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Abstract 
 

Ethereum, the decentralized global software platform powered by blockchain technology 
known for its native cryptocurrency, Ether (ETH), provides a technology stack for building apps, 
holding assets, transacting, and communicating without control by a central authority. At the 
core of Ethereum’s network is a suite of purpose-built protocols known as DEVP2P, which 
provides the underlying nodes in an Ethereum network the ability to discover, authenticate and 
communicate confidentiality. This document discusses the creation of a new Wireshark dissector 
for DEVP2P’s discovery protocols, DiscoveryV4 and DiscoveryV5, and a dissector for RLPx, an 
extensible TCP transport protocol for a range of Ethereum node capabilities. Network packet 
dissectors like Wireshark are commonly used to educate, develop, and analyze underlying 
network traffic. In support of creating the dissector, a custom private Ethereum docker network 
was also created, facilitating the communication amongst Go Ethereum execution clients and 
allowing the Wireshark dissector to capture live network data. Lastly, the dissector is used to 
understand the differences between DiscoveryV4 and DiscoveryV5, along with stepping through 
the network packets of RLPx to track a transaction executed on the network. 

 
Keywords: Ethereum, Dissector, DEVP2P, DiscoveryV4, DiscoveryV5, RLPx, RLP, ECIES, 
ECDH, ECDSA, Wireshark, Python, Lua, Go
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1. Introduction 
 

Ethereum, launched in 2015 as a toolkit to build decentralized applications, transact and 
communicate without a controlled central authority while also providing a framework for 
Ethereum nodes to facilitate communication [1]. Ethereum’s native cryptocurrency, Ether 
(ETH), is positioned second in terms of market cap under Bitcoin with $146.8 billion in 
circulation, over 71 million wallets holding a balance, and handling $11.6 trillion in just 2021 
[2]. As Ethereum grows in popularity, acquiring the interest of the masses, it is becoming 
imperative that the inner workings of the Ethereum network are examined and understood on a 
deeper level particularly transaction flows and the algorithms used to secure them. 
 
1.1 Ethereum Network Background 
 

An Ethereum node is simply a computer connected to the Ethereum network, running the 
specific tools required to communicate amongst other nodes. Ethereum nodes help maintain the 
decentralized network by validating transactions within data blocks, referred to as their 
consensus mechanism. The communication amongst these nodes resides on the Ethereum 
network, composed of a custom-built network protocol suite known as DEVP2P. DEVP2P 
provides a mechanism for nodes to discover one another throughout the network, authenticate 
with each other, and communicate amongst themselves over a secure channel with a wide range 
of node-specific capabilities. These capabilities can be implementation dependent or be known 
as Ethereum capabilities to support state management and synchronization with SNAP, block 
propagation, and transactions with ETH. DEVP2P started along with the Ethereum project to 
provide a set of protocols that can serve any networked application under the Ethereum umbrella. 
This means DEVP2P served most if not all, the network communication under the hood among 
decentralized applications (dAPPs), handling $11.6 trillion in transactions in just 2021 alone.   

 
However, on September 6th, 2022, the Ethereum Merge took place, transitioning from a 

proof-of-work to a proof-of-stake consensus algorithm while integrating the existing execution 
layer with a new consensus layer [3]. Each layer has specific jobs and networks broken down 
into two different types of clients. Execution clients utilize the previous existing DEVP2P 
execution-layer network stack, gossiping transactions and requiring encrypted communication 
amongst authenticated peers. Consensus clients thus utilize the new consensus-layer network, 
utilizing a different p2p network stack known as LIBP2P, used for gossiping beacon blocks 
throughout the p2p network [4]. Together execution clients and consensus clients make up an 
Ethereum Mainnet node, where both DEVP2P and LIBP2P exist together, requiring their own 
methods for discovery and communication protocols. Due to “the merge”, the Ethereum network 
has become increasingly more complex. The need to understand the intercommunication 
between Ethereum nodes increased significantly to understand the exact use of DEVP2P post-
merge or to analyze the security and performance of underlying algorithms and protocols.   
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As the Ethereum network grows in its usage and importance throughout the world while 

also growing in complexity, a tool must exist to aid with understanding and analyzing the inner 
workings of the underlying protocols utilized throughout the Ethereum network. DEVP2P 
provides a wide array of capabilities related to a peer-to-peer networking schema, with two 
major components, (a) discovery and (b) authenticated and encrypted communication. Discovery 
is facilitated by two somewhat unrelated protocols, DiscoveryV4 and DiscoveryV5 [15]. 
DiscoveryV4 is the original protocol “version,” where messages are sent in the clear with little to 
no authentication of peers. DiscoveryV5 was meant to be the successor to DiscoveryV4 to make 
it more secure and faster, but implementations of DiscoveryV5 were only completed in the GO 
Ethereum version of the Ethereum execution client. This implementation was purely 
experimental to test DiscoveryV5; its use never saw daylight amongst other implementations 
except in consensus clients in place of the standard LIBP2P discovery mechanism. The other 
major component of DEVP2P is RLPx, the TCP-based transport protocol used for authenticated 
and confidential communication among Ethereum nodes after peers discover one another.     
 
1.2 Problem Statement 
 

Analyzing DEVP2P provides a vehicle for conceptualizing the inner workings of the 
Elliptic Curve Integrated Encryption Scheme (ECIES) as it pertains to RLPx, understanding the 
security and performance differences between discoveryV4 and discoveryV5, the two UDP-
based discovery mechanisms, and lastly, tracing the usage of RLPx concerning block 
propagation, chain synchronization, state management, and transaction processing. Traditionally, 
a network traffic dissector tool provides a window into the communications amongst networked 
assets such as nodes. Dissectors are commonly used for debugging, protocol analysis, security 
and scalability analysis, and, lastly, for educational purposes. The best-known and most utilized 
tool for dissecting network packets is Wireshark. It intercepts network traffic via the kernel in a 
non-intrusive manner and provides a live view of the frames and packets flowing through a link. 
It allows us to identify protocols, decode data, follow streams and conversations, calculate 
statistics, and more [5].  
 
Currently, two known packet dissectors exist for Ethereum’s DEVP2P protocol suite; one was 
built off of Wireshark’s plugin engine using the programming language LUA and one compiled 
with Wireshark source code using the programming language C. These packet dissectors come 
with limitations, created around five years ago, only supporting the encryption-less 
DiscoveryV4, minus the newer packet types released in EIP-868 in October 2019. Ethereum 
Improvement Proposals (EIPs) describe standards for the Ethereum platform, including core 
protocol specifications, client APIs, and contract standards [6]. The LUA dissector was built by 
BCSEC organization, also known as Blockchain Security org, this group has since been 
disbanded but was known as a security group aiming “to elevate the security of the entire 
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blockchain ecosystem” [7]. The second packet dissector built with C, was created by PegaSys, 
now known as ConsenSys, a large corporate player in the Ethereum and blockchain market 
whose “mission is to build blockchain solutions ready for production in business environments” 
[8]. Both do not dissect the newer packet types in DiscoveryV4, while also not having support 
for DiscoveryV5 and RLPx and any of its sub-protocols such as ETH and SNAP.  
 

Both projects have been abandoned, citing reasons for complexity and pushing the open-
source community to finish the job. The reason for this complexity will be touched on a great 
deal throughout this report. As stated by PegaSys in August of 2018, the process of dissecting 
RLPx is “somewhat complicated, as TCP connections are encrypted with an AES symmetric key 
derived per-session via ECIES (Elliptic Curve Integrated Encryption Scheme)”. This means the 
dissector must have “access to the private key of the local node, it would not be enough to 
decrypt communications, as the encryption key factors in our private key, the public key of the 
node, and a randomly generated ephemeral key [5].”  
 

With this, we propose a new tool, a network packet dissector, explicitly used for 
dissection and analysis of Ethereum’s DEVP2P protocols found in execution clients, including 
their UDP-based DiscoveryV4, DiscoveryV5, and RLPx, including its sub-protocol capability 
messages ETH and SNAP. After successfully dissecting, deciphering, and decrypting the 
contents of the network payloads among Ethereum nodes on the network, we will then utilize the 
dissector tool to prove its value as a dissector for the community and educators while also 
providing a deeper analysis of the security and performance differences between DiscoveryV4 
and DiscoveryV5 while also looking at RLPx, transactions, and block propagation. This 
Wireshark dissector for DEVP2P can provide network-level security and performance analysis 
for the Ethereum community and educators.  
 
1.3 Contributions 
 
 Throughout this document, many contributions will be made in order to meet the goal of 
creating a Wireshark dissector for DEVP2P, as found on execution clients like Go Ethereum 
(GETH), specifically the protocols DiscoveryV4, DiscoveryV5 and RLPx including the ETH and 
SNAP sub-protocols. Then using this created dissector to analyze live network traffic between 
nodes/peers of an Ethereum network. Each of these will be explained throughout this document 
in detail, the main contributions are completely new. The contributions for this thesis are as 
follows. Please see the Appendix 7.1 to locate these contributions. 
 

● discovery.lua and rlpx.lua - The main interface between Wireshark and the dissectors, 
facilitating the packet capture data and sending it off to PYDEVP2P 
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● PYDEVP2P - The backend to the dissectors, Python-based with very minimal 3rd party 
dependencies, provides most of the deciphering, decryption, and packet layout tooling 
required for Wireshark display.  

● Go Ethereum Docker Images and Network 
● Go Ethereum Source Code Modifications 
● Lunatic Python Modifications 

 
1.4 Organization 
 

As many packet types are captured within the Ethereum network, the organization of this 
document will step through a scenario for each protocol and its use case from a structured and 
controlled test network. This scenario, in the next chapter, Chapter 2, will provide a vehicle for 
understanding at a high level how an Ethereum node is used by users/accounts. This scenario 
will briefly describe the Docker development network used throughout this document and 
visualize multiple nodes connecting, followed by a transaction between two nodes.   

  
Then, some background information on the inner workings of the Ethereum network will 

be discussed in Chapter 3, followed by the use of existing dissectors to understand better 
discovery followed and their shortcomings.   

  
Then, in Chapter 4, the steps are taken to create the dissector for each protocol within 

DEVP2P. We will provide the work that went into dissecting and displaying the packet 
information for each packet type within Wireshark while also explaining the message contents 
and use of the packet as related to the scenario outlined. This will provide a method to 
understand the flow of DEVP2P packets during each stage of communication while 
understanding the primary purpose for each contribution, including the Docker network, LUA 
Dissector plugins, and the PYDEVP2P dissection library. Starting with the discovery phase, 
showing the use of DiscoveryV4 and DiscoveryV5 on GETH clients, then unraveling RLPx 
packets, including ETH and SNAP messages found as part of the RLPx transport protocol.   

  
After discussing the creation of the dissector and understanding the flow of DEVP2P 

packets amongst nodes on an Ethereum network, performance, and security characteristics will 
be analyzed for both DiscoveryV4 and DiscoveryV5, in Chapter 5. Lastly, the actual transaction 
that took place during the scenario will be analyzed with the dissector, understanding on a 
message-by-message approach what took place on the network level to fulfill the transaction 
amongst two nodes.   
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2. Scenario 
 
It is important to understand just how an Ethereum node is used, whether it is connecting to the 
network via a Bootnode, connecting and communicating with peers, and of course validating and 
transacting amongst one another. This chapter will step through each process at a high level from 
connecting a node to our own private/development network, with a network of 3 nodes and 1 
bootnode (See Figure 1). In this scenario each node will be connected to the same chain, where 
proof-of-work is the underlying consensus algorithm amongst nodes.   
 
2.1 Custom Network Description 
 
To start, a custom private development will be used, using the ETH cryptocurrency and running 
GETH clients on each node. Each node will be running on a docker container, custom built to 
support certain network connectivity operations and mainly to spin up several very quickly. The 
details of the creation of this docker network will be explained in the “Creating the Dissector” 
Chapter 4. Each node will communicate and exist on the Chain ID: “12345”, which again is a 
unique identifier for a given network, for similarly configured peers to connect. 
 
As stated before, there will be one BootNode, which is a specially designated node that acts as 
the initial point of contact for new nodes attempting to join the network. When a new node wants 
to join the network, it contacts the bootnode to get a list of active nodes that can provide it with 
additional information about the network. The bootnode is typically a highly available and 
reliable node that is maintained by the Ethereum development team or a trusted third-party 
service. It plays a critical role in ensuring the stability and security of the network by helping to 
distribute new nodes across the network and preventing the formation of isolated clusters. There 
will also exist 3 other nodes on the network, each running the latest version of GETH as of this 
writing, and each node will be a miner on the network. Lastly, for each docker container to reside 
in their own subnet, a custom bridge router docker container is set up, to facilitate the 
connectivity amongst the node docker containers. Below, Figure 1 depicts the network topology, 
followed by networking details in Table 1 used throughout the scenario, dissection and analysis 
chapters. 
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Figure 1: Docker Go Ethereum Private Network 

Table 1: Docker Container Network Interfaces 

Container Name IP Address UDP/TCP 
Port 

Interfaces HTTP RPC Port 

geth-ubuntu-bootnode 10.1.0.10/24 30303 eth0 8545 

geth-client-1 10.1.1.10/24 30304 eth0 - 

geth-client-2 10.1.2.20/24 30305 eth0 - 

geth-client-3 10.1.3.30/24 30306 eth0 - 

bridge-router 10.1.0.2/24, 
10.1.1.2/24, 
10.1.2.2/24, 
10.1.3.2/24 

- eth0, eth1, eth2, eth3 - 

2.2 Ethereum Client Accounts 
 
On an Ethereum node, and more specifically on clients such as Go Ethereum (GETH), accounts 
can be created and used to manage the ownership and transfer of the cryptocurrency associated 
with the Chain ID. Each account has its own private/public elliptic curve key pair, and is 



7 
 

 
 

identifiable by its own unique address, derived from the account’s public key. This keypair is 
used solely for account authentication, and in the event the keypair is lost, the user is no longer 
able to access their assets. It is important to note that this elliptic curve keypair is separate and 
distinct from that of the actual underlying Node’s keypair, used for uniquely identifying the node 
in terms of discovery and communication. This account keypair is stored in what is known as a 
keystore file, located in the filesystem containing an encrypted version of the account secret key, 
along with the necessary parameters to decrypt it, requiring the use of the account password. The 
accounts created on their respective container/node account addresses are shown in Table 2. 
Clients like GETH can have several accounts associated with it, each of which is managed 
independently of the others. Each account has its own balance of ETH, or the chain's specified 
cryptocurrency, and can send and receive transactions on the Ethereum network. 

Table 2: GETH Client Node Account Addresses 

Container Name Account Address 

geth-ubuntu-bootnode 0x6DED7354774DA5056AE8E3C52484E2CDA3F6F788 

geth-client-1 0x41159606B6240F725E969E3F1F342FF65904A4EC 

geth-client-2 0x1F0CEBF80F05DE1213401C6D0A58E215C8CE635F 

geth-client-3 0x11BEE17E6D6835AA46197990ADB681BA3A1B4435 
 

2.3 Starting the Private Network 
 
By starting the docker environment, effectively with “docker-compose up”, the entire network 
will come alive, including the bridge router, the bootnode and the three nodes. Shortly after, the 
three nodes will reach out to their configured bootnode to join the network. Once joined they will 
then perform their normal peer-to-peer discovery along with authenticated and confidential 
communication. Below, depicts the command line output of each client, in this instance, 
periodically searching for new peers on the network, seen in Figure 2. Note the “peercount” on 
each, showing that they have 3 connected peers, not including themselves. As each of the clients 
are configured to mine for their respective accounts on startup, the command line output will also 
show their progress in mining potential new blocks and committing their work to their peers 
throughout the network, seen in Figure 3. 
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Figure 2: GETH Clients Looking for Peers with Peer Count of 3 

 
Figure 3: GETH Clients Mining Potential Blocks and Importing Chain Segments 

2.4 Connecting MetaMask 
 
Now that the network is up and running, it is time to show how it can be used, just like in a real-
world scenario. Instead of using the GETH built in command line interface or CLI to view 
account balances and transact, MetaMask will be used. MetaMask is the leading self-custodial 
wallet, used to interact with the Ethereum blockchain or even private development Ethereum 
networks. It allows users to access their Ethereum wallet through a browser extension or mobile 
app, which can then be used to interact with decentralized applications. This interface provides a 
real-world experience when pulling up the individual accounts from any of the nodes on the 
custom private docker network [9].  
 
GETH provides a way for third party applications to interact with the client by sending requests 
to the JSON-RPC API endpoint. This can be enabled via a flag when starting up GETH from the 
command line, specifically, in this scenario, the HTTPS transport will be used and utilizing the 
default RPC port 8545. MetaMask is extremely lightweight and can be installed as a browser 
extension on any popular browser, or even as an iPhone or Android application. Once installing 
MetaMask, from the Settings > Network page, this local private network can be connected to, 
using the RPC HTTPS endpoint port and the chain ID that each GETH node is configured with, 
seen Figure 4 [10].  
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Figure 4: Connecting to Private Network from MetaMask 

2.5 Connecting Accounts and Transacting ETH 
 
Once the local private Ethereum network is connected just like how another network or even the 
Mainnet is connected, it is time to link the accounts that exist. This is as simple as importing the 
keystore file found on each of the GETH nodes, found in ~/.ethereum/keystore/, shown in Figure 
5. Again, this keystore file contains the encrypted account private key along with the necessary 
AES parameters to decrypt it, which requires the use of the account password as well. After 
importing, these accounts can be seen from the profile dropdown menu located at the upper 
right-hand corner, while making sure to have the local private network selected as well. From 
here, we can now see the actual balance of the accounts as well, labeled manually to correspond 
to which node the account exists, shown in Figure 6. These accounts are named after the node 
they reside on in the private Ethereum network, this does not mean that “Node 1” has X amount 
of Ether. Nodes facilitate account connections to the network and facilitate transactions. 
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Figure 5: Importing Accounts Found on GETH Clients into MetaMask 

 
Figure 6: Showing Connected Accounts and their ETH Balance 

 
It is important to note that the amount in USD is depicted as the current conversion rate from 
ETH to USD, however, in this test network as the chain started from scratch, the difficulty was 
rather low with a lack of competition as well. Lastly, to complete the scenario, Account/Node 1 
will transact with Account/Node 2, sending 200 ETH to Node 2, steps shown in sequential order 
in Figures 7 through 10. 



11 
 

 
 

 
Figure 7: Sending 200 ETH from Node 1 to Node 2 

 
Figure 8: Queued/Pooled Transaction Awaiting Validation 

 
Figure 9: Validation & Verification of 200 ETH Sent 

 
Figure 10: Updated Balances of Node 1 and Node 2 Accounts 
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2.6 Scenario Discussion 
 
Most of what has been shown above is the typical use case of a account and nodes on an 
Ethereum network. Typically, a user would create an account and a corresponding wallet on an 
exchange, not having to actually deal with the setup of their own Ethereum node, unless of 
course the individual wanted to mine using their own hardware. However, the steps above mimic 
that of a real world scenario, where a user can manage their own account, account balance and 
transact amongst node addresses all from the user interface connected to a client residing on the 
Ethereum network.  
 
What if however, you were looking to learn more about what happened exactly when a node 
joined the network, or see exactly what information was propagated throughout the network 
when Account/Node 1 sent Account/Node 2 200 ETH. How would we know which node 
actually mined the valid block that pulled in the pooled transaction?  
 
Much of this can be read about, with Ethereum’s own documentation, found on their webpage, or 
even through source code found in the various implementations like GETH. The next chapter 
will begin to discuss the inner workings of the Ethereum network, giving a background of much 
needed information while also introducing two existing but very limited in functionality 
Ethereum network packet dissectors which can be used to aid in the visualization of the 
discovery mechanism used through the GETH nodes on the network. Then, in subsequent 
chapters, the creation of a new dissector will be discussed, using it to visualize this real-world 
scenario, and clarify much of the documentation regarding the DEVP2P protocol suite.  
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3. Related Work and Literature Review 
 

In this chapter, we will explore the related work in this field, starting with a brief overview of the 
history and critical pieces of the Ethereum network. This will include a deeper understanding of 
Ethereum nodes, networks, and the protocols they use to communicate to understand the 
requirements for a new dissector. We will then survey the current state of network 
documentation and examine the role of GETH in the network. Finally, we will discuss existing 
dissectors for the Ethereum network and highlight their strengths and weaknesses. This will 
provide a foundation for the subsequent chapters, where the Ethereum Network packet dissector 
for DEVP2P will be introduced and utilized.  
 
