited significant bias for 

Element A. Interestingly, bias did not always manifest as either leniency or severity. That 

is, raters differed in whether they were significantly more severe or more lenient on 

Element A compared to other elements. When evaluating the ER-WR rubric scoring 
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criteria, Element A appears to be one of the more subjective elements, providing context 

for why differential bias was observed for Element A relative to the other elements.  

During the rating session for the current study, many raters asked clarification 

questions about Element A and sought advice regarding whether students actually 

presented an ethical situation. Moreover, several raters indicated that essays did not have 

ethical situations when they did actually have an ethical situation present. If raters 

indicated that an ethical situation was not present, then they typically scored the essay 

very low, often assigning scores of 0 to all elements, which could be contributing to the 

leniency/severity bias found for Element A in this study. If raters are unable to 

adequately identify the content that needs to be rated, their leniency/severity is likely to 

differ for the element containing the content that is challenging to identify. In such a case, 

additional training may be provided to raters. In the context of the Madison 

Collaborative, staff may consider adding a module during which raters have the 

opportunity to identify ethical situations.  

Though many raters exhibited differential leniency/severity for Element A, many 

raters exhibited consistent leniency/severity on Element B and Element C.  That is, when 

ratings were lenient on Element B, they were also lenient on Element C, and when ratings 

were severe on Element B, they were also severe on Element C. Consistency across 

Element B and Element C is not surprising, as Element B and Element C each require 

raters to count KQs and provide a score based on the number of KQs students reference 

and provide a rationale for, respectively. Because these elements involve a simple 

counting of KQs, it makes sense that raters exhibited minimal bias across these elements.  
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Note that, though it is ideal raters exhibited minimal bias on Element B and 

Element C, it does not necessarily mean that raters apply the 8KQs correctly or have 

adequate knowledge of the 8KQs. That is, just because raters exhibit similar 

leniency/severity on Element B and Element C, they may not correctly identify KQs in 

students’ essays. Rather, raters may consistently misidentify KQs in students’ essays, 

producing consistent, but incorrect, scores. Future researchers may focus on whether 

raters identify the correct KQs in students’ essays. Though raters’ leniency/severity was 

not as consistent across Element D and Element E as for Element B and Element C, most 

raters did not exhibit significant bias on Element D or Element E. 

Research question 3: Is there a lack of distinguishability between score levels, 

suggesting a restriction of range effect? Is this restriction of range effect suggestive 

of a central tendency effect?  

 Restriction of range may occur at any score level, resulting in central tendency or 

extreme rating effects. In this study, most raters appeared to exhibit a restriction of range 

effect, with scores restricted to the lowest three score levels. This result is not surprising, 

given that students historically score less than a 2.0 on average across all elements. Thus, 

the restriction of range may be warranted, given students’ abilities.  

Though the restriction of range is not particularly concerning, it is concerning that 

some raters provided scores in certain score categories more often than other raters. With 

the exception of rater three, all raters had positively skewed ratings, with more ratings at 

the low end of the score levels and few ratings at the high end of the score levels. On the 

other hand, rater three, the most lenient rater, provided more scores of four than any other 

score and used all score categories with similar frequency. Such a score distribution is 
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unlikely for two reasons. First, historical trends indicate students typically do not score 

above a two on average across all ER-WR rubric elements, making it unlikely that so 

many high scores were warranted, given students’ abilities. Second, rater four, who rated 

the same essays as rater three, did not provide a similar number of scores across the score 

levels. Though we cannot be sure that rater four’s ratings are accurate, rater four provided 

few scores above a score of two. Thus, in comparison to rater four and average scores 

from previous years’ rating sessions, rater three appeared unnecessarily lenient.  

 Rater five, rater six, rater nine, and rater ten provided more scores of zero than 

any other raters. These raters each provided more than 100 ratings of zero across all of 

their essays, whereas many other raters provided less than 70 ratings of zero. Although 

not indicated particularly severe from the MFRM analysis, it may be possible that these 

raters are relatively severe raters. Or, it could be possible that these raters happened to 

receive essays of less quality compared to other raters. This second explanation is 

plausible considering that rater five and rater six were a rater pair and rater nine and rater 

ten were a rater pair. Because each rater pair rated the same essays, and provided a 

similar number of zeros to student essays, it could be the case that they received essays of 

lower quality simply by chance. Their comparative influx of zero ratings compared to 

other raters would be more concerning if their rating partners did not provide a similar 

frequency of zeros to student essays. As previously discussed, though rater effects were 

identified via MFRM analysis, the analysis does not necessarily provide information 

regarding why raters exhibit rater effects. As such, results are next presented for research 

question four, which was included in this study to identify reasons why raters may exhibit 

rater effects.  
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Research question 4: Is there a relationship between raters’ knowledge of the 8KQs 

and rater leniency/severity?  

