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Abstract 

Graphs are used in our lives daily to communicate information such as political ads or car 

sales. In the sciences, understanding graphs is essential to effective communication as graphs are 

often used to report experimental results or observed trends. However, research suggests that 

college students are not fluent in this form of scientific communication. Additionally, research 

has also found that standardized assessments of quantitative literacy fail to be clearly defined at 

the curricular or institutional levels. This research looks at the differences between the cognitive 

and metacognitive strategies of how individuals along a continuum of biological expertise 

visually represent data. As a result, an instrument was created from expert feedback and graphing 

literature to test if differences exist in how individuals transform graph data and if those 

differences are a function of scientific expertise. The instrument collected data on graph drawing 

and cognitive interviews (i.e. think-aloud) from 35 participants with varying biology experience, 

including 13 non-biology majors, 9 non-senior biology majors, 7 senior biology majors and 

graduate students, and 6 biology faculty. Rubrics were used to evaluate performance in graph 

drawing and think-aloud components. Although no statistical differences were identified 

between groups in graph drawing tasks, analysis of specific graph drawing components (e.g., 

graph type) did reveal variation as a function of expertise. Significant differences were found 

between expertise groups in the cognitive and metacognitive strategies discussed in the think-

aloud data (e.g., why a graph was drawn in that manner). These findings begin to identify 

differences between experts and novices in Biology, as well as the lack of alignment in one’s 

ability to depict graphical data and actual understanding of graphing practices, which may be 

used to inform instruction to increase graph literacy. Additionally, the instrument designed for 
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this study has high face validity, but future work will be needed to establish reliability as only 

one researcher was able to score data. Increasing reliability will allow this instrument to be an 

effective tool for faculty interested in assessing their students’ data display skills. 

Key words: graph, drawing, think-aloud, biology, expertise 
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Exploratory Study of Graph Drawing on a Continuum of Expertise 

1. Introduction 

The prevalence of data displays in today’s society has led to an increasing need for all 

students to develop competency in visual data analysis skills. Using visual representations is 

beneficial because it allows for the rapid perception of linkages and relationships among data 

which literary language does not.  While valued across disciplines, the need for quantitative 

literacy skills is particularly important in the sciences for the effective communication of varied 

and complex information. (Kotzebue, Gerstl, & Nerdel, 2015) 

The ability to communicate through numerical data is referred to as quantitative literacy 

(AACU, 2014). Quantitative literacy (QL) is described as “the skill of using simple mathematical 

thinking to make sense of numerical information” and “refers to the ability to interpret data and 

to reason with numbers within “real-world” situations” (Bray-Speth, Momsen, Moyerbrailean, 

Ebert-May, Long, Wyse, & Linton, 2007; pg. 324).  The Association of American Colleges and 

Universities (AACU) has identified QL as one of the key competencies that all students, 

independent of discipline, should attain throughout the course of their undergraduate educations.  

Strong QL skills are apparent when an individual can generate and communicate an argument 

supported by an assortment of quantitative evidence (e.g., graphs, mathematical equations, and 

tables; AACU, 2014).  

Within one’s broader QL skill set, the learned cognitive ability that requires the use of 

mental tools to build and interpret graphical data representations is identified as graph literacy 

(Duesbery, Werblow, & Yovanoff, 2001).  Similar to reading text, graph literacy requires 

“repeated practice and focus on greater complexity as students develop their skills” (Zucker, 
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Staudt, & Tinker, 2015; p.20).  As the complexity of visual data representations increases, the 

cognitive demands in attending to this information increase as well.  Cognitive demand for a 

given task can be viewed as the combination of the degree of processing (i.e. the quantity of 

simultaneously observed information) and depth of knowledge (i.e. familiarity or skills related to 

the topic) required (Duesbery, Werblow, & Yovanoff, 2001).  For example, a graph with one 

variable would have a lower degree of processing than a graph with two variables, and therefore 

would require less cognitive processing.  The more depth of knowledge tasked, the more 

cognitive processes required (Duesbery et al., 2001).    

In undergraduate biology education, graph literacy has been recognized as a core 

competency in preparing students for STEM careers and data-based decision making as educated 

citizens (AAAS, 2011; Woodin, Carter, & Fletcher, 2010). Given the importance of succinctly 

conveying complex information in the field, scientific communication is often measured based 

on one’s ability to construct, interpret, and apply graphs to various data.  Despite this focus, 

standardized measures for assessing levels of QL largely fail to be clearly defined at the 

curricular or institutional levels (Bray-Speth, et al., 2007). Many college students are not fluent 

in scientific communication as measured by their ability to make sense of or construct visual data 

representations (Glazer, 2011).   

To date, few studies have focused on the development of adults’ graph literacy in the 

sciences, and even fewer on graph construction (as reviewed in Glazer, 2011). Recent 

investigations have begun to explore differences between undergraduate students and scientists’ 

performance in interpreting graphical data (Maltese et al., 2015); however, there has been little 

research done of the development of the graph drawing skills as a function of expertise.  The 
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purpose of this study is to better understand how individuals of varying biology backgrounds 

represent graph data.  To address this, the research questions for this study include: (1) Are there 

differences in the cognitive and metacognitive strategies used to represent biological data 

graphically? (2) If differences do exist, are they a function of biological expertise? (3) Is the 

instrument developed for this study a valid and reliable measurement of one’s graph drawing 

skills? 

In line with prior graph research (Maltese et al., 2015 & Harsh, Maltese, and Warner, 

2012), it is anticipated that graph construction is a function of scientific expertise.  The 

information collected during this project aims to help instructors educate students on the proper 

way to address complex graphical information.  By examining differences in students and 

scientists' cognitive and metacognitive processes, it is anticipated that the findings of this study 

will provide information addressing knowledge gaps and areas most in need of instructional 

emphasis to foster the development of data skills (Harsh, 2014). Understanding how experts 

solve problems is an effective means of facilitating the transfer from novice to more expert-like 

performance (Hmelo-Silver, 2004).  

2. Methods 

2.1 Performance based assessments (PBAs) 

  A performance-based instrument was developed to measure the relationship between 

expertise and graph construction. Performance based assessments (PBAs) are tools used to 

measure the knowledge utilized during the construction of a response to authentic domain-

specific tasks, which provide direct evidence to educational outcomes (Linn, Baker, & Dunbar, 

1991).  PBAs can have instructional, diagnostic, and monitoring purposes lending to their 
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effectiveness as means of testing the science knowledge and practices of college students (Linn 

et al., 1991).  This study focuses on the development and implementation of an instrument (i.e. 

tasks and associated rubrics) to assess individuals’ graph construction skills.  Similar to previous 

research that involved the design and testing of performance instruments (e.g., Stein, Haynes, & 

Redding, 2007), the tasks and associated rubrics were influenced by preexisting relevant 

instruments (e.g., Bray-Speth et al., 2007, Harsh et al., 2012, and Picone et al., 2007), assessment 

literature (e.g., Linn et al., 1991; Mehrens, 1992), and recursive feedback from experts in biology 

and science education.  

