James Madison University

JMU Scholarly Commons

Masters Theses, 2020-current The Graduate School

5-11-2023

Enabling security analysis and education of the Ethereum
platform: A network traffic dissection tool

Joshua Mason Kemp
James Madison University

Follow this and additional works at: https://commons.lib.jmu.edu/masters202029

b Part of the Computer and Systems Architecture Commons, and the Digital Communications and
Networking Commons

Recommended Citation

Kemp, Joshua Mason, "Enabling security analysis and education of the Ethereum platform: A network
traffic dissection tool" (2023). Masters Theses, 2020-current. 214.
https://commons.lib.jmu.edu/masters202029/214

This Thesis is brought to you for free and open access by the The Graduate School at JMU Scholarly Commons. It
has been accepted for inclusion in Masters Theses, 2020-current by an authorized administrator of JMU Scholarly
Commons. For more information, please contact dc_admin@jmu.edu.

https://commons.lib.jmu.edu/
https://commons.lib.jmu.edu/masters202029
https://commons.lib.jmu.edu/grad
https://commons.lib.jmu.edu/masters202029?utm_source=commons.lib.jmu.edu%2Fmasters202029%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=commons.lib.jmu.edu%2Fmasters202029%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=commons.lib.jmu.edu%2Fmasters202029%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=commons.lib.jmu.edu%2Fmasters202029%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.lib.jmu.edu/masters202029/214?utm_source=commons.lib.jmu.edu%2Fmasters202029%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dc_admin@jmu.edu

Enabling Security Analysis and Education of the Ethereum Platform:
A Network Traffic Dissection Tool

Joshua Mason Kemp

A thesis submitted to the Graduate Faculty of
JAMES MADISON UNIVERSITY
In
Partial Fulfillment of the Requirements
for the degree of

Master of Science

Department of Computer Science

May 2023

FACULTY COMMITTEE:
Committee Chairs: Dr. Emil Salib and Dr. Mohamed Aboutabl
Committee Members/ Readers:
Dr. M. Heydari

Dr. Brett Tjaden

Acknowledgments

I would like to express my sincere gratitude to the following people who have provided
invaluable support and guidance throughout my journey:

First and foremost, I would like to thank my thesis advisors Dr. Emil Salib and Dr. Mohamed
Aboutabl, for their unwavering support and guidance throughout the research process. Their
insightful, feedback and constructive criticism were instrumental in shaping this thesis.

I would also like to thank my family and friends for their unconditional love, unwavering
support, and patience throughout this journey. Their encouragement has been a constant source

of motivation for me.

I would like to extend my gratitude to the faculty and staff of the Computer Science Department
at James Madison University, for their assistance and support throughout all my studies.

Thank you all for your support, encouragement, and guidance throughout this journey.

Table of Contents

Acknowledgments ii
List of Figures v
List of Tables viii
Abstract iX
1. Introduction 1
1.1 Ethereum Network Background 1
1.2 Problem Statement 2
1.3 Contributions 3
1.4 Organization 4
2. Scenario 5
2.1 Custom Network Description 5
2.2 Ethereum Client Accounts 6
2.3 Starting the Private Network 7
2.4 Connecting MetaMask 8
2.5 Connecting Accounts and Transacting ETH 9
2.6 Scenario Discussion 12
3. Related Work and Literature Review 13
3.1 Discussion of Ethereum Networks 13
3.2 Discussion of Ethereum Nodes/Clients 14
3.3 Discussion of Ethereum Network Protocols 15
3.4 Discussion of the Proof-of-Work Consensus Algorithm 16
3.5 Literature & Documentation Review 17
3.6 Existing Dissector Implementations 18
3.7 Conclusion 23
4. Creating the Dissector 24
4.1 Packet Dissector Design 24
4.2 Creating the Network 27
4.3 Node Discovery Mechanisms 31
4.3.1 DiscoveryV4 Dissection 31
4.3.2 DiscoveryV5 Dissection 38

4.4 Authenticated Node Communication 46

4.4.1 Handshake ECIES Decryption 49

4.4.2 Exposing the Random Private Key
4.4.3 Dissecting RLPx P2P Capability Messages
4.5 Node Capability Messaging
4.5.1 Dissecting ETH Capability Messages
4.5.2 Dissecting SNAP Capability Messages
4.6 Recap and Discussion
5. Security Analysis with the Dissector
5.1 DiscoveryV4 ECDSA Performance & Security Analysis
5.2 DiscoveryV5 Masking and Confidentiality
5.3 Tracking a Transaction using the Dissector
6. Conclusion
6.1 Introduction and Recap
6.2 Dissection & Analysis Results
6.3 Limitations & Future Work
6.4 Final Thoughts
7. Appendix
7.1 Supplemental Materials
7.2 Environment Setup
7.3 Testing with Local .pcapng Packet CaptureFile
7.4 Live GETH Docker Startup
7.5 Installing the Custom GO Ethereum Client from Scratch
8. Glossary

9. References

51
54
57
58
69
73
75
76
80
85
93
93
94
95
96
98
98
98
100
100
102
103
105

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:

List of Figures

Docker Go Ethereum Private Network

GETH Clients Looking for Peers with Peer Count of 3
GETH Clients Mining Potential Blocks and Importing Chain Segments
Connecting to Private Network from MetaMask
Importing Accounts Found on GETH Clients into MetaMask
Showing Connected Accounts and their ETH Balance
Sending 200 ETH from Node 1 to Node 2
Queued/Pooled Transaction Awaiting Validation
Validation & Verification of 200 ETH Sent

: Updated Balances of Node 1 and Node 2 Accounts

: Ethereum Consensus Client

: Ethereum Execution Client

: Invalid Proof-of-Work Hash Value

: Valid Proof-of-Work Hash Value

: C Dissector DiscoveryV4 FindNode Packet

: LUA Dissector DiscoveryV4 FindNode Packet

: LUA Dissector Ping Packet Unable to Dissect

: C Dissector Not Fully Dissecting Ping Packet

: LUA Dissector ENRRequest Un-dissected Packet

LUA Dissector ENRResponse Un-dissected Packet
Dissector Software Architecture Diagram

Wireshark, LUA, PYDEVP2P Flow Diagram

Docker Compose GETH Bootnode Service

Docker Compose GETH Client Service Command for Node 1
DiscoveryV4 Message Sequence Diagram
DiscoveryV4 Dissected Header Fields

Ping and Pong Class RLP Schema Definitions
FromInfo and Tolnfo RLP Schema Definitions
DiscoveryV4 Ping Packet Node1 to Bootnode
DiscoveryV4 Pong Packet Bootnode => Node1
DiscoveryV4 FindNode Packet Node1 => Bootnode
DiscoveryV4 Neighbors Packet Bootnode => Node1
DiscoveryV4 ENRRequest Packet Node1 => Bootnode
DiscoveryV4 ENRResponse Packet Bootnode => Node1
DiscoveryV5 Message Sequence Diagram
DiscoveryV5 Class Diagram

PYDEVP2P Bridge Node Creation with Private Keys
DiscoveryV5 Unknown Packet Node1 => Bootnode
DiscoveryV5 WhoAreYou Packet Bootnode => Node1
DiscoveryV5 FindNode Packet Node1 => Bootnode
DiscoveryV5 Nodes Bootnode => Node1

DiscoveryV5 Ping Packet Node1 => Bootnode

Figure 43:
Figure 44
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73:
Figure 74
Figure 75:
Figure 76:
Figure 77:
Figure 78:
Figure 79:
Figure 80:
Figure 81:
Figure 82:
Figure 83:
Figure 84
Figure 85:
Figure 86:

DiscoveryV5 Pong Packet Bootnode => Node1

DiscoveryV5 FindNode Packet Node1 => Bootnode

DiscoveryV5 Nodes Packet Bootnode => Node1

RLPx Handshake & P2P Capability Message Sequence Diagram
rlpx.lua Parsing RLPx Auth Size Field

PYDEVP2P RLPx Class Flow Diagram

ECIES Hybrid Encryption Scheme

RLPx Auth Init Packet Node1 => Bootnode

RLPx Auth Ack Packet Bootnode => Node1

Exposing the RandomPrivKey to the Authinit and AuthResp Messages in GETH

Inserting the RandomPrivKey into the Authinit Message in GETH
Inserting the RandomPrivKey into the AuthResp Message in GETH
RLPx P2P Hello Packet Bootnode => Node1

RLPx P2P Hello Packet Node1 => Bootnode

RLPx P2P Ping Packet Bootnode => Node1

RLPx P2P Pong Packet Bootnode => Node1

RLPx P2P Disconnect Packet Node1 => Node2

RLPx P2P Disconnect Packet Node2 => Node1

RLPx ETH Capability Message Sequence Diagram

RLPx ETH Status Packet Bootnode => Node1

RLPx ETH Status Packet Node1 => Bootnode

RLPx Capabilities.py RLP Message Schema Definition

RLPx ETH GetBlockHeaders Packet Bootnode => Node1

RLPx ETH BlockHeaders Packet Node1 => Bootnode

RLPx ETH GetBlockBodies Packet Node1 => Node3

RLPx ETH BlockBodies Packet Node3 => Node1

RLPx ETH NewBlock Packet Node1 => Bootnhode

RLPx ETH NewBlockHashes Packet Node1 => Node2

RLPx ETH NewPooledTransactionHashes Packet Node3 => Node1
RLPx ETH GetPooledTransactions Packet Node2 => Node1
RLPx ETH PooledTransactions Packet Node1 => Node2

RLPx ETH Transactions Packet Node1 => Bootnode

RLPx ETH GetReceipts Packet Node1 => Bootnode

RLPx ETH Receipts Packet Bootnode => Node1

RLPx SNAP Capability Message Sequence Diagram

RLPx SNAP GetAccountRange Packet Bootnode => Node1
RLPx SNAP AccountRange Packet Node1 => Bootnode

RLPx SNAP GetTrieNodes Packet Node1 => Bootnode

RLPx SNAP TrieNodes Packet Node1 => Bootnode
DiscoveryV4 Ping Packet Node1 to Bootnode

PYDEVP2P ECDSA Raw Public Key Recovery

DiscoveryV5 Unmasked Packet Header

PYDEVP2P Unmasking the DiscoveryV5 Header

PYDEVP2P DiscoveryV5 ECDH Function Returning Shared Secret

Vi

45
45
45
47
48
49
50
51
51
52
53
53
54
55
55
56
56
57
58
61
61
62
63
63
64
64
65
66
67
67
68
68
69
69
70
71
71
73
73
76
79
81
82
84

Figure 87:
Figure 88:
Figure 89:
Figure 90:
Figure 91:
Figure 92:
Figure 93:
Figure 94:
Figure 95:
Figure 96:
Figure 97:
Figure 98:
Figure 99:

Figure 100:
Figure 101:
Figure 102:
Figure 103:
Figure 104:
Figure 105:
Figure 106:
Figure 107:
Figure 108:
Figure 109:

Figure 110

PYDEVP2P DiscoveryV5 Key Derivation and Session Initiation
PYDEVP2P Handshake Auth Data Schema

Node 1 Account Sending Node 2 Account 100 ETH

Dissector Packet Captures After Sending Transaction

RLPx ETH Transactions Message 100 ETH from Bootnode to Node 2
RLPx ETH NewPooledTransactionHashes Message from Bootnode to Node 1
RLPx ETH New Block Propagation from Node 3 to Bootnode

RLPx ETH New Transaction Block Propagation Throughout the Network
RLPx ETH NewBlockHashes Message from Bootnode to Node 1
RLPx ETH NewBlock with Previous Block as Parent Hash

Checking the Version of LUA

Checking the Version of Wireshark

Python LUA Library In LUA Directory

Installing PYDEVP2P Using PIP

Successfully Installed PYDEVP2P PIP Package

Linking Dissector Plugins in Local Wireshark Plugin Directory
Linking Dissector Plugins in Root Wireshark Plugin Directory
Running Wireshark with Captured Packet File

Viewing Dissected DEVP2P Packets in Wireshark

Checking the Version of Docker

Starting the Docker Service on the Host

Running the Bridge Router Docker Container

Starting Wireshark to Capture Live Network Traffic

: Selecting the Interface to Capture Packets On

Vii

84
85
86
87
87
89
90
90
91
92
98
98
98
99
99
99
99
100
100
100
100
101
101
101

https://dukesjmuedu-my.sharepoint.com/personal/kemp3jm_dukes_jmu_edu/Documents/Kemp-Thesis-Final.docx#_Toc132880125

List of Tables

Table 1: Docker Container Network Interfaces

Table 2: GETH Client Node Account Addresses

Table 3: GETH Nodes and Corresponding Static Private/Public Keys
Table 4: Bootnode and Node 1 Private and Public Static Keys

viii

29
78

Abstract

Ethereum, the decentralized global software platform powered by blockchain technology
known for its native cryptocurrency, Ether (ETH), provides a technology stack for building apps,
holding assets, transacting, and communicating without control by a central authority. At the
core of Ethereum’s network is a suite of purpose-built protocols known as DEVP2P, which
provides the underlying nodes in an Ethereum network the ability to discover, authenticate and
communicate confidentiality. This document discusses the creation of a new Wireshark dissector
for DEVP2P’s discovery protocols, DiscoveryV4 and DiscoveryV5, and a dissector for RLPx, an
extensible TCP transport protocol for a range of Ethereum node capabilities. Network packet
dissectors like Wireshark are commonly used to educate, develop, and analyze underlying
network traffic. In support of creating the dissector, a custom private Ethereum docker network
was also created, facilitating the communication amongst Go Ethereum execution clients and
allowing the Wireshark dissector to capture live network data. Lastly, the dissector is used to
understand the differences between DiscoveryV4 and DiscoveryV5, along with stepping through
the network packets of RLPx to track a transaction executed on the network.

Keywords: Ethereum, Dissector, DEVP2P, DiscoveryV4, DiscoveryV5, RLPx, RLP, ECIES,
ECDH, ECDSA, Wireshark, Python, Lua, Go

1. Introduction

Ethereum, launched in 2015 as a toolkit to build decentralized applications, transact and
communicate without a controlled central authority while also providing a framework for
Ethereum nodes to facilitate communication [1]. Ethereum’s native cryptocurrency, Ether
(ETH), is positioned second in terms of market cap under Bitcoin with $146.8 billion in
circulation, over 71 million wallets holding a balance, and handling $11.6 trillion in just 2021
[2]. As Ethereum grows in popularity, acquiring the interest of the masses, it is becoming
imperative that the inner workings of the Ethereum network are examined and understood on a
deeper level particularly transaction flows and the algorithms used to secure them.

1.1 Ethereum Network Background

An Ethereum node is simply a computer connected to the Ethereum network, running the
specific tools required to communicate amongst other nodes. Ethereum nodes help maintain the
decentralized network by validating transactions within data blocks, referred to as their
consensus mechanism. The communication amongst these nodes resides on the Ethereum
network, composed of a custom-built network protocol suite known as DEVP2P. DEVP2P
provides a mechanism for nodes to discover one another throughout the network, authenticate
with each other, and communicate amongst themselves over a secure channel with a wide range
of node-specific capabilities. These capabilities can be implementation dependent or be known
as Ethereum capabilities to support state management and synchronization with SNAP, block
propagation, and transactions with ETH. DEVP2P started along with the Ethereum project to
provide a set of protocols that can serve any networked application under the Ethereum umbrella.
This means DEVP2P served most if not all, the network communication under the hood among
decentralized applications (dAPPs), handling $11.6 trillion in transactions in just 2021 alone.

However, on September 6th, 2022, the Ethereum Merge took place, transitioning from a
proof-of-work to a proof-of-stake consensus algorithm while integrating the existing execution
layer with a new consensus layer [3]. Each layer has specific jobs and networks broken down
into two different types of clients. Execution clients utilize the previous existing DEVP2P
execution-layer network stack, gossiping transactions and requiring encrypted communication
amongst authenticated peers. Consensus clients thus utilize the new consensus-layer network,
utilizing a different p2p network stack known as LIBP2P, used for gossiping beacon blocks
throughout the p2p network [4]. Together execution clients and consensus clients make up an
Ethereum Mainnet node, where both DEVP2P and LIBP2P exist together, requiring their own
methods for discovery and communication protocols. Due to “the merge”, the Ethereum network
has become increasingly more complex. The need to understand the intercommunication
between Ethereum nodes increased significantly to understand the exact use of DEVP2P post-
merge or to analyze the security and performance of underlying algorithms and protocols.

As the Ethereum network grows in its usage and importance throughout the world while
also growing in complexity, a tool must exist to aid with understanding and analyzing the inner
workings of the underlying protocols utilized throughout the Ethereum network. DEVP2P
provides a wide array of capabilities related to a peer-to-peer networking schema, with two
major components, (a) discovery and (b) authenticated and encrypted communication. Discovery
is facilitated by two somewhat unrelated protocols, DiscoveryV4 and DiscoveryVS5 [15].
DiscoveryV4 is the original protocol “version,” where messages are sent in the clear with little to
no authentication of peers. DiscoveryV5 was meant to be the successor to DiscoveryV4 to make
it more secure and faster, but implementations of DiscoveryVS5 were only completed in the GO
Ethereum version of the Ethereum execution client. This implementation was purely
experimental to test DiscoveryVS5; its use never saw daylight amongst other implementations
except in consensus clients in place of the standard LIBP2P discovery mechanism. The other
major component of DEVP2P is RLPx, the TCP-based transport protocol used for authenticated
and confidential communication among Ethereum nodes after peers discover one another.

1.2 Problem Statement

Analyzing DEVP2P provides a vehicle for conceptualizing the inner workings of the
Elliptic Curve Integrated Encryption Scheme (ECIES) as it pertains to RLPx, understanding the
security and performance differences between discoveryV4 and discoveryVS5, the two UDP-
based discovery mechanisms, and lastly, tracing the usage of RLPx concerning block
propagation, chain synchronization, state management, and transaction processing. Traditionally,
a network traffic dissector tool provides a window into the communications amongst networked
assets such as nodes. Dissectors are commonly used for debugging, protocol analysis, security
and scalability analysis, and, lastly, for educational purposes. The best-known and most utilized
tool for dissecting network packets is Wireshark. It intercepts network traffic via the kernel in a
non-intrusive manner and provides a live view of the frames and packets flowing through a link.
It allows us to identify protocols, decode data, follow streams and conversations, calculate
statistics, and more [5].

Currently, two known packet dissectors exist for Ethereum’s DEVP2P protocol suite; one was
built off of Wireshark’s plugin engine using the programming language LUA and one compiled
with Wireshark source code using the programming language C. These packet dissectors come
with limitations, created around five years ago, only supporting the encryption-less
DiscoveryV4, minus the newer packet types released in EIP-868 in October 2019. Ethereum
Improvement Proposals (EIPs) describe standards for the Ethereum platform, including core
protocol specifications, client APIs, and contract standards [6]. The LUA dissector was built by
BCSEC organization, also known as Blockchain Security org, this group has since been
disbanded but was known as a security group aiming “to elevate the security of the entire

blockchain ecosystem” [7]. The second packet dissector built with C, was created by PegaSys,
now known as ConsenSys, a large corporate player in the Ethereum and blockchain market
whose “mission is to build blockchain solutions ready for production in business environments”
[8]. Both do not dissect the newer packet types in DiscoveryV4, while also not having support
for DiscoveryV5 and RLPx and any of its sub-protocols such as ETH and SNAP.

Both projects have been abandoned, citing reasons for complexity and pushing the open-
source community to finish the job. The reason for this complexity will be touched on a great
deal throughout this report. As stated by PegaSys in August of 2018, the process of dissecting
RLPx is “somewhat complicated, as TCP connections are encrypted with an AES symmetric key
derived per-session via ECIES (Elliptic Curve Integrated Encryption Scheme)”. This means the
dissector must have “access to the private key of the local node, it would not be enough to
decrypt communications, as the encryption key factors in our private key, the public key of the
node, and a randomly generated ephemeral key [5].”

With this, we propose a new tool, a network packet dissector, explicitly used for
dissection and analysis of Ethereum’s DEVP2P protocols found in execution clients, including
their UDP-based DiscoveryV4, DiscoveryV5, and RLPx, including its sub-protocol capability
messages ETH and SNAP. After successfully dissecting, deciphering, and decrypting the
contents of the network payloads among Ethereum nodes on the network, we will then utilize the
dissector tool to prove its value as a dissector for the community and educators while also
providing a deeper analysis of the security and performance differences between DiscoveryV4
and DiscoveryV5 while also looking at RLPx, transactions, and block propagation. This
Wireshark dissector for DEVP2P can provide network-level security and performance analysis
for the Ethereum community and educators.

1.3 Contributions

Throughout this document, many contributions will be made in order to meet the goal of
creating a Wireshark dissector for DEVP2P, as found on execution clients like Go Ethereum
(GETH), specifically the protocols DiscoveryV4, DiscoveryV5 and RLPx including the ETH and
SNAP sub-protocols. Then using this created dissector to analyze live network traffic between
nodes/peers of an Ethereum network. Each of these will be explained throughout this document
in detail, the main contributions are completely new. The contributions for this thesis are as
follows. Please see the Appendix 7.1 to locate these contributions.

e discovery.lua and rlpx.lua - The main interface between Wireshark and the dissectors,
facilitating the packet capture data and sending it off to PYDEVP2P

e PYDEVP2P - The backend to the dissectors, Python-based with very minimal 3rd party
dependencies, provides most of the deciphering, decryption, and packet layout tooling
required for Wireshark display.

Go Ethereum Docker Images and Network
Go Ethereum Source Code Modifications
Lunatic Python Modifications

1.4 Organization

As many packet types are captured within the Ethereum network, the organization of this
document will step through a scenario for each protocol and its use case from a structured and
controlled test network. This scenario, in the next chapter, Chapter 2, will provide a vehicle for
understanding at a high level how an Ethereum node is used by users/accounts. This scenario
will briefly describe the Docker development network used throughout this document and
visualize multiple nodes connecting, followed by a transaction between two nodes.

Then, some background information on the inner workings of the Ethereum network will
be discussed in Chapter 3, followed by the use of existing dissectors to understand better
discovery followed and their shortcomings.

Then, in Chapter 4, the steps are taken to create the dissector for each protocol within
DEVP2P. We will provide the work that went into dissecting and displaying the packet
information for each packet type within Wireshark while also explaining the message contents
and use of the packet as related to the scenario outlined. This will provide a method to
understand the flow of DEVP2P packets during each stage of communication while
understanding the primary purpose for each contribution, including the Docker network, LUA
Dissector plugins, and the PYDEVP2P dissection library. Starting with the discovery phase,
showing the use of DiscoveryV4 and DiscoveryV5 on GETH clients, then unraveling RLPx
packets, including ETH and SNAP messages found as part of the RLPx transport protocol.

After discussing the creation of the dissector and understanding the flow of DEVP2P
packets amongst nodes on an Ethereum network, performance, and security characteristics will
be analyzed for both DiscoveryV4 and DiscoveryV5, in Chapter 5. Lastly, the actual transaction
that took place during the scenario will be analyzed with the dissector, understanding on a
message-by-message approach what took place on the network level to fulfill the transaction
amongst two nodes.

2. Scenario

It is important to understand just how an Ethereum node is used, whether it is connecting to the
network via a Bootnode, connecting and communicating with peers, and of course validating and
transacting amongst one another. This chapter will step through each process at a high level from
connecting a node to our own private/development network, with a network of 3 nodes and 1
bootnode (See Figure 1). In this scenario each node will be connected to the same chain, where
proof-of-work is the underlying consensus algorithm amongst nodes.

2.1 Custom Network Description

To start, a custom private development will be used, using the ETH cryptocurrency and running
GETH clients on each node. Each node will be running on a docker container, custom built to
support certain network connectivity operations and mainly to spin up several very quickly. The
details of the creation of this docker network will be explained in the “Creating the Dissector”
Chapter 4. Each node will communicate and exist on the Chain ID: “12345”, which again is a
unique identifier for a given network, for similarly configured peers to connect.

As stated before, there will be one BootNode, which is a specially designated node that acts as
the initial point of contact for new nodes attempting to join the network. When a new node wants
to join the network, it contacts the bootnode to get a list of active nodes that can provide it with
additional information about the network. The bootnode is typically a highly available and
reliable node that is maintained by the Ethereum development team or a trusted third-party
service. It plays a critical role in ensuring the stability and security of the network by helping to
distribute new nodes across the network and preventing the formation of isolated clusters. There
will also exist 3 other nodes on the network, each running the latest version of GETH as of this
writing, and each node will be a miner on the network. Lastly, for each docker container to reside
in their own subnet, a custom bridge router docker container is set up, to facilitate the
connectivity amongst the node docker containers. Below, Figure 1 depicts the network topology,
followed by networking details in Table 1 used throughout the scenario, dissection and analysis
chapters.

Host Computer

Docker Environment

GETH
Bootnode
10.1.0.10/24

GETH
Client 1
10.1.1.10/24

B¥ METAMASK

Docker Eridge 10.1.1.2/24 10.1.0.2/24 Docker BEridge
10.1.1.1/24 A% N 10.1.0.1/24

10.1.2.2/24\ o W, /10.1.3.2/24
Bridge
Raouter

Docker Bridge
10.1.3.124

Docker Bridge
10.1.2.1424

GETH GETH

Client 2 Client 3
10.1.2.10/24 10.1.3.10/24 W—‘IRES:—HARK
Figure 1: Docker Go Ethereum Private Network
Table 1: Docker Container Network Interfaces
Container Name IP Address | UDP/TCP Interfaces HTTP RPC Port
Port
geth-ubuntu-bootnode | 10.1.0.10/24 30303 ethO 8545
geth-client-1 10.1.1.10/24 30304 eth0 -
geth-client-2 10.1.2.20/24 30305 ethO -
geth-client-3 10.1.3.30/24 30306 ethO -
bridge-router 10.1.0.2/24, - ethO, ethl, eth2, eth3 -
10.1.1.2/24,
10.1.2.2/24,
10.1.3.2/24

2.2 Ethereum Client Accounts

On an Ethereum node, and more specifically on clients such as Go Ethereum (GETH), accounts
can be created and used to manage the ownership and transfer of the cryptocurrency associated
with the Chain ID. Each account has its own private/public elliptic curve key pair, and is

identifiable by its own unique address, derived from the account’s public key. This keypair is
used solely for account authentication, and in the event the keypair is lost, the user is no longer
able to access their assets. It is important to note that this elliptic curve keypair is separate and
distinct from that of the actual underlying Node’s keypair, used for uniquely identifying the node
in terms of discovery and communication. This account keypair is stored in what is known as a
keystore file, located in the filesystem containing an encrypted version of the account secret key,
along with the necessary parameters to decrypt it, requiring the use of the account password. The
accounts created on their respective container/node account addresses are shown in Table 2.
Clients like GETH can have several accounts associated with it, each of which is managed
independently of the others. Each account has its own balance of ETH, or the chain's specified

cryptocurrency, and can send and receive transactions on the Ethereum network.
Table 2: GETH Client Node Account Addresses

Container Name Account Address

geth-ubuntu-bootnode 0x6DED7354774DAS5056AES8E3C52484E2CDA3F6F788

geth-client-1 0x41159606B6240F725E969E3F1F342FF65904A4EC
geth-client-2 Ox1FOCEBF80F05DE1213401C6DO0ASSE215C8CE635F
geth-client-3 Ox11BEE17E6D6835AA46197990ADB681 BA3A1B4435

2.3 Starting the Private Network

By starting the docker environment, effectively with “docker-compose up”, the entire network
will come alive, including the bridge router, the bootnode and the three nodes. Shortly after, the
three nodes will reach out to their configured bootnode to join the network. Once joined they will
then perform their normal peer-to-peer discovery along with authenticated and confidential
communication. Below, depicts the command line output of each client, in this instance,
periodically searching for new peers on the network, seen in Figure 2. Note the “peercount” on
each, showing that they have 3 connected peers, not including themselves. As each of the clients
are configured to mine for their respective accounts on startup, the command line output will also
show their progress in mining potential new blocks and committing their work to their peers
throughout the network, seen in Figure 3.

INFO [82-27|19:28:18.419] Looking for peers
peercount=3 tried=0 static=@
gpeth-client-1 | INFO [©82-27|19:28:18.583] Looking for peers
peercount=3 tried=0 static=@

INFO [82-27|19:28:19.346] Looking for peers
peercount=3 tried=0 static=8
INFO [82-27|19:28:19.761] Looking for peers
peercount=3 tried=0 static=0
Figure 2: GETH Clients Looking for Peers with Peer Count of 3

bféd hash=f31cec..9831f1 elapsed=97

INFO [82-27|19:32:30.418] *. mined potential block
1

INFO [82-27|19:32:30.418] Commit new sealing work

bd7c uncles=@ txs=8 gas=0 fees=8 elapsed="186.2ps"

INFO [82-27|19:32:30.418] Commit new sealing work
bd7c uncles=8 txs=8 gas=8 fees= elapsed="178.1ps"

INFO [02-27|19:32:30.417] Imported new chain segment
blocks=1 txs=8 mgas=8.880 elapsed=3.914ms mgasps=8.800 dirt

Figure 3: GETH Clients Mining Potential Blocks and Importing Chain Segments

2.4 Connecting MetaMask

Now that the network is up and running, it is time to show how it can be used, just like in a real-
world scenario. Instead of using the GETH built in command line interface or CLI to view
account balances and transact, MetaMask will be used. MetaMask is the leading self-custodial
wallet, used to interact with the Ethereum blockchain or even private development Ethereum
networks. It allows users to access their Ethereum wallet through a browser extension or mobile
app, which can then be used to interact with decentralized applications. This interface provides a
real-world experience when pulling up the individual accounts from any of the nodes on the
custom private docker network [9].

GETH provides a way for third party applications to interact with the client by sending requests
to the JSON-RPC API endpoint. This can be enabled via a flag when starting up GETH from the
command line, specifically, in this scenario, the HTTPS transport will be used and utilizing the
default RPC port 8545. MetaMask is extremely lightweight and can be installed as a browser
extension on any popular browser, or even as an iPhone or Android application. Once installing
MetaMask, from the Settings > Network page, this local private network can be connected to,
using the RPC HTTPS endpoint port and the chain ID that each GETH node is configured with,
seen Figure 4 [10].

‘J:. METAMASK @ Localhost8545 v

Settings
Networks

Metwork name

Localhost 8545
New RPC URL

L Localhost 8545 http://localhost:8545

ChainID @
Test networks

12345

G
Currency symbol

. ETH

Block explorer URL (Optional)

Figure 4: Connecting to Private Network from MetaMask

2.5 Connecting Accounts and Transacting ETH

Once the local private Ethereum network is connected just like how another network or even the
Mainnet is connected, it is time to link the accounts that exist. This is as simple as importing the
keystore file found on each of the GETH nodes, found in ~/.ethereum/keystore/, shown in Figure
5. Again, this keystore file contains the encrypted account private key along with the necessary
AES parameters to decrypt it, which requires the use of the account password as well. After
importing, these accounts can be seen from the profile dropdown menu located at the upper
right-hand corner, while making sure to have the local private network selected as well. From
here, we can now see the actual balance of the accounts as well, labeled manually to correspond
to which node the account exists, shown in Figure 6. These accounts are named after the node
they reside on in the private Ethereum network, this does not mean that “Node 1 has X amount
of Ether. Nodes facilitate account connections to the network and facilitate transactions.

10

&5 METAMASK

Import account

Imported accounts will not be associated with your
originally created MetaMask account Secret
Recovery Phrase. Learn more about imported
accounts

JSON File

Used by a variety of different clients

Choose FiIe file chosen

veeed

Figure 5: Importing Accounts Found on GETH Clients into MetaMask

‘J:. METAMASK ® Localhost8545 v .

Node1 My accounts
Ooe...adEc g

M Mainnet Account
O ETH

1875.625ETH B Node1 e

1875.624979 ETH ‘“

$3,032,022.80 USD

4 — w MNode 2 IMPORTED
= 7 = 2298.0625 ETH

Figure 6: Showing Connected Accounts and their ETH Balance

It is important to note that the amount in USD is depicted as the current conversion rate from
ETH to USD, however, in this test network as the chain started from scratch, the difficulty was
rather low with a lack of competition as well. Lastly, to complete the scenario, Account/Node 1
will transact with Account/Node 2, sending 200 ETH to Node 2, steps shown in sequential order
in Figures 7 through 10.

11

O fOcebfB0f0Edel?13401c4d 0068216084 36F

ETH
Balance: 1877624979 ETH

Amount: 200 ETH
$323,308.00 USD

Gas price (GWEI) ® Gaslimit

1 21000

Hex data:

$0.03 0.000021ETH

Max fee: 0.000021 ETH

Figure 7: Sending 200 ETH from Node 1 to Node 2

L’;H Send -200 ETH
’ Pending - To: OxIf0...435f -$323,308.00 USD

Figure 8: Queued/Pooled Transaction Awaiting Validation

Send -200 ETH
To: 0xH0...635f -$323,308.00 USD

Figure 9: Validation & Verification of 200 ETH Sent

. MNode 1 IMPORTED
1681.4624958 ETH

Mode 2 IMPORTED
2508.062521 ETH

Figure 10: Updated Balances of Node 1 and Node 2 Accounts

12

2.6 Scenario Discussion

Most of what has been shown above is the typical use case of a account and nodes on an
Ethereum network. Typically, a user would create an account and a corresponding wallet on an
exchange, not having to actually deal with the setup of their own Ethereum node, unless of
course the individual wanted to mine using their own hardware. However, the steps above mimic
that of a real world scenario, where a user can manage their own account, account balance and
transact amongst node addresses all from the user interface connected to a client residing on the
Ethereum network.

What if however, you were looking to learn more about what happened exactly when a node
joined the network, or see exactly what information was propagated throughout the network
when Account/Node 1 sent Account/Node 2 200 ETH. How would we know which node
actually mined the valid block that pulled in the pooled transaction?

Much of this can be read about, with Ethereum’s own documentation, found on their webpage, or
even through source code found in the various implementations like GETH. The next chapter
will begin to discuss the inner workings of the Ethereum network, giving a background of much
needed information while also introducing two existing but very limited in functionality
Ethereum network packet dissectors which can be used to aid in the visualization of the
discovery mechanism used through the GETH nodes on the network. Then, in subsequent
chapters, the creation of a new dissector will be discussed, using it to visualize this real-world
scenario, and clarify much of the documentation regarding the DEVP2P protocol suite.

13

3. Related Work and Literature Review

In this chapter, we will explore the related work in this field, starting with a brief overview of the
history and critical pieces of the Ethereum network. This will include a deeper understanding of
Ethereum nodes, networks, and the protocols they use to communicate to understand the
requirements for a new dissector. We will then survey the current state of network
documentation and examine the role of GETH in the network. Finally, we will discuss existing
dissectors for the Ethereum network and highlight their strengths and weaknesses. This will
provide a foundation for the subsequent chapters, where the Ethereum Network packet dissector
for DEVP2P will be introduced and utilized.

3.1 Discussion of Ethereum Networks

There are two main types of Ethereum networks: public and private. Public networks are
comprised of nodes worldwide, residing on different machines throughout the internet. Each
public network has a uniquely identifiable chain ID, sometimes referred to as the network ID,
which Ethereum nodes use to denote which chain/network clients use to communicate. The
Mainnet is the live Ethereum network that hosts actual transactions and smart contracts denoted
by a chain ID of 1, chains other than the Mainnet that are public Ethereum networks are
considered "testnets." Testnets are alternative networks used for testing and experimentation and
serve as sandboxes for developers to test their smart contracts and applications in a safe
environment without the risk of losing real Ether. However, some testnets are also used for
actual alternative currencies, other than Ether (ETH), but still using the underlying Ethereum
network technology stack.

The two public testnets client developers maintain for the Ethereum chain are Sepolia and
Goerli. Sepolia is a network for contract and application developers to test their applications. The
Goerli network lets protocol developers test network upgrades and lets stakers test running
validators. There are other networks that are not specifically maintained by the Ethereum
community and can even use alternative currencies. These alternative chains can use most of the
core Ethereum network protocols and include some popular networks like Polygon (SMATIC),
Binance Smart Chain ($BNB), Avalanche C-Chain ($AVAX) and many others [11].

Regarding the proposed Ethereum Network packet dissector for DEVP2P, it can be used on any
test net, such as Ropsten, Rinkeby, or Kovan. Furthermore, the dissector can be used to capture
and analyze packets sent and received by nodes on the mainnet, test nets, or any network running
the execution layer network protocols found in DEVP2P and even in the LIBP2P discovery
mechanism, which uses DiscoveryV5. This all attests to how versatile this dissector can be,
which can help developers identify issues and optimize the performance of their applications on
a range of environments or networks.

14

In addition to public networks, Ethereum can also be deployed on private networks which in this
context, private only means reserved or isolated, rather than protected or secure. Private
networks are usually created for development and testing purposes specifically. Private networks
are not open to the public and may have different rules and parameters than the main net or test
nets. For the purposes of the type of network used in support of the creation and testing of the
proposed dissector, a private network that matches the Ethereum pre-merge proof-of-work
consensus algorithm will be used [12].

3.2 Discussion of Ethereum Nodes/Clients

A “node” is any instance of an Ethereum client, a computer running any Ethereum software,
forming a peer-to-peer network. A client is more specific and is known as an actual
implementation of Ethereum software implementing the necessary Ethereum network protocols
or data validation algorithms. Pre-Merge Ethereum consisted of a single type of client, an
execution client, such as Go Ethereum (GETH), running the execution layer network protocols
known as DEVP2P. Now, post-Merge, consensus clients are added to fully integrate with
execution clients, both required if Ethereum Mainnet connectivity is necessary. Effectively
splitting the work into an execution client and a consensus client, where data/block validation is
handled on the execution client, and the consensus mechanism and chain is handled on the
consensus client. This addition of a consensus client handles the new implementation of the
proof-of-stake consensus algorithm, its peer-to-peer network based on LIBP2P. A consensus
algorithm is a process used to achieve agreement amongst peers about the validity of some
distributed data, which would be a block of data as it relates to blockchain. Both execution
clients and consensus clients can be run on their own, run together communicating by a local
RPC connection, or tightly coupled in the same software as a single execution/consensus client,
as shown in Figures 11 and 12 respectively [13]. The deployment of these client’s matter,
depending on the consensus algorithm and network, but for the purpose of this document, we
will be using Go Ethereum, an execution client, running by itself without a consensus client.

