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1. INTRODUCTION

This material was developed over a number of years of teaching a course en-

titled The Real Number System at James Madison University. The material is

accessible to any student who had a Calculus course in sequences and some

sort of “introduction to proofs” course. Starting with the Peano Axioms (minus

those that essentially state that equality is an equivalence relation and if b is a

natural number and a = b, then a is also a natural number), we construct the

algebraic properties of the natural numbers (N, which includes 0 in this text),

the integers (Z), the rationals (Q), and the reals (R), as well as the notion of order

on these sets.

It is an unusual course, one that is not typically offered to undergraduates.

The material is axiomatic and very linear in nature. But the tools used in the

development of the material provide a concrete introduction to those used in

abstract algebra and real analysis courses and experience has shown that most

students who have taken this course fare better in those subsequent courses

than those who haven’t.

Appendices A-C contain a quick review of the usual introductory topics that

are found in many bridge courses. These chapters can be skimmed or omitted

for more advanced students.

Chapters 2-5 are algebraic in nature. The primary tool of Chapter 2 is in-

duction, while Chapter 3 and Chapter 5 heavily use equivalence relations and

the notion of a well-defined binary operation on a set of equivalence classes.

(The material of Chapter 5 is often covered in the more general case of the con-

struction of a field of quotients of an integral domain in some abstract algebra

courses.) Chapter 4 is, as its title states, a brief introduction to some terms in

the study of rings.

Chapter 6 develops the notion of order of the naturals, integers, and rationals.

This is necessary in order to define the notion of distance between two numbers,

which is required for convergence of sequences. If you are pressed for time, you

might want to omit this section.

Chapters 7-9 are analytic in nature. Quantifiers are used extensively, and

since that seems to be one of the difficulties students have in analysis courses,

these chapters provide a nice foundation for those. The reals are constructed as

equivalence classes of rational Cauchy sequences, and their various properties

follow from those of the rationals.

The amount of material is generally suitable for a semester class.
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2. THE NATURAL NUMBERS

In this section, we construct the set of natural numbers, N, from a set of five

axioms known as the Peano Axioms. The primary tool used is mathematical

induction. Almost all of the material from this point on will probably be new to

the student.

We will start with the fact that equality is an equivalence relation, and use the

symbol “0” and a function, the “successor function” N → N, n 7→ n′. We will call

n′ the successor of n.

The following are the Peano axioms of the natural numbers.

Peano Axioms. (1) 0 is a natural number.

(2) For every natural number n, n′ is a natural number.

(3) For every natural number n, n′ ̸= 0.

(4) If n′ = m′, then n = m.

(5) If T is a set such that

• 0 ∈ T , and

• for every natural number n, if n ∈ T then n′ ∈ T ,

then T contains every natural number.

You should be thinking that n′ = n + 1, but we can’t say that now because

we don’t know how to add. Notice the last axiom is a version of the induction

principle, which you have certainly seen before:

Principle of Mathematical Induction. For each natural number n, let P (n) be

a proposition about n. Assume:

(1) P (0) is true.

(2) Whenever P (n) is true, it follows that P (n′) is true.

Then P (n) is true for all natural numbers n.

The first part is the base, while the second is the inductive step. We will also

use this (Peano Axiom 5 or the Principle of Mathematical Induction) to define

various things “inductively.” We’ll refer to this principle as PMI.
Our goal is to show that the set of natural numbers, {0, 1, 2, 3, . . . }, including

its algebraic structure (addition, multiplication, etc.) can be deduced solely from

these axioms.

Notice that Peano Axiom 3 states 0 is not a successor of anything. The next

result shows that 0 is the only non-successor.

Theorem 2.1. If a ̸= 0, then there exists b such that a = b′.
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Proof. Let M = {0} ∪ {x | ∃b such that x = b′}. (In other words, M consists of 0

together with the elements that are successors of something.)

Let P (n) be the statement “n ∈ M .” By definition, 0 ∈ M , so P (0) is true. Sup-

pose P (n) is true, i.e., n ∈ M . We need to show P (n′) is true, i.e., n′ ∈ M . Since

n ∈ M , either n = 0 or ∃b such that n = b′. So either n′ = 0′ or n′ = (b′)′. In either

case, n′ is a successor, so n′ ∈ M . (Or, put another way, n′ is the successor of ...

n.) Thus P (n′) is true. Thus by Peano Axiom 5, M = N.

Since every a ̸= 0 must be an element of the second set in the definition of M ,

namely {x | ∃b such that x = b′}, it follows that every nonzero natural number is

a successor. □

We now define the binary operation of addition on N inductively.

Definition 2.1. Let a and b be natural numbers. The sum a + b of a and b is

defined inductively as:

(1) a+ 0 = a, and

(2) a+ b′ = (a+ b)′.

From this definition alone, we can use induction to prove the following familiar

properties of addition.

Notice the form of Definition 2.1. Part (1) defines addition by 0, while part

(2) defines addition of a by the successor of b in terms of the successor of the

natural number a + b, which is already defined. The right hand side of each of

these equations is known, and we use those to define the left hand side of the

equations.

Theorem 2.2. Let a, b, and c be natural numbers. Then

(1) 0 + b = b.
(2) a+ (b+ c) = (a+ b) + c.
(3) a+ b = b+ a.
(4) If a+ c = b+ c, then a = b.
(5) If a+ b = 0, then a = b = 0.

Definition 2.1 (1) and Theorem 2.2 (1) show that 0 is a 2-sided identity under

addition. Theorem 2.2 (2) is the associative law of addition. Theorem 2.2 (3) is

the commutative law of addition. Theorem 2.2 (4) is the right cancelation law.

Proof. Parts (1) and (4) are left as exercises.

(2) Induct on c.

Let P (n) be the statement, “a+ (b+ n) = (a+ b) + n.”
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Base.

a+ (b+ 0) = a+ b Definition 2.1 (1)
= (a+ b) + 0 Definition 2.1 (1)

So P (0) is true.

Inductive Step. Assume P (n) is true, i.e., a + (b + n) = (a + b) + n. We

must prove P (n′) is true, i.e., a+ (b+ n′) = (a+ b) + n′. But

a+ (b+ n′) = a+ (b+ n)′ Definition 2.1 (2)
= (a+ (b+ n))′ Definition 2.1 (2)
= ((a+ b) + n)′ Inductive Hypothesis
= (a+ b) + n′ Definition 2.1 (2).

Thus P (n′) is true.

It follows by PMI that P (n) is true for all natural numbers n.

(3) This is a bit tricky since there is nothing in the definition of addition that

allows us to reverse the order of the elements. It really requires “double

induction.” The first of these induction proofs we will form as a lemma.

Lemma. a′ + b = a+ b′.

Proof. Induct on b. Let P (n) be the statement “a′ + n = a+ n′.”

Base.
a′ + 0 = a′ Definition 2.1 (1)

= (a+ 0)′ Definition 2.1 (1)
= a+ 0′ Definition 2.1 (2)

Thus P (0) is true.

Inductive Step. Assume P (n) is true, i.e., a′ + n = a + n′. We must

prove P (n′) is true, i.e., a′ + n′ = a+ n′′. But

a′ + n′ = (a′ + n)′ Definition 2.1 (2)
= (a+ n′)′ Inductive Hypothesis
= a+ n′′ Definition 2.1 (2).

Thus P (n′) is true.

It follows by PMI that P (n) is true for all natural numbers n.

□

Now we are in a position to prove a+ b = b+a by inducting on a. Let Q(n)

be the statement “n+ b = b+ n.”

Base.
0 + b = b Theorem 2.2 (1)

= b+ 0 Definition 2.1 (1).

Thus Q(0) is true.
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Inductive Step. Assume Q(n) is true, i.e., n+ b = b+n. We must prove

Q(n′) is true, i.e., n′ + b = b+ n′. But

n′ + b = n+ b′ Lemma
= (n+ b)′ Definition 2.1 (2)
= (b+ n)′ Inductive Hypothesis
= b+ n′ Definition 2.1 (2).

Thus Q(n′) is true.

It follows by PMI that Q(n) is true for all natural numbers n.

(5) Assume a+ b = 0.

Suppose a ̸= 0. Then by Theorem 2.1, there exists c such that a = c′.

Hence
0 = a+ b Hypothesis

= c′ + b Above
= b+ c′ Theorem 2.2 (3)
= (b+ c)′ Definition 2.1 (2),

which contradicts Peano Axiom 3 (0 is not a successor). So a = 0.

Thus if a + b = 0, we have 0 + b = 0. But, by Theorem 2.2 (1), we know

0 + b = b. So b = 0.

Hence a = b = 0.

□

Now we need an inductive definition for the binary operation of multiplication

on N.

Definition 2.2. Let a and b be natural numbers. The product ab (or a · b) of a and

b is defined inductively as:

(1) a · 0 = 0, and

(2) a · b′ = ab+ a.

As before, we will use this inductive definition of the product of two natural

numbers to prove some familiar properties.

Theorem 2.3. Let a, b, and c be natural numbers. Then

(1) 0 · b = 0.
(2) a(b+ c) = ab+ ac.
(3) a(bc) = (ab)c.
(4) ab = ba.
(5) If ab = 0, then a = 0 or b = 0.



8 LEONARD VAN WYK

(6) If ac = bc and c ̸= 0, then a = b.

Definition 2.2 (1) and Theorem 2.3 (1) show that 0 is a 2-sided zero for multi-

plication. Theorem 2.3 (2) is the left distributive law of multiplication over addi-

tion. Theorem 2.3 (3) is the associative law of multiplication. Theorem 2.3 (4) is

the commutative law of multiplication. Theorem 2.3 (6) is the right cancelation
law for multiplication.

Proof. Parts (1), (2), and (5) are left as exercises.

(3) Induct on c.

Let P (n) be the statement, “a(bn) = (ab)n.”

Base.

a(b · 0) = a · 0 Definition 2.2 (1)
= 0 Definition 2.2 (1)
= (ab) · 0 Definition 2.2 (1).

So P (0) is true.

Inductive Step. Assume P (n) is true, i.e., a(bn) = (ab)n. We must

prove P (n′) is true, i.e., a(bn′) = (ab)n′. But

a(bn′) = a(bn+ b) Definition 2.2 (2)
= a(bn) + ab Theorem 2.3 (2)
= (ab)n+ ab Inductive Hypothesis
= (ab)n′ Definition 2.2 (2)

Thus P (n′) is true.

It follows by PMI that P (n) is true for all natural numbers n.

(4) As with addition, the commutative property is a tough one to prove. We

need a lemma.

Lemma. a′b = ab+ b.

Proof. Induct on b. Let P (n) be the statement “a′n = an+ n.”

Base.

a′ · 0 = 0 Definition 2.2 (1)
= 0 + 0 Definition 2.1 (1)
= a · 0 + 0 Definition 2.2 (1)

Thus P (0) is true.
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Inductive Step. Assume P (n) is true, i.e., a′n = an+n. We must prove

P (n′) is true, i.e., a′n′ = an′ + n′. But

a′n′ = a′n+ a′ Definition 2.2 (2)
= (an+ n) + a′ Inductive Hypothesis
= an+ (n+ a′) Associative Law of Addition
= an+ (n′ + a) Lemma from Theorem 2.2 (3)
= (an+ a) + n′ Associative and Commutative Laws of Addition
= an′ + n′ Definition 2.2 (2).

Thus P (n′) is true.

It follows by PMI that P (n) is true for all natural numbers n.

□

Now we are in a position to prove ab = ba by inducting on a. Let Q(n) be

the statement “nb = bn.”

Base.
0 · b = 0 Theorem 2.3 (1)

= b · 0 Definition 2.2 (1).

Thus Q(0) is true.

Inductive Step. Assume Q(n) is true, i.e., nb = bn. We must prove

Q(n′) is true, i.e., n′b = bn′. But

n′b = nb+ b Lemma
= bn+ b Inductive Hypothesis
= bn′ Definition 2.2 (2).

Thus Q(n′) is true.

It follows by PMI that Q(n) is true for all natural numbers n.

(6) We will induct on b, which is certainly not an obvious choice.

Let P (n) be the statement, “If ac = nc and c ̸= 0, then a = n.”

Base.

ac = 0 · c and c ̸= 0 ⇒ ac = 0 and c ̸= 0 Theorem 2.3 (1)
⇒ (a = 0 or c = 0) and c ̸= 0 Theorem 2.3 (5)
⇒ a = 0 [(p ∨ q)∧ ∼ q] ⇒ p.

So P (0) is true.

Inductive Step. Assume P (n) is true. We must prove P (n′) is true,

i.e., If ac = n′c and c ̸= 0, then a = n′. So assume ac = n′c and c ̸= 0.

By Peano Axiom 3, we know n′ ̸= 0. Since c ̸= 0, it follows from the

contrapositive of Theorem 2.3 (5) that n′c ̸= 0. But since ac = n′c, it

then follows that ac ̸= 0. Thus, since c ̸= 0, we must have a ̸= 0 too.

So, by Theorem 2.1, there exists x such that a = x′.
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Okay, now we’re ready to finish this off.

ac = n′c and c ̸= 0 ⇒ x′c = n′c and c ̸= 0 (a = x′)
⇒ xc+ c = nc+ c and c ̸= 0 Lemma from Theorem 2.3 (4)
⇒ xc = nc and c ̸= 0 Theorem 2.2 (4)
⇒ x = n Inductive Hypothesis
⇒ x′ = n′ It′s the successor function
⇒ a = n′ (a = x′).

Thus P (n′) is true.

It follows by PMI that P (n) is true for all natural numbers n.

□

We need a multiplicative identity. Let’s call it ... 1.

Definition 2.3. 1 = 0′.

Note that by Peano Axiom (3), 0′ ̸= 0, so 1 ̸= 0.

Theorem 2.4. Let a and b be natural numbers. Then

(1) 1 · b = b · 1 = b.
(2) a′ = a+ 1.
(3) If ab = 1, then a = b = 1.

Proof. Parts (1) and (2) are left as exercises.

(3) Assume ab = 1. Then a ̸= 0 by Theorem 2.3 (1) and similarly, b ̸= 0 by

Theorem 2.3 (4), for otherwise ab = 0. Thus there are natural numbers c

and d so that a = c′ and b = d′. By (2), 1 = ab = c′d′ = (c+ 1)(d+ 1).

The distributive laws and commutativity of multiplication proven in The-

orem 2.3 allow us to “foil” the product (c+1)(d+1), yielding dc+d+c+1 = 1.

Theorem 2.2 (4) then yields dc+ d+ c = 0, so d(c+ 1) + c = 0. So from Theo-

rem 2.2 (5) we have d(c+ 1) = c = 0.

Since c = 0 and a = c′, a = 1. Thus 1 = ab = 1 · b = b also, by Theo-

rem 2.4 (1).

□

Theorem 2.4 (1) states that 1 is a two-sided identity under multiplication.

Problems. 1. Prove Theorem 2.2 (1) by inducting on b.

2. Prove Theorem 2.2 (4) by inducting on c.
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3. Prove Theorem 2.3 (1) by inducting on b.

4. Prove Theorem 2.3 (2) by inducting on c.

5. Prove Theorem 2.3 (5). This does not require induction. Use Problem 4 of

Section A, Theorem 2.1, and Theorem 2.2 (5).

6. Prove Theorem 2.4 (1). (Use Definition 2.2 (2) to show b · 0′ = b.)

7. Use Theorem 2.4 (1) to prove Theorem 2.4 (2). (Use Definition 2.1 (2) to com-

pute a+ 0′.)



