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Abstract 

The process of somitogenesis occurs during embryological development and results in the 

definition of persisting axial segments. The four toed salamander, Hemidactylium scutatum, 

exhibits post-embryonic segmentation while most other vertebrates stop segmentation at the end 

of embryological development. HoxA13, a transcription factor expressed along the developing 

anteroposterior axis, plays a role in specifying caudal segmental identity, cell ingression into the 

pre-somitic mesoderm (PSM), and PSM truncation. HoxA13’s responsibilities in influencing 

embryological development make it an interesting candidate for involvement in post-embryonic 

segment addition mechanisms. This study explores the role of HoxA13 in tail segmentation in H. 

scutatum embryonic, larval, and adult tail tip tissues using RT-PCR techniques. The results of 

this study indicate that HoxA13 is expressed throughout all life stages. Most importantly, these 

results suggest that HoxA13 determines segment identity during post-embryonic tail 

segmentation as it is expressed in the tips of H. scutatum larval and adult tails.  
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Introduction 

Embryonic segments assemble during vertebrate neural development in a process known as 

somitogenesis. Formation of the pre-somitic mesoderm (PSM) begins at the end of gastrulation 

when cells ingress from the mesoderm of the gastrula through the blastopore lip. After these cells 

ingress, they stay at the location they exited as the axis grows posteriorly causing earlier 

ingressing cells to be located anteriorly and later ingressing cells to be located more posteriorly 

along the axis. Timing of cell addition to the PSM determines their location on the 

anterioposterior (AP) axis, which ultimately directs differentiation of somites into the proper 

axial structures along the developing spinal cord. During later stages of somitogenesis, cells 

ingress through the tail bud to form posterior PSM, which will give rise to tail segments (Gomez 

and Pourquie, 2009). Somitogenesis continues in the posterior PSM resulting in the formation of 

a discrete number of somites unique to each vertebrate species (Gomez et al., 2008). All somites 

go on to develop three distinct regions, the sclerotome, myotome, and dermatome, which 

differentiate into derivatives such as skin, bone and skeletal muscle, resulting in the vertebral 

axis and associated tissues (Ordahl, 1993).  

Hox genes direct somite specification by controlling the identity of sclerotomal, dermatomal and 

myotomal cells within each somite. Each of the 13 Hox genes have up to four paralogues (A-D) 

expressed sequentially along the AP axis (Liang et al., 2011; Pick and Heffer, 2012; Dubrulle et 

al., 2001; Pollock et al., 1995). More posterior Hox genes delay ingression of cells into the 

tailbud, inhibiting the formation of somites in the most posterior regions AP axis terminating 

segmenation (Denans et al., 2015). Hox genes transcriptionally activate a signaling cascade of 

genes that signal the specification of segment identity (Mallo et al., 2010). Determination of the 

most posterior somites involves the Hox13 paralogues, A-D.  Each paralogue has similar 
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functions; however, expression domain and timing of expression may differ between paralogues. 

The expression of the HoxA13 paralogue occurs before the other paralogues and coincides with 

the termination of PSM elongation (Denans et al., 2015; de Santa Barbara and Roberts, 2002). 

Removal of Hoxb13 expression in mice result in tail vertebrae that are thicker, longer, and more 

numerous suggesting that endogenous Hoxb13 halts axial elongation (Young et al, 2009; 

Economides et al, 2003). Gain of function studies in mice show that Hox13 paralogues act to 

truncate developing mice tails when expressed early in development. Posterior segments exhibit 

abnormal morphologies with sacral vertebrae that are thinner and partially fused in addition to 

complete loss of caudal vertebrae (Young et al., 2009). Hoxc13 and Hoxd13 loss of function 

mutations in mice also resulted in the addition of caudal vertebrae, even in Hox13 heterozygote 

loss of function mutants (Godwin and Cappechi, 1998). Overall, these results suggest that the 

Hox13 paralogues control segment morphology and inhibit posterior segmentation.   

Unlike most vertebrates, segmentation in Plethodontid salamanders does not terminate during 

embryogenesis and continues throughout all life stages (Vaglia et al., 1997; Vaglia et al., 2010).  