3.1 Discussion of Ethereum Networks  

 
There are two main types of Ethereum networks: public and private. Public networks are 
comprised of nodes worldwide, residing on different machines throughout the internet. Each 
public network has a uniquely identifiable chain ID, sometimes referred to as the network ID, 
which Ethereum nodes use to denote which chain/network clients use to communicate. The 
Mainnet is the live Ethereum network that hosts actual transactions and smart contracts denoted 
by a chain ID of 1, chains other than the Mainnet that are public Ethereum networks are 
considered "testnets." Testnets are alternative networks used for testing and experimentation and 
serve as sandboxes for developers to test their smart contracts and applications in a safe 
environment without the risk of losing real Ether. However, some testnets are also used for 
actual alternative currencies, other than Ether (ETH), but still using the underlying Ethereum 
network technology stack.   
 
The two public testnets client developers maintain for the Ethereum chain are Sepolia and 
Goerli. Sepolia is a network for contract and application developers to test their applications. The 
Goerli network lets protocol developers test network upgrades and lets stakers test running 
validators. There are other networks that are not specifically maintained by the Ethereum 
community and can even use alternative currencies. These alternative chains can use most of the 
core Ethereum network protocols and include some popular networks like Polygon ($MATIC), 
Binance Smart Chain ($BNB), Avalanche C-Chain ($AVAX) and many others [11].  
 
Regarding the proposed Ethereum Network packet dissector for DEVP2P, it can be used on any 
test net, such as Ropsten, Rinkeby, or Kovan. Furthermore, the dissector can be used to capture 
and analyze packets sent and received by nodes on the mainnet, test nets, or any network running 
the execution layer network protocols found in DEVP2P and even in the LIBP2P discovery 
mechanism, which uses DiscoveryV5. This all attests to how versatile this dissector can be, 
which can help developers identify issues and optimize the performance of their applications on 
a range of environments or networks. 
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In addition to public networks, Ethereum can also be deployed on private networks which in this 
context, private only means reserved or isolated, rather than protected or secure. Private 
networks are usually created for development and testing purposes specifically. Private networks 
are not open to the public and may have different rules and parameters than the main net or test 
nets. For the purposes of the type of network used in support of the creation and testing of the 
proposed dissector, a private network that matches the Ethereum pre-merge proof-of-work 
consensus algorithm will be used [12].  
 
3.2 Discussion of Ethereum Nodes/Clients 
 
A “node” is any instance of an Ethereum client, a computer running any Ethereum software, 
forming a peer-to-peer network. A client is more specific and is known as an actual 
implementation of Ethereum software implementing the necessary Ethereum network protocols 
or data validation algorithms. Pre-Merge Ethereum consisted of a single type of client, an 
execution client, such as Go Ethereum (GETH), running the execution layer network protocols 
known as DEVP2P. Now, post-Merge, consensus clients are added to fully integrate with 
execution clients, both required if Ethereum Mainnet connectivity is necessary. Effectively 
splitting the work into an execution client and a consensus client, where data/block validation is 
handled on the execution client, and the consensus mechanism and chain is handled on the 
consensus client. This addition of a consensus client handles the new implementation of the 
proof-of-stake consensus algorithm, its peer-to-peer network based on LIBP2P. A consensus 
algorithm is a process used to achieve agreement amongst peers about the validity of some 
distributed data, which would be a block of data as it relates to blockchain. Both execution 
clients and consensus clients can be run on their own, run together communicating by a local 
RPC connection, or tightly coupled in the same software as a single execution/consensus client, 
as shown in Figures 11 and 12 respectively [13]. The deployment of these client’s matter, 
depending on the consensus algorithm and network, but for the purpose of this document, we 
will be using Go Ethereum, an execution client, running by itself without a consensus client. 
 
The Ethereum technology stack is meant to be diverse, providing a base set of requirements for 
any node/client implementation to utilize and join a network. With this, many implementations 
of both execution clients and consensus clients are found and fully supported in a range of 
programming languages. Execution clients include GETH (Go Ethereum), written in GO, 
Nethermind written in C#, Besu, written in Java; and Ekula, written in Rust. Consensus client 
implementations include Lighthouse (Rust), Lodestar (TypeScript), Prysm (GO). All these 
clients differ in architecture, functionality, and performance but all utilize the same core 
Ethereum guidelines and Ethereum Network protocols.   
  
The execution client, Go Ethereum (GETH) will be the main focus throughout this document, as 
GETH has been a core part of Ethereum since the beginning. GETH was the original Ethereum 
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implementation, supporting all the development and testing, making Ethereum what it is today, 
and is still known as the most used execution client. Being an execution client, GETH supports 
handling transaction validation, deployment, and execution of smart contracts and contains an 
embedded computer known as the Ethereum Virtual Machine. To connect to the Mainnet, GETH 
must run alongside a consensus client, effectively creating a full Ethereum node [14].  
 

 
Figure 11: Ethereum Consensus Client 

 
Figure 12: Ethereum Execution Client 

3.3 Discussion of Ethereum Network Protocols 
 
Each type of client, execution or consensus has its own network, DEVP2P, and LIBP2P 
respectively, both with their own individual protocols for handling discovery, and 
authenticated/encrypted communication. Pre-Merge, the Ethereum Mainnet only consisted of 
execution clients, where DEVP2P was used to facilitate all the communications between nodes, 
using the proof-of-work consensus algorithm. DEVP2P, as will be discussed in great detail in 
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Chapter 4, provides protocols for UDP discovery, like DiscoveryV4 and DiscoveryV5, along 
with a TCP-based authenticated and encrypted messaging amongst nodes using RLPx. This 
means that an execution client, such as GETH, on a proof-of-work private/development 
network/chain is the best way to see the full use of DEVP2P and its multitude of protocols and 
message types. However, this does not mean DEVP2P is not utilized in a post-merge proof-of-
stake consensus algorithm deployment. DEVP2P DiscoveryV4 is still used as the primary 
discovery mechanism amongst execution clients, and RLPx is being used for synchronization 
and propagation along with the LIBP2P consensus clients [15].  
  
As the main contributor to the development of Ethereum, GETH also was the front-runner in 
implementing and testing the successor to DiscoveryV4, DiscoveryV5. DiscoveryV5, compared 
to DiscoveryV4, provides confidentiality by masking the contents of packets, making it more 
dynamic for use amongst arbitrary nodes, increasing performance regarding node identity, and 
no longer relying on the system clock of nodes. GETH is the only implementation of an 
execution client that supports DiscoveryV5, as support for DiscoveryV5 was paused for 
execution clients as talks of the merge arose. DiscoveryV5 was chosen as the discovery 
mechanism for consensus clients instead of LIBP2P’s own discovery implementation/schema. 
However, we will not be looking at a consensus client throughout this document, nor be looking 
at LIBP2P’s specific DiscoveryV5 implementation. This means that the GETH execution client 
can also discover consensus clients and is a great way to understand the inner workings of 
DiscoveryV5 without spinning up a complete LIBP2P network with a consensus client [16].  
 
3.4 Discussion of the Proof-of-Work Consensus Algorithm 
 
Proof-of-work (PoW) is a consensus algorithm used in blockchain technology to verify and add 
new transactions or any data (blocks) to the blockchain. In a PoW system, miners compete to 
solve a complex mathematical puzzle, a hash function, to add a new valid block to the 
blockchain. There is a multitude of different implementations of PoW mechanisms, like that 
found in Bitcoin, whereas Ethereum’s specific algorithm is called Ethash. Mining a new block 
involves selecting a set of pending transactions from a pool for validation then creating a block 
containing those transactions. The miner then attempts to find a solution to the hash function that 
meets a certain difficulty level which is adjusted periodically to maintain a target block time and 
prevent the network from becoming too congested [17].  
 
The miners must find a specific hash value at or below the target hash value determined by the 
difficulty level, visualized in Figures 13 and 14. This target hash is calculated by what is known 
as the “difficulty level” which is calculated and incremented using previous block difficulty 
levels. This means the difficulty increases as more blocks are mined. Miners achieve this target 
hash by repeatedly changing a value called a “nonce” in the block header that produces a hash 
value using SHA 256 that is at or below the target hash when combined with the block’s header 
and other inputs. Once a miner finds a valid solution, they broadcast the new block to the 



17 
 

 
 

network. The other nodes in the network then verify that the solution is correct by checking that 
the hash value meets the target hash/difficulty level and that the transactions in the block are 
valid by checking their hash values. Once most nodes in the network verify the block, it is added 
to the blockchain, and the miner who found the solution is rewarded with new cryptocurrency 
units as an incentive for their work [18].  
 

 
Figure 13: Invalid Proof-of-Work Hash Value 

 
Figure 14: Valid Proof-of-Work Hash Value 

 
3.5 Literature & Documentation Review 
 
Documentation quality is essential for developers and users to understand the workings of a 
system fully. Ethereum and the Ethereum network has a significant amount of documentation 
available through various sources, including the official Ethereum website and multitude of 
README files found from the Ethereum GitHub. The documentation provided by Ethereum 
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maintainers and community members includes in-depth explanations of the Ethereum toolkit, 
including protocol usage, smart contracts, the EVM, and the Solidity programming language. 
Ethereum also provides whitepapers, tutorials, and specifications for developers to use and 
community members to use while also providing transparency into research and development 
roadmaps with Ethereum Improvement Proposals or EIPs [6].  
 
Additionally, specific implementations of Ethereum software such as Go Ethereum, GETH, the 
most widely used Ethereum client, provides documentation, start guides and tutorials, to aid new 
users and developers for starting their own client. The GETH source code is extensive, used as 
the primary development platform for Ethereum execution clients, and its documentation helps 
developers understand how the client works and how they can interact with it [14]. Many times, 
throughout the creation of the dissector discussed in later chapters, the GETH source code is 
used to provide DEVP2P and Ethereum implementation and design specific insights into the 
creation of the dissector and PYDEVP2P. 
 
Despite the vast amount of documentation available for the Ethereum network, some areas of the 
protocol need to be better documented, which can create difficulties for developers. In addition, 
some of the documentation can be challenging for those with a deep technical understanding of 
the Ethereum network. Especially with the Ethereum Merge, many documentations instantly 
became outdated; source code deprecated, and exact deployment and usage of Ethereum 
network-specific protocols left undocumented. Furthermore, the specification and documentation 
do not provide real-world data to help guide the reader to further understanding. However, using 
a network packet dissector, many of these specifications, claims, and gray areas can be proven, 
verified, and uncovered in a digestible manner to aid in documentation and education. 
 
3.6 Existing Dissector Implementations 
 
Network packet dissectors like Wireshark capture and analyze network traffic to decode the data 
transmitted over the network. This can be done either in real-time or with pre-recorded traffic, 
providing visibility into the communication amongst different devices. Specifically, tools like 
Wireshark are used in conjunction for debugging purposes to help diagnose network problems by 
revealing malformed or misconfigured network data. Such tools are also proven valuable 
educational tools, providing detailed and real-world views into the underlying network protocols 
and helping visually understand low-level topics. In addition, dissected packets are displayed in 
an easily understandable structure or schema, conveying the contents of the network packets in a 
digestible manner.  
  
Two Ethereum packet dissector implementations exist, created in 2018 and abandoned shortly 
after that, including implementations in C and LUA. Both were created to provide transparency 
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of the inner workings of the Ethereum network protocol and their subsequent messages 
exchanged between communicating nodes.   
  
Setting up these two types of dissectors is quite different, first looking at the C Wireshark 
dissector from PegaSys, now known as Consensus, a market-leading blockchain technology 
company building developer tools to enterprise solutions [19]. Written in C, this dissector must 
be compiled alongside the source-code of Wireshark, specifically Wireshark version 2.6.2 [8]. 
This means that a proper development environment will need to be set up, with all the C and 
third-party dependencies locally installed to correctly compile the dissector and the Wireshark 
source code into an executable.   
 
A great ReadMe can be found from the source code of the C Ethereum Dissector from PegaSys 
(ConsenSys) which walks through pulling both the Wireshark source code, the dissector source 
code, and utilizing Ninja, a small build system for building executables from source [20]. After 
building, the custom version of Wireshark with the built-in C dissector can then be run. 
Wireshark directly states that the preferred language for creating dissectors is C, due to its 
performance, and its larger range of functionality as it is built directly into the source.  
 
The LUA dissector on the other hand was created as a Wireshark plugin [7]. LUA is a powerful 
light-weight programming language designed for extending applications and used in conjunction 
with Wireshark as a language for prototyping and scripting dissectors. Wireshark has a built-in 
LUA runtime and an API where LUA plugins can be loaded and utilize the API function calls to 
access important packet information [21]. The LUA dissector was created by BCSEC, a 
blockchain security group which aimed to elevate the security of the entire blockchain 
ecosystem. Even Though this group no longer exists, the source code for their Ethereum 
DEVP2P Wireshark LUA dissector still does and provides a great starting implementation for 
creating a Wireshark dissector plugin.  
 
Wireshark has a built-in LUA runtime environment, so using the LUA dissector is as easy as 
placing the .LUA code itself, without any compilation steps necessary, is right in the correct 
plugins folder used by Wireshark. Then, a typical installation of Wireshark, no matter the 
version, will automatically pull in this LUA dissector plugin and run it automatically. This ability 
to develop and test using a LUA dissector without having to rebuild and compile the entirety of 
the Wireshark source makes its usefulness clear for development purposes. However, as 
mentioned earlier, some functionality for LUA dissectors could be improved, such as creating 
heuristics reports like the C dissector provides.    
 
The C dissector and the LUA dissector are both able to dissect Discovery V4. DiscoveryV4 as 
mentioned earlier is a UDP-based discovery mechanism for Ethereum clients and is part of the 
DEVP2P protocol specifications. DiscoveryV4 packets are sent in the clear, without encryption, 
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and provide a very simple method for nodes to join the peer-to-peer network with 4 main packet 
types, PING, PONG, FindNode and Neighbors. The PING and PONG packets deal with peer 
liveliness and endpoint proof, while the FindNode and Neighbors deal with the actual discovery 
of other nodes based on secp256k1 public key identities. Every node has a cryptographic 
identity, a key on the secp256k1 elliptic curve, and this public key of the nodes serves as its 
unique identifier or “node ID”. This allows packets in DiscoveryV4 to be signed, validated and 
authenticated with Elliptic Curve Digital Signature. Lastly, there are two other packet types, 
ENRRequest and ENRResponse, added to the protocol specification in October 2019 via an 
Ethereum Improvement Proposal EIP-868 to enable authoritative resolution of Ethereum Node 
Records or ENR’s in DiscoveryV4. An ENR contains specific network endpoint information 
about a node, it also holds information regarding protocol version information as well as a 
compressed secp256k1 public key.  
 
Despite their differences with installing the two dissectors, using them is quite the same, 
however they do have their minor differences and nuances. One main thing with the C dissector 
is the ability to click on the individual fields in the DiscoveryV4 packets and see the exact byte 
that field value correlates with, while this functionality is lost with the LUA dissector. The LUA 
dissector also seemed more unfinished, as all the expiration and date fields were left as hex 
values instead of being parsed into human readable dates. Shown below, is a DiscoveryV4 
FindNode packet, first from the C dissector followed by the dissection from the LUA dissector, 
shown in Figures 15 and 16. Each shows the typical header information found on each 
DiscoveryV4 packet, the hash of the message, signature information and the type of the packet. 
Then the differences, where the C dissector clips the full target field, which is actually the 64-
byte secp256k1 public key of the node that is being searched, while the LUA dissector displays it 
in full, inaccurately listing the field as “hash”.  
 

 
Figure 15: C Dissector DiscoveryV4 FindNode Packet  
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Figure 16: LUA Dissector DiscoveryV4 FindNode Packet 

 
Both the C and LUA dissector implementations have significant limitations, aside from 
compilation times, and LUA runtime performance. To start, since these implementations are 
several years old they are not compatible with the newest specification release for DiscoveryV4. 
This new specification mentioned earlier, EIP-868, adds an ENR-sequence field to both the 
PING and PONG packets, as well as adding the ENRResponse and ENRRequest packet types. 
Because of these modified and added packets, the dissectors both fail to fully dissect the PING 
and PONG packets found in the latest version of any execution client such as Go Ethereum 
(GETH), shown in Figure Figures 17 and 18, as well as recognizing and dissecting the 
ENRRequest and ENRResponse packets. Shown below, examples from both dissectors, where 
the Ping packet is either not able to be dissected at all, or not showing the ENR-sequence field, 
and of course both ENRRequest and ENRResponse, message type number 5 and 6 respectively 
not dissected by either dissector, seen in Figures 19 and 20. 
 

 
Figure 17: LUA Dissector Ping Packet Unable to Dissect 
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Figure 18: C Dissector Not Fully Dissecting Ping Packet 

 
Figure 19: LUA Dissector ENRRequest Un-dissected Packet 

 
Figure 20: LUA Dissector ENRResponse Un-dissected Packet 

These dissectors, despite their lack of support of the newest DiscoveryV4 specification, also do 
not provide support and dissection of DiscoveryV5 and RLPx. DiscoveryV5 being a newer 
encrypted discovery mechanism while RLPx being the main TCP-based encrypted 
communication channel for Ethereum execution clients. The lack of support for these protocols 
is not due to the fact of being outdated, however ConsenSys directly states that dissecting RLPx 
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“is somewhat complicated, as TCP connections are encrypted with an AES symmetric key 
derived per-session via ECIES (Elliptic Curve Integrated Encryption Scheme), which means that 
even if the dissector had access to the private key of the local node, it would not be enough to 
decrypt communications” [5]. This is the main hindrance for both dissectors to finish the 
dissector, and the main reason why support for these dissectors were dropped.  
 
3.7 Conclusion 

 
Overall, while very useful, the limitations of existing documentation and existing 

dissectors highlights the need for a new Ethereum packet dissector implementation that can 
handle the latest Ethereum protocol features and support a wider range of protocols, such as 
DiscoveryV5, and RLPx including the ETH and SNAP sub-protocols. Such a dissector could 
improve the ability of developers and researchers to analyze the Ethereum network and gain a 
deeper understanding of its operation. A tool like this can also aid in reinforcing that which is 
read from the documentation and ReadMe’s, or finding the gaps, by visually proving the actual 
protocols and messages used in a live Ethereum network environment. Even complexity was 
cited as the main reason to halt development on the dissectors, with the emergence of newer 
protocols and the added complexity with the consensus layer and clients, it becomes even more 
imperative to create a dissector that solves the gaps.  
 
 The next chapter will discuss the creation of a new dissector, one that is a LUA dissector 
plugin for Wireshark, originally based on the LUA dissector but with little to no similarities in its 
final form.  
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4. Creating the Dissector 
 

4.1 Packet Dissector Design 
 
To create a new dissector that supports the latest messages found in DEVP2P, it is important to 
go over what is required to meet this goal. Several components are needed, such as a 
private/development network, which allows for the creation of an entire Ethereum network to be 
spun up quickly and modified rapidly. This dissector will also be in the form of a LUA plugin for 
Wireshark, which allows for quick development and the ability to support any version of 
Wireshark, without the need to compile everything. This keeps the dissector portable, and easily 
installed and used throughout the community.  
 
First, reviewing the specific functional requirements for this new LUA dissector is essential. As 
stated before, this dissector must be able to handle not only DiscoveryV4 but also decrypt and 
decipher DiscoveryV5 along with RLPx messages and its related sub-protocols ETH and SNAP. 
This means that the dissector will have to handle the decoding of RLP, which is not related to 
RLPx, while also handling ECIES, which entails sessions with symmetric and public key 
encryption using elliptic curve cryptography. In addition, the dissector must maintain the typical 
requirements for a Wireshark dissector, such as live dissections from network interfaces or 
through captured PCAP files with the ability to display the contents of packets/messages clearly 
in the Wireshark user interface. To handle ECIES decryption, the dissector must be able to hold 
information about the Ethereum nodes, specifically their private keys and IP addresses. RLP is 
the encoding used by all DEVP2P messages, which stands for “Recursive Length Prefix” and is 
used for arbitrary data structures in a compact format. Lastly, this dissector should be easily 
installed and utilized in a development environment that can quickly be spun up for educational 
or demonstration purposes. On top of all of this, it is the utmost goal of the dissector and 
subsequent PYDEVP2P Python library, which will be discussed in great detail, to provide a 
readily accessible, and clear implementation of elliptic curve calculations done without the use of 
C or 3rd party dependencies to also add educational value.  
 