The first step of the design process was to review publicly available graphs (i.e. those 

from textbooks, governmental websites, etc.) to identify a set of exemplar data representations 

that could serve as the basis for the graph drawing tasks. Based on key graphing characteristics 

identified in the literature (Glazer, 2011), ten graphs were initially selected from a variety of 

scholarly sources that varied in type, number of variables, specific topic, and other graph 

components. Each of the potential graphs were described by a number of features, including: 

general background (i.e. graph focus, title, and citation), graph characteristics (e.g., graph type, 

unique features), a difficulty score based on graph characteristics identified as being challenging 

for students (Glazer, 20ll), and a rationale to why the graph data were selected.  In addition, a 

brief (2 to 3 sentence) background describing the nature of the data (e.g., defining general 

terminology, highlighting topic importance) was included to provide context for the participant.  

Contextualization is important in PBAs to increase test fairness (Linn, 1991), and has been 

identified as key feature in making sense of graph data for students and scientists (Roth & 

McGinn, 1997).  The four graphs that serve as the basis of the instrument were selected based on 
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their design features (e.g., data, graph type) to provide a range in complexities and feedback 

from faculty in biology, statistics, and biology education at James Madison University (JMU) 

and Indiana University (IU).   

The graph drawing tasks were piloted with an expert faculty member from both the 

Education and Biology departments at JMU. Pilot testing consisted of the expert constructing 

graphs that he/she felt “best” represented the provided information (i.e. data table and context 

background) as well as a discussion about various graphing elements. The discussion included 

the expert detailing how he/she felt about each task, and drawing predictions regarding the future 

performances of each expertise group. The feedback was used to refine the graphing tasks and 

inform rubric development.  

The feedback from the pilot studies was one means of establishing the face validity of 

this instrument. In assessment, validity refers to the extent to which a given assessment succeeds 

in measuring the particular competencies (e.g., graphing drawing) that is was developed to assess 

(Mehrens, 1992).  Along with the pilot study feedback, the face validity of the instrument was 

strengthened through the use of data displays and associated information drawn from primary 

literature.  

2.2 Rubric development   

Elements significant to graph drawing were identified from pre-existing literature to act 

as the basis of the scoring rubrics (e.g., Bray-Speth et al., 2007, Harsh et al., 2012; Kotzebue et 

al., 2015; Picone et al., 2007). A modified version of Harsh and others' (2012) graph drawing 

rubric was used to assess how participants represented the four provided tabular data sets. The 

rubric focuses on three elements (i.e. framework, content, and labeling) identified by Kosslyn 
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(2006) as being essential to graph design. To assess the cognitive and metacognitive strategies 

employed in graph drawing, scoring criteria were developed for this study as no relevant rubrics 

were identified in a review of the literature. Criteria to measure how and why participants chose 

to represent data in a given manner were developed based on the author’s experience in 

collecting data for a separate study on graphing (Harsh et al., in preparation) and graphing 

literature (Kotzebue et al., 2015). Both rubrics were developed to be easily modified based on the 

characteristics of the graphing task (e.g., std. error bars).  

Weightings of the scoring criteria (Appendix D-G) are based on prior instruments (Harsh 

et al., 2012; Kotzebue et al., 2015) and feedback from JMU biology faculty. Expert feedback was 

collected on what graphing features (i.e. criteria) biology faculty identified as being important, 

and how they would weight each identified feature relative to others (Appendix A). Feedback 

was requested from 11 biology professors with seven (64% response rate) providing feedback. 

The faculty feedback was averaged along with the weights suggested in related literature (Harsh 

et al., 2012) to generate the weighting of each criterion. The averages were rounded to the 

nearest half a point to allow for clearer values while scoring (Appendix B). The same procedure 

was taken to establish weights for think-aloud criteria weights (Appendix C and D). 

For the development of effective measures, evidence to the validity and reliability of the 

scoring criteria is of particular importance (Linn et al., 1991). In respect to validity, which was 

defined above, the feedback gathered from these experts contributed to the face validity of the 

rubrics as they identified criteria that they would consider important and how they would weight 

the respective criteria for evaluating graph drawings in a professional context.  Reliability of an 

instrument is supported through the instrument’s reproducibility (Wass et al., 2001; p.946), 
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which can be improved through training and extensive practice in the consistent use of scoring 

criteria. In preparation for this study, over a four month period, the primary researcher gained 

familiarity in the collection and scoring of graph and think-aloud data as part of a prior research 

project that served as the basis of this work (Harsh et al., in preparation). 

2.3 Participant Recruitment 

 Participants were recruited through in-person and electronic solicitation during the Fall 

of 2015. Social media and departmental listservs were also used to communicate with potential 

participants. Non-biology majors were recruited to participate and served as a baseline group for 

comparative purposes. Permission was obtained from the JMU Institutional Review Board 

(IRB), and participants were provided consent forms detailing the project prior to the voluntary 

completion of the task. For their efforts, participants were compensated with a small stipend 

($5). 

2.4 Procedure  

 Graph drawing and think-aloud data were collected using an electronic tablet and Vittle, 

a recording application  (http://www.qrayon.com/home/vittle/), to allow pen strokes and audio to 

be synced. Participants were given a brief orientation of the application, then asked to construct 

the “best” graph for a given data table and context, while verbalizing their reasoning for 

representing data in such a manner. A cognitive interview (CI; Appendix E) followed each task 

to further reveal the depth of participants’ understanding of data representation. Cognitive 

interviews are methods for improving information recall that are based on the premise that 

“retrieval will be enhanced if the context experienced at retrieval matches that experienced 

during encoding” (Wright & Holiday, 2007; p.20). After the completion of each session, 
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participants completed a 20 question, online Qualtrics survey to collect data regarding their 

educational and demographic background as well as experience with graphing.  

For each graph task, the primary researcher scored the drawing and think-aloud tasks 

separately using the graph-specific rubrics included in Appendices F-I.  In addition, audio from 

the CIs were scored as think-aloud data. The scored results from the graph drawing and think-

aloud components were analyzed using IBM SPSS v.23 to examine potential differences as a 

function of expertise using Kruskal-Wallis H tests, which are the nonparametric analog of 

ANOVA a used to identify statistically significant differences in the dependent variable across 

groups defined by at least two independent variables (S. Prins, personal communication, March 

4, 2016).  This test has four major assumptions: (1) there are two or more independent, 

categorical, variables, (2) the dependant variable is ordinal or continuous, (3) groups have the 

same shape and variance, and (4) there is independence of observances. 

3. Results 

3.1 Participants  

Data were collected from 35 participants at James Madison University (JMU) distributed 

across four levels of biological expertise including non-biology students (n=13), biology 

undergraduate students (n=8), biology graduate or senior undergraduate students1 (n=7), and 

biology faculty (n=6). Due to technical issues in audio recording, cognitive interview data (i.e. 

think-aloud) from 25 participants (faculty [n=3], biology graduate or senior students [n=4] 

biology undergraduate students [n=8], and non-biology students [n=10]) were collected and 

                                                           
1 Biology graduate and undergraduate students were grouped together due to the large quantity of upper level 

biology courses completed by both groups. 
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analyzed.  In addition, two individuals chose not complete graph drawing tasks 2 and 3, because 

they concluded that the data were best represented in the data table provided. As these 

participants did not attempt to complete these tasks their abilities could not be measured, 

therefore, their scores were removed prior to statistical analysis. However, for those few 

individuals (n=2) who began to construct a graph, but then stopped and stated that the data table 

was the best representation. These individuals’ scores, although outlier, were included in 

statistical analysis, because the participant had already revealed some of their abilities. It should 

be noted that these incomplete tasks occurred in the middle of the instrument (i.e. tasks 2 and 3) 

suggesting that the participants’ failure to complete these tasks was not a result of timing (i.e. 

being rushed to finish) or test fatigue.  

