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INTRODUCTION

Sight, as interpreted by our visual system, is our most important sense and is

critical for deciphering our surrounding environment. Vision is achieved through the

remarkable organization of diverse ocular cell types and tissues (1). The retina is a

layered neuronal tissue lining the back of the eye containing rod and cone

photoreceptors which convert light into an electrochemical signal to make vision

possible (Figure 1A).
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Figure 1. Anatomy of the eye (A) and layers of the retina (B). The vertebrate retina
contains three layers of nerve cells, the outermost layer containing rod and cone

photoreceptors, an inter neuronal layer containing bipolar, horizontal, and amacrine
cells, and the innermost ganglion cell layer (1).

Visual impairment is a significant public health problem, particularly among the

aging population. With the increasing median age of our national population, the

number of individuals in the Unites States over 40 experiencing vision loss is expected

to rise to 7 million by 2030 and 13 million by 2050 (2). Humans have limited ability to

regenerate neurons, therefore vision loss associated with retinal degeneration is

permanent. Some diseases resulting in vision loss are present at birth, and are

associated with genetic mutations in retinal genes. Retinitis pigmentosa (RP) is a

genetic disease that begins primarily with rod photoreceptor degeneration in the




peripheral retina and eventually leads to secondary cone degeneration in the late
stages of the disease (3). Leber congenital amaurosis (LCA) is one of the most severe
retinal dystrophies, as it affects humans within the first year of life and has been linked
to six genetic mutations. Several diseases affect the macula of the eye, a region rich in
cone photoreceptors that is involved in high acuity color vision. A disease that affects
the aging population is macular degeneration, which is one of the leading causes of
blindness in the U.S. Age-related macular degeneration is characterized by
accumulation of lipid and protein-containing deposits called drusen that build up and
cause damage to the cones of the macula region due to fluid leakage behind the fovea
(3). Thus, studying the retina has significant public health impacts.

The vertebrate retina collectively contains three layers of nerve cells and two
layers of synapses. The outermost layer contains rod and cone photoreceptors while
the inner nuclear layer contains bipolar, horizontal, and amacrine cells. Lastly, the
innermost ganglion cell layer contains the ganglion cell bodies and displaced amacrine
cells. Just behind the outermost photoreceptor layer is the retinal pigment epithelium
(RPE) (Figure 1B). RPE acts as a barrier between blood capillaries and retinal cells, is a
support system for the retina, and works to recycle vital molecules for photoreceptor
function. RPE is involved in the exchange of macromolecules, removal of shed
membrane discs and retinoid recycling (1).

The fovea centralis is the spot in the center of the retina responsible for the
highest acuity vision as it contains cone photoreceptors concentrated at maximal
density. The 3 mm region around the fovea is known as the central retina, and the

portion surrounding the central retina is known as the peripheral retina (Figure 2).
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Figure 2. Tissue collection strategy of cornea, macula, and peripheral retina. The
cornea is the translucent layer of tissue lying over the iris and pupil in the anterior
portion of the eye in the area indicated by the bracket in (A). (B) shows a flat mount of
the posterior portion of the eye used to collect tissues in the inner eye. In (C) biopsy
punches of the peripheral retina and macula were collected as rod-rich and cone-rich
retinal tissues respectively.

The peripheral retina is rich in rod photoreceptors and largely devoid of cone
photoreceptors. In the center of the eye is the optic nerve responsible for transmitting
the neuronal impulses from the retina to the brain. The optic nerve contains ganglion
cell axons connecting the retina to the visual cortex of the brain, and is clustered close
to blood vessels vascularizing the retina. The region of the retina through which the
optic nerve passes is called the optic disk since this region lacks photoreceptors and
therefore creates a blind spot in the retina. The ganglion cells lie in the innermost part of
the retina, closer to the lens of the eye while the photoreceptors lie in the outermost
portion of the retina, closer to the retinal pigment epithelium and choroid layers. The

photoreceptors absorb photons of light and convert a biochemical signal to an

electrochemical signal that stimulates the neurons of the retina.



Cone photoreceptors are conical shaped structures located mostly in the foveal
region and are involved in high acuity color vision. Cones contain the visual pigments
called cone opsins that are sensitive to long wavelengths of light between 420 nm and
650 nm. Most humans have trichromatic vision due to the presence of long wavelength-
cones sensitive to red light, middle wavelength-cones sensitive to green light, and short
wavelength-cones sensitive to blue light. Rods contain the visual pigment rhodopsin and
are sensitive to shorter wavelengths of light (maximally sensitive at 496 nm of light) and
are thus involved in low light or achromatic vision (1).