As stated earlier, the primary focus for this dissector is DEVP2P, the protocol suite used amongst 
execution layer clients, such as GO Ethereum. DEVP2P was created during the time when the 
Ethereum Mainnet was using the proof-of-work consensus algorithm, therefore, to see some of 
the DEVP2P messages, a proof-of-work development network is required. Specifically, 
DiscoveryV4, DiscoveryV5 and RLPx including sub-protocols ETH and SNAP will be 
dissected, each holding their individual messages.  
 
After understanding the general goals and requirements of the dissector, we can now look at the 
individual pieces that fit together to make it all possible. Seen below in Figure 21, the software 
architecture diagram depicts each component that is necessary for a full environment, broken 
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down into two main categories, software/tools that are directly related to the function of the 
dissector, and then software/tools related to the custom development Docker network and GO 
Ethereum nodes that will be used to capture DEVP2P network traffic via Wireshark on all nodes’ 
interfaces in the middle.  
 

 
Figure 21: Dissector Software Architecture Diagram 

Docker is a platform and tool for creating, deploying, and managing applications using 
containerization technology which means they are self-contained and isolated from the 
underlying host system. It allows developers to package an application and its dependencies into 
a docker image and deploy lightweight, portable containers that can run consistently across 
different environments, from development to production [22]. As they are so lightweight 
compared to traditional virtual-machine technology, multiple docker containers can be spun up 
quickly and even virtualize network connectivity amongst the host machine and containers. 
 
As it is used for the dissector, custom docker images are built with the required networking tools 
and custom GO Ethereum source code which will be discussed in later sections. This custom 
image is then used to create  multiple docker containers, each interconnected with different 
subnets and fully simulating a small private Ethereum network. Since the docker containers are 
able to connect to the host through a bridged network connection, a normal install of Wireshark 
on the host allows it to capture the packet traffic transferred amongst these GETH docker 
containers.  
 
Once the DEVP2P packets are captured by Wireshark, the LUA dissector plugin comes into 
play. The LUA Wireshark plugin acts as an interface, first registering with Wireshark the exact 
packets it wishes to dissect, usually based off packet schema and/or port numbers. Then, 
Wireshark sends these packets to the LUA plugin to be dissected and decoded, which makes the 
LUA plugin responsible for displaying the contents of the packets appropriately in the user 
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interface of Wireshark. This process is done for each incoming packet, either in a live packet 
capture or from a standalone PCAP file.  
 
Lastly, there is PYDEVP2P, a Python library and toolkit to aid in decryption, decoding, and 
dissecting DEVP2P messages along with Lunatic Python. Lunatic Python is a two-way bridge 
between Python and LUA, allowing these languages to inter-communicate. This gives the ability 
for each language to invoke built-in functions from the other language. This project specifically 
uses this implementation to allow LUA to call specific functions from PYDEVP2P which 
handles all the heavy lifting for RLP decoding, ECIES deciphering, and node state management. 
The main reason for this is the lack of cryptographic library support in LUA, as well as snappy 
compression/decompression support found in Python. As it is used throughout this project, 
PYDEVP2P provides the bulk of the implementation for providing a dissector for DEVP2P, as 
well as including a limited dependency ECIES implementation specific to Ethereum ECC. In 
order to match certain implementation specifics to DEVP2P and Go Ethereum due to lack of 
documentation, it should be noted that a lot of the design characteristics and data techniques for 
decryption were recreated in a pythonic approach utilizing the Go Ethereum source code directly 
[14].  
 
Wireshark provides an interface for LUA dissectors known as the dissector API, which provides 
functions for dissecting network protocols, accessing protocol fields, and creating new protocol 
fields. In Wireshark, the Lua dissectors are stored in the "plugins" directory, which is 
automatically loaded by Wireshark. Specifically, in this case, the Wireshark LUA dissectors will 
be located in the ~/.local/lib/wireshark/plugins directory found on Linux operating systems. LUA 
plugins are registered with Wireshark by initializing a short protocol name, full name, 
description and a list of ports to bind with [23]. When a Lua dissector is registered with 
Wireshark, it is called whenever a packet that matches the protocol, port, or schema is captured. 
The dissector then analyzes the packet and creates a tree of protocol fields, which can be viewed 
in the Wireshark GUI. This tree allows for nested fields and values, to allow the user to easily 
view hierarchical information easier.  
 
In terms of this DEVP2P dissector, once the LUA plugin receives the captured packet 
information, it then calls the associated Python function for the payload of the received message. 
This is handled by Lunatic Python, using the shared object binary, “python.so” that is loaded into 
LUA to allow LUA to interface with Python functions [24]. These Python functions are found in 
PYDEVP2P, located in the “bridge.py” file, holding all of the functions needed by the LUA 
plugins, supporting DiscoveryV4, DiscoveryV5, and RLPx. From there, depending on the 
function, the payload of the captured network traffic is sent off to different sub-modules found in 
PYDEVP2P, supporting state management, RLP decoding, ECIES, and more, seen in Figure 22. 
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Figure 22: Wireshark, LUA, PYDEVP2P Flow Diagram 

In the coming dissector sections, each of these modules found in PYDEVP2P will be discussed 
in greater details. PYDEVP2P was designed to be a standalone library for DEVP2P, not just to 
be used as a dissector, therefore, each sub-module can be used independently, providing 
Ethereum-specific cryptographic, elliptic curve, and RLP tools and functions. However, as stated 
previously, bridge.py is provided as both an interface with the LUA Wireshark plugins, and also 
as a statement to how PYDEVP2P can be used for various functionality.  
 
4.2 Creating the Network 
 
As stated earlier, a custom docker network will be used throughout the creation of this dissector, 
as seen in the Scenario chapter. This network contains 4 GETH containers and 1 Ubuntu Router 
container, facilitating networking amongst the containers so that they can reside on different 
subnets. Docker is a necessary component, as it provides a method to spin up an entire private 
Ethereum network quickly and dynamically in seconds, running lightweight custom source code. 
There are several components to creating a custom docker environment, such as a dockerfile, a 
docker image, a docker container, and lastly, what is known as a docker-compose file.   
  
A Dockerfile is a text document that contains all the commands a user could call on the 
command line to assemble an image. This image contains possible source code, packages, and 
other dependencies to run a docker container. Throughout the development of the dissector, the 
dockerfile and the images saw many variations, first starting with a dockerfile that pulled in a 
preconfigured GO Ethereum docker image first; however, as the dissector progressed, custom 
GO Ethereum source code had to be installed in order to expose the private session keys during 
the RLPx handshake.   
  
In the final implementation of the dockerfile, the docker images are built with a slim Ubuntu 
22.04 docker image, then containing the necessary commands to install the necessary APT 
dependencies such as GIT and GOLANG. The next main piece in the dockerfile pulls in the 
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forked custom GO Ethereum source code, which again allows for the exposure of the session 
keys during the RLPx handshake to allow for proper decryption and dissection. The dockerfiles 
are also set up to take in an “ACCOUNT_PASSWORD” as an argument, which is the password 
used to set up the default account for the GETH client. This is the same password that is used 
when adding the account in MetaMask. Next, the “genesis.json” is loaded into the image, which 
is used as a configuration file for the GETH client, defining the “chainId” 12345 and the type of 
consensus mechanism to use. Please see the document materials list in the appendix to view the 
dockerfile for these custom containers. 
 
When initializing the GETH client utilizing the “geth init ~/genesis.json” command, this creates 
what is known as the nodekey, found in ~/.ethereum/geth/nodekey in the docker containers. This 
is the unique elliptic curve secret/private key that is used for node authentication and 
identification. It is also possible to override this key to make it static (outside of initialization) for 
development purposes, which will be done in this case. After the creation of the dockerfile, the 
“docker build” command can then be used to create the actual docker images, each with their 
own corresponding tag according to their uniquely chosen account password, “boot” for the boot 
node of the network, followed by “node1”, “node2”, and “node3” and lastly the Ubuntu docker 
image for the router. In the GETH docker repository, <see contribution>, the “build-dockers.sh” 
shell script is used to automatically build these 5 total images, with their corresponding tags.  
 
The last piece to the docker test environment is what is known as the docker-compose file. A 
docker-compose file is used to define and manage multi-container Docker applications, allowing 
the definition of services, also known as a container, along with networks and volumes which are 
files and directories that can be piped into the containers from the host machine. With docker-
compose, it is possible to start, stop, and restart all the docker containers with a single command, 
effectively spinning up the entire GO Ethereum test network in a single click. [26]. 
  
It is in the docker-compose where the individual subnets are defined for the individual 
containers. Usually, when manually assigning networks like this, the containers will lose 
connection amongst themselves, however, that is precisely where the “Ubuntu-with-tools” 
docker image comes into play, creating the “bridge-router” service. This docker container will 
act as a gateway for each of the other containers, holding a docker-compose network interface 
for each of the different subnets. As container communication via different subnets is not a 
standard use case, the end result in the docker-compose file is somewhat work around. Usually, 
containers with special communication needs are handled with what is known as an “overlay” 
driver; however, the containers in this scenario require communication with the host computer, 
as Wireshark needs to be able to capture and dissect the network traffic [45]. The workaround in 
this case is to manually issue an “iptables” firewall rule change on the “bridge-router” container 
startup, and “ip route” modifications on startup to each of the individual node containers. 
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The different parameters are set for the individual containers within each service in the docker-
compose file. This includes setting up the ip address of the container, the ports to expose to the 
host machine, the image to use, and of course the startup command. This startup command is 
what issues the ip route changes, to set the default route up to send network traffic through the 
Ubuntu bridge-router container instead of the default docker bridge interface. Also in this 
command is what starts up Go Ethereum, issuing the command “geth” with several different 
parameters all specifically chosen for this private development network [25]. Each node 
container has a static “nodekeyhex” assigned during the container's startup using this “geth” 
command. This again allows for the private elliptic curve key of the node to be set, which the 
dissector can, in turn, use for RLPx and other dissections. Shown below in Table 3, the list of 
GETH nodes, including their static private/public keys. 
 

Table 3: GETH Nodes and Corresponding Static Private/Public Keys 

Node (IP Address) Static Elliptic Curve Private/Public Keys 

Bootnode (10.1.0.10) Private Key: 
3028271501873c4ecf501a2d3945dcb64ea3f27d6f163af45eb23ced9e92d85b  

Public Key: 
2c4b6808e788537ca13ab4c35e6311bc2553b65323fb0c9e9a831303a1059b87
54aab13dbb78c03a7a31beee5c2f2fb570393f056d54fa83ebd7e277039cc7b6 

Node 1 (10.1.1.10) Private Key:  
4622d11b274848c32caf35dded1ed8e04316b1cde6579542f0510d86eb921298 

Public Key: 
c35c2b7f9ae974d1eee94a003394d1cc18135e7fe6665e6b4f221970f1d9d59f
6a58e76763803bcc9097eba4c91fd08b30405e65c53272b8635348e37f93cedc 

Node 2 (10.1.2.20) Private Key:  
816efc6b019e8863c382fe94cefe8e408d53697815590f03ce0a5cbfdd5f23f2 

Public Key: 
1ae68ad9b2b095b5366d9a725a184bf1a6a5e101a4e6a3de62b38b07eac2c8fe
365e8a184004191c96d2f365f3c116c5dfbb92247635cf49a730f02908d6e397 

Node 3 (10.1.3.30) Private Key:  
3fadc6b2fbd8c7cf1b2292b06ebfea903813b18b287dc29970a8a3aa253d757f 

Public Key: 
e98d53b2a12bdb4441d825d4b0a1c4255b880c2f657c0adece61cbe11c5869ae
35fd6bc956b3f8a2364b314eda761ebb570764c127efd5c114910a71ddfc7c4a 

 
The GETH command line arguments for the Bootnode differ slightly compared to the other geth-
client services in the docker-compose file, shown below in Figure 23. Specifically, the Bootnode 
does not get assigned a “bootnode enode” as it is one. The Bootnode is also assigned the “http” 
flag along with the “http.addr” and “http.port” flags to set up the http JSON-RPC interface. This 
is setup with address 0.0.0.0 to listen from any incoming connections, along with the port 8545. 
This is what allows MetaMask to connect to the Bootnode to connect to accounts in the network.  
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Figure 23: Docker Compose GETH Bootnode Service 

Each geth-client service, including the Bootnode is also set up with its own specific UDP port to 
carry out the DEVP2P discovery and RLPx communications. This is done utilizing the “—port 
<port #>” flag for the geth command line argument. The Bootnode is given 30303, followed by 
Node 1 30304, 30305 for Node 2 and 30306 for Node 3. These ports are very important and each 
of these ports related to the ports the dissector is registered to, and each will be seen in 
subsequent dissections found in the dissection chapter. Lastly, each client and Bootnode is 
passed the “—nat extip:<ip address>” flag. This tells the GETH client that the outward interface 
to communicate and connect to the network is a NAT and tells GETH the specific interface to 
communicate through.  
 
Lastly, found in the GETH clients, Node 1, Node 2 and Node 3 specifically, shown in Figure 24, 
are flags that support the auto unlocking of accounts that are located on the client. This just 
allows for easily logging in via the command line and accessing account funds and sending 
transactions. This is done using the “—allow-insecure-unlock”, “—unlock 0” which defines 
which account to unlock, followed by “—pass /root/password”, which is the file path of the 
password file for the account. For a GETH client to automatically become a miner on the 
network after startup and connection to a network, the “—mine” flag will turn the client into a 
miner, followed by “—miner.threads 1”. 
 



31 
 

 
 

 
Figure 24: Docker Compose GETH Client Service Command for Node 1 

Finally, with all of this, the entire docker network can be spun up with a single command: 
“docker-compose up”. This will automatically create the network interfaces connecting each of 
the GETH nodes to the Ubuntu bridge router, along with the Docker internal bridged network 
necessary for Wireshark to capture the network traffic along with MetaMask to connect to the 
Bootnode using the exposed 8545 TCP port. 
 
4.3 Node Discovery Mechanisms 
 
Looking back at the scenario in chapter 2, the first thing we saw when starting the network with 
“docker-compose up” was all the peers connecting. From the command line interface, starting 
with the bootnode, the “peer count” is displayed, showing the amount of connected and 
authenticated peers the node has discovered. This, of course, starts with Discovery, either 
DiscoveryV4 or DiscoveryV5, depending on the type of client. DiscoveryV5 was implemented 
in GETH, but production-level use was halted as DiscoveryV5 moved more to the consensus 
layer clients and was not implemented in the other execution clients. However, we will still 
provide the dissector for DiscoveryV5 as it is essential to understand the differences with 
DiscoveryV4.  
  
Ethereum’s DEVP2P Discovery protocols are used for discovering and connecting to other nodes 
on the Ethereum network. The protocol is a part of the more extensive DEVP2P networking 
protocol used by Ethereum nodes to communicate with each other. The main goal of the 
discovery protocol is to enable nodes to find and connect to other nodes on the network without 
the need for a central server or authority. In addition, the protocol allows nodes to discover and 
share information about other nodes, such as their IP addresses, port numbers, and public keys.   
 
4.3.1 DiscoveryV4 Dissection 
 
Connection to an Ethereum network relies on a pre-authenticated or validated node that 
facilitates new nodes connecting to the network. This node is known as the Bootnode. In the 
scenario, the bootnode is the first node to come online, as in the docker-compose, each 
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service/container relies on the bootnode to start first. After starting the bootnode, the other nodes 
can connect to the bootnode; this is facilitated by the “enode” flag and value in the “geth” 
initialization command. This enode is the unique node identifier for the bootnode, meaning that 
when the other nodes startup, they will try to connect to the bootnode immediately. Seen below 
in Figure 25  a sequence diagram of the DiscoveryV4 messages sent between the bootnode and 
other nodes. It is important to note that these messages can be between two nodes, not 
specifically a node and a bootnode. 

 
Figure 25: DiscoveryV4 Message Sequence Diagram 

 
The first step in the DEVP2P DiscoveryV4 protocol is the Ping/Pong exchange. In this step, a 
node sends a Ping message to another node, which is then expected to respond with a Pong 
message. If the sender of the Ping message does not receive a Pong message or any sort of 
communication within a 12 hour period, the sender drops that node from their own dictionary of 
known nodes. From the scenario for example, Node 1 when it comes online would immediately 
send a Ping to the bootnode, where the bootnode would then respond with a Pong, letting Node 1 
it is online [27].  
 
After the Ping/Pong exchange, the next step is the Findnode/Neighbors exchange. In this step, 
the node that sent the Ping message sends a Findnode message to the receiving node. The 
receiver responds with a Neighbors message, which contains a list of up to 16 node IDs that are 
closest to the requested node ID. If the requested node ID is the receiver's own node ID, the 
receiver will return its own node ID as the only neighbor. This exchange is how the dictionary of 
known nodes, known as a Kademlia Table is populated, growing the list of nodes that the node is 
directly connected with. From the scenario, Node 1, after a valid Ping/Pong exchange, would 
send a FindNode message to the bootnode, where the bootnode would send a Neighbors message 
listing out the up to 16 nodes it knows about. 
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If the sender of the Ping message is interested in obtaining additional information about the 
receiver, the final step is the ENRRequest/ENRResponse exchange. In this step, the sender sends 
an ENRRequest message to the receiver, which requests the receiver's Ethereum Node Record 
(ENR). The ENR is a record that contains information about the node, such as its IP address, the 
secp256k1 compressed public key, tcp/udp ports, and other metadata listed out in key-value 
pairs. The receiver responds with an ENRResponse message, which contains the requested ENR. 
 
DiscoveryV4 messages are sent as UDP datagrams, with each packet starting with a header, 
containing the hash of the message, signature and the packet type. Every node has a 
cryptographic identity, a key on the secp256k1 elliptic curve. The public key of the node serves 
as the identifier or the “node ID”, where this public key corresponds to the private key that we 
passed in with the “nodekeyhex” flag in the “geth” command line startup for the node containers. 
The signature is encoded as a byte array of length 65 as the concatenation of the signature values 
r, s, and the recovery id, v. The packet type is a single byte defining the type of the message, 
from 0x01 defining a Ping message, 0x02 Pong, 0x03, FindNode, 0x04 Neighbors, 0x05 
ENRRequest, 0x06 ENRResponse. 
 
For both DiscoveryV4 and DiscoveryV5, the “discovery.lua” script is used as the plugin and the 
interface for Wireshark, while also using PYDEVP2P as the backend for the bulk of the 
dissection. The plugin interfaces with the LUA Wireshark API registering a dissector for the 
UDP ports from 30303 to 30308 and naming the dissector protocol as “devp2p” for both 
DiscoveryV4 and DiscoveryV5. Upon a new packet, that matches the plugin registration for the 
ports, the payload of the packet is sent to the PYDEVP2P bridge using the 
“handleDiscv4Msg(srcaddr, dstaddr, payload, pinfo.visited, pinfo.number)” function. This is 
possible again using Lunatic Python, where LUA can call a function that is written in python 
using the python shared object binary.  
 