Previous work suggests that H. scutatum embryonic and adult tail tips express the putative tail 

organizer, Wnt8 and the myotomal marker gene, Myf5 (Rossbach, unpublished). Since both of 

these genes play key roles in embryonic segmentation, these data suggest that similar molecular 

pathways may drive segmentation throughout all life stages. This study examines HoxA13 

expression in H. scutatum tail tip tissues to determine if HoxA13 expression occurs during 

embryonic tail development and if so, continues post embryonically in larval and adult stages. 

HoxA13 expression occurs in the tail tips of most vertebrates at the end of embryogenesis when 

segmentation typically terminates. If HoxA13 plays a role in segment termination in H. scutatum, 

we would not expect to see expression in larval or adult tail tips thus allowing the continued 
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segmentation of the tail.  However, if HoxA13 is acting to control specification of segment 

morphology and ingression of cells to the PSM or a PSM-like tissue, expression of HoxA13 will 

occur in embryonic, larval, and adult segmenting tails.  

 

Methods 

Embryonic and Larval Tissue Collection  

Embryos were collected from the George Washington National Forest and reared in Provosoli 

Medium to stages 22, 24, and 28 in a lab in the Bioscience Building on James Madison 

University campus (Hurney et al., 2015). Samples were frozen in liquid nitrogen and stored at 

80°C. Prior to storage, stage 22 and 24 embryos were manually dissected using sterile scalpels 

into body and tail tissues. Stage 28 specimens were dissected into head, body, tail base, middle 

tail, and tail tip. Small, 4cm portions of the tips of adult tails, were sectioned into three parts – tip 

(1), middle (2), and base (3). Dissected embryonic tissue samples were stored in separate tubes at 

-80°C.  

Total RNA extraction and purification  

TRIZOL reagent was added to tissues and homogenized with a power homogenizer. Tissue 

debris was discarded after centrifugation. Chloroform was used to separate TRIZOL and 

remaining solid tissue and fat from the aqueous phase. RNA from the aqueous phase was 

precipitated with ispropanol in the presences of glycogen (2.5 µg/µL). Pellets were washed with 

75% ethanol and resuspended in DEPC-treated water. Precipitation with LiCl was performed to 

eliminate DNA. Samples were stored at -80°C. RNA purity and concentration were analyzed 

using a BioTek Synergy H1 Hybrid Reader and the Gen5 software.  
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Primer Design 

Primers were designed using a protein and nucleotide consensus sequence, generated using 

Geneius alignment software, of amphibian HoxA13, HoxB13, HoxC13, and HoxD13 protein 

sequences. The protein consensus sequence was used to design degenerate primers (Figure 1; 

Table 1). Primers designed using the protein consensus sequence were then compared to the 

nucleotide consensus sequence to eliminate unnecessary degeneracy. Primers for RT-PCR were 

designed using the cloned HoxA13 sequence (Figure 1; Table 2). All primers were at least 20 

nucleotides long and ended in guanine or cytosine with a melting temperature around 60°C.  

 

 

 

 

 

 

 

Figure 1. Representation of primer locations. The green box represents exon 1 of the vertebrate 

HoxA13 gene. Black arrows represent primers designed based on consensus sequences. Blue 

arrows represent primers designed from the cloned H. scutatum HoxA13 sequence.  

 

 

 

 

 

HoxA13 Exon 1 
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Table 1. Hox13 cloning primer combinations. 