 In this study, raters’ knowledge of the 8KQs was unrelated to their 

leniency/severity. These findings suggest that knowing raters’ 8KQ knowledge does not 

necessarily inform how lenient/severe raters will be, or vice versa. This research question 

was examined as a potential method to diagnose why raters exhibit differential 

leniency/severity. However, results did not provide an explanation for why raters differed 

in their leniency/severity. Rater three, the most lenient rater, scored near the average 

Ethical Reasoning Identification Test (ERIT) score. The two most severe raters also 

scored near the average ERIT score. Considering the most lenient and most severe raters 

scored similarly on the ERIT, raters’ knowledge of the 8KQs did not provide useful 

information regarding raters’ leniency/severity.  

In this study, 8KQ knowledge was measured via the ERIT. There are concerns 

regarding the validity of ERIT scores as representations of 8KQ knowledge. Though the 

ERIT was the best readily available option for assessing raters’ 8KQ knowledge in this 

study, it is not a perfect assessment and may not be the best measure of raters’ knowledge 

of the 8KQs. Stakeholders plan to revise the assessment to address concerns surrounding 

some of the questions on the ERIT. It may be beneficial to replicate this research question 

in a future study with the revised ERIT.  

General Discussion 

 Benefits of MFRM. To obtain a general picture of rater leniency/severity without 

the use of MFRM, observed score averages or observed sum scores such as those in 

Table 2 may be obtained. When ranked by observed average score, rater leniency/severity 
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rank-ordering just slightly differs from the rank-ordering of raters produced by the 

MFRM analysis. The similarity of rank-ordering of raters by observed scores and 

leniency/severity estimates likely occurred due to the random assignment of essays to 

raters. That is, because raters scored essays of approximately equal quality, their rank-

ordering was the same whether evaluating observed scores or MFRM estimated 

leniency/severity. Consequently, similar interpretations may be drawn about raters’ 

leniency/severity regardless of whether observed scores are used or whether an MFRM 

analysis is conducted. The advantage of MFRM lies in the other information gathered 

from the analysis. 

 For example, rater infit and outfit provide information about the extent to which 

raters’ scores were expected, given the specified MFRM model. Infit/outfit estimates 

specifically may be used in conjunction with raters’ leniency/severity estimates to 

provide additional context for whether researchers choose to remove ratings from 

particular raters who appear problematic. For this study, many raters had values near 

1.00, suggesting they provided scores similar to those expected by the model. Rater three 

approached the upper bounds of acceptable infit/outfit estimates, suggesting rater three 

assigned scores that were unexpected, given the model. Given rater three’s extreme 

leniency compared to other raters, and rater three’s large infit/outfit values, the Madison 

Collaborative may consider whether rater three’s ratings are too different from those 

expected by the model to include in the final ER-WR essay results presented to 

stakeholders.  

 Additionally, MFRM analyses provide researchers with “fair average” scores. The 

fair average scores represent the score a student would have received, had they been 
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evaluated by a rater of average leniency/severity (Eckes, 2015). If rater leniency/severity 

is a concern, students’ observed scores may be replaced by fair average scores to remove 

the leniency/severity effect from the scores. The estimation of fair average scores is an 

advantage of MFRM.  

 An additional benefit of MFRM above other techniques such as g-theory is the 

ability to identify individual raters who may be problematic. G-theory is a common 

technique used to evaluate reliability for performance assessment scores, and variance 

components from g-theory may be useful for determining whether raters differ in their 

leniency/severity. In this study, differences in rater leniency/severity accounted for 

approximately 8% of variability in student scores. Though g-theory results suggest raters 

differ in their leniency/severity, g-theory results cannot be used to identify individual 

raters who may be lenient or severe. G-theory has benefits as a group-level technique, but 

if researchers desire diagnostic information about individual raters, g-theory is not a 

useful technique. When using MFRM, researchers obtain individual rater information, 

which is beneficial if the goal is to identify raters for additional training opportunities or 

adjust scores after analysis.  

Limitations of MFRM. MFRM is a large sample technique. Currently, the 

Madison Collaborative collects several hundred student essays each year, making MFRM 

feasible. However, if researchers do not have the resources to collect and score a large 

sample of essays, MFRM may not be a feasible method for evaluating scores. 

Additionally, MFRM analyses require up-front planning, as raters must each rate a 

common sub-sample of student essays. It is necessary to rate common sub-sample of 

student essays in order to create connected subsets of raters that allow for rater estimates 
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to be compared to one another. A benefit of MFRM is that raters and all other facets are 

placed on a common logit scale. However, this benefit may only be actualized if raters’ 

scores are connected via a common sub-sample of student essays.  

 When essays are rated in such a way that there is a common sub-sample of 

student essays all raters have rated, MFRM is a normative technique. That is, MFRM 

allows for raters to be compared on a common scale. Because of the normative nature of 

MFRM, rater three was found to be more lenient than the average raters in this sample of 

raters. Moreover, rater three applied the score levels differently than the other raters. 