This function is found in “bridge.py” which is the main interface for all the LUA plugins, 
including all the functions for DiscoveryV5 and RLPx messages. From there, the “discover” sub-
module is used, calling “decodeDiscv4()”found in “discover/v4wire/decode.py”. This function 
pulls out the fields from the header, which are of static lengths. First the hash, which is 32 bytes 
long, followed by the signature, 65 bytes long, then the packet type, the first byte after the 
signature. The hash can then be verified, checking the equality of the hash field (32 bytes) and 
the keccak256Hash of all the data after the first 32 bytes of the payload. This verification is 
crucial as both DiscoveryV4 and DiscoveryV5 are registered with the same dissector, and the 
packet is first checked to see if it is a valid DiscoveryV4 packet type, and if not, it will then error 
out and try again with DiscoveryV5. These three fields make up the header on all DiscoveryV4 
messages, shown below in Figure 26, the output of just the header information for a dissected 
PING packet. 
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Figure 26: DiscoveryV4 Dissected Header Fields 

After extracting the three fields, including verifying the message hash, the signature can be used 
to recover the sender's public key. This signature is created using the Elliptic Curve Digital 
Signature Algorithm (ECDSA) and by signing the message hash using the private elliptic curve 
key. The recipient of this message can then recover the public key using the elliptic curve 
cryptography found in the “elliptic” sub-module in PYDEVP2P which will be discussed in 
greater depth in Chapter 5.1. This implementation of ECDSA, including ECIES, is specific to 
Ethereum and is done solely with Python, without the use of any third-party dependencies. Using 
this ECDSA allows for non-repudiation, providing identification and proof of origin, 
authentication, and data integrity, however causing a significant performance impact.  
  
Next, the message type byte can be used to determine the payload schema. The payload is 
encoded using RLP, a binary encoding method that allows for sending dynamic data structures 
and schema of data. RLP encoding can handle lists, strings, and bytes, where each field is 
preceded by a single byte determining the structure of the data. This byte can also determine the 
length of the data it represents if it is a list. In addition, RLP can be deeply nested, where each 
value or field in the data is preceded by an identifying byte. From there, the known type of the 
message can be RLP decoded into key/value pairs specific to the message type [28].  
 
This decoding is taken care of by the “Packet” found in the “msg.py” in the v4wire package 
under discover. Here, the constructor of this class utilizes the message type, creating a sub-class 
depending on the message type, and automatically decodes the information. Each message 
schema is represented using tuples, where each tuple starts with the field name, followed by the 
field value, where the value could be another class or RLP schema, representing depth. Seen 
below in Figure 27, the schema definition for the Ping and Pong messages, where sub-schema 
definitions are being used as well, in the form of “FromInfo” and “ToInfo”, seen in Figure 28. 
Each of these values found in the schema denote a RLP object instantiation that gives the rules 
for what constitutes for serialization and deserialization. This is necessary as there are values that 
must be deserialized into human readable time, or ip addresses, or even plain hex values. These 
RLP utilities are found in the “RLP” sub-module in PYDEVP2P, providing many custom types 
used throughout all the dissections.  



35 
 

 
 

 
Figure 27: Ping and Pong Class RLP Schema Definitions 

 
Figure 28: FromInfo and ToInfo RLP Schema Definitions 

After successful RLP decoding, the individual fields can be converted into a python dictionary, 
which can then be sent back to the LUA plugin to be iterated over, creating the Wireshark tree 
for the DiscoveryV4 protocol and then displayed in Wireshark. Therefore, relating back to the 
scenario, the first step when a node comes online, or when a node wants to test connectivity with 
another node, the node will send a Ping message, seen in Figure 29. This message includes the 
protocol version, always 4, along with the sender and recipient information, specifically the IP 
address of each node and their respective ports for both UDP and TCP. Next, there is an 
expiration field, which is the validity window of the Ping message. Lastly, the ENR sequence 
number, which is a 64-bit unsigned integer and is mostly used to denote the version of the ENR 
of the sending node. This ENR is incremented if anything in the node’s ENR changes, therefore 
making the other node send an ENRRequest to request the updated ENR information of the node. 
 
The recipient then replies with a Pong message (0x02), with the same header found on every 
DiscoveryV4 message, followed by the recipient info, and the hash of the Ping that requested 
this Pong message, seen in Figure 30. Notice that the “Ping Hash” field in the Pong message 
matches the “Hash” field in the header of the Ping message that requested the Pong.   
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Figure 29: DiscoveryV4 Ping Packet Node1 to Bootnode 

 
Figure 30: DiscoveryV4 Pong Packet Bootnode => Node1 

The FindNode packet is used by a node to discover other nodes in the network. When a node 
sends a FindNode packet, including the target node ID seen in Figure 31. The target node ID is 
the 64-byte secp256k1 public key representing the node that the sender is trying to find. The 
receiving node will then respond with a Neighbors packet, seen in Figure 32, that contains a list 
of nodes in its routing table that are closest to the target node ID. Both the FindNode and 
Neighbors packets are important for maintaining the connectivity and robustness of the Ethereum 
network by allowing nodes to discover and connect to other nodes in the network. 
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Figure 31: DiscoveryV4 FindNode Packet Node1 => Bootnode 

 
Figure 32: DiscoveryV4 Neighbors Packet Bootnode => Node1 

Lastly, if a node would like more information about a node, in the form of an Ethereum Node 
Record (ENR) or if the ENR Sequence number has changed from a received Ping/Pong, then the 
node will send an ENRRequest, shown dissection in Figure 33. This request is sent directly to 
the recipient, with an expiration timestamp again to provide a message validity window. The 
recipient then makes sure the sender is a valid node, as in the recipient has contacted the sender 
with a valid Ping/Pong exchange in the past 12 hours. The recipient then sends a ENRResponse, 
see dissection in Figure 34, which holds the ENR for the node sending the ENRResponse. The 
ENR holds important information including the hash of the request, the signature of the record 
contents, followed by the sequence number and a list of arbitrary key/value fields pertaining to 
the node. These key value fields contain node identifier information like the IP address, tcp/udp 
ports, and secp256k1 compressed public key. 
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Figure 33: DiscoveryV4 ENRRequest Packet Node1 => Bootnode 

 
Figure 34: DiscoveryV4 ENRResponse Packet Bootnode => Node1 

 
4.3.2 DiscoveryV5 Dissection 
 
DiscoveryV5 was created as a logical successor to DiscoveryV4, fixing many of DiscoveryV4’s 
shortcomings. In the rationale documentation for DiscoveryV5, many goals are laid out, for 
example, fixing endpoint proof. This issue comes from DiscoveryV4, where the existing mutual 
endpoint verification may be unreliable. One node may assume that the other node knows about 
a recent Ping/Pong exchange, sending a FindNode message. However, if this other node does not 
store information reliably, or drops this information, then a new Ping/Pong exchange would have 
to take place, followed by another FindNode [29].  
  
Other goals of DiscoveryV5 include the requirement for knowledge of a destination node ID for 
communication. The goal is to make obtaining a logical node ID expensive before any discovery 
communications because in DiscoveryV4, any message could provoke a response from a node 
using just the node’s IP address alone. DiscoveryV5 also mitigates replay prevention and fixes 
the “expiration” field issue at the end of all the DiscoveryV4 messages. The issue came from a 
requirement that all system clocks must be synced to guarantee message validity; this obviously 
caused an issue in a protocol used globally with several implementations. Lastly, DiscoveryV5 
provides message obfuscation by introducing an encryption scheme and handshake. However, 
this does not ensure complete confidentiality but aids with issues such as traffic amplification, 
replay, and packet authentication. This “masking” of data protects against passive eavesdroppers; 
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however, as discussed in the Analysis chapter, the encryption scheme and handshake are not 
forward-secure and active participants can access node information by simply asking for it.  
 
As stated, DiscoveryV5 is primarily used in consensus layer clients; however, it is found in 
GETH solely for proof-of-concept and developmental purposes. However, the GETH 
implementation is complete and robust and allows us to see its use in an execution client and 
compare the results with DiscoveryV4. Furthermore, discoveryV5 communication is “opt-in” for 
GETH clients, simply using the “—v5disc” flag in conjunction with the “geth” command when 
starting up the GETH client. Interestingly, when setting this flag to use DiscoveryV5, 
DiscoveryV4 is active, in parallel, but completely separate from one another, not sharing 
information received. This is partly because GETH still must discover other execution clients 
who solely use DiscoveryV4. 
 
Discovery communication is encrypted and authenticated using session keys, established in the 
handshake. A handshake can be initiated by either side of communication at any time. Relating 
back to the scenario, Node 1 wants to communicate with the Bootnode, therefore Node 1 must 
have a copy of the Bootnode’s ENR in order to communicate with it. If Node 1 has session keys 
from prior communication with the Bootnode, it encrypts its request with those keys. If no keys 
are known, it initiates the handshake by sending an ordinary message packet with random 
message content for example a Ping or a FindNode, shown as the first message sent at the top of 
the sequence diagram in Figure 35 [30].  

 
Figure 35: DiscoveryV5 Message Sequence Diagram 
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The Bootnode will receive this message packet and extract the source node ID from the packet 
header, if the Bootnode has session keys from a prior communication with Node 1, then it will 
attempt to decrypt the message data. If the decryption and authentication of the message 
succeeds, then there is no need for a handshake and the Bootnode can simply respond to the 
request from Node 1. However, if the decryption fails or like in this case, where there are no 
session keys set up because Node 1 is communicating with the Bootnode for the first time, the 
Bootnode then initiates a handshake by responding with a “WhoAreYou” packet.  
 
Node 1 then receives the challenge sent by the Bootnode, which is a uniquely generated “id-
nonce”. Node 1 then resends the original request packet, either a “Ping” or a “FindNode” 
message, but this time in the form of a handshake packet. This packet contains three parts in 
addition to the message: id-signature, ephemeral-pubkey, and the record. Node 1 derives the new 
session keys utilizing Elliptic Curve Diffie Hellman, which will be discussed in greater detail in 
the Analysis chapter.  
 
When the Bootnode receives the Handshake message packet, it first loads back the WhoAreYou 
challenge that it sent earlier. The Bootnode then performs key derivation using its own static 
private key and the ephemeral-pub key from the handshake message. Using the resulting session 
keys, the message payload in the handshake message can be attempted to be decrypted and 
authenticated. Upon valid decryption and authentication, the Bootnode can then respond to the 
message, with either a Pong or a Nodes message, thus resulting in the end of the DiscoveryV5 
handshake stage. 
 
Following the handshake, similar messages that are seen in DiscoveryV4 are sent, such as 
Ping/Pong, and FindNode/Nodes, where Nodes is like DiscoveryV4’s Neighbors message. 
However, in the Nodes packet for DiscoveryV5, every Node ID is now seen as a full ENR entry. 
Lastly, there are several other packet type specifications, but only two with formal 
implementation, such as the TalkReq (0x05) and TalkResp (0x06) messages. TalkReq sends an 
application-level request for pre-negotiating connections made through another application-
specific protocol. The recipient of the TalkReq must respond with a TalkResp message 
containing the response. It is important to note that both of these messages were not able to be 
captured in the private Ethereum network utilizing GETH nodes. Therefore, their true use and 
implementation could vary. 
 
Now, let’s take a closer look at dissecting DiscoveryV5. The same “discovery.lua” plugin is used 
to register DiscoveryV5 with Wireshark, and on incoming packets, first DiscoveryV4 is tested, 
and without a valid hash and message layout, DiscoveryV5 is then tested, by then calling the 
“handleDiscv5Msg()” in “bridge.py”. DiscoveryV5 requires knowledge of the other nodes’ 
public key prior to communication, therefore, dissection is handled differently than 
DiscoveryV4. Each node is initialized at the top of  “bridge.py” with the corresponding private 
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key and IP address, creating a “Node” which is found in “node.py”. A Node in terms of 
PYDEVP2P holds all the state full information needed for dissection, such as challenges, session 
keys, ephemeral keys and more. This Node class is responsible for handling all of the peer 
connections for the Node, handling all DiscoveryV5 and RLPx dissection which will be 
discussed in greater detail later. Seen in Figure 36, the top-level Node class, which utilizes the 
Discv5Codec class that handles all the encoding and decoding for DiscoveryV5, also handling 
sessions, including session keys and previous handshakes.  
 

 
Figure 36: DiscoveryV5 Class Diagram 

This means that in order to dissect DiscoveryV5 and RLPx prior knowledge of the node's IP 
addresses and their private elliptic curve key will need to be known. So, the source IP and 
destination IP address are used to pull in the correct Nodes, therefore pulling in all the state 
information, including previous peer connections, challenges, or keys setup amongst peers. 
Shown in Figure 37, the instantiation of the known Nodes including their IP address and their 
elliptic curve private key. This dictionary of Node classes is used for both DiscoveryV5 and 
RLPx dissection.  
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Figure 37: PYDEVP2P Bridge Node Creation with Private Keys 

DiscoveryV5 header information is “masked” using symmetric encryption in order to avoid static 
identification of protocol firewalls. The header starts with a Masking IV which is 16 bytes, then 
using the local nodes Enode ID, or the first 16 bytes of the public key, a new AES CTR cipher 
can be set up with the IV as the MaskingIV and the key Enode ID. From there, after decrypting 
the header, all the information can be pulled out, like the Protocol ID, Version, Flag, Nonce, 
Auth Size and Type of the message. The types/flags of the message payload can be either 
“Message”, “WhoAreYou”, or “Handshake”. As stated before, if the message is sent prior to a 
handshake with proper session keys setup, then the first message payload will be UNKNOWN, 
as seen in Figure 38. Here, the header is able to be unmasked, however, the payload data of the 
message is not able to be decrypted, therefore triggering the start of the handshake amongst 
nodes. In this case, between Node 1 and the Bootnode. 
 

 
Figure 38: DiscoveryV5 Unknown Packet Node1 => Bootnode 

Next, a WhoAreYou packet is sent, where the “authdata” section contains information for the 
identity verification procedure. The “message” part of the WhoAreYou packet is always empty, 
and the “nonce” part of the message is set to the “nonce” field of the message that caused the 
WhoAreYou packet. We can see with the dissected packets, that the Nonce field in both Figures 
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38 and 39 match. One major thing to note here is that the dissector is actively listening to the 
packets, however it is always receiving the messages in the context of the receiver. This means 
that the dissector has to retroactively set up handshakes after they have taken place. For example, 
the dissector will receive a WhoAreYou packet, same as Node 1, the Bootnode will already 
know that it sent the WhoAreYou packet and stored that information. So the dissector also needs 
to store this information for the Bootnode, which in this case is the “source node”. That way, 
when a handshake message is received, this information is already there to properly setup the 
session keys on the dissector side.  

 
Figure 39: DiscoveryV5 WhoAreYou Packet Bootnode => Node1 

This is where most of the complexity of the dissector comes from, and we will see much more of 
this when dealing with RLPx dissection. As a listener, the dissector must store information for 
both the receiver and the sender once the dissector receives a specific packet. So, now, Node 1 
sends the Handshake FindNode packet back to the Bootnode, where Node 1 has effectively 
already set up their session keys, but the dissector must do this retroactively once the Handshake 
message is captured. Seen in Figure 40, the dissected output of the Handshake FindNode packet, 
where the payload of the message is now seen. Here both sides have successfully set up their 
session, by verifying the ID Signature decoding the public key, and deriving the session keys.  

 
Figure 40: DiscoveryV5 FindNode Packet Node1 => Bootnode 



44 
 

 
 

After the handshake and session key setup, dissection proceeds as normal just like DiscoveryV5. 
Seen in Figure 41, the response to the FindNode Handshake packet, where each entry in the 
Nodes packet is a full Ethereum Node Record (ENR). 

 
Figure 41: DiscoveryV5 Nodes Bootnode => Node1 

Each message after the handshake is classified with a type/flag of “MESSAGE” and is labeled 
with the “Kind” of Ping, Pong, FindNode, Nodes, TalkReq, TalkResp, etc. Seen below, Figure 
42, Node 1 pinging for liveliness the Bootnode and responding with a Pong in Figure 43. Lastly, 
another FindNode/Nodes exchange between Node 1 and the Bootnode, seen in Figures 44 and 
45, this time outside of the Handshake. An important note is that the TalkReq/TalkResp packets 
were unable to be populated throughout the network, therefore unable to be captured and 
dissected.  

 
Figure 42: DiscoveryV5 Ping Packet Node1 => Bootnode 
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Figure 43: DiscoveryV5 Pong Packet Bootnode => Node1 

 
Figure 44: DiscoveryV5 FindNode Packet Node1 => Bootnode 

 
Figure 45: DiscoveryV5 Nodes Packet Bootnode => Node1  
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4.4 Authenticated Node Communication 
 
RLPx is a cryptographic peer-to-peer protocol suite which provides a general-purpose transport 
utilizing TCP and interface for applications to communicate via a P2P network. The protocol 
carries encrypted messages belonging to one or more ‘capabilities’ which are negotiated during 
connection establishment. RLPx is the only authenticated communication channel for execution 
clients, carrying data for all the application-level needs [31]. RLPx doesn’t stand for anything 
specifically, however it is named after the RLP serialization formation as most of the underlying 
message payloads are encoded with RLP. The capabilities are sub protocols that are used to 
exchange messages between nodes, depending on the type of client. For example, the ETH 
subprotocol is used to exchange Ethereum blockchain data, while there exists the SHH 
subprotocol to exchange Whisper messages, or LES for light clients.  
 
An RLPx connection is first established by a TCP connection and agreeing on ephemeral key 
material for further encrypted and authenticated communication. This process that creates the 
session keys is known as the “RLPx Handshake” and is carried out between the “initiator” or the 
node who opened the TCP connection, and the “recipient”, the node who accepted the 
connection. An RLPx connection occurs after the node discovery phase, where nodes first join 
the network, then create secure connections between nodes to facilitate their application level 
data transfers.  
 
As seen in Figure 46, the initiator in this case is Node B, where the recipient is Node A. 
Generally, the initiator first connects with the recipient by sending an “Auth Init” message, the 
recipient then accepts this message, decrypts, and verifies the authenticity of the message. The 
recipient, Node A, then sends an “Auth Ack” message using the “remote-ephemeral-key” and the 
“nonce” which was sent in the initialization message from Node B. Node A also derives secrets 
and sends the first encrypted frame containing a “P2P Hello” message. This P2P Hello message 
is the first packet sent over the connection and sent only once by both sides upon session 
initialization with the handshake. No messages are sent until both sides of the handshake send 
and receive a P2P message. Lastly, Node B receives the P2P Hello message and derives the same 
shared secrets and encrypts and sends its own P2P Hello message to Node A. Thus, completing 
the RLPx Handshake, where both sides have shared ephemeral keys, derived shared secrets and 
have generated the “AES secret” and “MAC secret” which are used for the session’s 
encryption/decryption and message authentication.  
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Figure 46: RLPx Handshake & P2P Capability Message Sequence Diagram 

All messages following the initial handshake are associated with a “capability”. Any number of 
capabilities can be used concurrently on a single RLPx connection. A capability is identified by a 
short ASCII name, with a max of eight characters, and a version number. The capabilities 
supported on either side of the connection are exchanged within the Hello message (0x00) found 
at the end of the RLPx Handshake seen above in Figure 46. The standard capability that is 
always supported between both sides of the connection is known as the “p2p” capability. 
 
In this scenario and dissector, only the ETH and SNAP sub protocols are seen, as the clients are 
running on a proof-of-work consensus algorithm network, and running GETH clients that 
support SNAP. ETH is used to exchange blocks, transactions and other data regarding block 
information between nodes. SNAP is used to facilitate the exchange of Ethereum state snapshots 
between peers. The other “p2p” capability messages include a Disconnect (0x01) which is used 
to inform the peer that a disconnection is imminent, including a reason for why the peer wants to 
disconnect. Lastly, there also exists a Ping (0x02) and a Pong (0x03) message for RLPx session 
liveliness.  
 
Now, let’s look deeper into the actual dissection of the RLPx Handshake messages followed by 
the “p2p” capability messages. First a new dissector plugin must be registered with Wireshark, 
specifically named “rlpx.lua”. This dissector registers the protocol name “rlpx” with a 
description of “Ethereum RLPx Protocol”, with the same standard ports that were used with 
discovery but for TCP, ports 30303 to 30308. As far as the LUA dissector is concerned, there are 
two main types of packets, a handshake packet and a normal RLPx packet which would carry the 
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payload data of a capability for instance. Luckily, in the handshake packets, AuthInit and 
AuthAck, the first two bytes are non-encrypted, meaning this can be used to tell if the packet is a 
handshake or standard RLPx message. These first two bytes represent the size of the payload that 
is encrypted, so using this, the LUA dissector is able to calculate the payload size and check if it 
equals the first two bytes. Seen below in Figure 47, the LUA implementation to get the first two 
bytes of the payload, then checking if the length of the entire payload minus the “auth-size” is 
equal to two, which is the left over size representing the size of the size field.  