The Ethereum technology stack is meant to be diverse, providing a base set of requirements for
any node/client implementation to utilize and join a network. With this, many implementations
of both execution clients and consensus clients are found and fully supported in a range of
programming languages. Execution clients include GETH (Go Ethereum), written in GO,
Nethermind written in C#, Besu, written in Java; and Ekula, written in Rust. Consensus client
implementations include Lighthouse (Rust), Lodestar (TypeScript), Prysm (GO). All these
clients differ in architecture, functionality, and performance but all utilize the same core
Ethereum guidelines and Ethereum Network protocols.

The execution client, Go Ethereum (GETH) will be the main focus throughout this document, as
GETH has been a core part of Ethereum since the beginning. GETH was the original Ethereum

15

implementation, supporting all the development and testing, making Ethereum what it is today,
and is still known as the most used execution client. Being an execution client, GETH supports
handling transaction validation, deployment, and execution of smart contracts and contains an
embedded computer known as the Ethereum Virtual Machine. To connect to the Mainnet, GETH
must run alongside a consensus client, effectively creating a full Ethereum node [14].

/— Consensus Client \

Beacon Chain
Y
o I B o
Beacon State Shard Chains LIBP2P T >
ﬁl:‘}b Che{{ e 1{1 A
A
. RPC response from
RPCto exaecution I execution client
client I
1
Figure 11: Ethereum Consensus Client
A
1 RPC response to
RPC fronTconsensu | consensus client
client
1
ﬂixecutian Client \
EVM Discv5 .7
NN} P
= (i = e
= L M| - ., -
eth1 State T TX Mempool DEVP2P . D I_S_C\f:l
o
CEE REPX

_/

Figure 12: Ethereum Execution Client

3.3 Discussion of Ethereum Network Protocols

Each type of client, execution or consensus has its own network, DEVP2P, and LIBP2P
respectively, both with their own individual protocols for handling discovery, and
authenticated/encrypted communication. Pre-Merge, the Ethereum Mainnet only consisted of
execution clients, where DEVP2P was used to facilitate all the communications between nodes,
using the proof-of-work consensus algorithm. DEVP2P, as will be discussed in great detail in

16

Chapter 4, provides protocols for UDP discovery, like DiscoveryV4 and DiscoveryV5, along
with a TCP-based authenticated and encrypted messaging amongst nodes using RLPx. This
means that an execution client, such as GETH, on a proof-of-work private/development
network/chain is the best way to see the full use of DEVP2P and its multitude of protocols and
message types. However, this does not mean DEVP2P is not utilized in a post-merge proof-of-
stake consensus algorithm deployment. DEVP2P DiscoveryV4 is still used as the primary
discovery mechanism amongst execution clients, and RLPx is being used for synchronization
and propagation along with the LIBP2P consensus clients [15].

As the main contributor to the development of Ethereum, GETH also was the front-runner in
implementing and testing the successor to DiscoveryV4, DiscoveryVS5. DiscoveryV5, compared
to DiscoveryV4, provides confidentiality by masking the contents of packets, making it more
dynamic for use amongst arbitrary nodes, increasing performance regarding node identity, and
no longer relying on the system clock of nodes. GETH is the only implementation of an
execution client that supports DiscoveryVS5, as support for DiscoveryV5 was paused for
execution clients as talks of the merge arose. DiscoveryV5 was chosen as the discovery
mechanism for consensus clients instead of LIBP2P’s own discovery implementation/schema.
However, we will not be looking at a consensus client throughout this document, nor be looking
at LIBP2P’s specific DiscoveryV5 implementation. This means that the GETH execution client
can also discover consensus clients and is a great way to understand the inner workings of
DiscoveryV5 without spinning up a complete LIBP2P network with a consensus client [16].

3.4 Discussion of the Proof-of-Work Consensus Algorithm

Proof-of-work (PoW) is a consensus algorithm used in blockchain technology to verify and add
new transactions or any data (blocks) to the blockchain. In a PoW system, miners compete to
solve a complex mathematical puzzle, a hash function, to add a new valid block to the
blockchain. There is a multitude of different implementations of PoW mechanisms, like that
found in Bitcoin, whereas Ethereum’s specific algorithm is called Ethash. Mining a new block
involves selecting a set of pending transactions from a pool for validation then creating a block
containing those transactions. The miner then attempts to find a solution to the hash function that
meets a certain difficulty level which is adjusted periodically to maintain a target block time and
prevent the network from becoming too congested [17].

The miners must find a specific hash value at or below the target hash value determined by the
difficulty level, visualized in Figures 13 and 14. This target hash is calculated by what is known
as the “difficulty level” which is calculated and incremented using previous block difficulty
levels. This means the difficulty increases as more blocks are mined. Miners achieve this target
hash by repeatedly changing a value called a “nonce” in the block header that produces a hash
value using SHA 256 that is at or below the target hash when combined with the block’s header
and other inputs. Once a miner finds a valid solution, they broadcast the new block to the

17

network. The other nodes in the network then verify that the solution is correct by checking that
the hash value meets the target hash/difficulty level and that the transactions in the block are
valid by checking their hash values. Once most nodes in the network verify the block, it is added
to the blockchain, and the miner who found the solution is rewarded with new cryptocurrency
units as an incentive for their work [18].

Hash from the Block of Nonce: 1
last block transactions |

X

00002c6a12d51 beﬁiSchdZasSMCIQZGS
9cB804b80a09f54128c50e5ab41b24719
Figure 13: Invalid Proof-of-Work Hash Value

Hash from the Block of Nonce: 2
last block transactions '

00’3’3000000000006003cd2a55f409263
9c804b80a09f64128c50e5ab41b24719

Figure 14: Valid Proof-of-Work Hash Value

3.5 Literature & Documentation Review

Documentation quality is essential for developers and users to understand the workings of a
system fully. Ethereum and the Ethereum network has a significant amount of documentation
available through various sources, including the official Ethereum website and multitude of
README files found from the Ethereum GitHub. The documentation provided by Ethereum

18

maintainers and community members includes in-depth explanations of the Ethereum toolkit,
including protocol usage, smart contracts, the EVM, and the Solidity programming language.
Ethereum also provides whitepapers, tutorials, and specifications for developers to use and
community members to use while also providing transparency into research and development
roadmaps with Ethereum Improvement Proposals or EIPs [6].

Additionally, specific implementations of Ethereum software such as Go Ethereum, GETH, the
most widely used Ethereum client, provides documentation, start guides and tutorials, to aid new
users and developers for starting their own client. The GETH source code is extensive, used as
the primary development platform for Ethereum execution clients, and its documentation helps
developers understand how the client works and how they can interact with it [14]. Many times,
throughout the creation of the dissector discussed in later chapters, the GETH source code is
used to provide DEVP2P and Ethereum implementation and design specific insights into the
creation of the dissector and PYDEVP2P.

Despite the vast amount of documentation available for the Ethereum network, some areas of the
protocol need to be better documented, which can create difficulties for developers. In addition,
some of the documentation can be challenging for those with a deep technical understanding of
the Ethereum network. Especially with the Ethereum Merge, many documentations instantly
became outdated; source code deprecated, and exact deployment and usage of Ethereum
network-specific protocols left undocumented. Furthermore, the specification and documentation
do not provide real-world data to help guide the reader to further understanding. However, using
a network packet dissector, many of these specifications, claims, and gray areas can be proven,
verified, and uncovered in a digestible manner to aid in documentation and education.

3.6 Existing Dissector Implementations

Network packet dissectors like Wireshark capture and analyze network traffic to decode the data
transmitted over the network. This can be done either in real-time or with pre-recorded traffic,
providing visibility into the communication amongst different devices. Specifically, tools like
Wireshark are used in conjunction for debugging purposes to help diagnose network problems by
revealing malformed or misconfigured network data. Such tools are also proven valuable
educational tools, providing detailed and real-world views into the underlying network protocols
and helping visually understand low-level topics. In addition, dissected packets are displayed in
an easily understandable structure or schema, conveying the contents of the network packets in a
digestible manner.

Two Ethereum packet dissector implementations exist, created in 2018 and abandoned shortly
after that, including implementations in C and LUA. Both were created to provide transparency

19

of the inner workings of the Ethereum network protocol and their subsequent messages
exchanged between communicating nodes.

Setting up these two types of dissectors is quite different, first looking at the C Wireshark
dissector from PegaSys, now known as Consensus, a market-leading blockchain technology
company building developer tools to enterprise solutions [19]. Written in C, this dissector must
be compiled alongside the source-code of Wireshark, specifically Wireshark version 2.6.2 [8].
This means that a proper development environment will need to be set up, with all the C and
third-party dependencies locally installed to correctly compile the dissector and the Wireshark
source code into an executable.

A great ReadMe can be found from the source code of the C Ethereum Dissector from PegaSys
(ConsenSys) which walks through pulling both the Wireshark source code, the dissector source
code, and utilizing Ninja, a small build system for building executables from source [20]. After
building, the custom version of Wireshark with the built-in C dissector can then be run.
Wireshark directly states that the preferred language for creating dissectors is C, due to its
performance, and its larger range of functionality as it is built directly into the source.

The LUA dissector on the other hand was created as a Wireshark plugin [7]. LUA is a powerful
light-weight programming language designed for extending applications and used in conjunction
with Wireshark as a language for prototyping and scripting dissectors. Wireshark has a built-in
LUA runtime and an API where LUA plugins can be loaded and utilize the API function calls to
access important packet information [21]. The LUA dissector was created by BCSEC, a
blockchain security group which aimed to elevate the security of the entire blockchain
ecosystem. Even Though this group no longer exists, the source code for their Ethereum
DEVP2P Wireshark LUA dissector still does and provides a great starting implementation for
creating a Wireshark dissector plugin.

Wireshark has a built-in LUA runtime environment, so using the LUA dissector is as easy as
placing the .LUA code itself, without any compilation steps necessary, is right in the correct
plugins folder used by Wireshark. Then, a typical installation of Wireshark, no matter the
version, will automatically pull in this LUA dissector plugin and run it automatically. This ability
to develop and test using a LUA dissector without having to rebuild and compile the entirety of
the Wireshark source makes its usefulness clear for development purposes. However, as
mentioned earlier, some functionality for LUA dissectors could be improved, such as creating
heuristics reports like the C dissector provides.

The C dissector and the LUA dissector are both able to dissect Discovery V4. DiscoveryV4 as
mentioned earlier is a UDP-based discovery mechanism for Ethereum clients and is part of the
DEVP2P protocol specifications. DiscoveryV4 packets are sent in the clear, without encryption,

20

and provide a very simple method for nodes to join the peer-to-peer network with 4 main packet
types, PING, PONG, FindNode and Neighbors. The PING and PONG packets deal with peer
liveliness and endpoint proof, while the FindNode and Neighbors deal with the actual discovery
of other nodes based on secp256k1 public key identities. Every node has a cryptographic
identity, a key on the secp256k1 elliptic curve, and this public key of the nodes serves as its
unique identifier or “node ID”. This allows packets in DiscoveryV4 to be signed, validated and
authenticated with Elliptic Curve Digital Signature. Lastly, there are two other packet types,
ENRRequest and ENRResponse, added to the protocol specification in October 2019 via an
Ethereum Improvement Proposal EIP-868 to enable authoritative resolution of Ethereum Node
Records or ENR’s in DiscoveryV4. An ENR contains specific network endpoint information
about a node, it also holds information regarding protocol version information as well as a
compressed secp256k1 public key.

Despite their differences with installing the two dissectors, using them is quite the same,
however they do have their minor differences and nuances. One main thing with the C dissector
is the ability to click on the individual fields in the DiscoveryV4 packets and see the exact byte
that field value correlates with, while this functionality is lost with the LUA dissector. The LUA
dissector also seemed more unfinished, as all the expiration and date fields were left as hex
values instead of being parsed into human readable dates. Shown below, is a DiscoveryV4
FindNode packet, first from the C dissector followed by the dissection from the LUA dissector,
shown in Figures 15 and 16. Each shows the typical header information found on each
Discovery V4 packet, the hash of the message, signature information and the type of the packet.
Then the differences, where the C dissector clips the full target field, which is actually the 64-
byte secp256k1 public key of the node that is being searched, while the LUA dissector displays it
in full, inaccurately listing the field as “hash”.

343 34.895263604 192.168.4.40 192.168.2.20 Ethereum 213 Discovery v4 message: FIHD_MﬁDE

Frame 343: 213 bytes on wire (1704 bits), 213 bytes captured (1784 bits) on interface @
Ethernet II, Src: Vmware 8f:11:08 (@0:0c:29:07:11:88), Dst: Vmware_TB:28:64 (00:0c:29:78:28:64)
Internet Protocol Version 4, Src: 192.168.4.40, Dst: 192.168.2.20
User Datagram Protocol, Src Port: 30308, Dst Port: 38305
Ethereum discovery protocol
Message hash: bl148fch913Beb77cchicdal?22ecdbl28668T3d59783079. ..
Message signature: 7a3cl799774bBcidGc3eb31b380eBlb6c042a12412b00cC31. ..
Packet type: FIND_MNODE (3)
- Packet payload: FIND_NODE
(FIND_NODE) Target: 2533e85c48330e98a50216988e147148b463ee160dd52734. ..
(FIND_NODE) Expiration: Oct 7, 2022 19:13:13.000000000 EDT
[Global sequence number of this packet in this conversation: 303]
[Sequence number of this packet type in this conversation: 14@]
[This packet was responded in: 344)

Figure 15: C Dissector DiscoveryV4 FindNode Packet

21

Frame 7: 213 bytes on wire (1784 bits), 213 bytes captured (1704 bits) on interface ensi89, id @
Ethernet II, Src: VMware 58:6e:84 (00:0c:29:58:6e:84), Dst: VMware T8:28:50 (00:0c:29:7T8:28:50)
Internet Protocol Version 4, Src: 192.168.2.20, Dst: 192.168.4.40
User Datagram Protocol, Src Port: 38385, Dst Port: 38308
Ethereum devp2p Protocol (FindNode)

Hash: 215d73a@1d50423e0TcdB4r8T23486Tdb4978326dcdE6b124..

Sign: d220432p0ediT4e74e025ac78199370b817ddblatdi46311..

Type: FindNode (3)

Payload: TB47bB40ef6475b981d60da3668Teb303825dc818a9356¢c2.
r FindNode
Hash: "ef6475p981d60da3668Teb303825dc818a9356c25348¢5011b3937252de82d43a7005ea78achlbb9855922
Expiration: 63400756

Figure 16: LUA Dissector DiscoveryV4 FindNode Packet

Both the C and LUA dissector implementations have significant limitations, aside from
compilation times, and LUA runtime performance. To start, since these implementations are
several years old they are not compatible with the newest specification release for Discovery V4.
This new specification mentioned earlier, EIP-868, adds an ENR-sequence field to both the
PING and PONG packets, as well as adding the ENRResponse and ENRRequest packet types.
Because of these modified and added packets, the dissectors both fail to fully dissect the PING
and PONG packets found in the latest version of any execution client such as Go Ethereum
(GETH), shown in Figure Figures 17 and 18, as well as recognizing and dissecting the
ENRRequest and ENRResponse packets. Shown below, examples from both dissectors, where
the Ping packet is either not able to be dissected at all, or not showing the ENR-sequence field,
and of course both ENRRequest and ENRResponse, message type number 5 and 6 respectively
not dissected by either dissector, seen in Figures 19 and 20.

Frame 9: 176 bytes on wire (1408 bits), 176 bytes captured (1408 bits) on interface ens39, id @
Ethernet II, Src: VMware T8:28:50 (00:0c:29:78:28:50), Dst: VMware 58:6e:84 (00:0c:29:58:6e:84)
Internet Protocol Version 4, Src: 192.168.4.48, Dst: 192.168.2.20
User Datagram Protocol, Src Port: 30308, Dst Port: 30305
Ethereum devp2p Protocol (PING)

Hash: dad4722d2364b2aG1d9cd91036bb45837471F7d4b5a%952¢c..

5ign: c4aaceb236c0arGBed52996eT9019887de33chcalbds6dad..

Type: PING (1)

Payload: 2304cb84c0aBi428827664827664c084c0aB021482766180..
["@4", ["cODaB@428", "T664", "THE4"], ["cPaB0D214", "VG6G1"], "6340b756", "0183b4aecif83"]

Figure 17: LUA Dissector Ping Packet Unable to Dissect

22

345 35.837577452 192.168.4.40 192.168.2.20 Ethereum 176 Discovery v4 message: PING

Frame 345: 176 bytes on wire (1408 bits), 176 bytes captured (1488 bits) on interface 0
Ethernet II, Src: Vmware ©7:11:€8 (00:0c:29:07:11:688), Dst: Vmware_TE8:28:64 (00:0c:29:7T8:28:64)
Internet Protocol Version 4, Src: 192.168.4.40, Dst: 192.168.2.20
User Datagram Protocol, Src Port: 38388, Dst Port: 30305
Ethereum discovery protocol
Message hash: 1cD189255153abbfledbc@6ldéafecads2abecbafi3g3nid. ..
Message signature: 15aee@c257T339cal3e3BeB7T2Tal23c9T83el1fdV4cc61857. ..
Packet type: PING (1)
= Packet payload: PING
(PING) Protocol version: 4
(PING) Sender address (IPv4): 192.168.4.48
(PING) Sender UDP port: 30308
(PING) Sender TCP port: 38308
(PING) Recipient address (IPw4): 192.168.2.20
(PING) Recipient UDP port: 306305
(PING) Expiration: Oct 7, 2022 23:13:14.000800000 UTC
[Global sequence number of this packet in this conversation: 305]
[Sequence number of this packet type in this conversation: 13]
[This packet was responded in: 346]

Figure 18: C Dissector Not Fully Dissecting Ping Packet

£ U, uusYEnED LYL. 108, L. LY LY2 ., LOB . %, 41 UEVEZH ££0 SUIUD — SUSUD LENSL160 [NELYNDULS |
3 0.063936688 192.168.2.20 192.168.4.40 DEVP2ZP 176 30365 - 30308 Len=134 (PING)

4 0.064429232 192, 168 4.40 192, 168.2.2@ DEVPEP 199 SBSHB — 39305 Len=157 (PONG)

5 0.064887929 5 226 4,4 16

6 B.P65253478 192 168.4

e i S

Frame 5: 146 bytes on wire (1168 bits), 146 bytes captured (1168 bits) on interface ens39, id @
Ethernet II, Src: VMware 58:6e:84 (@0:0c:29:58:6e:84), Dst: VMware f8:28:50 (090:0c:29:78:28:50)
Internet Protocol Versiom 4, Src: 192.168.2.20, Dst: 192.168.4.40
User Datagram Protocol, Src Port: 38365, Dst Port: 30308
Ethereum devp2p Protocol

Hash: bB@fbl1886921e36dariidabdesfalt?adbiB7ob84e351c115..

S5ign: 44B86a8236aa76617a5970cT6e209e3Td29dcd371191d97T162...

Type: Unknown (5)

Figure 19: LUA Dissector ENRRequest Un-dissected Packet

(11 Ea-Falelake] 1uL . 108 . £L.20 192,108,

963936688 192.168.2.20 192.168.

. UEVF L £28 SWUIUD
.40 DEVPZP 176 30385

SWIWE LENSLED [NeLlynuurs
38308 Len=134 (PING)
30305 Len=157 (PONG)
38308 Len=104

=
P
ol
=t

£ 4
3 0. 4
4 0.064429232 192.168.4.40 192.168.2.20 DEVP2P 199 30308
a B Bﬁ488?929 192. 168 2 2@ 192.168.4
G o 168.2

.40 DE?PEP 146 30385
: 2 340 30308

Frame 6: 340 bytes on wire (2720 bits), 34¢ bytes captured (2720 bits) on interface ens39, id @
Ethernet II, Src: VMware f8:28:50 (00:0c:29:78:28:50), Dst: VMware_58:6e:B4 (00:0c:29:58:6e:84)
Internet Protocol Version 4, Src: 192.168.4.46, Dst: 192.168.2.20
User Datagram Protocol, Src Port: 38368, Dst Port: 38305
Ethereum devp2p Protocol

Hash: db5B864cT71ef5ecT19085dco650139566431a8c8b6130169..

Sign: 9afdaef88daZeaffd96364c76e639c07a92287cHT25a64h3..

Type: Unknown (&)

Figure 20: LUA Dissector ENRResponse Un-dissected Packet

These dissectors, despite their lack of support of the newest DiscoveryV4 specification, also do
not provide support and dissection of DiscoveryV5 and RLPx. DiscoveryV5 being a newer
encrypted discovery mechanism while RLPx being the main TCP-based encrypted
communication channel for Ethereum execution clients. The lack of support for these protocols
is not due to the fact of being outdated, however ConsenSys directly states that dissecting RLPx

23

“is somewhat complicated, as TCP connections are encrypted with an AES symmetric key
derived per-session via ECIES (Elliptic Curve Integrated Encryption Scheme), which means that
even if the dissector had access to the private key of the local node, it would not be enough to
decrypt communications” [5]. This is the main hindrance for both dissectors to finish the
dissector, and the main reason why support for these dissectors were dropped.

3.7 Conclusion

Overall, while very useful, the limitations of existing documentation and existing
dissectors highlights the need for a new Ethereum packet dissector implementation that can
handle the latest Ethereum protocol features and support a wider range of protocols, such as
DiscoveryV5, and RLPx including the ETH and SNAP sub-protocols. Such a dissector could
improve the ability of developers and researchers to analyze the Ethereum network and gain a
deeper understanding of its operation. A tool like this can also aid in reinforcing that which is
read from the documentation and ReadMe’s, or finding the gaps, by visually proving the actual
protocols and messages used in a live Ethereum network environment. Even complexity was
cited as the main reason to halt development on the dissectors, with the emergence of newer
protocols and the added complexity with the consensus layer and clients, it becomes even more
imperative to create a dissector that solves the gaps.

The next chapter will discuss the creation of a new dissector, one that is a LUA dissector
plugin for Wireshark, originally based on the LUA dissector but with little to no similarities in its
final form.

24

4. Creating the Dissector
4.1 Packet Dissector Design

To create a new dissector that supports the latest messages found in DEVP2P, it is important to
go over what is required to meet this goal. Several components are needed, such as a
private/development network, which allows for the creation of an entire Ethereum network to be
spun up quickly and modified rapidly. This dissector will also be in the form of a LUA plugin for
Wireshark, which allows for quick development and the ability to support any version of
Wireshark, without the need to compile everything. This keeps the dissector portable, and easily
installed and used throughout the community.

First, reviewing the specific functional requirements for this new LUA dissector is essential. As
stated before, this dissector must be able to handle not only DiscoveryV4 but also decrypt and
decipher DiscoveryV5 along with RLPx messages and its related sub-protocols ETH and SNAP.
This means that the dissector will have to handle the decoding of RLP, which is not related to
RLPx, while also handling ECIES, which entails sessions with symmetric and public key
encryption using elliptic curve cryptography. In addition, the dissector must maintain the typical
requirements for a Wireshark dissector, such as live dissections from network interfaces or
through captured PCAP files with the ability to display the contents of packets/messages clearly
in the Wireshark user interface. To handle ECIES decryption, the dissector must be able to hold
information about the Ethereum nodes, specifically their private keys and IP addresses. RLP is
the encoding used by all DEVP2P messages, which stands for “Recursive Length Prefix” and is
used for arbitrary data structures in a compact format. Lastly, this dissector should be easily
installed and utilized in a development environment that can quickly be spun up for educational
or demonstration purposes. On top of all of this, it is the utmost goal of the dissector and
subsequent PYDEVP2P Python library, which will be discussed in great detail, to provide a
readily accessible, and clear implementation of elliptic curve calculations done without the use of
C or 3" party dependencies to also add educational value.

As stated earlier, the primary focus for this dissector is DEVP2P, the protocol suite used amongst
execution layer clients, such as GO Ethereum. DEVP2P was created during the time when the
Ethereum Mainnet was using the proof-of-work consensus algorithm, therefore, to see some of
the DEVP2P messages, a proof-of-work development network is required. Specifically,
DiscoveryV4, DiscoveryV5 and RLPx including sub-protocols ETH and SNAP will be
dissected, each holding their individual messages.

After understanding the general goals and requirements of the dissector, we can now look at the
individual pieces that fit together to make it all possible. Seen below in Figure 21, the software
architecture diagram depicts each component that is necessary for a full environment, broken

25

down into two main categories, software/tools that are directly related to the function of the
dissector, and then software/tools related to the custom development Docker network and GO
Ethereum nodes that will be used to capture DEVP2P network traffic via Wireshark on all nodes’
interfaces in the middle.

Dissector GETH Docker

LUA D|slse<:tor Wireshark GETH Nodes &
Plugins Network

Lunatic Python GETH Docker
Bridge Images
LUA === Python °

| |

Custom GETH

FLEEs Source Code

Figure 21: Dissector Software Architecture Diagram

Docker is a platform and tool for creating, deploying, and managing applications using
containerization technology which means they are self-contained and isolated from the
underlying host system. It allows developers to package an application and its dependencies into
a docker image and deploy lightweight, portable containers that can run consistently across
different environments, from development to production [22]. As they are so lightweight
compared to traditional virtual-machine technology, multiple docker containers can be spun up
quickly and even virtualize network connectivity amongst the host machine and containers.

As it is used for the dissector, custom docker images are built with the required networking tools
and custom GO Ethereum source code which will be discussed in later sections. This custom
image is then used to create multiple docker containers, each interconnected with different
subnets and fully simulating a small private Ethereum network. Since the docker containers are
able to connect to the host through a bridged network connection, a normal install of Wireshark
on the host allows it to capture the packet traffic transferred amongst these GETH docker
containers.

Once the DEVP2P packets are captured by Wireshark, the LUA dissector plugin comes into
play. The LUA Wireshark plugin acts as an interface, first registering with Wireshark the exact
packets it wishes to dissect, usually based off packet schema and/or port numbers. Then,
Wireshark sends these packets to the LUA plugin to be dissected and decoded, which makes the
LUA plugin responsible for displaying the contents of the packets appropriately in the user

26

interface of Wireshark. This process is done for each incoming packet, either in a live packet
capture or from a standalone PCAP file.

Lastly, there is PYDEVP2P, a Python library and toolkit to aid in decryption, decoding, and
dissecting DEVP2P messages along with Lunatic Python. Lunatic Python is a two-way bridge
between Python and LUA, allowing these languages to inter-communicate. This gives the ability
for each language to invoke built-in functions from the other language. This project specifically
uses this implementation to allow LUA to call specific functions from PYDEVP2P which
handles all the heavy lifting for RLP decoding, ECIES deciphering, and node state management.
The main reason for this is the lack of cryptographic library support in LUA, as well as snappy
compression/decompression support found in Python. As it is used throughout this project,
PYDEVP2P provides the bulk of the implementation for providing a dissector for DEVP2P, as
well as including a limited dependency ECIES implementation specific to Ethereum ECC. In
order to match certain implementation specifics to DEVP2P and Go Ethereum due to lack of
documentation, it should be noted that a lot of the design characteristics and data techniques for
decryption were recreated in a pythonic approach utilizing the Go Ethereum source code directly
[14].

Wireshark provides an interface for LUA dissectors known as the dissector API, which provides
functions for dissecting network protocols, accessing protocol fields, and creating new protocol
fields. In Wireshark, the Lua dissectors are stored in the "plugins" directory, which is
automatically loaded by Wireshark. Specifically, in this case, the Wireshark LUA dissectors will
be located in the ~/.local/lib/wireshark/plugins directory found on Linux operating systems. LUA
plugins are registered with Wireshark by initializing a short protocol name, full name,
description and a list of ports to bind with [23]. When a Lua dissector is registered with
Wireshark, it is called whenever a packet that matches the protocol, port, or schema is captured.
The dissector then analyzes the packet and creates a tree of protocol fields, which can be viewed
in the Wireshark GUI. This tree allows for nested fields and values, to allow the user to easily
view hierarchical information easier.

In terms of this DEVP2P dissector, once the LUA plugin receives the captured packet
information, it then calls the associated Python function for the payload of the received message.
This is handled by Lunatic Python, using the shared object binary, “python.so” that is loaded into
LUA to allow LUA to interface with Python functions [24]. These Python functions are found in
PYDEVP2P, located in the “bridge.py” file, holding all of the functions needed by the LUA
plugins, supporting DiscoveryV4, DiscoveryV5, and RLPx. From there, depending on the
function, the payload of the captured network traffic is sent off to different sub-modules found in
PYDEVP2P, supporting state management, RLP decoding, ECIES, and more, seen in Figure 22.

27

LUA PYDEVP2P

FPlugins

bridge. py

Wireshark 4' 4'
y [rlpx discover]
discovery lua | |
v v v
[crypto [elliptic] [rip]

Figure 22: Wireshark, LUA, PYDEVPZ2P Flow Diagram

In the coming dissector sections, each of these modules found in PYDEVP2P will be discussed
in greater details. PYDEVP2P was designed to be a standalone library for DEVP2P, not just to
be used as a dissector, therefore, each sub-module can be used independently, providing
Ethereum-specific cryptographic, elliptic curve, and RLP tools and functions. However, as stated
previously, bridge.py is provided as both an interface with the LUA Wireshark plugins, and also
as a statement to how PYDEVP2P can be used for various functionality.

4.2 Creating the Network

As stated earlier, a custom docker network will be used throughout the creation of this dissector,
as seen in the Scenario chapter. This network contains 4 GETH containers and 1 Ubuntu Router
container, facilitating networking amongst the containers so that they can reside on different
subnets. Docker is a necessary component, as it provides a method to spin up an entire private
Ethereum network quickly and dynamically in seconds, running lightweight custom source code.
There are several components to creating a custom docker environment, such as a dockerfile, a
docker image, a docker container, and lastly, what is known as a docker-compose file.

A Dockerfile is a text document that contains all the commands a user could call on the
command line to assemble an image. This image contains possible source code, packages, and
other dependencies to run a docker container. Throughout the development of the dissector, the
dockerfile and the images saw many variations, first starting with a dockerfile that pulled in a
preconfigured GO Ethereum docker image first; however, as the dissector progressed, custom
GO Ethereum source code had to be installed in order to expose the private session keys during
the RLPx handshake.

In the final implementation of the dockerfile, the docker images are built with a slim Ubuntu
22.04 docker image, then containing the necessary commands to install the necessary APT
dependencies such as GIT and GOLANG. The next main piece in the dockerfile pulls in the

28

forked custom GO Ethereum source code, which again allows for the exposure of the session
keys during the RLPx handshake to allow for proper decryption and dissection. The dockerfiles
are also set up to take in an “ACCOUNT PASSWORD” as an argument, which is the password
used to set up the default account for the GETH client. This is the same password that is used
when adding the account in MetaMask. Next, the “genesis.json” is loaded into the image, which
is used as a configuration file for the GETH client, defining the “chainld” 12345 and the type of
consensus mechanism to use. Please see the document materials list in the appendix to view the
dockerfile for these custom containers.

When initializing the GETH client utilizing the “geth init ~/genesis.json” command, this creates
what is known as the nodekey, found in ~/.ethereum/geth/nodekey in the docker containers. This
is the unique elliptic curve secret/private key that is used for node authentication and
identification. It is also possible to override this key to make it static (outside of initialization) for
development purposes, which will be done in this case. After the creation of the dockerfile, the
“docker build” command can then be used to create the actual docker images, each with their
own corresponding tag according to their uniquely chosen account password, “boot” for the boot
node of the network, followed by “nodel”, “node2”, and “node3” and lastly the Ubuntu docker
image for the router. In the GETH docker repository, <see contribution>, the “build-dockers.sh”
shell script is used to automatically build these 5 total images, with their corresponding tags.

The last piece to the docker test environment is what is known as the docker-compose file. A
docker-compose file is used to define and manage multi-container Docker applications, allowing
the definition of services, also known as a container, along with networks and volumes which are
files and directories that can be piped into the containers from the host machine. With docker-
compose, it is possible to start, stop, and restart all the docker containers with a single command,
effectively spinning up the entire GO Ethereum test network in a single click. [26].

It is in the docker-compose where the individual subnets are defined for the individual
containers. Usually, when manually assigning networks like this, the containers will lose
connection amongst themselves, however, that is precisely where the “Ubuntu-with-tools”
docker image comes into play, creating the “bridge-router” service. This docker container will
act as a gateway for each of the other containers, holding a docker-compose network interface
for each of the different subnets. As container communication via different subnets is not a
standard use case, the end result in the docker-compose file is somewhat work around. Usually,
containers with special communication needs are handled with what is known as an “overlay”
driver; however, the containers in this scenario require communication with the host computer,
as Wireshark needs to be able to capture and dissect the network traffic [45]. The workaround in
this case is to manually issue an “iptables” firewall rule change on the “bridge-router” container
startup, and “ip route” modifications on startup to each of the individual node containers.

29

The different parameters are set for the individual containers within each service in the docker-
compose file. This includes setting up the ip address of the container, the ports to expose to the
host machine, the image to use, and of course the startup command. This startup command is
what issues the ip route changes, to set the default route up to send network traffic through the
Ubuntu bridge-router container instead of the default docker bridge interface. Also in this
command is what starts up Go Ethereum, issuing the command “geth” with several different
parameters all specifically chosen for this private development network [25]. Each node
container has a static “nodekeyhex” assigned during the container's startup using this “geth”
command. This again allows for the private elliptic curve key of the node to be set, which the
dissector can, in turn, use for RLPx and other dissections. Shown below in Table 3, the list of
GETH nodes, including their static private/public keys.

Table 3: GETH Nodes and Corresponding Static Private/Public Keys

Node (IP Address) Static Elliptic Curve Private/Public Keys

Bootnode (10.1.0.10) | Private Key:
3028271501873c4ecf501a2d3945dcb64eal3f27d6fl63af45eb23ced%9e92d85b

Public Key:
2c4b6808e788537cal3ab4c35e6311bc2553b65323fb0c%9e9a831303a1059b87
54aabl3dbb78c03a7a31beee5c2f2fb570393f056d54fa83ebd7e277039%¢cc7b6

Node 1 (10.1.1.10) Private Key:
4622d11b274848c32caf35ddedled8e04316b1cde6579542£0510d86eb921298

Public Key:
c35c2b7£f9%9ae974d1eee94a003394d1ccl8135e7fe6665e604£221970£1d9d59f
6a58e76763803bcc9097ebad4c91fd08b30405e65¢c53272b8635348e37f93cedc

Node 2 (10.1.2.20) Private Key:
816efc6b019e8863c382fe94cefe8e408d53697815590£03celabcbfdd5£23£2

Public Key:
1ae68ad9b2b095b5366d9a725a184bfla6a5el0lade6a3de62b38b07eac2c8fe
365e8a184004191c96d2£365£3c116c5dfbb92247635¢c£49a730£02908d6e397

Node 3 (10.1.3.30) Private Key:
3fadc6b2fbd8c7cflb2292b06ebfead903813b18b287dc29970a8a3aa253d757f

Public Key:
e98d53b2al12bdb4441d825d4b0alc4255b880c2f657c0adeceblcbellc5869%ae
35fd6bc956b3f8a2364b314eda761lebb570764c127efd5¢c114910a71ddfc7cda

The GETH command line arguments for the Bootnode differ slightly compared to the other geth-
client services in the docker-compose file, shown below in Figure 23. Specifically, the Bootnode
does not get assigned a “bootnode enode” as it is one. The Bootnode is also assigned the “http”
flag along with the “http.addr” and “http.port” flags to set up the http JSON-RPC interface. This
is setup with address 0.0.0.0 to listen from any incoming connections, along with the port 8545.
This is what allows MetaMask to connect to the Bootnode to connect to accounts in the network.

30

: geth-ubuntu-bootnode

- NET_ADMIN

: 18.1.9.1¢

- 38303:36363/udp
- BGAL:8545/tcp

- .env
: geth-custom:boot
: geth-bootnode

- bridge-router

h -c "ip route del default &% ip route add default via 18.1.8.2 &&

eth --nodekeyhex 3828271581873cdecf501a2d3945dcbbdea3f27def163af45eb23ced9e92d85b
-networkid 12345

--v5disc

--http

--http.addr 8.8.8.86

--http.port 8545

--netrestrict 18.1.8.6/22

--nat extip:10.1.8.18

--port 38383"

Figure 23: Docker Compose GETH Bootnode Service

Each geth-client service, including the Bootnode is also set up with its own specific UDP port to
carry out the DEVP2P discovery and RLPx communications. This is done utilizing the “—port
<port #>” flag for the geth command line argument. The Bootnode is given 30303, followed by
Node 1 30304, 30305 for Node 2 and 30306 for Node 3. These ports are very important and each
of these ports related to the ports the dissector is registered to, and each will be seen in
subsequent dissections found in the dissection chapter. Lastly, each client and Bootnode is
passed the “—nat extip:<ip address>" flag. This tells the GETH client that the outward interface
to communicate and connect to the network is a NAT and tells GETH the specific interface to
communicate through.

Lastly, found in the GETH clients, Node 1, Node 2 and Node 3 specifically, shown in Figure 24,
are flags that support the auto unlocking of accounts that are located on the client. This just
allows for easily logging in via the command line and accessing account funds and sending
transactions. This is done using the “—allow-insecure-unlock™, “—unlock 0” which defines
which account to unlock, followed by “—pass /root/password”, which is the file path of the
password file for the account. For a GETH client to automatically become a miner on the
network after startup and connection to a network, the “—mine” flag will turn the client into a
miner, followed by “—miner.threads 1.

31

3 1p route de & e etault via 18.1.1.2 &
geth --bootnodes enode://2c4b6888e788537cal3abdc35e6311bc2553b65323Fb8c0e9a831383a18 \
59b8754aab13dbb78c83a7a31beee5c2t21b570839310856d541a83ebd7e277039cc7b6@1e.1.08.16: 38383
--nodekeyhex 4622d11b274848c32caf35ddedled8e84316blcde6579542f0518d86eb921208
--v5disc
--networkid 12345

--allow-insecure-unlock
--unlock @
--password froot/password
--netrestrict 18.1.8.8/22
--nat extip:16.1.1.10
--port 383e4"
Figure 24: Docker Compose GETH Client Service Command for Node 1

Finally, with all of this, the entire docker network can be spun up with a single command:
“docker-compose up”. This will automatically create the network interfaces connecting each of
the GETH nodes to the Ubuntu bridge router, along with the Docker internal bridged network
necessary for Wireshark to capture the network traffic along with MetaMask to connect to the
Bootnode using the exposed 8545 TCP port.