Given this information, it appears as though rater three is a “poor” rater and many other 

raters are “good” raters in this sample of raters. However, the normative nature of MFRM 

raises the question of whether rater three is actually a lenient rater, or if rater three is 

actually rating appropriately based on rubric criteria. MFRM analyses alone cannot 

answer this question; additional information is needed to supplement MFRM results. In 

this study, we have empirical historical information about students’ scores that is helpful 

for interpreting MFRM results. As previously discussed, this empirical information from 

prior years suggests rater three is likely overly lenient and is not rating in accordance 

with the ER-WR rubric criteria. However, researchers may not always be in a position 

where they are privy to previous research or scores. If researchers do not have additional 

information to assist with interpreting information about the ratings, they must always 

keep in mind the limitation of the normative nature of MFRM.  

 Recall, MFRM analyses produced rater leniency/severity estimates that rank-

ordered raters similarly to their observed scores. That is, we come to similar conclusions 

regarding raters’ leniency/severity whether we rank-order raters by their observed scores 
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or their MFRM leniency/severity estimates. As such, if a goal is simply to identify which 

raters are more severe or more lenient compared to other raters, an MFRM analysis may 

not be necessary, assuming essays are randomly assigned and raters are not 

systematically assigned essays of different quality. Conducting MFRM analyses requires 

specialized software (e.g. FACETS; Linacre, 2017b) and knowledge of measurement 

theory to conduct the analysis and evaluate results. Thus, MFRM may not produce 

substantial information about raters’ leniency/severity that cannot already be obtained by 

evaluating raters’ observed scores. Researchers must consider whether the information 

and benefits provided by MFRM (e.g. rater infit/outfit values, fair average scores, ability 

to evaluate all facets on a common logit scale) are worth the purchase of additional 

software and challenges associated with conducting the analysis and interpreting results.  

 ER-WR Rubric “Special Notes”. Prior to data analysis, it was expected that 

scores would violate the local independence assumption necessary for MFRM. This was 

expected due to the “special notes” on the ER-WR rubric that restrict raters’ scores on 

Elements D and E, depending on the scores assigned to Elements C and D. If local 

independence were violated, reliability was expected to be inflated for the five-element 

model and the parameter estimates would differ for Elements A, B, and C across the five- 

and seven-element models. However, reliability and parameter estimates were nearly 

identical regardless of whether the five- or seven-element model was specified (See 

Appendix F). As such, data did not appear to violate local independence. Data may not 

have violated local independence due to the fact that students tend to receive low scores, 

thus voiding the need for the special notes and eliminating score dependencies created by 

the special notes. In the future, researchers may consider evaluating the extent to which 
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data are dependent in a sample of essays that span the ability spectrum. If raters have the 

opportunity to provide higher scores, the special notes may become relevant, thus 

introducing dependencies into ER-WR scores.  

 If the special notes are used and ER-WR scores do violate local independence, it 

is worth considering additional avenues through which the data could be modeled. For 

this study, I intended to model the special notes by creating upper and lower elements for 

Element D and Element E. Though this model should have been adequate for accounting 

for dependencies in the data, it required running the element facet as partial credit to 

handle the differences in score options between the upper and lower elements. Though it 

is easy to specify an element as partial credit in FACETS (Linacre, 2017a), doing so 

creates additional estimation needs and requires a larger sample. Additionally, results 

from partial credit facets may be challenging to interpret, potentially making the results 

inaccessible to those without a measurement background. As such, it may be beneficial 

for researchers to consider other options for accounting for data, such as testlet models or 

Bayesian estimation procedures.   

 In addition to modeling challenges, the special notes anecdotally pose a challenge 

to some raters. Specifically, some raters report disagreement with the special notes or do 

not understand the purpose of the special notes. In effect, some raters have intentionally 

chosen not to use the special notes, thereby failing to adhere to the rubric scoring criteria. 

Moreover, raters may forget to use the special notes. In this study, raters did not adhere to 

the special notes for eight essays, and these essays were removed from the analysis. 

Though lack of adherence to the special notes was only an issue for a few essays, failure 

to adhere to the special notes could drastically alter the average score students receive 
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from both raters, and negatively influence inter-rater reliability. Perhaps additional 

emphasis could be placed on the special notes during training. Or, the Madison 

Collaborative may explore additional methods for reminding raters about the special 

notes, such as verbal reminders during rating, or electronic reminders that are 

intentionally placed during the rating session.  

Implications 

Score adjustment. Results from this study provide evidence that raters were not 

interchangeable, raising concerns about the meaning of ER-WR scores. The next question 

is how to handle scores from raters who stand out as “poor” raters, such as rater three in 

this study. One option is to remove rater three’s scores. Completely removing rater 

three’s scores is not ideal, as rater four is then the only rater who provided scores to the 

student essays assigned to this pair of raters. Rater four is a relatively severe rater who 

differed in his or her leniency/severity across ER-WR rubric elements, so scores from 

rater four also may not be the best representations of students’ ethical reasoning abilities.  

 A preferable option is to use the fair average scores from the MFRM analysis to 

adjust students’ scores. As discussed, the fair average scores are the scores students 

would have received if evaluated by a rater of average leniency/severity. The Madison 

Collaborative could use the fair average scores to adjust students’ scores. An advantage 

of this option is that the rater leniency/severity effect is essentially removed from scores. 