 
Figure 47: rlpx.lua Parsing RLPx Auth Size Field 

This check is crucial in verifying if the packet is a handshake message or a normal standard 
message, as different functions in the “bridge.py” are called accordingly. Lastly, still in the 
“rlpx.lua” we can check if the known port of the packet, which again is 30303 to 30308, is 
associated with the sender or the receiver of the packet. If the source port is a known port, then 
this message is an AuthAck packet, otherwise, this message is an AuthInit packet. Lastly, the 
“handleRLPxHandshakeMsg()” function is called from the “bridge.py”.  
 
RLPx dissections require knowledge of the node’s static private keys, that is the private key that 
is associated with the “nodekeyhex”. This again utilizes the “Node” class to handle the state 
information for the peer, including the peers that the node is connecting to, utilizing the “Peer 
Connection” class. Seen in Figure 48, the class architecture for RLPx messages. Each Node gets 
an associated Peer Connection upon initialization of an RLPx Handshake, this effectively creates 
a graph. Nodes can have multiple Peer Connections, and a Peer Connection is technically just a 
wrapper for a node to node connection to hold all the state information between the two. So, a 
Peer Connection is two Nodes, one considered as a parent, which is the “own” Node, and the 
other. The first part is the “Handshake State” class, which deals with incoming Auth Init and 
Auth Acks, and also deals with the creation of the “Secrets”. The secrets hold all of the derived 
information between the two, including the ephemeral keys, random public and private keys, and 
session keys including the AES and MAC keys. The details of the handshake cryptography will 
be gone into greater detail in the Analysis chapter. Once the secrets are generated for both 
parties, this then creates a “Session State” which handles the decoding, decryption and dissection 
of all messages after the handshake.  
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Figure 48: PYDEVP2P RLPx Class Flow Diagram 

4.4.1 Handshake ECIES Decryption 
 
Continuing on with the dissection of the RLPx Handshake messages, the packet payload is sent 
through the Node class, then calling the “read_handshake_msg()” function found in 
“handshake.py”, which decrypts the data utilizing the node’s static private key. This decryption 
implements ECIES (Elliptic Curve Integrated Encryption Scheme) Decryption where there 
cryptosystem used by RLPx is as follows: 

● The elliptic curve secp256k1 with a generator G 
● KDF(k, len): the NIST SP 800-56 Concatenation Key Derivation Function 
● MAC(k, m): HMAC using the SHA-256 hash function. 
● AES(k, iv, m): the AES-128 encryption function in CTR mode 

 
So, let’s say the Bootnode receives and Auth Init message from Node 1, seen in Figure 50. Node 
1, will then need to decrypt this message, which was encrypted by the Bootnode. Node 1 will 
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receive the following for the ciphertext: 𝑅𝑅 || 𝑖𝑖𝑖𝑖 || 𝑐𝑐 || 𝑑𝑑 , where first Node 1 will pull out the 
ephemeral public key, also known as the ECDH (Elliptic Curve Diffie Helman) public key from 
the ciphertext which is R. Using this R, Node 1 is able to generate the shared secret (S) such that 
𝑆𝑆 = 𝑃𝑃𝑃𝑃 where (𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃) = 𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 1 ∗ 𝑅𝑅. That is the private static private key of Node 1 multiplied 
by the ephemeral public key R. This creates a point on the elliptic curve secp256k1, Px and Py, 
where Px is the actual shared secret [31].  
 
Then, the encryption and authentication keys can be derived utilizing the NIST SP 800-56 
Concatenation Key Derivation Function. Next, Node 1 verifies the authenticity of the message 
by checking whether the trailing message authentication tag d equals 𝑀𝑀𝑀𝑀𝑀𝑀(𝑠𝑠ℎ𝑎𝑎256(𝐾𝐾𝑚𝑚), 𝑖𝑖𝑖𝑖 || 𝑐𝑐). 
Lastly, obtaining the plaintext by using symmetric decryption utilizing the IV and the ciphertext 
and the AES derived key. All of which is found in the “crypto/ecies.py” module in PYDEVP2P. 
Below, in Figure 49, is a great depiction of the steps required for ECIES encryption [32].  

 
Figure 49: ECIES Hybrid Encryption Scheme 

Seen below, in Figure 50, the contents of the dissected Auth Init packet sent from Node 1 to the 
Bootnode. Containing the following: 

● Signature:  
● InitiatorPubkey: The static public key of the Node 1 
● Nonce: randomly generated nonce for the Init message 
● Version: 04 
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Figure 50: RLPx Auth Init Packet Node1 => Bootnode 

Following the Auth Init, the Bootnode then sends an Auth Ack message to Node 1, seen in 
Figure 51. This message contains the following: 

• RandomPubkey: Ephemeral random public key of the Bootnode 
• Nonce: randomly generated nonce for the Ack message 
• Version: 04 

 

 
Figure 51: RLPx Auth Ack Packet Bootnode => Node1 

4.4.2 Exposing the Random Private Key 
 
Just like with the dissection of DiscoveryV5 the state information has to be propagated for both 
sides of the exchange, which adds complexity as the dissector is capturing the packets 
retroactively, like it is the recipient. So, when an AuthMsg is received, the sender Node, in this 
case Node 1 must be populated with the information, such as its own nonce, random public keys, 
etc. Each side must know about their own randomly generated private key (RandomPrivKey), 
and in turn know their own random public key (RandomPubKey). This step is done in the 
background, and is completely obscured to the dissector, meaning without the random private 
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key, and the random public key of the other node, the dissector would not be able to generate the 
shared secrets to dissect anything after the AuthInit and AuthAck messages.  
 
Now, to mitigate this issue, we exposed the RandomPrivKey by adding this field to both the 
AuthInit and AuthResp packets found in the GETH source code. This allows for the dissector to 
be run completely by itself, and whenever a new handshake occurs, these random keys are 
immediately shared “in the clear” via the handshake messages in RLPx. These keys are found in 
the struct of both the definitions for the AuthMsgV4 and AuthRespV4 found in the GETH source 
code, still requiring the ECIES encryption as shown above. Shown below in Figure 52 lines 396 
and 407 were added to the GETH source code “/p2p/rlpx/rlpx.go” to expose the 
RandomPrivKey. This is the explanation for why the custom GETH docker images had to be 
created in the first place for proper RLPx dissection to take place. Also, lines 575 and 596 were 
added in the same “rlpx.go” file to add the RandomPrivKey to the AuthInit and AuthResp 
structure prior to sending it out, seen in Figures 53 and 54. 
 

 
Figure 52: Exposing the RandomPrivKey to the AuthInit and AuthResp Messages in GETH 
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Figure 53: Inserting the RandomPrivKey into the AuthInit Message in GETH 

 
Figure 54: Inserting the RandomPrivKey into the AuthResp Message in GETH 

These four lines allow the dissector to know the random private key that was generated for each 
node, therefore allowing it to generate the shared secret using the remote random public key and 
the node’s own random private key. This is done in the secrets generation step which is done 
prior to the session setup, which is used to encrypt and decrypt capability messages such as the 
P2P Hello messages. The secrets are created and generated as follows: 

• Create the ephemeral key or ECDHE Secret which is done by multiplying the public key 
and the private key, creating a point on the elliptic curve Px, Py where Px is chosen as the 
ephemeral key 

• Derive the shared secret from the ephemeral key agreement where:  
shared-secret = keccak256hash( ephemeral-key, keccak256hash( respNonce, 

initNonce ) ) 
• Calculate the aes-secret using the hash of both the ephemeral-key and shared-secret 

where: 
  aes-secret = keccak256hash( ephemeral-secret, shared-secret ) 

• Calculate the mac-secret with the hash of both the ephemeral-key and aes-key 
  mac-secret = keccak256hash( ephemeral-secret, aes-secret ) 

• Calculate the Egress and Ingress MACs (depending on if initiator or not) 
 
From there, the “SessionState” is created for the connection between the two nodes, in this case 
specifically the Bootnode and Node 1. This SessionState holds the AES decryption and 
encryption cipher that is used for incoming and outgoing RLPx messages. 
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4.4.3 Dissecting RLPx P2P Capability Messages 
 
All messages following the initial handshake are framed. A frame carries a single encrypted 
message belonging to a capability. The purpose of framing is multiplexing multiple capabilities 
over a single connection. Secondarily, as framed messages yield reasonable demarcation points 
for message authentication codes, supporting an encrypted and authenticated stream becomes 
straight-forward. Frames are encrypted and authenticated via key material generated during the 
handshake. The frame header provides information about the size of the message and the 
message's source capability. Padding is used to prevent buffer starvation, such that frame 
components are byte-aligned to block the size of the cipher [31].  
 
The LUA dissector for RLPx messages that are not handshake messages, not AuthInit or 
AuthAck, are still handled in “rlpx.lua” and call the “handleRLPxMsg()” found in the 
“bridge.py”. This same function call uses the same Node and Peer Connections and SessionState 
setup from the handshake, therefore all the session keys for AES and MAC already exist, 
therefore the frame header and frame body (which is the actual capability message) can be 
decrypted.  
 
Transitioning back to the end of the RLPx Handshake, P2P Hello messages are sent after the key 
derivation and session key sharing process. As stated, before the Hello message is the first packet 
sent over a connection that is sent by both sides, sharing the capabilities supported by themselves 
to the other node. Found in this Hello message, seen in Figures 55 and 56, the dissection output, 
is as follows:  

● ProtocolVersion: the version of the "p2p" capability, 5. 
● ClientId: Specifies the client software identity, as a human-readable string 
● Capabilities: is the list of supported capabilities and their versions 
● ListenPort: specifies the port that the client is listening on (on the interface that the 

present connection traverses). If 0 it indicates the client is not listening. 
● NodeKey: is the secp256k1 public key corresponding to the node's static private key. 

 
Figure 55: RLPx P2P Hello Packet Bootnode => Node1 
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Figure 56: RLPx P2P Hello Packet Node1 => Bootnode 

Note the version of GETH running, v1.11.0, along with the capabilities that the client's support. 
In this case, as the clients are running the same software, their supporting capabilities are 
identical. However, it is important that both the ETH and SNAP capabilities are supported by 
these clients, which will be discussed in greater detail in the next section. The highest version 
shared for a capability will be chosen and used for communication with that capability. These 
capabilities found in the list make up the bulk of the messages found after the handshake. 
However, there does exist a Ping (0x02) and Pong (0x03) built-in P2P capability message for 
RLPx, shown in Figures 57 and 58 respectively. Both messages do not contain any payload other 
than their type, and specifically made for RLPx session liveliness. And from the two figures the 
Bootnode pinging Node 1 and Node 1 responding back with a subsequent Pong message.  
 
 

 
Figure 57: RLPx P2P Ping Packet Bootnode => Node1 
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Figure 58: RLPx P2P Pong Packet Bootnode => Node1 

The last RLPx P2P capability message that is supported by all nodes is the “Disconnect” 
message which informs the peer that a disconnection is imminent. This message isn’t a request 
for a disconnection rather telling the other node they will be disconnecting with a specific reason, 
which is the payload of this capability message. The “P2P Disconnect” can be seen in Figure 59 
being sent from Node 1 to Node 2, with a reason for “Useless peer” which means that Node 2 is 
not providing any useful information to Node 1. Node 2 responds with a Disconnect message, 
seen in Figure 60, with a reason: “Disconnect requested” which is an acknowledgement. After 
that, we can see from the dissection that the TCP connection terminates with a [FIN, ACK] 

 
Figure 59: RLPx P2P Disconnect Packet Node1 => Node2 
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Figure 60: RLPx P2P Disconnect Packet Node2 => Node1 

4.5 Node Capability Messaging 
 
Capability messaging is a feature of RLPx that allows nodes to communicate using different 
application-level protocols, such as ETH, LES, SNAP. Each capability has a name, version, and 
message type. We discussed in the previous section that nodes negotiate their capabilities during 
the RLPx Handshake process with the built-in RLPx P2P capability Hello message. These 
subprotocols define the logic and rules for exchanging messages related to specific aspects of 
Ethereum nodes. Like the P2P capability messages, these subprotocols are also framed, 
containing a frame header and frame body where the actual capability message resides.   
  
As used in the private dockerized Ethereum network and scenario, the GETH clients support 
ETH and SNAP. ETH is the main subprotocol for synchronizing blocks and transactions on the 
Ethereum network. SNAP is a newer subprotocol that aims to improve the efficiency and 
scalability of state synchronization by using markle proofs and compression techniques. Each of 
these capabilities utilizes RLP encoding to store all of their respective information inside the 
frame body of the RLPx message.  
  
As seen earlier, the frame header contains a “Header Data” field listing different capability IDs. 
This is meant to be used for multiplexing between different capabilities. However, the current 
version of RLPx does not support this; therefore, each message type is given a set amount of 
space for the message IDs for each capability. On connection and reception of the Hello 
message, both peers can form an automatic consensus over the message space they can both 
support. So, in the case of the P2P messages seen above, ETH/68 and SNAP/1 would be chosen. 
Each shared and sorted alphabetically capability message type is then given an offset starting 
from 0x10 where 0x00 - 0x0f is reserved for the “p2p” capability. For example, the ETH Status 
subprotocol message (0x00) will be given an offset that morphs this id into 0x10, then ETH 
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NewBlockHashes (0x01) becomes 0x11, and so on. This is done automatically and is purely used 
as a consensus mechanism for quickly knowing the capability message type upon reception.   
 
4.5.1 Dissecting ETH Capability Messages 
 
ETH is a protocol utilizing the RLPx transport that facilitates the exchange of Ethereum 
blockchain information between peers. It is still used after the “Ethereum merge” however only a 
subset of messages, in the scenario, we will be taking a look at how this ETH subprotocol is used 
in a proof-of-work network in order to propagate most of the messages definite in ETH [33].  
 
Taking a look at the ETH sequence diagram, shown in Figure 61, it looks extremely hectic. By 
far the ETH subprotocol is captured the most post-handshake, and many communications are 
handled concurrently, making it rather difficult to track. There are 13 different types of ETH 
messages, starting off with the Status (0x00) message. This message informs its peers of its 
current state and is sent just after the connection is established prior to any other ETH 
subprotocol messages. After this Status message, there are three high-level tasks that can be 
performed with the use of the ETH capability, which are chain synchronization (yellow), block 
propagation (green) and transaction exchange (blue). These tasks use disjoint sets of messages 
and clients typically perform them as concurrent activities on all peer connections.  

 
Figure 61: RLPx ETH Capability Message Sequence Diagram 
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Starting with chain synchronization, nodes that have the ETH capability are expected to have 
knowledge of the complete chain of all blocks from the genesis block (the very first starting 
block which is in the genesis.json) to the current and latest block. After connection, both peers 
send the Status message, which includes the Total Difficulty or TD and hash of their “best” 
known block. The client with the worst TD then proceeds to download the block headers using 
the GetBlockHeaders (0x03) message, verifies the proof-of-work values then fetches the block 
bodies using GetBlockBodies (0x05). These messages are responded to with BlockHeaders 
(0x04) and BlockBodies (0x06). Note that these steps can happen concurrently, and upon 
receiving these block bodies, the Ethereum Virtual Machine is used to recreate the state tree and 
receipts. This process can be very timely for new nodes joining a previous existing network as 
there might exist quite a bit of block bodies to download.  
 
In terms of block propagation, there really exists only two message types, NewBlock (0x07) and 
NewBlockHashes (0x01). Block propagation deals with newly-mined blocks that must be 
relayed to all nodes on the network. The NewBlock message is used to announce a new block to 
a peer, where the peer will then verify the validity of the block by checking whether the proof-of-
work value is valid. Once it has validated the new block, it also sends out the block to a small 
fraction of connected peers using the NewBlock message as well. The recipient also validates the 
header information, importing the block into its own local chain and executing all the 
transactions contained in the block, which computes the blocks “post state”. The blocks “state-
root” must match the computed post state root. This ends processing required on the new block 
and it is considered fully valid, thus sending out a NewBlockHashes message about the block to 
all the peers which it didn’t notify earlier.  
 
It is important to understand that the “hashes” messages in the ETH protocol are usually used as 
a notification of something new. Due to the decentralized nature of the peer-to-peer network, 
many messages may be received that are the same, this enforces chain security and redundancy 
but is very intensive on the network. For example, using the diagram below, Node B mines a 
new block and sends out a New Block message to Node A. Node A will then validate the block 
and the header information. Node A will also send a NewBlock message to roughly the square 
root of the total number of peers. Node A will also send out a NewBlockHashes to the peers that 
Node A didn’t send a NewBlock message to. This is because one of the other nodes should 
receive the block via a  NewBlock from another peer. If the node did not receive the block, but 
received just the NewBlockHashes, then the peer can request the block, which would be part of 
chain synchronization. 
 
The last task that is fulfilled with the ETH capability is transaction exchange. All nodes 
exchange pending transactions in order to relay them to miners which will pick them for 
inclusion into the blockchain. Client implementations can vary on the number of pending 
transactions they keep track of, which is known as the “transaction pool”. When a new peer 
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connection is established, the transaction pools on both sides of the communication must be 
synchronized. This is done first with a NewPooledTransactionHashes (0x08) message, which 
sends the transactions that are in the local pool to the peer. Each node upon receiving this 
message collects the transaction hashes which it doesn’t have in its own local pool. The nodes 
request these unknown transactions with the GetPooledTransactions (0x09) message and receive 
the transaction with the PooledTransactions (0x0a) message. Similarly to block propagation, new 
transactions are propagated with the Transactions (0x02) message which relays complete 
transaction objects which are sent to a small group of connected peers. Transaction propagation 
is also carried out with the NewPooledTransactionHashes message, in which other peers can then 
request specific unknown transactions.  
 
Transaction receipts record transaction outcomes in blocks. A receipt is formally defined by 
Ethereum as “a proof-of-computation and contains information about the entire execution: 
amount of gas used, contract address, log entries and the status code (success or failure)” [34]. 
These receipts are stored individually on each client in a receipt trie. Nodes that want to get the 
receipts pertaining to a block can utilize the GetReceipts (0x0f) message, followed by a response 
with a Receipts (0x10) message. 
 
Now, let’s take a look at the dissection of each of these messages found in the ETH subprotocol, 
starting out with the messages for chain synchronization.  Each message as we stated before is 
RLP encoded, meaning the schema for each of the messages needs to be known in order to get 
“named values”, as the encoded RLP data just provides the values. Again, PYDEVP2P provides 
a custom RLP implementation class called “RLPMessage”. This provides better tooling for 
deserialization of RLP encodings into a more human readable key/value dictionary that can be 
displayed more easily in Wireshark. So, each of the capability messages for ETH extend off of 
the “RLPMessage” class to provide methods for decoding/deserializing RLP and then morphing 
the data into a python dictionary. 
 
As stated before, the Status message is sent before all other ETH capability messages. As seen in 
Figures 62 and 63, the dissection output for the ETH Status message, along with the Version, 
Network ID, Block Hash, Genesis, Fork Hash and Fork next values. Below, we can see the 
Bootnode and Node 1 syncing their chain, relaying their Network ID which in this scenario we 
manually set to “12345” followed by the hash of the genesis block, utilizing ETH version 68. 
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Figure 62: RLPx ETH Status Packet Bootnode => Node1 

 
Figure 63: RLPx ETH Status Packet Node1 => Bootnode 

Next, we then would see new clients that entered the network or clients periodically want to 
synchronize their own local chains. This is done utilizing GetBlockHeaders and GetBlockBodies 
along with the response of BlockHeaders and BlockBodies respectively. The RLP encodings for 
these messages can contain a variable length of indeterminate size. Therefore a “CountableList” 
RLP type is used to represent an unknown list length of a certain value, shown below in Figure 
64 the RLP schema definition for these 4 messages.  
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Figure 64: RLPx Capabilities.py RLP Message Schema Definition  

The ETH BlockBodies message can become extremely large, as each contiguous block will be 
sent in response to a GetBlockBodies message. In the DEVP2P ETH specification, there is a 
software limit for each BlockBodies message of roughly 2MB to be sent at a time, where more 
BlockBodies will have to be requested if this cap is matched. Since this is a software limit, this is 
not handled by the standard TCP assembled packets, however it has to manually stitched 
together by the dissector itself. Luckily, the initial frame header tells us the size of the expected 
data, therefore the dissector can store the packet data while each packet comes in until the full 
length as denoted by the frame header is captured. Then with all this data, the dissector is finally 
able to dissect the entirety of the data. While waiting for the data, the packets will still be 
displayed in Wireshark as “RLPxTempMsgs”, then once all the data is retrieved, the data will be 
output like normal.  
 