12 LEONARD VAN WYK

3. THE INTEGERS

In this chapter, we axiomatically construct the set of integers, Z, starting with

the elements of N. To do this rigorously, we will introduce an equivalence relation

on N × N, ordered pairs of natural numbers. Addition and multiplication will be

defined on these equivalence classes in a way that uses the same operation on N;

the most difficult part of the chapter involves showing our proposed definitions of

addition and multiplication on these equivalence classes are “well-defined.” Once

this is done, the algebraic properties of Z will follow from the algebraic properties

of N.

Definition 3.1. Let (a, b), (c, d) ∈ N× N. Define (a, b)
Z∼ (c, d) provided a+ d = b+ c.

Theorem 3.1. The relation Z∼ in Definition 3.1 is an equivalence relation on N× N.

Proof. Exercise. □

For example, (5, 3)
Z∼ (3, 1) and (5, 11)

Z∼ (1, 7). (You should be thinking a − b

when you see (a, b).) Notice that in the first example, the difference between each

first component and second component is +2, while in the second example, the

difference between each first component and second component is −6. This is

how we construct the integers.

Definition 3.2. The set of equivalence classes in Definition 3.1 is the set of

integers, denoted Z.

Consider the equivalence class

[(5, 3)] = {(2, 0), (3, 1), (4, 2), (5, 3), (6, 4), . . . }.

We identify this with the integer 2. Similarly, we identify the equivalence class

[(5, 11)] with the integer −6.

Now that we have a formal definition of Z, we want to be able to verify that

the usual operations of addition and multiplication hold. The problem is that

we are now trying to add/multiply entire sets (the equivalence classes), and we

want to somehow use the numbers in the ordered pairs in those sets to do this.

Since each set contains infinitely many ordered pairs, we must make a choice of

some sort, and if our binary operations are to be “well-defined,” we have to get

the same result no matter which ordered pair we choose.

Recall that the following are equivalent (TFAE):

• x = [(a, b)]

• (a, b) ∈ x
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• (a, b) is a representative of x

We would now like to define addition on this set of equivalence classes, Z, that

coincides with our experience with addition of integers. To that end, assume (a, b)

is a representative of the integer x and (c, d) is a representative of the integer y.

We want to compute x + y by adding these representatives, thinking of (a, b) as

a−b, etc., to see what definition we should establish for addition. To compute the

sum x+y, we use (a, b)+(c, d), which we think of as (a−b)+(c−d), or equivalently,

(a+ c)− (b+ d), which is the representative (a+ c, b+ d).

So we hope to define [(a, b)] + [(c, d)] to be [(a + c, b + d)]. But first we have to

make sure that choosing different representatives from the equivalence classes

[(a, b)] and [(c, d)] doesn’t change the equivalence class of the sum. The following

theorem does just that: it shows that NO MATTER WHICH REPRESENTATIVE OR-

DERED PAIRS WE CHOOSE FROM EACH EQUIVALENCE CLASS, THE RESULTING SUMS

ARE ALL IN THE SAME EQUIVALENCE CLASS.

Theorem 3.2. Assume (a1, b1)
Z∼ (a2, b2) and (c1, d1)

Z∼ (c2, d2), where each component
is a natural number. Then (a1 + c1, b1 + d1)

Z∼ (a2 + c2, b2 + d2).

Proof. Exercise. □

You will see something similar to Theorem 3.2 every time you try to extend a

binary operation to a set of equivalence classes of elements that already have

a binary operation · defined on them. Basically, you are trying to show the

operation

[x]⊙ [y] = [x · y]

makes sense, i.e., is independent of the choice of representative from [x] and [y].

Notice that on left side of this equation, we are performing the operation ⊙ on

two sets, while on the right side of the equation, we are performing the operation

· on two elements of those sets.

Anyway, we can now define addition of integers:

Definition 3.3. Let [(a, b)], [(c, d)] ∈ Z. Then their sum is

[(a, b)] + [(c, d)] = [(a+ c, b+ d)].

Note that each integer x ∈ Z is an equivalence class x = [(a, b)], for some a, b ∈ N.

We will need to use this fact and Definition 3.3 to prove various properties of

addition of integers.

Definition 3.4. Let 0Z = [(0, 0)].
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By the definition of Z∼, ∀n ∈ N, [(n, n)] = [(0, 0)] = 0Z.

Theorem 3.3. (1) For each a, b ∈ Z, a+ b = b+ a.
(2) For each a, b, c ∈ Z, a+ (b+ c) = (a+ b) + c.
(3) For each a ∈ Z, a+ 0Z = a.
(4) For each a ∈ Z, there exists b ∈ Z such that a+ b = 0Z.

Theorem 3.3 (1) and Theorem 3.3 (2) show is the commutative and associative

laws of addition extend to Z. Theorem 3.3 (3) shows Z contains an additive

identity, and Theorem 3.3 (4) shows that every element of Z has an additive

inverse.

Proof. Parts (2) and (4) are left as exercises.

(1) Let a = [(m,n)] and b = [(k, l)]. Then

a+ b = [(m,n)] + [(k, l)]
= [(m+ k, n+ l)] Definition of addition
= [(k +m, l + n)] Commutativity of addition of naturals
= [(k, l)] + [(m,n)] Definition of addition
= b+ a.

(3) Let a = [(m,n)]. Then

a+ 0Z = [(m,n)] + [(0, 0)]
= [(m+ 0, n+ 0)] Definition of addition
= [(m,n)]
= a.

□

The element b in Theorem 3.3 (4) is unique, for if a + b = a + b = 0Z, then

b = 0Z + b = (b+ a) + b = b+ (a+ b) = b+ 0Z = b. Following convention, we’ll denote

the additive inverse of the integer a by −a.

As we did with addition, we would now like to define multiplication on the

set of equivalence classes, Z, that coincides with our experience. To that end,

assume (a, b) is a representative of the integer x and (c, d) is a representative of the

integer y. We want to compute xy by multiplying these representatives, thinking

of (a, b) as a− b, etc., to see what definition we should establish. To compute the

product xy, we use (a, b) · (c, d), which we think of as (a− b) · (c−d), or equivalently,

ac− ad− bc+ bd = (ac+ bd)− (ad+ bc), which is the representative (ac+ bd, ad+ bc).
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So we hope to define [(a, b)] · [(c, d)] to be [(ac + bd, ad + bc)]. But, as before, we

first have to make sure that choosing different representatives from the equiva-

lence classes doesn’t change the product. The following theorem does just that:

it shows that WE GET THE SAME PRODUCT NO MATTER WHICH REPRESENTATIVE

ORDERED PAIR WE CHOOSE FROM EACH EQUIVALENCE CLASS.

Theorem 3.4. Assume (a1, b1)
Z∼ (a2, b2) and (c1, d1)

Z∼ (c2, d2), where each component
is a natural number. Then (a1c1 + b1d1, a1d1 + b1c1)

Z∼ (a2c2 + b2d2, a2d2 + b2c2).

Proof. By hypothesis, we know

a1 + b2 = b1 + a2 and

c1 + d2 = d1 + c2.

We want to show

(a1c1 + b1d1) + (a2d2 + b2c2) = (a1d1 + b1c1) + (a2c2 + b2d2).

Since neither side of this equation has any common terms that could be fac-

tored, in order to use the equations we know, we must add additional terms.

Fortunately, we have the various laws of addition and multiplication of natu-

ral numbers at our disposal (associativity, commutativity, the distributive laws),

and we will use those freely.

To that end, we take the first term of the left-hand side of the equation we want

and add a couple of terms to it:

(a1c1 + b1d1) + [(b2c1 + a2d1)] = c1(a1 + b2) + d1(b1 + a2)

= c1(b1 + a2) + d1(a1 + b2)

= (b1c1 + a1d1) + {(a2c1 + b2d1)}.

Then, we take the second term on the left-hand side of the equation, and add

the last term above to it:

(a2d2 + b2c2) + {(a2c1 + b2d1)} = a2(c1 + d2) + b2(c2 + d1)

= a2(c2 + d1) + b2(c1 + d2)

= (a2c2 + b2d2) + [(b2c1 + a2d1)].

Adding these two equations together yields1

(a1c1 + b1d1) + (a2d2 + b2c2) + [ ] + { } = (a1d1 + b1c1) + (a2c2 + b2d2) + [ ] + { }.

Canceling [ ] + { } from both sides, using Theorem 4.2(4), yields the desired

equation. □

1Here [ ] = [(b2c1 + a2d1)] and { } = {(a2c1 + b2d1)}.
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So we can now define multiplication of integers:

Definition 3.5. Let [(a, b)], [(c, d)] ∈ Z. Then their product is

[(a, b)] · [(c, d)] = [(ac+ bd, ad+ bc)].

As with addition, since multiplication is defined by choosing any representative

ordered pair from our equivalence class, proving the following theorem is very

straightforward.

Theorem 3.5. (1) For each a, b ∈ Z, ab = ba.
(2) For each a, b, c ∈ Z, a(bc) = (ab)c.
(3) For each a, b, c ∈ Z, a(b+ c) = ab+ ac.

This theorem shows the various multiplicative properties (commutativity, as-

sociativity, left distributive law) on N from Theorem 2.3 extend to Z. The proof of

each part is similar to those in Theorem 3.3: pick ordered pairs for each equiva-

lence class (i.e., element of Z) and use the appropriate definitions/properties to

derive the desired result.

Proof. Parts (2) and (3) are left as exercises.

(1) Let a = [(m,n)] and b = [(k, l)]. Then

ab = [(mk + nl,ml + nk)] Definition of multiplication
= [(km+ ln, kn+ lm)] Commutativity laws of naturals
= ba Definition of multiplication.

□

In light of the various theorems in this section, and using the function ϕ in

Problem 9, we may identify every natural number n with the integer [(n, 0)] and

consider the set of integers as a superset of the set of natural numbers. Every in-

teger is either a natural number or the additive inverse of a natural number, with

the familiar algebraic structure given by the rules of addition and multiplication

we learned as children.

The only property of the integers which we still haven’t developed is that of

order; that will come in a later section.

Problems. 1. Prove Theorem 3.1.
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2. Draw a section of the lattice points of N × N in the Cartesian plane. Connect

points that are equivalent under the relation Z∼ of Definition 3.1. Show that

each equivalence class is identified with the integer that is the x-intercept of

the line you get.

3. Prove Theorem 3.2.

4. Prove Theorem 3.3 (2).

5. Prove Theorem 3.3 (4).

6. Prove Theorem 3.5 (2).

7. Prove Theorem 3.5 (3).

8. Prove 1Z = [(1, 0)] is a multiplicative identity for Z, i.e., ∀a ∈ Z, a · 1Z = 1Z · a = a.

9. Define the function ϕ : N → Z by ϕ(n) = [(n, 0)].

(a) Prove ϕ is an injection.

(b) Figure out what ϕ has to do with Problem 2.

(c) Prove ϕ(m + n) = ϕ(m) + ϕ(n) and ϕ(mn) = ϕ(m)ϕ(n). (So ϕ sends the

sum/product of m and n to the sum/product of ϕ(m) and ϕ(n).)

10. Let m,n, k, l, r ∈ N. Prove

[(m,n)] · [(k, l)] = [(k, l)] · [(m+ r, n+ r)].
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4. A BRIEF INTRODUCTION TO RINGS

In this chapter, we generalize some of the algebraic properties of the integers

to sets with two binary operations, similar to addition and multiplication of in-

tegers. The benefit of doing this is that any result we can prove from our basic

assumptions will apply to all such algebraic structures. This chapter provides a

taste of the type of material covered in an “abstract algebra” course.

Let’s look at what we developed in the last chapter. We built a set, Z, with two

binary operations defined on it, + and ·, that satisfied some properties (among

others):

(1) + was associative.

(2) + had an identity, namely 0.

(3) Every element n ∈ Z had an inverse under +, namely −n.

(4) + was commutative.

(5) · was associative.

(6) · distributed over + from both the left and the right2.

This brings up an obvious question: what can be said about every set with

two binary operations that possesses these same properties? And, what other

such sets are there? The answer to both questions is, “lots,” and such objects

are called rings.

Definition 4.1. A ring is a nonempty set R with two binary operations (usually

denoted + and ·) such that

(1) + is associative.

(2) + has an identity element (usually denoted 0).

(3) Every element of a ∈ R has an inverse under + (usually denoted −a).
(4) + is commutative.

(5) · is associative.

(6) For all a, b, c ∈ R, a(b+ c) = ab+ ac and (a+ b)c = ac+ bc.

If, in addition,

(7) · is commutative,

then R is a commutative ring. If (1) – (6) hold and

(8) · has an identity (usually denoted 1),

2That is, a · (b+ c) = ab+ ac and (a+ b) · c = ac+ bc are the two distributive laws of multiplication
over addition. An interesting exercise is to write the (false) distributive laws of addition over
multiplication.
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then R is a ring with 1 or ring with unity. If all of the above hold, then R is a

commutative ring with unity.

We saw in the last chapter that Z under the usual operations forms a commu-

tative ring with unity. If you take a course in abstract algebra, you will see many

examples of various types of rings, but you all have some experience with one

example: matrices.

Let’s restrict our attention to the set of 2 × 2 matrices under the usual matrix

addition (component-wise) and multiplication (“row times column”). The type of

ring we get depends on the set of entries; in general, the set of 2×2 matrices with

entries in the ring R is denoted by M2(R).

Example 4.1. If R is the set of real numbers (whatever they are), then M2(R) is a

noncommutative ring with unity, as you probably learned if you had any linear

algebra. All of the required properties using only addition are easy to show.

Proving matrix multiplication is associative is somewhat tedious, but it is true

nonetheless. The zero matrix,
(
0 0
0 0

)
, serves as the additive identity, and the

identity matrix,
(
1 0
0 1

)
, serves as the multiplicative identity (hence its name).

Showing matrix multiplication is not commutative is an easy exercise; just pick

two matrices at random and they probably won’t commute.

But there is something else about matrix multiplication that we haven’t seen

with our sets of numbers. For example,(
0 2
0 0

)(
3 0
0 0

)
=

(
0 0
0 0

)
In other words, the product of those two nonzero matrices equals the zero matrix

(the additive identity). It’s easy to construct other such examples. This phenom-

enon has a name.

Definition 4.2. A nonzero element a ∈ R is called a zero divisor if there exists a

nonzero element b ∈ R such that ab = 0.

Hopefully your experience tells you that the set of integers does not have any

zero divisors. The next theorem proves it.

Theorem 4.1. The set of integers under + and · has no zero divisors.
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Proof. Let a, b ∈ Z. Assume ab = 0Z and a ̸= 0Z. We must show b = 0Z. (See

Problem 4 of Section A3.)

Let a = [(m,n)] and let b = [(k, l)]. By definition of multiplication, ab = [(m,n)][(k, l)] =

[(mk + nl,ml + nk)]. Since ab = 0Z and the zero element of Z is the equivalence

class of ordered pairs whose first and second components are equal, we must

have mk + nl = ml + nk. Also, since a ̸= 0Z, we must have m ̸= n. So, using a

notion fully developed in Chapter 6, either m > n or m < n.

By the symmetry of the equation mk+nl = ml+nk, there is no loss of generality

to assume m > n. Thus there exists a nonzero natural number i such that

m = n+ i. But then we have (n+ i)k + nl = (n+ i)l+ nk, from which it follows that

ik = il, so k = l. Since b = [(k, l)], we must have b = 0Z. □

So the set of integers under the usual operations is a commutative ring with

unity that has no zero divisors. There is a name for such a thing.

Definition 4.3. An integral domain is a commutative ring with unity which has

no zero divisors.4

So the the ring of integers is an example of an integral domain.

At the beginning of this section, we asked what could be said about an arbi-

trary ring. Below are some properties that must hold for every ring, no matter

how bizarre it is. Recall that −a denotes the additive inverse of a, and 0 denotes

the additive identity in R.