A disadvantage of this approach is that it may be challenging to explain to stakeholders 

that scores were adjusted based on a statistical model. Stakeholders may not buy into the 

idea that scores produced from a statistical model are preferable to the observed scores 

provided by raters. 
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Moreover, adjusting students’ scores may have implications for the inferences 

made from scores. Recall, a university strategic plan goal is that students will achieve an 

average score of two on the ER-WR rubric by 2020. As such, the Madison Collaborative 

annually reports the percent of students who meet the benchmark of an average score of 

two on the rubric. With the observed scores in this study, 5.8% of students met the 

benchmark. However, with the fair average scores, 9.5% of students met the benchmark. 

For the distributions of scores, see Figure 6. Though the distributions of scores did not 

change dramatically, the distribution of fair average scores did shift slightly compared to 

the distribution of observed scores, resulting in more students meeting the benchmark of 

two when the fair average scores are used. Whether the Madison Collaborative chooses to 

maintain the observed scores or replace them with the fair average scores has 

implications for the inferences made regarding the strategic plan goal.  

Additionally, if fair average scores are used, scores are no longer comparable to 

previous years’ scores. If longitudinal data is important for research, researchers must 

consider if and when to begin adjusting students’ scores. If scores are adjusted to account 

for rater leniency/severity, the average score across all essays could potentially differ in a 

meaningful way, making it appear as though students’ abilities for a cohort changed when 

they, in reality, did not. If the Madison Collaborative intends to present trends of scores 

across time in relation to the benchmark of two, they should not adjust scores until after 

2020.   

 Rater training. As discussed, an advantage of MFRM is that it can be used to 

identify individual raters who may need additional training. Specifically, researchers may 

monitor raters during the rating session and use ratings from day one to inform training 
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on day two. Because rating typically occurs over several days, an MFRM analysis could 

be conducted on ratings gathered from the first day to identify raters who are rating 

particularly leniently or severely. Prior to the second day, raters could then receive 

individualized training to direct them toward an average leniency/severity level. A 

disadvantage of this method is that the training could be resource-intensive, particularly if 

individualized training is provided. Moreover, raters may be intimidated by the idea that 

their scores are being evaluated, thereby introducing unexpected central tendency effects 

in order to avoid being identified as a particularly lenient or severe raters. On the other 

hand, using MFRM to identify individual raters could also provide raters with the 

attention that they need to ensure that they closely follow the rubric scoring criteria, 

thereby generating scores that are adequate representations of students’ abilities.  

Conclusion 

 Previous research has documented the challenges related to performance 

assessments, particularly regarding the manner in which raters provide scores to student 

work. This study provides additional evidence for the challenges associated with 

performance assessments, particularly in the assessment of ethical reasoning. 

Specifically, scores were evaluated for rater effects, and results suggest meaningful 

differences in rater leniency/severity. Moreover, results suggest a restriction of range 

effect is present, though restriction of range may be warranted due to restrictions in 

students’ abilities.  The evaluated rater effects are relevant not only to this study, but to 

performance assessments in general.  

 The majority of current rater effects studies provide evidence that raters’ 

leniency/severity differs, but few published studies explore why raters’ leniency/severity 
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differs. Unique to this study was the attempt to determine why raters differed in their 

leniency/severity in the context of ethical reasoning essay assessment. Unfortunately, 

meaningful results were not found, as no relationship between raters’ knowledge of 

ethical reasoning concepts and their leniency/severity was observed for this study. In 

future research, it is recommended that researchers focus on understanding why raters’ 

leniency/severity differs. It is only through exploring the why behind rater effects that 

researchers and assessment professionals may effectively mitigate rater effects in 

performance assessment scores.  

 In addition to evaluating rater effects in the context of ethical reasoning, this study 

provides an example of how many-facets Rasch measurement (MFRM) models may be 

used to evaluate performance assessment scores for rater effects. Though MFRM 

provides benefits above traditional performance assessment methods (e.g. generalizability 

theory, inter-rater reliability indices), MFRM also creates logistical challenges. Most 

notably, MFRM analyses require up-front planning, large sample sizes, and knowledge of 

measurement principles. This study may be useful for researchers and assessment 

professionals to determine whether the benefits of MFRM are worth the additional 

challenges associated with the technique.  
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Table 1 

Rater MSU and MSW Estimates 

Rater MSU MSW 

1 0.81 0.89 

2 0.85 0.94 

3 1.64 1.76 

4 1.32 1.25 

5 1.01 1.27 

6 1.27 1.51 

7 0.67 0.67 

8 0.70 0.71 

9 1.26 1.34 

10 0.89 1.00 

11 1.04 1.04 

12 0.91 1.06 

13 0.95 0.96 

14 1.17 1.14 

15 0.98 1.06 

16 0.85 0.82 

17 0.91 0.93 

18 0.64 0.71 

 Note. MSU = unweighted mean square; MSW = weighted mean square. 
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Table 2 