4.3 Node Discovery Mechanisms

Looking back at the scenario in chapter 2, the first thing we saw when starting the network with
“docker-compose up” was all the peers connecting. From the command line interface, starting
with the bootnode, the “peer count” is displayed, showing the amount of connected and
authenticated peers the node has discovered. This, of course, starts with Discovery, either
DiscoveryV4 or Discovery V5, depending on the type of client. DiscoveryV5 was implemented
in GETH, but production-level use was halted as DiscoveryV5 moved more to the consensus
layer clients and was not implemented in the other execution clients. However, we will still
provide the dissector for DiscoveryV?5 as it is essential to understand the differences with
DiscoveryV4.

Ethereum’s DEVP2P Discovery protocols are used for discovering and connecting to other nodes
on the Ethereum network. The protocol is a part of the more extensive DEVP2P networking
protocol used by Ethereum nodes to communicate with each other. The main goal of the
discovery protocol is to enable nodes to find and connect to other nodes on the network without
the need for a central server or authority. In addition, the protocol allows nodes to discover and
share information about other nodes, such as their IP addresses, port numbers, and public keys.

4.3.1 DiscoveryV4 Dissection
Connection to an Ethereum network relies on a pre-authenticated or validated node that

facilitates new nodes connecting to the network. This node is known as the Bootnode. In the
scenario, the bootnode is the first node to come online, as in the docker-compose, each

32

service/container relies on the bootnode to start first. After starting the bootnode, the other nodes
can connect to the bootnode; this is facilitated by the “enode” flag and value in the “geth”
initialization command. This enode is the unique node identifier for the bootnode, meaning that
when the other nodes startup, they will try to connect to the bootnode immediately. Seen below
in Figure 25 a sequence diagram of the DiscoveryV4 messages sent between the bootnode and
other nodes. It is important to note that these messages can be between two nodes, not
specifically a node and a bootnode.

DisoveryV4

Bootnode . Node X

FindNode— |

-

Neighbors_______bg

EN RRequesF—_—#_Ai
ENRResponse_____|

Figure 25: DiscoveryV4 Message Sequence Diagram

The first step in the DEVP2P DiscoveryV4 protocol is the Ping/Pong exchange. In this step, a
node sends a Ping message to another node, which is then expected to respond with a Pong
message. If the sender of the Ping message does not receive a Pong message or any sort of
communication within a 12 hour period, the sender drops that node from their own dictionary of
known nodes. From the scenario for example, Node 1 when it comes online would immediately
send a Ping to the bootnode, where the bootnode would then respond with a Pong, letting Node 1
it is online [27].

After the Ping/Pong exchange, the next step is the Findnode/Neighbors exchange. In this step,
the node that sent the Ping message sends a Findnode message to the receiving node. The
receiver responds with a Neighbors message, which contains a list of up to 16 node IDs that are
closest to the requested node ID. If the requested node ID is the receiver's own node ID, the
receiver will return its own node ID as the only neighbor. This exchange is how the dictionary of
known nodes, known as a Kademlia Table is populated, growing the list of nodes that the node is
directly connected with. From the scenario, Node 1, after a valid Ping/Pong exchange, would
send a FindNode message to the bootnode, where the bootnode would send a Neighbors message
listing out the up to 16 nodes it knows about.

33

If the sender of the Ping message is interested in obtaining additional information about the
receiver, the final step is the ENRRequest/ENRResponse exchange. In this step, the sender sends
an ENRRequest message to the receiver, which requests the receiver's Ethereum Node Record
(ENR). The ENR is a record that contains information about the node, such as its IP address, the
secp256k1 compressed public key, tcp/udp ports, and other metadata listed out in key-value
pairs. The receiver responds with an ENRResponse message, which contains the requested ENR.

DiscoveryV4 messages are sent as UDP datagrams, with each packet starting with a header,
containing the hash of the message, signature and the packet type. Every node has a
cryptographic identity, a key on the secp256k1 elliptic curve. The public key of the node serves
as the identifier or the “node ID”, where this public key corresponds to the private key that we
passed in with the “nodekeyhex” flag in the “geth” command line startup for the node containers.
The signature is encoded as a byte array of length 65 as the concatenation of the signature values
1, s, and the recovery id, v. The packet type is a single byte defining the type of the message,
from 0x01 defining a Ping message, 0x02 Pong, 0x03, FindNode, 0x04 Neighbors, 0x05
ENRRequest, 0x06 ENRResponse.

For both DiscoveryV4 and DiscoveryV5, the “discovery.lua” script is used as the plugin and the
interface for Wireshark, while also using PYDEVP2P as the backend for the bulk of the
dissection. The plugin interfaces with the LUA Wireshark API registering a dissector for the
UDP ports from 30303 to 30308 and naming the dissector protocol as “devp2p” for both
DiscoveryV4 and DiscoveryV5. Upon a new packet, that matches the plugin registration for the
ports, the payload of the packet is sent to the PYDEVP2P bridge using the
“handleDiscv4Msg(srcaddr, dstaddr, payload, pinfo.visited, pinfo.number)” function. This is
possible again using Lunatic Python, where LUA can call a function that is written in python
using the python shared object binary.

This function is found in “bridge.py”” which is the main interface for all the LUA plugins,
including all the functions for DiscoveryV5 and RLPx messages. From there, the “discover” sub-
module is used, calling “decodeDiscv4()”found in “discover/v4wire/decode.py”. This function
pulls out the fields from the header, which are of static lengths. First the hash, which is 32 bytes
long, followed by the signature, 65 bytes long, then the packet type, the first byte after the
signature. The hash can then be verified, checking the equality of the hash field (32 bytes) and
the keccak256Hash of all the data after the first 32 bytes of the payload. This verification is
crucial as both DiscoveryV4 and DiscoveryVS5 are registered with the same dissector, and the
packet is first checked to see if it is a valid DiscoveryV4 packet type, and if not, it will then error
out and try again with Discovery V5. These three fields make up the header on all DiscoveryV4
messages, shown below in Figure 26, the output of just the header information for a dissected
PING packet.

34

8 0.000290200 10.1.1.10 10.1.6.10 DEVP2P 176 30304 _. 30303 [DiscoveryV4 PING] Version=4 Kind=1 Len
9 e,

gees17/ee 10.1.0.10 10.1.1.18 DEVP2P 199 30383 . 30304 [DiscoveryVd4 PONG] Version=4 Kind=2 Len=

Frame 8: 176 bytes on wire (1408 bits), 176 bytes captured (1408 bits) on interface br-d2788e2c7bSb, id @
Ethernet II, Src: 02:42:0a:01:01:0a (02:42:0a:01:01:0a), Dst: 02:42:0a:01:01:02 (02:42:0a:01:91:02)
Internet Frotocol Version 4, Src: 10.1.1.16, Dst: 18.1.8.10
User Datagram Protocol, Src Port: 38304, Dst Port: 30303
Ethereum devp2p Protocol

Hash: b2e5615c7289ccheeTeal9ed862787d9714cE6b7b5146cd9c570b327535ecd Ty

Sign: 588fB47d62153195560859d01c8202c0alf64T0alde3810e888fcO51d4cabTedb3c6528TT5d.

Type: PING (1)

Figure 26: DiscoveryV4 Dissected Header Fields

After extracting the three fields, including verifying the message hash, the signature can be used
to recover the sender's public key. This signature is created using the Elliptic Curve Digital
Signature Algorithm (ECDSA) and by signing the message hash using the private elliptic curve
key. The recipient of this message can then recover the public key using the elliptic curve
cryptography found in the “elliptic” sub-module in PYDEVP2P which will be discussed in
greater depth in Chapter 5.1. This implementation of ECDSA, including ECIES, is specific to
Ethereum and is done solely with Python, without the use of any third-party dependencies. Using
this ECDSA allows for non-repudiation, providing identification and proof of origin,
authentication, and data integrity, however causing a significant performance impact.

Next, the message type byte can be used to determine the payload schema. The payload is
encoded using RLP, a binary encoding method that allows for sending dynamic data structures
and schema of data. RLP encoding can handle lists, strings, and bytes, where each field is
preceded by a single byte determining the structure of the data. This byte can also determine the
length of the data it represents if it is a list. In addition, RLP can be deeply nested, where each
value or field in the data is preceded by an identifying byte. From there, the known type of the
message can be RLP decoded into key/value pairs specific to the message type [28].

This decoding is taken care of by the “Packet” found in the “msg.py” in the v4wire package
under discover. Here, the constructor of this class utilizes the message type, creating a sub-class
depending on the message type, and automatically decodes the information. Each message
schema is represented using tuples, where each tuple starts with the field name, followed by the
field value, where the value could be another class or RLP schema, representing depth. Seen
below in Figure 27, the schema definition for the Ping and Pong messages, where sub-schema
definitions are being used as well, in the form of “FromInfo” and “Tolnfo”, seen in Figure 28.
Each of these values found in the schema denote a RLP object instantiation that gives the rules
for what constitutes for serialization and deserialization. This is necessary as there are values that
must be deserialized into human readable time, or ip addresses, or even plain hex values. These
RLP utilities are found in the “RLP” sub-module in PYDEVP2P, providing many custom types
used throughout all the dissections.

35

Packet(object):

Packet is implemented by al

Ping{
fields = ({ Y, (" In FromInfo), ("Recipient Info",
] big_endian_int))

fields

~t", big endian_int))

ToInfo(RLPM
= (("IP s', ip_address),
» big endian int), ("MNone", binary))

Figure 28: FromInfo and Tolnfo RLP Schema Definitions

After successful RLP decoding, the individual fields can be converted into a python dictionary,
which can then be sent back to the LUA plugin to be iterated over, creating the Wireshark tree
for the DiscoveryV4 protocol and then displayed in Wireshark. Therefore, relating back to the
scenario, the first step when a node comes online, or when a node wants to test connectivity with
another node, the node will send a Ping message, seen in Figure 29. This message includes the
protocol version, always 4, along with the sender and recipient information, specifically the IP
address of each node and their respective ports for both UDP and TCP. Next, there is an
expiration field, which is the validity window of the Ping message. Lastly, the ENR sequence
number, which is a 64-bit unsigned integer and is mostly used to denote the version of the ENR
of the sending node. This ENR is incremented if anything in the node’s ENR changes, therefore
making the other node send an ENRRequest to request the updated ENR information of the node.

The recipient then replies with a Pong message (0x02), with the same header found on every

DiscoveryV4 message, followed by the recipient info, and the hash of the Ping that requested
this Pong message, seen in Figure 30. Notice that the “Ping Hash” field in the Pong message

matches the “Hash” field in the header of the Ping message that requested the Pong.

36

8 0.000296200 10.1.1.10 10.1.0.10 DEVPZP 176 30304 _. 30303 [DiscoveryV4 PING] Version=4 Kind=1 Len=134

9 P.eEER177060 10.1.0.10 10.1.1.10 DEVPZP 199 30303 - 30304 [DiscoveryV4 PONG] Version=4 Kind=2 Len=157

Frame 8: 176 bytes on wire (1468 bits), 176 bytes captured (1408 bits) on interface br-d2788e2c7bSb, id @
Ethernet II, Src: 02:42:0a:01:01:0a (02:42:0a:01:01:0a), Dst: 02:42:0a:01:01:02 (02:42:0a:01:01:02)
Internet Protocol Version 4, Src: 10.1.1.16@, Dst: 18.1.08.16
User Datagram Protocol, Src Port: 30384, Dst Port: 30303
Ethereum devp2p Protocol
Hash: b2e5615c7289ccheeTeal9edB862787d9714c6b7D5146cdIcE70D327535ecd Ty
Sign: 5887TB47d621531955059d01c9202c0a%64T0alde3810e8887cO51d4cabTed53cE528T75d.
Type: PING (1)
~ Payload: e304cbB40a01010a827660827660c9840a01000a827657808463abT0c8B6018557ad42a4
Name: PING
Kind: 1
Version: 4
Sender Info:
IP Address: 18.1.1.16
UDP Port: 30304
TCP Port: 30304
Recipient Info:
IP Address: 10.1.0.10
UDP Port: 30303
None: b''
Exipration: 2022-12-28 02:31:20
ENR Sequence Num: 1672212660906

Figure 29: DiscoveryV4 Ping Packet Node1 to Bootnode

8 0.800290200 10.1.1.10 10.1.€.18 DEVP2ZP 176 30304 . 30303 [DiSCDVET}V4 PING] Version=4 Kind=1 Len=134
9 0.000517700 10.1.0.10 10.1.1.10 DEVP2P 199 30303 . 30304 [DiscoveryV4 PONG] Version=4 Kind=2 Len=157

Frame 9: 199 bytes on wire (1592 bits), 199 bytes captured (1592 bits) on interface br-d2788e2c7b9b, id @
Ethernet II, Src: 82:42:0a:01:01:02 (02:42:0a:91:01:02), Dst: ©2:42:0a:01:01:0a (02:42:0a:01:01:0a)
Internet Protocol Version 4, Src: 18.1.0.10, Dst: 10.1.1.1@
User Datagram Protocol, Src Port: 30303, Dst Port: 30304
Ethereum devp2p Protocol
Hash: elfa72acd9ffe740a46b98d26e97b341bad8638ecte79829bd981dabdf44efi3
Sign: 4b844d57T9062bOc60138d88deded9e4de516e471CT72enTBdOT1Cc36T47623C00698970a..
Type: PONG (2)
~ Payload: TB39cbhbB40afl010a827660827660a0b2e5615¢7289ccheeTeal9ed8627B7d9714c6bThE1..
Name: PONG
Kind: 2
Recipient Info:
IF Address: 18.1.1.18
UDP Port: 30304
None: b'v’*
Ping Hash: b2e5615c7289ccheeTealfed862r87d9714c6b7b5146cdIc5T0b327535ecdTeT
Expiration: 2822-12-28 02:31:20
ENR Sequence Num: 1672212644697

Figure 30: DiscoveryV4 Pong Packet Bootnode => Node1

The FindNode packet is used by a node to discover other nodes in the network. When a node
sends a FindNode packet, including the target node ID seen in Figure 31. The target node ID is
the 64-byte secp256k1 public key representing the node that the sender is trying to find. The
receiving node will then respond with a Neighbors packet, seen in Figure 32, that contains a list
of nodes in its routing table that are closest to the target node ID. Both the FindNode and
Neighbors packets are important for maintaining the connectivity and robustness of the Ethereum
network by allowing nodes to discover and connect to other nodes in the network.

37

26 0.502026600 10.1.1.10 10.1.0.1@ DEVP2P 213 30304 - 30303 [DiscoveryV4 FINDNODE] Version=4 Kind=3 Len=171

27 0.582307800 10.1.6.10 10.1.1.1@ DEVP2P 625 30303 _ 30304 [DiscoveryV4 NEIGHBORS] Version=4 Kind=4 Len=583

Frame 26: 213 bytes on wire (1704 bits), 213 bytes captured (1704 bits) on interface br-d2788e2c7b9b, id @
Ethernet II, Src: 02:42:8a:01:01:0a (02:42:0a:01:01:0a), Dst: 092:42:0a:01:01:02 (02:42:0a:01:01:02)
Internet Protocol Versionm 4, Src: 10.1.1.18, Dst: 18.1.0.10
User Datagram Protocol, Src Port: 30304, Dst Port: 30303
Ethereum devpZp Protocol
Hash: 7b287367632fb6594aclda2560113b624ceedcle3etd3bTB20004e8d7ddF3684
Sign: daeS4cd9deba?Bbece?101bflabelB86d348a924ded4aaB6cbbd466945a416373314216b..
Type: FindNode (3)
v Payload: T84Tb840cdect4T7dIbcd3fTOcOHTEdTEGa00TdcIDE843336b5a8DdT7CcCcOD38926d684Tbet..
Name: FINDNODE
Kind: 3
Target: cdec547d9bcd3ffecOfGd766a90TdcI9bE843336h5a8bd77CccB938926d684TbeTV0E8b1ebb80496781942ddedE5850T7176295bdc30ce
Expiration: 2022-12-28 062:31:21

Figure 31: DiscoveryV4 FindNode Packet Node1 => Bootnode
|DiscoveryVd NEIGHBORS] Version=:

Frame 27: 625 bytes on wire (5080 bits), 625 bytes captured (5000 bits) on interface br-d2788e2c7b9b, id ©
Ethernet II, Src: 82:42:8a:01:01:02 (02:42:02:91:01:02), Dst: 82:42:0a:081:01:0a (02:42:0a:01:81:0a)
Internet Protocol Version 4, Src: 10.1.6.16, Dst: 10.1.1.16
User Datagram Protocol, Src Port: 38303, Dst Port: 30304
Ethereum devpZp Protocol
Hash: c17405153364e36c8313c0b53b62203abldf2c7a36h34adddey42791128fBc2c
Sign: f4a45dc22a68385360767934897448cc47969ab60b68hEERBSCA4c]1dBeBatbeabbbidef ..
Type: Neighbors (4)
+ Payload: T901e2f901daf84d8434e7a56cB2765T82765ThB40715171750588aba8Baecd1250af3092..
Name: NEIGHBORS
Kind: 4
Nodes:
Nodes #1:
IP Address: 52.231.165.188
UDP Port: 3@303
TCP Port: 30383
Node ID: 715171750588abaBBaecd1250aT392a45a330ar91d7b98701c436b618c86aaa1589c9184561907bebbb56439b8TETETbe
Nodes #2:
IP Address: 3.209.45.79
UDP Port: 3@303
TCP Port: 30383
Node ID: 22a8232c3abc78albaeddéc3bl64798775fe226T0917h0calT1128a74a829630b458460865bab45722171d448dd9791d2.
Nodes #3:
IP Address: 65.108.78.181
UDP Port: 30303

TCP Port: 30383
Node ID: 2b252abGald@f971d9722ch839a42chb81db019baddci8is4628ab4aB2348707105695317c8ccd0B5219¢c3a03aT063495b

Figure 32: DiscoveryV4 Neighbors Packet Bootnode => Node 1

Lastly, if a node would like more information about a node, in the form of an Ethereum Node
Record (ENR) or if the ENR Sequence number has changed from a received Ping/Pong, then the
node will send an ENRRequest, shown dissection in Figure 33. This request is sent directly to
the recipient, with an expiration timestamp again to provide a message validity window. The
recipient then makes sure the sender is a valid node, as in the recipient has contacted the sender
with a valid Ping/Pong exchange in the past 12 hours. The recipient then sends a ENRResponse,
see dissection in Figure 34, which holds the ENR for the node sending the ENRResponse. The
ENR holds important information including the hash of the request, the signature of the record
contents, followed by the sequence number and a list of arbitrary key/value fields pertaining to
the node. These key value fields contain node identifier information like the IP address, tcp/udp
ports, and secp256k1 compressed public key.

38

73 6.040676598 10.1.1.18 10.1.9.1@8 DEVPZP 146 30304 - 30303 [DiscoveryV4 ENRREQUEST] Version=4 Kind=5 Len=184

74 6.0409387%98 10.1.0.1@8 1@.1.1.1@8 DEVPZP 340 30303 . 30304 [DiscoveryV4 ENRRESPONSE] Version=4 Kind=6 Len=298

Frame 73: 146 bytes on wire (1168 bits), 146 bytes captured (1168 bits) on interface br-d2788e2c7b9b, id @
Ethernet II, Src: 02:42:0a:01:01:0a (©2:42:0a:01:01:0a), Dst: ©2:42:0a:01:01:02 (02:42:0a:01:01:02)
Internet Protocol Version 4, Src: 19.1.1.10, Dst: 19.1.8.10
User Datagram Protocol, Src Port: 38384, Dst Port: 30303
Ethereum devp2p Protocol
Hash: 6@60288299aldbbd87f56969680d14c13150T9e03c793d8a61598be38bacceba
Sign: cad4b@343065eadT7hB6a005a71ar670438122b4decdcdc@beGEbTO90ecOc3150TE7ED9457d..,
Type: ENRRequest (3)
= Payload: chB463abfice
Name: ENRREQUEST
Kind: &
Expiration; 2822-12-28 02:31:26
Figure 33: DiscoveryV4 ENRRequest Packet Node1 => Bootnode

340 30303 - 30304 [DiscoveryV4 ENRRESPONSE] Version=4 Kind=6 Len=298

Frame 74: 340 bytes on wire (2720 bits), 340 bytes captured (2720 bits) on interface br-d2788eZ2c7b9b, id @
Ethernet II, Src: 02:42:0a:01:01:02 (02:42:0a:01:01:02), Dst: 02:42:0a:01:01:0a (02:42:0a:01:01:0a)
Internet Protocol Versionm 4, Src: 10.1.8.10, Dst: 10.1.1.1@
User Datagram Protocol, Src Port: 38303, Dst Port: 30304
Ethereum devp2p Protocol
Hash: 21T3a%ac®33313e3df49a7b750109Td53a730a65eThdc4010r4e194173029bdd
5ign: c7@cT7T8bb3818025d4c0cT4dTd434b0959640h322a8655CcTE50801756Tc1545T546eascdar..
Type: ENRResponse (6)
~ Payload: TBc6abBD60288299aldbb4B87156969660d14c13150T9e03c793d8ab61598be38baccebata..
Name: ENRRESPONSE
Kind: 6
Request Hash: 6060288299aldbb487756969680014c13150T9e03c79308a61598be30bacceba
Signature: 30d7ef935580a7abf905al17b176h3T7edB9e0826703322747dObETOTE96d45455d029ar9196cd202723d7dbeee2445ed5e8959¢0%9e1bab217126573c844e2d59
Sequence #: 1672212644697
eth: Fork Hash: ci8145ad
id: vd
ip: 10.1.9.18
secp25bkl: 022c4b6808e788537callab4cibe6311bc2553065323Tb0c9e9a831303a1059b87
snap: N/A
tcp: 30303
udp: 30303

Figure 34: DiscoveryV4 ENRResponse Packet Bootnode => Node1

4.3.2 DiscoveryVS5 Dissection

DiscoveryV5 was created as a logical successor to DiscoveryV4, fixing many of DiscoveryV4’s
shortcomings. In the rationale documentation for DiscoveryV5, many goals are laid out, for
example, fixing endpoint proof. This issue comes from DiscoveryV4, where the existing mutual
endpoint verification may be unreliable. One node may assume that the other node knows about
a recent Ping/Pong exchange, sending a FindNode message. However, if this other node does not
store information reliably, or drops this information, then a new Ping/Pong exchange would have
to take place, followed by another FindNode [29].

Other goals of Discovery V5 include the requirement for knowledge of a destination node ID for
communication. The goal is to make obtaining a logical node ID expensive before any discovery
communications because in DiscoveryV4, any message could provoke a response from a node
using just the node’s IP address alone. DiscoveryV5 also mitigates replay prevention and fixes
the “expiration” field issue at the end of all the DiscoveryV4 messages. The issue came from a
requirement that all system clocks must be synced to guarantee message validity; this obviously
caused an issue in a protocol used globally with several implementations. Lastly, DiscoveryV5
provides message obfuscation by introducing an encryption scheme and handshake. However,
this does not ensure complete confidentiality but aids with issues such as traffic amplification,
replay, and packet authentication. This “masking” of data protects against passive eavesdroppers;

39

however, as discussed in the Analysis chapter, the encryption scheme and handshake are not
forward-secure and active participants can access node information by simply asking for it.

As stated, Discovery VS5 is primarily used in consensus layer clients; however, it is found in
GETH solely for proof-of-concept and developmental purposes. However, the GETH
implementation is complete and robust and allows us to see its use in an execution client and
compare the results with DiscoveryV4. Furthermore, discoveryV5 communication is “opt-in” for
GETH clients, simply using the “—v5disc” flag in conjunction with the “geth” command when
starting up the GETH client. Interestingly, when setting this flag to use DiscoveryVS5,
DiscoveryV4 is active, in parallel, but completely separate from one another, not sharing
information received. This is partly because GETH still must discover other execution clients
who solely use Discovery V4.

Discovery communication is encrypted and authenticated using session keys, established in the
handshake. A handshake can be initiated by either side of communication at any time. Relating
back to the scenario, Node 1 wants to communicate with the Bootnode, therefore Node 1 must
have a copy of the Bootnode’s ENR in order to communicate with it. If Node 1 has session keys
from prior communication with the Bootnode, it encrypts its request with those keys. If no keys
are known, it initiates the handshake by sending an ordinary message packet with random
message content for example a Ping or a FindNode, shown as the first message sent at the top of
the sequence diagram in Figure 35 [30].

DisoveryVs

Node A Node B

P JE—

ing or FindNode ;

.

WhoAreYou ! Challenge

DiscoveryVs i
Handshake i Handshake . Challenge

Ping or FindNode AR

.

- ; Pong or Nodes______;

Ping— |

i

Pong—_______h

FindNode—— |

i

Nodes—

TalkReq— |

i

TalkResp—

Figure 35: DiscoveryV5 Message Sequence Diagram

40

The Bootnode will receive this message packet and extract the source node ID from the packet
header, if the Bootnode has session keys from a prior communication with Node 1, then it will
attempt to decrypt the message data. If the decryption and authentication of the message
succeeds, then there is no need for a handshake and the Bootnode can simply respond to the
request from Node 1. However, if the decryption fails or like in this case, where there are no
session keys set up because Node 1 is communicating with the Bootnode for the first time, the
Bootnode then initiates a handshake by responding with a “WhoAreYou” packet.

Node 1 then receives the challenge sent by the Bootnode, which is a uniquely generated “id-
nonce”. Node 1 then resends the original request packet, either a “Ping” or a “FindNode”
message, but this time in the form of a handshake packet. This packet contains three parts in
addition to the message: id-signature, ephemeral-pubkey, and the record. Node 1 derives the new
session keys utilizing Elliptic Curve Diffie Hellman, which will be discussed in greater detail in
the Analysis chapter.

When the Bootnode receives the Handshake message packet, it first loads back the WhoAreYou
challenge that it sent earlier. The Bootnode then performs key derivation using its own static
private key and the ephemeral-pub key from the handshake message. Using the resulting session
keys, the message payload in the handshake message can be attempted to be decrypted and
authenticated. Upon valid decryption and authentication, the Bootnode can then respond to the
message, with either a Pong or a Nodes message, thus resulting in the end of the DiscoveryV5
handshake stage.

Following the handshake, similar messages that are seen in DiscoveryV4 are sent, such as
Ping/Pong, and FindNode/Nodes, where Nodes is like DiscoveryV4’s Neighbors message.
However, in the Nodes packet for DiscoveryVS5, every Node ID is now seen as a full ENR entry.
Lastly, there are several other packet type specifications, but only two with formal
implementation, such as the TalkReq (0x05) and TalkResp (0x06) messages. TalkReq sends an
application-level request for pre-negotiating connections made through another application-
specific protocol. The recipient of the TalkReq must respond with a TalkResp message
containing the response. It is important to note that both of these messages were not able to be
captured in the private Ethereum network utilizing GETH nodes. Therefore, their true use and
implementation could vary.

Now, let’s take a closer look at dissecting DiscoveryV5. The same “discovery.lua” plugin is used
to register DiscoveryV5 with Wireshark, and on incoming packets, first DiscoveryV4 is tested,
and without a valid hash and message layout, DiscoveryVS5 is then tested, by then calling the
“handleDiscv5Msg()” in “bridge.py”. Discovery VS5 requires knowledge of the other nodes’
public key prior to communication, therefore, dissection is handled differently than
DiscoveryV4. Each node is initialized at the top of “bridge.py” with the corresponding private

41

key and IP address, creating a “Node” which is found in “node.py”. A Node in terms of
PYDEVP2P holds all the state full information needed for dissection, such as challenges, session
keys, ephemeral keys and more. This Node class is responsible for handling all of the peer
connections for the Node, handling all DiscoveryV5 and RLPx dissection which will be
discussed in greater detail later. Seen in Figure 36, the top-level Node class, which utilizes the
Discv5Codec class that handles all the encoding and decoding for DiscoveryV5, also handling
sessions, including session keys and previous handshakes.

Mode
|F Address Packet
Jv L Private Key Name
DiscvsCodec Discv5Codec Kind
Private Key Peers: Feguest D
{IP Address, Peer Conneclion} *Base Class for Discv5 Packets
SHAZ5G

Local Enode 1D j Session Cache
Session Cache

Sessions: {SessionlD, Session} —
i Handshakes: L
session ID {Session|D, WhoAre'You} v Vi
Wi
Enode D {32 bytes Pubk) WhoAreYou
Session

IP Address — < Challenge Data
Virite Key Monce (of request packet)
Read Key ID Nonce (identity proof data)
Nonce Counter Record Sequence (ENR Seq)

Figure 36: DiscoveryV5 Class Diagram

This means that in order to dissect DiscoveryV5 and RLPx prior knowledge of the node's IP
addresses and their private elliptic curve key will need to be known. So, the source IP and
destination IP address are used to pull in the correct Nodes, therefore pulling in all the state
information, including previous peer connections, challenges, or keys setup amongst peers.
Shown in Figure 37, the instantiation of the known Nodes including their IP address and their
elliptic curve private key. This dictionary of Node classes is used for both DiscoveryVS5 and
RLPx dissection.

42

boot_priv_static_k =
nodel priv_static_k =
node? priv_static_k
node3 priv_static k

all nodes:

1.60. : Node((to_bytes(
1.1.1 to_bytes(
1.2.%€ i
1

x_to_bytes(

Figure 37: PYDEVP2P Bridge Node Creation with Private Keys

DiscoveryV5 header information is “masked” using symmetric encryption in order to avoid static
identification of protocol firewalls. The header starts with a Masking IV which is 16 bytes, then
using the local nodes Enode ID, or the first 16 bytes of the public key, a new AES CTR cipher
can be set up with the IV as the MaskinglIV and the key Enode ID. From there, after decrypting
the header, all the information can be pulled out, like the Protocol ID, Version, Flag, Nonce,
Auth Size and Type of the message. The types/flags of the message payload can be either
“Message”, “WhoAreYou”, or “Handshake”. As stated before, if the message is sent prior to a
handshake with proper session keys setup, then the first message payload will be UNKNOWN,
as seen in Figure 38. Here, the header is able to be unmasked, however, the payload data of the
message is not able to be decrypted, therefore triggering the start of the handshake amongst
nodes. In this case, between Node 1 and the Bootnode.

5 1.1.18 .1.6.18 30303 [DiscoveryVs MESSAGE UNKNOWN/vS]
30 0.791203600 10.1.0.10 10.1.1.18 DEVPZP 185 30303 - 30304 [DiscoveryVo WHOAREYOU WHOAREYOU/
31 0.7614958200 10.1.1.10 10.1.0.18 DEVPZP 412 30304 _. 30303 [DiscoveryVS HANDSHAKE FIMDNODE/w
32 0.7019977e6¢ 10.1.6.10 10.1.1.18@ DEVP2P 1125 30383 - 38304 [DiscoveryVh MESSAGE NODES/wS] Ve

Frame 29: 133 bytes on wire (1064 bits), 133 bytes captured (1064 bits) on interface br-d2788e2cihb9b,
Ethernet II, Src: 02:42:0a:01:01:0a (02:42:0a:81:01:0a), Dst: 02:42:0a:01:01:02 (02:42:8a:01:01:02)
Internet Protocol Versiom 4, Src: 18.1.1.160, Dst: 19.1.0.10
User Datagram Protocol, Src Port: 30304, Dst Port: 30303
Ethereum devp2p Protocol
+~ Header: 98T0leGaB429ZedZeefd8340b067d47r710e41d5967a53bbE316e90dE0aTELdODE3ETELIde..
Iv: 98f01e6a04292ed2ee9dB340D0GTd4TT
Protocolid: 110404070241845
Version: 1
Flag: @
Nonce: daeBad7le5e24B8B84cffarcbé
Authsize: 32
Authdata: b91ffad42b497544al2ech8502acats21dd791ced15dedbb8740cd464e2e58de
Src: b91ffaf42b49r544al12ech8s02acadb2ldd791ced15debbbiT40cd464e2eb8de
Type: MESSAGE
+ Payload: 4facY6f377379fcb4f838988d%eablciT366d%ac
Monce: dae@ad7le5e2d4884cffarcbe

Figure 38: DiscoveryV5 Unknown Packet Node1 => Bootnode

Next, a WhoAreYou packet is sent, where the “authdata” section contains information for the
identity verification procedure. The “message” part of the WhoAreYou packet is always empty,
and the “nonce” part of the message is set to the “nonce” field of the message that caused the
WhoAreYou packet. We can see with the dissected packets, that the Nonce field in both Figures

43

38 and 39 match. One major thing to note here is that the dissector is actively listening to the
packets, however it is always receiving the messages in the context of the receiver. This means
that the dissector has to retroactively set up handshakes after they have taken place. For example,

the dissector will receive a WhoAreYou packet, same as Node 1, the Bootnode will already
know that it sent the WhoAreYou packet and stored that information. So the dissector also needs
to store this information for the Bootnode, which in this case is the “source node”. That way,
when a handshake message is received, this information is already there to properly setup the
session keys on the dissector side.

29 0.700993500 10.1.1.10 10.1.0.10 DEVP2P 133 30384 _ 30303 [DiscoveryVs MESSAGE UNKNOWN/v5] Version=5 Kind=255 RequestID=N/A Len=01
30 0.791203600 10.1.0.10 10.1.1.10 DEVP2P 105 30303 —. 30304 [DiscoveryVs WHOAREYOU WHOAREYOU/v5] Version=5 Kind=254 RequestID=N/A Len=63

31 0.791498280 10.1.1.16 10.1.8.18 DEVP2P 412 3p384 . 30303 [DiscoveryV5 HANDSHAKE FINDNODE/v5] Version=5 Kind=3 RequestID=3877398671225740
32 0.701997700 10.1.0.10 10.1.1.10 DEVPZP 1125 30303 . 30304 [DiscoveryVS MESSAGE NODES/wS5] Version=5 Kind=4 RequestID=3877398671225748917 Lt

Frame 30: 105 bytes on wire (840 bits), 105 bytes captured (840 bits) on interface br-d2788e2c7Vb9b, id @
Ethernet II, Src: 02:42:0a:01:01:02 (02:42:0a:01:01:02), Dst: ©2:42:0a:01:01:0a (02:42:0a:01:01:0a)
Internet Protocol Version 4, Src: 10.1.0.1@, Dst: 10.1.1.1@
User Datagram Protocol, Src Port: 38363, Dst Port: 30304
Ethereum devp2p Protocol
+~ Header: cBB82bd15Td836T79126a328708c51743a2eb5bBb42630538482ee4980eTbl4bdd1da?651..
Iv: cO82bd15TdB836779126a328708c51743
Protocolid: 110404870241845
Version: 1
Flag: 1
Nonce: das@ad7lebe24B8B4cTfar6bé
Authsize: 24
Authdata: c9aaldaSc555119ebbeb602e23641b320000000000008000
src: None
Type: WHOAREYQU
~ Payload: <MISSING=
Challengedata: cB82bd15TdB36T79126a328T08c51743646973637635000101daefadT1e5e24884cTTar6b60018c%aalda5c555119ebbebb@2e2364Th920800000000008000
Nonce: das@ad7lebe24B8B4cTfar6bé
Idnonce: c9aalda5c555119ebbeb682e2364Th92
Recordseq: @

Figure 39: DiscoveryV5 WhoAreYou Packet Bootnode => Node1

This is where most of the complexity of the dissector comes from, and we will see much more of
this when dealing with RLPx dissection. As a listener, the dissector must store information for
both the receiver and the sender once the dissector receives a specific packet. So, now, Node 1
sends the Handshake FindNode packet back to the Bootnode, where Node 1 has effectively
already set up their session keys, but the dissector must do this retroactively once the Handshake
message is captured. Seen in Figure 40, the dissected output of the Handshake FindNode packet,
where the payload of the message is now seen. Here both sides have successfully set up their

session, by verifying the ID Signature decoding the public key, and deriving the session keys.

31 0.791498200 10.1.1.10 10.1.6.18@8 DEVPZP 412 30384 _ 30303 [DiscoveryVs HANDSHAKE FINDNODE/v5] Version=5 Kind=
32 0.791997700 10.1.0.1¢ 10.1.1.1@ DEVPZP 1125 30303 . 30304 [DiscoveryVs MESSAGE NODES/v5] Version=b Kind=4 Requ

Frame 31: 412 bytes on wire (3296 bits), 412 bytes captured (3296 bits) on interface br-d2788e2c7b9b, id @
Ethernet II, Src: 82:42:8a:01:91:0a (©2:42:0a:01:01:0a), Dst: 92:42:0a:01:01:82 (02:42:0a:01:01:02)
Internet Protocol Version 4, Src: 10.1.1.16, Dst: 10.1.08.10
User Datagram Protocol, Src Port: 38304, Dst Port: 30303
Ethereum devpZp Protocol
~ Header: cd7c57eaalf2cd3d1074083466Tedcar7278216dcd572bacdbZectcd64a5567cclealdich..
Iv: cd7chbieaalf2cd3d1074083466Fedcad
Protocolid: 119404070241845
Version: 1
Flag: 2
Nonce: OPEEEOO13e036T2ddTe7fch58
Authsize: 296
[truncated]Authdata: b91ffa®42b49f544a12echB502acat521dd791ced15defbbB748cd464e2e58dedd2lec?ad5558dbecdBB743c51bb
Src: b91ffaf42b49r544a12echB502acabb21dd791ced16dedbb8740cddb4e2e58de
Type: HANDSHAKE
= Payload: ffcB8aefB659300292d7db7a793721a%aa8b8384c0016e2e2a21157cTbec62976TabeT3b
Requestid: 3877398671225740917
Distances: 256, 255, 254

Figure 40: DiscoveryV5 FindNode Packet Node1 => Bootnode

44

After the handshake and session key setup, dissection proceeds as normal just like DiscoveryVS5.
Seen in Figure 41, the response to the FindNode Handshake packet, where each entry in the
Nodes packet is a full Ethereum Node Record (ENR).