Relating it back to the scenario, the Bootnode wants to get the block headers from Node 1 in 
order to synchronize its own local chain, seen in Figure 65. Followed by Node 1 responding with 
a BlockHeaders message, as seen in Figure 66. Note the “request id” field matching in both of 
the outputs. Each of the roots display the root hashes of the Merkle trie nodes. Lastly, as these 
capabilities are carried out concurrently, Node 1 is also requesting the full block bodies from 
Node 3 seen in Figure 67, with Node 3 responding in Figure 68.  
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Figure 65: RLPx ETH GetBlockHeaders Packet Bootnode => Node1 

 
Figure 66: RLPx ETH BlockHeaders Packet Node1 => Bootnode 



64 
 

 
 

 
Figure 67: RLPx ETH GetBlockBodies Packet Node1 => Node3 

 
Figure 68: RLPx ETH BlockBodies Packet Node3 => Node1 
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The ETH/68 standard is newer than the actual devp2p markdown documentation, therefore there 
are some differences in the dissection output than what is seen in the documentation. These 
differences were found directly from the Go Ethereum source code implementation for the ETH 
capability. Next, in terms of block propagation, there are only two messages that handle this, 
specifically NewBlock and NewBlockHashes.  
 
Now, taking a look at Figure 69, the dissected NewBlock message from Node 1 to the Bootnode. 
This is done to propagate the new block to the Bootnode, where the Bootnode will then validate 
the information, and send out the same NewBlock message to its own peers as well for 
validation. This new block shows “number 1” as it is the first block mined, with zero transactions 
that have taken place specifically. Node 1 then sends out the NewBlockHashes message out to 
other connected nodes on the network for validation of the hashes as well, as seen in Figure 70. 

 
Figure 69: RLPx ETH NewBlock Packet Node1 => Bootnode 
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Figure 70: RLPx ETH NewBlockHashes Packet Node1 => Node2 

The last piece of the ETH capability is transaction exchange and propagation. The 
NewPooledTransactionHashes message, seen in Figure 71, is used as a notifier to other nodes of 
what transactions are in their own local transaction pool. When other nodes receive this message 
and check this message with their own local pool, they can then request unknown transactions 
using the GetPooledTransactions message, followed by a PooledTransactions message, seen in 
respectively. Lastly, new transactions are propagated throughout the network using the 
Transactions message, as seen in Figure 74. GETH utilizes the “Legacy” transaction format, 
however, it seems that there is a “newer” format that is considered “typed” and not in a RLP 
format. This implementation was not found in the most up-to-date version of GETH, therefore 
will not be dissected. 
 
Looking below, we see Node 1 sharing its local transaction pool with Node 2 in Figure 71, with 
the NewPooledTransactionHashes message. Node 2 will then compare these transaction hashes 
with its own local transaction pool. Node 2 will then request any of the transactions that it does 
not have locally, as seen in Figure 72, utilizing the GetPooledTransactions message. Notice the 
same exact 3 transaction hashes are being requested from Node 2 to Node 1 that Node 1 
broadcasted out with the NewPooledTransactionHashes message. Node 1 then responses to the 
request from Node 2 utilizing the PooledTransactions message seen in Figure 73, where the 
request id matches that of the request sent by Node 2, and each of the transaction details are 
listed out for each hash requested. Lastly, for new transactions, like ones carried out by Node 1, 
they are propagated throughout the network utilizing the Transactions message, as seen in Figure 
74, specifically from Node 1 to Bootnode.  
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Figure 71: RLPx ETH NewPooledTransactionHashes Packet Node3 => Node1 

 
Figure 72: RLPx ETH GetPooledTransactions Packet Node2 => Node1 
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Figure 73: RLPx ETH PooledTransactions Packet Node1 => Node2 

 
Figure 74: RLPx ETH Transactions Packet Node1 => Bootnode 
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Lastly, receipts are found within the blocks themselves, however if new clients come online or 
other clients want to verify transactions they are able to request receipts view the GetReceipts 
message, followed by a Receipts message response as seen in Figures 75 and 76. In the 
dissection environment, this was normally seen when newer clients would come online and had 
to synchronize transactions that took place prior to joining the network.  

 
Figure 75: RLPx ETH GetReceipts Packet Node1 => Bootnode 

 
Figure 76: RLPx ETH Receipts Packet Bootnode => Node1 

 
4.5.2 Dissecting SNAP Capability Messages 
 
The SNAP protocol runs on the RLPx transport facilitating the exchange of Ethereum state 
snapshots between peers. The protocol was originally an optional extension for peers that 
supported the capability; however, with the release of ETH/67, SNAP has become mandatory for 
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state management amongst peers. The SNAP protocol aims to make dynamic snapshots of 
current states available for peers, allowing for semi-real-time data retrieval. The SNAP protocol 
is meant to run side-by-side with the ETH protocol, meaning it cannot be run without the ETH 
protocol. The SNAP synchronization mechanism enables peers to retrieve and verify all the 
account and storage data without downloading intermediate Merkle trie nodes. This allows the 
final state trie to be reassembled locally, drastically reducing the networking load [35].  
 
In Ethereum, the state trie is a Merkle tree comprised of leaves that contain valuable data, and 
each node above is the hash of 16 children. Syncing from the tree’s root (the hash embedded in a 
block header), the only way to download everything is to request each node individually [36]. A 
trie node is a node in the trie data structure. In Ethereum, the trie nodes are used to store the state 
of the blockchain. The state of the blockchain is the current state of all accounts and contracts on 
the blockchain. The state is stored in a Merkle Patricia Trie, which is a modified version of a 
Patricia Trie [37]. For example, every block header stores the roots of three trie structures: 
stateRoot, transactionRoot, and receiptsRoot. The state trie represents a mapping between 
account addresses and the account states. The account state includes the balance, nonce, 
codeHash and storageRoot. 

 
Figure 77: RLPx SNAP Capability Message Sequence Diagram 

SNAP is used for getting quick snapshots to quickly build the Ethereum state locally, and the 
typical sequence flow of the SNAP message can be seen in the above sequence diagram in 
Figure 77. This starts off with a GetAccountRange (0x00) message, as seen in Figure 78. This 
message requests an unknown number of accounts from a given account trie, intended to fetch a 



71 
 

 
 

large number of subsequent accounts from a remote node and reconstruct a state subtrie locally. 
The response message, AccountRange (0x01), seen in Figure 79, returns a number of 
consecutive accounts and the Merkle proofs for the entire range. Each SNAP message has a 
mandatory “request id” field, which is used to track which response message correlates with 
which request/get message.  

 
Figure 78: RLPx SNAP GetAccountRange Packet Bootnode => Node1 

 
Figure 79: RLPx SNAP AccountRange Packet Node1 => Bootnode 

Next, the SNAP protocol allows the request of the storage slots of multiple accounts’ storage 
tries, which could even be a single account. This message is GetStorageRanges (0x02). As we 
know in this private Ethereum network environment and scenario, each client only has a single 
account associated with it. This message is responded to with the StorageRanges (0x03) 
message. However, we was not able to propagate the GetStorageRanges and StorageRanges 
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messages utilizing the private Ethereum network with the latest GETH clients. However, the 
dissector does support them, but this is not verified. See below for the information that would be 
dissected in these messages: 
 GetStorageRanges: 

● Request ID: Integer 
● Root Hash: Hex Value 
● Account Hashes: List of Hex Values 
● Starting Hash: Hex Value 
● Limit Hash: Hex Value 
● Response Bytes: Integer 

  
 StorageRanges: 

● Request ID: Integer 
● Slots: List of Slot: 

○ Slot Hash: Hex Value 
○ Slot Data: Hex Value 

● Proof: List of Hex Values 
 

Lastly, with four messages remaining, there exists the GetByteCodes (0x04) message which 
requests a number of contracts byte-codes by hash. This allows retrieving the code associated 
with accounts retrieved via the GetAccountRange message but GetByteCodes is needed during 
healing too. Healing is a cleansing of the local state of the node. ByteCodes (0x05) is sent in 
response to GetByteCodes which returns a number of requested contract codes in the same order 
as the requests but there might be some gaps if not all codes were available. Next, the 
GetTrieNodes (0x06) message, seen in Figure 80, is used to request a number of state (either 
account or storage) Merkle trie nodes by path. This message is responded to by the TrieNodes 
(0x07) message, seen in Figure 81, which returns the requested number of state tire nodes.I was 
not able to propagate the GetByteCodes and ByteCodes messages utilizing the private Ethereum 
network with the latest GETH clients. However, the dissector does support them, but this is not 
verified. See below for the information that would be dissected in these messages: 

GetByteCodes: 
● Request ID: Integer 
● Hashes: List of Hex Values 
● Bytes: Integer 

  
ByteCodes: 

● Request ID: Integer 
● Codes: List of Hex Values 
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Figure 80: RLPx SNAP GetTrieNodes Packet Node1 => Bootnode 

 
Figure 81: RLPx SNAP TrieNodes Packet Node1 => Bootnode 

4.6 Recap and Discussion 
 
After looking at all that is to offer with the dissector, let us take a step back and talk about what 
can be learned from the development of the dissector. The dissector provides a minimal third-
party dependency method for dissecting DiscoveryV4, DiscoveryV5, and RLPx sub-protocols, 
including ETH and SNAP. Creating the dissector was no easy task, solely going off the Go 
Ethereum source code and the minimal documentation found in the markdown documents in the 
Ethereum DEVP2P repository. Implementation specifics were often only touched on if digging 
deep into the source code to figure out how specifically they are deriving the keys, or very often, 
what public key they are using, whether it is compressed or not.   
  
The dissector proves a viable tool for DEVP2P dissection while touching on a range of topics 
from encoding/decoding with RLP, elliptic curve cryptography and its use in ECIES, along with 
elliptic curve digital signature and Diffie-Hellman. The dissector even deals with reassembling 
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TCP packets and uses SNAPPY for decompression. Besides this range of topics the dissector 
touches, it overcomes the main hurdle attributed specifically by ConsenSys, specifically RLPx 
decryption and automatically grabbing the exposed random private keys and using them for 
session key derivation.   
  
Lastly, PYDEVP2P provides tooling for a range of capabilities and tooling for not only DEVP2P 
but a python-only zero-dependency elliptic curve cryptography implementation. This could be 
easier because many implementations use built-in C libraries for performance-intensive elliptic 
curve calculations. All six message types for DiscoveryV4 were dissected and displayed in 
Wireshark, while all eight messages for DiscoveryV5 were dissected; however, only six were 
proven and displayed in Wireshark. Lastly, with RLPx, 2 Handshake messages, four built-in P2P 
capability messages, 13 ETH messages, and 8 SNAP messages were dissected. Therefore, this 
dissector provides dissection, decryption, and decoding capabilities for a total of 41 message 
types spanning three different protocol types in the suite of DEVP2P.  
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5. Security Analysis with the Dissector 
 

Network packet dissectors, like the one created and explained in great detail in the previous 
chapter, are great for analyzing specific pieces of network traffic and subsequent packet data in a 
human-readable format. As discussed, dissectors can help identify malicious traffic, such as 
malware, denial-of-service attacks, or authorized access attempts. They can even help monitor 
network activity and detect anomalies or suspicious patterns, either actively or after the fact, with 
captured network traffic.   
  
Dissectors have also been pointed to for helping students learn about popular network protocols, 
data structures, and communication patterns in our daily network traffic. Teachers have also used 
them to demonstrate network concepts, such as the TCP 3-way handshake, or even cryptographic 
concepts regarding TLS/SSL and, more specifically, in this case, elliptic curve cryptography.   
  
In the industry and the open-source community, dissectors help developers and analysts test and 
debug their network applications or protocols. They are proven to help developers understand 
how other network applications or protocols work and intersect together while also providing 
tooling to help diagnose and resolve network, connectivity, or performance issues. Network 
packet dissectors provide a way to dig deeper and see the actual underlying packet information 
transferred between network hosts, removing any abstraction.   
  
As we have seen with the multitude of packet dissections in the previous chapter, a great deal of 
information can be unraveled, uncovering the mysteries behind DEVP2P and understanding and 
proving the Ethereum documentation. However, what we saw is considered the best-case 
scenario, where the network is set up to provide all the results to develop and create the 
dissector. Dissectors shine when there is a “rainy day” scenario or when something goes wrong, 
and the network traffic needs to be debugged to diagnose possible configuration issues or 
connectivity problems.   
 
Throughout this chapter, we will provide several ways this dissector can be used, proving its 
usefulness to the community, educators, developers, and researchers. With the help of our main 
contribution PYDEVP2P, we will first walk through how the Elliptic Curve Digital Signature 
Algorithm (ECDSA) is used regarding DiscoveryV4. We will first look closer at the captured 
packets and then dig deeper into how the digital signature is used to recover the sender's identity 
and prove the message's authenticity. Secondly, we will discuss the methods used for obfuscating 
the network traffic in DiscoveryV5 and its use of Elliptic Curve Diffie-Hellman (ECDH) while 
using the dissected packets to verify the goals laid out for DiscoveryV5 and compare the security 
improvements and implementations with DiscoveryV4. These elliptic curve cryptography (ECC)  
algorithms are all found in PYDEVP2P without the use of 3rd party dependencies for elliptic 
curve calculations, all helping to provide transparency and accessibility to these topics for 
educators and the community. Lastly, we will utilize the dissector to track a transaction from 
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Node 1 to Node 2, as we saw in the scenario, from a transaction propagation throughout the 
network to seeing the transaction make it to the blockchain and ultimately to the target account.   
 
 
5.1 DiscoveryV4 ECDSA Performance & Security Analysis 
 
This section will cover what the Elliptic Curve Digital Signature Algorithm (ECDSA) is and how 
it is used in DiscoveryV4, covered in detail in Chapter 4.3.1, to recover the public key of the 
sender node while also breaking down some of the technical details behind the elliptic curve. 
This section will also cover the ECDSA implementation in PYDEVP2P, which can be utilized as 
a great educational tool to understand elliptic curve operations in a pure-python implementation. 
Now, revisiting the scenario in Chapter 2.3, “Starting the Private Network”, we saw that when 
the network started, the nodes on the network found each other and connected to one another as 
denoted by the “peercount.” As we have discussed, this is all done through Ethereum node 
discovery, specifically DiscoveryV4 in Ethereum execution clients. However, what we will 
cover in this section is how exactly nodes are able to validate and verify the identity of the sender 
and authenticity of DiscoveryV4 packets.  
 
Let’s recount the contents found in a DiscoveryV4 ping packet, covered in great detail in Chapter 
4 Section 3.1, from Node 1 (10.1.1.10) to the Bootnode (10.1.0.10) utilizing the DEVP2P 
Wireshark dissector’s output shown in Figure 82. What we are specifically keying in on here is 
the “Sign” field, which represents the elliptic curve digital signature on the contents of the Ping 
packet from Node 1 to the Bootnode.  

 
Figure 82: DiscoveryV4 Ping Packet Node1 to Bootnode 
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Now, let’s think about this packet from the perspective of the Bootnode who is receiving this 
Ping packet. Based on the contents alone, the Bootnode could look at the “Sender Info” fields 
without using the digital signature to figure out who sent this packet. This includes the sender’s 
IP address, 10.1.1.10, and the ports used, by the sender for TCP/UDP which is 30304. These 
fields can be checked with the sender’s IP address found in the IP layer of the packet, but other 
than this, there is really no way for the Bootnode to know the identity of the sender, such as their 
elliptic curve public key or the actual authenticity of the packet contents. Meaning, without the 
use of the signature, anyone could have sent this information to the Bootnode, and the Bootnode 
has no exact way to authenticate and verify the identity of the sender. This is, of course, where 
the digital signature field comes into play.   
 
First, the Bootnode can verify message integrity using the “Hash” field, which is found in the 
first 32 bytes in all the DiscoveryV4 packet headers. This hash is calculated using the keccak256 
hash, part of the SHA-3 family of algorithms to compute the hash of an input to a fixed length 
output. The input can be of a variable length, but the result will always be fixed to 32 bytes. This 
is a one-way cryptographic hash function, which cannot be decoded in reverse [38]. Therefore, 
this hash found in the DiscoveryV4 message header can be checked for equality to the hash of 
the message contents following the first 32 bytes of the message, which includes the signature 
field.  
 
Before the Bootnode can verify the message and recover the public key of the sender node, let’s 
dig deeper into the cryptography behind elliptic curves. ECDSA relies on the math of the cyclic 
groups of elliptic curves over finite fields and on the difficulty of the elliptic curve discrete 
logarithm problem (ECDLP) [39]. The basis of this problem is what makes elliptic curve 
cryptography secure, where plainly put, the private key, a random integer in the range from 0 to 
(N -1), where N is the order of the curve, is not able to be uncovered from a known public key 
which is a point on the elliptic curve calculated from 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗  𝐺𝐺. The point value G is known 
as the generator point, a defined point on the elliptic curve. This point is found on the actual 
ellptic curve, which is comprised by a specific equation template, known as a weistress equation: 
𝑦𝑦2 = 𝑥𝑥3 + 𝐴𝐴𝐴𝐴 + 𝐵𝐵, where A and B are constants picked by different elliptic curve definitions [40]. 
For parity, users of elliptic curve cryptography must share the same elliptic curve parameters and 
agree on the same generator point G, including N, which defines the length of private keys. In 
the secp256k1 elliptic curve, which is used by Bitcoin and Ethereum, the constants are 𝐴𝐴 = 0 and 
𝐵𝐵 = 7 and specifically for Ethereum the generator point Gx and Gy including the N: 
 
N: 115792089237316195423570985008687907852837564279074904382605163141518161494337 
Gx: 55066263022277343669578718895168534326250603453777594175500187360389116729240 
Gy: 32670510020758816978083085130507043184471273380659243275938904335757337482424 
 
So, as was just stated, using the nodes private static key, the public key for that node can be 
created using the private key multiplied with G, the generator point on the elliptic curve. Thus, 
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yielding the private and public keys for the Bootnode and Node 1 shown below. Of course, only 
the nodes know their own private keys, and the public keys are what can be shared with other 
nodes, also defining the node's unique identity. The public key of Node 1, shown below in Table 
4 is what we will cross reference with the public key recovered from the signature field found in 
the Ping packet. 
 

Table 4: Bootnode and Node 1 Private and Public Static Keys 

Node (IP Address) Private / Public Keys 

Bootnode (10.1.0.10) Private Key: 
3028271501873c4ecf501a2d3945dcb64ea3f27d6f163af45eb23ced9e92d85b 

Public Key: 
2c4b6808e788537ca13ab4c35e6311bc2553b65323fb0c9e9a831303a1059b875
4aab13dbb78c03a7a31beee5c2f2fb570393f056d54fa83ebd7e277039cc7b6 

Node 1 (10.1.1.10) Private Key: 
4622d11b274848c32caf35dded1ed8e04316b1cde6579542f0510d86eb921298 

Public Key: 
c35c2b7f9ae974d1eee94a003394d1cc18135e7fe6665e6b4f221970f1d9d59f6
a58e76763803bcc9097eba4c91fd08b30405e65c53272b8635348e37f93cedc 

 
Next, the Bootnode can then recover the sender’s static public key, also referred to as the node 
key using just the signature, the 65 bytes following the hash, along with the message data, which 
is all the data following the hash and the signature. The signature consists of 2 values, R and S, 
and in some cases, like with Ethereum ECDSA signatures, V. Without going into the complete 
specifics, the signer encodes a random point R (representing only by the x coordinate) followed 
by the S portion which is the computed value of the message hash H using the signer’s private 
key privKey, which is the proof that the message signer knows their own private key. Signature 
verifications decodes the proof value, S, from the signature back to its original point R, using the 
public key and the message hash H and compares the x-coordinate of the recovered R with the r 
value from the signature [41].  
 