Rater Leniency/Severity Estimates and Observed Score Descriptive Information 

Rater Total Ratings 

Observed 

Score Sum 

Observed 

Average Score Leniency/Severity SE 

3 260 543.00 2.09 -1.52 0.05 

7 290 456.50 1.58 -1.06 0.05 

8 285 368.50 1.30 -0.62 0.05 

2 285 328.00 1.15 -0.28 0.05 

15 295 359.50 1.22 -0.20 0.05 

16 295 336.00 1.14 -0.07 0.05 

11 260 313.00 1.21 -0.03 0.06 

18 265 305.50 1.16 0.03 0.06 

1 285 273.50 0.96 0.07 0.06 

10 295 275.50 0.94 0.10 0.06 

9 295 273.00 0.93 0.12 0.06 

17 265 290.50 1.10 0.13 0.06 

12 255 268.50 1.06 0.25 0.06 

13 275 334.50 1.22 0.37 0.05 

6 280 268.50 0.96 0.54 0.06 

4 275 210.50 0.77 0.63 0.06 

14 270 267.00 0.99 0.73 0.06 

5 280 231.50 0.83 0.80 0.06 

Note. Observed score sum and observed average score are on the original 0 – 4 scale of 

the ER-WR rubric. Leniency/severity estimates are in logits. SE = standard error. 
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Table 3 

Rater by Element Interaction Results 

 Element A Element B Element C Element D Element E 

Rater Bias SE t Bias SE t Bias SE t Bias SE t Bias SE t 

1 0.30 0.11 2.76 0.07 0.12 0.60 0.01 0.14 0.05 -0.30 0.15 -1.92 -0.41 0.16 -2.55 

2 -0.72 0.11 -6.73 0.34 0.11 3.04 0.32 0.12 2.66 0.17 0.13 1.37 0.11 0.13 0.81 

3 -0.29 0.13 -2.24 -0.92 0.12 -7.80 -0.29 0.12 -2.46 0.53 0.12 4.56 0.91 0.12 7.59 

4 -0.35 0.12 -2.96 0.44 0.13 3.37 0.33 0.15 2.23 -0.35 0.18 -1.99 0.00 0.16 0.03 

5 0.40 0.11 3.78 -0.44 0.15 -2.98 0.19 0.14 1.31 -0.23 0.16 -1.40 -0.32 0.17 -1.92 

6 0.77 0.11 6.91 0.01 0.13 0.07 -0.55 0.16 -3.43 -0.65 0.17 -3.84 -0.35 0.16 -2.22 

7 -0.20 0.11 -1.83 -0.03 0.11 -0.31 0.03 0.11 0.27 0.16 0.11 1.44 0.06 0.11 0.53 

8 0.06 0.11 0.52 -0.04 0.11 -0.34 0.16 0.12 1.38 -0.02 0.13 -0.18 -0.19 0.13 -1.45 

9 0.57 0.11 5.19 -0.21 0.14 -1.53 -0.11 0.15 -0.73 -0.25 0.15 -1.59 -0.51 0.16 -3.11 

10 0.22 0.11 2.07 -0.22 0.14 -1.66 -0.06 0.15 -0.41 -0.06 0.15 -0.39 -0.02 0.15 -0.15 

11 -0.41 0.11 -3.79 0.21 0.12 1.76 0.09 0.13 0.66 0.37 0.13 2.92 -0.11 0.14 -0.78 

12 -0.17 0.11 -1.55 -0.02 0.13 -0.17 0.02 0.14 0.15 0.15 0.14 1.06 0.14 0.14 1.01 

13 -0.01 0.11 -0.06 0.15 0.11 1.32 -0.03 0.13 -0.22 -0.15 0.13 -1.11 -0.01 0.13 -0.11 

14 -0.11 0.11 -0.99 0.17 0.12 1.40 -0.18 0.15 -1.19 0.04 0.14 0.26 0.09 0.14 0.65 

15 0.39 0.11 3.69 -0.19 0.12 -1.67 -0.58 0.14 -4.04 -0.08 0.13 -0.65 0.24 0.12 2.00 

16 -0.04 0.10 -0.41 0.29 0.11 2.75 0.25 0.12 2.03 -0.15 0.14 -1.09 -0.54 0.15 -3.62 

17 -0.49 0.11 -4.65 0.13 0.12 1.09 0.21 0.13 1.60 0.15 0.13 1.15 0.29 0.13 2.22 

18 -0.08 0.10 -0.79 0.15 0.11 1.36 0.10 0.13 0.75 -0.05 0.14 -0.36 -0.13 0.14 -0.95 

Note. Bolded values indicate t-values statistically significant at p < .05. SE = standard error.
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Table 4 