31 0.791498200 10.1.1.1@ 10.1.0.18 DEVP2P 412 30304 _. 30303 [DiscoveryVs HANDSHAKE FINDNODE/w5] Version=5 Kind=3 Request
32 0.791997760 10.1.0.1@ 16.1.1.1@8 DEVP2P 1125 30383 _. 30304 [DiscoveryVs MESSAGE NODES/v5] Version=5 Kind=4 RequestID=38

Frame 32: 1125 bytes on wire (9000 bits), 1125 bytes captured (9000 bits) on interface br-d2788e2c7b%b, id 0
Ethernet II, Src: 02:42:0a:01:01:02 (02:42:0a:01:01:02), Dst: ©2:42:0a:01:01:0a (02:42:0a:01:01:0a)
Internet Protocol Version 4, Src: 10.1.8.1@, Dst: 18.1.1.1@
User Datagram Protocol, Src Port: 30303, Dst Port: 30304
Ethereum devp2p Protocol
~ Header: 42aed702b506c505befead2691a059cdadchbd3T7abcal3e60903d1e4475c8b690C0562e3..
Iv: 42ae4702b586c505be%ead2691a059%cd
Protocolid: 118404078241845
Version: 1
Flag: @
Nonce: G000E081a972082T0e62cal3y
Authsize: 32
Authdata: 01bd15281bT9cf4521dc7c88ebabbeadbb781dd177b5ad4b42ra54312ea71b266
Src: 91bd15281bT9cT4521dc7c88ebabbead5n781dd177b5ad4b427a54312ea71b266
Type: MESSAGE
~ Payload: 2b65e953baa7119T277338047 Td255d%bc68cde3c2201ddattlbaeed2c4t2bc@93c3a8h...
Requestid: 3877398671225740917
Total: 2
Nodes
Nodes #1:
Request Hash: eb5c3fd57515b26c3%9ed7b40d30aal3c42a66d788dc5TOD62384e3T47232h16a6e68476472bT6471b61b16T5184db176dald39t
Signature: 20
Sequence #: 1782127666
eth2: f5abfd4200000000FFFFffffffffffff
id: vd
ip: 3.19.194.157
secp256kl: 038697a10436d98ccfchfEed3af7d63bbel50979e01d332416fc58a5e76d98d1r3
tcp: 9000
udp: 9800
Nodes #2:
Request Hash: 3ch2b68984elfec®lefSbe6babbe222T62efdad7ed8c23440897059094ebdcBe7cibbedcdbf23b6TF46683728239c64cfc2dfz
Signature: 04
Sequence #: 1702127666
eth2: f5abfd4200000000FFFFFfffrfffffff

Figure 41: DiscoveryV5 Nodes Bootnode => Node1

Each message after the handshake is classified with a type/flag of “MESSAGE” and is labeled
with the “Kind” of Ping, Pong, FindNode, Nodes, TalkReq, TalkResp, etc. Seen below, Figure
42, Node 1 pinging for liveliness the Bootnode and responding with a Pong in Figure 43. Lastly,
another FindNode/Nodes exchange between Node 1 and the Bootnode, seen in Figures 44 and
45, this time outside of the Handshake. An important note is that the TalkReq/TalkResp packets
were unable to be populated throughout the network, therefore unable to be captured and
dissected.

91 9.490961892 10.1.1.10 10.1.0.10 DEVP2P 147 30304 _ 30303 [DiscoveryVS MESSAGE PING/v5] Version=5 Kind=1
92 9.491123592 10.1.6.10 10.1.1.1@ DEVP2P 155 30303 . 30304 [DiscoveryVs MESSAGE PONG/v5] Version=5 Kind=2

Frame 91: 147 bytes on wire (1176 bits), 147 bytes captured (1176 bits) on interface br-d2788e2c7b%b, id @
Ethernet II, Src: 02:42:8a:01:81:0a (02:42:0a:91:01:0a), Dst: 92:42:0a:01:01:02 (02:42:0a:01:061:02)
Internet Proteocol Version 4, Src: 10.1.1.10, Dst: 18.1.8.10
User Datagram Protocol, Src Port: 30304, Dst Port: 30303
Ethereum devp2p Protocol
= Header: 4054ed5dact9cl15799985betclbe528b36451534746724c1bBcdd42b401Tae6T18270d2d..
Iv: 4054ed5dacT9c15799985befclbe528b
Protocolid: 110404870241845
Version: 1
Flag: @
Nonce: @0000R056e4ab551938390b3
Authsize: 32
Authdata: b91ffaf42b49f544a12echis82acadb21dd791cedl15de@bbB748cd46422e58de
Src: b91ffaP42b49f544a12echB502acab521dd791ced15debbbB740cd464e?eblde
Type: MESSAGE
= Payload: 471711a678b68c310a96ae8074551c1074005acar6elabecbic8b6TInTo0erb27114
Requestid: 14233899757668069919
Enrseq: 1672212660980

Figure 42: DiscoveryV5 Ping Packet Node1 => Bootnode

45

91 4 496961892 10.1.1.180 10.1.8.18 DEVP2P 147 30384 . 38303 [DiscoveryVh MESSAGE PING/v5] Version=5

30303 . 30304 [DiscoveryVs MESSAGE PONG/v5] Version=5

Frame 92: 155 bytes on wire (1240 bits), 155 bytes captured (1240 bits) on interface br-d2788e2c7h9b, id @
Ethernet II, Src: 82:42:9a:01:91:02 (02:42:02:01:01:02), Dst: 02:42:0a:01:01:0a (02:42:0a:01:01:0a)
Internet Protocol Version 4, Src: 10.1.0.10, Dst: 16.1.1.10@
User Datagram Protocol, Src Port: 30303, Dst Port: 30304
Ethereum devpZp Protocol
~ Header: 1abd55616405b2c41827db3a6e006e979b6d98767ablbTfebecl09bT46adc2c2debedffec..

Iv: 1a5d55616405b2c41827db3ate0Btedy

Protocolid: 110404870241845

Version: 1

Flag: @

Nonce: BGB80BGEETTE35234fef9d16d2

Authsize: 32
Authdata: 01bd15281bf9cT4521dc7cB8efabbeadsb781dd177hbadb42fas4312ea71b266

Src: 01bd15281bfT9cT4521dc7c88eb6abbead5b781dd177h5a4b42Ta54312ea71b266
Type: MESSAGE
~ Payload: T938aaelSead44dlec31516cT9echb8db131226dalceb8cafb0ad736a451c021eee511bf ..
Requestid: 142338997576G68069919
Enrseq: 1672212644697
Toport: 30304

Figure 43: DiscoveryV5 Pong Packet Bootnode => Node 1

03 9.500325892 10.1.1.18 10.1.8.10 DEVPZP 142 30304 - 30303 [Dl»cnuwr3V5 MESSAGE FINDNODE/
94 9.500463492 10.1.0.16 10.1.1.1@ DEVPZP 309 30303 - 30304 [DiscoveryVs MESSAGE NODES/v5] Version=5 Kind=4 Ret

Frame 93: 142 bytes on wire (1136 bits), 142 bytes captured (1136 bits) on interface br-d2788e2c7b9b, id @
Ethernet II, Src: B2:42:0a:01:01:0a (02:42:0a:01:01:0a), Dst: ©2:42:0a:01:01:02 (02:42:0a:01:01:02)
Internet Protocol Version 4, Src: 19.1.1.10, Dst: 10.1.8.18
User Datagram Protocol, Src Port: 30304, Dst Port: 30303
Ethereum devpZp Protocol
~ Header: b4134718477e7e25e295fcb@917ab343ed2b85641e3d7T0BbTTEc2ce9elal4bcefbabi2f..

Iv: b4134710477e7e25e295FchB917a0343

Protocolid: 110404670241845

Version: 1

Flag: @

Nonce: B0BOOGRETEd44TT4cTE3107a

Authsize: 32
Authdata: b91ffaf42b497544a12ech8502acabb21dd791ce915delbb8740cd464e2eb8de

Src: b91ffab42b497544al2echBo02acabb2ldd791ce915dedbb8740cd464e2eb8de

Type: MESSAGE
~ Payload: c2c7f2a01272a9eab88b55ede265a60d26028567091e0h37500e55¢19de

Requestid: 3576569588916442984
Distances: N/A

Figure 44: DiscoveryV5 FindNode Packet Node1 => Bootnode

93 0.500325892 10.1.1.1€@ 160.1.6.1@ DEVP2P 142 04 . 30303 [DiscoveryV5 MESSAGE FINDNODE/v5] Version=5 Kind=3 Request

94 9.580463402 10.1.0.16 10.1.1.18 DEVP2P 309 03 . 30384 [DiscoveryVs MESSAGE NODES/v5] Version=5 Kind=4 RequestID=3!

Frame 94: 309 bytes on wire (2472 bits), 309 bytes captured (2472 bits) on interface br-d2788e2c7h9b, id @
Ethernet II, Src: 02:42:0a:01:01:02 (02:42:0a:01:01:02), Dst: 02:42:0a:01:01:0a (02:42:0a:01:01:0a)
Internet Protocol Version 4, Src: 18.1.0.10, Dst: 18.1.1.18
User Datagram Protocol, Src Port: 30303, Dst Port: 30304
Ethereum devp2p Protocol
~ Header: alc216d8b2c83fdrer7ci99d4bTcadl367r57ar879c7canr521104cc538be20ed3ad6r63..

Iv: alc?16dBb2cB3fdfe?cl199d4bfcadlds

Protocolid: 118404870241845

Version: 1

Flag: @

Nonce: 008000083b4525416938ddT6

Authsize: 32
Authdata: ©1bd15281bT9cf4521dc7cB88ebabbead5h781dd177b5a4b427a54312ea71b266

Src: 01bd15281bf9cT4521dcTcB8efabbeadSh781dd177b5a4b421a54312ea71b266
Type: MESSAGE
= Payload: 9525cTOdeceBl13a48394ec1575eb56aZef82cb4bbeB5T052916T9b04c127Tcel5943740d..
Requestid: 3576569588916442984
Total: 1
Nodes
Nodes #1:
Request Hash: 30d7ef935580aT7abro05al17b176b3TTed09e0026703322741d0DBTOTE8960454550020aT9196cd202723d7d5eee24452d52995%e09e1baB21T126573c844e2d59
Signature: 018557a4@359
Sequence #: 6648936
eth: Fork Hash: c18145ad
id: v4
ip: 168.1.6.18
secp256kl: 022c4b6808e78853T7callab4c35e6311bc2553b65323Tb0c9e0a831303a1059087
snap: N/A
tcp: 38303
udp: 38303

Figure 45: DiscoveryV5 Nodes Packet Bootnode => Node1

46

4.4 Authenticated Node Communication

RLPx is a cryptographic peer-to-peer protocol suite which provides a general-purpose transport
utilizing TCP and interface for applications to communicate via a P2P network. The protocol
carries encrypted messages belonging to one or more ‘capabilities’ which are negotiated during
connection establishment. RLPx is the only authenticated communication channel for execution
clients, carrying data for all the application-level needs [31]. RLPx doesn’t stand for anything
specifically, however it is named after the RLP serialization formation as most of the underlying
message payloads are encoded with RLP. The capabilities are sub protocols that are used to
exchange messages between nodes, depending on the type of client. For example, the ETH
subprotocol is used to exchange Ethereum blockchain data, while there exists the SHH
subprotocol to exchange Whisper messages, or LES for light clients.

An RLPx connection is first established by a TCP connection and agreeing on ephemeral key
material for further encrypted and authenticated communication. This process that creates the
session keys is known as the “RLPx Handshake™ and is carried out between the “initiator” or the
node who opened the TCP connection, and the “recipient”, the node who accepted the
connection. An RLPx connection occurs after the node discovery phase, where nodes first join
the network, then create secure connections between nodes to facilitate their application level
data transfers.

As seen in Figure 46, the initiator in this case is Node B, where the recipient is Node A.
Generally, the initiator first connects with the recipient by sending an “Auth Init” message, the
recipient then accepts this message, decrypts, and verifies the authenticity of the message. The
recipient, Node A, then sends an “Auth Ack” message using the “remote-ephemeral-key” and the
“nonce” which was sent in the initialization message from Node B. Node A also derives secrets
and sends the first encrypted frame containing a “P2P Hello” message. This P2P Hello message
is the first packet sent over the connection and sent only once by both sides upon session
initialization with the handshake. No messages are sent until both sides of the handshake send
and receive a P2P message. Lastly, Node B receives the P2P Hello message and derives the same
shared secrets and encrypts and sends its own P2P Hello message to Node A. Thus, completing
the RLPx Handshake, where both sides have shared ephemeral keys, derived shared secrets and
have generated the “AES secret” and “MAC secret” which are used for the session’s
encryption/decryption and message authentication.

47

RLPx
Node A Node B
] : Auth |nit-—-—-—-—'—'—""; Initiator
Auth Ack i secret

> Derivation
RLPx a

Handshake i P2P Hell H »
! Capability
| Agreement
; P2P Hell ;
-— :

P2PPong— |

P2P Disconnect— |

; P2P Disconnect_____!
Figure 46: RLPx Handshake & P2P Capability Message Sequence Diagram

All messages following the initial handshake are associated with a “capability”. Any number of
capabilities can be used concurrently on a single RLPx connection. A capability is identified by a
short ASCII name, with a max of eight characters, and a version number. The capabilities
supported on either side of the connection are exchanged within the Hello message (0x00) found
at the end of the RLPx Handshake seen above in Figure 46. The standard capability that is
always supported between both sides of the connection is known as the “p2p” capability.

In this scenario and dissector, only the ETH and SNAP sub protocols are seen, as the clients are
running on a proof-of-work consensus algorithm network, and running GETH clients that
support SNAP. ETH is used to exchange blocks, transactions and other data regarding block
information between nodes. SNAP is used to facilitate the exchange of Ethereum state snapshots
between peers. The other “p2p” capability messages include a Disconnect (0x01) which is used
to inform the peer that a disconnection is imminent, including a reason for why the peer wants to
disconnect. Lastly, there also exists a Ping (0x02) and a Pong (0x03) message for RLPx session
liveliness.

Now, let’s look deeper into the actual dissection of the RLPx Handshake messages followed by
the “p2p” capability messages. First a new dissector plugin must be registered with Wireshark,
specifically named “rlpx.lua”. This dissector registers the protocol name “rlpx” with a
description of “Ethereum RLPx Protocol”, with the same standard ports that were used with
discovery but for TCP, ports 30303 to 30308. As far as the LUA dissector is concerned, there are
two main types of packets, a handshake packet and a normal RLPx packet which would carry the

48

payload data of a capability for instance. Luckily, in the handshake packets, AuthInit and
AuthAck, the first two bytes are non-encrypted, meaning this can be used to tell if the packet is a
handshake or standard RLPx message. These first two bytes represent the size of the payload that
is encrypted, so using this, the LUA dissector is able to calculate the payload size and check if it
equals the first two bytes. Seen below in Figure 47, the LUA implementation to get the first two
bytes of the payload, then checking if the length of the entire payload minus the “auth-size” is
equal to two, which is the left over size representing the size of the size field.

local auth size = tvb(offset, 2}

if (tvb:1len() - auth size:int() == 2) then

Figure 47: ripx.lua Parsing RLPx Auth Size Field

This check is crucial in verifying if the packet is a handshake message or a normal standard
message, as different functions in the “bridge.py” are called accordingly. Lastly, still in the
“rlpx.lua” we can check if the known port of the packet, which again is 30303 to 30308, is
associated with the sender or the receiver of the packet. If the source port is a known port, then
this message is an AuthAck packet, otherwise, this message is an Authlnit packet. Lastly, the
“handleRLPxHandshakeMsg()” function is called from the “bridge.py”.

RLPx dissections require knowledge of the node’s static private keys, that is the private key that
is associated with the “nodekeyhex”. This again utilizes the “Node” class to handle the state
information for the peer, including the peers that the node is connecting to, utilizing the “Peer
Connection” class. Seen in Figure 48, the class architecture for RLPx messages. Each Node gets
an associated Peer Connection upon initialization of an RLPx Handshake, this effectively creates
a graph. Nodes can have multiple Peer Connections, and a Peer Connection is technically just a
wrapper for a node to node connection to hold all the state information between the two. So, a
Peer Connection is two Nodes, one considered as a parent, which is the “own” Node, and the
other. The first part is the “Handshake State” class, which deals with incoming Auth Init and
Auth Acks, and also deals with the creation of the “Secrets”. The secrets hold all of the derived
information between the two, including the ephemeral keys, random public and private keys, and
session keys including the AES and MAC keys. The details of the handshake cryptography will
be gone into greater detail in the Analysis chapter. Once the secrets are generated for both
parties, this then creates a “Session State” which handles the decoding, decryption and dissection
of all messages after the handshake.

¥

Mode

Peer Connection

Parent Mode: Node
Crther Node: Mode

IP Address

Private kKey

Handshake State
Session State
Auth Init Data
Auth Resp Data

Secrets

DiscvaCodec

FPeers:
{IF Address, Peer Connection}

v

Handshake State

Session State

Secrets

Initiator?

Femote Public Key

Secrets

Public Key
Ephemeral Key
Shared Secret
AES Secret
MAC Secret

Initiator Nonce

Recipient Monce

Random Private Key
Remote Random Public Key

Femote Random Private Key

ECIES Params

enc: Encryptor

dec: Decryptor

Hash Algorithm (Keccak)
Egress MAC
Ingress MAC

4.4.1 Handshake ECIES Decryption

Figure 48: PYDEVP2P RLPx Class Flow Diagram

49

Continuing on with the dissection of the RLPx Handshake messages, the packet payload is sent
through the Node class, then calling the “read handshake msg()” function found in
“handshake.py”, which decrypts the data utilizing the node’s static private key. This decryption

implements ECIES (Elliptic Curve Integrated Encryption Scheme) Decryption where there

cryptosystem used by RLPx is as follows:
e The elliptic curve secp256k1 with a generator G
KDF(k, len): the NIST SP 800-56 Concatenation Key Derivation Function

[
e MAC(k, m): HMAC using the SHA-256 hash function.
[

AES(k, iv, m): the AES-128 encryption function in CTR mode

So, let’s say the Bootnode receives and Auth Init message from Node 1, seen in Figure 50. Node

1, will then need to decrypt this message, which was encrypted by the Bootnode. Node 1 will

50

receive the following for the ciphertext: R || iv || ¢ || d , where first Node 1 will pull out the
ephemeral public key, also known as the ECDH (Elliptic Curve Diffie Helman) public key from
the ciphertext which is R. Using this R, Node 1 is able to generate the shared secret (S) such that
S = Px where (Px, Py) = kpoqe1 * R. That is the private static private key of Node 1 multiplied
by the ephemeral public key R. This creates a point on the elliptic curve secp256k1, Px and Py,
where Px is the actual shared secret [31].

Then, the encryption and authentication keys can be derived utilizing the NIST SP 800-56
Concatenation Key Derivation Function. Next, Node 1 verifies the authenticity of the message
by checking whether the trailing message authentication tag d equals MAC (sha256(K,), v || ¢).
Lastly, obtaining the plaintext by using symmetric decryption utilizing the IV and the ciphertext
and the AES derived key. All of which is found in the “crypto/ecies.py” module in PYDEVP2P.
Below, in Figure 49, is a great depiction of the steps required for ECIES encryption [32].

Optional parameters

Recipient's
3 v

public key Param #1
Shared secret 5 Pl
value aintext
Y
@ KAh ———» uwV ———» KDF 3 m
L |
MAC key l ENC key A
Sender's Kpmac Kenc — ENC @
ephemeral u
private key

Optional parameters @

Ephemeral key
@ pair generation Param #2 = MAC

P ——— et et L
: 'y CRYPTOGRAM l r !
_i u 5 tag c ?
i Sender's ephemeral Tag Encrypted message :
j !

public key i

Figure 49: ECIES Hybrid Encryption Scheme
Seen below, in Figure 50, the contents of the dissected Auth Init packet sent from Node 1 to the
Bootnode. Containing the following:
e Signature:
e InitiatorPubkey: The static public key of the Node 1
e Nonce: randomly generated nonce for the Init message
e Version: 04

51

11 0.P80666800 B.1.1 1.0. — HANDSHAKE] AUTH INIT

12 0.p0@709160 10.1.6.10 1@0.1.1.18 TCP 66 30303 . 39436 [ACK] Seq=1 Ack=458 Win=64768 Len=0 TSval=1157360977 TSecr=3258313128
13 0.000836500 10.1.0.1@ 10.1.1.18 DEVP2P 199 30303 - 30304 [DiscoveryV4 PONG] Version=4 Kind=2 Len=157

14 0.000913500 10.1.1.1@ 10.1.0.1@ DEVP2P 199 30304 - 30303 [DiscoveryV4 PONG] Version=4 Kind=2 Len=157

15 0.P@e954480 10.1.0.18 10.1.1.18 DEVP2P 176 30383 . 38304 [DiscoveryV4 PING] Version=4 Kind=1 Len=134

16 @.001249%00 10.1.1.10 10.1.6.18 DEVP2P 199 30304 _ 30303 [DiscoveryV4 PONG] Version=4 Kind=2 Len=157

17 0.001279660 10.1.0.1@ 10.1.1.18 RLPX 456 30303 . 39436 [HANDSHAKE] AUTH ACK

16 0.P@1286100 10.1.1.1@ 10.1.0.1@ TCP 66 39436 . 30303 [ACK] Seq=458 Ack=391 Win=64128 Len=@ TS5val=3258813120 TSecr=1157360977
19 0.081490800 10.1.8.18 160.1.1.18 RLPX 274 30383 ~ 39436 [P2P Hello] Type=Hello Code=@ Len=168

20 0.901495%00 10.1.1.10 1@.1.6.18 TCP 66 39436 . 38303 [ACK] Seq=458 Ack=599 Win=64128 Len=0 TSval=3258813120 TSecr=1157360977
21 0.001523200 10.1.1.1@ 10.1.0.18 RLPX 274 39436 - 30303 [P2P Hello] Type=Hello Code=@ Len=160

22 0.P@1846500 10.1.0.1@ 10.1.1.1@ RLPX 178 30303 . 39436 [ETH Status] Type=5tatus Code=@ Len=64

23 0.001986200 10.1.1.1@ 160.1.8.18 RLPX 178 39436 — 38303 [ETH Status] Type=Status Code=8 Len=64

24 0.958675300 10.1.0.10 1@.1.1.18 TCP 66 30303 . 39436 [ACK] Seq=711 Ack=778 Win=64648 Len=8 TSval=1157361035 TSecr=3258813121

Frame 11: 523 bytes on wire (4184 bits), 523 bytes captured (4184 bits) on interface br-d2788e2c/b9b, id @

Ethernet II, Src: 82:42:0a:01:91:0a (02:42:0a:01:01:0a), Dst: ©2:42:0a:01:01:02 (02:42:0a:01:01:02)

Internet Protocol Version 4, Src: 18.1.1.16, Dst: 10.1.8.18

Transmission Centrol Protocol, Src Port: 39436, Dst Port: 30303, Seq: 1, Ack: 1, Len: 457

Ethereum RLPx Protocol

Auth Size: 455

~ Data: 04b403956bb978aadc18cTe8%ealde7429dB8792dbT6d521ardB6986aT1bbbd424157T1c..
Signature: bebSeef54a4d733c3abf672d2c@5eaf1758cdeef55c40637e3e092c86bf20098107bd9681c03920d094beTEbOI772f037761d8145920391854Fc3ae3faT94d3601
InitatorPubkey: c35c2b7T9ae974dleee94a003394d1cc18135e7Te6665e6b41221970T109d59T6a58e76763803bcco097ebadcd1TdO803040565¢53272bB635348e37T93cede
Nonce: 36b25e9c26a8b4c07d3ac33ef7ai65badeZBbdlectbaarT7d37bad45ed421d77e
Version: @4
RandomPrivKey: 1919b264437eebVealel4f658ed7h78c2ff8ff69cdcT4b75dabBdadhl130ed1ba

Figure 50: RLPx Auth Init Packet Node1 => Bootnode

Following the Auth Init, the Bootnode then sends an Auth Ack message to Node 1, seen in
Figure 51. This message contains the following:

e RandomPubkey: Ephemeral random public key of the Bootnode

e Nonce: randomly generated nonce for the Ack message

e Version: 04

11 0.000666800 calgal 1.8, RLPX 523 39436 -~ 38303 [HANDSHAKE] AUTH INIT
12 0.000709100 1.6, calal. Tcp 66 30303 . 39436 [ACK] Seq=1 Ack=458 Win=64768 Len=0 TSval=1157360977 TSecr=32588131208
13 0.000836580 .1.8. caloale DEVP2P 199 38303 — 38304 [DiscoveryV4 PONG] Version=4 Kind=2 Len=157
14 ©.000913580 ol il 1.8, DEVP2ZP 199 383604 - 38303 [DiscoveryV4 PONG] Version=4 Kind=2 Len=157
15 0.000954400 l1.e. cal gl DEVP2P 176 30303 . 30304 [DiscoveryV4 PING] Version=4 Kind=1 Len=134
0.001249906 ol il .1.8. 30304 - DiscoveryV4 PONG] Version=4 Kind=2 Len=157
B.001279606 5 - 5 c [HANDSHAKE] AUTH ACK
g. 1.1, 1.6, TCP 39436 . 30303 [ACK] Seq=458 Ack=391 Win=64128 Len=0 T5val=3258813128 TS5ecr=1157360977
19 0.001490800 10.1.0.10 10.1.1.10 RLPX 274 30303 . 39436 [P2P Hello] Type=Hello Code=@ Len=160
20 0.001495%900 10.1.1.10 10.1.6.1@ TCP 66 39436 — 30303 [ACK] Seq=458 Ack=599 Win=64128 Len=0 TSval=3258813128 TSecr=1157360977
21 0.0015233860 10.1.1.10 106.1.8.18 RLPX 274 39436 - 38303 [P2P Hello] Type=Hello Code=8 Len=168
22 0.001846500 10.1.0.10 10.1.1.10 RLPX 178 30303 . 29436 [ETH Status] Type=Status Code=0 Len=64
23 0.0019686200 10.1.1.10 10.1.6.10 RLPX 178 39436 — 38303 [ETH Status] Type=Status Code=0 Len=64
24 0.058675300 10.1.0.10 16.1.1.18 TCP 66 38303 . 39436 [ACK] Seq=711 Ack=778 Win=64640 Len=0 TSval=1157361035 TSecr=3258813121

Frame 17: 456 bytes on wire (3648 bits), 456 bytes captured (3648 bits) on interface br-d2788e2c7b9b, id @
Ethernet II, Src: ©2:42:0a:01:01:02 (02:42:0a2:01:01:02), Dst: ©2:42:0a:01:01:0a (02:42:0a:01:01:0a)
Internet Protocol Version 4, Src: 10.1.0.16, Dst: 10.1.1.18@

Transmission Control Protocol, Src Port: 30303, Dst Port: 39436, Seq: 1, Ack: 458, Len: 390

Ethereum RLPx Protocol

Ack Size: 388
~ Handshake AUTH ACK
RandomPubkey: 87eefalct75a8a43815a5802d391143b6T11bd6T8e83d2bed52acabbb7653dd6T6ccEhd499Tc149dc09924c8587aaachbca%adfcebad7c0435ae8740a53e18a0T
Nonce: bed4642eT03143627c0257abbB56F7TcE0Ta04298407cc4c9b79518bc51bbc1bd
Version: 04
RandomPrivkey: d51e@31d25711b@d962dE6cel®3b647aT3d76a99a8b3440a4944807e21add82bd

Figure 51: RLPx Auth Ack Packet Bootnode => Node1

4.4.2 Exposing the Random Private Key

Just like with the dissection of DiscoveryV5 the state information has to be propagated for both
sides of the exchange, which adds complexity as the dissector is capturing the packets
retroactively, like it is the recipient. So, when an AuthMsg is received, the sender Node, in this
case Node 1 must be populated with the information, such as its own nonce, random public keys,
etc. Each side must know about their own randomly generated private key (RandomPrivKey),
and in turn know their own random public key (RandomPubKey). This step is done in the
background, and is completely obscured to the dissector, meaning without the random private

52

key, and the random public key of the other node, the dissector would not be able to generate the
shared secrets to dissect anything after the Authlnit and AuthAck messages.

Now, to mitigate this issue, we exposed the RandomPrivKey by adding this field to both the
Authlnit and AuthResp packets found in the GETH source code. This allows for the dissector to
be run completely by itself, and whenever a new handshake occurs, these random keys are
immediately shared “in the clear” via the handshake messages in RLPx. These keys are found in
the struct of both the definitions for the AuthMsgV4 and AuthRespV4 found in the GETH source
code, still requiring the ECIES encryption as shown above. Shown below in Figure 52 lines 396
and 407 were added to the GETH source code “/p2p/rlpx/rlpx.go” to expose the
RandomPrivKey. This is the explanation for why the custom GETH docker images had to be
created in the first place for proper RLPx dissection to take place. Also, lines 575 and 596 were
added in the same “rlpx.go” file to add the RandomPrivKey to the Authlnit and AuthResp
structure prior to sending it out, seen in Figures 53 and 54.

authMsgva {
Signature [siglLen]byte
InitiatorPubkey [publLen]b:
Nonce [shaLen]byte
Version uint
RandomPrivikey 32 |byte

Rest []rlp.RawValue “rlp:"ta

authRespv4 {
RandomPubkey [pubLen]by
Nonce [shalen]byte
Version uint
RandomPrivKey [32]byte

Rest []rlp.RawValue ~

Figure 52: Exposing the RandomPrivKey to the Authinit and AuthResp Messages in GETH

53

msg := new(authMsgyvd)

copy({msg.Signature[:], signature)

copy(msg.InitiatorPubkey[:], crypto.FromECDSAPub(&prv.PublicKey)[1:])
copy{msg.Nonce[:], h.initNonce)

copy({msg.RandomPrivKey[:], h.randomPrivkey.D.Bytes())
msg.Version = 4

Figure 53: Inserting the RandomPrivKey into the Authinit Message in GETH

msg = new(authRespV4)

copy(msg.Nonce[:], h.respNonce)

copy(msg.RandomPubkey[:], exportPubkey(&h.randomPrivKey.PublicKey))
copy({msg.RandomPrivikey[:], h.randomPrivKey.D.Bytes())

msg.Version = 4

return msg,

Figure 54: Inserting the RandomPrivKey into the AuthResp Message in GETH

These four lines allow the dissector to know the random private key that was generated for each
node, therefore allowing it to generate the shared secret using the remote random public key and
the node’s own random private key. This is done in the secrets generation step which is done
prior to the session setup, which is used to encrypt and decrypt capability messages such as the
P2P Hello messages. The secrets are created and generated as follows:

e C(Create the ephemeral key or ECDHE Secret which is done by multiplying the public key
and the private key, creating a point on the elliptic curve Px, Py where Px is chosen as the
ephemeral key

e Derive the shared secret from the ephemeral key agreement where:

shared-secret = keccak256hash(ephemeral-key, keccak256hash(respNonce,
initNonce))

e (alculate the aes-secret using the hash of both the ephemeral-key and shared-secret
where:

aes-secret = keccak256hash(ephemeral-secret, shared-secret)

e (Calculate the mac-secret with the hash of both the ephemeral-key and aes-key

mac-secret = keccak256hash(ephemeral-secret, aes-secret)

e Calculate the Egress and Ingress MACs (depending on if initiator or not)

From there, the “SessionState” is created for the connection between the two nodes, in this case
specifically the Bootnode and Node 1. This SessionState holds the AES decryption and
encryption cipher that is used for incoming and outgoing RLPx messages.

54

4.4.3 Dissecting RLPx P2P Capability Messages

All messages following the initial handshake are framed. A frame carries a single encrypted
message belonging to a capability. The purpose of framing is multiplexing multiple capabilities
over a single connection. Secondarily, as framed messages yield reasonable demarcation points
for message authentication codes, supporting an encrypted and authenticated stream becomes
straight-forward. Frames are encrypted and authenticated via key material generated during the
handshake. The frame header provides information about the size of the message and the
message's source capability. Padding is used to prevent buffer starvation, such that frame
components are byte-aligned to block the size of the cipher [31].

The LUA dissector for RLPx messages that are not handshake messages, not Authlnit or
AuthAck, are still handled in “rlpx.lua” and call the “handleRLPxMsg()” found in the
“bridge.py”. This same function call uses the same Node and Peer Connections and SessionState
setup from the handshake, therefore all the session keys for AES and MAC already exist,
therefore the frame header and frame body (which is the actual capability message) can be
decrypted.

Transitioning back to the end of the RLPx Handshake, P2P Hello messages are sent after the key
derivation and session key sharing process. As stated, before the Hello message is the first packet
sent over a connection that is sent by both sides, sharing the capabilities supported by themselves
to the other node. Found in this Hello message, seen in Figures 55 and 56, the dissection output,
is as follows:

e ProtocolVersion: the version of the "p2p" capability, 5.

e C(lientld: Specifies the client software identity, as a human-readable string

e C(Capabilities: is the list of supported capabilities and their versions

e ListenPort: specifies the port that the client is listening on (on the interface that the

present connection traverses). If 0 it indicates the client is not listening.
e NodeKey: is the secp256k1 public key corresponding to the node's static private key.

19 0.081490800 .1.8. .1.1. 274 30303 . 39436 [P2P Hello] Type=Hello Code=0 Len=160

20 0.001495900 10.1.1.10 10.1.6.10 TCP 66 39436 - 30303 [ACK] Seq=458 Ack=599 Win=64128 Len=0 TSval=3258813120 TSecr=1157360977
21 0.001523300 10.1.1.10 10.1.0.18 RLPX 274 39436 - 30303 [P2P Hello] Type=Hello Code=0 Len=160
22 0.091846500 10.1.0.10 10.1.1.10 RLPX 178 30303 - 39436 [ETH Status] Type=Status Code=0 Len=64
23 0.001986200 10.1.1.10 10.1.0.10 RLPX 178 39436 - 30303 [ETH Status] Type=5tatus Code=0 Len=64
24 0.058675300 10.1.0.10 10.1.1.16@ TCP 66 30303 - 39436 [ACK] Seq=711 Ack=778 Win=64640 Len=0 TSval=1157361035 TSecr=3258813121

Frame 19: 274 bytes on wire (2192 bits), 274 bytes captured (2192 bits) on interface br-d2788e2c7b9b, id @
Ethernet II, Src: 82:42:0a:01:01:02 (02:42:0a:01:01:02), Dst: 82:42:0a:01:01:0a (02:42:8a:01:01:0a)
Internet Protocol Version 4, Src: 10.1.8.18, Dst: 18.1.1.18
Transmission Control Protocol, Src Port: 30303, Dst Port: 39436, Seq: 391, Ack: 458, Len: 208
Ethereum RLPx Protocol
~ Frame Header: ae84311aa97T42355c47TD21a983406c0aea08993e4T7452d8c44184500198a129
Decrypted Header Data: 00989fc28
Header MAC: aea@8993e47452d8c4418450d198a129
Frame Body MAC: 85327ddba3b475d69ecd28e51a0a752b
Frame Size: 158
Read Size: 160
Header Data: Capability ID: @, Context ID: @
~ Frame Body: 95013bc3505e9a6278a57T5c47acB06605T0e521e71093a5d537cd541e8a590498412ee8..
Type: P2P @, Hello
ProtocolVersion: 5
ClientId: Geth/v1.11.0-unstable-f370c4c8-20221109/1inux-amd64/gol.18.1
Capabilities: eth: 66, eth: 67, eth: 68, snap: 1
ListenPort: N/A
NodeKey: 2c4b6808e788537cal3ab4c35e6311bc2553b65323Th0c9e9a831303a1059b8754aab13dbb78c03a7a31beeebc2f2Tb5703937056d54Ta83ebd7e277039ccThe

Figure 55: RLPx P2P Hello Packet Bootnode => Node1

55

19 0.001490860 10.1.0.10 10.1.1.10 RLPX 274 30303 . 39436 [P2P Hello] Type=Hello Code=@ Len=160
20 0.0091495900 10.1.1.10 10.1.0.10 TCP 66 39436 — 30303 [ACK] Seq=458 Ack=599 Win=64128 Len=0 TSval=3258813120 TSecr=1157360977
21 0.8091523380 p.1.1.10 p.1.0.10 — [P2P Hello] Type=Hello Code=@ Len=160
22 0.001846500 10.1.0.10 10.1.1.10 RLPX 178 30303 _. 39436 [ETH Status] Type=Status Code=0 Len=64
23 0.001986260 10.1.1.10 10.1.6.18 RLPX 178 39436 — 30303 [ETH Status] Type=Status Code=0 Len=64
24 0.058675300 10.1.0.10 10.1.1.18@ TCP 66 30303 _. 39436 [ACK] Seq=711 Ack=778 Win=64640 Len=0 TSval=1157361035 TSecr=3258813121

Frame 21: 274 bytes on wire (2192 bits), 274 bytes captured (2192 bits) on interface br-d2788e2c7b9b, 1d @
Ethernet II, Src: 82:42:0a:01:01:0a (02:42:0a:01:01:0a), Dst: 02:42:0a:01:01:02 (02:42:0a:01:01:02)
Internet Protocol Version 4, Src: 10.1.1.18, Dst: 18.1.6.16
Transmission Control Protocol, Src Port: 39436, Dst Port: 30303, Seq: 458, Ack: 599, Len: 208
Ethereum RLPx Protocol
~ Frame Header: ae84311aa9f42355c47fb21a983406c04T9bcTchBbc30T45277cet40536bc493
Decrypted Header Data: 00009fc2808
Header MAC: 4f9hcfc58bc30f45277cef40536bcd93
Frame Body MAC: 117a@bc92681cbl0718f3798332ddfct
Frame Size: 159
Read Size: 160
Header Data: Capability ID: @, Context ID: @
~ Frame Body: 95813bc35d5e9ab2T8a5ff5c47acB0b6605T0e521e71c93a5d537cd541e8a59d498412eeb..
Type: P2P @, Hello
ProtocolVersion: &
ClientId: Geth/v1.11.@-unstable-T370c4c8-20221109/1inux-amd64/gol.18.1
Capabilities: eth: 66, eth: 67, eth: 68, snap: 1
ListenPort: N/A
NodeKey: c35c2b7f9aef74dlece94adni3304dicc18135e7Teb66526b4T22197071d9d59T6a58e76763803bccd097ebadcd]1TdOBh30405e65c53272hB635348237T03cede

Figure 56: RLPx P2P Hello Packet Node1 => Bootnode

Note the version of GETH running, v1.11.0, along with the capabilities that the client's support.
In this case, as the clients are running the same software, their supporting capabilities are
identical. However, it is important that both the ETH and SNAP capabilities are supported by
these clients, which will be discussed in greater detail in the next section. The highest version
shared for a capability will be chosen and used for communication with that capability. These
capabilities found in the list make up the bulk of the messages found after the handshake.
However, there does exist a Ping (0x02) and Pong (0x03) built-in P2P capability message for
RLPx, shown in Figures 57 and 58 respectively. Both messages do not contain any payload other
than their type, and specifically made for RLPx session liveliness. And from the two figures the
Bootnode pinging Node 1 and Node 1 responding back with a subsequent Pong message.