Nevertheless, how would the Bootnode recover the public key of the sender, specifically Node 
1? This can be done utilizing the ECDSA public key recovery algorithm laid out in section 4.1.6 
of “Standards for Efficient Cryptography: Elliptic Curve Cryptography.” This algorithm is handy 
for self-signed signatures and valuable in bandwidth-constrained environments where a full 
certificate may not be viable. Using the ECDSA signature (r, s, v), and all of the elliptic curve 
parameters, it is possible to determine the public key Q of the signer. Due to the nature of the 
elliptic curve, there is the possibility for several public keys to be recovered from the signature 
that resides on the elliptic curve. This is mitigated with the extra byte in the signature, held in the 
“V” value of the signature. This value holds which public key is correct out of the three 
possibilities, which could be the values 0, 1, or 2.   
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Lastly, let’s relate this back to how PYDEVP2P implements the ECDSA public key recovery 
algorithm. All the ECDSA specifics must be incorporated into the dissector in order to achieve 
the proper results, which has not been done before by any other dissectors. This calculation is 
done utilizing Jacobian points, which is a way of representing a point on an elliptic curve using 
three coordinates (x, y, z) instead of using the standard cartesian coordinates (x, y) [42]. This 
allows for faster arithmetic operations on the curve, such as addition and multiplication of points, 
mitigating costly modular arithmetic. The function, shown in Figure 83 as “ecdsa_raw_recover”, 
found in pydevp2p/elliptic/curve.py, uses the secp256k1 curve parameters, which are defined as 
global variables, then utilizing jacobian point arithmetic, produces the public key, Q, that is 
recovered from the signature.  
 

 
Figure 83: PYDEVP2P ECDSA Raw Public Key Recovery 
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The output of this above “ecdsa_raw_recover” function, returns the recovered public key from 
the msghash and the elliptic curve digital signature, which in this case, will be the public key of 
the sender/signer of the message. In this case, related back to the scenario, would be Node 1’s 
public key, recovered from the message.  
 
While ECDSA public key recovery from the signature allows for the recovery of the public key 
and verifying the identity of the sender without knowing their public key in advance, there are 
shortcomings to this method. This operation is computationally expensive and can consume 
many CPU resources. The performance impact of ECDSA public key recovery from the 
signature can be significant, especially for nodes that receive much traffic from unknown peers. 
This can lead to increased latency, reduced throughput, and higher energy consumption [43]. 
This leads to the main cause of DiscoveryV4’s downfall, traffic amplification attacks, a form of 
denial-of-service. This DoS takes place by simply creating a significant amount of fake nodes on 
the network and spamming DiscoveryV4 messages. This forces the nodes to try and recover and 
verify signatures, but also requires the recipient of these messages to respond with DiscoveryV4 
messages. This leads into specific mitigations for this issue by dropping known nodes that have 
not responded in the last 12 hours. This also creates what is known as an “endpoint proof” 
system, where verified connections are stored, and the signature will not necessarily be 
rechecked from that endpoint within a specific time limit. This causes problems in terms of 
security and scalability throughout the network, where this endpoint proof is unreliable, causing 
costly retries and also causing fake authentication of endpoints.   
 
5.2 DiscoveryV5 Masking and Confidentiality 
 
This section will analyze the DEVP2P DiscoveryV5 protocol, covered in detail in Chapter 4.3.2, 
focusing on its masking and confidentiality features, and what the dissector has to overcome in 
order to provide these dissected results. We will start by understanding the security goals laid out 
by the DiscoveryV5 documentation, which are mainly to mitigate endpoint proof, require 
destination node ID for communication, and provide message obfuscation and confidentiality. 
Then, we will examine how these goals are achieved by the protocol design and implementation, 
utilizing the dissector and subsequent packets found. Finally, we will discuss some of the 
cryptographic aspects of the protocol, such as the use of elliptic curve cryptography, specifically 
ECDH, and how its use effectively hinders denial-of-service and replay attacks.  
  
In response to specific shortcomings of DiscoveryV4, the Ethereum team laid out specific goals 
for DiscoveryV5. One main goal was to replace the DiscoveryV4 endpoint proof, as it is 
unreliable and slow due to retries. DiscoveryV5 also requires knowledge of the destination Node 
ID for communication, which makes it harder for other nodes to obtain the Node ID. Fake nodes 
are also less likely to provoke responses knowing just the node’s IP address alone. Next, 
DiscoveryV5 also must obfuscate the traffic to prevent accidental packet mangling or trivial 
packet sniffing while also providing a way to prevent packet replay attacks or peer amplification 
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attacks [29]. Throughout this section, we will look at how DiscoveryV5 is implemented to 
prevent or achieve the goals set out above, which are found directly in the specification of 
DiscoveryV5.   
Now, let us look at how the header information of DiscoveryV5 packets is “masked” using 
symmetric encryption. Primarily, as stated before, this masking and obfuscation of the header 
data are to prevent static and passive identification of the protocol information. When a packet is 
received, the message is laid out in three portions, the masking-if, the masked header, and the 
message itself. The masked header contains the actual packet header, which starts with a fixed-
size “static-header” followed by a variable-length “authdata” section.   
 
Decrypting the masked header starts by the recipient constructing an AES/CTR stream cipher 
using its own node ID as the key and using the IV from the packet. This means that the sender of 
the DiscoveryV5 packet has to know the Node ID of the destination prior to sending the packet. 
Then using this AES/CTR stream cipher, the recipient can then decrypt the static-header, and 
verify the contents and successful decryption by checking the “protocol-id” field, which is 
always “discv5”. If this protocol ID is correct, then the “authdata” can also be unmasked using 
the same cipher. Shown in Figure 84, the unmasked header information found from the DEVP2P 
Wireshark dissector’s output.  
 

 
Figure 84: DiscoveryV5 Unmasked Packet Header 

Shifting over to PYDEVP2P, we can see how this DiscoveryV5 header unmasking can be 
accomplished, which effectively proves that the documentation for DiscoveryV5 is accurate. 
Below, as seen in Figure 85, we can see this three step process for unmasking the header, which 
is found in “pydevp2p/discover/v5wire/encoding.py” from lines 182 to 200. 
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Figure 85: PYDEVP2P Unmasking the DiscoveryV5 Header 

They are first unmasking the static header, which is accomplished by setting up an AES CTR 
stream cipher utilizing the “mask” function where the masking IV is used from the message 
along with the Node’s local ID. This sets up all the fields in the static header, like the protocol 
ID, version, flag, nonce, authorize and type. Next, we see in lines 190 and 191, that the validity 
of the header is checked, following this the auth data is then unmasked, using the same AES 
CTR stream cipher. This masking provides the necessary header obfuscation for the UDP 
payload data to prevent passive eavesdroppers and message identification tools. With the use of 
the dissector, along with PYDEVP2P, it allows for the DiscoveryV5 documentation to be 
verified utilizing a live Ethereum network with actual data sent between nodes. This dissector 
also provides educators and researchers the tools to dig deeper into the implementation specifics 
and understand and learn critical elliptic curve cryptography topics.   
  
What is interesting about DiscoveryV5 is that the header is always masked in this manner, even 
after a successful handshake between nodes. Now, let us focus on the actual handshake that takes 
place between two nodes with regard to DiscoveryV5. Let us recall the handshake process 
between two nodes, Node A and Node B, where neither has communicated before, meaning no 
prior session keys have been formed. Node A sends an ordinary message to Node B, such as a 
Ping or FindNode message. Node B then receives this message and extracts the source Node Id 
from the packet header. Node B then initiates the handshake by responding with a WhoAreYou 
packet which includes a uniquely generated “id-nonce” field. Node A receives this WhoAreYou 
packet and proceeds with a handshake message, by resending the original packet they sent, 
including three new pieces to the message: “id-signature,” “ephemeral-pubkey” and “record”. 
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With all this information, Node A is then able to derive the new session keys, utilizing Elliptic 
Curve Diffie-Hellman (ECDH). 
 
Elliptic Curve Diffie-Hellman (ECDH) is an anonymous key agreement scheme that allows two 
parties, each having an elliptic-curve public/private key pair to establish a shared secret key over 
an insecure channel [44]. ECDH is very similar to the classical Diffie-Hellman Key Exchange 
algorithm, however it uses ECC point multiplication instead of modular exponentiations. The 
protocol is based on the mathematical problem of finding the discrete logarithm of a point on an 
elliptic curve. The basic ECDH algorithm is quite trivial: 
 

● Both parties (Node A and Node B) agree on a public elliptic curve and a base generator 
point G on the curve 

● The sender generates a random private key (ephemeral-privK) and computes their public 
key (ephemeral-pubK) 

● The recipient generates a random private key and public key 
● Both parties exchange their public keys through the insecure channel 
● Node A calculates the sharedKey = nodeBPubK * nodeAPrivK 
● Node B calculates the sharedKey = nodeAPubK * nodeBPrivK 
● Now both Node A and Node B have the same sharedKey 

 
The security of ECDH relies on the assumption that it is hard to compute the private keys given 
the public keys and the generator point G. This is known as the elliptic curve discrete logarithm 
problem (ECDLP). Implementations of ECDH vary significantly, and in the case of Ethereum 
DiscoveryV5, it becomes much more complicated with the use of challenge and authentication 
data, along with key derivation functions that provide two keys, a “writeKey” and a “readKey.”  
 
So, let’s go back to how Node A derives the session keys. After Node A receives the challenge 
data from the WhoAreYou message, it will generate a random private key known as the 
“ephemeral-key” along with a corresponding public key “ephemeral-pubkey”. This ephemeral 
key is used in conjunction with Node B’s static public key to perform the Diffie-Hellman key 
agreement. With the static public key of Node B (destination static public key), and the private 
ephemeral key, Node A is now able to compute the “sharedKey” also known as the “shared 
secret”. Shown in Figure 86, below, the actual implementation of the creation of the shared 
secret which is from the static-public-key and ephemeral-key or the ephemeral-pubkey and the 
static-private-key, for the initiator and the recipient respectively. 
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Figure 86: PYDEVP2P DiscoveryV5 ECDH Function Returning Shared Secret 

It doesn’t stop there however, Node A uses the shared secret (master key), the unmasked 
challenge data from the WhoAreYou message (salt), along with the text “discovery v5 key 
agreement” concatenated with the source Enode ID and the destination Enode ID (context) with 
a key derivation function. This key derivation function derives one or more keys from a master 
key using the HMAC-based KDF defined in RFC5869. The actual implementation of this from 
PYDEVP2P can be found from lines 50 to 65 in “pydevp2p/discover/v5wire/crypto.py”, shown 
below in Figure 87. This specifically outputs two keys, the write key and the read key which is in 
the perspective of the node, meaning the other node will have the same two keys, just flipped. 
So, let’s say Node A wants to send something to Node B, Node A will use the “write key” where 
then Node B will use its own “read key” which is actually the same key. 
 

 
Figure 87: PYDEVP2P DiscoveryV5 Key Derivation and Session Initiation 

Finally, when Node B receives this handshake message, same key derivation can occur, this time 
using its own static private key and the ephemeral public key sent from Node A in the handshake 
packet. Thus finalizing the session, and as seen in the PYDEVP2P implementation, creates a 
“Session” which are the respective write/read keys for the nodes to be used for encrypting the 
message payload for all subsequent DiscoveryV5 messages. The ephemeral key is able to be 
extracted from the unmasked “authdata” from the DiscoveryV5 header which is not shown in the 
dissected packet, but the authdata is structured as follows, shown in Figure 88. In the authdata, 
there exists three static fields, the 32 byte Source Enode ID, followed by the size of the signature 
and the size of the public key. Then following this, the signature, the ephemeral public key and 
the ENR record.  
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Figure 88: PYDEVP2P Handshake Auth Data Schema 

5.3 Tracking a Transaction using the Dissector 
 
This section will be laid out to show the steps to use the DEVP2P dissector to track a transaction 
propagated throughout the network. As discussed in detail in Chapter 4.4, this type of 
communication is facilitated by RLPx, encrypted TCP messages that the dissector must decrypt, 
decode, and dissect for the contents to be viewed properly in Wireshark. This section proves the 
dissector's educational value and gives a specific use case for the dissector. First, let us revisit the 
scenario, looking specifically at the transaction between Account/Node 1 and Account/Node 2, 
where the account created on Node 1 sent 200 ETH to the account created on Node 2. Before the 
dissector, the inner workings, and exchanges between the nodes on the network would have been 
obscured, encrypted, and impossible to track. However, now with the use of the dissector, it is 
now possible to fully trace a transaction through the network packets sent amongst the nodes on 
the network. It is even possible to see which node might choose the block to mine it into the 
chain, then follow each of the nodes in the network, validating this new block in this private 
Ethereum network.   
  
Ethereum transactions are actions initiated by an externally owned account (EOA), which is an 
account managed by a human, not a contract. For example, in our scenario, if Account/Node 1 
sends Account/Node2 200 ETH, Node 1’s account must be debited, and Node 2’s account must 
be credited. Remember, the actual nodes are not the accounts; they are simply a facilitator for 
these accounts to connect to and transact on the Ethereum network. This state-changing action, 
credit and debit, takes place within a transaction. When a transaction is submitted on the 
Ethereum network, it is broadcasted to all the nodes (clients) that run the network, like, in our 
case, Bootnode, Node 1, Node 2, and Node 3. The nodes validate the transaction and add it to 
their pool of pending transactions. The pending transactions are then selected by miners who try 
to include them in new blocks. Miners are incentivized to choose transactions that pay higher 
fees (called gas) per unit of computation (called gas limit).   
 
So, let’s take a look at a slightly different example, where we are using an account (that was 
originally created on Node 1) to transact 100 Ether (ETH) to the account that was created on 
Node 2. This is carried out by the account’s public address, where the Node 1 account address: 
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“0x41159606b6240f725e969e3f1f342ff65904a4ec,” is going to send 100 ETH to the Node 2 
account address: “0x1f0cebf80f05de1213401c6d0a58e215c8ce635f”. Looking at Figure 89, we 
can see the transaction confirmation that it was executed from MetaMask. Notice the amount of 
100 ETH followed by the Gas Limit, which is the maximum amount of gas units the account is 
willing to spend in order for the transaction to be processed. A great way to think about gas is it 
provides fuel to the network, incentivizing others to perform network operations to keep 
everything going.  

 
Figure 89: Node 1 Account Sending Node 2 Account 100 ETH 

Upon sending this transaction, while having the dissector running, capturing on the interface of 
the Bootnode and Node 1, we see the following packets captured, seen in Figure 90. We first see 
the ETH capability Transactions message, which again is used to propagate a new transaction 
throughout the network. This is first sent from the Bootnode to Node 2, making sense as we 
connect MetaMask to our private network through the Bootnode. As stated earlier, only one node 
or the square root of the number of connected nodes will get the Transactions message, while the 
others will get the NewPooledTransactionHashes message. This notifies the other nodes in the 
network that a new transaction hash is in the Bootnode's local transaction pool. From there, we 
can see this chain of Transaction messages, propagating the full new transaction throughout the 
network, originally from the Bootnode => Node 2, then in packet #1921 Node 2 => Node 1, then 
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finally Node 1 => Node 3. This fully propagates the transaction throughout the network, 
therefore a message like GetPooledTransactionHashes is unnecessary in this case. 

 
Figure 90: Dissector Packet Captures After Sending Transaction 

This transaction propagation automatically puts the transaction in the local pool if the node is a 
valid miner on the network, which, in the case of this private network, each of the nodes are 
miners, except the Bootnode. Now, before we move on to the next step, let’s dig deeper on what 
information about the transaction the dissector is able to provide us with. So, clicking on one of 
the Transactions messages, we see the following dissection of this ETH capability message, seen 
in Figure 91. 

 
Figure 91: RLPx ETH Transactions Message 100 ETH from Bootnode to Node 2 

Looking at the above packet capture of the ETH capability Transaction message from Bootnode 
to Node 2, we can break down the following fields under the “Transactions #1” tree as follows:  
 

● Nonce: (0) A number that represents how many transactions the sender node has made. 
● Gas Price: (100000000000) The amount of ether the sender is willing to pay per unit of 

gas. 
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● Gas Limit: (21000) The maximum amount of gas the sender is willing to spend on the 
transaction. 

● Recipient: (1f0cebf80f05de1213401c6d0a58e215c8ce635f) The address of the account or 
contract that will receive the ether or execute the function call. 

● Value: (100000000000000000000) The amount of ether to be transferred to the recipient 
(if any). 

● Data: (N/A) The input data for the contract function call (if any). 
● V, R, S: The signature values that prove that the sender has authorized the transaction. 

 
The nonce field in an Ethereum transaction is a number that indicates how many transactions 
have been sent from the sender's address starting at 0, which we can see in the above figure. It is 
used to prevent double-spending and replay attacks on the network. The nonce must be equal to 
the current number of transactions sent by the sender, otherwise the transaction will be rejected 
by the nodes. The nonce is incremented by one for each subsequent transaction sent by the same 
address. This is able to be validated by block validators which iterate over the existing validated 
blocks and make sure the nonce increments per account transaction. 
 
Next, we can see the gas price of 100000000000, which is the gas price expressed in WEI, which 
is the smallest unit of Ether, where one Ether is equal to 10^18 WEI. However, gas is usually 
expressed in terms GWEI, or giga-wei, which means one billion WEI, therefore one GWEI is 
10^9 WEI, or specifically 100000000000 WEI is 100 GWEI, which is what was set up in the 
transaction in MetaMask. Similarly, the transaction value field shows a value of 
100000000000000000000 WEI, when converted to ETH, is 100 ETH. This smallest unit method 
prevents Ethereum from using decimals or fractions in its transactions and ensures that all values 
are integers. 
 
The recipient of the 100 ETH is shown as 0x1f0cebf80f05de1213401c6d0a58e215c8ce635f, 
which is the expected same account address found on Node 2. Lastly, taking a closer look at the 
V, R, and S values which are Ethereum's extended elliptic curve digital signatures used to sign 
transactions to save storage and bandwidth. These 3 values, coupled with the hash of the 
transaction, allow the ability to recover the public key of the signer, which is the sender of the 
transaction. This is done just like in the public key recovery from the signature found in 
DiscoveryV4. This transaction hash is the same hash that we saw getting broadcasted out by the 
Bootnode with the NewPooledTransactionHashes message that was sent to the peers that the 
Bootnode did not send the Transactions message to, specifically Node 1 and Node 3. This 
dissection of the packet can be seen in Figure 92 below. 
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Figure 92: RLPx ETH NewPooledTransactionHashes Message from Bootnode to Node 1 

The next message we see is the ETH capability NewBlock message, which is propagated when a 
new block is created and sent out to be propagated by the other nodes for validation. This 
dissection is seen below in Figure 93. In this dissected packet, we will only go over a few things 
related to the transaction that is attached to this new block. First, noticing that Node 3 is the first 
node that has issued this block to the network, and as it turns out, is the one that created this 
block. This can be seen by the “Coinbase” field, where it is equal to the address of the account 
that mined the block, specifically “0x11bee17e6d6835aa46197990adb681ba3a1b4435” which is 
equal to that of Node 3’s account. This would mean that Node 3 is the actual “winner” of this 
block, which will be added to the blockchain, which will be shown below. The gas used is the 
exact same as the “gas limit” selected in the transaction as well, followed by tacked onto the 
bottom of the block in the “transactions” field, the transaction we saw before that was propagated 
throughout the network.  
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Figure 93: RLPx ETH New Block Propagation from Node 3 to Bootnode 

The same propagation takes place with this “NewBlock” message like the “Transactions” 
message, where first Node 3 sends it to the Bootnode, followed by Bootnode => Node 2, then 
Node 2 => Node 1, seen below in Figure 94. Same goes for the “NewBlockHashes” message that 
is sent out and propagated throughout the network. This also notifies the other nodes that did not 
receive the “NewBlock” in totality to request more information with the GetBlockHeaders 
message and the entire block with the “GetBlockBodies”. 