Frequencies of scores provided by raters in each score category 

 Score  

Rater 0 0.5 1 1.5 2 2.5 3 3.5 4 Total 

1 77 81 47 20 21 13 22 1 3 285 

2 53 56 68 39 36 10 12 7 4 285 

3 29 19 33 27 35 24 31 22 40 260 

4 93 86 37 20 18 7 8 2 4 275 

5 102 72 43 12 17 11 18 2 3 280 

6 117 53 32 14 12 5 30 11 6 280 

7 21 31 86 41 32 32 35 7 5 290 

8 52 50 70 23 34 16 25 8 7 285 

9 119 38 60 14 21 9 25 5 4 295 

10 125 35 57 9 28 9 18 2 12 295 

11 31 67 66 22 34 21 14 4 1 260 

12 57 65 57 17 18 21 10 10 0 255 

13 58 60 45 34 21 22 25 7 3 275 

14 72 41 82 16 34 9 13 2 1 270 

15 48 80 81 12 17 9 23 10 15 295 

16 39 78 82 25 30 20 15 3 3 295 

17 25 68 84 39 32 7 6 3 1 265 

18 26 73 88 28 14 13 9 9 5 265 

Total 1144 1053 1118 412 454 258 339 115 117 5010 

Percent 22.83 21.02 22.32 8.22 9.06 5.15 6.77 2.30 2.34  

 Note. Shading represents rater pairs who rated the same essays (i.e. raters 1 and 2 were a 

pair, raters 3 and 4 were a pair, etc.). The total number of ratings varies by raters based on 

if their scores were removed due to “unrateable” essays or if their scores were removed 

due to failure to follow the special notes on the ER-WR rubric.  
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Figure 1. Example data structure with upper and lower elements. “m” indicates missing 

data.  
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+--------------------------------------------------+ 

|Measr|+Student    |-Rater          |-Element|Scale| 

|-----+------------+----------------+--------+-----| 

|   2 +            +                +        + (8) | 

|     | .          |                |        |     | 

|     |            |                |        |     | 

|     |            |                |        | --- | 

|     | .          |                |        |     | 

|     | .          |                |        |     | 

|     |            |                |        |  6  | 

|   1 + .          +                +        +     | 

|     | .          | 5              |        | --- | 

|     | .          | 14             |        |     | 

|     | .          | 4   6          | D  E   |  5  | 

|     | *.         | 13             | C      |     | 

|     | **         | 12             |        | --- | 

|     | ***        | 10  17  9      |        |     | 

*   0 * **         * 1   11  16  18 *        *  4  * 

|     | **.        | 15             | B      | --- | 

|     | *****      | 2              |        |     | 

|     | **.        |                |        |  3  | 

|     | *****.     | 8              |        |     | 

|     | *******.   |                |        | --- | 

|     | *******.   |                |        |     | 

|  -1 + ******.    + 7              +        +  2  | 

|     | ********** |                |        |     | 

|     | ******.    |                |        |     | 

|     | *******.   |                | A      | --- | 

|     | ******.    | 3              |        |     | 

|     | ***.       |                |        |     | 

|     | ****.      |                |        |     | 

|  -2 + ***.       +                +        +  1  | 

|     | ****       |                |        |     | 

|     | **.        |                |        |     | 

|     | *.         |                |        |     | 

|     | *.         |                |        |     | 

|     | **.        |                |        |     | 

|     | **         |                |        | --- | 

|  -3 + **         +                +        +     | 

|     | *.         |                |        |     | 

|     | *.         |                |        |     | 

|     | *          |                |        |     | 

|     | .          |                |        |     | 

|     | .          |                |        |     | 

|     | .          |                |        |     | 

|  -4 + .          +                +        +     | 

|     | .          |                |        |     | 

|     | .          |                |        |     | 

|     |            |                |        |     | 

|     | .          |                |        |     | 

|     |            |                |        |     | 

|     |            |                |        |     | 

|  -5 + ***.       +                +        + (0) | 

|-----+------------+----------------+--------+-----| 

|Measr| * = 4      |-Rater          |-Element|Scale| 

+--------------------------------------------------+ 

Figure 2. Wright Map generated in FACETS (Linacre, 2017b) output. The rater and 

element facets were centered at 0.00; the student facet was free to vary. The student facet 

was oriented positively, such that higher logits represent greater ability than lower logits. 
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The rater and element facets were oriented negatively, such that higher logits represent 

more severe raters and more difficult elements, respectively, compared to lower logits. 
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Figure 3. Confidence intervals for individual raters’ leniency/severity logits. Numbers 

indicate raters. 
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Figure 4. Rater by element interaction bias diagram. Estimates above 2 and below -2 indicate statistically significant t-values. 
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Figure 5. Correlation between raters’ leniency/severity logits and their 8KQ knowledge as measured by the Ethical Reasoning 

Identification Test. Numbers indicate raters. 
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Figure 6. Observed score and MFRM fair average score histograms
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Appendix A 

ER-WR Prompt and Administration Instructions 

 
[Note to proctors: non-lead proctor should pass out the Ethical Reasoning-

WRA handout to students as the lead proctor reads the script (as well as scrap 

paper, if it has not already been passed out). Also, please note that this test 

has two parts, an essay and an additional 5 questions. Students will complete 

the essay together, and then you will instruct them to complete the additional 5 

items. We encourage you to show students how to navigate to the 5 additional 

items using the projector.] 

  
This test is an ethical reasoning assessment. 
 