127 15.002483076 10.1.0.16 18.1.1.18 RLPX 130 30303 . 39436 [P2P Ping] Type=Ping Code=2 Len=16
128 15.004634276 10.1.1.10 10.1.8.10 RLPX 130 30436 . 30303 [P2P Pong] Type=Pong Code=3 Len=16

Frame 127: 138 bytes on wire (1040 bits), 130 bytes captured (1840 bits) on interface br-d2783e2cib9b, id @
Ethernet II, Src: 82:42:0a:01:01:02 (02:42:0a:01:01:02), Dst: 02:42:0a:081:01:8a (P2:42:0a:01:81:0a)
Internet Protocol Version 4, Src: 168.1.8.16, Dst: 18.1.1.1@
Transmission Control Protocol, Src Port: 30383, Dst Port: 39436, Seq: 711, Ack: 773, Len: 64
Ethereum RLPx Protocol
=~ Frame Header: 35ch7edfarBle6787edB47aa2abc618a81221532d2472a8b9605Td1422dd1797

Decrypted Header Data: G00004cZB8080G8000000000ER00ER0000

Header MAC: 81221532d2472aBb96057d1422dd1797

Frame Body MAC: b919372c785674cb322b249db159%bchb

Frame Size: 4

Read Size: 16

Header Data: Capability ID: @, Context ID: @
=~ Frame Body: a22209633a83e99dd3409a60T3b78TcODS19372c705674ch322b249db159bchh

Type: P2P 2, Ping

Figure 57: RLPx P2P Ping Packet Bootnode => Node1

56

127 15.002483076 10.1.0.18 10.1.1.10 RLPX 130 30383 . 39436 [PZP Ping] Type=Ping Code=2 Len=16
128 15.004634276 16.1.1.18 3.1.8. 130 39436 - 30303 [P2P Pong] Type=Pong Code=3 Len=16

Frame 128: 130 bytes on wire (1048 bits), 130 bytes captured (1040 bits) on interface br-d2788e2c7b9b, id @
Ethernet II, Src: 02:42:0a:01:01:0a (02:42:0a:01:01:0a), Dst: 02:42:0a:01:01:02 (02:42:0a:01:01:02)
Internet Protocol Versionm 4, Src: 10.1.1.160, Dst: 10.1.0.1@

Transmission Control Protocol, Src Port: 39436, Dst Port: 30303, Seq: 778, Ack: 775, Len: 64

Ethereum RLPx Protocol

~ Frame Header: 35c57ed40af8le6787edP47aa2a5c618a041e3adfab15bb7ect2684b82498da98
Decrypted Header Data: ©80004cZ2808000000000BEGERBOEARBO
Header MAC: @4le3adfabl5b@7ec@26B84b82498da%a
Frame Body MAC: 085c3736415Ted594el1778aeBd418cal
Frame Size: 4
Read Size: 16
Header Data: Capability ID: @, Context ID: @
~ Frame Body: a32209633a83e99dd3409a00T3b78Tc0085c37364157e059421778ae8d418¢cal
Type: P2P 3, Pong

Figure 58: RLPx P2P Pong Packet Bootnode => Node 1

The last RLPx P2P capability message that is supported by all nodes is the “Disconnect”
message which informs the peer that a disconnection is imminent. This message isn’t a request
for a disconnection rather telling the other node they will be disconnecting with a specific reason,
which is the payload of this capability message. The “P2P Disconnect” can be seen in Figure 59
being sent from Node 1 to Node 2, with a reason for “Useless peer” which means that Node 2 is
not providing any useful information to Node 1. Node 2 responds with a Disconnect message,
seen in Figure 60, with a reason: “Disconnect requested” which is an acknowledgement. After

that, we can see from the dissection that the TCP connection terminates with a [FIN, ACK]
1.1 130 30384 - 42560 _PEP_Disdonnect] Reason=(3) Useless peer Type=Disconnect

) Disconnect requested Type=Dit

- [
885/ 8 10.1. 10.1 [RST] Seq=18496 z
8858 300.8573225942 10.1.3. 10.1.1. = [ACK] 5eq=15919 Ack= =64128 Len=0 1Sval=20937319
8850 300.978323342 10.1.1.190 10.1.3.38 DEVPZP 213 30304 _ 30306 [Discovery¥4 FINDNODE] Version=4 Kind=3 Len=171
8860 300.978365642 10.1.1.19 10.1.2.28 DEVPZP 213 30304 _ 30305 [Discovery¥4 FINDNODE] Version=4 Kind=3 Len=171
8861 300.078383142 10.1.1.10 10.1.6.18 DEVPZP 213 30304 _ 30303 [Discovery¥4 FINDNODE] Version=4 Kind=3 Len=171

Frame 8854: 138 bytes on wire (1040 bits), 13@ bytes captured (1048 bits) on interface br-d35ff39d337T3, id 0
Ethernet II, Src: 02:42:0a:01:01:0a (02:42:0a:01:01:0a), Dst: ©2:42:0a:01:01:02 (02:42:0a:01:01:02)
Internet Protocol Version 4, Src: 10.1.1.18, Dst: 10.1.2.20
Transmission Control Protocol, Src Port: 30384, Dst Port: 42560, Seq: 18431, Ack: 26146, Len: 64
Ethereum RLPx Protocol
= Frame Header: 39ddc92324c65e6755bdal21c55e7ch8424eelc5288602d5T8chTaBed46083e76

Decrypted Header Data: B88004c2B08000000E00ERRE00ERER0E

Header MAC: 424eelc5288602d578chral8e46083276

Frame Body MAC: 380aGec43eab8cT6fb2f78844105p481

Frame Size: 4

Read Size: 16

Header Data: Capability ID: @, Context ID: ©
~ Frame Body: a3Zcala7b7fbBalB67415c3841485186380a6ecd3eabBcf6Thb2f 788441050481

Type: P2P 1, Disconnect

Reason: (3) Useless peer

Figure 59: RLPx P2P Disconnect Packet Node1 => Node2

57

8854 300.857485442 1.1, 1.2.28 RLPX 130 30384 . 42560 [PZP Disconnect] Reason=(3) Useless peer Type=Di:
8855 300.857548842 10.1.1. 1.2.28 TCP 66 30304 _ 42560 [FIN, ACK] Seq=18495 Ack=26146 Win=69888 Len=0 T:
ie.1.2. 1.1 130 42560 is
10.1.1. 1.2. 5 . (
g 10.1.3.30 10.1.1. TCP 66 il [
8859 300.978323342 10.1.1.10 10.1.3.36@ DEVP2P 213 30304 . 30306 [DiscoveryV4 FINDNODE] Version=4 Kind=3 Len=171
8860 300.978365642 10.1.1.10 10.1.2.28 DEVP2P 213 30384 - 30305 [DiscoveryV4 FINDNODE] Version=4 Kind=3 Len=171
8861 300.978383142 10.1.1.10 10.1.0.1@ DEVP2P 213 30384 - 30303 [DiscoveryV4 FINDNODE] Version=4 Kind=3 Len=171

Frame 8856: 138 bytes on wire (1040 bits), 130 bytes captured (1048 bits) on interface br-d35ff39d33f3, id 0
Ethernet II, Src: 82:42:0a:01:01:02 (02:42:0a:01:01:02), Dst: ©2:42:0a:81:01:0a (02:42:0a:01:01:0a)
Internet Protocol Version 4, Src: 10.1.2.20, Dst: 10.1.1.10
Transmission Control Protocol, Src Port: 42568, Dst Port: 30384, Seq: 26146, Ack: 18496, Len: 64
Ethereum RLPx Protocol
+~ Frame Header: dc942845c18097de2dd441311b58917d009105h82a24a1bdddB6bc5ef9d437al

Decrypted Header Data: 900004c2808000000000000000000000

Header MAC: 009105b82a24albdddB86bc5ef9d437an

Frame Body MAC: a96a213500d6c2e6Ge3ldB8B7555a027d

Frame Size: 4

Read Size: 16

Header Data: Capability ID: 8, Context ID: ©
= Frame Body: ed337d9e6lc2e9eaf7b91d644924de18a96a213500d06c2e66231d887555a027d

Type: P2P 1, Disconnect

Reason: (@) Disconnect reguested

Figure 60: RLPx P2P Disconnect Packet Node2 => Node1

4.5 Node Capability Messaging

Capability messaging is a feature of RLPx that allows nodes to communicate using different
application-level protocols, such as ETH, LES, SNAP. Each capability has a name, version, and
message type. We discussed in the previous section that nodes negotiate their capabilities during
the RLPx Handshake process with the built-in RLPx P2P capability Hello message. These
subprotocols define the logic and rules for exchanging messages related to specific aspects of
Ethereum nodes. Like the P2P capability messages, these subprotocols are also framed,
containing a frame header and frame body where the actual capability message resides.

As used in the private dockerized Ethereum network and scenario, the GETH clients support
ETH and SNAP. ETH is the main subprotocol for synchronizing blocks and transactions on the
Ethereum network. SNAP is a newer subprotocol that aims to improve the efficiency and
scalability of state synchronization by using markle proofs and compression techniques. Each of
these capabilities utilizes RLP encoding to store all of their respective information inside the
frame body of the RLPx message.

As seen earlier, the frame header contains a “Header Data” field listing different capability IDs.
This is meant to be used for multiplexing between different capabilities. However, the current
version of RLPx does not support this; therefore, each message type is given a set amount of
space for the message IDs for each capability. On connection and reception of the Hello
message, both peers can form an automatic consensus over the message space they can both
support. So, in the case of the P2P messages seen above, ETH/68 and SNAP/1 would be chosen.
Each shared and sorted alphabetically capability message type is then given an offset starting
from 0x10 where 0x00 - 0x0f is reserved for the “p2p” capability. For example, the ETH Status
subprotocol message (0x00) will be given an offset that morphs this id into 0x10, then ETH

58

NewBlockHashes (0x01) becomes 0x11, and so on. This is done automatically and is purely used
as a consensus mechanism for quickly knowing the capability message type upon reception.

4.5.1 Dissecting ETH Capability Messages

ETH is a protocol utilizing the RLPx transport that facilitates the exchange of Ethereum
blockchain information between peers. It is still used after the “Ethereum merge” however only a
subset of messages, in the scenario, we will be taking a look at how this ETH subprotocol is used
in a proof-of-work network in order to propagate most of the messages definite in ETH [33].

Taking a look at the ETH sequence diagram, shown in Figure 61, it looks extremely hectic. By
far the ETH subprotocol is captured the most post-handshake, and many communications are
handled concurrently, making it rather difficult to track. There are 13 different types of ETH
messages, starting off with the Status (0x00) message. This message informs its peers of its
current state and is sent just after the connection is established prior to any other ETH
subprotocol messages. After this Status message, there are three high-level tasks that can be
performed with the use of the ETH capability, which are chain synchronization (yellow), block
propagation (green) and transaction exchange (blue). These tasks use disjoint sets of messages
and clients typically perform them as concurrent activities on all peer connections.

RLPx ETH

Node A Node B i Node X

— RLPx Hanshake RLPx Hanshake —-

Chain
Synchronization

; ETH Status

ETH Status— | ETH Status— |

(T

—_ ETH Status
; ____1 NewPooled H
. ——NewBlock— | TransactionHashes™ >

Block
Propagation
e ! NewEool'Ed — ! Transaction
i GetBlockHeaders #*— TransactionHashes i Exchange

1
H —_—

BlockHeaders , GetPooledTransactions

NewBIockHashes__,f
' GetBlockBodies : PooledTransactions

P Transactions

’ GetReceipts— | i

: Receipts——
Figure 61: RLPx ETH Capability Message Sequence Diagram

59

Starting with chain synchronization, nodes that have the ETH capability are expected to have
knowledge of the complete chain of all blocks from the genesis block (the very first starting
block which is in the genesis.json) to the current and latest block. After connection, both peers
send the Status message, which includes the Total Difficulty or TD and hash of their “best”
known block. The client with the worst TD then proceeds to download the block headers using
the GetBlockHeaders (0x03) message, verifies the proof-of-work values then fetches the block
bodies using GetBlockBodies (0x05). These messages are responded to with BlockHeaders
(0x04) and BlockBodies (0x06). Note that these steps can happen concurrently, and upon
receiving these block bodies, the Ethereum Virtual Machine is used to recreate the state tree and
receipts. This process can be very timely for new nodes joining a previous existing network as
there might exist quite a bit of block bodies to download.

In terms of block propagation, there really exists only two message types, NewBlock (0x07) and
NewBlockHashes (0x01). Block propagation deals with newly-mined blocks that must be
relayed to all nodes on the network. The NewBlock message is used to announce a new block to
a peer, where the peer will then verify the validity of the block by checking whether the proof-of-
work value is valid. Once it has validated the new block, it also sends out the block to a small
fraction of connected peers using the NewBlock message as well. The recipient also validates the
header information, importing the block into its own local chain and executing all the
transactions contained in the block, which computes the blocks “post state”. The blocks “state-
root” must match the computed post state root. This ends processing required on the new block
and it is considered fully valid, thus sending out a NewBlockHashes message about the block to
all the peers which it didn’t notify earlier.

It is important to understand that the “hashes” messages in the ETH protocol are usually used as
a notification of something new. Due to the decentralized nature of the peer-to-peer network,
many messages may be received that are the same, this enforces chain security and redundancy
but is very intensive on the network. For example, using the diagram below, Node B mines a
new block and sends out a New Block message to Node A. Node A will then validate the block
and the header information. Node A will also send a NewBlock message to roughly the square
root of the total number of peers. Node A will also send out a NewBlockHashes to the peers that
Node A didn’t send a NewBlock message to. This is because one of the other nodes should
receive the block via a NewBlock from another peer. If the node did not receive the block, but
received just the NewBlockHashes, then the peer can request the block, which would be part of
chain synchronization.

The last task that is fulfilled with the ETH capability is transaction exchange. All nodes
exchange pending transactions in order to relay them to miners which will pick them for
inclusion into the blockchain. Client implementations can vary on the number of pending
transactions they keep track of, which is known as the “transaction pool”. When a new peer

60

connection is established, the transaction pools on both sides of the communication must be
synchronized. This is done first with a NewPooledTransactionHashes (0x08) message, which
sends the transactions that are in the local pool to the peer. Each node upon receiving this
message collects the transaction hashes which it doesn’t have in its own local pool. The nodes
request these unknown transactions with the GetPooledTransactions (0x09) message and receive
the transaction with the PooledTransactions (0x0a) message. Similarly to block propagation, new
transactions are propagated with the Transactions (0x02) message which relays complete
transaction objects which are sent to a small group of connected peers. Transaction propagation
is also carried out with the NewPooledTransactionHashes message, in which other peers can then
request specific unknown transactions.

Transaction receipts record transaction outcomes in blocks. A receipt is formally defined by
Ethereum as “a proof-of-computation and contains information about the entire execution:
amount of gas used, contract address, log entries and the status code (success or failure)” [34].
These receipts are stored individually on each client in a receipt trie. Nodes that want to get the
receipts pertaining to a block can utilize the GetReceipts (0x0f) message, followed by a response
with a Receipts (0x10) message.

Now, let’s take a look at the dissection of each of these messages found in the ETH subprotocol,
starting out with the messages for chain synchronization. Each message as we stated before is
RLP encoded, meaning the schema for each of the messages needs to be known in order to get
“named values”, as the encoded RLP data just provides the values. Again, PYDEVP2P provides
a custom RLP implementation class called “RLPMessage”. This provides better tooling for
deserialization of RLP encodings into a more human readable key/value dictionary that can be
displayed more easily in Wireshark. So, each of the capability messages for ETH extend off of
the “RLPMessage” class to provide methods for decoding/deserializing RLP and then morphing
the data into a python dictionary.

As stated before, the Status message is sent before all other ETH capability messages. As seen in
Figures 62 and 63, the dissection output for the ETH Status message, along with the Version,
Network ID, Block Hash, Genesis, Fork Hash and Fork next values. Below, we can see the
Bootnode and Node 1 syncing their chain, relaying their Network ID which in this scenario we
manually set to “12345” followed by the hash of the genesis block, utilizing ETH version 68.

61

2 D.001846500 10.1.0.18

178 30303 _. 39436 [ETH Status] Type=Status Code=0 Len=64
178 39436 . 30303 [ETH Status] Type=Status Code=0 Len=64

23 ©.0019862060 10.1.1.18 10.1.8.18 RLPX

Frame 22: 178 bytes on wire (1424 bits), 178 bytes captured (1424 bits) on interface br-d2788e2c7b9b, id @
Ethernet II, Src: 82:42:9a:01:01:02 (02:42:0a:01:01:02), Dst: 92:42:0a:01:01:0a (02:42:0a:01:81:0a)
Internet Protocol Version 4, Src: 19.1.8.1@, Dst: 18.1.1.10
Transmission Control Protocol, Src Port: 30303, Dst Port: 39436, Seq: 599, Ack: 666, Len: 112
Ethereum RLPx Protecol
~ Frame Header: BaG99@aacaael6if80b3cd7B1l06240Ta3bOcB92812eBed9Tre6d8630T3b7ab212

Decrypted Header Data: 808038cZE80880000000008GE0B0GORED

Header MAC: 3b0c092812e8e9ffe6dB630T3bTa5212

Frame Body MAC: 02c4a6428a2d31T8c49Tb393c145753cC

Frame Size: 57

Read Size: G4

Header Data: Capability ID: 8, Context ID: @
= Frame Body: b94bic4933fT4ccld59ae22189a0ae740bc2661bf18e0cdeaT66are94e77d8TEd5%9ee23b..

Type: [ETH Status] Type=Status Code=0

Capability: ETH

Code: @

Version: 68

Network ID: 12345

Block Hash: @1

Genesis: 567e85b915befhlad32e3dc7c54d031279d116d30567840878eb10b%ede683ddd

Fork Hash: 567e85b915befblad32e3dc7chb4dd312r9d116d3056784078ebl0b%edeb83ddd
Fork Next: None

Figure 62: RLPx ETH Status Packet Bootnode => Node1

178 39436 . 30303 [ETH Status] lype=status Code=0 Len=b4

Frame 23: 178 bytes on wire (1424 bits), 178 bytes captured (1424 bits) on interface br-d2788e2c7h9b, id ©
Ethernet II, Src: 82:42:9a:01:81:0a (©2:42:0a:91:01:0a), Dst: ©2:42:0a:01:01:02 (02:42:0a:01:01:02)
Internet Protocol Versionm 4, Src: 10.1.1.160, Dst: 10.1.06.10
Transmission Control Protocol, Src Port: 39436, Dst Port: 30303, Seq: 666, Ack: 711, Len: 112
Ethereum RLPx Protocol
» Frame Header: Ba6990aacaaelf3fBOb3cd7B106240Taba23bedB8db43eab3dvThdd4al7b42d9916

Decrypted Header Data: 008039c2B8080000080800EE0000EERE0

Header MAC: Ga23be98db43eab37b4d4al7h42d9916

Frame Body MAC: 03bB81B07T92Ta2475562cd3bT472cT708
Frame Size: 57

Read Size: 64
Header Data: Capability ID: @, Context ID: @

= Frame Body: b94bl1c49337f4ccd59ae22189a0ae740bc2661bT18e8cdearbbaced4e77dET8d59ee23b..
Type: [ETH Status] Type=Status Code=0
Capability: ETH
Code: @
Version: 68
Network ID: 12345
Block Hash: 81

Genesis: 567e85b915befhlad32e3dcTc54d0312F9d116d3056784078ebh10b%ede683ddd
Fork Hash: 567eB85b915befblad32e3dc7c54d031279d116d3656784078eb10h%ede683dd4
Fork MNext: None

Figure 63: RLPx ETH Status Packet Node1 => Bootnode

Next, we then would see new clients that entered the network or clients periodically want to
synchronize their own local chains. This is done utilizing GetBlockHeaders and GetBlockBodies
along with the response of BlockHeaders and BlockBodies respectively. The RLP encodings for
these messages can contain a variable length of indeterminate size. Therefore a “CountableList”

RLP type is used to represent an unknown list length of a certain value, shown below in Figure
64 the RLP schema definition for these 4 messages.

62

("Limit", big_endian_int),
=", big_endian_int))

ge):

)", big_endian_int)
<", CountablelList(BlockHeader)))

ge):
big endian_int),
5", Countablelist(hex_wvalue)})

a):
big endian_int),
ies”, CountablelList(Block 1Y

Figure 64: RLPx Capabilities.py RLP Message Schema Definition

The ETH BlockBodies message can become extremely large, as each contiguous block will be
sent in response to a GetBlockBodies message. In the DEVP2P ETH specification, there is a
software limit for each BlockBodies message of roughly 2MB to be sent at a time, where more
BlockBodies will have to be requested if this cap is matched. Since this is a software limit, this is
not handled by the standard TCP assembled packets, however it has to manually stitched
together by the dissector itself. Luckily, the initial frame header tells us the size of the expected
data, therefore the dissector can store the packet data while each packet comes in until the full
length as denoted by the frame header is captured. Then with all this data, the dissector is finally
able to dissect the entirety of the data. While waiting for the data, the packets will still be
displayed in Wireshark as “RLPxTempMsgs”, then once all the data is retrieved, the data will be
output like normal.

Relating it back to the scenario, the Bootnode wants to get the block headers from Node 1 in
order to synchronize its own local chain, seen in Figure 65. Followed by Node 1 responding with
a BlockHeaders message, as seen in Figure 66. Note the “request id” field matching in both of
the outputs. Each of the roots display the root hashes of the Merkle trie nodes. Lastly, as these
capabilities are carried out concurrently, Node 1 is also requesting the full block bodies from
Node 3 seen in Figure 67, with Node 3 responding in Figure 68.

63

8 53.921320362 10.1.0.10 10.1.1.10 8 30303 . 39436 [ETH GetBlockHeaders] Type=GetBlockHeaders
429 53.921336162 10.1.1.18 10.1.8.18 TCP 66 39436 - 30303 [ACK] Seq=18G66 Ack=1207 Win=64128 Len=0 TS\
430 53.929002262 10.1.8.18 10.1.1.1@ DEVP2P 213 30303 _ 30304 [DiscoveryV4 FINDNODE] Version=4 Kind=3 Ler
431 53.936721262 10.1.1.18 10.1.8.18 RLPX 418 39436 - 30303 [ETH BlockHeaders] Type=BlockHeaders Code=¢

Frame 428: 178 bytes on wire (1424 bits), 178 bytes captured (1424 bits) on interface br-d2788e2c7b9b, id @
Ethernet II, Src: 02:42:0a:01:91:02 (02:42:0a:01:01:02), Dst: ©2:42:0a:01:01:0a (02:42:0a:01:01:0a)
Internet Protocol Version 4, Src: 10.1.0.10, Dst: 19.1.1.10
Transmission Control Protocol, Src Port: 30303, Dst Port: 39436, Seq: 1095, Ack: 1866, Len: 112
Ethereum RLPx Protocol
= Frame Header: 5cG8dfebada935dd7441548676TT117313bbT5802c5eb8bce6b95ccded5cacdd
Decrypted Header Data: 008032c2808000002000800000080000
Header MAC: 13bbf5882cE5ebBbcebbS5ccd4elbcachl
Frame Body MAC: 1e74a5f4fdi62cdbl34aabd®@22054fa7
Frame S5ize: 50
Read Size: 64
Header Data: Capability ID: ®@, Context ID: 0@
= Frame Body: 69TB4f3ecabed2f261006918b3c3bcTda%ad7Tooh6688D049ar 4714009546 94755076,
Type: [ETH GetBlockHeaders] Type=GetBlockHeaders Code=3
Capability: ETH
Code: 3
Request ID: 4751997750760308084
Request:
Start Block: 4aba67236d0c671803a1671518170b525h4c74d4302830279447442F1aeedbd
Limit: 2
Skip: 83
Reverse: 1

Figure 65: RLPx ETH GetBlockHeaders Packet Bootnode => Node1

428 53.921320362 10.1.0.1@ 10.1.1.10 RLPX 178 30303 _ 39436 [ETH GetBlockHeaders] Type=GetBlockHeaders Code=3 Len=64

429 53.921336162 10.1.1.10 10.1.9.10 TCP 66 39436 _ 30303 [ACK] Seq=1866 Ack=1207 Win=64128 Len=0 TSval=3258867040

430 53.929082262 10.1.0.10 16.1.1.10 DEVP2P 213 30303 _ 30304 [DiscoveryV4 FINDNODE] Version=4 Kind=3 Len=171
10.1.0.10 = [

418 39436 . 30303 [ETH BlockHeaders] Type=BlockHeaders Code=4 Len=304

431 53.936721262 10.1.1.18

Frame 431: 418 bytes on wire (3344 bits), 418 bytes captured (3344 bits) on interface br-d2788e2cyb%b, id @
Ethernet II, Src: 82:42:0a:01:01:0a (02:42:0a:01:01:0a), Dst: 02:42:0a:01:81:02 (02:42:0a:01:01:02)
Internet Protocol Version 4, Src: 18.1.1.16, Dst: 16.1.0.1@
Transmission Control Protocol, Src Port: 39436, Dst Port: 30303, Seq: 1866, Ack: 1207, Len: 352
Ethereum RLPx Protocol
~ Frame Header: 77d4b4910597fd397cb8dcOf8cBO0838101344cf28eb0b8eBdfba97b472d01c2
Decrypted Header Data: 008124c2808000000000000000000000
Header MAC: 181344cT2B8eb958e8df5ad75472d01c2
Frame Body MAC: 92eddlleb®fdfdfdB52adf77e0bbb347
Frame Size: 292
Read Size: 384
Header Data: Capability ID: @, Context ID: @
+ Frame Body: 5afcc636dfbc3d574adf5e6ded fda74076455c7a674b170793ac31749d9c92b9e89dd68d..
Type: [ETH BlockHeaders] Type=BlockHeaders Code=4
Capability: ETH
Code: 4
Request ID: 47519977507608308884
Headers:
Headers #1:
Parent Hash: 567e85b8915befblad3Ze3dc7c54d031279d116d3056784078eb10b%ede683ddd
Ommers Hash: ldcc4de8dec75d7aabB85b567b6ccd41ad312451h948a7413T0a142Fd40d49347
Coinbase: 41159606b6240T725e969a3F1f342fT65904adec
State Root: b4a@48dfb5c6clabbclcfbOf385aBB88906Td4c17a5c23892dd9f848beeT70Fd
Txs Root: 56e81f171bcch5a6ff8345e692c0786e5b48e01b996cadcOP1622fh5e363b421
Receipts Root: 56e81f171bcc55a6ff8345e692c0786e5h48e01b996cadcBBl1622Th5e3630421
ER Tl e TeTe ool TuTole]ele T sl elele T To T lele T a e T e o Ta o e e TeTe o RuTe e T ln e TeTaTeTe [e T TuTole e e ntolel TaT s Tn TeleTo T Ta Tl eTa T o e T Tl s TaReTel T u el TeTaTele e e TaaTele e eTe nfeTele e n el
[elelelelolentoleleleTeslolelel T TaleToleleTolala T e Te T e Te T e ToRe o aTe e e Tetele T e T Tutotele T e tntoleleTaT e Tal e Telele T lauTeleTo ol e e Tl teRetele e ol TeTetela ol Intalelel s eTe utotel Tt tu ol
[elelelululeTutoleleleTe TeTololel el TaeToleleTolala T TeTu o o Te T e ToRu o e Te e e TeTeTe el e T Tulolel e e Tutofele el To e Telele T aule e T oTe e Tl e TaRe el T e el eTetule el TuluTele eTeTe ufolel Tt Tu el el
[eleleloleleTaloleleleTelalololele ol Tolelelolal el TelaTo o e Te e ToRTo e Te e o TeTole T e T Tulolelol e nfofele ol Tololelelo T e TuleTa ol e e Tl el lel Tl ol eTelula o] Tulalele] eTeTe Tnfolel Ll o]
Difficulty: 131872
Number: 1
Gas Limit: 8887811
Gas Used: ©
Time: 1672212661
Extra Data: dBB3010bR008467657468886767312e31382e31856c6967578
Mix Digest: a3BelB1795c2a957babdff1a6888cddTacc3dd4667d6227738c0253606750214
Block Nonce: 6338bT91540413e8

Figure 66: RLPx ETH BlockHeaders Packet Node1 => Bootnode

64

3388 174.35455044.. 10.1.1.10 10.1.3.3@ RLPX 178 59164 . 30306 [ETH GetBlockHeaders] Type=GetBlockHeaders Code:
3389 174.3545928.. 16.1.3.30 16.1.1.18 TCP 66 30306 — 59164 [ACK] Seq=3309 Ack=8224 Win=64128 Len=0 TSwval=1:
3390 174.3547858.. 10.1.3.360 10.1.1.1@ RLPX 418 30306 — 59164 [ETH BlockHeaders] Type=BlockHeaders Code=4 Len:
3391 174.3907732.. 10.1.2.20 10.1.1.1@ DEVP2P 213 30305 _ 30304 [DiscoveryV4 FINDNODE] Version=4 Kind=3 Len=171
3302 174.3909729.. 10.1.1.10 10.1.2.28@8 DEVPZP 386 30304 - 30305 [DiscoveryV4 NEIGHBORS] Version=4 Kind=4 Len=34:
3303 174.46008351.. 16.1.1.18 16.1.3.30 TCP 66 59164 - 30306 [ACK] Seq=8224 Ack=3751 Win=64128 Len=0 TSval=2:

4555273... odladl: odla & 2 59164 _ 30306 [ETH GetBlockBodies] Type=GetBlockBodies Code=5
3395 174.4557507.. 10.1.3.30 10.1.1.1@ RLPX 418 30306 - 59164 [ETH BlockBodies] Type=BlockBodies Code=6 Len=3t
3306 174.4557614.. 10.1.1.10 10.1.3.30 TCP 66 59164 _. 30306 [ACK] Seq=8320 Ack=4103 Win=64128 Len=0 TSval=2:

Frame 3394: 162 bytes on wire (1296 bits), 162 bytes captured (1296 bits) on interface br-d2788e2c7b%h, id @
Ethernet II, Src: 02:42:0a:01:01:0a (02:42:0a:01:01:0a), Dst: 02:42:0a:01:01:02 (02:42:0a:01:01:02)
Internet Protocol Version 4, Src; 18.1.1.10, Dst: 10.1.3.30
Transmission Control Protocol, Src Port: 59164, Dst Port: 30306, Seq: 8224, Ack: 3751, Len: 96
Ethereum RLPx Protocol
= Frame Header: fc7ed@67771badcdb@e93al443dT1h2ee30f70e5h569drF3913cTT7405d12785

Decrypted Header Data: G0802fcZERE08E00G00E0GEE00BRE000

Header MAC: e39770e5b569dff3973cff7405d12785

Frame Body MAC: B9b90530c85fe9991c38e@2ffecarafe

Frame Size: 47

Read Size: 48

Header Data: Capability ID: @, Context ID: @
+ Frame Body: 85887806165e28eadbd500d45aa71704340352b8614ae333Te2c5TeB868715829d388Fa02..

Type: [ETH GetBlockBodies] Type=GetBlockBodies Code=5

Capability: ETH

Code: 5

Request ID: 11239168150708129139

Block Hashes:

Block Hashes #1: 60b84798aaf1f76c3deac461e5083873b6d8ad49335e661ecOfO4162d1227d2¢c

Figure 67: RLPx ETH GetBlockBodies Packet Node1 => Node3

3395 174.4557507..

5 PEER 418 30306 . 59164 [ETH BlockBodies| Type=BlockBodies Code=b
3396 174.4557614.. 10.1.1.

10.1.3.38 TCP 66 59164 . 30306 [ACK] Seq=8320 Ack=4103 Win=64128 Len=0 Tt

Frame 3395: 418 bytes on wire (3344 bits), 418 bytes captured (3344 bits) on interface br-d278Be2cib9b, id ©
Ethernet II, Src: 92:42:0a:01:01:02 (02:42:0a:81:01:02), Dst: ©02:42:0a:01:01:0a (02:42:0a:01:01:0a)
Internet Protocol Version 4, Src: 10.1.3.360, Dst: 10.1.1.16@
Transmission Control Protocol, Src Port: 30306, Dst Port: 59164, Seq: 3751, Ack: 8320, Len: 352
Ethereum RLPx Protocol
~ Frame Header: 84058T17T28ccedb@0eabbaee3d12d467351e379c6ee2324d4daddl7 735673719
Decrypted Header Data: 009124c2B808000000000000200000000
Header MAC: 351e379cGee2324d4daddi7735673719
Frame Body MAC: 3bdaa329fbaffZ80ce7bel8558270dad
Frame Size: 292
Read Size: 304
Header Data: Capability ID: @, Context ID: @
~ Frame Body: c4c2f17678b2a65hebb6836d0d4ded09bbd427d2c3d425038303c255b08436813b2Tar3s..
Type: [ETH BlockBodies] Type=BlockBodies Code=6
Capability: ETH
Code: 6
Request ID: 11239168150788129139
Block Bodies:
Block Bodies #1:
Transactions: N/A
ommers:
Ommers #1:
Parent Hash: 7b32c@691f1b4b7b3ec947833d95869030261d56350d1b3757dB42b95183C780
Ommers Hash: ldcc4deB8dec75d7aab85b567b6ccd41ad3124510948a741310a1427d40049347
Coinbase: 1f@cebf80TR5de1213401c6d0as8e215c8ce63sf
State Root: aede62e939chd0aba362a83d2a@7a715b9hbacaede5dTocdatisg66as084ea2l
Txs Root: 56e81f171bcc55a6fTB345e692c0TB6e5b48e01b996cadcbB1622fb5e363b421
Receipts Root: 56e81f171bcch5abfT8345e692c0TB6e5b48e01b906cadcbi1622Th5e363b421
Bloom: 00002000006000020000000008R0000E0000RE000RRREC0RERERRERENERERREREAE0E0000GREAEAEE0E0GEE
B000200000000000000000000ERR000R0000R00000E0000E00E0RERE00REREEREREA0EED0DEREAEAEE0000EE
B000200000000000000000000ERR000R0000R00000E0000E00E0RERE00REREEREREA0EED0DEREAEAEE0000EE
B000200000000000000000000ERR000R0000R00000E0000E00E0RERE00REREEREREA0EED0DEREAEAEE0000EE
Difficulty: 133258
Number: 38
Gas Limit: 8302244
Gas Used: 0
Time: 1672212828
Extra Data: d883810b0E84676574688867673123138231856c69607578
Mix Digest: c89d18T41292d1ed7b6095bBd25Tb2e3TTcOb6a2ealfal68Ta7cO7f6calf92c4ib
Block Monce: 358c32803d012e68

Figure 68: RLPx ETH BlockBodies Packet Node3 => Node1

65

The ETH/68 standard is newer than the actual devp2p markdown documentation, therefore there
are some differences in the dissection output than what is seen in the documentation. These
differences were found directly from the Go Ethereum source code implementation for the ETH
capability. Next, in terms of block propagation, there are only two messages that handle this,
specifically NewBlock and NewBlockHashes.

Now, taking a look at Figure 69, the dissected NewBlock message from Node 1 to the Bootnode.
This is done to propagate the new block to the Bootnode, where the Bootnode will then validate
the information, and send out the same NewBlock message to its own peers as well for
validation. This new block shows “number 1” as it is the first block mined, with zero transactions
that have taken place specifically. Node 1 then sends out the NewBlockHashes message out to
other connected nodes on the network for validation of the hashes as well, as seen in Figure 70.