Theorem 4.2. Let R be a ring. Then

(1) ∀a ∈ R, 0 · a = a · 0 = 0.
(2) ∀a, b ∈ R, a(−b) = −ab = (−a)b.
(3) ∀a, b ∈ R, (−a)(−b) = ab.

Proof. Part (1) is left as an exercise.

(2) There are two things to prove here: that both a(−b) and (−a)b equal −ab,
i.e., both are the additive inverse of ab. In order to show that x is the

additive inverse of ab, you must simply show x+ ab = 0.

To that end, a(−b) + ab = a(−b + b) = a(0) = 0. Similarly, (−a)b + ab = 0.

So, by definition, a(−b) = −ab and (−a)b = −ab.

3We are really proving “If ab = 0Z, then a = 0Z or b = 0Z.” This is logically equivalent to “If ab = 0Z
and a ̸= 0Z, then b = 0Z”.

4There is an additional technical assumption that 1 ̸= 0.
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(3) By part 2, (−a)(−b) = −(−a)b. By part 2 again, −(−a)b = −(−ab). But since

ab is the additive inverse of −ab, −(−ab) = ab. Thus (−a)(−b) = ab.

□

Every ring R has an additive identity, denoted 0, and every element a ∈ R has

an additive inverse, denoted −a, that satisfies a + (−a) = 0. If a ring has unity,

then it has a multiplicative identity, denoted 1. In this case, an element a ∈ R

might have a multiplicative inverse, that is, an element b ∈ R that satisfies

ab = ba = 1.

In the ring of integers, Z, the element 5 does not have a multiplicative inverse

in Z, since there is no integer n so that 5n = 1Z. In the next section, we will

enlarge the set of integers to include multiplicative inverses of nonzero integers,

resulting in the set of rationals.

Problems. 1. (This problem requires some linear algebra.) Recall M2(R) is the

set of 2× 2 matrices with real entries.

(a) Prove multiplication in M2(R) is not commutative.

(b) Which elements in M2(R) have multiplicative inverses?

2. Let 2Z denote the set of even integers. Show 2Z, under the usual operations

of addition and multiplication, is a commutative ring without unity.

3. (This problem requires some linear algebra.) Let 2Z denote the set of even

integers. You can assume M2(2Z) is a ring. Prove it is noncommutative without

unity.

4. Prove Theorem 4.2 (1) by using the distributive laws. Here is how to start:

0 · a+ 0 · a = (0 + 0) · a.
5. The set of polynomials in x with real coefficients forms a ring under the usual

operations of addition and multiplication of functions:

(f + g)(x) = f(x) + g(x)

(fg)(x) = f(x)g(x).

What is the additive identity of this ring? Does this ring have unity?

6. Let Z6 be the set {0, 1, 2, 3, 4, 5} with addition and multiplication given by the

tables below:
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+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

· 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

(a) Is there an additive identity?

(b) Which elements have additive inverses?

(c) Is there a multiplicative identity?

(d) Are there any zero-divisors?

7. Let X = {a, b}. Then P(X) is almost a ring, where the product of two subsets

A,B ⊆ X is computed as A ∩B and the sum of A and B is computed as A ∪B.

(a) If U, V,W ⊆ X, write out the left distributive law.

(b) Create tables for addition and multiplication, as in Problem 6.

(c) Is there an additive identity?

(d) Is there a multiplicative identity?

(e) Which elements have additive inverses?

(f) Which elements have multiplicative inverses?

8. What must be true about the ring R if (a+ b)2 = a2 + 2ab+ b2 always holds5?

9. Prove you can cancel in an integral domain, i.e., if ax = ay and a ̸= 0, then

x = y. Why do you need to be in an integral domain to do this? Give an

example from Problem 6 of three nonzero elements a, x, and y so that ax = ay

but x ̸= y.

A monoid is a set M with a binary operation ∗ that satisfies:

• ∗ is associative, that is, ∀a, b, c ∈M , a ∗ (b ∗ c) = (a ∗ b) ∗ c, and

• M has an identity element, e, such that ∀a ∈M , e ∗a = a ∗ e =
a.

So N under + is a monoid with identity 0. (For those of you who have had

some group theory, a monoid is like a group without the requirement that all

elements have inverses.) To answer Problems 1-5, if the binary operation is

not associative, then it is not a monoid. If it is associative, show it has or

doesn’t have an identity element. For associativity, you can appeal to things

5Here 2ab = ab+ ab.
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you already know, like addition and multiplication of any numbers is associa-

tive.

10. Let M2(R) be the set of all 2× 2 matrices with real entries. Either show this is

a monoid under matrix multiplication6 or show it isn’t.

11. Let X be a nonempty set. Either show the set of all functions X → X under

function composition ((f ◦ g)(x) = f(g(x))) is a monoid or show it isn’t.

12. Let Z+ be the set of positive integers. Either show Z+ under multiplication is

a monoid or show it isn’t.

13. Let X be a nonempty set. Either show the power set of X, P(X), under
⋂

is a

monoid or show it isn’t.

14. On the set Z of integers. Define a ∗ b as ab. Either show Z with this binary

operation is a monoid or show it isn’t.

15. Let M be a monoid under ∗ and let a ∈ M . If M is finite, prove ∃m,n ∈ Z+,

m ̸= n, such that am = an. (Here am = a ∗ a ∗ a ∗ · · · ∗ a (m times).)

6This is how matrix multiplication works:
(
a b
c d

)(
e f
g h

)
=

(
ae+ bg af + bh
ce+ dg cf + dh

)
.
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5. THE RATIONALS

In Chapter 3, we built the integers as equivalence classes of an equivalence

relation on ordered pairs of natural numbers; the equivalence relation identified

ordered pairs with a common difference between their first and second compo-

nents. In this chapter, we build the rationals as equivalence classes of an equiv-

alence relation on ordered pairs of integers with nonzero second component; the

equivalence relation will identify ordered pairs with a common quotient of their

first and second components. As with Chapter 3, once we show our definitions

of addition and multiplication on these equivalence classes are well-defined, the

algebraic properties of the rationals will follow from the corresponding algebraic

properties of the integers.

Since we have already built the integers, we no longer need to consider individ-

ual integers as subsets of N × N. Rather, we can consider our starting elements

as elements of Z, and we have all the usual properties of Z (except for order) at

our disposal.

Definition 5.1. Let (a, b), (c, d) ∈ Z× (Z−{0}). Define (a, b)
Q∼ (c, d) provided ad = bc.

Notice the similarity between this definition and Definition 3.1 on N × N; both

are of the form (a, b) ∼ (c, d) provided a ∗ d = b ∗ c for a binary operation ∗.

Theorem 5.1. The relation Q∼ in Definition 5.1 is an equivalence relation on Z ×
(Z− {0}).

Proof. Exercise. □

For example, (5, 3) Q∼ (10, 6) and (2, 5)
Q∼ (6, 15). (You should be thinking a

b
when

you see (a, b); notice the second component is never 0.) In the first example, the

quotient between each first component and second component is 5
3

in reduced

form, while in the second example, the quotient between each first component

and second component is 2
5

in reduced form. When you first learned about ratio-

nal numbers, you were asked to represent your fractions in reduced form; these

reduced forms were really representatives of equivalence classes of fractions. So,

to make this precise, we construct the rationals as equivalence classes of the set

of ordered pairs of integers with nonzero second component.

Definition 5.2. The set of equivalence classes in Definition 5.1 is the set of

rationals, denoted Q.
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Consider the equivalence class

[(5, 3)] = {. . . , (−15,−9), (−10,−6), (−5,−3), (5, 3), (10, 6), (15, 9) . . . }.

We identify this with the rational number 5
3
. Similarly, we identify the equivalence

class [(2, 5)] with the rational number 2
5
. We will write 0Q for the rational number

[(0, 1)] and 1Q for the rational number [(1, 1)]; notice 1Q ̸= 0Q. See Problem 2.

As with the integers, we want to define the usual operations of addition and

multiplication on the rationals, but since we will be trying to add and multiply

entire equivalence classes using representative elements, we must show these

operations are well-defined before we can do anything else.

We would like to define addition on this set of equivalence classes, Q, that

coincides with our experience with addition of rationals. To that end, assume

(a, b) is a representative of the rational x and (c, d) is a representative of the

rational y. We want to compute x + y by adding these representatives, thinking

of (a, b) as a
b
, etc., to see what definition we should establish for addition. To

compute the sum x + y, we use (a, b) + (c, d), which we think of as a
b
+ c

d
, or

equivalently, ad+bc
bd

, which is the representative (ad + bc, bd). So we hope to define

[(a, b)] + [(c, d)] to be [(ad+ bc, bd)].

We would also like to define multiplication on this set of equivalence classes

in a sensible fashion. If, as above, (a, b) is a representative of the rational x

and (c, d) is a representative of the rational y, then to compute the product xy,

we use (a, b) · (c, d), which we think of as a
b
· c
d
, or equivalently, ac

bd
, which is the

representative (ac, bd). So we hope to define [(a, b)] · [(c, d)] to be [(ac, bd)].

As we did when defining addition and multiplication of integers, we must show

both of these binary operations are independent of choices of representatives

from the equivalence classes that form the elements of Q.

Theorem 5.2. Assume (a1, b1)
Q∼ (a2, b2) and (c1, d1)

Q∼ (c2, d2), where each ordered
pair lies in Z× (Z− {0}). Then

(1) (a1d1 + b1c1, b1d1)
Q∼ (a2d2 + b2c2, b2d2), and

(2) (a1c1, b1d1)
Q∼ (a2c2, b2d2).

Proof. Notice that for each part, b1d1 ̸= 0 and b2d2 ̸= 0, since the second component

of each of the original ordered pairs is an element of Z− {0}.
Part (1) is left as an exercise.

(2) Assume (a1, b1)
Q∼ (a2, b2) and (c1, d1)

Q∼ (c2, d2). Then a1b2 = b1a2 and c1d2 = d1c2.

Using the commutative and associative properties of the integers as well as these
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two equations, we have (a1c1)(b2d2) = (a1b2)(c1d2) = (b1a2)(d1c2) = (b1d1)(a2c2). But

this implies (a1c1, b1d1)
Q∼ (a2c2, b2d2), which is what we need. □

Theorem 5.2 allows us to define addition and multiplication of rationals:

Definition 5.3. Let [(a, b)], [(c, d)] ∈ Q.

(1) Their sum is

[(a, b)] + [(c, d)] = [(ad+ bc, bd)].

(2) Their product is

[(a, b)] · [(c, d)] = [(ac, bd)].

We will use these definitions to prove the familiar properties of addition and

multiplication hold for Q. And what are these familiar properties? They are

contained in Definition 4.1, the definition of a ring.

Theorem 5.3. The set of rationals, Q, under the operations of addition and mul-
tiplication above, form a commutative ring with unity. The element 0Q = [(0, 1)]

serves as the additive identity and the element 1Q = [(1, 1)] serves as the multi-
plicative identity.

Proof. Let q, r, s ∈ Q, where (a, b) ∈ q, (c, d) ∈ r, and (e, f) ∈ s. Since a, b, c, d, e, f ∈ Z,

we can use the properties of the integers developed in Chapter 3, such as the

commutative and associative laws, freely.

(1) + is associative.

(q + r) + s = ([(a, b)] + [(c, d)]) + [(e, f)]

= [(ad+ bc, bd)] + [(e, f)]

= [((ad+ bc)f + bde, bdf)]

= [(adf + bcf + bde, bdf)]

= [(adf + b(cf + de), bdf)]

= [(a, b)] + [(cf + de, df)]

= [(a, b)] + ([(c, d)] + [(e, f)])

= q + (r + s).

(2) + has an identity element. Exercise: show 0Q = [(0, 1)] serves as the

additive identity.

(3) Every element has an inverse under +. Exercise: show −q = [(−a, b)]
serves as the additive inverse of q.
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(4) + is commutative.

q + r = [(a, b)] + [(c, d)]

= [(ad+ bc, bd)]

= [(cb+ da, db)]

= [(c, d)] + [(a, b)]

= r + q.

(5) · is associative. Exercise.

(6) The left and right distributive laws hold. We will show the left distribu-

tive law holds; once (7) is proven, the right distributive law will follow.

q(r + s) = [(a, b)]([(c, d)] + [(e, f)])

= [(a, b)][(cf + de, df)]

= [(acf + ade, bdf)]

= [(b(acf + ade), b(bdf))] (Since (acf + ade, bdf)
Q∼ (b(acf + ade), b(bdf)))

= [(acbf + bdae, bdbf)]

= [(ac, bd)] + [(ae, bf)]

= [(a, b)][(c, d)] + [(a, b)][(e, f)]

= qr + qs.

Notice it is not necessary to have (a, b)((c, d) + (e, f)) = (a, b)(c, d) + (a, b)(e, f).
(7) · is commutative. Exercise.

(8) · has an identity. Exercise: show 1Q = [(1, 1)] serves as the multiplicative

identity.

□

The usual notation for rationals, a
b

for [(a, b)], gives the usual formulas for

addition and multiplication of rationals:

• a

b
· c
d
=
ac

bd

• a

b
+
c

d
=
ad+ bc

bd
The integers under the usual operations of addition and multiplication, and the

rationals under the same operations, both form a commutative ring with 1. But

there is a property that the rationals possess that the integers do not: solutions

to equations of the form ax = 1 for every nonzero element a. The integers only

have such a solution for a = ±1, while the rationals have a solution for all nonzero

a:
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Theorem 5.4. Every nonzero rational number7 has a multiplicative inverse in Q.

Proof. Let q ∈ Q and let (a, b) ∈ q. Since q is a nonzero rational, a is a nonzero

integer (see Problem 2). So (b, a) ∈ Z× (Z− {0}). Since

[(a, b)][(b, a)] = [(ab, ba)]

= [(1, 1)] (Since (ab, ba)
Q∼ (1, 1))

= 1Q

and multiplication is commutative, [(b, a)] is the multiplicative inverse of [(a, b)].

□

In terms of the usual notation, b
a

is the multiplicative inverse of a
b
; the former

exists exactly when a is nonzero.

Commutative rings with this property have a special name.

Definition 5.4. A field is a commutative ring with unity in which every nonzero

element has a multiplicative inverse.

Recall an integral domain is a commutative ring with unity that has no zero

divisors. An obvious question to ask is: what is the relationship between integral

domains and fields?

Theorem 5.5. Every field is an integral domain.

Proof. Since both fields and integral domains are commutative rings with unity,

we only need to show that the property of every nonzero element having a multi-

plicative inverse guarantees there are no zero divisors.

Let F be a field (under the operations + and ·), let a, b ∈ F , and assume ab = 0

where a, b ̸= 0. Since a ̸= 0, a has a multiplicative inverse, a−1 (this is standard

notation for multiplicative inverses). But then b = (a−1a)b = a−1(ab) = a−1(0) = 0,

which contradicts the assumption that b ̸= 0. Thus F has no zero divisors, and

is an integral domain. □

At this point, you should be curious about the converse of Theorem 5.5. See

Problem 9.

Finally, Problem 9 in Section 3 identified each natural number n with the

integer [(n, 0)] in a way that preserved both addition and multiplication; this

allowed us to consider N as a subset of Z. In a similar way, the set of integers

can be identified with a subset of Q; see Problem 11. In particular, the additive

7That is, every rational except 0Q.
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identity 0Z of Z is identified with the additive identity 0Q of Q, and 1Z in the former

is identified with 1Q in the latter.

Problems. 1. Prove Theorem 5.1.