There are various groups of genes implicated in the phototransduction cascade
that occurs in photoreceptors. Rhodopsin (RHO) is the is a transmembrane G-Protein
coupled receptor (GPCR) expressed only in rod photoreceptors that contains a
chromophore to absorb photons of light (4). The opsin cone pigments include the long-
wave sensitive, medium-wave sensitive, and short-wave sensitive pigments known as
OPN1LW, OPN1MW, and OPN1SW. The opsin cone pigment proteins OPN1LW,
OPN1MW, and OPN1SW, are transmembrane GPCRs expressed exclusively in red,
green, and blue cones respectively (5, 6) . Once light has been absorbed by the
chromophores within photoreceptors, the GPCRs of rhodopsin or the cone opsin
undergo conformation change and subsequently activate the heterotrimeric guanine
nucleotide-binding proteins (G-proteins). Rod and cone-specific alpha subunits of the G-
protein complex are coded for by GNATT and GNATZ2 respectively (7, 8). Activation of
the G-protein complex next results in activation of the phosphodiesterase 6 complex
during the cascade. The PDEG beta subunit in rods is coded for by the rod-specific gene

PDEG6B, while the cone-specific beta subunit is coded for by PDE6C (9). Activation of



phosphodiesterase causes hydrolysis of cyclic guanosine monophosphate (cGMP) and
closure of cGMP-gated cation channels, thus resulting in hyperpolarization of the
photoreceptor. Hyperpolarization decreases the amount of glutamate in the synaptic
terminal resulting in release of the electric signal that can be processed by the
postsynaptic neuron (10).

Complex transcription factor networks including the Cone-Rod Homeobox (CRX)
transcription factor regulate phototransduction genes. CRX mutant analysis in mice has
revealed the importance of the transcription factor in visual function (11). CRX knockout
mice have dysfunctional photoreceptors that fail to develop normal outer segments, and
thus this phenotype is accompanied by reduced expression of photoreceptor-specific
genes including Rhodopsin (12). Deletion analysis paired with DNA binding assays
revealed vital regulatory regions within CRX. A complete DNA binding domain is vital for
the ability of CRX to bind DNA. Additionally, the OTX tail and WSP domain within CRX
were determined to be necessary for transactivation activity of the transcription factor
(11).

Mutations in the human CRX gene are associated with blinding diseases of the
retina such as Leber congenital amaurosis, cone-rod dystrophy, and retinitis
pigmentosa (13). CRX binds to cis-regulatory elements (CREs) in the genomes of rod
and cone photoreceptors. Genome-wide CRX binding regions (CBRs) have been
characterized the mouse retina (14). CRX has been found to bind predominantly to
CREs with a known 8 bp motif, however, non-canonical CRX motifs with high GC
content were also observed indicating a sequence context-independent feature of CRX

binding to CREs (14, 15).



Among the many genes regulated by CRX is the rod-specific transcription factor
Neural Retina Leucine zipper (NRL). NRL is a leucine zipper transcription factor
expressed exclusively in rod photoreceptors. Deletion of NRL in mice results in
complete loss of rod function. An important mouse model used to study gene
expression in the retina is the Nrl -/- mutant retina. Nrl -/- mice experience loss of rods
replaced by S-cones (short wave blue cones) within their retinas (16). The Nrl -/-
phenotype is associated with complete loss of rod function and super-normal cone
function. However, the cones in Nrl -/- retina have short outer segments with abnormal
disks. The function of NRL as a transcription factor is to direct rod cell development by
activating transcription of rod-specific genes while inhibiting formation of S-cones via
activation of the nuclear receptor subfamily 2, group E, member 3 transcription factor,
also known as Nr2e3 (16). Over 300 genes have been associated as direct target genes
of NRL, 22 of which are loci associated with human retinal diseases. Knockdown of 16
of these NRL target genes resulted in photoreceptor-cell death of abnormal rod
photoreceptors. High enrichment of NRL binding sites overlapping with CRX binding
sites suggests that CRX and NRL work together to control rod photoreceptor cell fate
(17). Additionally, mutations in NRL are also associated with degenerative diseases of
the retina such as dominant and recessive retinitis pigmentosa (13). A better
understanding of the transcriptional networks controlled by CRX and NRL in
photoreceptor development and maintenance will be critical for developing novel
therapeutic and replacement strategies for blinding retinal neuropathies.

Transcriptional networks are known to be modulated by epigenetic modifications

to the genome (18). Epigenetic modifications can be organized into two broad
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classifications: histone tail modifications and genomic DNA methylation (19). Histone
modifications are covalent, post-translational changes to the histone proteins around
which DNA is wrapped to make up chromatin. Histone modifications include
acetylation, methylation, phosphorylation, ubiquitination, and various other modifications
that modulate gene expression by changing the chromatin structure or by altering
accessibility of DNA to regulatory proteins (20). Epigenetic modifications to the
chromatin can result in transcriptional repression or activation depending on the context
and type of modification. DNA methylation and histone modifications work in
combination to recruit protein complexes to regulate transcription (21). Recently, it has
been suspected that there is cross talk between DNA methyltransferases and histone
methyl transferases in regulating transcriptional activity (19).