418 39436 . 30303 [ETH NewBlock] Type=NewBlock Code=7 Len=304

Frame 316: 418 bytes on wire (3344 bits), 418 bytes captured (3344 bits) on interface br-d2788e2cibSb, id @
Ethernet II, Src: 82:42:0a:01:01:0a (02:42:0a:01:01:0a), Dst: 02:42:0a:01:01:02 (02:42:0a:01:01:02)
Internet Protocol Version 4, Src: 18.1.1.10, Dst: 10.1.6.16
Transmission Centrol Protocol, Src Port: 39436, Dst Port: 30303, Seq: 1034, Ack: 967, Len: 352
Ethereum RLPx Protocol
= Frame Header: 64d65c410972a7b5214h8c7467164bB0GB023632128915768020e152fd7a71d9
Decrypted Header Data: 00012ac28080000000000000000C0000
Header MAC: 6882363e128915T68e20e152fd7a71d9
Frame Body MAC: dc683e5974ef8717d70d3e38aeBa751b
Frame Size: 298
Read Size: 304
Header Data: Capability ID: @, Context ID: @
= Frame Body: 693eea%9e82e8980857b2982cd066490045593cd396eee79T1cheecTdd4b0décaltbldbce..
Type: [ETH NewBlock] Type=NewBlock Code=7
Capability: ETH
Code: 7
Block:
Header:
Parent Hash: 567e85b915befblad32e3dcvc54d031279d116d3056784078eh10b0e4e683dd4
Ommers Hash: ldccdde8dec75d7aab85b567h6ccd41ad3124510b948a7413T0a1427d40d49347
Coinbase: 41159606b62487725e960e37173427T65904adec
State Root: D4a048dfh5c6cf9a56clcfbOT385a8888806Td4c17a5c23892dd9T848BbeeT VO d
Txs Root: 56e81f171bcc55a6fra345e692c0T836e5h4801b096cadcR1622Th5e363b421
Receipts Root: 56e817171bcc55a6TrB345e692c0786e5h48201D896cadc001622Th5e363b421
Bloom: 00OEEE2000E00000GE0D0EEEE0E000E00E0E0RE0ARE0E000E0ERD0000EEOE000EE00REE00000000E000EREER00RE00
[elafelotolelelololalealoleloleleTeInlote e e Te ol olel ol uledeleleTeRolnlelotelalelelalalatelelelotolololelofaloReTeToo ol e e Tete ot elel ofulofe]e e loTolal e el le ot oleTa T otola e Tale o]
[e[feletelelelololal el le o TeleTeIntote e e Te el olel ol TnledeleleTeRelul e atelel elel elalatelelelotolalalelofale e e To o ol e e Tl eleT efulofele e lo ot al e el oo ot el eTe T total el e o)
[elfulotelelelotolaleaTele ol eteTeuloteTe e Te el ol et al fufeteleletRelalelatelaloleletalote el elotolelolatalulo e eTo o ofel e e TeTe ot eleT el ulofel e ToTol ol e eTete ot oleTe T tala e TaTe o)
Difficulty: 131072
Number: 1
Gas Limit: 8607811
Gas Used: 0
Time: 1672212661
Extra Data: d8B3018b008467657468886767312e31382e31856c696e7578
Mix Digest: a3Bel®1795c2a857habdff1a6888cd47acc3dd4667d622F738c0253606750214
Block Monce: 6338bT91540413e8
Transactions: N/A
Ommers: N/A
Total Difficulty: 131873

Figure 69: RLPx ETH NewBlock Packet Node1 => Bootnode

66

. .. 10.1.1.18 1.2, 162 30304 _. 49078 [ETH NewBlockHashes] Type=NewBlockHashes
1396 109.1982318.. 10.1.2.20 108.1.1.1@ TCP 66 49878 . 30304 [ACK] Seq=1618 Ack=6698 Win=64128 Len=0 -
1391 109.1983322.. 10.1.1.10 10.1.8.18 RLPX 418 39436 - 30303 [ETH NewBlock] Type=NewBlock Code=7 Len=!
1392 109.1983729.. 10.1.1.16 10.1.3.38 RLPX 162 59164 - 38306 [ETH NewBlockHashes] Type=NewBlockHashes

Frame 1389: 162 bytes on wire (1296 bits), 162 bytes captured (1296 bits) on interface br-d2788e2c7bSb, id ©
Ethernet II, Src: 02:42:0a:01:01:0a (02:42:0a:01:01:0a), Dst: 082:42:0a:01:01:02 (02:42:0a:01:01:02)
Internet Protocol Version 4, Src: 16.1.1.10, Dst: 18.1.2.28
Transmission Control Protocol, Src Port: 30384, Dst Port: 49078, Seq: 6602, Ack: 1618, Len: 96
Ethereum RLPx Protocol
~ Frame Header: 1cT7669ad627e084d0553Teel88T3bcTedebd%alo3982bibalbec3TO02271bcBd

Decrypted Header Data: 008027c2808800008000000000060000

Header MAC: 3eb49a893902blbalbec3f982271bced

Frame Body MAC: ed4dl15B8eal35@ébeldfrdsbdfafcarafafe

Frame 5ize: 39

Read Size: 48

Header Data: Capability ID: @, Context ID: ©
+~ Frame Body: dc5d1d@42eB@326bdcd4Thealde98e189987dbd3db69614elc7d2ad28e135bT4d5d194734e..

Type: [ETH NewBlockHashes] Type=NewBlockHashes Code=1

Capability: ETH

Code: 1

Block Hashes:

Block Hashes #1:
Block Hash: c7870822ab6914729bT58908f5d6e16416bb3ad9ca2b527d807bd204032242ca9

Number: 17
Figure 70: RLPx ETH NewBlockHashes Packet Node1 => Node2

The last piece of the ETH capability is transaction exchange and propagation. The
NewPooledTransactionHashes message, seen in Figure 71, is used as a notifier to other nodes of
what transactions are in their own local transaction pool. When other nodes receive this message
and check this message with their own local pool, they can then request unknown transactions
using the GetPooledTransactions message, followed by a PooledTransactions message, seen in
respectively. Lastly, new transactions are propagated throughout the network using the
Transactions message, as seen in Figure 74. GETH utilizes the “Legacy” transaction format,
however, it seems that there is a “newer” format that is considered “typed” and not in a RLP
format. This implementation was not found in the most up-to-date version of GETH, therefore
will not be dissected.

Looking below, we see Node 1 sharing its local transaction pool with Node 2 in Figure 71, with
the NewPooledTransactionHashes message. Node 2 will then compare these transaction hashes
with its own local transaction pool. Node 2 will then request any of the transactions that it does
not have locally, as seen in Figure 72, utilizing the GetPooledTransactions message. Notice the
same exact 3 transaction hashes are being requested from Node 2 to Node 1 that Node 1
broadcasted out with the NewPooledTransactionHashes message. Node 1 then responses to the
request from Node 2 utilizing the PooledTransactions message seen in Figure 73, where the
request id matches that of the request sent by Node 2, and each of the transaction details are
listed out for each hash requested. Lastly, for new transactions, like ones carried out by Node 1,
they are propagated throughout the network utilizing the Transactions message, as seen in Figure
74, specifically from Node 1 to Bootnode.

67

No. Time Source Destination Protocol Length Info
10.1.1.18 RLPX

162 44500 . 30304 [ETH NewPooledTransactionHashes] Typdg

v |Frame 6311: 162 bytes on wire (1296 bits), 162 byfes captured (1296 bifs) on interface br-T/arl6816
v Ethernet II, Src: 02:42:0a:01:01:02 (02:42:0a:01:01:02), Dst: 02:42:0a:01:01:0a (02:42:0a:01:61:0a)
v Internet Protocol Version 4, Src: 10.1.3.30, Dst: 10.1.1.1@

b

Transmission Control Protocol, Src Port: 44586, Dst Port: 303084, Seq: 6874, Ack: 6799, Len: 96
Ethereum RLPx Protocol
~ Frame Header: 6elDc7065TBb114830dd44a9857074a38240Tc0d2c92c5d8ch0e439d2Tdedr4l

Decrypted Header Data: 908029c2E808080000000000200000000

Header MAC: 8240fc9d2c92c5dacSoed3od2rdedfdl

Frame Body MAC: 5094262b6494d3a31b55cded98T90680
Frame Size: 41

Read Size: 48
Header Data: Capability ID: ®, Context ID: @
= Frame Body: ae3alf936070b5412b6d6198a3c4fod4ed757074ca83778db3achl3b7785dTTOd4390TE..
Type: [ETH NewPooledTransactionHashes] Type=NewPooledTransactionHashes Code=8
Capability: ETH
Code: 8
Types: @
Sizes:
Sizes #1: 189
Hashes:

Hashes #1: dB8ec3470253588a4d2947361349085928e48465aeal5ddbd9bat53894b8b51Th
Figure 71: RLPx ETH NewPooledTransactionHashes Packet Node3 => Node1

13342 414.501972851 10.1.2.20 10.1.1.18 RLPX

pe=GetPooledTransactions

Frame 13342: 242 bytes on wire (1936 bits), 242 bytes captured (1936 bits) on interface br-d357Tf39d3373, id @
Ethernet II, Src: 02:42:0a:01:01:02 (02:42:0a:01:01:02), Dst: 02:42:0a:01:01:0a (02:42:0a:01:01:0a)
Internet Protocol Version 4, Src: 10.1.2.20, Dst: 16.1.1.16

Transmission Control Protocol, Src Port: 40824, Dst Port: 30304, Seq: 942, Ack: 951, Len: 176
Ethereum RLPx Protocol
~ Frame Header: ad09baedc838015fcB583f3bf5fcf@337769008eaf36fd2bddd7dal0682610fc

Decrypted Header Data: 800874c2BR8000000080000800000000

Header MAC: 7760008eaf36fd2Zbddd7dal®6B2618fc

Frame Body MAC: 36T5fe957df7BaaabPedb3bccadberl2
Frame 5ize: 118

Read Size: 128
Header Data: Capability ID: @, Context ID: @
v Frame Body: 6d47ael3efeafbd6abab5f9TB33bd1d22345dcf6d9adbd570bda3567829d422465c4a3ee...
Type: [ETH GetPooledTransactions] Type=GetPooledTransactions Code=9
Capability: ETH
Code: 9
Request ID: 13021212502356346549
Transaction Hashes:

Transaction Hashes #1: d17617cB853392c%e5c5c9eddBe748066abf1537e19375485cf1babf1f4e20094
Transaction Hashes #2: 1b2012aP62c94537d8874aa4700234487d3cd2744b5F5a716elfc2c2666babfc
Transaction Hashes #3: 2dc260f84a11e5554ef78bch75dbb9a7cfdbde6Teefde5a3ccdab3400T6d296e

Figure 72: RLPx ETH GetPooledTransactions Packet Node2 => Node1

68

13318 413. 902313952 10.1.1.10 10. 1 2.20 RLPX 242 30304 _. 48824 [ETH NewPooledTransactlonHashes] Type=NewPooledTransactionHashes
13344 414.502684651 10. .28 RLPX 434 36304 . 48824] =PooledTransactions Code=18 Len=328

Frame 13344: 434 bytes on wire (3472 bits), 434 bytes captured (3472 bits) on interface br-d35fT39d3373, id @
Ethernet II, Src: 82:42:0a:01:01:0a (02:42:02:01:01:0a), Dst: 02:42:0a:01:01:02 (02:42:0a:01:81:02)
Internet Protocol Version 4, Src: 10.1.1.10, Dst: 10.1.2.20
Transmission Control Protocol, Src Port: 30304, Dst Port: 40824, Seq: 951, Ack: 1118, Len: 368
P; t

0038a16282d4529F2c271c85d88d47378b34b6179b3141cd189baadi66ccfhed
Decrypted Header Data: G88137cZB08000000000020000000000
Header MAC: 8b34b61f9b3141cd189baadd66ccfbed
Frame Body MAC: b12ddlcd7d2f97cbfb5dab8aed72779c
Frame Size: 311
Read Size: 320
Header Data: Capability ID: @, Context ID: @
~ Frame Body: deBdef8acb09387279946e406a824a9230d7067122cTcdc200c3c28156c2956e63Tcledl..
Type: [ETH PooledTransactions] Type=PooledTransactions Code=18
Capability: ETH
Code: 10
Request ID: 13021212502356346549
Transactions:
Transactions #1:
Nonce: 2
Gas Price: 1000000000
Gas Limit: 21000
Recipient: 11beel7e6d6835aa46197998adh681ba3alb4435
Value: 5800000
Data: N/A
Wi 24725
R: 104861493266424766617222175809039306348969199407476495489510126670080211235447
S: 52220132430683352340920616205704640076346450046685864159529121818764975878567
Transactions #2:
Nonce: 1
Gas Price: 1000008000
Gas Limit: 21000
Recipient: 11beel7e6d6835aa46197990adb681ba3alh4435
Value: 2000000
Data: N/A
Vi 24726
R: 18021922969383316126935180671570094645035267334680393510644057925285303964544
S: 143114561519955651827426291480216383192752380933325103856188971239479766142193
Transactions #3:
Nonce: @
Gas Price: 10600008000
Gas Limit: 21000
Recipient: 1f@cebf80T05de1213401c6d0a58e215c8ce3nT
Value: 25008
Data: N/A
Vi 24726
R: 91563808658280443728870263147066553801988493720547686556698501032625170966981
S: 46034471930066481752150730597951652786227812671718522601325521732143273774610

Figure 73: RLPx ETH PooledTransactions Packet Node1 => Node2

3515 178.5738747.. 10.1.1.18 10.1.2.20 RLPX 162 30304 . 49078 [ETH NewPooledTransactionHashes] Type=NewPooledTransactionHashes
3516 178.5731414.. 10.1.2.20 10.1.1.10 TCP 66 49078 — [ACK] Seq=3778 Ack=13050 Win= 64123 Len-e TSval=965717939 TSecr=5
oal=als FIEEIS X 5 39436 p303 [ETH Transactions] Type=
3518 178.5732892.. 10.1.6.1¢ 10.1.1.1@ TCP 66 30303 - [ACK] Seq=6327 Ack=23402 Win= 64128 Len—e TSval=1157539549 TSecr=
3519 178.5767654.. 16.1.3.30 10.1.1.10 RLPX 162 30306 - [ETH NewPooledTransactionHashes] Type=NewPooledTransactionHashes
3520 178.5767557.. 10.1.1.1@ 10.1.3.3@ TCP 66 59164 [ACK] Seq=8768 Ack=4199 Win=G4128 Len=0 TSval=227701917 TSecr=12
3521 178.5778490.. 16.1.1.10 10.1.3.30 RLPX 162 59164 . [ETH NewPooledTransactionHashes] Type=NewPooledTransactionHashes
3522 178.5770750.. 10.1.3.30 10.1.1.10 TCP 66 30306 — [ACK] Seq=4199 Ack=8864 Win=64128 Len=0 TSval=1225209014 TSecr=2

Frame 3517: 226 bytes on wire (18088 bits), 226 bytes captured (1808 bits) on interface br-d2788e2c7b%b, id @
Ethernet II, Src: 092:42:0a:01:01:0a (02:42:0a:01:01:0a), Dst: ©2:42:0a:01:01:02 (02:42:0a:01:01:02)
Internet Protocol Version 4, Src: 10.1.1.10, Dst: 10.1.8.10
Transmission Control Protocol, Src Port: 39436, Dst Port: 30303, Seq: 23242, Ack: 6327, Len: 160
Ethereum RLPx Protocol
~ Frame Header: fffad5Td4033787687408%200e325c5e05062a5761e7dTalefeSTT4656TROTTT
Decrypted Header Data: 009070c2808 Qo0
Header MAC: 05862a5T6le7dfale9eSfr4656TR977T
Frame Body MAC: 50025232843db51T42dd2799bc443701
Frame Size: 112
Read Size: 112
Header Data: Capability ID: @, Context ID: @
~ Frame Body: 6d735918644c3Tedd18180chb6912efTR109T52846092a963389277cT7ThB2bT562420a278..
Type: [ETH Transactions] Type=Transactions Code=2
Capability: ETH
Code: 2
Transactions:
Transactions #1:
Nonce: @
Gas Price: 1080000000
Gas Limit: 21800
Recipient: 1lbeel7efdG835aa46197990adb681ba3alhd43s
Value: 2500000
Data: N/A
Vi 24725
R: 50805084333586194388966370958391602437338451510652132541988252685986450581036
S: 36428224884624016312651150295410362968840842274684184919434425858579114415856

Figure 74: RLPx ETH Transactions Packet Node1 => Bootnode

69

Lastly, receipts are found within the blocks themselves, however if new clients come online or
other clients want to verify transactions they are able to request receipts view the GetReceipts
message, followed by a Receipts message response as seen in Figures 75 and 76. In the
dissection environment, this was normally seen when newer clients would come online and had

to synchronlze transactions that took place prior to joining the network.
162 39436 — 30303 [ETH GetReceipts] Type=GetReceipts

4@19 192.5?12223m 10.1.0.16 10.1.1.180 RLPX 162 30303 — 39436 [ETH Receipts] Type=Receipts Code=

Frame 4618: 162 bytes on wire (1296 bits), 162 bytes captured (1296 bits) on interface br-d2788e2cibSb,
Ethernet II, Src: 02:42:0a:01:81:0a (02:42:0a:01:081:0a), Dst: 02:42:0a:01:01:02 (02:42:8a:01:01:02)
Internet Protocol Version 4, Src: 10.1.1.10, Dst: 10.1.0.10
Transmission Control Protocol, Src Port: 39436, Dst Port: 30303, Seq: 26954, Ack: 17735, Len: 96
Ethereum RLPx Protocol
~ Frame Header: Ga2cf3fcbcfa28cf0780947981dbae737d6e2e3d3cb2c7ocaalf5ea2atd65569

Decrypted Header Data: GE002TcZ8080000000000000000CR00E

Header MAC: TdEeZe3d3ch2cV5caalf%95eaZal465569

Frame Body MAC: 136521816eb556b0587d2565aca2blfl

Frame Size: 47

Read Size: 48

Header Data: Capability ID: @, Context ID: ©
~ Frame Body: 9celfb989158ccadi8deadd4B849ad3ecaet?247eadBa9dor49r5417979e2c3dB%0oebl3df7..

Type: [ETH GetReceipts] Type=GetReceipts Code=15

Capability: ETH

Code: 15

Request ID: 13126262220165916460

Block Hashes:

Block Hashes #1: ab6eBcBB61abc6T5555bb2e5365193eT38ca56c65214022082d14c52c53ceb55
Figure 75: RLPx ETH GetReceipts Packet Node1 => Bootnode

4019 192.5712223.. 10.1.0. B.1.1. 162 30303 — 39436 [ETH Receipts] Type=Receipts Code=16 Len=48

Frame 4819: 162 bytes on wire (1296 bits), 162 bytes captured (1296 bits) on interface br-d2788e2c7b9b, id @
Ethernet II, Src: 02:42:0a:01:01:02 (02:42:0a:01:01:02), Dst: 02:42:0a:01:01:0a (02:42:0a:01:01:0a)
Internet Protocol Version 4, Src: 10.1.8.16, Dst: 168.1.1.16@
Transmission Control Protocol, Src Port: 38363, Dst Port: 39436, Seq: 17735, Ack: 27050, Len: 96
Ethereum RLPx Protocol
~ Frame Header: a79b6@93608Td575a73e3cdfcebbb70219339405eed761al88cc860c462eccab
Decrypted Header Data: 00002ecZ808P00000RO0ROROODDEREOD
Header MAC: 19339405eed76lalB80ccB68cd62eccab
Frame Body MAC: 4cl5cdd5a6f9f32efe876f206ac3eldb
Frame Size: 46
Read Size: 48
Header Data: Capability ID: @, Context ID: @
~ Frame Body: 4f2d7e@9f3f7a3a309d8a9c04e8ffo723bTrEr544886117aa49T027TB007TO50746dd044...
Type: [ETH Receipts] Type=Receipts Code=16
Capability: ETH
Code: 16
Request ID: 1312626222016591046G0
Receipts:
Receipts #1:
Receipts #1 #1.
Post State Or Status: 1
Cumulative Gas: 21068
Bloom: GOE800EE08EERE0E0EEGEE00EE0AEE0E0AEGREEEER0REEEAEEREE0DAE0EEEREREREEEAE0AEE0AEREERREREEEEEAEE
(elelelslalolalelalslalelelele ol ale e Telnln e el sl alo]al sl 1o e ol u e T e ol i e Te ot e TelelaloT el ol e s a1 o]eT ol e uRe e e TaTo Tul e o Ta ol e (o Ta ol e el el e uRe el e TaTo R al el s o o]
(elelelstalo]alelalalalolelela ol ale et ntale e slalo]al el oo ol n]eTe ol i T e ot [Te el toTal ol e o Tal o n]eTa T efute e eT ot e Tal el o tal ol e taTaT ol e e el nte T el e ot laRal el o o o]
(elelelatale]alelalala el Telal el te e T ntn e Tetalale uT el 1o Ta o u e Ta ol uhe e aTe [TeTel e e ul o 1o Ta 1 ol e T e efnRe T e e aTe [Tu T e e le a1 o e TaTa o] e e e T nRe T e e ol [aRuleTa T8 o]
Logs: N/A

Figure 76: RLPx ETH Receipts Packet Bootnode => Node1

4.5.2 Dissecting SNAP Capability Messages

The SNAP protocol runs on the RLPx transport facilitating the exchange of Ethereum state
snapshots between peers. The protocol was originally an optional extension for peers that
supported the capability; however, with the release of ETH/67, SNAP has become mandatory for

70

state management amongst peers. The SNAP protocol aims to make dynamic snapshots of
current states available for peers, allowing for semi-real-time data retrieval. The SNAP protocol
is meant to run side-by-side with the ETH protocol, meaning it cannot be run without the ETH
protocol. The SNAP synchronization mechanism enables peers to retrieve and verify all the
account and storage data without downloading intermediate Merkle trie nodes. This allows the
final state trie to be reassembled locally, drastically reducing the networking load [35].

In Ethereum, the state trie is a Merkle tree comprised of leaves that contain valuable data, and
each node above is the hash of 16 children. Syncing from the tree’s root (the hash embedded in a
block header), the only way to download everything is to request each node individually [36]. A
trie node is a node in the trie data structure. In Ethereum, the trie nodes are used to store the state
of the blockchain. The state of the blockchain is the current state of all accounts and contracts on
the blockchain. The state is stored in a Merkle Patricia Trie, which is a modified version of a
Patricia Trie [37]. For example, every block header stores the roots of three trie structures:
stateRoot, transactionRoot, and receiptsRoot. The state trie represents a mapping between
account addresses and the account states. The account state includes the balance, nonce,
codeHash and storageRoot.

RLPx SNAP

Node A P Node B

RLPx Hanshake

'
——

5 GetAccountRange

’

«—AccountRange

" GetStorageRanges

g

«——StorageRanges

. GetByteCodes

!

«——DbyteCodes

T GetTrieNodes

'« IrieNodes

!

Figure 77: RLPx SNAP Capability Message Sequence Diagram

SNAP is used for getting quick snapshots to quickly build the Ethereum state locally, and the
typical sequence flow of the SNAP message can be seen in the above sequence diagram in
Figure 77. This starts off with a GetAccountRange (0x00) message, as seen in Figure 78. This
message requests an unknown number of accounts from a given account trie, intended to fetch a

71

large number of subsequent accounts from a remote node and reconstruct a state subtrie locally.
The response message, AccountRange (0x01), seen in Figure 79, returns a number of
consecutive accounts and the Merkle proofs for the entire range. Each SNAP message has a
mandatory “request id” field, which is used to track which response message correlates with
which request/get message.

53.963732462 10.1.0.10 106.1.1.10 30303 . 39436 [SNAP GetAccountRange] Type=GetAccountRange
436 53.963778562 10.1.6.1e 10.1.1.10 RLPX 146 30303 - 39436 [ETH GetBlockHeaders] Type=GetBlockHeaders (
437 53.995379062 10.1.1.18 16.1.6€.10 TCP 66 39436 . 30303 [ACK] Seq=2618 Ack=1495 Win=64128 Len=0 TSwv:
438 53.995499062 10.1.1.1f 10.1.0.10 RLPX 130 39436 - 30303 [ETH BlockHeaders] Type=BlockHeaders Code=4
439 53.995637962 10.1.6.18 10.1.1.10 RLPX 146 30303 - 39436 [ETH GetBlockHeaders] Type=GetBlockHeaders (
448 53.995792662 10.1.1.18 10.1.0.10 RLPX 1368 39436 - 30303 [SNAP AccountRange] Type=AccountRange Code=:

Frame 435: 194 bytes on wire (15562 bits), 194 bytes captured (1552 bits) on interface br-d2788e2c7b9b, id @
Ethernet II, Src: 02:42:0a:01:01:02 (02:42:0a:01:01:02), Dst: ©2:42:0a:01:01:0a (02:42:0a:01:01:0a)
Internet Protocol Version 4, Src: 18.1.8.18, Dst: 18.1.1.18
Transmission Control Protocol, Src Port: 30303, Dst Port: 39436, Seq: 1287, Ack: 2618, Len: 128
Ethereum RLPx Protocol
» Frame Header: 9c41e84674c67b76033581eT8ebd44a527617725d38bB5a8471Ma72e4%9dalc98

Decrypted Header Data: 800841c2803080000800000008008000

Header MAC: 2f617725d38b85aB471fa72e49dalc9s

Frame Body MAC: bb@81T7bEb38048cd5d8B7a325007044

Frame Size: &5

Read Size: 88

Header Data: Capability ID: 8, Context ID: @
~ Frame Body: 89%abcefGbf26BefGbaa3Zba7bbB6T6ecddlcdds7515ar7caccasd4666001c3316536415e6..

Type: [SNAP GetAccountRange] Type=GetAccountRange Code=0

Capability: SMAP

Code: ©

Request ID: 1976235410884491574

Root Hash: 56e81f171bcch5abff8345e692c0TB6e5bdBe1b996cadc@Bl1622fb5e363b421

Starting Hash: 000G20R0000000CORLEEGALEE0ARERE0EE0O00E0EREEE00L00000000DC0RGE

Limit Hash: @fffffffffffrrfffffrrrfrrrrrrrrrfrfffrrfrrrrfrrrrffffrrrfrererfriee

Stop Bytes: 65536

Figure 78: RLPx SNAP GetAccountRange Packet Bootnode => Node1

435 53.963732462 10.1.6.1@ 106.1.1.18 RLPX 194 38303 - 39436 [SNAP GetAccountRange] Type=GetAccountRange
436 53.963778562 10.1.6.1@ 106.1.1.18 RLPX 146 30303 . 39436 [ETH GetBlockHeaders] Type=GetBlockHeaders
437 53.995379062 10.1.1.1@ 16.1.6.18 TCP 66 39436 . 30303 [ACK] Seq=2618 Ack=1495 Win=64128 Len=0 T5v
438 53.995499862 10.1.1.1@ 10.1.8.18 RLPX 130 39436 . 38303 [ETH BlockHeaders] Type=BlockHeaders Code=4
439 53.995637962 10.1.6.1@ 10.1.1.18 RLPX 146 38303 . 39436 [ETH GetBlockHeaders] Type=GetBlockHeaders
440 53.995792662 16.1.1.10 10.1.8.10 39436 . 30303 [SNAP AccountRange] Type=AccountRange Code=

Frame 448: 130 bytes on wire (1040 bits), 130 bytes captured (1040 bits) on interface br-d2788e2c7b9b, id ©
Ethernet II, Src: 92:42:0a:01:01:0a (02:42:0a:01:01:0a), Dst: 02:42:0a2:01:01:02 (02:42:0a:01:01:02)
Internet Protocol Version 4, Src: 18.1.1.18@, Dst: 18.1.6.10
Transmission Control Protocol, Src Port: 39436, Dst Port: 30303, Seq: 2682, Ack: 1575, Lem: 64
Ethereum RLPx Protocol
~ Frame Header: 47c74975e96c932e@bbealebattT2cd40abi2aB4e36bd7bed94bec3967122121b2

Decrypted Header Data: 80800fc2B80800000008000000R0E0RR0

Header MAC: a572a84e36bdv70e894bc396712e12Th2

Frame Body MAC: al85d3d8b@3b@530b1848bb25T60443c

Frame Size: 15

Read Size: 16

Header Data: Capability ID: @, Context ID: ©
~ Frame Body: f7524f127498b55324d2ebeeBb66efB3a185d3d8bO3DE530b1048bb25T60443¢c

Type: [SNAP AccountRange] Type=AccountRange Code=1

Capability: SNAP

Code: 1

Request ID: 1976235410884491574

Accounts: N/A

Proof: M/A

Figure 79: RLPx SNAP AccountRange Packet Node1 => Bootnode

Next, the SNAP protocol allows the request of the storage slots of multiple accounts’ storage
tries, which could even be a single account. This message is GetStorageRanges (0x02). As we
know in this private Ethereum network environment and scenario, each client only has a single
account associated with it. This message is responded to with the StorageRanges (0x03)
message. However, we was not able to propagate the GetStorageRanges and StorageRanges

72

messages utilizing the private Ethereum network with the latest GETH clients. However, the
dissector does support them, but this is not verified. See below for the information that would be
dissected in these messages:

GetStorageRanges:

Request ID: Integer

Root Hash: Hex Value

Account Hashes: List of Hex Values

Starting Hash: Hex Value

Limit Hash: Hex Value

Response Bytes: Integer

StorageRanges:
Request ID: Integer
Slots: List of Slot:
o Slot Hash: Hex Value
o Slot Data: Hex Value
e Proof: List of Hex Values

Lastly, with four messages remaining, there exists the GetByteCodes (0x04) message which
requests a number of contracts byte-codes by hash. This allows retrieving the code associated
with accounts retrieved via the GetAccountRange message but GetByteCodes is needed during
healing too. Healing is a cleansing of the local state of the node. ByteCodes (0x05) is sent in
response to GetByteCodes which returns a number of requested contract codes in the same order
as the requests but there might be some gaps if not all codes were available. Next, the
GetTrieNodes (0x06) message, seen in Figure 80, is used to request a number of state (either
account or storage) Merkle trie nodes by path. This message is responded to by the TrieNodes
(0x07) message, seen in Figure 81, which returns the requested number of state tire nodes.I was
not able to propagate the GetByteCodes and ByteCodes messages utilizing the private Ethereum
network with the latest GETH clients. However, the dissector does support them, but this is not
verified. See below for the information that would be dissected in these messages:

GetByteCodes:

Request ID: Integer

Hashes: List of Hex Values

Bytes: Integer

ByteCodes:
Request ID: Integer
Codes: List of Hex Values

73

3.1.1. 178 42560 . 30304 [SNAP GetTrieNodes] Type=GetTrieNodes
©.1.1.16 RLPX 258 42560 . 30304 [SNAP TrieNodes] Type=TrieNodes Code=i

Frame 3294: 178 bytes on wire (1424 bits), 178 bytes captured (1424 bits) on interface br-d35TfT39d33f3, it
Ethernet II, Src: 82:42:0a:01:01:02 (02:42:0a:01:01:02), Dst: 02:42:0a:01:01:0a (02:42:0a:01:01:0a)
Internet Protocol Version 4, Src: 10.1.2.20, Dst: 10.1.1.1@
Transmission Contrel Protocol, Src Port: 42560, Dst Port: 308304, 5Seq: 4578, Ack: 6255, Len: 112
Ethereum RLPx Protocol
~ Frame Header: 81be3bedff7f2déce9d2ced429ebab35ch818737750c256ecddd79926dTod64D

Decrypted Header Data: 880835c2B808000000000000008800000

Header MAC: cb818737750c256ecddd79926dT9d64h

Frame Body MAC: 9ad3T898cc39808acafe7b992ch3fiv2

Frame Size: 53

Read Size: 64

Header Data: Capability ID: @, Context ID: @
~ Frame Body: 6T2f880d34495a203a2246a7c06880327a3b930dTe57d1dbede35c8aTded9c41739b3bate..

Type: [SNAP GetTrieNodes] Type=GetTrieNodes Code=6

Capability: SNAP

Code: 6

Request ID: 4893789450120281%87

Root Hash: b4a@48dfb5c6cfa56cicfbO385a8888006Td4c]17a5c23802ddoTE48bee7T70 d

Paths:

Paths #1:
Paths #1 #1: 0@
Bytes: 524288

Figure 80: RLPx SNAP GetTrieNodes Packet Node1 => Bootnode

3294 179.539243568 10.1.2.28 16.1.1.18 RLPX 178 42560 . 38304 [SNAP GetTrieNodes] Type=GetTrieNodes Code=6 Len=64
4860 179.561323303 10.1.2.20 10.1.1.10 RLPX 258 42568 — 30304 [SNAP TrieNodes] lype=IrieNodes Code=/ Len=144

Frame 4860: 258 bytes on wire (2064 bits), 258 bytes captured (2064 bits) on interface br-d357r39d337T3, id @
Ethernet II, Src: 02:42:8a:01:01:02 (02:42:0a:01:01:02), Dst: 02:42:0a:01:01:0a (02:42:0a:81:01:0a)
Internet Protocol Version 4, Src: 10.1.2.20, Dst: 10.1.1.16
Transmission Control Protocol, Src Port: 42560, Dst Port: 30304, Seq: 9074, Ack: 18143, Len: 192
Ethereum RLPx Protocol
+ Frame Header: edf2626dc92d46ce9eb9c46aelcdT960031d7r28Tb66bab81bc996T4dT74e23e76
Decrypted Header Data: G00087c28
Header MAC: 31d7f28fb66babB1bc996T4d74e23e76
Frame Body MAC: d72700415Td7cfdédi3ab741dc17519d
Frame Size: 135
Read Size: 144
Header Data: Capability ID: @, Context ID: @
~ Frame Body: 9345bal6d5d47ec6dIbffedc217f52a2f5c8762daef12a3ch37392eabc4bd3c2547dffla..
Type: [SHAP TrieNodes] Type=TrieNodes Code=7
Capability: SNAP
Code: 7
Request ID: 3337066551442961397
Nodes:

Nodes #1: T871aB3b78532balb5h69666061243d4694ed4e4162b1c20e0bT25963ehdedd8510e2hbThi4efB4c018819ccdBalc5005ee0a056e817171bcc55a6TTE345e692c0
T86e5b4Be01bd96cadcOBl1622fb5e363b421a0c5d2460186T7233c927eT7db2decT03c0e500b653ca82273bThMad8045d85a470

Figure 81: RLPx SNAP TrieNodes Packet Node1 => Bootnode

4.6 Recap and Discussion

After looking at all that is to offer with the dissector, let us take a step back and talk about what
can be learned from the development of the dissector. The dissector provides a minimal third-
party dependency method for dissecting DiscoveryV4, DiscoveryV5, and RLPx sub-protocols,
including ETH and SNAP. Creating the dissector was no easy task, solely going off the Go
Ethereum source code and the minimal documentation found in the markdown documents in the
Ethereum DEVP2P repository. Implementation specifics were often only touched on if digging
deep into the source code to figure out how specifically they are deriving the keys, or very often,
what public key they are using, whether it is compressed or not.

The dissector proves a viable tool for DEVP2P dissection while touching on a range of topics

from encoding/decoding with RLP, elliptic curve cryptography and its use in ECIES, along with
elliptic curve digital signature and Diffie-Hellman. The dissector even deals with reassembling

74

TCP packets and uses SNAPPY for decompression. Besides this range of topics the dissector
touches, it overcomes the main hurdle attributed specifically by ConsenSys, specifically RLPx
decryption and automatically grabbing the exposed random private keys and using them for
session key derivation.

Lastly, PYDEVP2P provides tooling for a range of capabilities and tooling for not only DEVP2P
but a python-only zero-dependency elliptic curve cryptography implementation. This could be
easier because many implementations use built-in C libraries for performance-intensive elliptic
curve calculations. All six message types for DiscoveryV4 were dissected and displayed in
Wireshark, while all eight messages for DiscoveryV5 were dissected; however, only six were
proven and displayed in Wireshark. Lastly, with RLPx, 2 Handshake messages, four built-in P2P
capability messages, 13 ETH messages, and 8 SNAP messages were dissected. Therefore, this
dissector provides dissection, decryption, and decoding capabilities for a total of 41 message
types spanning three different protocol types in the suite of DEVP2P.

75

5. Security Analysis with the Dissector

Network packet dissectors, like the one created and explained in great detail in the previous
chapter, are great for analyzing specific pieces of network traffic and subsequent packet data in a
human-readable format. As discussed, dissectors can help identify malicious traffic, such as
malware, denial-of-service attacks, or authorized access attempts. They can even help monitor
network activity and detect anomalies or suspicious patterns, either actively or after the fact, with
captured network traffic.

Dissectors have also been pointed to for helping students learn about popular network protocols,
data structures, and communication patterns in our daily network traffic. Teachers have also used
them to demonstrate network concepts, such as the TCP 3-way handshake, or even cryptographic
concepts regarding TLS/SSL and, more specifically, in this case, elliptic curve cryptography.

In the industry and the open-source community, dissectors help developers and analysts test and
debug their network applications or protocols. They are proven to help developers understand
how other network applications or protocols work and intersect together while also providing
tooling to help diagnose and resolve network, connectivity, or performance issues. Network
packet dissectors provide a way to dig deeper and see the actual underlying packet information
transferred between network hosts, removing any abstraction.

As we have seen with the multitude of packet dissections in the previous chapter, a great deal of
information can be unraveled, uncovering the mysteries behind DEVP2P and understanding and
proving the Ethereum documentation. However, what we saw is considered the best-case
scenario, where the network is set up to provide all the results to develop and create the
dissector. Dissectors shine when there is a “rainy day” scenario or when something goes wrong,
and the network traffic needs to be debugged to diagnose possible configuration issues or
connectivity problems.

Throughout this chapter, we will provide several ways this dissector can be used, proving its
usefulness to the community, educators, developers, and researchers. With the help of our main
contribution PYDEVP2P, we will first walk through how the Elliptic Curve Digital Signature
Algorithm (ECDSA) is used regarding DiscoveryV4. We will first look closer at the captured
packets and then dig deeper into how the digital signature is used to recover the sender's identity
and prove the message's authenticity. Secondly, we will discuss the methods used for obfuscating
the network traffic in DiscoveryV5 and its use of Elliptic Curve Diffie-Hellman (ECDH) while
using the dissected packets to verify the goals laid out for DiscoveryVS5 and compare the security
improvements and implementations with DiscoveryV4. These elliptic curve cryptography (ECC)
algorithms are all found in PYDEVP2P without the use of 3™ party dependencies for elliptic
curve calculations, all helping to provide transparency and accessibility to these topics for
educators and the community. Lastly, we will utilize the dissector to track a transaction from

76

Node 1 to Node 2, as we saw in the scenario, from a transaction propagation throughout the
network to seeing the transaction make it to the blockchain and ultimately to the target account.

5.1 DiscoveryV4 ECDSA Performance & Security Analysis

This section will cover what the Elliptic Curve Digital Signature Algorithm (ECDSA) is and how
it is used in DiscoveryV4, covered in detail in Chapter 4.3.1, to recover the public key of the
sender node while also breaking down some of the technical details behind the elliptic curve.
This section will also cover the ECDSA implementation in PYDEVP2P, which can be utilized as
a great educational tool to understand elliptic curve operations in a pure-python implementation.
Now, revisiting the scenario in Chapter 2.3, “Starting the Private Network™, we saw that when
the network started, the nodes on the network found each other and connected to one another as
denoted by the “peercount.” As we have discussed, this is all done through Ethereum node
discovery, specifically DiscoveryV4 in Ethereum execution clients. However, what we will
cover in this section is how exactly nodes are able to validate and verify the identity of the sender
and authenticity of DiscoveryV4 packets.

Let’s recount the contents found in a DiscoveryV4 ping packet, covered in great detail in Chapter
4 Section 3.1, from Node 1 (10.1.1.10) to the Bootnode (10.1.0.10) utilizing the DEVP2P
Wireshark dissector’s output shown in Figure 82. What we are specifically keying in on here is
the “Sign” field, which represents the elliptic curve digital signature on the contents of the Ping

packet from Node 1 to the Bootnode.