2. Prove (a, b) ∈ 0Q iff a = 0, (a, b) ∈ 1Q iff a = b, and 1Q ̸= 0Q.

3. Prove Theorem 5.2 (1).

4. Prove Theorem 5.3 (2).

5. Prove Theorem 5.3 (3).

6. Prove Theorem 5.3 (5).

7. Prove Theorem 5.3 (7).

8. Prove Theorem 5.3 (8).

9. Show the converse of Theorem 5.5 is false by considering Z.

10. In Section 3 Problem 2, we saw that the integers could be identified with the

set of x-intercepts of lines with slope 1 that pass through lattice points of

the plane. Show that the line that passes through the origin and the point

(a, b) ∈ Z × (Z − {0}), namely the line y = b
a
x, contains all ordered pairs in the

equivalence class [(a, b)]. Thus the rationals can be identified with the set of

lines through the origin with rational slope.

11. Define ψ : Z → Q by ψ(a) = [(a, 1)] (i.e., a 7→ a
1
). Prove ψ is an injection.

12. Let ψ : Z → Q be as in Problem 11. Prove for all a, b ∈ Z, ψ(a+b) = ψ(a)+ψ(b) and

ψ(ab) = ψ(a)ψ(b). (So, just like the map ϕ : N → Z in Section 3, Problem 9, ψ is

an embedding of Z into Q that preserves both addition and multiplication, so

we can think of Z ⊆ Q both in a set-theoretical sense and an algebraic sense.)

13. Find 99 rational numbers greater than 3
1234567

and less than 4
1234567

.

14. Let T be the subset of rationals that can be expressed as a
3i

for some a ∈ Z and

some i ∈ N.

(a) Prove T is closed under addition, that is, the sum of any two elements of

T is an element of T .

(b) Prove T is closed under multiplication too, that is, the product of any two

elements of T is an element of T .
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6. ORDER

To be able to build the real numbers from the rational numbers, we need the

notion of order, that is, how one can tell when one number – whether a natural

number, an integer, or a rational – is “bigger than” another. In this chapter, we

develop order for the naturals, then for the integers, and finally for the rationals.

As before, induction will be used when working with the naturals, while other

algebraic methods will be used when working with the integers and rationals. In

particular, for the last two of these sets of numbers, we will define what it means

for such a number to be positive, and then use that notion to define order on the

full set.

6.1. Order on N.

Definition 6.1. Let m,n ∈ N. Then m ≤ n provided there exists k ∈ N such that

m+ k = n.

Theorem 6.1. ≤ is a partial order on N.

Proof. Let a, b, c ∈ N.

(1) (Reflexive) Since a+ 0 = a, a ≤ a.

(2) (Antisymmetric) Assume a ≤ b and b ≤ a. Then ∃k, l ∈ N such that a+ k = b

and b+ l = a. So b = a+ k = (b+ l) + k = b+ (l + k). Since b+ 0 = b+ (l + k),

l + k = 0 by Theorem 2.2 (4), and so l = k = 0 by Theorem 2.2 (5). Thus

a = b.

(3) (Transitive). Exercise.

□

Notice by Theorem 2.4 (2), ∀n ∈ N, n+ 1 = n′. Thus ∀n ∈ N, n ≤ n′.

Not only do we have a partial order on N, but also any two elements are com-

parable:

Theorem 6.2. For all m,n ∈ N, m ≤ n or n ≤ m.

Proof. Induct on n. Let P (n) be the statement, “m ≤ n or n ≤ m.”

Base. (n = 0.) Since 0 +m = m, 0 ≤ m. Since m ≤ 0 or 0 ≤ m, P (0) is true.

Inductive Step. Assume P (n) is true, i.e., m ≤ n or n ≤ m.

Case 1: m ≤ n. Then m ≤ n ≤ n′, so by transitivity, m ≤ n′.
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Case 2: n ≤ m. Then ∃k such that n+ k = m.

If k = 0, then n = m, so m+ 1 = n+ 1 = n′, so m ≤ n′.

If k ̸= 0, then ∃l such that k = l′ = l + 1. Thus n′ + l = (n + 1) + l =

n+ (l + 1) = n+ k = m. So n′ ≤ m.

Since m ≤ n′ or n′ ≤ m, P (n′) is true.

It follows by PMI that P (n) is true for all natural numbers n. □

The inductive step in Theorem 6.2 suggests a refined definition:

Definition 6.2. For m,n ∈ N, m < n provided there exists k ̸= 0 such that m+ k =

n.

This definition immediately yields a familiar result: m ≤ n iff m < n or m = n.

The former occurs when k ̸= 0, while the latter occurs when k = 0.

Since any two elements of N are comparable, we have, ∀m,n ∈ N, three distinct

possibilities: (1) m ≤ n but n ̸≤ m, (2) n ≤ m but m ̸≤ n, and (3) m ≤ n and
n ≤ m. But (1) is equivalent to m < n, (2) is equivalent to n < m, and by the

antisymmetric property of inequality, (3) is equivalent to m = n.

Thus we have the trichotomy property for N: Exactly one of the following is

true ∀m,n ∈ N: m < n, n < m, or m = n.

Some familiar properties follow:

Theorem 6.3. Let m,n, k ∈ N.

(1) m ≤ n iff m+ k ≤ n+ k.
(2) If k ̸= 0, then m ≤ n iff km ≤ kn.
(3) If m < n, then m+ 1 ≤ n.

Proof. Part (1) is left as an exercise.

(2) Assume k ̸= 0.

(⇒) If m ≤ n, then ∃l ∈ N such that m+ l = n, so mk+ lk = nk, so mk ≤ nk.

(⇐) We’ll prove the contrapositive. Assume m > n. Then ∃l ∈ N, l ̸= 0,

such that m = n+ l. But then km = kn+ kl with kl ̸= 0, so km > kn.

(3) If m < n, then ∃k ̸= 0 such that m + k = n. Since k ̸= 0, ∃l such that

k = l + 1. So (m+ 1) + l = m+ (l + 1) = m+ k = n. So m+ 1 ≤ n.

□

The next theorem is equivalent to the Principle of Mathematical Induction, but

we will only prove it follows from it. It is known as the Well-Ordering Principle
and also as the Least Natural Number Principle. An element x ∈ X is a least
element of X if ∀y ∈ X, x ≤ y. Such elements are unique (see Problem 3).
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Well-Ordering Principle. Every nonempty set of natural numbers has a least

element.

Proof. Let T be a nonempty subset of N. Define S = {n ∈ N | ∀t ∈ T, n ≤ t}. Then

0 ∈ S, since 0 ≤ n ∀n ∈ N. Also, S ̸= N, for otherwise T = ∅. Thus ∃s ∈ S such that

s+ 1 ̸∈ S, for otherwise the Principle of Mathematical Induction implies S = N.

We claim s is the least element of T . Since s ∈ S, we already know ∀t ∈ T , s ≤ t,

so it only remains to show s ∈ T . But if s ̸∈ T , then ∀t ∈ T , s < t, so s + 1 ≤ t, so

s+ 1 ∈ S, a contradiction of the previous paragraph. Thus T has a least element,

s. □

6.2. Order on Z. Recall Z was defined as the set of equivalence classes of N× N
under the relation (a, b)

Z∼ (c, d) provided a + d = b + c, and we really think of (a, b)

as a − b. We want to use the order on N to define order on Z. This next theorem

essentially shows ≤ is well-defined on Z.

Theorem 6.4. Let k, l,m, n ∈ N and assume (k, l)
Z∼ (m,n). Then

(1) k < l iff m < n.
(2) k > l iff m > n.
(3) k = l iff m = n.

Proof. (1) Since (k, l)
Z∼ (m,n), we know k + n = l +m. Using this, together

with the various properties of addition of the naturals, yields the following

string of double implications:

k < l ⇔ ∃x ̸= 0 such that k + x = l

⇔ ∃x ̸= 0 such that k + n+ x = l + n

⇔ ∃x ̸= 0 such that l +m+ x = l + n (since k + n = l +m)

⇔ ∃x ̸= 0 such that m+ x = n

⇔ m < n

(2) The argument is similar to that of (1).

(3) Exercise. See Problem 4.

□

Definition 6.3. Let a = [(m,n)] ∈ Z. Then a is positive if m > n, and a is negative
provided m < n.
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By Theorem 6.4, these concepts are well-defined. Notice the integer 0 = 0Z,

which was defined as [(0, 0)], is neither positive nor negative. Problem 6 revisits

the identification of the natural number n with the integer [(n, 0)], i.e., the nonzero

natural numbers and the positive integers can be considered identical. So, sums
and products of positive integers are positive, since sums and products of

nonzero natural numbers are nonzero natural numbers, by Theorem 2.2 (5) and

Theorem 2.3 (5). Problem 7 shows for all nonzero integers a, either a or −a is

positive, but not both.

Now that we can tell which integers are positive, we can order Z:

Definition 6.4. Let a, b ∈ Z. Then a < b if b − a is positive and a > b if b − a is

negative.

Problem 7 applied to b − a gives the trichotomy property for Z: Exactly one

of the following is true ∀a, b ∈ Z: a < b, a > b, or a = b. We can now write what we

are used to writing: a is positive if a > 0, and a is negative if a < 0. As usual, we

write a ≤ b if a < b or a = b, and similarly for a ≥ b.

Here are some familiar properties:

Theorem 6.5. Let a, b, c ∈ Z.

(1) If a < b, then a+ c < b+ c.
(2) If a < b and c > 0, then ac < bc.

Proof. Part (1) is left as an exercise.

(2) We have that b− a > 0. Since c > 0 and the product of positive integers

is positive by Theorem 2.3 (5), we have c(b − a) > 0. It follows by the

commutative and distributive laws for Z that bc− ac > 0. Thus ac < bc.

□

The following should not be surprising.

Corollary 6.1. Let x be any nonzero integer. Then x2 > 0.

Proof. If x > 0, then Theorem 6.5 (2) implies xx > 0x = 0, so x2 > 0. On the other

hand, if x < 0, then by Definition 6.4, 0−x is positive. Thus (0−x)(0−x) = (−x)(−x)
is positive. But by Theorem 4.2 (3), (−x)(−x) = x2. So x2 > 0 in this case as

well. □
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6.3. Order on Q. Now we want to extend the order we have developed on Z to

all of Q by reducing questions about signs of quotients of integers to questions

about signs of products of integers, since our experience tells us that the sign

of a quotient of two integers is the same as the sign of their product. Recall the

equivalence relation on Z× (Z− {0}) that yielded Q: (a, b)
Q∼ (c, d) provided ad = bc.

We will use this to define positive/negative rationals. But first, we must show

this notion is well-defined:

Theorem 6.6. Assume (a, b)
Q∼ (c, d) in Z× (Z− {0}). Then ab > 0 iff cd > 0.

Proof. Since (a, b)
Q∼ (c, d), we know ad = bc, so (ad)(bd) = (bc)(bd). (Notice b, d ∈

Z − {0}.). Thus (ab)(d2) = (cd)(b2). Corollary 6.1 implies that both d2 and b2 are

positive.

Assume ab > 0. By Theorem 6.5 (2), (ab)(d2) > (0)(d2) = 0. Substitution yields

(cd)(b2) > 0. We assert this implies cd > 0, for if cd < 0, then Theorem 6.5 (2) yields

(cd)(b2) < 0, a contradiction.

A similar argument shows if cd > 0, then ab > 0.

□

We can now divide the rationals into the same three categories that we divided

the naturals and the integers.

Definition 6.5. Let q = [(a, b)] ∈ Q. Then q is positive if ab > 0, q is negative if

ab < 0, and q = 0 if a = 0.

As usual, we will write q > 0 if q is positive, etc. This provides the order on Q
we need:

Definition 6.6. Let q, r ∈ Q. Then q < r if r − q is positive and q > r if r − q is

negative.

Theorem 6.7. Both the sum and the product of two positive rationals are positive.

Proof. Suppose q and r are positive rationals, and let q = a
b

and r = c
d
. (Note: This

really means (a, b) is a representative of q, etc.) Then by hypothesis, ab > 0 and

cd > 0.

Since q + r = ad+bc
bd

, in order to show q + r > 0, we must show the integer

inequality (ad+ bc)bd > 0. As in the proof of Theorem 6.6, abd2 > 0 and cdb2 > 0, so

abd2 + cdb2 > 0, which implies (ad+ bc)bd > 0, as desired.

The proof that the product of two positive rationals is positive is left as an

exercise. □
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Here is the extension of Theorem 6.5 to Q:

Theorem 6.8. Let q, r, s ∈ Q.

(1) If q < r, then q + s < r + s.
(2) If q < r and s > 0, then qs < rs.

Proof. Part (1) is left as an exercise.

(2) Since q < r, we know r−q is positive. Since s is positive, by Theorem 6.7,

(r − q)s = rs− qs is also positive. Thus qs < rs.

□

Here is another familiar result:

Theorem 6.9. Let q, r ∈ Q. Then q < r iff −r < −q.

Proof. q < r iff r − q is positive iff (−q)− (−r) is positive iff−r < −q. □

While there is a “next largest natural number” and a “next largest integer,”

there is no such thing as a “next largest rational”:

Theorem 6.10. If q and r are rationals with q < r, then there exists a rational s
such that q < s < r.

Proof. Maybe the easiest such s is the average of q and r.

Since q < r, applying Theorem 6.8 (1) twice yields q + q < q + r < r + r, so

2q < q + r < 2r. Multiplying all terms by 1
2
, using Theorem 6.8 (2) twice, gives

q < 1
2
(q + r) < r. Thus s = 1

2
(q + r) satisfies our required condition.

□

Lastly, here is a famous and useful theorem:

Theorem 6.11. (The Archimedean Property for Q) Let s and r be positive ratio-
nals. Then there exists a positive integer n such that nr > s.
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Proof. Let a, b, c, d be positive integers such that r = a
b
s = c

d
, and let n = c(b + 1).

Then

rn =
a

b
· c(b+ 1)

=
ac(b+ 1)

b
> ac

=
acd

d

≥ c

d
(since ad ≥ 1)

= s.

□

This theorem essentially says that no matter how big s > 0 is and no matter

how small r > 0 is, if you add r to itself enough times (nr = r+r+r+ . . . r), you will

get a rational bigger than s. The saying is “you can fill a large tub with a small

spoon.”

Problems. 1. Finish the proof of Theorem 6.1 (i.e., ≤ is transitive).

2. Prove Theorem 6.3 (1). Theorem 2.2 (4) might be useful.

3. Let X be a partially ordered set under ⪯. An element x ∈ X is a least element
of X if ∀y ∈ X, x ⪯ y. Use the antisymmetric property of ⪯ to show that if X

has a least element, then it is unique.

4. Prove Theorem 6.4 (3). Again, Theorem 2.2 (4) might be useful.

5. Show that Theorem 6.5(2) with a = 0 implies the product of two positive integers
is positive.

6. Problem 9 in Section 3.2 identifies each natural number n with the integer

[(n, 0)]. Use this to identify the set of positive integers, as in Definition 6.3,

with the nonzero elements of N.

7. Show that for every nonzero integer a, either a or −a is positive, but not both.

Notice if a = [(m,n)] is nonzero, then m ̸= n.

8. Prove Theorem 6.5 (1). Notice if b− a is positive, then so is b− a+ (c− c).

9. Prove Theorem 6.8 (1). Notice if r − q is positive, then so is r − q + (s − s), so

the same argument as that in the proof of Theorem 6.5 (1) holds.