Primer Name Sequence  Degeneracy 

Hox13-1 5’-GCN GAY AAR TAY ATG-3’ 32 

Hox13-2 5’-CAR GTN ACN ATH TGG-3’ 96 

Hox13-3 5’-CCA DAT NGT NAC YTG-3’ 96 

Hox13-4 5’-YTG NCC RTT CCA NCC-3’   64 

Hox13-5 5’-YTT YTT YTC YTT NAC-3’ 64 

Hox13-6 5’-ATG GAR GGN TAY CAR CCN TGG-3’ 128 

Hox13-7 5’-CCA NGG YTG RTA NCC YTC C-3’ 128 

Hox13-8 5’- YTT RTT NTG NGC RTA YTC- 3’ 256 

Hox13-9 5’- GNG CAN ARG ART TYG C-3’ 128 

Hox13-10 5’- GCR AAY TCY TTN GCN C-3’ 352 

Hox13-11 5’- GGN TGG AAY GGN CA-3’  32 

Hox13-12 5’- NAC YTT NGT RTA NGG-3’  256 

Hox13-13 5’- ATG TYY TNT AYG AYA A-3’  16 

Hox13-14 5’-GAA GCC GGC AAG CAG TGC-3’ 0 

Hox13-15 5’-CTC CAG YTC CTT CAG CTG-3’ 2 

Hox13-16 5’-TTC GCC GAC AAG TAC ATG GAC ACG-3’ 0 
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Table 1. Continued. 

Hox13-17 
5’-CCC ATG GAG GCC TAC CAG CCC TGG 

GCC-3’ 
0 

Hox13-18 
5’-GGC CCA GGG CTC GTA GGC CTC CAT 

GGG-3’ 
0 

Hox13-19 5’-GAT GAC CTT TTT CTC YTT GAC-3’ 2 

 

Table 2. Primer combinations specific to cloned H. scutatum HoxA13 sequence.  

Primer Name  Sequence  Degeneracy 

HoxA13-1 5’- TGT CCA TGT ACT TGT CGG CG-3’  0 

HoxA13-3 5’- CGC TCG GGT GGT GAA CTC-3’  0 

 

First-Strand cDNA Synthesis 

Reverse transcriptase was used to synthesize first strand cDNA by priming 1 µg of total RNA at 

55°C for 1 hour. Reaction termination occurred at 85°C for 5 minutes. Samples were stored at  

-20°C for up to 2 weeks.  

Polymerase Chain Reaction  

All PCR reactions were held at 95°C for 5 minutes followed by 35 cycles of denaturation, 

annealing, and elongation. PCR parameters varied based on primer annealing temperatures, DNA 

source, and length of predicted products.  RT-PCR reaction conditions were 94°C for 0:15, 55°C 

for 0:30, and 72°C for 1:30 with a final elongation at 72°C for 30:00. PCR reactions to confirm 
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the presence of inserts in vectors from E. coli stocks were identical except for an annealing time 

of 0:30 seconds. Myf5 primers were used as a positive PCR control and were ran separately using 

the same parameters as above, with the exception of the annealing temperature, which was 60°C. 

PCR products were stored at 4°C.  

Gel Electrophoresis   

All PCR products and plasmids were analyzed on 1.2% agarose gels buffered with 1X TAE 

buffer and run at 130 volts. Gels were stained with Ethidium Bromide (10mg/1mL) and 

visualized under using a ChemiDoc gel imager.  

Ligation, Transformation, and Plasmid Isolation 

PCR products excised from 1.2% agarose gels were purified using the Roche High Pure PCR 

product purification kit. Purified products were ligated into pGEM-T plasmids at room 

temperature for 2 to 5 days. Following ligation, competent DHα E coli cells were transformed 

with the plasmids plus inserts using heat shock for 90 seconds at 42°C. Cells were revived and 

allowed to grow in LB broth at 37°C for 90 minutes. Cells were plated on LB/Amp/XGAL/IPTG 

plates and allowed to grow at 37°C for 48 hours. Colonies that had not developed a blue color 

were chosen for insert PCR screening. Stocks of the chosen colonies were maintained in 

LB/Amp broth. The M13 primer combination, which flanks the insert annealing sites on the 

pGEM-T vector, was used to detect presence of an insert. Plasmids were isolated using standard 

QIAprep Miniprep Spin Kit.  
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Sequence Analysis 

Isolated plasmids were sent to Eurofins MWG Operon for sequencing via Sanger method. 

BLAST analysis was used to determine similarity of cloned sequences to known Hox13 

sequences.  

DNase treatment 

Previously extracted RNA precipitated with LiCl was treated with 1uL RNAse-free, DNase I 

(1U/µL) for 30 min at 37°C. Reactions were terminated by incubation at 75°C for 10 min.  