No. Time Source Destination Protocol Length Info
176 30304 - 30303 [DiscoveryV4d PING] Version=4 Ki
199 30303 - 30304 [DiscoveryV4d PONG] Version=4 Kin

68 4.500265007 10.1.0.10 10.1.1.10 DEVPZP

Frame 6/: 176 bytes on wire (14088 bits), 1/6 bytes captured (1468 bits) on interface br-d35fT39d33rT
Ethernet II, Src: B2:42:0a:01:01:0a (02:42:0a:01:01:0a), Dst: 02:42:0a:01:91:02 (02:42:0a:01:01:02)
Internet Protocol Version 4, Src: 10.1.1.160, Dst: 10.1.0.1@
User Datagram Protocol, Src Port: 38304, Dst Port: 30303
Ethereum devp2p Protocol
Hash: 7534bb5ad4afbdd38b566c31Tc9e61ed4247274d5317cal42b031cT380T10ebTTT
Sign: 47e23030023374ae8a2450a2906cT07aed6ef007b19207c72d7cclcded5T18a52557969D...
Type: PING (1)
+ Payload: =304cb840a81018a827660827660c9840a01000a827657808463ac8c598601855a03dT23
Name: PING
Kind: 1
Version: 4
Sender Info:
IP Address: 16.1.1.108
UDP Port: 30304
TCP Port: 30304
Recipient Info:
IP Address: 16.1.0.10
UDP Port: 38303
None: b''
Exipration: 2822-12-28 13:35:85
ENR Sequence Num: 1672252481315

i v >

Figure 82: DiscoveryV4 Ping Packet Node1 to Bootnode

77

Now, let’s think about this packet from the perspective of the Bootnode who is receiving this
Ping packet. Based on the contents alone, the Bootnode could look at the “Sender Info” fields
without using the digital signature to figure out who sent this packet. This includes the sender’s
IP address, 10.1.1.10, and the ports used, by the sender for TCP/UDP which is 30304. These
fields can be checked with the sender’s IP address found in the IP layer of the packet, but other
than this, there is really no way for the Bootnode to know the identity of the sender, such as their
elliptic curve public key or the actual authenticity of the packet contents. Meaning, without the
use of the signature, anyone could have sent this information to the Bootnode, and the Bootnode
has no exact way to authenticate and verify the identity of the sender. This is, of course, where
the digital signature field comes into play.

First, the Bootnode can verify message integrity using the “Hash” field, which is found in the
first 32 bytes in all the DiscoveryV4 packet headers. This hash is calculated using the keccak256
hash, part of the SHA-3 family of algorithms to compute the hash of an input to a fixed length
output. The input can be of a variable length, but the result will always be fixed to 32 bytes. This
is a one-way cryptographic hash function, which cannot be decoded in reverse [38]. Therefore,
this hash found in the DiscoveryV4 message header can be checked for equality to the hash of
the message contents following the first 32 bytes of the message, which includes the signature
field.

Before the Bootnode can verify the message and recover the public key of the sender node, let’s
dig deeper into the cryptography behind elliptic curves. ECDSA relies on the math of the cyclic
groups of elliptic curves over finite fields and on the difficulty of the elliptic curve discrete
logarithm problem (ECDLP) [39]. The basis of this problem is what makes elliptic curve
cryptography secure, where plainly put, the private key, a random integer in the range from 0 to
(N -1), where N is the order of the curve, is not able to be uncovered from a known public key
which is a point on the elliptic curve calculated from privKey * G. The point value G is known
as the generator point, a defined point on the elliptic curve. This point is found on the actual
ellptic curve, which is comprised by a specific equation template, known as a weistress equation:
y? = x3 4+ Ax + B, where A and B are constants picked by different elliptic curve definitions [40].
For parity, users of elliptic curve cryptography must share the same elliptic curve parameters and
agree on the same generator point G, including N, which defines the length of private keys. In
the secp256k1 elliptic curve, which is used by Bitcoin and Ethereum, the constants are A = 0 and
B = 7 and specifically for Ethereum the generator point Gx and Gy including the N:

N:115792089237316195423570985008687907852837564279074904382605163141518161494337
GX: 55066263022277343669578718895168534326250603453777594175500187360389116729240
Gy: 32670510020758816978083085130507043184471273380659243275938904335757337482424

So, as was just stated, using the nodes private static key, the public key for that node can be
created using the private key multiplied with G, the generator point on the elliptic curve. Thus,

78

yielding the private and public keys for the Bootnode and Node 1 shown below. Of course, only
the nodes know their own private keys, and the public keys are what can be shared with other
nodes, also defining the node's unique identity. The public key of Node 1, shown below in Table
4 is what we will cross reference with the public key recovered from the signature field found in
the Ping packet.

Table 4: Bootnode and Node 1 Private and Public Static Keys

Node (IP Address) Private / Public Keys

Bootnode (10.1.0.10) | Private Key:
3028271501873c4ecf501a2d3945dcb64eal3f27d6fl63af45eb23ced9e92d85b
Public Key:
2c4b6808e788537call3ab4c35e6311bc2553065323fb0c9e9a831303a1059b875
4aabl13dbb78c03a7a31lbeeebc2f2fb570393£056d54fa83ebd7e277039cc7b6

Node 1 (10.1.1.10) Private Key:
4622d11b274848c32caf35ddedled8e04316blcde6579542£0510d486eb921298
Public Key:
c35c2b7£9ae974d1eee94a003394d1ccl8135e7fe6665e6b4£221970£1d9d59f6
a58e76763803bcc9097ebadc91£d08b30405e65¢c53272b8635348e37£93cedc

Next, the Bootnode can then recover the sender’s static public key, also referred to as the node
key using just the signature, the 65 bytes following the hash, along with the message data, which
is all the data following the hash and the signature. The signature consists of 2 values, R and S,
and in some cases, like with Ethereum ECDSA signatures, V. Without going into the complete
specifics, the signer encodes a random point R (representing only by the x coordinate) followed
by the S portion which is the computed value of the message hash H using the signer’s private
key privKey, which is the proof that the message signer knows their own private key. Signature
verifications decodes the proof value, S, from the signature back to its original point R, using the
public key and the message hash H and compares the x-coordinate of the recovered R with the r
value from the signature [41].

Nevertheless, how would the Bootnode recover the public key of the sender, specifically Node
1? This can be done utilizing the ECDSA public key recovery algorithm laid out in section 4.1.6
of “Standards for Efficient Cryptography: Elliptic Curve Cryptography.” This algorithm is handy
for self-signed signatures and valuable in bandwidth-constrained environments where a full
certificate may not be viable. Using the ECDSA signature (1, s, v), and all of the elliptic curve
parameters, it is possible to determine the public key Q of the signer. Due to the nature of the
elliptic curve, there is the possibility for several public keys to be recovered from the signature
that resides on the elliptic curve. This is mitigated with the extra byte in the signature, held in the
“V” value of the signature. This value holds which public key is correct out of the three
possibilities, which could be the values 0, 1, or 2.

79

Lastly, let’s relate this back to how PYDEVP2P implements the ECDSA public key recovery
algorithm. All the ECDSA specifics must be incorporated into the dissector in order to achieve
the proper results, which has not been done before by any other dissectors. This calculation is
done utilizing Jacobian points, which is a way of representing a point on an elliptic curve using
three coordinates (X, y, z) instead of using the standard cartesian coordinates (x, y) [42]. This
allows for faster arithmetic operations on the curve, such as addition and multiplication of points,
mitigating costly modular arithmetic. The function, shown in Figure 83 as “ecdsa_raw_recover”,
found in pydevp2p/elliptic/curve.py, uses the secp256k1 curve parameters, which are defined as
global variables, then utilizing jacobian point arithmetic, produces the public key, Q, that is
recovered from the signature.

ecdsa raw re (msghash

e o

beta = pow(ys
y = beta if beta
L= (X, \r}
bytes to int{msghash)
jacobian multiply(to jacobian(R)
jacobian_multiply(to_jacobian(G)
jacobian _add(Rs, Gz)
jacobian_multiply(Qr, inv(r, N))

0 = from_jacobian(Q)

return encode pubke

Figure 83: PYDEVP2P ECDSA Raw Public Key Recovery

80

The output of this above “ecdsa_raw recover” function, returns the recovered public key from
the msghash and the elliptic curve digital signature, which in this case, will be the public key of
the sender/signer of the message. In this case, related back to the scenario, would be Node 1’s
public key, recovered from the message.

While ECDSA public key recovery from the signature allows for the recovery of the public key
and verifying the identity of the sender without knowing their public key in advance, there are
shortcomings to this method. This operation is computationally expensive and can consume
many CPU resources. The performance impact of ECDSA public key recovery from the
signature can be significant, especially for nodes that receive much traffic from unknown peers.
This can lead to increased latency, reduced throughput, and higher energy consumption [43].
This leads to the main cause of DiscoveryV4’s downfall, traffic amplification attacks, a form of
denial-of-service. This DoS takes place by simply creating a significant amount of fake nodes on
the network and spamming DiscoveryV4 messages. This forces the nodes to try and recover and
verify signatures, but also requires the recipient of these messages to respond with DiscoveryV4
messages. This leads into specific mitigations for this issue by dropping known nodes that have
not responded in the last 12 hours. This also creates what is known as an “endpoint proof”
system, where verified connections are stored, and the signature will not necessarily be
rechecked from that endpoint within a specific time limit. This causes problems in terms of
security and scalability throughout the network, where this endpoint proof is unreliable, causing
costly retries and also causing fake authentication of endpoints.

5.2 DiscoveryV5 Masking and Confidentiality

This section will analyze the DEVP2P DiscoveryV5 protocol, covered in detail in Chapter 4.3.2,
focusing on its masking and confidentiality features, and what the dissector has to overcome in
order to provide these dissected results. We will start by understanding the security goals laid out
by the DiscoveryV5 documentation, which are mainly to mitigate endpoint proof, require
destination node ID for communication, and provide message obfuscation and confidentiality.
Then, we will examine how these goals are achieved by the protocol design and implementation,
utilizing the dissector and subsequent packets found. Finally, we will discuss some of the
cryptographic aspects of the protocol, such as the use of elliptic curve cryptography, specifically
ECDH, and how its use effectively hinders denial-of-service and replay attacks.

In response to specific shortcomings of DiscoveryV4, the Ethereum team laid out specific goals
for DiscoveryV5. One main goal was to replace the DiscoveryV4 endpoint proof, as it is
unreliable and slow due to retries. DiscoveryV5 also requires knowledge of the destination Node
ID for communication, which makes it harder for other nodes to obtain the Node ID. Fake nodes
are also less likely to provoke responses knowing just the node’s IP address alone. Next,
DiscoveryV5 also must obfuscate the traffic to prevent accidental packet mangling or trivial
packet sniffing while also providing a way to prevent packet replay attacks or peer amplification

81

attacks [29]. Throughout this section, we will look at how DiscoveryVS5 is implemented to
prevent or achieve the goals set out above, which are found directly in the specification of
Discovery V5.

Now, let us look at how the header information of DiscoveryV5 packets is “masked” using
symmetric encryption. Primarily, as stated before, this masking and obfuscation of the header
data are to prevent static and passive identification of the protocol information. When a packet is
received, the message is laid out in three portions, the masking-if, the masked header, and the
message itself. The masked header contains the actual packet header, which starts with a fixed-
size “static-header” followed by a variable-length “authdata” section.

Decrypting the masked header starts by the recipient constructing an AES/CTR stream cipher
using its own node ID as the key and using the IV from the packet. This means that the sender of
the DiscoveryV5 packet has to know the Node ID of the destination prior to sending the packet.
Then using this AES/CTR stream cipher, the recipient can then decrypt the static-header, and
verify the contents and successful decryption by checking the “protocol-id” field, which is
always “discv5”. If this protocol ID is correct, then the “authdata” can also be unmasked using
the same cipher. Shown in Figure 84, the unmasked header information found from the DEVP2P
Wireshark dissector’s output.

Ethereum devp2p Protocol

= Header: 1abd55616405b2c41827db3ate@6e973b6d98767ablbf fcbeclb9bT46adc2c2débodfTec..
Iv: 1a5d55616405b2c41827db3a6e006ed7
Protocolid: 118404070241845
Version: 1
Flag: @
Nonce: GE200607TE352347eldd16d2
Authsize: 32
Authdata: 01bd15281bf9cT4521dcYcBietabbead5b781dd177h5adbd2fa54312ea71b266
Src: 01bd15281bf9cf4521dc7cl88etabbeadbbTe1ldd177h5adb42Tas4312ea71b266
Type: MESSAGE

Figure 84: DiscoveryV5 Unmasked Packet Header

Shifting over to PYDEVP2P, we can see how this DiscoveryV5 header unmasking can be
accomplished, which effectively proves that the documentation for DiscoveryVS5 is accurate.
Below, as seen in Figure 85, we can see this three step process for unmasking the header, which
is found in “pydevp2p/discover/vSwire/encoding.py” from lines 182 to 200.

82

Header(input[:sizeofMaskingIV])
= head.mask(self.localEnodeID)

ider .STATIC SIZE + bytes to int(head.auth
authData masked = input[Header.STATIC SIZE:authDataEnd
authData unmasked = mask.decrypt{authData masked)
head.authData = authData unmasked
Figure 85: PYDEVP2P Unmasking the DiscoveryV5 Header

They are first unmasking the static header, which is accomplished by setting up an AES CTR
stream cipher utilizing the “mask” function where the masking IV is used from the message
along with the Node’s local ID. This sets up all the fields in the static header, like the protocol
ID, version, flag, nonce, authorize and type. Next, we see in lines 190 and 191, that the validity
of the header is checked, following this the auth data is then unmasked, using the same AES
CTR stream cipher. This masking provides the necessary header obfuscation for the UDP
payload data to prevent passive eavesdroppers and message identification tools. With the use of
the dissector, along with PYDEVP2P, it allows for the DiscoveryV5 documentation to be
verified utilizing a live Ethereum network with actual data sent between nodes. This dissector
also provides educators and researchers the tools to dig deeper into the implementation specifics
and understand and learn critical elliptic curve cryptography topics.

What is interesting about DiscoveryVS5 is that the header is always masked in this manner, even
after a successful handshake between nodes. Now, let us focus on the actual handshake that takes
place between two nodes with regard to DiscoveryVS5. Let us recall the handshake process
between two nodes, Node A and Node B, where neither has communicated before, meaning no
prior session keys have been formed. Node A sends an ordinary message to Node B, such as a
Ping or FindNode message. Node B then receives this message and extracts the source Node Id
from the packet header. Node B then initiates the handshake by responding with a WhoAreYou
packet which includes a uniquely generated “id-nonce” field. Node A receives this WhoAreYou
packet and proceeds with a handshake message, by resending the original packet they sent,
including three new pieces to the message: “id-signature,” “ephemeral-pubkey” and “record”.

83

With all this information, Node A is then able to derive the new session keys, utilizing Elliptic
Curve Diffie-Hellman (ECDH).

Elliptic Curve Diffie-Hellman (ECDH) is an anonymous key agreement scheme that allows two
parties, each having an elliptic-curve public/private key pair to establish a shared secret key over
an insecure channel [44]. ECDH is very similar to the classical Diffie-Hellman Key Exchange
algorithm, however it uses ECC point multiplication instead of modular exponentiations. The
protocol is based on the mathematical problem of finding the discrete logarithm of a point on an
elliptic curve. The basic ECDH algorithm is quite trivial:

e Both parties (Node A and Node B) agree on a public elliptic curve and a base generator
point G on the curve

e The sender generates a random private key (ephemeral-privK) and computes their public

key (ephemeral-pubK)

The recipient generates a random private key and public key

Both parties exchange their public keys through the insecure channel

Node A calculates the sharedKey = nodeBPubK * nodeAPrivK

Node B calculates the sharedKey = nodeAPubK * nodeBPrivK

Now both Node A and Node B have the same sharedKey

The security of ECDH relies on the assumption that it is hard to compute the private keys given
the public keys and the generator point G. This is known as the elliptic curve discrete logarithm
problem (ECDLP). Implementations of ECDH vary significantly, and in the case of Ethereum
Discovery VS5, it becomes much more complicated with the use of challenge and authentication
data, along with key derivation functions that provide two keys, a “writeKey” and a “readKey.”

So, let’s go back to how Node A derives the session keys. After Node A receives the challenge
data from the WhoAreY ou message, it will generate a random private key known as the
“ephemeral-key” along with a corresponding public key “ephemeral-pubkey”. This ephemeral
key is used in conjunction with Node B’s static public key to perform the Diffie-Hellman key
agreement. With the static public key of Node B (destination static public key), and the private
ephemeral key, Node A is now able to compute the “sharedKey” also known as the “shared
secret”. Shown in Figure 86, below, the actual implementation of the creation of the shared
secret which is from the static-public-key and ephemeral-key or the ephemeral-pubkey and the
static-private-key, for the initiator and the recipient respectively.

84

ecdh(pubk: bytes, privk: by

eph_key = multiply(pubk, privk)
shr_key decode pubkey{eph_key)

first = bytes to int{b'\x82') | ((shr_key[1] >> &) & 1)

return int_to bytes(first) + int_to_bytes(shr_key[8])
Figure 86: PYDEVP2P DiscoveryV5 ECDH Function Returning Shared Secret

It doesn’t stop there however, Node A uses the shared secret (master key), the unmasked
challenge data from the WhoAreYou message (salt), along with the text “discovery v5 key
agreement” concatenated with the source Enode ID and the destination Enode ID (context) with
a key derivation function. This key derivation function derives one or more keys from a master
key using the HMAC-based KDF defined in RFC5869. The actual implementation of this from
PYDEVP2P can be found from lines 50 to 65 in “pydevp2p/discover/vSwire/crypto.py”’, shown
below in Figure 87. This specifically outputs two keys, the write key and the read key which is in
the perspective of the node, meaning the other node will have the same two keys, just flipped.
So, let’s say Node A wants to send something to Node B, Node A will use the “write key” where
then Node B will use its own “read key” which is actually the same key.

derivekKeys(hash, privk: es, pubk: b , ni: 5, n2: =5, challenge: bytes) -

text i nt” .encode("utf-8")
info +nl +
if len(info) != len len(nl) + len(n2}):
print(" N, Ppr pubk, ni, n2, cha rr Invalid Info

eph = ecdh(pubk, privk)
if eph :

retur

writeKey, readKey = HKDF(

Finally, when Node B receives this handshake message, same key derivation can occur, this time
using its own static private key and the ephemeral public key sent from Node A in the handshake
packet. Thus finalizing the session, and as seen in the PYDEVP2P implementation, creates a
“Session” which are the respective write/read keys for the nodes to be used for encrypting the
message payload for all subsequent DiscoveryV5 messages. The ephemeral key is able to be
extracted from the unmasked “authdata” from the DiscoveryV5 header which is not shown in the
dissected packet, but the authdata is structured as follows, shown in Figure 88. In the authdata,
there exists three static fields, the 32 byte Source Enode ID, followed by the size of the signature
and the size of the public key. Then following this, the signature, the ephemeral public key and
the ENR record.

85

=32 +1+1

__init (self, authData: bytes) -»
self.srcEnodeId = authData[:32]

f.sigSize = authData[32:3
self.pubkSize = authData[33:34]

Figure 88: PYDEVP2P Handshake Auth Data Schema

5.3 Tracking a Transaction using the Dissector

This section will be laid out to show the steps to use the DEVP2P dissector to track a transaction
propagated throughout the network. As discussed in detail in Chapter 4.4, this type of
communication is facilitated by RLPx, encrypted TCP messages that the dissector must decrypt,
decode, and dissect for the contents to be viewed properly in Wireshark. This section proves the
dissector's educational value and gives a specific use case for the dissector. First, let us revisit the
scenario, looking specifically at the transaction between Account/Node 1 and Account/Node 2,
where the account created on Node 1 sent 200 ETH to the account created on Node 2. Before the
dissector, the inner workings, and exchanges between the nodes on the network would have been
obscured, encrypted, and impossible to track. However, now with the use of the dissector, it is
now possible to fully trace a transaction through the network packets sent amongst the nodes on
the network. It is even possible to see which node might choose the block to mine it into the
chain, then follow each of the nodes in the network, validating this new block in this private
Ethereum network.

Ethereum transactions are actions initiated by an externally owned account (EOA), which is an
account managed by a human, not a contract. For example, in our scenario, if Account/Node 1
sends Account/Node2 200 ETH, Node 1’s account must be debited, and Node 2’s account must
be credited. Remember, the actual nodes are not the accounts; they are simply a facilitator for
these accounts to connect to and transact on the Ethereum network. This state-changing action,
credit and debit, takes place within a transaction. When a transaction is submitted on the
Ethereum network, it is broadcasted to all the nodes (clients) that run the network, like, in our
case, Bootnode, Node 1, Node 2, and Node 3. The nodes validate the transaction and add it to
their pool of pending transactions. The pending transactions are then selected by miners who try
to include them in new blocks. Miners are incentivized to choose transactions that pay higher
fees (called gas) per unit of computation (called gas limit).

So, let’s take a look at a slightly different example, where we are using an account (that was
originally created on Node 1) to transact 100 Ether (ETH) to the account that was created on
Node 2. This is carried out by the account’s public address, where the Node 1 account address:

86

“0x41159606b62401725¢969e3f11342ff65904a4ec,” is going to send 100 ETH to the Node 2
account address: “0x1{f0cebf80f05de1213401c6d0a58e215¢c8ce635f”. Looking at Figure 89, we
can see the transaction confirmation that it was executed from MetaMask. Notice the amount of
100 ETH followed by the Gas Limit, which is the maximum amount of gas units the account is
willing to spend in order for the transaction to be processed. A great way to think about gas is it
provides fuel to the network, incentivizing others to perform network operations to keep
everything going.

From

P o osec

Transaction

Monce

Amount -100 ETH
Gas Limit (Units) 21400
Gas Used (Units) 21000
Gas price 100

Total 100.0021 ETH
$180,918.80 USD

Figure 89: Node 1 Account Sending Node 2 Account 100 ETH

Upon sending this transaction, while having the dissector running, capturing on the interface of
the Bootnode and Node 1, we see the following packets captured, seen in Figure 90. We first see
the ETH capability Transactions message, which again is used to propagate a new transaction
throughout the network. This is first sent from the Bootnode to Node 2, making sense as we
connect MetaMask to our private network through the Bootnode. As stated earlier, only one node
or the square root of the number of connected nodes will get the Transactions message, while the
others will get the NewPooledTransactionHashes message. This notifies the other nodes in the
network that a new transaction hash is in the Bootnode's local transaction pool. From there, we
can see this chain of Transaction messages, propagating the full new transaction throughout the
network, originally from the Bootnode => Node 2, then in packet #1921 Node 2 => Node 1, then

87

finally Node 1 => Node 3. This fully propagates the transaction throughout the network,
therefore a message like GetPooledTransactlonHashes is unnecessary in this case.

.6854213.. Sabg Transactions] Type=Transac

1919 514.6855221.. 10.1.0.10 16.1 1.19 RLPX 162 30303 - 52830 [ETH NewPooledTransactionHashes
1920 514.6855690.. 10.1.0.18 10.1.3.38 RLPX 162 30303 — 53538 [ETH NewPooledTransactionHashes
.1.2.2 1.1 36864 30304 Transactions] Type=Transac

. i s .1.3. 30304 52850 Transactions] Type=Transac

1923 516.7146813.. 10.1.3.30 10.1.0.10 RLPX 562 53530 — 30303 [ETH NewBlock] Type=NewBlock Co
1924 516.7217920.. 10.1.0.18 10.1.2.28 RLPX 562 30303 — 57466 [ETH NewBlock] Type=NewBlock Co
1925 516.7270259.. 10.1.0.18 10.1.1.1@ RLPX 162 30303 - 52830 [ETH NewBlockHashes] Type=NewBl
1926 516.7147400.. 10.1.3.30 10.1.1.10 RLPX 162 52850 - 30304 [ETH NewBlockHashes] Type=NewBl
192? 516.?38?651m 1@.1.2.29 1G 1 1.19 RLPX 562 36864 - 30304 [ETH NewBluck] Type NewBlack E&

Figure 90: Dissector Packet Captures After Sending Transaction

This transaction propagation automatically puts the transaction in the local pool if the node is a
valid miner on the network, which, in the case of this private network, each of the nodes are
miners, except the Bootnode. Now, before we move on to the next step, let’s dig deeper on what
information about the transaction the dissector is able to provide us with. So, clicking on one of
the Transactions messages, we see the following dissection of this ETH capability message, seen

in Figure 91.
1918 514.6854213.. 10.1.0.40 10.1.2.20 RLPX 242 30303 - 57466 [ETH Transactions] Type=Transactio

Frame 1918: 242 bytes on wire (1936 bits), 242 bytes captured (1936 bits) on interface br-84dc88d7a:
Ethernet II, Src: 02:42:0a:01:00:0a (02:42:0a:01:00:0a), Dst: 02:42:0a:01:600:02 (02:42:0a:01:080:02)
Internet Protocol Version 4, Src: 10.1.0.16, Dst: 18.1.2.20
Transmission Control Protocol, Src Port: 30303, Dst Port: 57466, Seq: 46567, Ack: 23114, Len: 176
Ethereum RLPx Protocol
= Frame Header: b96bcddG3b9bTOb48701ecyB8T1613840619915de617ce85T8d84b4b52b7hd362
Decrypted Header Data: 00RE77c2B080000000EE00RRREROEERE
Header MAC: 619915de617ce85T8dB84b4b52b7bd362
Frame Body MAC: 86cc3d@7079407d1lcbhb4172elleb7deBs
Frame Size: 119
Read Size: 128
Header Data: Capability ID: @, Context ID: @
= Frame Body: 65aB7d1d58ed4970e6e4895616ce%ab0a47hdabl379ae56a449ad44c0aradodecdldas8ctdr..
Type: [ETH Transactions] Type=Transactions Code=2
Capability: ETH
Code: 2
Transactions:
Transactions #1:
Monce: ©
Gas Price: 100000000000
Gas Limit: 21

Recipient: 1TfBcebf80T05del213401c6d0a5B8e215cBceb35T

Value: 10000000Q0000ERE00OOE

Data: N/A

V: 24726

R: 67255722872072334048399793730552662219602420979885419241564245918823877753345
S5: 1901596662005870942390440947845587422286998131101601821002684730848161025480

Figure 91: RLPx ETH Transactions Message 100 ETH from Bootnode to Node 2

Looking at the above packet capture of the ETH capability Transaction message from Bootnode
to Node 2, we can break down the following fields under the “Transactions #1” tree as follows:

e Nonce: (0) A number that represents how many transactions the sender node has made.
e QGas Price: (100000000000) The amount of ether the sender is willing to pay per unit of
gas.

88

e Gas Limit: (21000) The maximum amount of gas the sender is willing to spend on the
transaction.

e Recipient: (1f0cebf80f05de1213401c6d0a58e215¢c8ce635f) The address of the account or
contract that will receive the ether or execute the function call.

e Value: (100000000000000000000) The amount of ether to be transferred to the recipient
(if any).
Data: (N/A) The input data for the contract function call (if any).
V, R, S: The signature values that prove that the sender has authorized the transaction.

The nonce field in an Ethereum transaction is a number that indicates how many transactions
have been sent from the sender's address starting at 0, which we can see in the above figure. It is
used to prevent double-spending and replay attacks on the network. The nonce must be equal to
the current number of transactions sent by the sender, otherwise the transaction will be rejected
by the nodes. The nonce is incremented by one for each subsequent transaction sent by the same
address. This is able to be validated by block validators which iterate over the existing validated
blocks and make sure the nonce increments per account transaction.

Next, we can see the gas price of 100000000000, which is the gas price expressed in WEI, which
is the smallest unit of Ether, where one Ether is equal to 10"18 WEIL However, gas is usually
expressed in terms GWEIL, or giga-wei, which means one billion WEI, therefore one GWEI is
10”9 WEI, or specifically 100000000000 WEI is 100 GWEI, which is what was set up in the
transaction in MetaMask. Similarly, the transaction value field shows a value of
100000000000000000000 WEI, when converted to ETH, is 100 ETH. This smallest unit method
prevents Ethereum from using decimals or fractions in its transactions and ensures that all values
are integers.

The recipient of the 100 ETH is shown as 0x1f0cebf801f05de1213401c6d0a58e215¢8ce635f,
which is the expected same account address found on Node 2. Lastly, taking a closer look at the
V, R, and S values which are Ethereum's extended elliptic curve digital signatures used to sign
transactions to save storage and bandwidth. These 3 values, coupled with the hash of the
transaction, allow the ability to recover the public key of the signer, which is the sender of the
transaction. This is done just like in the public key recovery from the signature found in
DiscoveryV4. This transaction hash is the same hash that we saw getting broadcasted out by the
Bootnode with the NewPooledTransactionHashes message that was sent to the peers that the
Bootnode did not send the Transactions message to, specifically Node 1 and Node 3. This
dissection of the packet can be seen in Figure 92 below.

89

1919 514.6855221.. 10.1.0.10 16.1.1.10 RLPX 162 30303 - 52830 [ETH NewPooledTransactionHashes]

1920 514.6855690.. 10.1.0.180 10.1.3.30 RLPX 162 30303 - 53530 [ETH NewPooledTransactionHashes] 1

Frame 1919: 162 bytes on wire (1296 bits), 162 bytes captured (1296 bits) on interface br-84dc88d7a
Ethernet II, Src: ©2:42:0a:01:00:0a (02:42:0a:01:00:0a), Dst: 02:42:0a2:01:00:02 (02:42:0a:01:00:02)
Internet Protocol Version 4, Src: 10.1.0.1@, Dst: 10.1.1.16
Transmission Control Proteocol, Src Port: 30383, Dst Port: 52830, Seq: 30479, Ack: 40410, Len: 96
Ethereum RLPx Protocol
= Frame Header: 50f7cf47c5cf2T4153e910a46d73aBe23%9ed5c0adr35a590693b5d863TTc5T97

Decrypted Header Data: GE0E29c28080000000000E0RE0RRRERR

Header MAC: 39ed5c@ad735a590693b5d863TTchTay

Frame Body MAC: 05093e50305ar10605b76bTT9c3detae

Frame Size: 41

Read Size: 48

Header Data: Capability ID: @, Context ID: @
= Frame Body: 456274165b63Ta5459c8d73761b3d26481d6d1d36b53094TeaB611426c0b3d942797e513..

Type: [ETH NewPooledTransactionHashes] Type=NewPooledTransactionHashes Code=8

Capability: ETH

Code: 8

Types: @

Sizes:

Sizes #1: 113
Hashes:

Hashes #1: 75ccB82B87236e030954b1b589cTeded96bar5ca58c33c8c2553626907hbd38c9a
Figure 92: RLPx ETH NewPooledTransactionHashes Message from Bootnode to Node 1

The next message we see is the ETH capability NewBlock message, which is propagated when a
new block is created and sent out to be propagated by the other nodes for validation. This
dissection is seen below in Figure 93. In this dissected packet, we will only go over a few things
related to the transaction that is attached to this new block. First, noticing that Node 3 is the first
node that has issued this block to the network, and as it turns out, is the one that created this
block. This can be seen by the “Coinbase” field, where it is equal to the address of the account
that mined the block, specifically “Ox11beel7e6d68352a46197990adb681ba3alb4435” which is
equal to that of Node 3’s account. This would mean that Node 3 is the actual “winner” of this
block, which will be added to the blockchain, which will be shown below. The gas used is the
exact same as the “gas limit” selected in the transaction as well, followed by tacked onto the
bottom of the block in the “transactions” field, the transaction we saw before that was propagated
throughout the network.

90

1923 516.7146813.. 16.1.3.30 10.1.0.10 RLPX 562 53530 - 30303 [ETH NewBlock] Type=NewBlock Code=

Transmission Control Protocol, Src Port: 53530, Dst Port: 38383, Seq: 37434, Ack: 25879, Len: 496
Ethereum RLPx Protocol
« Frame Header: 24d9d50ff1a653Tc3TR2673de7P3046dBd182d61cd74ad8628ad29483ceaacic
Decrypted Header Data: 0001b3c2808000000000000000000CR0
Header MAC: B8d182d6lcd74adB8629%9ad29483ceaaclc
Frame Body MAC: G@ddachb@86d843cb2b3avy6bd4ab4r296
Frame Size: 435
Read Size: 448
Header Data: Capability ID: @, Context ID: @
= Frame Body: T328ac3c8341a444a2d5370b1624a2c6d465268ea7226a3e71eb8aaB81e5bT8h53096TaCS..
Type: [ETH NewBlock] Type=NewBlock Code=7
Capability: ETH
Code: 7
Block:
Header:

Parent Hash: de@2B8e23cB04e7ar7defd53db217eBcdb74a384Te8cTl4ceda99becyT4dadazet
Ommers Hash: ldcc4deB8dec75d7aab85b567b6ccd41ad312451b948a7413T0ald42fd40d49347
Coinbase: 11beel7e6d6835aa46197990adb681ba3alb4435

State Root: 367T6T52e342abe23af179a0d128778cb03a3%ae3722cTbd42b5bd43FF57becd
Txs Root: cd7V091331b23981bd4ad7480T03e9214952e0c07a4941F27654ealadbbTTG6T8
Receipts Root: 056b23Tbbad4B80696b65Te5a59b872148a1299103¢c4r57dT839233af2cT4ca2d2
Bloom: @0000000EE00000E000000000R0RORERREEE000COEREDERERERAREEERREEE0EEEROLOOERERERODEERE
[s[eleleTalatelelolole [elelnlal ol slo e o el aTo o e e e lnTa] ale] elala e [s]alnl ol slelelalole] slaTe o el e IelnTa] elo] elal s e ol el o e [elalelal slal ola Tl [a] nlal nTa] o]
[o[elelelolalo]elololeclelolalofelolatolatelclolale] elelola] afol elals]alclelolal slelolalofe slclolale] elelnla] elo] elalslelolclole o e olalofelolaTel a e elolo]o] oc]
[s[eleleTalatelelolole [elelnlal ol slo e o el aTo o e e e lnTa] ale] elala e [s]alnl ol slelelalole] slaTe o el e IelnTa] elo] elal s e ol el o e [elalelal slal ola Tl [a] nlal nTa] o]
Difficulty: 141915
Number: 159
Gas Limit: 93428586
Gas Used: 21000
Time: 1679443005
Extra Data: d883010b00B467657468B8676T312231382e31856c696e7578
Mix Digest: T3a2d442922ch69c83adec3bTddeab8a7705657daelco1rT5011d3177T12241a
Block Nonce: 625caccal@f57352
Transactions:
Transactions #1:
Monce: @
Gas Price: 100800000808
Gas Limit: Z2ieco
Recipient: 1f@cebf88T05del1213401c6d0a58e215c8ceb35T
Value: 100800000000000000000
Data: N/A
V. 24726
R: 67255722872072334048399793730552662219602420979885419241564245918823877753345
5: 1901596662005870942300440947845587422286998131101601821002684730848161025480
Ommers: N/A
Total Difficulty: 21695423

Figure 93: RLPx ETH New Block Propagation from Node 3 to Bootnode

The same propagation takes place with this “NewBlock™ message like the “Transactions”
message, where first Node 3 sends it to the Bootnode, followed by Bootnode => Node 2, then
Node 2 => Node 1, seen below in Figure 94. Same goes for the “NewBlockHashes” message that
is sent out and propagated throughout the network. This also notifies the other nodes that did not
receive the “NewBlock” in totality to request more information with the GetBlockHeaders

message and the entire block with the “GetBlockBodies”.

1923 516.7146813.. 16.1.3.30 10.1.0.10 RLPX 562 53530 - 30303 [ETH MewBlock] Type=Ne
1924 516.7217920.. 16.1.0.10 10.1.2.28 RLPX 562 30303 - 57466 [ETH MewBlock] Type=Ne
1925 516.7270259.. 16.1.0.18 10.1.1.18 RLPX 162 30303 - 52330 [ETH NewBlockHashes] 1
1926 516.7147400.. 10.1.3.30 10.1.1.18 RLPX 162 52850 - 30304 [ETH NewBlockHashes] 1
1927 516.7387651.. 16.1.2.20 10.1.1.10 RLPX 562 36864 - 30304 [ETH MewBlock] Type=Ne

Figure 94: RLPx ETH New Transaction Block Propagation Throughout the Network

91

The last thing to make sure is to track if this block actually made it into the chain, meaning, it has
been mined and validated. This can be done by taking a look at the block hash found in the
“NewBlockHashes” message, seen in Figure 95, and comparing it with the subsequent
“NewBlock” message, as in the one that comes after this transaction block. Take a close look at
the “Block Hash” field in the bottom, right before the block number “159”. When looking at the
next “NewBlock” message dissected, seen in Figure 96, this same block hash is now listed as the
“Parent Hash”, as in the preceding block hash, meaning this block has now made it to the full
chain.

Thus, showing how a transaction can be tracked and traced throughout the network traffic
utilizing the provided dissector as discussed in the previous chapter. All the steps in terms of
transaction propagation, validation, then block propagation, and block validation and viewing the
block in the actual chain can be seen through the use of the DEVP2P dissector.

1925 516.7270259.. 10.1.06.10 10.1.1.18 RLPX

162 30383 - 52830 [ETH NewBlockHashes] Typ

Frame 1925: 162 bytes on wire (1296 bits), 162 bytes captured (1296 bits) on interface br
Ethernet II, Src: €2:42:02:01:00:0a (02:42:0a:01:00:0a), Dst: 02:42:03:01:00:02 (02:42:0a
Internet Protocol Version 4, Src: 10.1.06.16, Dst: 18.1.1.16
Transmission Control Protocol, Src Port: 30303, Dst Port: 52830, Seq: 30575, Ack: 40410,
Ethereum RLPx Protocol
= Frame Header: b7037c52e99a7e415T86bad4f112082c9bT4adbae3156003eedd8825ad0382764

Decrypted Header Data: G0G0028c2B08000000000000000008000

Header MAC: bfdadbae3156003eed4BB825ad0382764

Frame Body MAC: 5ab6bl11c®323c9caf76af9a64955e8le

Frame Size: 40

Read 5Size: 48

Header Data: Capability ID: @, Context ID: ©
= Frame Body: d44f5b14046badd67b871adfébar2e2T0716ecte32c3edcaelcs7ab7hdbecTcalaeirafal..

Type: [ETH MewBlockHashes] Type=NewBlockHashes Code=1

Capability: ETH

Code: 1

Block Hashes:

Block Hashes #1:
Block Hash: calb8b41975086179bTTE04244101142d4532e2d16T883ef2cTc3ce813385627
Number: 159

Figure 95: RLPx ETH NewBlockHashes Message from Bootnode to Node 1

1918 514.6854213..
1919 514.6855221..
1920 514.6855690..
1921 514.7354395..
1922 514.7563518..
1923 516.7146813..
1924 516.7217920..
1925 516.7270259..
1926 516.7147400..
1927 516.73B7651..