The Qualtrics survey responses reported on the average approximate number of college 

science (i.e. life sciences, physical sciences, applied sciences, and environmental sciences) and 

math (i.e. mathematics, statistics, and economics) classes taken by each level. Survey data 

indicated non-biology students averaged 3.4 (±0.85) science and 3 (±0.71) math classes. Biology 

undergraduates averaged 5.8 (±3.04) science classes and 3.9 (±2.81) math classes. Graduate and 

senior Biology students averaged 22.7 (±2.18) science classes and 4.7 (±0.64) math classes. 

Biology faculty averaged 41.3 (±12.05) science classes and 6.8 (±1.45) math classes. Participants 

also ranked their comfort reading and interpreting graphs on a Likert-type scale from one (no 

experience) to five (can instruct others how to complete). The average comfort level for non-

Biology students was 4 (±0.17), Biology students was 3.5 (±0.27), Biology graduate and senior 

undergraduates was 4.4 (±0.20), and Biology faculty was 4.8 (±0.17).   
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3.2 Kruskal-Wallis H  

The results of the Kruskal-Wallis H nonparametric tests (Appendix J) indicated 

differences across groups. Eleven tests were run including comparisons drawn for each graph 

independently (i.e graph drawing and think-aloud data separately), the totals (i.e. accumulative 

score for graph drawing and think-aloud data separately) across the four graphs, and then the 

graph drawing and think-aloud totals were combined to look at potential differences between 

expertise groups.  Significant differences were identified between expertise groups in seven of 

the eleven tests, including: the graph drawing of graph task 4 (i.e. Figure 4, Appendix I), the 

think-aloud data of all graphs including the total, and the combined think-aloud and graph 

drawing totals. To account for potential multiple comparison effects, significance values were 

adjusted from a standard 0.05 to 0.0045 (i.e. p=0.05/11 [number of tests]) using the Bonferroni 

approach (S. Prins, personal communication, March 4, 2016). With this adjustment, significant 

differences were identified between groups in the think-aloud data for Graphing Task 1 and 2 

(Figures 1 & 2) and then across all graphing tasks (Figure 3). In addition, significant differences 

among groups were also noted in the combined drawing and think-aloud across all tasks (Figure 

4).  
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Figure 1: Box and Whiskers Plot displaying participant scores for the think aloud test data by expertise group for 

Graph Task 1. The numbers displayed on the X-axis are representative of the expertise groups: 1.faculty (n=3), 

2.biology graduate or senior students (n=4), 3.biology undergraduate students (n=8), and 4.non-biology students 

(n=10).  
 

 
Figure 2: Box and Whiskers Plot displaying participant scores for the think aloud test data by expertise group for 

Graph Task 2. The numbers displayed on the X-axis are representative of the expertise groups: 1.faculty (n=3), 

2.biology graduate or senior students (n=4), 3.biology undergraduate students (n=8), and 4.non-biology students 

(n=10).  
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Figure 3: Box and Whiskers Plot displaying participant scores for the think aloud test data by expertise group across 

all four graphs. The numbers displayed on the X-axis are representative of the expertise groups: 1.faculty (n=3), 

2.biology graduate or senior students (n=4), 3.biology undergraduate students (n=8), and 4.non-biology students 

(n=10).  

 
Figure 4: Box and Whiskers Plot displaying participant scores for the think aloud and graph drawing tests data by 

expertise group all four graphs. The numbers displayed on the X-axis are representative of the expertise groups: 

1.faculty (n=3), 2.biology graduate or senior students (n=4), 3.biology undergraduate students (n=8), and 4.non-

biology students (n=10).  
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3.3 Comparisons in Decision Making  

A closer look at participant scores within each section of the rubrics was taken to further 

identify where differences between groups exist. The graph drawing rubric was divided into 

three subsections including framework (i.e. axes layout, graph type, and variable position), 

content (i.e. proper data and placement), and labels (i.e. axes labels, color/texture labels, unit 

labels, proper scaling, grouping labels, key or legend, and title or figure legend) and the mean 

score for each expertise was determined (Table 1). 

Table 1: Means and standard error for the graph drawing subsections by expertise group. “Mean 

possible score” is the sum of scores possible for each criteria within a subsection, divided by the 

number of criteria included. 

 Framework  

Expertise group Mean possible score Mean S.E. 

Non-biology undergraduates 1.667 1.236 0.022 

Biology undergraduates 1.333 0.027 

Biology graduates and seniors 1.472 0.037 

Biology faculty 1.5 0.039 

Content 

Expertise group Mean possible score Mean S.E. 

Non-biology undergraduates 1.444 0.843 0.056 

Biology undergraduates 0.826 0.043 

Biology graduates and seniors 0.870 0.008 

Biology faculty 0.986 0.076 

Labels 

Expertise group Mean possible score Mean S.E. 

Non-biology undergraduates 1.283 0.699 0.011 

Biology undergraduates 0.718 0.018 

Biology graduates and seniors 0.801 0.024 

Biology faculty 0.859 0.037 

 

As seen in Table 1, average scores across content, framework, and labeling subsections were 

found to generally increase as a function of expertise to varying degrees.  
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The think-aloud rubric was also divided into three subsections including framework (i.e. 

explanation of axes labels and graph type choice), identification (i.e. identification of illustrated 

relations and mistakes and explanation of scale range, color use, and error bar inclusion), and 

off-reading (i.e. focus on trend, predictions, and interpretation of graph). The mean score for 

each expertise was determined (Table 2).  

Table 2: Means and standard error for the think-aloud subsections by expertise group. “Mean 

possible score” is the sum of scores possible for each criteria within a subsection, divided by the 

number of criteria included.  

 Framework  

Expertise group Mean possible score Mean S.E. 

Non-biology undergraduates 2.333 0.885 0.039 

Biology undergraduates 0.947 0.060 

Biology graduates and seniors 1.281 0.047 

Biology faculty 2.125 0.051 

Identification 

Expertise group Mean possible score Mean S.E. 

Non-biology undergraduates 1.706 0.806 0.032 

Biology undergraduates 0.876 0.055 

Biology graduates and seniors 1.171 0.019 

Biology faculty 1.372 0.021 

Off-reading 

Expertise group Mean possible score Mean S.E. 

Non-biology undergraduates 1.833 0.742 0.009 

Biology undergraduates 0.964 0.045 

Biology graduates and seniors 1.208 0.032 

Biology faculty 1.394 0.018 

 

In total, two general patterns were identifiable across the graph drawing and think-aloud data. 

