July 2012

The GICHD Tool for Management of Mechanical Demining Operations

Pehr Lodhammar
Geneva International Centre for Humanitarian Demining (GICHD)

Erik de Brun
GICHD Consultant

Follow this and additional works at: https://commons.lib.jmu.edu/cISR-journal

Part of the Other Public Affairs, Public Policy and Public Administration Commons, and the Peace and Conflict Studies Commons

Recommended Citation

This Article is brought to you for free and open access by the Center for International Stabilization and Recovery at JMU Scholarly Commons. It has been accepted for inclusion in Journal of Conventional Weapons Destruction by an authorized editor of JMU Scholarly Commons. For more information, please contact dc_admin@jmu.edu.
NOTES FROM THE FIELD

by Pehr Lodhammar [Geneva International Centre for Humanitarian Demining] and Erik de Brun [Ripple Design]

Mechanical demining systems can greatly increase the effectiveness and efficiency of mine-clearance operations. In the past, only some commercial companies and very few noncommercial organizations used machines regularly, but today most make use of them in at least some capacity. Also, in recent years, the number of machine manufacturers has steadily grown, and many different types of machines and systems exist.

The Geneva International Center for Humanitarian Demining has researched and studied machine-deployment types of machines and systems exist. Machinery manufacturers has steadily grown, and many different machines regularly, but today most make use of them in at least some companies and very few noncommercial organizations used mechanical demining programs depends on several key elements:

- Appropriate machine-type selection
- Effective operational management
- Administration of mechanical demining operations
- Planning of mechanical demining operations
- Proper understanding of how various machines are best utilized (i.e., as stand-alone systems or jointly with other assets)

The research also revealed some unmet needs in mechanical demining:

- Operators require increased flexibility and versatility during field operations. As a result, machines are increasingly developed to support multiple working tools, such as tillers and flails. Despite the improved design of machines and their increased use, much room for improvement remains regarding how machines are deployed and how performance data is captured and processed.

- In general, mechanical demining systems in the field often are underused, which is also known as downtime. If the role of the machines in technical survey (when used alone or when combined with other methods) was more appropriately defined, overall operational efficiency would increase. Far too often, machines are not used effectively, suggesting untapped potential. This can be due to poor management and planning, a lack of logistics, or external factors such as the weather or poor security. Given the increase in mechanical demining among operators and national mine-action programs, the demand/need for assistance is likely to remain high and may increase in the coming years.

- The increased use of machines requires central coordination and support to ensure that information or experience with promising conceptual/technical innovations, as well as general global empirical experience, are shared with the community at large.

Using funds provided by the Governments of Switzerland and Sweden, GICHD worked to address these needs by developing a software tool designed to aid in the operational management of mechanical demining in 2011. The Management Tool for Demining Operations is a simple, macro-enabled, Microsoft Excel® database. This tool tracks the performance and downtime of mechanical, manual, animal detection demining assets. It was developed primarily for field/site management and is intended to:

- Be user-friendly
- Require only a short daily or weekly time commitment
- Augment, rather than replace, existing reporting/tracking processes

The database collects operational data (i.e., performance) and nonoperational data (i.e., downtime) for each working asset every work day. The data is then compiled into a series of summary reports, which can be viewed, printed or saved as PDF documents.

The user interface is designed to be intuitive for operators; it has a simple format that contains clearly-labeled data-entry fields. The main menu provides a starting point, and the tool is divided into three main sections:

- Setup
- Daily data entry
- Reporting

Using the Tool

When the tool is first used as part of a new task, the user must enter organizational and asset-specific information in the setup areas. The user only needs to enter the information once, and it can be saved and used as a baseline for mechanical, demining-centric tool was expanded to support the management of animal detection and manual-demining operations and is known as the Management Tool for Demining Operations.

Description

The Management Tool for Demining Operations is a simple, macro-enabled, Microsoft Excel® database. This tool tracks the performance and downtime of mechanical, manual and animal detection demining assets. It was developed primarily for field/site management and is intended to:

- Be user-friendly
- Require only a short daily or weekly time commitment
- Augment, rather than replace, existing reporting/tracking processes

The database collects operational data (i.e., performance) and nonoperational data (i.e., downtime) for each working asset every work day. The data is then compiled into a series of summary reports, which can be viewed, printed or saved as PDF documents.
Subsequent tasks. Task and organizational information is entered first, followed by asset information. For machines, users need to input:

- Machine-identifying information
- Tool specifications
- A capacity estimate (area processed per unit of time)

For manual-demining teams, users enter the team name, supervisor and a team-capacity estimate. For each animal asset, the animal name, handler ID and a capacity estimate are required. Assets can be added, modified or deleted at any time.