 

Results 

Cloning of H. scutatum HoxA13 

Cloning of HoxA13 was required to generate primers specific to H. scutatum HoxA13 for use in 

RT-PCR. Amino acid analysis of Hox13 paralogues from amphibian vertebrate species revealed 

consensus areas common among Hox13 paralogues. These were used to generate sets of 

degenerate primers to amplify a Hox13 paralogue (Figure 1; Table 1). Using a primer pair with 

no degeneracy, HoxA13-16 and HoxA13-18, a 300 bp band was isolated, cloned into pGEM 

plasmid vector, and sequenced (Figure 2). The top two results following a BLAST analysis of 

the sequence of 212 base pairs revealed 90% similarity with portions of the HoxA13 gene from 

two Plethodontid salamander species, Eurycea bislineata and Eurycea cirrigera (NCBI/BLAST, 

Figure 2). The translated version, 64 amino acids in length, of the clone sequence shares 89% 

amino acid similarity with both Eurycea species’ HoxA13 proteins (Figure 3). The third result 

from the BLAST search showed the nucleotide sequence of the cloned insert also shares 88% 
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with HoxA13, exon 1 from Desmognathus fuscus (Figure 2). The amino acid sequence of the 

cloned gene also shared 89% similarity with D. fuscus HoxA13 (Figure 3). There is a substantial 

gap between the first AA and the area where the majority of the alignment begins when aligned 

with all three salamander species mentioned (Figure 3). 
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Figure 2. HoxA13 gene alignment generated using Geneious. The clone nucleotide sequence, 212 

base pairs in length, aligned with exon 1 of HoxA13 from Eurycea cirrigrea (90% similarity), 

Eurycea bislineata (90% similarity), and Desmognathus fuscus (88% similarity). The lines 

indicate gaps in the alignment.  
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Figure 3. HoxA13 amino acid alignment generated using Geneious. The cloned sequence, 64 

amino acids in length, aligned with similar sections of HoxA13 from Eurycea cirrigrea (89% 

similarity), Eurycea bislineata (89% similarity), and Desmognathus fuscus (89% similarity). The 

lines indicate gaps in the alignment.  

Expression of HoxA13 during embryonic, larval and adult stages in H. scutatum  

RT-PCR techniques revealed HoxA13 expression in H. scutatum embryonic, larval, and adult 

tissues. Primers designed for RT-PCR based on the cloned sequence amplified a 170 base pair 

sequence from embryonic, larval, and adult tissues. Embryonic stage 22 tail tip and body tissues 

showed expression of HoxA13 (Figure 4). Stage 24 tail tip tissues did not exhibit HoxA13 

expression. These results are confirmed by the positive Myf5 control using St. 24 tail tip tissues 

(Figure 5). The Myf5 control for Stage 24 body tissues was negative, indicating denatured St. 24 

body cDNA as a cause for a negative experimental result (Figure 5). Larval stage 28 tail tip, tail 

base, and body tissues all exhibited expression of HoxA13 (Figure 6). Adult tail tip tissues 

showed expression of HoxA13 (Figure 7).  
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Figure 4. Gene expression in Stage 22 H. scutatum embryos. The red line through the embryo 

tissue diagram indicates dissection line. The top gel row is HoxA13 RT-PCR55 product and the 

bottom gel row if Myf5 RT-PCR60 product. HoxA13 is expressed in tail tip (Section 1) and body 

tissues (Section 2). Myf5 is expressed in the tail tip of H. scutatum (Section 1). 

 

 

 

 

 

 

 

 

 

 

Figure 5. Gene expression in Stage 24 H. scutatum embryos. The red lines indicate dissection 

lines. The top gel row is HoxA13 RT-PCR55 product and the bottom gel row is Myf5 RT-PCR60 

product. HoxA13 does not appear in either tail tip (Section 1) or body tissues (Section 2). Myf5 is 

expressed in St. 24 tail tissues (Section 1). 
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Figure 6. Gene expression in Stage 28 H. scutatum larva. The red lines indicate dissection lines. 

The top gel row is HoxA13 RT-PCR55 product and the bottom gel row is Myf5 RT-PCR60 

product. HoxA13 is expressed in all St. 28 tissues (Sections 1-3). Myf5 is expressed in all St. 28 

tissues. 