First, the mean ratings for all graph drawing and think-aloud subsections increased as a function 

of expertise. Second, in general, there was greater differentiation between groups in the think-

aloud data in comparison to the graph drawing data. 
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4. Discussion 

The purpose of this study is to better understand how people of varying biology 

backgrounds draw graphs through the use of performance based data. The statistical analysis 

through the Kruskal-Wallis H test identifies that significant differences exist in the cognitive and 

metacognitive strategies of end members to represent biological data graphically. These initial 

findings extend prior work that has largely focused on the graph drawing difficulties of early 

science majors (Bray-Speth, 2007; Picone et al., 2007) by identifying that differences exist 

between how students and scientists represent and think about graph data.     

The graphs generated from the Kruskal-Wallis H tests (Figures 1-4) suggest these 

differences exist as a function of expertise, specifically between members of Biology faculty and 

non-biology undergraduates. Beyond this, in looking closer at the data collected (Table 1), the 

means of each rubric subsection increased as a function of expertise. Given the nature of 

learning, it was anticipated that incremental increases would be seen in performance along the 

continuum of expertise as one progressed from novice to expert.  

In the identification of decision-making differences between expertise groups, the highest 

variation in graph drawing data skills was found within the framework subsection. Similarly, 

there was high variation of means within the framework subsection of the think-aloud data. This 

variability suggests students may lack understanding of why to represent data in a given manner 

(e.g., types of data, how to display data types), and more instructional emphasis should be placed 

here. Further support for this claim can be heard in participant comments. Participant A, a 

biology undergraduate, wavered in his selection of graph type (i.e. scatter plot, line graph, and 

bar graph) and ultimately admitted that he selected a scatter because “a scatter plot is go-to when 
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I don’t know what to do with data.” A mistake or misunderstanding in the framework of graph 

construction can often lead to multiple mistakes. Participant B, a biology graduate or senior 

undergraduate, experienced this ripple effect when she reversed the variable positions on the 

basis “of figures I see a lot”. Participant B admitted to sacrificing the graph type she thought best 

fit the data, for the variable position with which she was familiar: “I hadn’t looked at the data yet 

and saw that I wasn’t going to be able to draw a line.” As a result, participant B selected a scatter 

plot when a line would have been the “best” selection.  

These results also show that there is no a significant difference in the cognitive and 

metacognitive strategies of undergraduates within the field of biology and undergraduates within 

other fields of study, which may be due to three reasons. First, this may be attributed to other 

fields training undergraduates in generalizable strategies for graph drawing or participants may 

have a background or interest in the field of biology even though it is not their academic major. 

The lack of difference between groups could also be a result of the non-biology undergraduates 

including other science majors. The non-biology group included the results of two health science 

students, a geology student and a geographic sciences student. These non-biology students may 

have more graphing experience, based on other biology coursework, than first year biology 

undergraduates which were included in the biology undergraduate group. As a result, the 

inclusion of these majors may have shifted the means of the non-biology group closer to the 

mean of biology undergraduates. Similarly, the biology undergraduate group, consisted of 

primarily freshman biology majors.  Although entry level biology classes are expected to focus 

some attention on the topic of graph drawing, these students have not had repeated exposure to 

the material in a college setting. Additionally, according to the Qualtrics survey data these 
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students have not had many math classes, specifically statistics. One participant expressed this 

concern, suggesting that she would know what to do with standard error once she takes statistics. 

Second, as noted above, learning occurs as small, gradual changes, and therefore, significant 

differences should not be expected between close groups. Third, it is possible that the tests or 

rubrics of this instrument were not sensitive enough to identify differences between groups.  

Although not all tasks resulted in a significant difference, the lack of significance may be 

equally important.  The box and whisker analysis (Figures 1-4), as well as the means and 

standard error (Appendix K) for each task reveal the high range in performance within the 

biology undergraduates group and non-biology undergraduate groups. Through the collection of 

further data, the variability of these two groups, and ideally within all groups, would not hide the 

true means and possibly reveal a significant difference that is currently blocked by outliers. 

These findings provide evidence to support that more data should be collected to effectively 

determine if more differences exist and to further evaluate the sensitivity or effectiveness of the 

tasks to distinguish between groups. The subsection scores analysis begins to identify areas in 

which differences exist and gaps are present in student learning. Future studies should consider 

analyzing scores for particular criteria within each subsection in addition to graph drawing as a 

whole. 

The final intention of this study is to determine if the instrument used is a valid and 

reliable measurement of one’s biological graph drawing skills. Expert feedback, pilot studies, 

and pre-existing literature have begun to successfully establish the face validity of this 

instrument. At this time, the reliability of the instrument has not been established to the extent of 

validity. One rater increases the potential of bias in scoring, limiting the validity of scores. Only 
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having a single rater also affects the reliability of the instrument. The reliability can be 

strengthened through the future incorporation of a second trained scorer. The inter-rater 

reliability will assist in determining the instrument’s reliability.  

4.1 Limitations 

 There are three limitations that can be noted for this study. First, there is the potential that 

the participants’ graph drawing skills may not be fully tested by the scope of the tasks used here.   

It is impossible to explore every graph type or subject; however, these tasks are what we expect 

members of the field to do (i.e. read and draw graphs with data they may or may not be familiar 

with).  This limitation is accounted for by varying the difficulty and topics, as well as providing 

background information to help participants contextualize, minimizing the likelihood this 

limitation will occur. 

 Additionally, this study consisted of small sample sizes. The think-aloud tests also 

suffered smaller sample sizes due to Vittle’s inability to generate the audio for 10 participants. 

Although notes regarding participant responses were collected, the data would not not have been 

consistent if these 10 participants were scored according to written notes only and no audio.  

Therefore the participant pool decreased to 25 participants for the think-aloud component, which 

limits the generalizability of the findings presented here due to the small sample size. Despite 

this limitation, this exploratory study has advanced a valid graphing measure that future studies 

can use to assess graphing skills and further evaluate the instrument’s properties.  

The third limitation of this work is that participant data was assessed by only one 

researcher, limiting the reliability of the assessment, as the responses were only scored by a 
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single rater, estimates to the reliability of the measure could not be drawn.  Future work will 

have multiple scorers to enhance reliability through interrater reliability.  

4.2 Implications 

The ability to effectively understand increasingly complex data representations is of 

growing importance and has become a key component of being scientifically literate (Tairab & 

Khalaf Al-Naqbi, 2004).  According to Harsh and Maltese, “[i]nstructors of undergraduate 

courses should not expect students to come into courses with high proficiency for understanding, 

interpreting and creating data visualizations” (2012b; pg. 10). Teachers work to develop 

graphical literacy skills in students at all levels of the education system.  At each level, however, 

misconceptions surface that are not recognized by the instructors and are therefore not corrected 

for the students. This study has begun to identify general differences in student graph drawing 

and interpretation performances compared to the performance of experts in biology.   

Primary implications of this study are to fill in gaps in the literature by focusing on (a) 

how adults draw graphs and (b) the differences between novices and experts in graphing 

performance. This study extends prior research that has narrowly focused on first-year science 

students’ graphing skills based on general descriptions of their graph design (Bray-Speth et al, 

2077; Kotzebue et al., 2015; Picone et al., 2007). In addition, verbal components (i.e. participants 

voicing thoughts during construction and post construction question responses) provide a deeper 

look into the cognitive and metacognitive processes of students and scientists. 