Often in life, we encounter situations that are complicated. For example, if you 
saw a hungry child steal fruit from a grocery store, you’d likely think of many 
reasons to report the person and many reasons not to do so. The faculty and 
staff at JMU are interested in the ethical reasoning thought process in which 
students engage when confronted with such situations.  
 
For this assessment, please explain a complicated situation with which you are 
very familiar, the ethical thought process you used to address the situation, and 
the decision that was made. 
 
You will have 55 minutes to compose this essay. Your document should be no 
fewer than 250 words. For your convenience, you are given a piece of paper 
that repeats the instructions for this task in more detail. You may refer to this 
piece of paper throughout this assessment. Additionally, you have been 
provided with scrap paper. You can use the scrap paper to outline your ideas, 
brainstorm, or apply any other technique to facilitate your writing. 
 
Please feel free to express whatever opinions you might hold. Your essay will 
NOT be evaluated on what decision was chosen, but rather the clarity and 
complexity of the thought process underlying that decision.  
 
You will be told when there are 10 and 5 minutes remaining. 
 
On the assessment webpage, please click on the link for the ER-WRA 
assessment test.  
 
Please fill in your JACard number at the top. Then select the ER-WRA test 
from the dropdown menu. Then write your first name, last name, and finally 
your JACard number again. Do not insert self-identifying information anywhere 
else on the screen. 
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INSTRUCTIONS CONTINUE ON NEXT PAGE ᐅᐅᐅᐅᐅᐅ 
 
 
Please save the document frequently as you type. In the event the program is 
accidentally closed, open up the assessment again, type in your JACard 
number at the top, and click the "Retrieve" button. 
 
When you have finished, please stay on the essay page and sit quietly until the 
testing time is over. Again, please do NOT close out of this window. 
 
  
Raise your hand if you have any trouble accessing the test.  
 

You may begin. 
 
Remind students when they have 10 and 5 minutes remaining for the 
essay portion of this test. Once 55 minutes have elapsed, please instruct 
students to continue on to the 5 additional test items by reading the 
following aloud:  
 
Thank you for working on this important assessment. Before moving on to the 
next assessment, please be sure to save your document once again by clicking 
the "Save" button. 
 
Once you have saved your document, please click on the link at the bottom of 
the essay page that says “Dosage” in order to complete a few more questions. 
You will have 5 minutes to complete these additional questions. 
 

You may begin. 
 

[See below for a screenshot of where to find this link. If a student 
accidentally closes the essay page window they can still take the 
additional items. Simply have them click on the ER-WRA link from the 
main Assessment Day website to re-open the page. It may be helpful for 
you to show students where the link to the extra items is using the 
classroom projector. Instructions for retrieving essays are also included 
below.] 
 
[Note to proctors: non-lead proctor should collect the ER-WRA handouts from 
the students after they have completed the assessment. Please place all ER-
WRA handouts in the designated envelope within your bin.] 
 



  131 
 

 

Appendix B 

ER-WR Rubric
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Appendix C 

Rating Timeline 

 

Day 1 

8:30am Raters report for breakfast 

9:00am – 11:30am 8KQ Workshop 

11:30am – 12:00pm Raters complete the ERIT 

12:00pm – 12:30pm Lunch  

12:30pm – 2:30pm ER-WR rubric training 

2:30pm – 4:30pm Raters rate 

  

Day 2 

8:30am Raters report for breakfast 

9:00am – 10am ER-WR rubric refresher training 

10:00am – 12:00pm Raters rate  

12:00pm – 12:30pm Lunch 

12:30pm – 4:30pm Raters rate  
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Appendix D 

8KQ synonyms 

Assessment Rubric Examples (8KQ synonyms)    

If the response uses the key term EMPATHY or related terms care, love, feelings or 

provides a rationale involving personal sentiment for other persons or sentient beings, 

award X points.   

If the response uses the key term FAIRNESS or related terms justice, equality, 

balancing all legitimate interests, or provides a rationale involving objective 

consideration of all ethical considerations without discrimination or prejudice, award X 

points.  

If the response uses the key term CHARACTER or related terms integrity, virtue, 

actualized self, ideal self, self-respect, the person that I am or would be, being 

ashamed or unable to live with one’s self, or provides a rationale involving reference to 

themselves, what they believe they are and/or the kind of person they desire to be, award 

X points.   

If the response uses the key term RIGHTS or related terms entitlements, dignity, 

respect-worthy, Bill of Rights, Universal Declaration of Human Rights, or provides a 

rationale involving viewing others as deserving to be treated with respect or reverence, 

award X points.   

If the response uses the key term LIBERTY or related terms freedom, autonomy, 

consent, or provides a rationale involving consideration of the choices, judgments or 

decisions of other persons, award X points.  

If the response uses the key term RESPONSIBILITY or related terms duty, obligation, 

debt, reciprocity, or provides a rationale that refers to what others are owed because they 

are human beings, or promises, or special relationships with the person deciding what to 

do, award X points.  

If the response uses the key term OUTCOMES or related terms results, effects, 

consequences, utility, preferences, happiness, greatest good for the greatest number, 

Karma, or provides a rationale involving reference to some calculation, prediction or 

anticipation about the value of what comes about as a result of one’s choice or action, 

award X points.  