 

 

 

 

 

 

 

Figure 7. Gene expression in adult H. scutatum tail tip tissue. The box indicates the dissected 

section of the tail. The top gel row is HoxA13 RT-PCR55 product and the bottom gel row is 

Myf5 RT-PCR60 product. HoxA13 is expressed in adult tail tips (HoxA13 section).  
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Discussion  

Cloning of HoxA13 

A 212 base pair section of exon one of HoxA13 was cloned in this study from H. scutatum 

embryonic St. 21 tail tip tissue. St. 21 tail tip tissue was the best candidate location for 

expression of Hox13 paralogues based on inferences from typical trends in vertebrate 

development. Although portions of the Hox gene sequences are relatively conserved, the more 5’ 

regions of the gene are typically the most variable and include in a domain on the first exon 

specific to each Hox paralogue (Mann et al., 2009). The cloned gene shared sequence homology 

with exon 1 of HoxA13 in many salamander genera including Eurycea, Desmognathus, and 

Ambystoma, all of which are Plethodontid salamanders that exhibit segmental addition in all life 

stages (Babcock et al., 2001; Vaglia et al., 2010). This suggests the presence of a Pletheodontid 

specific domain in HoxA13 that could be part of the explanation for post-embryonic 

segmentation in Plethodontid salamanders.  

Expression of HoxA13 in H. scutatum Tails 

Expression of HoxA13 in embryonic, larval, and adult tail tips occurs both embryonically and 

post-embryonically in H. scutatum. Experimental results suggest that HoxA13 is involved in 

mechanisms allowing post-embryonic segment addition in Plethodontid salamanders. Body 

tissue expression in embryonic stage 22 and larval tissue tested was likely due to HoxA13’s 

involvement in urogenital and limb development (Imagawa et al., 2014). Expression patterns in 

tail tip tissues revealed in this study were consistent with the expected role of HoxA13 in 

specifying caudal most segment morphology and its role during cell ingression to the PSM. 

Expression patterns found in tail tip tissues were inconsistent with what was expected based on 
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HoxA13’s role in terminating embryonic segmentation. Termination of embryological 

segmentation implies a halt in the mechanism used for continual segmentation. Therefore, it is 

interesting that HoxA13 expression is present in H. scutatum embryonic tail tip tissues because 

H. scutatum and other Plethodontid salamanders segment throughout their life. Further study on 

the activities of HoxA13 in other Plethodontid salamanders is essential in understanding if 

HoxA13 deviates from its traditional role in terminating PSM growth during typical vertebrate 

embryological development.  

 

Early Embryonic (Stage 22)  

HoxA13 expression occurred in embryonic stage 22 tail tip tissue. Early embryonic tail tip tissue 

was the best candidate for HoxA13 expression because vertebrate embryological segmentation is 

taking place as cell ingression is occurring and the morphologies of caudal segments are in the 

process of being specified. HoxA13 expression in St. 22 tissues indicates occurrence of typical 

vertebrate segmentation mechanisms. HoxA13 expression in tail tip tissues at St. 22 may mark 

HoxA13 influencing timing of cell ingression into the PSM and specification of segment 

morphology. 

 

Late Embryonic (Stage 24) 

Expression of HoxA13 is not present in later embryonic stage 24 tail tip tissue examined. RT-

PCR data marks an absence of HoxA13 mRNA, however, the data cannot determine levels of 

active HoxA13 protein. One explanation for presence of HoxA13 in these late embryonic tissues 

is that HoxA13 in the tail tip reaches a concentration lower than that required for termination of 
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PSM growth (Woltering, 2012). HoxA13 expression may be inhibited or stifled to allow for 

persistence of the PSM in embryonic stage tissues. Examination of Hoxb13 expression in Axolotl 

salamanders, a Plethodontid salamander that participates in post-embryonic segmentation, 

revealed termination of Hoxb13 tail tip expression just before hatching (Carlson, et al, 2001; 

Vaglia et al., 2010). Findings from this study may indicate existence of an alteration in HoxA13 

expression pattern relative to typical vertebrate patterns as it relates to HoxA13’s role in caudal 

segment identity specification and cell ingression to add to the population of cells creating new 

segments.  