The broader objective of this exploratory study was to design valid and reliable 

performance-based tasks and scoring criteria that can be adopted by biology faculty to assist in 

the assessment of their students’ graph drawing skills. While further research needs to be 
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conducted to evaluate the reliability of these measures, components of this project have been 

incorporated into the 2016 JMU Biology Majors Assessment for graduating seniors and will be 

used in the assessment of the department’s new first year curriculum. Contributing to the 

development of students’ graphing skills has the potential to identify and close gaps in the 

understanding of graph drawing.  
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Appendix A: Faculty Graph Drawing Rubric Feedback 
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Appendix B: Faculty weights average rounded for written criteria 

Criterion Average 

feedback score 
Assigned 

weight  

Layout of axes 2.3071429 2.5 

Graph type 4.2357143 4 

Variable position 2.8071429 3 

Proper information 3.2357143 3 

Data positions 1.8071429 2 

Content differentiation (via color, patter, etc.) 1.5928571 1.5 

Error bars 1.5928571 1.5 

Connected with a line or trend line 1.0214286 1 

Calculated mean or average 1.45 1.5 

Axes labels 2.8071429 3 

Correct units 1.5214286 1.5 

Title or figure legend 1.0928571 1 

Appropriate scale 1.5928571 1.5 

Groupings labeled 1.0928571 1 

Legend or caption/key 1.8071429 2 

Total  29.964286 30 
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Appendix C: Faculty Think-Aloud Rubric Feedback 
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Appendix D: Faculty weights average rounded for verbal criteria 

Criterion Average 

feedback score 
Assigned 

weight  

Validate graph type  2.857143 3 

Explanation of Axis labels 2.571429 2.5 

Recognition of illustrated relation 2.928571 3 

Explanation of scale 1.928571 2 

Recognition of mistakes 1.285714 1 

Recognition of the effect of familiarity on construction 0.833333 1 

Focus on values vs. trends 1.714286 1.5 

Offer prediction 1.714286 1.5 

Explanation of data from graph 2.357143 2.5 

Recognition of difficult elements 1.083333 1 

Explanation of color/pattern usage 1 1 

Total  20.27381 20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

30 
 

 

 

Appendix E: Post Graph Drawing Questions 

Script 

1. Is there a reason you choose to represent the data in this way? 

a. Why did you choose to use a _________ graph instead of other options? 

2. Is there a reason you chose to position the variables as you did on the graph? 

a. Why did you use the scale that you did? 

3. After drawing the graph is there any modifications or changes you would make to your 

graph? 

4. How would you interpret the data in the graph? 

5. Have you been asked to draw a graph like this in the past? 

6. Do you have any background knowledge, or wish you had some background knowledge, 

regarding these topics that might have helped you? 

7. What were some of the difficult components you encountered in these graphs? 
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Appendix F: Graph One Task and Associated Rubrics 

Task 

Temperature 

(°C) 

Specific Growth Rate (%mass/day) 

Trial 1 Trial 2 Trial 3 

0 0.40 0.55 0.25 

5 2.45 2.25 2.05 

10 3.55 3.35 3.15 

15 3.00 3.15 2.85 
 

Historically, the Pacific Cod (Gadus macrocephalus) is an important commercial food species. As 

a result of intensive fishing practices globally reducing the number of wild Pacific Cod, studies 

have been undertaken to assess the fishes’ growth dynamics.  These are assessed through feeding 

experiments at different temperatures in artificial environments for conservation and food 

production purposes. The data above represent the specific growth rate (measured in percent 

change of body mass per day) for Pacific Cod grown at four different incubation temperatures in 

three replicate tanks per treatment. Generate a graph(s) that best represents the data provided. 

 

Anticipated result from: Helser, T. E., Colman, J. R., Anderl, D. M., Kastelle, C. R. 2016. Growth 

dynamics of Saffron cod (Eleginus gracilis) and Arctic cod (Boreogadus saida) in the Northern 

Bering and Chukchi Seas. US Dept. of the Interior, Bureau of Ocean Energy Management, Alaska 

OCS Region. OCS Study BOEM 2011-AK-11-08 a/b. 50 pp.  
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Graph 1 Written   

Participant #: 1 2 

Framework – indicates what kinds of measurements are being used and what things are being 

measured 

· Is the layout of the graph axes being used the most effectively to represent the data? (0 = no 

axes, 1=layout not effective,  2 = layout affective but not best 2.5=layout is extremely effective) 

  

· Is the proper type of graph being used to most effectively represent the data? (0 = nothing 

drawn, 1 = graph being used is not appropriate, 2 = a graph that can be used but is not possibly 

the best means to represent the data, 3 = the best means to represent the data, 4=a graph that 

exceeds the best) 

  

· If applicable, are the variables properly positioned on the X & Y axis? (0 = the independent and 

dependent variables are not correctly placed on the X & Y, 1.5 = one variable is correctly placed, 

3= both variables are correctly placed) [Is IV on X and DY on Y?] 

  

Content – lines, bars, point symbols, or other marks that specify particular relations among the things 

represented by the framework 

· Is the proper data or information being plotted (0 = no, 3 = yes)   

·  Are the relative positions of the data plotted on the Y axis properly paired with the values along 

the X axis? (i.e. proper relationship between X & Y) (0 = none or few, 1 = roughly 50% accurate, 

2 = nearly 100%; given a +/-1 on either scale) 

  

Labels – indicates the variables, the value along the measurement scale, the particular entities that were 

measured, and the title of the graph 

· Are the independent and dependent variables properly labeled?  (0 = lacking labels 1=incorrect 

labeling, 2= one correct label, 3= two correct labels)  

  

• Are data points connected with a line or is a trend line graphed? (0= no line, 0.5=connecting 

line, 1=trend line) [when ‘best graph’ is a line]    

  

• Are data manipulated by the participant to show mean/average? (0=no, 1=partial 1.5=yes, all)     

• If multiple content elements are being graphed, is the content (lines, points, bars) represented 

via color, texture, and so on to allow the reader to readily read and interpret the data being 

presented? (0 = no, 1 = yes)  

  

· If appropriate, are the correct respective units for each variable properly labeled? (0 = no, 

0.75=1/2 correct, 1.5=all correct)  

  

· Given the provided data, does the scaling for each axis seem appropriate to construct an 

effective graph?  (0= no scale 0.5= both axes with improper scale, 1 = one axis with proper scale, 

1.5 = both axes with proper/best scale) 

  

· If values along an axis fall into secondary groups are they labeled correctly? (0 = no, 0.5=some, 

1 = yes) 

  

· If necessary based on the means of graphing, is a key or legend used to clarify the meanings of 

symbols, patterns, color, etc. used in the graph? (0 = no, 1 = yes, but not clear 2=yes, very clear) 

  

· Was the graph properly labeled with a title or figure legend/caption? (0 = no, 1 = yes)   

Total possible =   28                                               Participant:  1  

Total    
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Graph 1 Verbal   

Participant #: 1 2 

Framework      

• Why did they choose this graph type? (0=no mention 1=poor explanation with low 

understanding of graphing conventions 2=solid description based on normal graph conventions 