10. Finish the proof of Theorem 6.6. Specifically, show if cd > 0, then ab > 0.

11. Finish the proof of Theorem 6.7.
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7. SEQUENCES

In this chapter, we study sequences of rational numbers. Much of this material

will be familiar from Calculus, with three notable exceptions. First, the terms of

our sequences will be rationals, not arbitrary reals. Secondly, we will discuss

subsequences of sequences, which you might not have seen before. Thirdly,

we will define the notion of a Cauchy sequence, which might also be a new

concept. The material from this point on will be more analytic than algebraic;

the flavor is that of a course in “advanced Calculus” or “real analysis” than of

“abstract algebra.” Quantifiers are used heavily in the definitions, so consider

them carefully.

We will assume all algebraic properties of Q from Chapter 5 as well as its order

properties from Chapter 6.

Recall Z+ is the set of positive integers. Similarly, Q+ denotes the set of positive

rationals.

Definition 7.1. A sequence of elements of a set X is a function f : Z+ → X. We

write an for f(n) and denote the sequence by (an).

You have seen sequences of real numbers (or “real-valued sequences”) in Cal-

culus. In this section, we only study sequences of rational numbers, such as

an = n
n+1

(1
2
, 2
3
, 3
4
, . . . ).

Before we can talk about what it means for a sequence to “converge,” we need

the concept of absolute value of any rational q, |q|:

|q| =
{

q if q ≥ 0
−q if q < 0

In Chapter 6, we saw that any two rationals are comparable under ≤, which

allows us to place them in increasing order, forming the “rational line.” Using

this line, ∀q ∈ Q, |q| can be interpreted as the distance between q and 0. Using

the definition of absolute value, we see ∀q, r ∈ Q,

|q − r| =
{
q − r if q ≥ r
r − q if q < r

From this, |q − r| can be interpreted as the distance between q and r. This

interpretation will be used often.

Definition 7.2. A sequence of rationals (an) converges in Q provided ∃a ∈ Q
such that ∀ϵ ∈ Q+, ∃N ∈ Z+ such that |an − a| < ϵ whenever n > N . We write

lim
n→∞

an = a or (an) → a in this case. If no such a ∈ Q exists, we say (an) diverges
in Q.
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The idea is that the terms an of a convergent sequence get arbitrarily close

(and stay close) to the limit a as n gets large. Limits of convergent sequences are

unique. The proof is the same as the one you should have seen in Calculus.

We need some technical results about absolute value.

Theorem 7.1. Let a, b ∈ Q and assume b > 0. Then |a| < b iff −b < a < b.

Proof. We use Theorem 6.9 extensively: ∀q, r ∈ Q, q < r iff −r < −q.
Notice if a = 0, the theorem is true, since 0 < b iff −b < 0 < b. So we can assume

a ̸= 0.

(⇒) Assume |a| < b. If a > 0, then a = |a| < b. Since a < b, −b < −a. Since −a < a,

−b < a. Thus −b < a < b. On the other hand, if a < 0, then a < 0 < b. Also,

−a = |a| < b, so −b < a. So, again, −b < a < b.

(⇐) Assume −b < a < b. If a > 0, then |a| = a < b. On the other hand, if a < 0,

then since −b < a, we have |a| = −a < b.

□

Triangle Inequality. Let a, b ∈ Q. Then |a+ b| ≤ |a|+ |b|.

Proof. Notice the statement is trivially true if either a = 0 or b = 0, so assume

neither a nor b is 0.

Since −|a| ≤ a ≤ |a| and −|b| ≤ b ≤ |b|, adding these gives −(|a| + |b|) ≤ a + b ≤
(|a|+ |b|), so applying Theorem 7.1 with ≤ instead of < gives |a+ b| ≤ (|a|+ |b|). □

Now we can continue our study of sequences.

Definition 7.3. Let (an) be a sequence. The sequence (akn) is a subsequence of

(an) provided kn < kn+1 for all n.

The idea is that a subsequence of a sequence contains a subset of the terms

of the original, but keeps them in order (since n ≤ kn < kn+1). For example,

if an = 2n − 1, then the terms of (an) are 1, 3, 5, 7, 9, 11, . . . . If kn = 2n, then the

subsequence (akn) has terms 3, 7, 11, 15, . . . .

Theorem 7.2. If (an) is convergent, then every subsequence of (an) converges to
the same value as (an).

Proof. Assume (an) converges to a ∈ Q, let (akn) be a subsequence of (an), and let

ϵ ∈ Q+. Then ∃N ∈ Z+ such that |an − a| < ϵ whenever n > N . But n > N implies

kn ≥ n > N , so |akn − a| < ϵ whenever n > N . So (akn) → a. □
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The contrapositive of Theorem 7.2 is handy: if either a subsequence of a se-
quence diverges or two subsequences converge to different things, then the original
sequence must diverge.

Definition 7.4. The sequence (an) is

• bounded above if ∃U ∈ Q such that ∀n ∈ Z+, an ≤ U .

• bounded below if ∃L ∈ Q such that ∀n ∈ Z+, an ≥ L.

• bounded if it is bounded above and below.

Notice that (an) is bounded iff ∃K ∈ Q such that ∀n ∈ Z+, |an| ≤ K, since we can

take K = max{|U |, |L|}.

Theorem 7.3. If (an) is convergent, then (an) is bounded.

Proof. By hypothesis, for ϵ = 1, ∃N ∈ Z+ such that |an − a| < 1 whenever n > N .

But then |an| = |an − a + a| ≤ |an − a| + |a| < 1 + |a| whenever n > N . Thus

|an| < 1 + |a| whenever n > N , so {an | n > N} is bounded. It remains to consider

the first N terms of an, which might be greater than 1 + |a| or less than −1 − |a|.
But since there are only finitely many of these terms, if we take K = max{1 +

|a|, |a1|, |a2|, . . . , |aN |}, then |an| ≤ K for all n. □

Definition 7.5. The sequence (an) is Cauchy if ∀ϵ ∈ Q+, ∃N ∈ Z+ such that

|an − am| < ϵ whenever n,m > N .

The idea is that the terms of a Cauchy sequence get arbitrarily close (and stay

close) to each other as n gets large.

Theorem 7.4. If (an) is convergent, then (an) is Cauchy.

Proof. Assume (an) → a, and let ϵ ∈ Q+. Then ∃N ∈ Z+ such that |an − a| < ϵ
2

whenever n > N . So, if n,m > N , |an−am| = |(an−a)+(a−am)| ≤ |an−a|+ |a−am| <
ϵ
2
+ ϵ

2
= ϵ. Thus (an) is Cauchy. □

Theorem 7.5. If (an) is Cauchy, then (an) is bounded.

Proof. Following the proof of Theorem 7.3, for ϵ = 1, ∃N ∈ Z+ such that |an−am| < 1

whenever n,m > N . So using m = N + 1, we have |an − aN+1| < 1 whenever n > N ,

so −1 < an − aN+1 < 1, so aN+1 − 1 < an < aN+1 + 1. So for n > N , we have

aN+1 − 1 for a lower bound for (an) and aN+1 + 1 as an upper bound. However,

one of the earlier terms may be bigger/smaller, so we must take the max/min of

{a1, a2, . . . , aN , aN+1 ± 1} for our bounds. □
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So from Theorem 7.4 and Theorem 7.5, we have

Convergent ⇒ Cauchy ⇒ bounded.

Notice this gives Theorem 7.3, Convergent ⇒ bounded. In fact, none of these

three implications is reversible. Problem 10 asks for a counterexample to two of

them. Here is the third:

Example 7.1. Let (an) be the rational sequence defined by

a1 = 1.4

a2 = 1.41

a3 = 1.414
...

an = 1.b1b2 . . . bn

= the first n+ 1 digits of the decimal expansion of
√
2.

Then (an) is a rational sequence, since each term has a terminating decimal

expansion.

We assert that (an) is Cauchy. Given ϵ ∈ Q+, the Archimedean Property shows

there exists N ∈ Z+ such that ϵ · 10N > 1, i.e., 1× 10−N < ϵ. But then, if n > m > N ,

we have the following decimal representation for an − am:

an − am = 1.b1b2 . . . bm . . . bn − 1.b1b2 . . . bm

= 0. 000 . . . 00︸ ︷︷ ︸
m digits

bm+1bm+2 . . . bn

< 0. 000 . . . 01︸ ︷︷ ︸
m digits

< 0. 000 . . . 01︸ ︷︷ ︸
N digits

= 1× 10−N

< ϵ,

from which it follows that (an) is Cauchy.

But (an) does not converge to any rational number. It does have a limit, namely√
2, but that limit is not rational; see Problem 12. So (an) is Cauchy but not

convergent in Q.
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Example 7.2. You may recall from Calculus that the sequence an = (1 + 1
n
)n

converges to the irrational number e. (The proof involved using the natural log-

arithmic function and L’Hôpital’s Rule.) As in Example 7.1, each term of this

sequence is rational, the sequence is Cauchy, but it doesn’t converge in Q.

Tossing in “limit points” to eliminate non-convergent Cauchy sequences of ra-

tionals like the one in the above examples is next. This will give us the irrational

numbers.

Problems. 1. Find a formula for the general term an of the sequence, assuming

the pattern continues: {4,−1, 1
4
,− 1

16
, 1
64
, . . . }.

2. If an =
3 + 5n2

n+ n2
, find the limit of the sequence (an).

3. If an =
(2n− 1)!

(2n+ 1)!
, find the limit of the sequence (an).

4. Here is the recursive step for a sequence (an):

an+1 =

{
1
2
an if an is even

3an + 1 if an is odd

The sequence itself depends on the base term a1; different values of a1 give dif-

ferent sequences. For example, if a1 = 5, then the sequence (an) is 5, 16, 4, 2, 1, 4, 2, 1, 4, 2, 1, . . . .

(a) Write out enough terms of the sequence (an) if a1 = 10 until you see a

similar ending pattern.

(b) Do the same if a1 = 11.

There is a very famous unproven conjecture, the Collatz conjecture, that if

a1 is any positive integer, then eventually you arrive at some an = 1. It has

been shown to hold for positive integers up to 2.95 × 1020, but of course there

are still infinitely many more to check.

5. Negate Definition 7.2 to show what it means for lim
n→∞

an ̸= a.

6. Prove ( 1
n
) converges to 0.

7. Using the negation of Definition 7.2, prove ((−1)n) does not converge to 1.

8. Give three subsequences of an = 1
n
.

9. Use the contrapositive of Theorem 7.2 to show that ((−1)n) diverges.

10. Give an example of a bounded sequence that is not Cauchy (hence not con-

vergent).

11. There are different forms of the Triangle Inequality. Prove the following:

If ∀a, b ∈ Q, |a+ b| ≤ |a|+ |b|, then ∀a, b ∈ Q, |a− b| ≤ |a|+ |b|.



42 LEONARD VAN WYK

12. Prove
√
2 is irrational, or look up a proof and read it until you understand it.

13. Assume (an) → a, let k ∈ Q, and let bn = kan ∀n ∈ Z+. Prove (bn) → ka.

14. Let s be a number with a non-terminating decimal expansion. Following the

idea of Example 9.1, show the sequence (an) given by

an = (integer part of s) + 0.b1b2 . . . bn

= (integer part of s) + the first n digits after the decimal point of the decimal expansion of s

is a Cauchy sequence8.

15. Here is a basic quantifier fact: Assume a is constant and ϵ > 0. Prove if ∀ϵ,
|x− a| < ϵ, then x = a. (Hint: Contrapositive.)

16. Let an =
1

n2
and let kn = n3 + 1. Find the first four terms of the subsequence

(akn) of (an). (Write them as fractions, not as decimals.)

17. In Calculus II, you studied infinite series by relating each to its sequence of

partial sums. Specifically, the sequence of partial sums of the series
∞∑
n=1

an is

(sn), where sn = a1 + a2 + · · · + an. Then,
∞∑
n=1

an = lim
n→∞

sn. The problem is that

you rarely can find a closed form for sn.

Here is a series where you can find a closed form for sn:
∞∑
n=1

(
1√
n
− 1√

n+ 1

)
.

Find a formula for sn and use it to find the sum of the series. (Hint: Write out

a few terms and observe.)

18. The only thing that matters for the convergence/divergence of a series is the

tail of the series, that is, what happens to the terms eventually. For example,

if two sequences differ in the first bazillion terms but are equal eventually,

then either both converge or both diverge. Explain why only the tail of the

sequence matters for convergence.

8For example, if s = 7
3 , then a1 = 2.3, a2 = 2.33, a3 = 2.333, . . . .
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8. THE REALS

In this chapter, we will define the set of real numbers as a set of equivalence

classes of Cauchy sequences of rational numbers. Then we will define the oper-

ations of addition and multiplication of those Cauchy sequences, and show that

those operations are well-defined on the set of equivalence classes. Once those

operations are shown to be well-defined, the various algebraic properties of the

reals will follow from those of the rationals.

At this point, one might wonder why we don’t try to build the reals from the

rationals in the same way we built the rationals from the integers or the integers

from the naturals: as equivalence classes of ordered pairs of rationals. One fun-

damental reason has to do with cardinality, or the “size” of the sets in question.

There are just “too many” reals to construct in this fashion. We need, essentially,

to use equivalence classes on Q×Q×Q×. . . , which is what sequences of rationals

really are, in order to get a set large enough to cover the reals.

We start by defining our equivalence relation on rational Cauchy sequences.

Definition 8.1. If (an) and (bn) are rational Cauchy sequences, then (an)
R∼ (bn)

provided ∀ϵ ∈ Q+, ∃N ∈ Z+ such that |an − bn| < ϵ whenever n > N .

So (an)
R∼ (bn) provided those two sequences become arbitrarily close to each

other (and stay close) as n gets large.

Theorem 8.1. The relation R∼ in Definition 8.1 is an equivalence relation on the set
of all rational Cauchy sequences.

Proof. The reflexive and symmetric properties are exercises; see Problem 1. For

the transitive property, assume (an)
R∼ (bn) and (bn)

R∼ (cn), and let ϵ ∈ Q+ be given.

Then ∃N1, N2 ∈ Z+ such that |an − bn| < ϵ
2

whenever n > N1 and |bn − cn| < ϵ
2

whenever n > N2, so by the triangle inequality,

|an − cn| ≤ |an − bn|+ |bn − cn| <
ϵ

2
+
ϵ

2
= ϵ,

whenever n > max{N1, N2}, so (an)
R∼ (cn). □

An immediate consequence is that if (an) → a, then (an)
R∼ (a), where (a) is a

constant sequence (i.e., all the terms equal a). See Problem 2. So, by transitivity,

all rational Cauchy sequences with the same limit are equivalent to each other.
We want to add and multiply rational sequences. Let’s try the obvious thing:

adding and multiplying term-by-term.

Definition 8.2. Let (an) and (bn) be rational sequences. Define
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(1) (an) + (bn) = (an + bn) and

(2) (an)(bn) = (anbn).

Notice the left hand sides of the equations are the sum/product of rational se-
quences, which we are trying to define, while the right hand sides are sequences

determined by the sums/products of rational numbers, which we already know

how to do.

These definitions hold for any sequences, but we only care about Cauchy se-

quences. So we need to show that sums/products of Cauchy sequences are also

Cauchy.

Theorem 8.2. If (an) and (bn) are rational Cauchy sequences, then so are (an + bn)

and (anbn).

Proof. Assume (an) and (bn) are rational Cauchy sequences. We know each an+ bn

and each anbn is rational, so we only need to show the resulting sequences are

Cauchy. The proof that (an + bn) is Cauchy is similar to the proof of Theorem 8.1

and left as an exercise; see Problem 4.

Let ϵ ∈ Q+. To show (anbn) is Cauchy, we must find N ∈ Z+ such that |anbn −
ambm| < ϵ whenever n,m > N .