 
Figure 94: RLPx ETH New Transaction Block Propagation Throughout the Network 
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The last thing to make sure is to track if this block actually made it into the chain, meaning, it has 
been mined and validated. This can be done by taking a look at the block hash found in the 
“NewBlockHashes” message, seen in Figure 95, and comparing it with the subsequent 
“NewBlock” message, as in the one that comes after this transaction block. Take a close look at 
the “Block Hash” field in the bottom, right before the block number “159”. When looking at the 
next “NewBlock” message dissected, seen in Figure 96, this same block hash is now listed as the 
“Parent Hash”, as in the preceding block hash, meaning this block has now made it to the full 
chain.  
 
Thus, showing how a transaction can be tracked and traced throughout the network traffic 
utilizing the provided dissector as discussed in the previous chapter. All the steps in terms of 
transaction propagation, validation, then block propagation, and block validation and viewing the 
block in the actual chain can be seen through the use of the DEVP2P dissector. 
 

 
Figure 95: RLPx ETH NewBlockHashes Message from Bootnode to Node 1 



92 
 

 
 

 
Figure 96: RLPx ETH NewBlock with Previous Block as Parent Hash 
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6. Conclusion 
 
6.1 Introduction and Recap 
 

This thesis presents a novel approach to creating a Wireshark dissector for Ethereum’s 
DEVP2P suite of peer-to-peer protocols, including DiscoveryV4, DiscoveryV5, and RLPx with 
the ETH and SNAP subprotocols. As we have discussed, Ethereum networks facilitate 
intercommunication amongst Ethereum networked nodes, providing for decentralized 
applications and accounts. Therefore, many contributions were covered to satisfy the 
requirements for creating a Wireshark dissector plugin that supports RLP decoding and ECIES 
decryption. First, creating a private Ethereum docker network was discussed, utilizing a custom 
Go Ethereum source. Next, the actual implementation of the LUA Wireshark plugins was 
covered; first, the “discovery.lua” plugin supporting the DEVP2P discovery protocols, followed 
by “rlpx.lua” which allows for the dissection of RLPx, including the ETH and SNAP 
subprotocols. Then we dug deeper into PYDEVP2P, the python-based, minimal third-party 
dependency library providing tools for RLP decoding, ECIES decryption, and dissection helper 
function. Lastly, the technical details behind Elliptic Curve Digital Signature Algorithm 
(ECDSA), Elliptic Curve Diffie-Hellman, are analyzed utilizing the dissector and PYDEVP2P.   

  
Wireshark is a widely used network analysis tool that allows users to inspect and decode 

network packets. However, Wireshark does not support Ethereum’s DEVP2P protocols natively, 
which limits the ability of researchers and developers to monitor and understand the behavior of 
Ethereum nodes. On top of this, Wireshark supports the use of dissector plugins, which are add-
ons to Wireshark’s dissection capability. As we discussed, the current two dissector plugins 
provided by BCSEC Org and ConsenSys do not fully support the latest message structure of 
DiscoveryV4 and provide zero support for DiscoveryV5 and RLPx. To address this gap, this 
thesis develops a custom Wireshark dissector plugin in LUA that can parse and display DEVP2P 
packets in a user-friendly format. The plugin leverages PYDEVP2P, a python-based library 
developed to assist with decoding RLP (Recursive Length Prefix) and decrypting ECIES 
(Elliptic Curve Integrated Encryption Scheme) used by DEVP2P protocols. 

  
Furthermore, this thesis creates a private docker network with custom Go Ethereum 

images that generate real-to-life DEVP2P traffic for development, testing, and analysis purposes. 
Using this dissector plugin and environment, this thesis demonstrates how the Wireshark 
dissector can analyze various aspects of DEVP2P packet flow, such as tracking the propagation 
of a transaction throughout the network, analyzing the DiscoveryV4 Elliptic Curve Digital 
Signature Algorithm (ECDSA) and DiscoveryV5’s use of Elliptic Curve Diffie-Hellman 
(ECDH). This thesis contributes to the field of blockchain research, Ethereum community 
members, and educators by providing a practical tool for studying Ethereum’s peer-to-peer 
communication layer and enhancing the transparency and security of decentralized applications. 
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6.2 Dissection & Analysis Results 
 
This thesis has presented the design and implementation of a Wireshark dissector plugin to 
dissect DEVP2P’s DiscoveryV4, DiscoveryV5, and RLPx protocols. The dissector plugin can 
decode and display various messages exchanged between Ethereum nodes, either live in a real-
time network or after the fact with packet captures. Furthermore, the dissector plugin also 
supports decoding DiscoveryV5 and RLPx messages using the session keys derived from the 
handshake process.  
  
The process of creating the dissector and the multitude of the dissector’s capabilities is shown in 
Chapter 4. Specifically, the DEVP2P dissector supports all of the messages found in 
DiscoveryV4, discussed in Chapter 4.3.1, including Ping, Pong, FindNode, Neighbors, 
ENRRequest, and ENRResponse. The previous dissectors, including the LUA dissector plugin 
by BSECORG and the C dissector by ConsenSys, cannot fully dissect the newer message 
schema for the Ping and Pong messages due to the new “enr-seq” field. These previous 
dissectors also do not support the newest ENRRequest and ENRResponse packets described in 
EIP-868, which were added to the protocol in October 2019.   
  
Next, the new dissector supports the latest implementation of DiscoveryV5, discussed in Chapter 
4.3.2, including Ping, Pong, FindNode, Nodes, TalkReq, and TalkResp. The previous dissectors 
did not support this due to the nature of the protocol obfuscating the packet header information 
and the ECDH handshake to exchange session keys for encrypted communication. However, this 
new DEVP2P dissector provides all the capabilities to maintain the sessions created amongst 
known nodes on the network, seamlessly decrypting and deciphering captured network data.   
  
The DEVP2P dissector plugin, can analyze and decipher the authenticated and encrypted 
communication between Ethereum nodes facilitated by RLPx. This includes the handshake 
process of creating session keys between nodes using the AuthInit and AuthAck RLPx messages, 
followed by the built-in RLPx capability “P2P” Hello messages, as shown in Chapter 4.4. The 
dissector supports the other RLPx P2P messages, Ping, Pong, and Disconnect. As RLPx is used 
as a TCP transport for multiple capabilities, the dissector can decode, decrypt, and dissect ETH 
and SNAP, the two main sub-protocols or capabilities under RLPx. These protocols support 
block propagation, chain synchronization, and transactions, followed by state management and 
synchronization with SNAP. The dissector supports the 2 RLPx handshake messages, 4 RLPx 
P2P messages, 13 ETH capability messages, and 6 SNAP capability messages.  
  
The range of messages this dissector supports makes it possible to research, analyze and study 
the behavior and performance of the DEVP2P protocols. As was shown, this new Wireshark 
dissector plugin can be used to understand how nodes discover each other using the discovery 
protocols, establish encrypted connections using RLPx, and exchange information amongst 
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connected peers regarding blockchain status and transactions. The dissector can also reveal the 
details of the message formats, such as the RLP encoding and decoding, the packet headers and 
trailers, and the message types and contents. This tool allows for an easily accessible view of the 
inner workings of DEVP2P and assists researchers, the general blockchain community, and 
educators in similar fields.   
 
6.3 Limitations & Future Work 
 
The dissector is a novel contribution to Ethereum network analysis, as it is the first tool to dissect 
all three DEVP2P protocols in a unified and user-friendly interface. The dissector can help 
researchers and developers understand the behavior and performance of the Ethereum network 
and identify and mitigate potential security threats. The dissector can also aid educators by 
making elliptic curve cryptography more accessible in real-world applications while helping 
develop and test new protocols or features for the Ethereum network while providing a solid 
foundation for future improvements and extended support for existing protocols.  
 
However, the dissector also has some limitations and drawbacks that must be addressed in future 
work: 
 

• The dissector requires custom Go Ethereum source code that includes the random private 
keys generated by each node during the RLPx handshake used for session key sharing 
and encryption of subsequent packets. The dissector will not support RLPx dissection 
with official GETH or Ethereum clients. 

• The dissector requires Python to be used with PYDEVP2P, which handles the main logic 
of dissection, decoding and decryption behind the scenes. This adds complexity and 
overhead to the setup and execution of the dissector, requiring the Python PIP package of 
PYDEVP2P to be installed, along with LUA and the Lunatic-Python bridge. 

• The dissector has an incomplete message bug that causes some messages to be truncated 
or skipped when they are larger than a certain size. This bug affects the accuracy and 
completeness of the dissection results when a handshake packet or a malformed packet is 
captured. 

• The dissector does not show the unmasked “authdata” of DiscoveryV5 messages, which 
contains essential information such as node ID, signature, and the ephemeral public key 
in a clear human-readable format on the Wireshark display.   
 

As Ethereum and its underlying network continues to grow in complexity and evolve over time, 
there are some possible improvements or extensions for future work are: 
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• Utilize the dissector in a proof-of-stake environment to see what DEVP2P protocols and 
messages are used in an execution client in a proof-of-stake consensus algorithm 
network. It would be interesting to see which DEVP2P RLPx capability messages are 
adapted or unused by new protocols for proof-of-stake. 

• Dissect LIBP2P and compare it with DEVP2P. LIBP2P is another peer-to-peer 
networking stack used by Ethereum consensus clients. Comparing and contrasting 
LIBP2P with DEVP2P in terms of features, performance, and security would be useful. 

• Add the dissection of LES, PIP, WIP, and other RLPx sub-protocols. The dissector 
currently only supports the ETH and SNAP sub-protocols. These other sub-protocols are 
used for different purposes, such as Light Ethereum Subprotocol (LES) support, Parity 
Light Protocol (PIP) support, and Ethereum Witness Protocol (WIT). The dissector 
should be extended to support these sub-protocols as well. 

• Investigate network discovery leaking, identified as an issue seen in DiscoveryV4. 
Network discovery leaking is a problem where Ethereum nodes setup for specific 
chain/network IDs incorrectly communicate and discover nodes on other Ethereum 
networks. 

• Implement a DiscoveryV4 and DiscoveryV5 denial-of-service (DoS) attack. The 
DiscoveryV4 protocol is vulnerable to denial-of-service (DoS) attacks that can flood 
nodes with fake ping or pong messages. These messages consume the bandwidth and 
processing resources of nodes and may prevent them from responding to legitimate 
messages. The dissector can help to detect and monitor such attacks by capturing such 
malicious packets on the network. 

• Implement an RLPx Known Plaintext Attack. RLPx protocol uses AES-CTR encryption 
with a fixed IV (initialization vector) for each message. This makes it susceptible to a 
known plaintext attack that can recover the encryption key if an attacker knows some 
plaintext-ciphertext pairs. The dissector can help to avoid this attack by randomizing the 
IV for each message or using a different encryption scheme. 

• Perform Wireshark statistical analysis. Wireshark provides various statistical network 
traffic analysis tools, such as graphs, charts, tables, filters, etc. The dissector can leverage 
these tools to perform a more advanced and comprehensive analysis of DEVP2P 
protocols, such as throughput, latency, packet loss, message distribution, node behavior, 
etc. 

 
6.4 Final Thoughts 
 
The design, implementation, and analysis of the results of the dissector prove its usefulness to 
the community, educators, developers, and researchers. The LUA Wireshark dissector plugin and 
the PYDEVP2P library provide all the tools necessary for educators, researchers, and developers 
to understand on a deeper level the inner workings of the Ethereum network. This dissector also 
allows the visualization of popular cryptography concepts, utilizing Elliptic Curve Cryptography 
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(ECC) while also understanding how Recursive Length Prefix (RLP) encoding. Many hurdles 
were overcome throughout the creation of this dissector, whether it needed to be updated 
documentation or the implementation of Ethereum-specific ECIES technicalities. Most of the 
technical details sprinkled throughout this document were acquired directly from the Ethereum 
DEVP2P GitHub specification page and the most-used execution client source code, Go 
Ethereum. As a result, these methods are not easily accessible to the broader Ethereum 
community, analysts, and, most important, educators. The contributions discussed throughout 
this document allow for greater accessibility into Ethereum node network communication while 
also overcoming hurdles noted by one of the largest blockchain technology solution companies, 
ConsenSys. This includes the Go Ethereum docker network, which can spin up a full-fledged 
private Ethereum network using a single command, followed by the LUA Wireshark plugin and 
PYDEVP2P library, which can be installed in a few easy steps. As discussed, the PYDEVP2P 
library also provides easy-to-understand elliptic curve cryptography implementations, allowing 
educators and students to get hands-on access to understand such low-level concepts in a real-
world environment. This document's primary goal has been to provide all the tools necessary to 
support future enhancements, provide an easily accessible tool for educators to display ECIES 
cryptography techniques, and for security analysts to increase the robustness of peer-to-peer 
blockchain networks further.   
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7. Appendix 
 
7.1 Supplemental Materials 
 
Please refer to the following list of contributions, submitted along with this document and found 
online: 

• Lua-devp2p-wireshark-dissector - https://github.com/jmkemp20/lua-devp2p-wireshark-
dissector 

• PYDEVP2P - https://github.com/jmkemp20/pydevp2p 
• Lunatic-Python - https://github.com/jmkemp20/lunatic-python 
• Go-Ethereum - https://github.com/jmkemp20/go-ethereum 
• GETH-Docker - https://github.com/jmkemp20/geth-docker 

 
7.2 Environment Setup 
Step 1) Install Wireshark and specific LUA version 
  
 sudo apt-get update && sudo apt-get upgrade 
 sudo apt-get install lua5.2 liblua5.2-dev wireshark python3.10  

 
Figure 97: Checking the Version of LUA 

 
Figure 98: Checking the Version of Wireshark 

Step 2) Change permissions and Copy Lunatic Python LUA ⇔ Python Bridge binary  
 
 sudo chmod +x python.so 

cp python.so /usr/local/lib/lua/5.2/. 
 
 * This mitigates the need to manually build lunatic-python 

 
Figure 99: Python LUA Library In LUA Directory 

 
Step 3) Clone both the LUA Dissector and PYDEVP2P 
  

git clone https://github.com/jmkemp20/lua-devp2p-wireshark-
dissector.git  
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git clone https://github.com/jmkemp20/pydevp2p.git 

 
Step 4) Install the PYDEVP2P PIP Package from source (should also use sudo) 
 
 cd pydevp2p 
 pip install -e . 
 sudo pip install -e . 

 
Figure 100: Installing PYDEVP2P Using PIP 

 
Figure 101: Successfully Installed PYDEVP2P PIP Package 

Step 5) Next, create the directory for Wireshark plugins (local user and root) 
 
 cd ~/.local/lib 
 mkdir wireshark   (if doesn’t exist) 
 cd wireshark && mkdir plugins 
 cd plugins 
 
Step 6)  Now, Symbolic link (or copy over) the .lua dissectors 
 
 sudo ln -s <location of cloned dissector>/rlpx.lua rlpx.lua 
 sudo ln -s <location of cloned dissector>/discovery.lua discovery.lua 

 
Figure 102: Linking Dissector Plugins in Local Wireshark Plugin Directory 

 
Step 7) Do the same for the Root user (if using Wireshark with sudo privileges) 

 
Figure 103: Linking Dissector Plugins in Root Wireshark Plugin Directory 
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* These .lua files can also just be copied directly without needing to symbolically link to them 
7.3 Testing with Local .pcapng Packet CaptureFile 
 * Note, the LUA dissector files register the UDP/TCP ports for discovery and RLPx, 
these are ports 30303 – 30308, this can be changed directly in discovery.lua and rlpx.lua. 
 
 wireshark -r final.pcapng 

 
Figure 104: Running Wireshark with Captured Packet File 

 * The above “errors” are normal, these are shown for the first packet in an RLPx 
handshake and for discv5 packets 
 
 
 
 
 
 
 
 
 
 
 
7.4 Live GETH Docker Startup 
Step 1) Make sure Docker and Docker Compose are installed and running 
 

 
Figure 106: Checking the Version of Docker 

 
Figure 107: Starting the Docker Service on the Host 

 
Step 2) Clone the GETH-Docker Repository 
 
 git clone https://github.com/jmkemp20/geth-docker.git 

Figure 105: Viewing Dissected DEVP2P Packets in Wireshark 
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 cd geth-docker 
 
Step 3) Build the custom docker images 
 
 ./build-dockers.sh 
  
 * This will create 5 images, one for the “router” and 4 GETH nodes all using the 
dockerfile.manual file 
 
Step 4) Next, startup JUST the router container 
 
 docker-compose up -d bridge-router 

 
Figure 108: Running the Bridge Router Docker Container 

Step 5) Then open up Wireshark and attach to the 10.1.0.1 or any 10.1.X.X network 
 
 sudo wireshark 

 
Figure 109: Starting Wireshark to Capture Live Network Traffic 

 
Figure 110: Selecting the Interface to Capture Packets On 

Step 6) Finally, start up each GETH node/client container one-by-one 
 

docker-compose up -d geth-ubuntu-bootnode 
docker-compose up -d geth-client-1 
docker-compose up -d geth-client-2 
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docker-compose up -d geth-client-3 
 
7.5 Installing the Custom GO Ethereum Client from Scratch 
 
Step 1) Clone the Custom GO Ethereum Source 
 
 git clone https://github.com/jmkemp20/go-ethereum.git 
 
Step 2) Install GETH or all GO Ethereum Utilities 
 
 cd go-ethereum 
 make geth 
 make all    # for all utilities 
 
Step 3) Run GETH 
 
 geth … 
 
  

https://github.com/jmkemp20/go-ethereum.git
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8. Glossary 
 

● Node - A computer that runs software to verify blocks and transaction data on the 
Ethereum network 

● Peer - Another node on the Ethereum network that a node communicates with 
● Client - A software application that must be run on a computer to turn it into an Ethereum 

node 
● Execution Client - A client that listens and executes transactions and maintains the latest 

state and database of all Ethereum data 
● Consensus Client - Also known as Beacon Node or CL client, this client implements the 

proof-of-stake consensus algorithm which enables the network to achieve agreement 
based on validated data from the execution client 

● Peer-to-peer Network - A decentralized network where nodes communicate with each 
other using standardized protocols 

● Proof-of-Work - A consensus mechanism used to validate transactions and add new 
blocks to the chain. In PoW, nodes on the network compete to solve a complex 
cryptographic puzzle, and the first node to solve the puzzle is rewarded with ether and the 
right to add a new block to the blockchain. 

● Proof-of-Stake - (PoS): A consensus mechanism used by the Post-Merge Ethereum 
blockchain that involves validators staking ether to participate in the network and validate 
transactions. In PoS, validators are chosen to validate blocks based on the amount of 
ether they have staked, and the probability of being chosen as a validator increases with 
the amount of ether staked. 

● Accounts - (PoS): Digital identities on the Ethereum blockchain that can hold ether and 
other assets and execute smart contract functions. There are two types: externally owned 
accounts (EOAs) and contract accounts. 

● DEVP2P - A set of network protocols that form the Ethereum peer-to-peer network for 
execution clients 

● LIBP2P - A modular networking stack that enables peer-to-peer communication between 
consensus clients on the Ethereum network. 

● Block - A package of data containing a set of transactions that have been verified and 
added to the Ethereum blockchain. 

● Chain - The sequential arrangement of blocks in the Ethereum blockchain, which creates 
a decentralized ledger of all transactions on the network. 

● Transaction - An operation that modifies the state of the Ethereum blockchain, such as 
transferring ether (ETH) or executing a smart contract. 

● Receipt - A data structure that confirms the successful execution of a transaction on the 
Ethereum network, providing details such as gas used and contract addresses. 

● Elliptic Curve Integrated Encryption Scheme (ECIES) - A public-key encryption 
algorithm used to securely transmit data between parties on the Ethereum network. 
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● Elliptic Curve Diffie Hellman Exchange (ECDHE) - A key agreement protocol that 
allows two parties to securely establish a shared secret key on the Ethereum network. 

● Elliptic Curve Digital Signature Algorithm (ECDSA) - A digital signature algorithm used 
to verify the authenticity of transactions on the Ethereum blockchain. 

● ENR - An Ethereum Node Record that contains metadata about a node on the Ethereum 
network, such as its IP address and public key. 

● Node ID - A unique identifier assigned to each node on the Ethereum network, which is 
used to facilitate communication and routing. 

● RLP - Recursive Length Prefix encoding, a compact data serialization format used to 
encode complex data structures such as Ethereum transactions and blocks. 
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