3=solid description that talks about type of data being displayed) 

  

• Can they explain why they labeled the axes as they did (IV & DV)? (why they positioned the 

variables on the axes) (0=no explanation, 0.5=low understanding  1.5=relies on normal 

conventions of graphing, 2.5=high understanding with through explanation) 

  

Identification 

· Are they able to recognize the illustrated relation? (0=no, 1=yes, but no/limited explanation, 

2=yes, with an explanation that relies on normal conventions of graphing,  3=yes and provides an 

explanation using higher thought)  

  

• Are they able to note and explain their scale range? (0=no mention or explanation, 

0.5=mentioned but no explanation  1=mentions and explains with low understanding 

1.5=mentions and explains but relies on normal conventions of graphing, 2= mentions and 

explains with high understanding with through explanation)  

  

• Are they able to note and explain use of color? 0=no mention or explanation, 0.25=mentioned 

but no explanation  0.5=mentions and explains with low understanding 0.75=mentions and 

explains but relies on normal conventions of graphing, 1= mentions and explains with high 

understanding with through explanation) 

  

• Are they able to recognize mistakes (metacognition) (0=no, 0.5=yes, but does not note how to 

correct, 1=yes, and provides an explanation of how to correct or better their current graph) 

  

Off-reading 

• Does the participant focus on numeric value, two value comparison with trend recognition, or 

multiple values/multiple trends compared? (0=no focus on numbers, 0.5=focus on numeric value, 

1=focus on 2 values compared/trend, 1.5=multiple values/trends compared) 

  

• Does the participant offer a prediction as to how the data would continue over time? (0=no, 

1=yes with a focus on the topic only, 1.5=yes with a focus on other elements effected as well) 

  

• Can he/she explain, using their graph, what the data show? (0=no explanation, 1=low 

understanding  2=relies on normal conventions of graphing, 2.5=high understanding with through 

explanation) 

  

Total possible =   20                                              Participant:  1 2 

Total  0 0 
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Appendix G: Graph Two Task and Associated Rubrics 

Task  

Species  Distance 

(meters) 
Abundance (std. 

error) 
Probability of Detection (std. 

error) 
 

Bicknell’s 

Thrush 

(BITH) 
 

On the trail 0.9                (±0.35) .20                                      

(±0.09) 

200 M 0.6                (±0.25) .15                                      

(±0.09) 

400 M 0.5                (±0.15) .10                                      

(±0.07) 
 

Blackpoll 

Warbler 

(BLPW) 
 

On the trail 1.9                (±0.4) .95                                      

(±0.025) 

200 M 1.75              (±0.35) .92                                      

(±0.025) 

400 M 1.85              (±0.4) .93                                      

(±0.025) 
 

The data provided are from an ecological study on the influence of recreational hiking trails on 

the abundance of different montane bird populations. To measure the potential effect of hiking 

trails, the authors examined the probability of detecting (or seeing) a species while on the trails 

and the estimated abundance (or number) of a bird species in the area. Generate a graph(s) that 

best represents the data. 

Anticipated results from: Deluca, W. V., & King, D. I. (2014). Influence of hiking trails on montane 

birds. Journal Of Wildlife Management,78(3), 494-502. doi:10.1002/jwmg.675 
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Graph 2 Written   

Participant #: 1 2 

Framework – indicates what kinds of measurements are being used and what things are being 

measured 

· Is the layout of the graph axes being used the most effectively to represent the data? (0 = 

no axes, 1=layout not effective,  2 = layout affective but not best 2.5=layout is extremely 

effective) 

  

· Is the proper type of graph being used to most effectively represent the data? (0 = nothing 

drawn, 1 = graph being used is not appropriate, 2 = a graph that can be used but is not 

possibly the best means to represent the data, 3 = the best means to represent the data, 4=a 

graph that exceeds the best) 

  

· If applicable, are the variables properly positioned on the X & Y axis? (0 = the independent 

and dependent variables are not correctly placed on the X & Y, 1.5 = one variable is 

correctly placed, 3= both variables are correctly placed) [Is IV on X and DY on Y?] 

  

Content – lines, bars, point symbols, or other marks that specify particular relations among the things 

represented by the framework 

· Is the proper data or information being plotted (0 = no, 3 = yes)   

• Are error bars plotting when std. error numbers are provided (0=no, 0.5=plotted, but 

incorrectly , 1=yes, and partially correct, 1.5=yes and entirely correct) 

  

·  Are the relative positions of the data plotted on the Y axis properly paired with the values 

along the X axis? (i.e. proper relationship between X & Y) (0 = none or few, 1 = roughly 

50% accurate, 2 = nearly 100%; given a +/-1 on either scale) 

  

Labels – indicates the variables, the value along the measurement scale, the particular entities that 

were measured, and the title of the graph 

 Are the independent and dependent variables properly labeled?  (0 = lacking labels 

1=incorrect labeling, 2= one correct label, 3= two correct labels)  

  

• If multiple content elements are being graphed, is the content (lines, points, bars) 

represented via color, texture, and so on to allow the reader to readily read and interpret the 

data being presented? (0 = no, 1 = yes)  

  

· If appropriate, are the correct respective units for each variable properly labeled? (0 = no, 

0.75=1/2 correct, 1.5=all correct)  

  

· Given the provided data, does the scaling for each axis seem appropriate to construct an 

effective graph?  (0= no scale 0.5= both axes with improper scale, 1 = one axis with proper 

scale, 1.5 = both axes with proper/best scale) 

  

· If values along an axis fall into secondary groups are they labeled correctly? (0 = no, 

0.5=some, 1 = yes) 

  

· If necessary based on the means of graphing, is a key or legend used to clarify the 

meanings of symbols, patterns, color, etc. used in the graph? (0 = no, 1 = yes, but not clear 

2=yes, very clear) 

  

· Was the graph properly labeled with a title or figure legend/caption? (0 = no, 1 = yes)   

Total possible =   27                                               Participant:  1 2 

Total    
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Graph 2 Verbal   

Participant #: 1 2 

Framework   

• Why did they choose this graph type? (0=no mention 1=poor explanation with low 

understanding of graphing conventions 2=solid description based on normal graph 

conventions 3=solid description that talks about type of data being displayed) 

  

• If they participant drew multiple graphs, can they explain why? (0=no explanation, 

0.5=yes, but for ease/low understanding  0.75=yes, recognizes that two dependent variables 

exist, 1=yes, recognizes that two dependent and a single independent variable exist and 

provides through explanation) 

  

• Can they explain why they labeled the axes as they did (IV & DV)? (why they positioned 

the variables on the axes) (0=no explanation, 0.5=low understanding  1.5=relies on normal 

conventions of graphing, 2.5=high understanding with through explanation) 

  

Identification 

· Are they able to recognize the illustrated relation? (0=no, 1=yes, but no/limited 

explanation, 2=yes, with an explanation that relies on normal conventions of graphing,  

3=yes and provides an explanation using higher thought)  

  

• Are they able to note and explain their scale range? (0=no mention or explanation, 

0.5=mentioned but no explanation  1=mentions and explains with low understanding 

1.5=mentions and explains but relies on normal conventions of graphing, 2= mentions and 

explains with high understanding with through explanation)  