Since both (an) and (bn) are Cauchy, they are both bounded (Theorem 7.5), so

∃B1, B2 ∈ Q+ such that ∀n ∈ Z+, |an| < B1 and |bn| < B2. Notice

|anbn − ambm| = |anbn − ambm + (ambn − ambn)|

= |anbn − ambn + ambn − ambm|

≤ |anbn − ambn|+ |ambn − ambm|

= |bn||an − am|+ |am||bn − bm|.

Since we have bounds on the size of |bn| and |am|, and we can make both |an−am|
and |bn−bm| as small as we like (since they are Cauchy), we can make |anbn−ambm|
as small as we like as follows.

Let B = max{B1, B2}. From the previous paragraph, ∀n ∈ Z+, |an|, |bn| < B. Since

both (an) and (bn) are Cauchy, there exist N1, N2 ∈ Z+ such that |an − am| < ϵ
2B

whenever n,m > N1 and |bn − bm| < ϵ
2B

whenever n,m > N2. Then, whenever

n,m > max{N1, N2} = N , |bn||an − am| + |am||bn − bm| < B ϵ
2B

+ B ϵ
2B

= ϵ. Thus

|anbn − ambm| < ϵ whenever n,m > N . So (anbn) is Cauchy. □

So, we have an equivalence relation R∼ on rational Cauchy sequences, and we

can both add and multiply rational Cauchy sequences. The question is: can
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we extend the addition and multiplication of these sequences to the equivalence

classes, i.e., are the following operations well-defined:

(1) [(an)] + [(bn)] = [(an + bn)] and

(2) [(an)][(bn)] = [(anbn)] ?

The answer is yes, by the following theorem.

Theorem 8.3. Let (an), (bn), (cn), and (dn) be rational Cauchy sequences, with
(an)

R∼ (cn) and (bn)
R∼ (dn). Then

(1) (an + bn)
R∼ (cn + dn) and

(2) (anbn)
R∼ (cndn).

Proof. As usual, the proof of the first, additive part is relatively easy, and is left

as an exercise (see Problem 5). For the second part,

|anbn − cndn| = |anbn − cndn + (andn − andn)|

= |anbn − andn + andn − cndn|

≤ |anbn − andn|+ |andn − cndn|

= |an||bn − dn|+ |dn||an − cn|.

Now we can follow the ideas of the proof of Theorem 8.2. Specifically, since (an)

and (dn) are Cauchy, there is some B so that |an|, |dn| < B. Since (an)
R∼ (cn) and

(bn)
R∼ (dn), we can make |bn− dn| and |an− cn| as small as we like by taking n large

enough. So, following the proof of Theorem 8.2, given ϵ ∈ Q+, there exists N ∈ Z+

such that |anbn − cndn| < ϵ whenever n > N . (See Problem 6.) □

So now we have a set of equivalence classes of rational Cauchy sequences that

has well-defined operations of addition multiplication defined on it, given by

[(an)] + [(bn)] = [(an + bn)] and [(an)][(bn)] = [(anbn)].

This set of classes with these operations is the set of real numbers, R.

Definition 8.3. The set of real numbers, R, is the set of equivalence classes of

rational Cauchy sequences under the equivalence relation R∼ in Definition 8.1.

Since we already know the set Q is a commutative ring with unity, and we

add/multiply elements of these equivalence classes by choosing representative

sequences of rationals and add/multiply those term-by-term, it follows that R
is also a commutative ring with unity. (See Problem 8.) The additive identity is

[(0)], the multiplicative identity is [(1)], and the additive inverse of [(an)] is [(−an)].
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All of the properties of a commutative ring with unity for R follow directly from

those of Q, as the next example illustrates.

Example 8.1. To see that the left distributive rule holds for R, let [(an)], [(bn)], [(cn)] ∈
R. Then

[(an)]([(bn)] + [(cn)]) = [(an)][(bn + cn)] Definition of +
= [(an(bn + cn))] Definition of ·
= [(anbn + ancn)] Left distributive law for Q
= [(anbn)] + [(ancn)] Definition of +
= [(an)][(bn)] + [(an)][(cn)] Definition of ·.

Notice the left distributive law for Q is the essential step. The other ring prop-

erties are proved similarly.

We also expect R to be a field, but multiplicative inverses are a bit trickier,

since we can’t just take [( 1
an
)] to be the multiplicative inverse of an equivalence

class [(an)] ̸= [(0)], since some of the individual terms ai might be 0. Fortunately,

in that case, the individual terms eventually are “bounded away from 0,” as the

next theorem shows, so we will be able to create an inverse for [(an)].

Theorem 8.4. If (an) is a rational Cauchy sequence and [(an)] ̸= [(0)], then ∃q ∈ Q+

and ∃N ∈ Z+ such that |an| > q whenever n > N .

Proof. Since (an) ̸R∼ (0), it follows that (an) ̸→ 0, so ∃ϵ0 ∈ Q+ such that ∀N ′ ∈ Z+,

|al| ≥ ϵ0 for some l > N ′. Since (an) is Cauchy, ∃N ∈ Z+ such that |an − am| < ϵ0
2

whenever n,m > N . So, from the previous line, there exists some k > N such that

|ak| ≥ ϵ0.

Notice |ak| = |am + (ak − am)| ≤ |am| + |ak − am|. So for all m > N (since we know

k > N ),

|am| ≥ |ak| − |ak − am|

≥ ϵ0 − |ak − am|

> ϵ0 −
ϵ0
2

=
ϵ0
2
.

So taking q = ϵ0
2

satisfies the theorem. □

Theorem 8.4 allows us to construct multiplicative inverses of nonzero reals.

For suppose (an) is a rational Cauchy sequence such that [(an)] ̸= [(0)]. Then by

Theorem 8.4, ∃q ∈ Q+, ∃N ∈ Z+ such that |an| > q for all n > N . Thus, we can
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define the sequence bn by

bn =

{
whatever you want if n ≤ N
1
an

if n > N

Then clearly (anbn) → 1, so it appears [(bn)] is the multiplicative inverse of [(an)]. All

that remains to be shown is that (bn) Cauchy. (If not, then (bn) has no equivalence

class at all.) To see why this is so, notice that for n > N ,

|bn − bm| =

∣∣∣∣ 1an − 1

am

∣∣∣∣
=

|am − an|
|anam|

.

Let ϵ ∈ Q+, and let q ∈ Q+ and N1 ∈ Z+ be the values guaranteed in Theorem 8.4.

Since (an) is Cauchy, ∃N2 ∈ Z+ such that |am−an| < q2ϵ whenever n,m > N2. Then,

for all n,m > max{N1, N2}, |bn− bm| = |am−an|
|anam| <

q2ϵ
|anam| <

q2ϵ
q2

= ϵ. Thus (bn) is Cauchy,

and [(bn)] is the multiplicative inverse of [(an)].

So R is a commutative ring with unity in which every nonzero element has a

multiplicative inverse, so R is a field.

Problem 9 in Chapter 3 used an injection ϕ : N → Z that preserved both addi-

tion and multiplication to show we could consider N ⊆ Z. Problem 11 in Chap-

ter 5 used an injection ψ : Z → Q that preserved both addition and multiplication

to show we could consider Z ⊆ Q. In a similar way, we can consider Q ⊆ R by

defining λ : Q → R by λ(a) = [(a)], where the latter is the equivalence class of

the constant sequence (a). Then λ is an injection (see Problem 7), and for all

a, b ∈ Q, λ(a + b) = λ(a) + λ(b) and λ(ab) = λ(a)λ(b), so λ preserves both addition

and multiplication. Also, λ(0) = [(0)] and λ(1) = [(1)]. Thus the set of equivalence

classes of convergent rational sequences – those that are equivalent to constant

rational sequences – can be identified with the rational numbers by identifying

each convergent rational sequence with its rational limit.

But there are other rational Cauchy sequences that do not converge at all in

Q, such as the sequences in Examples 7.1 and 7.2. Such sequences are not

equivalent to constant rational sequences. Thus the set of equivalence classes

of rational Cauchy sequences can be partitioned into two sets: those that are

equivalent to constant rational sequences and those that are not. The latter

are known as irrational numbers. (Note: The method of Example 7.1 shows

how to construct a rational Cauchy sequence that converges to a given irrational

number, in the sense you learned about in Calculus.)
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Problems. 1. Prove R∼ in Theorem 8.1 is reflexive and symmetric.

2. Assume (an) → a, and let (a) be the constant sequence in which every element

is the number a. Prove (an)
R∼ (a), where R∼ is as in Definition 8.1.

3. Let (an) = ((−1)n), (bn) = ((−1)n+1), and (cn) = ( 1
n
). Find all possible sums and

products of pairs of these three sequences, as in Definition 8.2.

4. Prove the sum part of Theorem 8.2.

5. Prove the first part of Theorem 8.3. This uses the usual techniques (the trian-

gle inequality and a couple of ϵ
2
’s).

6. Finish the proof of the second part of Theorem 8.3.

7. Prove if a, b ∈ Q and ∀ϵ ∈ Q+, |a − b| < ϵ, then a = b. Then use that fact to

prove the function λ : Q → R defined by λ(a) = [(a)], where (a) is the constant

sequence a, a, a, . . . , is an injection.

8. Prove both addition and multiplication of equivalence classes of rational Cauchy

sequences are commutative.

9. We defined the relation R∼ on the set C of rational Cauchy sequences, but it ac-

tually can be applied to the set of all rational sequences, Cauchy or not, using

the same definition. Provide an example of two (unequal) rational sequences

(an) and (bn) that are not Cauchy but satisfy (an)
R∼ (bn).

10. The rational Cauchy sequence ( 1
n
) consists entirely of positive terms, but [( 1

n
)]

has no multiplicative inverse. Explain why [(n)] doesn’t serve as its multiplica-

tive inverse.

11. Let (an) be the sequence

2, 0,
3

2
, 0,

4

3
, 0,

5

4
, 0, . . . ,

n+ 1

n
, 0, . . .

Then (an) ̸R∼ (0) but (an) is not “bounded away from 0” in the sense of Theo-

rem 8.4. Why doesn’t this example show Theorem 8.4 is false?

Now let’s talk about decimals! You probably believe that a real number is

rational iff its decimal representation is either terminating or repeating. It’s

easy to see how every terminating decimal can be written as a fraction of two

integers. For example, 4.136 = 4136
1000

.

You can also write every repeating decimal as a fraction of two integers.

For example, given 4.32727, Let x = 4.32727. Then 10x = 43.2727 and 1000x =

4327.2727. Subtracting these two equations yields 990x = 4284, so x = 4284
990

.
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12. But why is the decimal representation of every rational guaranteed to be re-

peating9? The answer comes from the Division Algorithm.

(a) Write out 5÷ 7 using long division until things start repeating.

(b) What is the length of the repeating period?

(c) What is the maximum possible length of the repeating period of a fraction

of the form a
7
? Hint: think of the possible remainders when you divide an

integer by 7 in each step of the long division. (If you get a 0 remainder,

then you get 0s forever.)

13. Another question is when is the decimal representation of a rational number

terminating instead of repeating? The key is that every repeating decimal can

be written as a
10n

for some n, and that 10 = 2 · 5.
(a) Write 71

22·53 as a terminating decimal.

(b) Explain how you could write a
2k5l

as a terminating decimal.

(c) Finish the sentence: Assume a
b

is a fraction of two integers in lowest terms.

Then the decimal representation of a
b

is terminating iff the prime factor-

ization of b only contains the primes . . . .

9Notice every terminating decimal can be considered a repeating decimal where 0’s are re-
peated, for example, 2.245 = 2.2450000.
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9. THE REALS II

In this chapter, we extend the notion of order to R, which gives us the notion

of convergent, real-valued sequences. We also summarize the various algebraic

properties of R, and identify an essential difference between the real and the

rationals. We also introduce the topological notion of a neighborhood.

9.1. Order on R. Following the procedure used in developing order on the other

number systems, we first need to define what it means for [(an)] to be positive,

then use that to introduce an order on R. Notice it is not sufficient to simply say

that (an) is positive if an > 0 for all n, since 1
n
> 0 for all n, but [( 1

n
)] = [(0)].

Definition 9.1. The rational Cauchy sequence (an) is positive if ∃q ∈ Q+ and

∃N ∈ Z+ such that an > q whenever n > N .

The idea is that the terms of (an) are eventually all greater than some fixed

positive rational number q.

We want to apply this notion to equivalence classes of rational Cauchy se-

quences. The next theorem says we can, i.e., the notion of being positive is

well-defined.

Theorem 9.1. Let (an) and (bn) be rational Cauchy sequences. If (an) is positive
and (an)

R∼ (bn), then (bn) is positive.

Proof. (Sketch) By hypothesis, if n is large enough, then an > q for some q ∈ Q+

and bn can be made arbitrarily close to an. So if we make bn within q
2

of an, then

bn >
q
2
, and hence (bn) will be positive. □

So a real number [(an)] is positive if any representative of [(an)] is a positive

sequence in the sense of Definition 9.1.

Sums and products of positive sequences are positive as well:

Theorem 9.2. Let (an) and (bn) be rational Cauchy sequences. If (an) is positive
and (bn) is positive, then so are (an + bn) and (anbn).

Proof. (Sketch) an + bn > q1 + q2 > 0 and anbn > q1q2 > 0 when n is large enough. □

Definition 9.2. A rational Cauchy sequence (an) is a null sequence if (an)
R∼ (0).

By Theorem 8.4, if (an) ̸R∼ (0), then ∃q ∈ Q+ and ∃N ′ ∈ Z+, such that |an| > q

whenever n > N ′. Since (an) is Cauchy, its terms eventually become as close as
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we like, so it follows that ∃N ∈ Z+ such that ∀n > N , either an > q or −an > q.

In other words, either (an) is positive or (−an) is positive. So, given a rational

Cauchy sequence (an), we have three possibilities:

(1) (an) is positive.

(2) (−an) is positive.

(3) (an) is a null sequence.

In other words, we have the trichotomy property for R.

As usual, we can define (an) < (bn) whenever (bn − an) is positive. By Theo-

rem 9.1, these notions are well-defined under R∼, so they apply to equivalence

classes of rational Cauchy sequences under R∼, so we have an order on R.

With this order on R, we can extend the usual piece-wise definition of the

absolute value of a rational number to that of a real number, providing us with

the notion of distance between the two reals r and s as |r−s|. This in turn enables

us to extend the notion of convergent rational sequence to that of a convergent

real sequence; the definition is the usual one you saw in Calculus: (rn) → r

provided ∀ϵ ∈ R+, ∃N ∈ Z+ such that |rn − r| < ϵ whenever n > N . An analog of

Theorem 7.1 for R also holds – the proof is essentially identical – which gives us

the triangle inequality for R: ∀x, y ∈ R, |x+ y| ≤ |x|+ |y|.
At this point, we can consider [(an)] as the limit of the sequence (an), where that

limit can be rational or irrational. We have already seen that, for a ∈ Q, (an) 7→ a

iff [(an)] = [(a)], and we have our embedding λ : Q → R given by λ(a) = [(a)] from

Chapter 8. Using limits of rational Cauchy sequences that did not converge in

Q, we can “plug the holes” in our rational line with these irrational limits to

complete the real line.

9.2. Some axioms of R. Up to this point, starting with the Peano Axioms, we

did the following:

(1) Constructed N.

(2) Used N to construct Z.

(3) Used Z to construct Q.

(4) Used Q to construct R.

Each of these number systems has an order ≤ on it, and that order is total,

i.e., any two elements of any system are comparable to each other.
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Now let’s shift perspective. Instead of building R through stages from N, let’s

look at the axioms R satisfies. We’ll list them from the most general (a group

under addition) to the most specific (an ordered field):

• We have a nonempty set R with the binary operation + that forms a group:

(1) + is associative.

(2) + has an identity element, 0.