Once assets are entered into the database, the daily data entry form (Figure 4, previous page) can be used to record operational and nonoperational information for each asset entry. To begin, data about the site’s environmental conditions, e.g., weather, terrain, soil information, is recorded. Under each asset type, individual assets can be selected and specific related data entered for that working day entered. The following information for each asset is also recorded:

- Operational data, such as hours worked, area processed, or asset-specific environmental data
- Nonoperational data, such as downtime and causes
- Hazard-specific data

Once data entry is complete, operators can access the reporting forms. The demining management tool processes all recorded data and produces a set of reports for each asset group and individual reports for each specific asset. For each asset group, a two-page summary report is generated, which shows tabular and graphical data for all the active individual assets. For any specific asset, a two- to three-page report is prepared, which shows nonoperational details and operational/performance details, alongside environmental conditions (see Figures 5, 6 and 7 for an example of a mechanical asset report). Reports can be viewed within the tool, printed or exported as PDF documents.

In 2012, the tool will be improved to include a GPS tracking and visualization function, as well as other features to allow operators to view the mechanical demining unit production graphically. A small GPS tracking device will be fitted to the demining machine, and after each working session, the data collected during clearance will transfer to the management tool. To review the GPS data, the operator needs only to select appropriate dates, and the software will display a map of the area with all path data displayed as an overlay. The GPS tracking report will be viewable and printable.

Conclusion

Based on needs identified during studies of mechanical demining operations in the field, GICHD developed the Management Tool for Mechanical Demining Operations, software enabling mechanical demining operators to collect performance and downtime data and generate useful reports. The initial tool, released in mid-2011, is already used in more than 40 field projects. Based on feedback from operators, the tool was expanded to include manual demining and animal detection, and will continue to help enhance the productivity and cost-effectiveness of demining operations.

The tools and companion user manuals can be downloaded from the GICHD Web page and are regularly distributed to operators during GICHD training outreach activities. GICHD welcomes feedback from users, which should be sent to Pehr.Lodhammar@gichd.org.

See endnotes page 42

Pehr Lodhammar is the Mechanical Advisor with the Geneva International Centre for Humanitarian Demining (GICHD). He works with mechanical mine-clearance projects and training and research regarding contracting, logistics and insurance in mine action. Before joining GICHD, Lodhammar was a Project Manager at the United Nations Office for Project Services, supporting the Iraqi Kurdistan Mine Action Agency with procurement, mine-action training and construction of demining machines. Prior to 1999, he was a military Engineering Officer specializing in explosives ordnance disposal for 10 years.

Pehr Lodhammar
Mechanical Advisor
Geneva International Centre for Humanitarian Demining
1211 Geneva 1, Switzerland
Tel: +41 22 916 8341
Email: p.lodhammar@gichd.org
Website: http://www.gichd.org

Erik de Brun
Principal Engineer and Consultant Ripple Design
444 North 4th St., Unit 102
Philadelphia, PA 19106
Tel: +1 267 972 5768
Skype: ripple_erpik
Email: erik.debrun@rippledesign.com
Website: http://rippledesign.com

Erik de Brun is the Mechanical Advisor with the Geneva International Centre for Humanitarian Demining (GICHD). He works with mechanical mine-clearance projects and training and research regarding contracting, logistics and insurance in mine action. Before founding Ripple Design, de Brun designed armored vehicles with SAD Systems and V-23 Osprey high-contrast software with Boeing Fossco. He holds a Master of Science in mechanical engineering and applied mechanics from the University of Pennsylvania and a Bachelor of Science in mechanical and aerospace engineering from Princeton University.

Erik de Brun
Principal Engineer and Consultant Ripple Design
444 North 4th St., Unit 102
Philadelphia, PA 19106
Tel: +1 267 972 5768
Skype: ripple_erpik
Email: erik.debrun@rippledesign.com
Website: http://rippledesign.com

Ripple Design

See endnotes page 42

Check out what’s happening in the CISR sphere.

An online gathering place for the ERW & Mine-action community.

http://cISR.jmu.edu

16.2 | summer 2012 | the journal of ERW and mine action | org. profile

https://www.jmu.edu/cisr/journal/vol16/issue2/11

quotes from the field | the journal of ERW and mine action | summer 2012 | 16.2

http://common.lib.jmu.edu/cisr-journal/vol16/issue2/11

quotes from the field | the journal of ERW and mine action | summer 2012 | 16.2