  

• Are they able to note and explain use of color? 0=no mention or explanation, 

0.25=mentioned but no explanation  0.5=mentions and explains with low understanding 

0.75=mentions and explains but relies on normal conventions of graphing, 1= mentions and 

explains with high understanding with through explanation) 

  

• Are they able to recognize mistakes (metacognition) (0=no, 0.5=yes, but does not note how 

to correct, 1=yes, and provides an explanation of how to correct or better their current graph) 

  

• Does the participant explain the use of error bars (0=no mention, 0.5=mentions, but does 

not explain, 1=yes, and provides an explanation with relation to the data) 

  

Off-reading 

• Does the participant focus on numeric value, two value comparison with trend recognition, 

or multiple values/multiple trends compared? (0=no focus on numbers, 0.5=focus on 

numeric value, 1=focus on 2 values compared/trend, 1.5=multiple values/trends compared) 

  

• Does the participant offer a prediction as to how the data would continue over time? (0=no, 

1=yes with a focus on the topic only, 1.5=yes with a focus on other elements effected as 

well) 

  

• Can he/she explain, using their graph, what the data show? (0=no explanation, 1=low 

understanding  2=relies on normal conventions of graphing, 2.5=high understanding with 

through explanation) 

  

Total possible =   22                                            Participant:  1 2 

Total    
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Appendix H: Graph Three Task and Associated Rubrics 

 

Genes 

shared 

Relationship to 

person with 

Schizophrenia 

Risk of developing 

Schizophrenia (%) 

100% Identical twins 44 

 

50% 
Fraternal Twins 16 

Children 11 

Siblings 7 

Parents 5 
 

25% 
Half siblings 5 

Grandchildren 4 

Nephews/ nieces 3 

Uncles/ Aunts 2 

12.5% First Cousins  2 

None General population 1 
 

The degree of family relatedness, which influences the percent of genes shared between two 

family members, can be used in medicine to predict one’s likelihood of having a disease.   Draw 

a graph(s) that you believe best represents the data.   

 

Anticipated results from: Debby Tsuang, M.D., M.Sc., University of Washington/VAPSHCS, 

Special thanks to Dr. Kristin Cadenhead, UCSD 
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Graph 3 Written   

Participant #: 1 2 

Framework – indicates what kinds of measurements are being used and what things are being 

measured 

· Is the layout of the graph axes being used the most effectively to represent the data? (0 = 

no axes, 1=layout not effective,  2 = layout affective but not best 2.5=layout is extremely 

effective) 

  

· Is the proper type of graph being used to most effectively represent the data? (0 = nothing 

drawn, 1 = graph being used is not appropriate, 2 = a graph that can be used but is not 

possibly the best means to represent the data, 3 = the best means to represent the data, 4=a 

graph that exceeds the best) 

  

· If applicable, are the variables properly positioned on the X & Y axis? (0 = the 

independent and dependent variables are not correctly placed on the X & Y, 1.5 = one 

variable is correctly placed, 3= both variables are correctly placed) [Is IV on X and DY on 

Y?] 

  

Content – lines, bars, point symbols, or other marks that specify particular relations among the things 

represented by the framework 

· Is the proper data or information being plotted (0 = no, 3 = yes)   

·  Are the relative positions of the data plotted on the Y axis properly paired with the values 

along the X axis? (i.e. proper relationship between X & Y) (0 = none or few, 1 = roughly 

50% accurate, 2 = nearly 100%; given a +/-1 on either scale) 

  

Labels – indicates the variables, the value along the measurement scale, the particular entities that 

were measured, and the title of the graph 

· Are the independent and dependent variables properly labeled?  (0 = lacking labels 

1=incorrect labeling, 2= one correct label, 3= two correct labels)  

  

• If multiple content elements are being graphed, is the content (lines, points, bars) 

represented via color, texture, and so on to allow the reader to readily read and interpret the 

data being presented? (0 = no, 1 = yes)  

  

· If appropriate, are the correct respective units for each variable properly labeled? (0 = no, 

0.75=1/2 correct, 1.5=all correct)  

  

· Given the provided data, does the scaling for each axis seem appropriate to construct an 

effective graph?  (0= no scale 0.5= both axes with improper scale, 1 = one axis with proper 

scale, 1.5 = both axes with proper/best scale) 

  

· If values along an axis fall into secondary groups are they labeled correctly? (0 = no, 

0.5=some, 1 = yes) 

  

· If necessary based on the means of graphing, is a key or legend used to clarify the 

meanings of symbols, patterns, color, etc. used in the graph? (0 = no, 1 = yes, but not clear 

2=yes, very clear) 

  

· Was the graph properly labeled with a title or figure legend/caption? (0 = no, 1 = yes)   

Total possible =   25.5                                               Participant:  1 2 

Total  0 0 
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Graph 3 Verbal   

Participant #: 1 2 

Framework      

• Why did they choose this graph type? (0=no mention 1=poor explanation with low 

understanding of graphing conventions 2=solid description that talks about type of data 

being displayed) 

  

• Can they explain why they labeled the axes as they did (IV & DV)? (why they position 

the variables on the axes) (0=no explanation, 1=low understanding  2=relies on normal 

conventions of graphing, 3=high understanding with through explanation) 

  

Identification     

· Are they able to recognize the illustrated relation? (0=no, 1=yes, but no/limited 

explanation, 2=yes, with an explanation that relies on normal conventions of graphing,  

3=yes and provides an explanation using higher thought)  

  

• Are they able to note and explain their scale range? (0=no mention or explanation, 

0.5=mentioned but no explanation  1=mentions and explains with low understanding 

1.5=mentions and explains but relies on normal conventions of graphing, 2= mentions and 

explains with high understanding with through explanation)  

  

• Are they able to note and explain use of color? 0=no mention or explanation, 

0.25=mentioned but no explanation  0.5=mentions and explains with low understanding 

0.75=mentions and explains but relies on normal conventions of graphing, 1= mentions and 

explains with high understanding with through explanation) 

  

• Are they able to recognize mistakes (metacognition) (0=no, 0.5=yes, but does not note 

how to correct, 1=yes, and provides an explanation of how to correct or better their current 

graph) 

  

Off-reading     

• Does the participant focus on numeric value, two value comparison with trend 

recognition, or multiple values/multiple trends compared? (0=no focus on numbers, 

0.5=focus on numeric value, 1=focus on 2 values compared/trend, 1.5=multiple 

values/trends compared) 

  

• Does the participant offer a prediction as to how the data would continue over time? 

(0=no, 1=yes with a focus on the topic only, 1.5=yes with a focus on other elements 

effected as well) 

  

• Can he/she explain, using their graph, what the data show? (0=no explanation, 1=low 

understanding  2=relies on normal conventions of graphing, 2.5=high understanding with 

through explanation) 

  

Total possible =   20                                               Participant:  1 2 

Total    
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Appendix I: Graph Four Task and Associated Rubrics 

Year  Amount of 

Glyphosate Applied 

(tons) 

Confirmed # of 

Glyphosate-resistant 

weeds 

1990 1,000 0 

1992 1,000 0 

1994 4,000 0 

1996 8,000 0 

1998 18,000 1 

2000 29,000 2 

2002 40,000 10 

2004 42,000 17 

2006 70,000 49 

2008 82,000 54 

2010 90,000 65 

Glyphosate is a broad-spectrum systemic herbicide that is commonly used to kill a wide range of 

weeds in agricultural systems. Over the last decade, there has been growing concern to the use of 

systemic weed killers (i.e. chemicals that are applied to leaves or foliage to kill the weed). 