(3) Every element of a ∈ R has an inverse under +, −a.
• This group R is abelian:

(4) + is commutative.

• In addition, R has another binary operation · that makes R into a ring:

(5) · is associative.

(6) For all a, b, c ∈ R, a(b+ c) = ab+ ac and (a+ b)c = ac+ bc.

• The ring R is commutative:

(7) · is commutative.

• The ring R has unity (or has 1):

(8) · has an identity element, 1.

• R is a field:

(9) Every nonzero element a ∈ R has an inverse under ·, 1
a
.

• R is totally ordered under ≤:

(10) For all a ∈ R, a ≤ a (reflexivity).

(11) For all a, b, c ∈ R, if a ≤ b and b ≤ a, then a = b (antisymmetry).

(12) For all a, b, c ∈ R, if a ≤ b and b ≤ c, then a ≤ c (transitivity).

(13) For all a, b ∈ R, a ≤ b or b ≤ a (comparability).

• R is an ordered field:

(13) For all a, b, c ∈ R, if a ≤ b , then a+ c ≤ b+ c.

(14) For all a, b ∈ R, if a, b ≥ 0, then ab ≥ 0.

We will now think of Q ⊆ R as the elements of R that can be expressed as a

quotient of two elements of Z.

At each stage of development, from N to Z to Q, we gained an additional prop-

erty from the previous stage. Specifically, all elements of Z had additive inverses,

while that was not true for N, and all nonzero elements of Q had multiplicative

inverses, while that was not true for Z. But since Q satisfies the full list of axioms

above, we have not yet found a property that R has that Q doesn’t. That property

involves bounds.
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9.3. Completeness of R.

Definition 9.3. Let S be a nonempty subset of R. A least upper bound for S, or

supremum, is a real number u such that

(1) ∀s ∈ S, s ≤ u.

(2) If u′ < u, then ∃s′ ∈ S such that u′ < s′.

Part (1) says u is an upper bound for S, while part (2) says u is the least such.

The supremum of S is denoted sup S. Similarly, the greatest lower bound, or

infimum, of S is denoted inf S.

The supremum of any nonempty set of reals is unique, as is the infimum; see

Problem 4. Also, sup S may or may not be an element of S; see Problem 6.

An essential difference between Q and R is that the latter satisfies the following

axiom:

Axiom of Completeness. Every nonempty set of real numbers that is bounded

above has a least upper bound.

In other words, if ∅ ≠ S ⊆ R and S has an upper bound, then sup S exists and

is a real number. This is false if R is replaced by Q, as Problem 6f shows. That

is, a nonempty set of rationals that is bounded above need not have a rational

least upper bound.

The Axiom of Completeness plays an essential role in Calculus. In particular,

it is used to prove the Intermediate Value Theorem and the Extreme Value The-

orem. The latter is then used to prove Rolle’s Theorem, which is used to prove

the Mean Value Theorem. The Mean Value Theorem is then used for a variety

of results, such as the relationship between the sign of f ′(x) and the increas-

ing/decreasing nature of f(x).

In order to prove the Axiom of Completeness for R, we will construct two ratio-

nal Cauchy sequences, one increasing toward sup S and one decreasing toward

sup S. We will then show that these sequences are R∼ equivalent, and show that

their equivalence class is equal to the real number sup S.

Proof. Assume ∅ ≠ S ⊆ R is bounded above. Let u be a rational upper bound for S

and let l be a rational such that ∃s ∈ S such that l < s (we know such an s exists

because S ̸= ∅).
Define the rational sequences (ln) and (un) recursively as follows:

Base. l0 = l and u0 = u.

Recursive Step. Let avg(ln, un) = ln+un

2
.
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• If avg(ln, un) is an upper bound for S, define ln+1 = ln and un+1 =

avg(ln, un).

• If avg(ln, un) is not an upper bound for S, define ln+1 = avg(ln, un) and

un+1 = un.

Notice (ln) and (un) are rational sequences, and (ln) is increasing while (un) is

decreasing. Furthermore, each element of (un) is an upper bound for S, while no

element of (ln) is an upper bound for S.

By construction, the distance between un+1 and ln+1 is half of the distance

between un and ln for all n. It follows that |un − ln| = 1
2n
|u0 − l0| for all n. Since, for

all m > n, ln ≤ lm ≤ un and ln ≤ um ≤ un, we also have

|um − un| ≤ |un − ln| and

|lm − ln| ≤ |un − ln|.

Since |un − ln| = 1
2n
|u0 − l0| and 1

2n
→ 0, it follows that

• Both (ln) and (un) are Cauchy, and

• (ln)
R∼ (un).

We assert that [(un)] = sup S. Since un is an upper bound for S for all n,

[(un)] is an upper bound for S. Suppose there is some real number α such that

α < [(un)] = [(ln)] and α is an upper bound for S. Since (ln) is an increasing

sequence, ∃k ∈ Z+ such that α < lk. But no element of (ln) is an upper bound for

S, so α isn’t either. Thus [(un)] = sup S, as asserted.

Therefore the Axiom of Completeness holds for R.

□

9.4. Topological Notions. The open intervals utilized in real analysis are a spe-

cial case of the notion of an open neighborhood in any “topological space” that

has a distance function defined on it.

Definition 9.4. Let x ∈ R and let ϵ > 0. The ϵ-neighborhood of x or ϵ-ball about
x is the set

Bϵ(x) = {y ∈ R | |x− y| < ϵ}.

Thus Bϵ(x) consists of points within ϵ of x on the real number line, i.e., elements

of the open interval (x − ϵ, x + ϵ). Notice this definition applies to any set X that

contains a notion of distance (known as a metric):

Bϵ(x) = {y ∈ X | d(x, y) < ϵ},
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where d(x, y) denotes the distance between x and y. Using the usual notion of

distance in Euclidean 3-space, an ϵ-ball about x actually looks like a ball; it is

the interior of a sphere.

We have yet another version of the Archimedean Principle:

Archimedean Principle. For every real number x there is a positive integer n

such that n > x.

Proof. (By contradiction.) If not, then there is some real number x such that

∀n ∈ Z+, n ≤ x. Thus Z+ has an upper bound. By the Axiom of Completeness, Z+

has a least upper bound, say α ∈ R. Since α − 1 is not an upper bound for Z+,

∃k ∈ Z+ such that k > α− 1. But then α < k + 1 ∈ Z+, a contradiction. □

We will use this to prove a fundamental property of the rationals and the reals:

between any two real numbers there exists a rational number.

Theorem 9.3. Let x ∈ R and let ϵ > 0. Then ∃q ∈ Q such that q ∈ Bϵ(x).

Proof. Let x and ϵ be given. We need to show there is some rational number in

the interval (x− ϵ, x+ ϵ). By the Archimedean Principle, ∃n ∈ Z+ such that n > 1
ϵ
,

that is, 0 < 1
n
< ϵ.

Let S = { i
n
| i ∈ Z}. Then S ⊆ Q and the distance between any two successive

elements of S, i
n

and i+1
n

, is i+1
n

− i
n
= 1

n
< ϵ. But the distance between x + ϵ and

x− ϵ is 2ϵ, so at least one element of S must lie in Bϵ(x). □

An equivalent formulation of Theorem 9.3 (see Problem 7) is that between any

two real numbers, there is a rational number. Since this holds for any two

real numbers, it follows that between any two irrational numbers, there exists a
rational number. In fact, it is also true that between any two real numbers, there

is an irrational number (Problem 8). Since this holds for any two real numbers, it

follows that between any two rational numbers, there exists a irrational number.

So, we have

(1) Between any two irrational numbers, there exists a rational number.

(2) Between any two rational numbers, there exists a irrational number.

(3) The rational numbers are countably infinite10.

(4) The irrational numbers are uncountable.

This is an example of a situation where finite intuition can be misleading for an

infinite problem.

10That is, there is a bijection from N to Q.
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Problems. 1. Fill in the details of the proof of Theorem 9.1.

2. Fill in the details of the proof of Theorem 9.2.

3. Let x, y ∈ R. Prove if ∀ϵ > 0, x < y + ϵ, then x ≤ y.

4. Let S ⊆ R be nonempty. Prove sup S is unique if it exists.

5. Prove if a = sup A and b = sup B, then a+ b is an upper bound for

C = {x+ y ∈ R | x ∈ A and y ∈ B}.
6. Find the supremum and infimum of each of the following subsets S ⊆ R if

possible, and state whether they are elements of S.

(a) {1, 2, 3}.
(b) { n

n+1
| n ∈ Z+}.

(c) {2n+1
n+1

| n ∈ Z+}.
(d) [0,∞).

(e) [0, 4).

(f) {q ∈ Q | 0 ≤ q ≤
√
2}.

7. Use Theorem 9.3 to prove ∀x, y ∈ R with x < y, ∃q ∈ Q such that x < q < y.

8. (a) Prove the product of a rational number and an irrational number is irra-

tional. (Hint: Proof by contradiction.)

(b) Given x, y ∈ R with x < y, use Problem 7 to show ∃q ∈ Q such that x√
2
< q <

y√
2
.

(c) Conclude q
√
2 is irrational.

(d) Since x < q
√
2 < y, conclude that there is an irrational number between

any two real numbers.

9. We know that |a − b| is the distance between the numbers a and b on the

number line. So we could define a distance function d(a, b) = |a− b| on R = R1.

(a) Draw the set {x ∈ R | d(x, 0) = 1}.
(b) We can also define the usual distance of points in the plane, R2, using the

distance formula:

d((x1, y1), (x2, y2)) =
√
(x2 − x1)2 + (y2 − y1)2.

Draw the set {(x, y) ∈ R2 | d((x, y), (0, 0)) = 1}.
10. There are other ways to measure “distance.” Here is another measure of dis-

tance in R2:

ρ((x1, y1), (x2, y2)) = max{|x2 − x1|, |y2 − y1|}.
Draw the set {(x, y) ∈ R2 | ρ((x, y), (0, 0)) = 1}.
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A. THE BASICS OF LOGIC

This chapter reviews the usual basic notions of propositional logic and quan-

tifiers.

Definition A.1. A proposition or statement is a sentence that is either true or

false. Given propositions p and q, compound propositions can be formed using

the following logical operations (each given by its defining truth table):

Negation (∼):
p ∼ p
T F
F T

Disjunction (∨):

p q p ∨ q
T T T
T F T
F T T
F F F

Conjunction (∧):

p q p ∧ q
T T T
T F F
F T F
F F F

Implication (⇒):

p q p⇒ q
T T T
T F F
F T T
F F T

Biconditional (⇔):

p q p⇔ q
T T T
T F F
F T F
F F T

Think of propositions p, q, r, etc. as “logical variables” that can take on the

“logical values” T and F in logical expressions containing ∼, ∨, ⇒, etc. Compare

this with the “real variables” x, y, z, etc. that can take on any “real value” in

algebraic expressions containing +, ·, etc.

Definition A.2. 1. Two compound propositions are logically equivalent if they

have the same truth value regardless of the truth values of their constituent

propositions.

2. A compound proposition is a tautology if it is always true, regardless of the

truth values of its constituent propositions.

3. A compound proposition is a contradiction if it is always false, regardless of

the truth values of its constituent propositions.

DeMorgan’s Laws state that the negation of a conjunction is a disjunction and

vice-versa. More precisely, the negation of the proposition “p∨q” is the proposition

“(∼ p) ∧ (∼ q)” and the negation of the proposition “p ∧ q” is the proposition “(∼
p) ∨ (∼ q).”
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Definition A.3. Let p ⇒ q be an implication. Its hypothesis is p, its conclusion
is q, its converse is q ⇒ p and its contrapositive is (∼ q) ⇒ (∼ p). An implication

is logically equivalent to its contrapositive but not to its converse. The negation

of p⇒ q is p ∧ (∼ q). (See Problem 2.)

Definition A.4. There are two quantifiers for logical variables:

1. The universal quantifier, ∀, which is read “for each,” “for all,” “for every,” etc.

2. The existential quantifier, ∃, which is read “for some,” “for at least one,” “there

exists,” etc.

The negation of a universal quantifier is an existential quantifier, and vice

versa. More precisely, the negation of the proposition “∀x, P (x)” is the proposition

“∃x such that (∼ P (x))”, and the negation of the proposition “∃x such that P (x)”

is the proposition “∀x, (∼ P (x))”.

Problems. 1. Provide an example that shows an implication is not logically equiv-

alent to its converse.

2. Use truth tables to prove the negation of p ⇒ q is p ∧ (∼ q). Notice this shows

that THE NEGATION OF AN IMPLICATION IS NOT AN IMPLICATION.

3. Find the hypothesis, conclusion, converse, contrapositive, and negation of the

following implication:

If today is Monday, then this class is algebra or this class is anal-

ysis.

4. Use truth tables to prove p⇒ (q ∨ r) is logically equivalent to

(p ∧ (∼ q)) ⇒ r. (This is a handy logical equivalence.) Use this to rewrite the

following statement:

If x⊗ y ∈ P , then x ∈ P or y ∈ P .

5. Use the logical equivalence in Problem 4 and some basic algebra to prove the

following:

Let x be a real number. If x2 > 1, then x > 1 or x < −1.

6. Negate each of the following:

(a) All cows have four legs.

(b) Some sheep have three legs.

(c) For all x, there exists a y such that xy > 0 or x ≥ y.

(d) If x2 ≥ 9, then x ≥ 3 or x ≤ −3.

(e) If x2 ≤ 9, then −3 ≤ x ≤ 3.
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(f) ∀ϵ,∃δ such that |x − c| < δ ⇒ |f(x) − L| < ϵ. (Recall this is the definition of

the limit of a function from Calculus I.)

(g) If f is continuous on [a, b] and differentiable on (a, b), then there exists

c ∈ (a, b) such that f ′(c) =
f(b)− f(a)

b− a
. (This is the Mean-Value Theorem

from Calculus I.)

(h) All monkeys are curious, but no monkey is as curious as George. (This

is from the children’s book “Curious George flies a kite,” by H.A. Rey and

Margaret Rey.)
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B. THE BASICS OF SETS

This chapter contains a brief review of operations on sets and the power set of

a set. Parallels are drawn between certain operations on sets and certain opera-

tions on propositions. Russell’s famous paradox is briefly discussed. Most of this

should be review, with the exception Russell’s paradox and the union/intersection

of an indexed family of sets.

We assume the notions of a set, an element of a set, a universe of discourse,

and the empty set ∅. A set can be defined by (i) naming all its members, such

as X = {a, b, c, d}, or (ii) by means of a particular property, such as X = {x ∈ U |
x possesses property P}, or (iii) via recursion (that is, inductively) in some cases.

The relationship between subsets of a common universal set can be illustrated

with a Venn diagram. If X is a finite set, we denote the number of elements of

X by |X|.

Definition B.1. A set B is a subset of a set A, denoted by B ⊆ A, if every element

of B is an element of A. More specifically, B ⊆ A provided x ∈ B ⇒ x ∈ A. A = B

if A ⊆ B and B ⊆ A. B is a proper subset of A if B ⊆ A but B ̸= A.

The above definition is more important than it at first seems. Remember it

when asked to show that one set is a subset of another, or when asked to show

two sets are equal.

Definition B.2. Let U be the universe of discourse, let A ⊆ U , and let B ⊆ U .

Then the notions of union, intersection, difference, complement are given by

A ∪B = {x ∈ U | x ∈ A or x ∈ B}
A ∩B = {x ∈ U | x ∈ A and x ∈ B}
A−B = {x ∈ A | x ̸∈ B} (Note: it is not assumed B ⊆ A.)

A′ = {x ∈ U | x ̸∈ A} = U − A.