If the response uses the key term AUTHORITY or related terms command, orders, 

legally required, God’s commands or requirements, or provides a rationale involving 

reference to having to do what they are going to do because some other person or 

institution requires it of them, award X points.   

W. J. Hawk   5 December 2012  
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Appendix E 

Equations 

Equation Notation 
Equation 

Number 

MFRM Rating Scale 

Model 
𝑙𝑛

𝑃𝑛𝑖𝑗𝑘

𝑃𝑛𝑖𝑗𝑘−1
=  𝜃𝑛 −  𝛿𝑖 −  𝛼𝑗 −  𝜏𝑘 1 

MFRM Partial Credit 

Model 
𝑙𝑛

𝑃𝑛𝑖𝑗𝑘

𝑃𝑛𝑖𝑗𝑘−1
=  𝜃𝑛 −  𝛿𝑖 −  𝛼𝑗 −  𝜏𝑖𝑗𝑘 2 

MFRM Hybrid Model 𝑙𝑛
𝑃𝑛𝑖𝑗𝑘

𝑃𝑛𝑖𝑗𝑘−1
=  𝜃𝑛 −  𝛿𝑖 −  𝛼𝑗 −  𝜏𝑖𝑘 3 

Fixed-effect Chi-square 𝑥2 =  ∑(𝑤𝑜 ∗ 𝐷𝑜
2) −

(∑ 𝑤𝑜 ∗ 𝐷𝑜)
2

∑ 𝑤𝑜
 4 

True Standard Deviation 𝑆𝐷𝑡
2 =  𝑆𝐷𝑜

2 − 𝑀𝑆𝐸 5 

Separation Ratio 𝐺𝑜 =  √
𝑆𝐷𝑡

2

𝑀𝑆𝐸
 6 

Separation Index 
𝐻𝑜 =  

4√ 𝑆𝐷𝑡
2

𝑀𝑆𝐸 + 1

3
 

7 

Reliability of Separation 𝑅𝑜 =  

𝑆𝐷𝑡
2

𝑀𝑆𝐸

1 +
𝑆𝐷𝑡

2

𝑀𝑆𝐸

 8 

Standardized Residual 𝑍𝑛𝑖𝑗 =
𝑥𝑛𝑖𝑗 −  𝑒𝑛𝑖𝑗

√𝑤𝑛𝑖𝑗

 9 

Expected Rating 𝑒𝑛𝑖𝑗 =  ∑ 𝑘𝑝𝑛𝑖𝑗𝑘

𝑚

𝑘=0

 10 

Model Variance 𝑤𝑛𝑖𝑗 =  ∑(𝑘 − 𝑒𝑛𝑖𝑗)2

𝑚

𝑘=0

𝑝𝑛𝑖𝑗𝑘 11 

Unweighted Mean 

Square/Outfit 𝑀𝑆𝑈𝑗
=

 ∑ ∑ 𝑍𝑛𝑖𝑗
2𝐼

𝑖=1
𝑁
𝑛=1

𝑁𝐼
 12 

Weighted Mean 

Square/Infit 
𝑀𝑆𝑊𝑗

=
 ∑ ∑ 𝑧𝑛𝑖𝑗

2𝐼
𝑖=1

𝑁
𝑛=1 𝑤𝑛𝑖𝑗

∑ ∑ 𝑤𝑛𝑖𝑗
𝐼
𝑖=1

𝑁
𝑛=1

 13 
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95% Confidence Interval Rater logit ± 1.96(𝑆𝐸𝑟𝑎𝑡𝑒𝑟) 14 

MFRM Hybrid Model 

with Rater by Element 

Interaction 

𝑙𝑛
𝑃𝑛𝑖𝑗𝑘

𝑃𝑛𝑖𝑗𝑘−1
=  𝜃𝑛 −  𝛿𝑖 − 𝛼𝑗 − 𝜑𝑖𝑗 −  𝜏𝑖𝑘 15 

Rater by Element Bias 

Parameter 
𝑡𝑖𝑗 =  

�̂�𝑖𝑗

𝑆𝐸𝑖𝑗
 16 
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Appendix F 

Element location and threshold estimate comparisons for five- and seven-element models 

Table F1  

Reliability Estimates for the Five- and Seven-Element Models 

Model Student Reliability of 

Separation 

Rater Reliability of Separation 

Five-element 0.88 0.99 

Seven-element 0.87 0.99 

Note. Five-element model included Elements A, B, C, D, and E. Seven-element model 

included Elements A, B, C, Dlower, Dupper, Elower, and Eupper. 
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Figure F1.  Item location estimates for the five- and seven-element models. 
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Figure F2. Rasch-Andrich threshold estimates for Element A for five- and seven-element 

models  

 



  139 
 

 

 

Figure F3. Rasch-Andrich threshold estimates for Element B for five- and seven-element 

models. 
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Figure F4. Rasch-Andrich threshold estimates for Element C for five- and seven-element 

models. 
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