Studies have suggested a side effect to using systemic weed killers is glyphosate resistant weeds 

– or super weeds. Generate a graph(s) that best represents the data. 

Anticipated result from: Glyphosate data from USDA:NASS; Super weed data cited from 

Charles Benbrook (an American agricultural economist and former research professor at the 

Center for Sustaining Agriculture and Natural Resources at Washington State University) 
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Graph 4 Written   

Participant #: 1 2 

Framework – indicates what kinds of measurements are being used and what things are being 

measured 

· Is the layout of the graph axes being used the most effectively to represent the data? (0 = 

no axes, 1=layout not effective,  2 = layout affective but not best 2.5=layout is extremely 

effective) 

  

· Is the proper type of graph being used to most effectively represent the data? (0 = nothing 

drawn, 1 = graph being used is not appropriate, 2 = a graph that can be used but is not 

possibly the best means to represent the data, 3 = the best means to represent the data, 4=a 

graph that exceeds the best) 

  

· If applicable, are the variables properly positioned on the X & Y axis? (0 = the 

independent and dependent variables are not correctly placed on the X & Y, 1.5 = one 

variable is correctly placed, 3= both variables are correctly placed) [Is IV on X and DY on 

Y?] 

  

Content – lines, bars, point symbols, or other marks that specify particular relations among the things 

represented by the framework 

· Is the proper data or information being plotted (0 = no, 3 = yes)   

·  Are the relative positions of the data plotted on the Y axis properly paired with the 

values along the X axis? (i.e. proper relationship between X & Y) (0 = none or few, 1 = 

roughly 50% accurate, 2 = nearly 100%; given a +/-1 on either scale) 

  

Labels – indicates the variables, the value along the measurement scale, the particular entities that 

were measured, and the title of the graph 

· Are the independent and dependent variables properly labeled?  (0 = lacking labels 

1=incorrect labeling, 2= one correct label, 3= two correct labels)  

  

• If multiple content elements are being graphed, is the content (lines, points, bars) 

represented via color, texture, and so on to allow the reader to readily read and interpret 

the data being presented? (0 = no, 1 = yes)  

  

· If appropriate, are the correct respective units for each variable properly labeled? (0 = no, 

0.75=1/2 correct, 1.5=all correct)  

  

· Given the provided data, does the scaling for each axis seem appropriate to construct an 

effective graph?  (0= no scale 0.5= both axes with improper scale, 1 = one axis with proper 

scale, 1.5 = both axes with proper/best scale) 

  

· If values along an axis fall into secondary groups are they labeled correctly? (0 = no, 

0.5=some, 1 = yes) 

  

· If necessary based on the means of graphing, is a key or legend used to clarify the 

meanings of symbols, patterns, color, etc. used in the graph? (0 = no, 1 = yes, but not clear 

2=yes, very clear) 

  

· Was the graph properly labeled with a title or figure legend/caption? (0 = no, 1 = yes)   

Total possible =   25.5                                               Participant:  1 2 

Total    
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Graph 4 Verbal   

Participant #: 1 2 

Framework      

• Why did they choose this graph type? (0=no mention 1=poor explanation with low 

understanding of graphing conventions 2=solid description based on normal graph 

conventions 3=solid description that talks about type of data being displayed) 

  

• Can they explain why they labeled the axes as they did (IV & DV)? (why they positioned 

the variables on the axes) (0=no explanation, 0.5=low understanding  1.5=relies on normal 

conventions of graphing, 2.5=high understanding with through explanation) 

  

Identification     

· Are they able to recognize the illustrated relation? (0=no, 1=yes, but no/limited 

explanation, 2=yes, with an explanation that relies on normal conventions of graphing,  

3=yes and provides an explanation using higher thought)  

  

• Are they able to note and explain their scale range? (0=no mention or explanation, 

0.5=mentioned but no explanation  1=mentions and explains with low understanding 

1.5=mentions and explains but relies on normal conventions of graphing, 2= mentions and 

explains with high understanding with through explanation)  

  

• Are they able to note and explain use of color? 0=no mention or explanation, 

0.25=mentioned but no explanation  0.5=mentions and explains with low understanding 

0.75=mentions and explains but relies on normal conventions of graphing, 1= mentions 

and explains with high understanding with through explanation) 

  

• Are they able to recognize mistakes (metacognition) (0=no, 0.5=yes, but does not note 

how to correct, 1=yes, and provides an explanation of how to correct or better their current 

graph) 

  

Off-reading     

• Does the participant focus on numeric value, two value comparison with trend 

recognition, or multiple values/multiple trends compared? (0=no focus on numbers, 

0.5=focus on numeric value, 1=focus on 2 values compared/trend, 1.5=multiple 

values/trends compared) 

  

• Does the participant offer a prediction as to how the data would continue over time? 

(0=no, 1=yes with a focus on the topic only, 1.5=yes with a focus on other elements 

effected as well) 

  

• Can he/she explain, using their graph, what the data show? (0=no explanation, 1=low 

understanding  2=relies on normal conventions of graphing, 2.5=high understanding with 

through explanation) 

  

Total possible =   20                                               Participant:  1 2 

Total    
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Appendix J: Kruskal-Wallis Non-Parametric Test Results
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Appendix K: Means and Standard deviation of participant scores by group and graph type  
 

 Biology faculty 
Graduate/senior 

Biology students 
Biology 

undergraduates 
Non-Biology 

undergraduates 

Think-Aloud 

 M SE M SE M SE M SE 

Graph 1 15.58 0.36 19.13 0.60 8.47 1.27 7.7 0.78 

Graph 2 16.25 0.33 12.5 0.91 8.86 1.21 7.62 1.16 

Graph 3 11.42 0.96 10.31 0.55 8.31 1.03 7.18 0.49 

Graph 4 13.83 0.73 10.63 0.33 8.31 0.98 8.25 0.56 

Total  57.08 1.91  45.06 3.32 32.84 3.39 30.75 1.37 

Graph Drawing 

 M SE M SE M SE M SE 

Graph 1 19.33 
0.29 

22.08 
0.37 

18.79 
0.62 

19 
0.35 

Graph 2 19.12 
0.58 

20.58 
0.56 

18.16 
0.83 

17.79 
0.44 

Graph 3 18.34 
2.24 

17.96 
1.60 

17.39 
2.18 

17.65 
1.54 

Graph 4 17.73 
0.69 

17.76 
2.00 

13.64 
2.63 

15.58 
1.12 

Total  79.21 
0.88 

75.67 
0.86 

72.36 
7.17 

63.46 
4.82 

Graph Drawing & Think-Aloud combined  

 M SE M SE M SE M SE 

Total  136.58 1.91 121.31 2.42 108.14 6.30 95.58 3.06 
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