 

Larval (Stage 28) 

Tail tip expression of HoxA13 in larval, stage 28, tissue following a halt in late embryo tail 

tissues may be evidence for a post-embryonic segmentation event. Following late embryonic 

termination of HoxA13 transcription, a mechanism to turn on HoxA13 sometime after 

deactivation may occur. In this way, PSM truncation would be inhibited because of controls on 

the concentration of HoxA13, however, HoxA13 proteins would be replenished to continue 

segmentation. PSM replacement during hatching may allow for post-embryonic HoxA13 

expression in tail tips. The persistence or absence of somites and PSM tissues has not been 

studied in Plethodontid salamanders, however, it is expected that tail tip tissue is embryonic in 

nature. Cells in the tail tip may share a molecular fingerprint with PSM tissue and therefore act in 

a similar way to allow for post-embryonic segmentation. Expression of HoxA13 in the base of 

the larval tail was also observed, which may be due to the dissection location allowing HoxA13 

from the tail tip to extend the tail base tissues. Alternatively some of the HoxA13 expressed in 

the urogenital tract may be included in tail base tissues.  
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Adult  

HoxA13 expression was found in adult tail tip and base tissues indicating that HoxA13 is active 

post-embryonically and may be active in the mechanism of post-embryonic segmentation. PSM 

tissues or PSM like tissue comprised of a stem cell population may exist in adult tail tips to allow 

for a continued segmentation program.  

 

Conclusion  

HoxA13 expression is evident in embryonic (St. 22), larval (St, 28), and adult tail tissues and is 

likely acting to specify segment morphology and to direct cells to developing segments. H. 

scutatum follows the typical program of vertebrate embryonic segmentation during early 

neurulation but seems to deviate in late embryonic development. Inhibition of axis length 

truncation could occur through transcriptional regulation of HoxA13. Alternative Hox gene 

actions have been characterized and there may be another mechanism for persistence of the PSM 

or a PSM-like tissue and post-embryonic HoxA13 expression. Vertebrates that form a large 

number of segments during somitogenesis, such as snakes and zebrafish, use a reduced number 

of active Hox13 paralogues during somitogenesis in an effort to maintain the PSM (Gomez et al., 

2008). This allows for a slow accumulation of Hox13 paralogue concentration in the tail tip and 

therefore a long lived PSM and a larger area for somites to form.  

An exception to the posterior dominance principle could allow for HoxA13 to specify caudal 

most segments without resulting in PSM, or PSM-like tissue, truncation. When Hox gene 

expression domains overlap, the posterior most Hox gene typically dominates over all other Hox 

genes expressed within that tissue acting on that segment (Denans et al., 2015). Exceptions to 
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this principle posterior dominance exist in invertebrates and are an area of continuing research 

(Durston, 2012). An exception to posterior dominance in these salamanders overriding Hox13 

paralogues ability to initiate truncation of the PSM may be occurring. Hox12 paralogues could be 

dominant over Hox13 paralogues in the truncation mechanism to stop Hox13 from truncating the 

PSM, or PSM-like tissue.  

Hox13 may also have evolved expression patterns exhibited by other Hox genes. A possible 

explanation for suppressed rib formation in snakes is Hoxa10 and Hoxc10 have lost activity in 

influencing snake rib formation (Di-Poi et al, 2010). Relaxed or altered use of Hox13 paralogues 

could allow for prevention of axial truncation in H. scutatum and other Plethodontid 

salamanders.  

HoxA13’s role in segmental addition is beyond the scope of this study, however, the results point 

to the fact that HoxA13 is expressed in H. scutatum tissues during the stages the gene is known to 

be active in embryonic segmentation in common vertebrate development. A better understanding 

of the mechanisms of axial elongation in Plethodontid salamanders would involve 

comprehensive study of proteins expressed in embryonic, larval, and adult tail tip and body 

tissues. This would be achieved via generation of a proteome and a following analysis for 

proteins, such as HoxA13, that are likely to be involved in embryonic and post-embryonic 

segmentation.  
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