Frame 1928: 418 bytes on wire (3344

= Frame Header:

i [S Sy
MWDo WEMND DD

i [

16.1.3.3@, Dst: 10.1.0.10

o el el S e B R S T K

30383
30383
30383
36864
30304
53530
30383
30383
52850
36864

57466
52830
53530
30304
52850
30303
57466
52830
30304
30304

92

Transactions] Type=Transaction
NewPooledTransactionHashes] Ty
NewPooledTransactionHashes] Ty
Transactions] Type=Transaction
Transactions] Type=Transaction
NewBlock] Type=NewBlock Code=7
NewBlock] Type=NewBlock Code=7
NewBlockHashes] Type=NewBlockH
NewBlockHashes] Type=NewBlockH
NewBlock] Type=NewBlock Code=7
NewBlock

Type=NewBlock Code=7

bits), 418 bytes captured (3344 bits) on interface br-84dcB88d7a4!
Ethernet II, Src: 92:42:0a:01:00:02 (02:42:0a:01:00:02), Dst: 82:42:0a:01:00:0a (02:42:0a:01:00:0a)

Internet Protocol Version 4, Src:
Transmission Control Protocol, Src Port: 53530, Dst Port: 30303, Seq: 37930, Ack: 25879, Len: 352
Ethereum RLPx Protocol

Decrypted Header Data: 08012cc28080R000PR0EERROEEEREERE
Header MAC: BcBe3c422ad2f698b6a5aa87T56930d7
Frame Body MAC: 792ea8f6c30@31789121ca@a6lc9c2dc9

Frame Size:

300

Read S5ize: 304
Header Data: Capability ID: ®, Context ID: ©
~ Frame Body: f3602b05ec328ae402b88d7375e931ef1T017dbc75blacf614d6TBee743923T6dc3adbod..

Type: [ETH NewBlock] Type=NewBlock Code=7

Capability: ETH

Code: 7
Block:
Header:

Parent Hash:

4db64e94cchal59dabd41a553c8a94f28cB8e3c422ad27698b6a5aa87T56980d7

calbB8b41975086179bhTT804244101142d4532e2d16T883eT2cfc3ceB13385627

Ommers Hash: ldccddeB8dec75d7aabB5b567b6ccd41ad312451b948a7413T0a142Fd40d49347
Coinbase:
State Root:
Txs Root:
Receipts Root: 56eB81f171bcct5aGfT8345e692c0T86e5b48e01b996cadcOR1622Th5e363b421

Figure 96: RLPx ETH NewBlock with Previous Block as Parent Hash

11beel7e6d6835aa46197990adb681ba3alb4435
51f@ebbablB8ee30c5T62d914417656a24c2d365e4555c82796524a5599%4cecT?
56e81T171bcchbabfT8345e692c0T36e5b48e01h996cadclB1622Th5e363b421

93

6. Conclusion

6.1 Introduction and Recap

This thesis presents a novel approach to creating a Wireshark dissector for Ethereum’s
DEVP2P suite of peer-to-peer protocols, including DiscoveryV4, DiscoveryV5, and RLPx with
the ETH and SNAP subprotocols. As we have discussed, Ethereum networks facilitate
intercommunication amongst Ethereum networked nodes, providing for decentralized
applications and accounts. Therefore, many contributions were covered to satisfy the
requirements for creating a Wireshark dissector plugin that supports RLP decoding and ECIES
decryption. First, creating a private Ethereum docker network was discussed, utilizing a custom
Go Ethereum source. Next, the actual implementation of the LUA Wireshark plugins was
covered; first, the “discovery.lua” plugin supporting the DEVP2P discovery protocols, followed
by “rlpx.lua” which allows for the dissection of RLPx, including the ETH and SNAP
subprotocols. Then we dug deeper into PYDEVP2P, the python-based, minimal third-party
dependency library providing tools for RLP decoding, ECIES decryption, and dissection helper
function. Lastly, the technical details behind Elliptic Curve Digital Signature Algorithm
(ECDSA), Elliptic Curve Diffie-Hellman, are analyzed utilizing the dissector and PYDEVP2P.

Wireshark is a widely used network analysis tool that allows users to inspect and decode
network packets. However, Wireshark does not support Ethereum’s DEVP2P protocols natively,
which limits the ability of researchers and developers to monitor and understand the behavior of
Ethereum nodes. On top of this, Wireshark supports the use of dissector plugins, which are add-
ons to Wireshark’s dissection capability. As we discussed, the current two dissector plugins
provided by BCSEC Org and ConsenSys do not fully support the latest message structure of
DiscoveryV4 and provide zero support for DiscoveryV5 and RLPx. To address this gap, this
thesis develops a custom Wireshark dissector plugin in LUA that can parse and display DEVP2P
packets in a user-friendly format. The plugin leverages PYDEVP2P, a python-based library
developed to assist with decoding RLP (Recursive Length Prefix) and decrypting ECIES
(Elliptic Curve Integrated Encryption Scheme) used by DEVP2P protocols.

Furthermore, this thesis creates a private docker network with custom Go Ethereum
images that generate real-to-life DEVP2P traffic for development, testing, and analysis purposes.
Using this dissector plugin and environment, this thesis demonstrates how the Wireshark
dissector can analyze various aspects of DEVP2P packet flow, such as tracking the propagation
of a transaction throughout the network, analyzing the DiscoveryV4 Elliptic Curve Digital
Signature Algorithm (ECDSA) and DiscoveryV5’s use of Elliptic Curve Diffie-Hellman
(ECDH). This thesis contributes to the field of blockchain research, Ethereum community
members, and educators by providing a practical tool for studying Ethereum’s peer-to-peer
communication layer and enhancing the transparency and security of decentralized applications.

94

6.2 Dissection & Analysis Results

This thesis has presented the design and implementation of a Wireshark dissector plugin to
dissect DEVP2P’s DiscoveryV4, DiscoveryV5, and RLPx protocols. The dissector plugin can
decode and display various messages exchanged between Ethereum nodes, either live in a real-
time network or after the fact with packet captures. Furthermore, the dissector plugin also
supports decoding DiscoveryV5 and RLPx messages using the session keys derived from the
handshake process.

The process of creating the dissector and the multitude of the dissector’s capabilities is shown in
Chapter 4. Specifically, the DEVP2P dissector supports all of the messages found in
DiscoveryV4, discussed in Chapter 4.3.1, including Ping, Pong, FindNode, Neighbors,
ENRRequest, and ENRResponse. The previous dissectors, including the LUA dissector plugin
by BSECORG and the C dissector by ConsenSys, cannot fully dissect the newer message
schema for the Ping and Pong messages due to the new “enr-seq” field. These previous
dissectors also do not support the newest ENRRequest and ENRResponse packets described in
EIP-868, which were added to the protocol in October 2019.

Next, the new dissector supports the latest implementation of Discovery V5, discussed in Chapter
4.3.2, including Ping, Pong, FindNode, Nodes, TalkReq, and TalkResp. The previous dissectors
did not support this due to the nature of the protocol obfuscating the packet header information
and the ECDH handshake to exchange session keys for encrypted communication. However, this
new DEVP2P dissector provides all the capabilities to maintain the sessions created amongst
known nodes on the network, seamlessly decrypting and deciphering captured network data.

The DEVP2P dissector plugin, can analyze and decipher the authenticated and encrypted
communication between Ethereum nodes facilitated by RLPx. This includes the handshake
process of creating session keys between nodes using the AuthInit and AuthAck RLPx messages,
followed by the built-in RLPx capability “P2P” Hello messages, as shown in Chapter 4.4. The
dissector supports the other RLPx P2P messages, Ping, Pong, and Disconnect. As RLPx is used
as a TCP transport for multiple capabilities, the dissector can decode, decrypt, and dissect ETH
and SNAP, the two main sub-protocols or capabilities under RLPx. These protocols support
block propagation, chain synchronization, and transactions, followed by state management and
synchronization with SNAP. The dissector supports the 2 RLPx handshake messages, 4 RLPx
P2P messages, 13 ETH capability messages, and 6 SNAP capability messages.

The range of messages this dissector supports makes it possible to research, analyze and study
the behavior and performance of the DEVP2P protocols. As was shown, this new Wireshark
dissector plugin can be used to understand how nodes discover each other using the discovery
protocols, establish encrypted connections using RLPx, and exchange information amongst

95

connected peers regarding blockchain status and transactions. The dissector can also reveal the
details of the message formats, such as the RLP encoding and decoding, the packet headers and
trailers, and the message types and contents. This tool allows for an easily accessible view of the
inner workings of DEVP2P and assists researchers, the general blockchain community, and
educators in similar fields.

6.3 Limitations & Future Work

The dissector is a novel contribution to Ethereum network analysis, as it is the first tool to dissect
all three DEVP2P protocols in a unified and user-friendly interface. The dissector can help
researchers and developers understand the behavior and performance of the Ethereum network
and identify and mitigate potential security threats. The dissector can also aid educators by
making elliptic curve cryptography more accessible in real-world applications while helping
develop and test new protocols or features for the Ethereum network while providing a solid
foundation for future improvements and extended support for existing protocols.

However, the dissector also has some limitations and drawbacks that must be addressed in future
work:

e The dissector requires custom Go Ethereum source code that includes the random private
keys generated by each node during the RLPx handshake used for session key sharing
and encryption of subsequent packets. The dissector will not support RLPx dissection
with official GETH or Ethereum clients.

e The dissector requires Python to be used with PYDEVP2P, which handles the main logic
of dissection, decoding and decryption behind the scenes. This adds complexity and
overhead to the setup and execution of the dissector, requiring the Python PIP package of
PYDEVP2P to be installed, along with LUA and the Lunatic-Python bridge.

e The dissector has an incomplete message bug that causes some messages to be truncated
or skipped when they are larger than a certain size. This bug affects the accuracy and
completeness of the dissection results when a handshake packet or a malformed packet is
captured.

e The dissector does not show the unmasked “authdata” of DiscoveryV5 messages, which
contains essential information such as node ID, signature, and the ephemeral public key
in a clear human-readable format on the Wireshark display.

As Ethereum and its underlying network continues to grow in complexity and evolve over time,
there are some possible improvements or extensions for future work are:

96

e Utilize the dissector in a proof-of-stake environment to see what DEVP2P protocols and
messages are used in an execution client in a proof-of-stake consensus algorithm
network. It would be interesting to see which DEVP2P RLPx capability messages are
adapted or unused by new protocols for proof-of-stake.

e Dissect LIBP2P and compare it with DEVP2P. LIBP2P is another peer-to-peer
networking stack used by Ethereum consensus clients. Comparing and contrasting
LIBP2P with DEVP2P in terms of features, performance, and security would be useful.

e Add the dissection of LES, PIP, WIP, and other RLPx sub-protocols. The dissector
currently only supports the ETH and SNAP sub-protocols. These other sub-protocols are
used for different purposes, such as Light Ethereum Subprotocol (LES) support, Parity
Light Protocol (PIP) support, and Ethereum Witness Protocol (WIT). The dissector
should be extended to support these sub-protocols as well.

e Investigate network discovery leaking, identified as an issue seen in DiscoveryV4.
Network discovery leaking is a problem where Ethereum nodes setup for specific
chain/network IDs incorrectly communicate and discover nodes on other Ethereum
networks.

¢ Implement a DiscoveryV4 and Discovery VS5 denial-of-service (DoS) attack. The
DiscoveryV4 protocol is vulnerable to denial-of-service (DoS) attacks that can flood
nodes with fake ping or pong messages. These messages consume the bandwidth and
processing resources of nodes and may prevent them from responding to legitimate
messages. The dissector can help to detect and monitor such attacks by capturing such
malicious packets on the network.

e Implement an RLPx Known Plaintext Attack. RLPx protocol uses AES-CTR encryption
with a fixed IV (initialization vector) for each message. This makes it susceptible to a
known plaintext attack that can recover the encryption key if an attacker knows some
plaintext-ciphertext pairs. The dissector can help to avoid this attack by randomizing the
IV for each message or using a different encryption scheme.

e Perform Wireshark statistical analysis. Wireshark provides various statistical network
traffic analysis tools, such as graphs, charts, tables, filters, etc. The dissector can leverage
these tools to perform a more advanced and comprehensive analysis of DEVP2P
protocols, such as throughput, latency, packet loss, message distribution, node behavior,
etc.

6.4 Final Thoughts

The design, implementation, and analysis of the results of the dissector prove its usefulness to
the community, educators, developers, and researchers. The LUA Wireshark dissector plugin and
the PYDEVP2P library provide all the tools necessary for educators, researchers, and developers
to understand on a deeper level the inner workings of the Ethereum network. This dissector also
allows the visualization of popular cryptography concepts, utilizing Elliptic Curve Cryptography

97

(ECC) while also understanding how Recursive Length Prefix (RLP) encoding. Many hurdles
were overcome throughout the creation of this dissector, whether it needed to be updated
documentation or the implementation of Ethereum-specific ECIES technicalities. Most of the
technical details sprinkled throughout this document were acquired directly from the Ethereum
DEVP2P GitHub specification page and the most-used execution client source code, Go
Ethereum. As a result, these methods are not easily accessible to the broader Ethereum
community, analysts, and, most important, educators. The contributions discussed throughout
this document allow for greater accessibility into Ethereum node network communication while
also overcoming hurdles noted by one of the largest blockchain technology solution companies,
ConsenSys. This includes the Go Ethereum docker network, which can spin up a full-fledged
private Ethereum network using a single command, followed by the LUA Wireshark plugin and
PYDEVP2P library, which can be installed in a few easy steps. As discussed, the PYDEVP2P
library also provides easy-to-understand elliptic curve cryptography implementations, allowing
educators and students to get hands-on access to understand such low-level concepts in a real-
world environment. This document's primary goal has been to provide all the tools necessary to
support future enhancements, provide an easily accessible tool for educators to display ECIES
cryptography techniques, and for security analysts to increase the robustness of peer-to-peer
blockchain networks further.

98

7. Appendix
7.1 Supplemental Materials

Please refer to the following list of contributions, submitted along with this document and found
online:

e Lua-devp2p-wireshark-dissector - https://github.com/jmkemp20/lua-devp2p-wireshark-

dissector

e PYDEVP2P - https://github.com/jmkemp20/pydevp2p

e Lunatic-Python - https://github.com/jmkemp20/lunatic-python

e Go-Ethereum - https://github.com/jmkemp20/go-ethereum

e GETH-Docker - https://github.com/jmkemp20/geth-docker

7.2 Environment Setup
Step 1) Install Wireshark and specific LUA version

sudo apt-get update && sudo apt-get upgrade
sudo apt-get install luab.2 libluab.2-dev wireshark python3.10
T $ lU 3

emp-Desktop: % wireshark -v
Wireshark 3.6.2 (Git v3.6.2 packaged as 3.6.2-2)

Figure 98: Checking the Version of Wireshark

Step 2) Change permissions and Copy Lunatic Python LUA < Python Bridge binary

sudo chmod +x python.so
cp python.so /usr/local/lib/lua/5.2/.

* This mitigates the need to manually build lunatic-python
emp-Desktop:

root root 4896 Nov 7 19

drwxr-xr-x 2 .
®r-xr-x 5 root root 4896 Nov 7 /
-rwxr-xr-x 1 root root 49288 Nov 7 19:34 python.so*
Figure 99: Python LUA Library In LUA Directory

Step 3) Clone both the LUA Dissector and PYDEVP2P

git clone https://github.com/jmkemp20/lua-devp2p-wireshark-
dissector.git

99

git clone https://github.com/jmkemp20/pydevp2p.git

Step 4) Install the PYDEVP2P PIP Package from source (should also use sudo)

cd pydevp2p

pip install -e
sudo pip install -e
] mp-Desktop: $ pip install -e .
Defaulting to user installation because normal site-packages is not writeable

FFor

Obtaining file:///home/jkemp/cs788/ pydevpp
Preparing metadata (setup.py) ... done
Figure 100: Installing PYDEVP2P Using PIP

Installing collected packages: pydevp2p
Attempting uninstall: pydevp2p
Found existing installation: pydevp2p @.1.@

Uninstalling pydevp2p-8.1.8:
Successfully wninstalled pydevpZp-8.1.8
Running setup.py develop for pydevp2p
Successfully installed pydevp2p-8.1.8

Figure 101: Successfully Installed PYDEVP2P PIP Package

Step 5) Next, create the directory for Wireshark plugins (local user and root)

cd ~/.local/lib

mkdir wireshark (1f doesn’t exist)
cd wireshark && mkdir plugins
cd plugins

Step 6) Now, Symbolic link (or copy over) the .lua dissectors

sudo 1ln -s <location of cloned dissector>/rlpx.lua rlpx.lua
sudo 1n -s <location of cloned dissector>/discovery.lua discovery.lua

jkemp jkemp 4896

« 3 jkemp jkemp 4896
X 1 root root 7]
x 1 root root 57

Figure 102: Linking Dissector Plugins in Local Wireshark Plugin Directory

Step 7) Do the same for the Root user (if using Wireshark with sudo privileges)

root@kemp-Desktop:~/ . local/lib/wireshark/plugins# 11

root 4896 Dec
root 4896
root 62 (
root 57 Now
i~ . local/ f

Figure 103: Linking Dissector Plugins in Root Wireshark Plugin Directory

100

* These .lua files can also just be copied directly without needing to symbolically link to them
7.3 Testing with Local .pcapng Packet CaptureFile

* Note, the LUA dissector files register the UDP/TCP ports for discovery and RLPx,
these are ports 30303 — 30308, this can be changed directly in discovery.lua and rlpx.lua.

wireshark -r final.pcapng

% wireshark -r final.pcapng

tound.
decodeMessage(fromAddr, head, headerData, msgData) No Known Key for 18.1.1.18 Initiate Handshake
decodeMessage(fromAddr, head, headerData, msgData) No Known for 18.1.1.18 Initiate Handshake

decodeMessage(fromAddr, head, headerData, msgData) No Known Key for 18.1.2.28 Initiate Handshake
c decodeMessage(fromAddr, head, headerData, msgData) No Known Key for 10.1 Initiate Handshake

fvdwire/decode.py 42] decodeDiscv4(input): Err Unable To Verify Hash
Awire/decode.py 42] decodeDiscv4(input): Err Unable To Verify Hash

Figure 104: Running Wireshark with Captured Packet File

* The above “errors” are normal, these are shown for the first packet in an RLPx
handshake and for discv5 packets

No. Time Source Destination Protocol Lengtt Info
1 0.800000000 1428 . Broadcast 42 Who has 10.1.1.27 Tell 10.1.1.16
2 ©.000018806 B2:42:0a. 02:42:0a:0.. ARP 42 10.1.1.2 is at 02:42:0a:01:01:02
3 0.000021800 10.1.1.10 16.1.0.16 DEVP2P 176 30304 . 30303 [DiscoveryV4 PING] Version=4 Kind=1 Len=134
4 0.000048200 10.1.1.41@ 10.1.0.18 TCP 74 39506 - 30303 [SYN] Seq=0 Win=64240 Len=8 M55=1460 SACK_PERM=1 TSval=168456282 TSecr=i
5 0.00008616€ 10.1.6.16 10.1.1.108 TCP 74 30303 - 39506 [SYN, ACK] Seq=0 Ack=1 Win=65160 Len=0 M55=1460 SACK_PERM=1 TSval=18963!
6 B.800095500 10.1.1.1@ 10.1.6.18 TCP 66 39506 . 30303 [ACK] Seq=1 Ack=1 Win=64256 Len=8 TSval=168456292 TS5ecr=1896397177
7 08.800127400 10.1.1.1@ 10.1.0.18 DEVP2P 176 30384 _. 30303 [DiscoveryV4 PING] Version=4 Kind=1 Len=134
8 0.000167600 10.1.1.1€ 10.1.0.10 DEVP2P 133 30304 . 30303 [DiscoveryVS MESSAGE UNKNOWN/vS] Version=5 Kind=255 RequestID=N/A Len=9:
9 0.800281508 10.1.6.1€ 10.1.1.10 DEVP2ZP 199 30383 . 30304 [DiscoveryV4 PONG] Version=4 Kind=2 Len=157
16 0.000434800 10.1.6.10 16.1.1.18 DEVP2P 176 30303 . 30304 [DiscoveryV4 PING] Version=4 Kind=1 Len=134
11 0.600487800 10.1.1.1@ 16.1.0.160 RLPX 523 39506 . 30303 [HANDSHAKE] AUTH INIT
12 0.600517400 10.1.6.10 16.1.1.18 TCP 66 30303 . 39506 [ACK] Segq=1 Ack=458 Win=64768 Len=0 TSval=1896397178 TSecr=168456293
13 0.000572600 10.1.6.1@ 10.1.1.18 DEVP2P 199 30383 . 30304 [DiscoveryV4 PONG] Version=4 Kind=2 Len=157
14 0.000585800 10.1.1.1@ 10.1.0.18 DEVP2P 199 30384 - 30303 [DiscoveryV4 PONG] Version=4 Kind=2 Len=157
15 0.000686000 10.1.6.1@ 10.1.1.10 DEVP2P 176 30383 . 30304 [DiscoveryV4 PING] Version=4 Kind=1 Len=134
16 0.000843000 10.1.1.1€ 10.1.0.10 DEVP2P 199 30384 . 30303 [DiscoveryV4 PONG] Version=4 Kind=2 Len=157
17 0.000905000 10.1.€.1€ 10.1.1.10 RLPX 456 30303 - 39506 [HANDSHAKE] AUTH ACK
18 0.000910600 10.1.4.10 16.1.0.18 TCP 66 39506 - 30303 [ACK] Seq=458 Ack=391 Win=64128 Len=0 TSval-168456293 TSecr=1886397178
19 0.601165800 10.1.6.1@ 16.1.1.10 RLPX 274 30303 . 39506 [P2P Hello] Type=Hello Code=0 Len=168
20 0.081116388 16.1.1.1@ 16.1.8.18 TCP 66 30506 . 30303 [ACK] Seq=458 Ack=599 Win=64128 Len=08 TSval=168456293 TSecr=1896397178
21 0.001162108 10.1.1.1@ 10.1.6.18 RLPX 274 39586 - 30303 [P2P Hello] Type=Hello Code=@ Len=168

Figure 105: Viewing Dissected DEVP2P Packets in Wireshark

7.4 Live GETH Docker Startup
Step 1) Make sure Docker and Docker Compose are installed and running

% docker -w

26.18.23, build 7155243

$ docker-compose -v

: $
Figure 106: Checking the Version of Docker

% sudo ser docker status

Figure 107: Starting the Docker Service on the Host

Step 2) Clone the GETH-Docker Repository

git clone https://github.com/jmkemp20/geth-docker.git

101

cd geth-docker

Step 3) Build the custom docker images

./build-dockers.sh

* This will create 5 images, one for the “router” and 4 GETH nodes all using the
dockerfile.manual file

Step 4) Next, startup JUST the router container

docker-compose up -d bridge-router

1 emp-Desktop: % docker-compose up -d bridge-router
WARNING: Some networks were defined but are not used by any service: router-net
Creating network "geth-private-docker bridge-net-8" with driver "bridge"

Creating network "geth-private-docker bridge-net-1" with driver "bridge"

Creating network "geth-private-docker bridge-net-2" with driver "bridge"

Creating network "geth-private-docker bridge-net-3" with driver "bridge"

Creating geth-private-docker bridge-router 1 ...
wp-pesktop: 5 1

Figure 108: Running the Bridge Router Docker Container

Step 5) Then open up Wireshark and attach to the 10.1.0.1 or any 10.1.X.X network

sudo wireshark

% sudo wireshark
6717 [GUI WARNING] -- QStandardPaths: XDG RUNTIME DIR not sef

Figure 109: Starting Wireshark to Capture Live Network Traffic

Capture

...using this filter: | |Ewt5"a capture filter ...

| eth0 A |
br-ce2B80189086¢C
br-96a849beld2f i N
br-8df15f988798 Lo
br-d7b586dfh516 EED::dtzzecg:I{e?E:ldE
vethb4b0fda 0 capture Teer A A
veth07d1157 | A

Figure 110: Selecting the Interface to Capture Packets On
Step 6) Finally, start up each GETH node/client container one-by-one
docker-compose up -d geth-ubuntu-bootnode

docker-compose up -d geth-client-1
docker-compose up -d geth-client-2

102

docker-compose up -d geth-client-3

7.5 Installing the Custom GO Ethereum Client from Scratch

Step 1) Clone the Custom GO Ethereum Source

git clone https://github.com/jmkemp20/go-ethereum.git

Step 2) Install GETH or all GO Ethereum Utilities
cd go-ethereum

make geth
make all # for all utilities

Step 3) Run GETH

geth ..

https://github.com/jmkemp20/go-ethereum.git

103

8. Glossary

e Node - A computer that runs software to verify blocks and transaction data on the
Ethereum network
Peer - Another node on the Ethereum network that a node communicates with
Client - A software application that must be run on a computer to turn it into an Ethereum
node

e Execution Client - A client that listens and executes transactions and maintains the latest
state and database of all Ethereum data

e Consensus Client - Also known as Beacon Node or CL client, this client implements the
proof-of-stake consensus algorithm which enables the network to achieve agreement
based on validated data from the execution client

e Pecer-to-peer Network - A decentralized network where nodes communicate with each
other using standardized protocols

e Proof-of-Work - A consensus mechanism used to validate transactions and add new
blocks to the chain. In PoW, nodes on the network compete to solve a complex
cryptographic puzzle, and the first node to solve the puzzle is rewarded with ether and the
right to add a new block to the blockchain.

e Proof-of-Stake - (PoS): A consensus mechanism used by the Post-Merge Ethereum
blockchain that involves validators staking ether to participate in the network and validate
transactions. In PoS, validators are chosen to validate blocks based on the amount of
ether they have staked, and the probability of being chosen as a validator increases with
the amount of ether staked.

e Accounts - (PoS): Digital identities on the Ethereum blockchain that can hold ether and
other assets and execute smart contract functions. There are two types: externally owned
accounts (EOAs) and contract accounts.

e DEVP2P - A set of network protocols that form the Ethereum peer-to-peer network for
execution clients

e LIBP2P - A modular networking stack that enables peer-to-peer communication between
consensus clients on the Ethereum network.

e Block - A package of data containing a set of transactions that have been verified and
added to the Ethereum blockchain.

e Chain - The sequential arrangement of blocks in the Ethereum blockchain, which creates
a decentralized ledger of all transactions on the network.

e Transaction - An operation that modifies the state of the Ethereum blockchain, such as
transferring ether (ETH) or executing a smart contract.

® Receipt - A data structure that confirms the successful execution of a transaction on the
Ethereum network, providing details such as gas used and contract addresses.

e Elliptic Curve Integrated Encryption Scheme (ECIES) - A public-key encryption
algorithm used to securely transmit data between parties on the Ethereum network.

104

Elliptic Curve Diffie Hellman Exchange (ECDHE) - A key agreement protocol that
allows two parties to securely establish a shared secret key on the Ethereum network.
Elliptic Curve Digital Signature Algorithm (ECDSA) - A digital signature algorithm used
to verify the authenticity of transactions on the Ethereum blockchain.

ENR - An Ethereum Node Record that contains metadata about a node on the Ethereum
network, such as its IP address and public key.

Node ID - A unique identifier assigned to each node on the Ethereum network, which is
used to facilitate communication and routing.

RLP - Recursive Length Prefix encoding, a compact data serialization format used to
encode complex data structures such as Ethereum transactions and blocks.

105

9. References

[1] “What Is Ethereum? | Ethereum.org.” Ethereum.org, 2015, ethereum.org/en/what-is-
ethereum/.

[2] Stark, Josh, and Evan Van Ness. “The Year in Ethereum 2021.” Mirror.xyz, 2021,
stark.mirror.xyz/q30OnsK7mvfGtTQ72nfoxLyEV51fY OqUfJIoKBx7BG11.

[3] Nelson, Matt, and Clarissa Watson. “The State of the Merge: An Update on Ethereum’s
Merge to Proof of Stake in 2022 | ConsenSys.” ConsenSys, 2022,
consensys.net/blog/news/the-state-of-the-merge-an-update-on-ethereums-merge-to-proof-
of-stake-in-2022/.

[4] ethereum. “Consensus-Specs/P2p-Interface.md at Dev - Ethereum/Consensus-Specs.”
GitHub, 26 Sept. 2022, github.com/ethereum/consensus-
specs/blob/dev/specs/phase0/p2p-interface.md.

[5] Kripalani, Raul. “Releasing Wireshark Dissectors for Ethereum BDEVp2p Protocols.”
Medium, ConsenSys Media, 14 Aug. 2018, media.consensys.net/releasing-wireshark-
dissectors-for-ethereum-%C3%B0%CE%BEvp2p-protocols-215¢9656dd9c.

[6] Ethereum Improvement Proposals. “Ethereum Improvement Proposals.” Ethereum
Improvement Proposals, 2023, eips.ethereum.org/.

[7] besecorg. “Besecorg/Ethereum devp2p wireshark dissector: This Is Ethereum Devp2p
Protocol Dissector Plugin for Wireshark.” GitHub, 12 June 2018,
github.com/bcsecorg/ethereum_devp2p wireshark dissector.

[8] ConsenSys. “ConsenSys/Ethereum-Dissectors: Wireshark Dissectors for Ethereum

Devp2p Protocols.” GitHub, 24 Aug. 2018, github.com/ConsenSys/ethereum-dissectors.

106

[9] “The Crypto Wallet for Defi, Web3 Dapps and NFTs | MetaMask.” Metamask.io, 2023,
metamask.io/.

[10] “JSON-RPC Server | Go-Ethereum.” Go-Ethereum, go-ethereum, 2023,
geth.ethereum.org/docs/interacting-with-geth/rpc.

[11] “Chainlist.” Chainlist.org, 2016, chainlist.org/.

[12] “Networks | Ethereum.org.” Ethereum.org, 2023,
ethereum.org/en/developers/docs/networks/.

[13] “Nodes and Clients | Ethereum.org.” Ethereum.org, 2020,
ethereum.org/en/developers/docs/nodes-and-clients/.

[14] “Home | Go-Ethereum.” Go-Ethereum, go-ethereum, 2013, geth.ethereum.org/.

[15] “Networking Layer | Ethereum.org.” Ethereum.org, 2023,
ethereum.org/en/developers/docs/networking-layer/.

[16] Ethereum Foundation. “Eth1+Eth2 Client Relationship.” Ethereum Research, 7 Apr.
2020, ethresear.ch/t/eth1-eth2-client-relationship/7248.

[17] Alen Huskanovié. “Proof of Work - What It Is and How Does It Work? - Async Labs -
Software Development & Digital Agency.” Async Labs - Software Development &
Digital Agency, 31 July 2018, www.asynclabs.co/blog/blockchain-development/proof-of-
work-what-it-is-and-how-does-it-work/.

[18] “Proof-of-Work (PoW) | Ethereum.org.” Ethereum.org, 2022,
ethereum.org/en/developers/docs/consensus-mechanisms/pow/.

[19] “About ConsenSys | ConsenSys.” ConsenSys, 2020, consensys.net/about/.

[20] “Ninja, a Small Build System with a Focus on Speed.” Ninja-Build.org, 2022, ninja-

build.org/.

107

[21] “Lua.” Wireshark.org, 2020, wiki.wireshark.org/Lua.

[22] Carey, Scott. “What Is Docker? The Spark for the Container Revolution.” InfoWorld, 2
Aug. 2021, www.infoworld.com/article/3204171/what-is-docker-the-spark-for-the-
container-revolution.html.

[23] “Lua.” Wireshark.org, 2020, wiki.wireshark.org/Lua.

[24] bastibe. “Bastibe/Lunatic-Python: A Two-Way Bridge between Python and Lua.”
GitHub, 2 Nov. 2021, github.com/bastibe/lunatic-python.

[25] “Command-Line Options | Go-Ethereum.” Go-Ethereum, go-ethereum, 2023,
geth.ethereum.org/docs/fundamentals/command-line-options.

[26] Ligios, Andrea. “Introduction to Docker Compose | Baeldung.” Baeldung, 4 June 2019,
www.baeldung.com/ops/docker-compose.

[27] “Devp2p/Discv4.Md at Master - Ethereum/Devp2p.” GitHub, 6 Jan. 2023,
github.com/ethereum/devp2p/blob/master/discv4.md.

[28] “Recursive-Length Prefix (RLP) Serialization | Ethereum.org.” Ethereum.org, 2020,
ethereum.org/en/developers/docs/data-structures-and-
encoding/rlp/#:~:text=RLP%?20standardizes%20the%?20transfer%200of,objects%20in%20
Ethereum’s%?20execution%?20layer.

[29] “Devp2p/Discv5-Rationale.md at Master - Ethereum/Devp2p.” GitHub, 7 Oct. 2020,
github.com/ethereum/devp2p/blob/master/discv5/discv5-rationale.md.

[30] “Devp2p/Discv5-Theory.md at Master - Ethereum/Devp2p.” GitHub, 31 Mar. 2022,
github.com/ethereum/devp2p/blob/master/discv5/discv5-theory.md.

[31] “Devp2p/Rlpx.md at Master - Ethereum/Devp2p.” GitHub, 2 Nov. 2022,

github.com/ethereum/devp2p/blob/master/rlpx.md.

108

[32] “ECIES Hybrid Encryption Scheme - Practical Cryptography for Developers.”
Nakov.com, 2023, cryptobook.nakov.com/asymmetric-key-ciphers/ecies-public-key-
encryption.

[33] “Devp2p/Eth.md at Master - Ethereum/Devp2p.” GitHub, 30 June 2022,
github.com/ethereum/devp2p/blob/master/caps/eth.md.

[34] Lukasz Zuchowski. “Ethereum: Everything You Want to Know about Gas -
SoftwareMill Tech Blog.” Medium, SoftwareMill Tech Blog, 14 Nov. 2017,
blog.softwaremill.com/ethereum-everything-you-want-to-know-about-the-gas-
b7c8f5c17e7c.

[35] “Devp2p/Snap.md at Master - Ethereum/Devp2p.” GitHub, 2 Nov. 2021,
github.com/ethereum/devp2p/blob/master/caps/snap.md. Accessed 29 Mar. 2023.

[36] “Geth V1.10.0 | Ethereum Foundation Blog.” Ethereum Foundation Blog, Ethereum
Foundation Blog, 2021, blog.ethereum.org/2021/03/03/geth-v1-10-0.

[37] “Merkle Patricia Trie | Ethereum.org.” Ethereum.org, 2023,
ethereum.org/en/developers/docs/data-structures-and-encoding/patricia-merkle-trie/.

[38] Tabora, Vincent. “Hashing Functions in Solidity Using Keccak256 - 0xCODE -
Medium.” Medium, 0xCODE, 15 Feb. 2022, medium.com/0Oxcode/hashing-functions-in-
solidity-using-keccak256-
70779ea55bb0#:~:text=The%20keccak256%20(SHA%2D3%20family,cannot%20be%20
decoded%20in%20reverse.

[39] ochekliye enigbe. “Elliptic Curves and the Discrete Log Problem - Ochekliye Enigbe -
Medium.” Medium, Medium, 14 Feb. 2022, enigbe.medium.com/about-elliptic-curves-

and-dlp-ed76¢5e27497.

109

[40] “Weierstrass Equation of an Elliptic Curve.” Planetmath.org, 2013,
planetmath.org/weierstrassequationofanellipticcurve#:~:text=A%20Weierstrass%20equat
10n%20for%?20an,6%?20are%20constants%20in%20K%20.

[41] “ECDSA: Elliptic Curve Signatures - Practical Cryptography for Developers.”
Nakov.com, 2023, cryptobook.nakov.com/digital-signatures/ecdsa-sign-verify-messages.

[42] Orion. “CS 463 Lecture.” Uaf.edu, 2013,
www.cs.uaf.edu/2015/spring/cs463/lecture/02 27 ECC jacobi.html.

[43] Dominiek Ter Heide. “A Closer Look at Ethereum Signatures.” Hackernoon.com, 16
Feb. 2018, hackernoon.com/a-closer-look-at-ethereum-signatures-5784c14abecc.

[44] “ECDH Key Exchange - Practical Cryptography for Developers.” Nakov.com, 2023,
cryptobook.nakov.com/asymmetric-key-ciphers/ecdh-key-exchange.

[45] “Networking Overview.” Docker Documentation, 28 Mar. 2023,

docs.docker.com/network/.

	Enabling security analysis and education of the Ethereum platform: A network traffic dissection tool
	Recommended Citation

	Acknowledgments
	List of Figures
	List of Tables
	Abstract
	1. Introduction
	1.1 Ethereum Network Background
	1.2 Problem Statement
	1.3 Contributions
	1.4 Organization

	2. Scenario
	2.1 Custom Network Description
	2.2 Ethereum Client Accounts
	2.3 Starting the Private Network
	2.4 Connecting MetaMask
	2.5 Connecting Accounts and Transacting ETH
	2.6 Scenario Discussion

	3. Related Work and Literature Review
	3.1 Discussion of Ethereum Networks
	3.2 Discussion of Ethereum Nodes/Clients
	3.3 Discussion of Ethereum Network Protocols
	3.4 Discussion of the Proof-of-Work Consensus Algorithm
	3.5 Literature & Documentation Review
	3.6 Existing Dissector Implementations
	3.7 Conclusion

	4. Creating the Dissector
	4.1 Packet Dissector Design
	4.2 Creating the Network
	4.3 Node Discovery Mechanisms
	4.3.1 DiscoveryV4 Dissection
	4.3.2 DiscoveryV5 Dissection

	4.4 Authenticated Node Communication
	4.4.1 Handshake ECIES Decryption
	4.4.2 Exposing the Random Private Key
	4.4.3 Dissecting RLPx P2P Capability Messages

	4.5 Node Capability Messaging
	4.5.1 Dissecting ETH Capability Messages
	4.5.2 Dissecting SNAP Capability Messages

	4.6 Recap and Discussion

	5. Security Analysis with the Dissector
	5.1 DiscoveryV4 ECDSA Performance & Security Analysis
	5.2 DiscoveryV5 Masking and Confidentiality
	5.3 Tracking a Transaction using the Dissector

	6. Conclusion
	6.1 Introduction and Recap
	6.2 Dissection & Analysis Results
	6.3 Limitations & Future Work
	6.4 Final Thoughts

	7. Appendix
	7.1 Supplemental Materials
	7.2 Environment Setup
	7.3 Testing with Local .pcapng Packet CaptureFile
	7.4 Live GETH Docker Startup
	7.5 Installing the Custom GO Ethereum Client from Scratch

	8. Glossary
	9. References