There are more general notions of intersection and union:

Definition B.3. Let U be the universe of discourse, let Λ ̸= ∅ and let A = {Aα |
α ∈ Λ} be an indexed family of sets. Then

⋃
A =

⋃
α∈Λ

Aα = {x ∈ U | ∃β ∈ Λ such that x ∈ Aβ}

⋂
A =

⋂
α∈Λ

Aα = {x ∈ U | ∀α ∈ Λ, x ∈ Aα}
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Definition B.4. If X is a set, then the power set of X, denoted P(X) or 2X, is the

set of all subsets of X, i.e., P(X) = {A | A ⊆ X}.

If X is a finite set, then |P(X)| = 2|X|, which is why P(X) is sometimes denoted

2X. This can be proven by induction or by realizing P(X) as the set of all functions

from X to a set with two elements, and counting them. See Problem 8 and

Problem 9.

Definition B.5. (1) The Cartesian product of the sets X and Y is the set

X × Y = {(x, y) | x ∈ X and y ∈ Y }.

(2) More generally, the Cartesian product of the sets S1, S2, . . . , Sn is the set
n∏

i=1

Si = S1 × S2 × · · · × Sn = {(a1, a2, . . . , an) | ai ∈ Si}.

It pays to think of X×Y as a sort of rectangular structure. In particular, when

both sets are finite, |X × Y | = |X||Y |.
There is an analogy between the logical operations and the set operations

above. In particular,

Logical operation Set operation
∼ p A′

p ∨ q A ∪B
p ∧ q A ∩B
p⇒ q A ⊆ B
p⇔ q A = B

The above is called “naive set theory” because it is not a rigorous, axiomatic

structure. While everything above seems quite reasonable, the system can lead

to a contradiction. This was famously attributed to Bertrand Russell (British

philosopher, logician, mathematician, historian, socialist, pacifist, and social

critic) in 1901, and is known as Russell’s paradox. Here is a common form of it:

Let M = {x | x /∈ x}. (That is, M is the set of all sets that are not

members of themselves11.) Since M is a set, there are two possibil-

ities: either M ∈M or M /∈M . But

If M /∈M , then by definition of M , M ∈M .

11For example, take the set of all squares. That set is not itself a square, and therefore is not
a member of the set of all squares. On the other hand, if we take the complementary set that
contains all non-squares, that set is itself not a square and so should be one of its own members.



62 LEONARD VAN WYK

If M ∈M , then by definition of M , M /∈M .

Thus M ∈M iff M /∈M .

Problem 14 contains a more popular version of Russell’s paradox.

This uncomfortable paradox was ultimately avoided by using one of two ax-

iomatic systems for set theory: Gödel-Bernays set theory or Zermelo-Fraenkel

set theory. (ZFC set theory consists of the latter together with the Axiom of

Choice.) A foundations topics course is recommended for a solid treatment of

these systems.

Problems. 1. T (true) or F (false)?

T F {a, b} ⊆ {{a, b}, a, b}.
T F {a, b} ∈ {{a, b}, a, b}.
T F {a} ∈ {{a, b}, a, b}.
T F ∅ ∈ {{a, b}, a, b}.
T F ∅ ⊆ {{a, b}, a, b}.
T F ∅ ∈ ∅
T F ∅ ⊆ ∅
T F ∅ ∈ {∅}
T F ∅ ⊆ {∅}
T F ∅ ∈ {∅, {∅}}
T F {∅} ∈ {∅, {∅}}
T F {{∅}} ⊆ {∅, {∅}}

2. Suppose A and B are both subsets of a set containing 100 elements. If |A| = 55

and |B| = 40, what is the largest |A ∪ B| could be? The smallest? What is the

largest |A ∩B| could be? The smallest? Venn diagrams might help.

3. Suppose you try an experiment where you roll a pair of 6-sided dice. Then the

set of equally-likely outcomes is {1, 2, 3, 4, 5, 6}×{1, 2, 3, 4, 5, 6}. Draw a Cartesian

graph of this set of outcomes, and show why a total of seven is the most likely

outcome of your experiment.

4. The four subsets of the set {a, b} can be arranged in a “lattice diagram” in the

shape of a square, as shown below. Each edge represents a subset relation as

you go up. (For example, {a} ⊆ {a, b} below.) In a similar way, draw a lattice

diagram in the shape of a cube for the eight subsets of the set {a, b, c}.
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5. Let A, B and C be sets. Use Venn diagrams to illustrate the following:

(a) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
(b) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)
(c) A− (B ∪ C) = (A−B) ∩ (A− C)

(d) A− (B ∩ C) = (A−B) ∪ (A− C)

6. For each n ∈ Z+, let An be the closed interval [−n, 1
n
]. Let A = {An | n ∈ Z+}.

Find
⋃

n∈Z+

An and
⋂

n∈Z+

An.

7. Find P(∅), P(P(∅)), and P(P(P(∅)))).
8. Let X be a finite set. For each A ⊆ X, define the function fA : X → {0, 1} by

fA(x) =

{
1 if x ∈ A
0 if x ̸∈ A

For X = {a, b, c}, fill in the table below with the appropriate outputs.

x f∅(x) f{a}(x) f{b}(x) f{c}(x) f{a,b}(x) f{a,c}(x) f{b,c}(x) fX(x)

a

b

c

Are there any other functions f : {a, b, c} → {0, 1}?
9. Let X be a finite set, let A ⊆ X, and let fA : X → {0, 1} be the function defined

in Problem 8.

(a) If |X| = n, how many such functions are there? Why?

(b) Generalize the idea in Problem 8 to argue that the number of subsets of

X is 2n.
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10. In Problem 8, write the output columns as vectors in R3. For example, the

columnn under f{a}(x) would be written (1, 0, 0). Plot each of these eight points

in the x− y − z coordinate system. Observe that the resulting points form the

vertex of a cube which can be realized as the same cube in Problem 4.

11. The type of proofs by induction that you were asked to do probably involved

some kind of equation like “1 + 2 + 3 + · · · + n = n(n+1)
2

,” as if that equation

dropped out of the sky. But in reality, this pattern emerged after looking at

some examples, and the equation resulted from a general description of that

pattern.

We have seen that for a finite set X, |P(X)| = 2|X|. In Problem 9, we showed

this by counting functions X → {0, 1}. This can also be done by induction, and

the following illustrates the pattern that is required for the inductive step.

(a) Write P({a}).
(b) Write P({a, b}) as the union of P({a}) and another set with the same size.

(c) Write P({a, b, c}) as the union of P({a, b}) and another set with the same

size.

(d) Write P({a, b, c, d}) as the union of P({a, b, c}) and another set with the same

size.

Notice that each set has twice as many elements as the set above it. That
is why the number of subsets of a set with n elements is 2n, and that is where

that formula comes from ... noticing the pattern from examples.

12. In Calculus, you learned the following: “If f(x) is differentiable, then f(x)

is continuous.” Illustrate this implication with a Venn diagram, where the

universe of discourse is the set of all functions of x. Show how this same

diagram illustrates the contrapositive of that statement.

13. If A = {a, b, c, . . . , x, y, z} and D = {0, 1, 2, . . . , 8, 9}, what is |A × D|? Prove or

disprove: A×D = D × A.

14. Here is the Barber paradox:

Suppose there is a town with just one male barber; and that every

man in the town keeps himself clean-shaven: either by shaving them-

selves or by being shaved by the lone barber. It seems reasonable to

imagine that the barber obeys the following rule: He shaves all and

only those men in town who do not shave themselves.

Under this scenario, we can ask the following question: Does the

barber shave himself?

Explain the paradox.
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C. RELATIONS AND FUNCTIONS

In this chapter, we discuss relations, and define equivalence relations, partial

orders, and functions. Inverses and inverse images of sets under functions are

defined, as well as special types of functions. Topics new to the student might

include inverse images of sets under functions, partial orders, and the Axiom of

Choice; the last of these is only briefly mentioned, and its understanding is not

essential for subsequent chapters.

Definition C.1. Let X and Y be nonempty sets. A relation from X to Y is a

subset R ⊆ X × Y . The statement “(x, y) ∈ R” is sometimes denoted “xRy.” A

relation from X to X is called a relation on X.

Two common ways to represent a relation from one finite set to another are

(1) A Cartesian graph, which simply indicates which elements of X ×Y are in

R.

(2) A directed graph, consisting of vertices for each element of X ∪ Y , and a

directed edge from x ∈ X to y ∈ Y iff xRy.

If X and Y are finite, then the number of relations from X to Y is the same as

the number of subsets of X × Y , which is 2|X||Y |, which gets big fast. So we’d like

to isolate some special types of relations.

Definition C.2. Let R be a relation on X. Then R is

(1) reflexive provided ∀a ∈ X, aRa.

(2) symmetric provided ∀a, b ∈ X, if aRb, then bRa.

(3) transitive provided ∀a, b, c ∈ X, if aRb and bRc, then aRc.

(4) antisymmetric provided ∀a, b ∈ X, if aRb and bRa, then a = b.

Definition C.3. A relation R on X is

(1) an equivalence relation if it is reflexive, symmetric, and transitive.

(2) a partial order if it is reflexive, antisymmetric, and transitive.

A common symbol for a generic equivalence relation is ∼, as in x ∼ y, rather

than xRy. A common symbol for a partial order is ≤, as in x ≤ y, rather than xRy.

Notice it does not follow from the definition of partial order that for all a, b ∈ X,

either a ≤ b or b ≤ a; that is, there may exist elements that are not comparable.

Definition C.4. Let ∼ be an equivalence relation on X, and let a ∈ X. The

equivalence class of a is the set

[a] = {b ∈ X | a ∼ b}.
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Thus the equivalence class of a consists of all the elements equivalent to a

under ∼. Any element of [a] – not just a – is a representative of [a]. Think of the

set of equivalence classes of X under ∼ as the set of piles of equivalent elements.

It is immediate that the set of equivalence classes forms a partition of X into

disjoint cells (the equivalence classes). Conversely, if you first partition X into

disjoint cells and declare that two elements are equivalent iff they are in the

same cell, then you get an equivalence relation.

In order to introduce the notion of a function, we return to the more general

case of relations from one set to another.

Definition C.5. A relation R from X to Y is a function provided

(1) ∀x ∈ X, ∃y ∈ Y such that xRy.

(2) If xRy1 and xRy2, then y1 = y2.

The set X is called the domain and the set Y called the range. The first

property simply says every element in X is related to some element of Y , and

you probably know the second property as the “vertical line test.” As you know,

functions are usually denoted by letters such as f , g, ϕ, etc., and we write f(x) = y

rather than xfy. We also write x 7→ y.

Definition C.6. Let f : X → Y be a function.

(1) The image of f is

Im f = {y ∈ Y | ∃x ∈ X such that y = f(x)}.

(2) If A ⊆ X, then the image of A under f is the set

f(A) = {y ∈ Y | ∃a ∈ A such that y = f(a)}.

(3) If A ⊆ X, then the restriction of f to A is the function f |A : A → Y given

by a 7→ f(a).

(4) If B ⊆ Y , the inverse image of B under f is

f−1(B) = {x ∈ X | f(x) ∈ B}.

This is sometimes called the pre-image of B.

(5) If g : Y → Z is another function, the composition g ◦ f : X → Z is given by

x 7→ g(f(x)).

(6) f is an injection if ∀a, b ∈ X, [f(a) = f(b) ⇒ a = b].

(7) f is a surjection if ∀y ∈ Y , ∃x ∈ X such that y = f(x).

(8) f is a bijection if it is both an injection and a surjection.

The following cannot be proven or disproven. We will assume it.
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Axiom of Choice. Given any collection A of pairwise disjoint nonempty sets,

there exists a set C ⊆
⋃

A having exactly one element in common with each set

in A. (i.e., ∀A ∈ A, C ∩ A ̸= ∅ and if x, y ∈ C ∩ A, then x = y.)

There are many versions of the Axiom of Choice. Perhaps the easiest one to

understand is the existence of a “choice function” f : A →
⋃

A that “chooses”

one element from each set in A. In other words, the Axiom of Choice states that,

given a collection of disjoint sets, you can choose exactly one element from each

set. This is, of course, obvious in the case where this collection is finite.

Definition C.7. For any set X, the identity function on X is the function 11X :

X → X given by x 7→ x. Another notation is idX.

Lastly, operations like addition and multiplication are actually functions.

Definition C.8. A binary operation on a set X is a function X ×X → X.

Problems. 1. Let X = {1, 2, 3, . . . }. Define the binary operation + on X as + :

X ×X → X, given by (a, b) 7→ a+ b. Find the images of (2, 1), (5, 7), and (0, 3).

2. Define f(x) = x2, as in Calculus. Find f([1, 3]) and f−1([−1, 4]).

3. Let X = {1, 2, 3, 4, 5, 6}, and let R be the relation on X given by aRb provided a

divides b. Give the Cartesian graph and the directed graph associated to R.

4. Let f : X → Y be a function. Define ∼ on X by a ∼ b provided f(a) = f(b). Prove

∼ is an equivalence relation on X.

5. Let f(x) = sin x, as in Calculus, and let ∼ be as in Problem 4. Find [0], the

equivalence class of 0 under ∼.

6. The reflexive, symmetric, and transitive properties are independent of each

other. Let

X = {a, b, c}. Draw a directed graph that represents a relation on X that is:

(a) Reflexive, but neither symmetric nor transitive.

(b) Symmetric, but neither reflexive nor transitive.

(c) Transitive, but neither reflexive nor symmetric.

7. Determine the number of equivalence relations on a set with three elements.

Hint: Since there is a one-to-one correspondence between the set of equiva-

lence relations and the set of partitions, figure out how many partitions there

are.
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8. Start with a set with three elements and take its power set. Partially order

this power set by inclusion, i.e. X ≤ Y if X ⊆ Y . Give the directed graph

associated to this partial order. Hint: It looks cool if you stick it on a cube.

9. Let X be the set of students in this class born in the United States, and let

Y be the set of the 50 U.S. states. Let f : X → Y be the function that sends

student x to the state in which s/he was born.

(a) Do you think f is an injection? Why?

(b) Do you think f is a surjection? Why?

(c) Do you think f is a bijection? Why?

(d) Describe, in English, f({Jackie, Joe, Morgan}).
(e) Describe, in English, f−1(Pennsylvania).

10. Let 11X and 11Y be the identity functions on X and Y , respectively (as in Defi-

nition C.7), and let f : X → Y be a function. Prove f ◦ 11X = f and 11Y ◦ f = f .

(This is why these are called identity functions; they act as the identity under

composition.)

11. Let f : X → Y be a function and A ⊆ X. Prove A ⊆ f−1(f(A)).

12. Let f : X → Y be a function and B ⊆ Y . Prove f(f−1(B)) ⊆ B.

13. Prove the composition of two injections is an injection.

14. Prove the composition of two surjections is a surjection.

15. If X is a finite set, then there is obviously no surjection f : X → P(X), since

P(X) has more elements than X. If X is infinite, there is also no surjection

f : X → P(X), but the same argument doesn’t hold, since you can’t “count”

the elements of either set. But here is a clever argument that proves there is

no such surjection:

Proof. (By contradiction.) Suppose f : X → P(X) is a surjection. Define

A = {x ∈ X | x ̸∈ f(x)}.

(For example, if f : {a, b} → {∅, {a}, {b}, {a, b}} is given by f(a) = {b} and f(b) =

{a, b}, then a ̸∈ f(a) and b ∈ f(b).)

Since A ⊆ X, A ∈ P(X). Since f is a surjection, ∃a ∈ X such that

f(a) = A = {x ∈ X | x ̸∈ f(x)}.

Show we have a contradiction. Specifically, if a ∈ A then a ̸∈ A, and if a ̸∈ A,

then a ∈ A.
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