DNA methylation is an epigenetic modification that involves addition of a methyl
group to the fifth carbon position of a cytosine residue in a 5’-CpG-3’ dinucleotide
(CpG). DNA methylation is typically associated with a repressed transcriptional
chromatin state and therefore is inversely correlated with gene expression when
accumulated in 5’ gene regulatory regions. Differentiation of the retina from neuronal
precursors is a highly regulated process that involves coordinated control of gene
expression during development (23). De novo DNA methylation in mammals primarily
occurs during gametogenesis and embryogenesis (22). Thus, DNA methylation may
play a role in control of gene expression during development of the retina. Several
photoreceptor-specific genes have exhibited a cell-specific differential DNA methylation
pattern inversely correlated with their expression level. Differential methylation patterns

were observed in rhodopsin (RHO), retinal binding protein 3 (RBP3) cone opsin, short-
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wave-sensitive (OPN1SW), cone opsin, middle-wave-sensitive (OPN1MW), and cone
opsin, long-wave-sensitive (OPN1LW), which suggests that DNA methylation is an
important modification in controlling photoreceptor gene expression (23).

DNA methyltransferases (DNMTs) are the enzymes that catalyze the addition of
a methyl group to cytosine residues. Establishment and maintenance of DNA
methylation in the genomes of plants and vertebrates is essential for development (24).
The role of Dnmt3a and Dnmt3b is to establish de novo methylation followed by
subsequent maintenance of methylation imprints by Dnmt1 during DNA replication.
Mutation of Dnmts in the vertebrate retina results in transcriptional dysregulation and
retinal degeneration. These finding supports the importance of DNA methylation in
modulating expression of photoreceptors in the retina (25).

A more recent discovery in epigenetics is the presence of an active
demethylation pathway mediated by the oxidation of 5mC to 5-methylhydroxycytosine
(5hmC). Hydroxymethylation of 5mC is catalyzed by the ten-eleven translocation (TET)
family of enzymes. Active DNA demethylation triggered by the TET oxidation of 5mC to
a 5hmC initiates a base excision repair mechanism removing a stretch of DNA including
the epigenetically modified nucleotide(s) and replacing them with unmodified cytosines
(26). Neuronal tissue demonstrates relatively high levels of the 5ShmC epigenetic mark in
vertebrate species indicating a potential role for active demethylation neuronal gene
regulation (27).

DNA methylation plays an essential role in cell fate in the retina and has disease
implications in the retina since methylation has been linked to regulation of neuronal cell

death in the retina. Programmed cell death plays an important role in vertebrate eye
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morphogenesis and occurs selectively in certain cell types. A directed cell death
process that is regulated by epigenetic mechanisms such as DNA methylation and
hydroxymethylation characterizes the loss of photoreceptors caused by degenerative
diseases in the retina. Cell-specific increases in DNA methylation and
hydroxymethylation in the retina of normally developing mice as well as in an RP-like
degenerated mouse retina were observed through immunostaining (28). During normal
development of the retina, characterized by apoptotic cell loss in the inner retina,
increases in methylation and hydroxymethylation were detected. Similarly, increased
methylation and hydroxymethylation was detected in early stages of photoreceptor
degeneration (29). Since Dnmts are expressed in retinal progenitors as well as in
mature retinal neurons, this suggests the importance of DNA methylation in establishing
normal cell-specific methylation patterns to control differentiation in the retina. The
detection of hydroxymethylation during retinal degeneration and development also
suggests that there is likely a homeostatic balance in retinal neurons established by
both methylation and demethylation (leads to formation of hydroxymethylation), and the
process of retinal degeneration involves complex pathways of methylation and
demethylation (28).

Previously, our lab has demonstrated that there is a tissue-specific pattern of
DNA methylation in retina specific genes (Figures 4 and 6). Furthermore there is an
inverse correlation between DNA methylation and mRNA expression. This inverse
correlation between DNA methylation and mRNA expression was observed in a subset
of genes analyzed, specifically in the rod-specific genes RHO, NRL, and PDE6B, as

well as in the CRX gene expressed in both rods and cones. Additionally, cell type-
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specific patterns of DNA methylation were also observed within rod and cone
photoreceptors. Conserved regulatory regions controlling photoreceptor-specific genes
in which low methylation was observed with a presence of CRX or both CRX and NRL
binding sites supported the cell-specific pattern of methylation between rods and cones.

CRX binds to cis-regulatory elements in DNA and interacts with transcriptional
co-activator protein complexes with histone acetyltransferase (HAT) activity (30).
Transcription of rod and cone opsin genes requires binding of CRX followed by
recruitment of HATSs, acetylation of histone 3 (H3ac), and subsequent binding of other
transcriptional activators such as NRL as well as RNA polymerase Il. This sequence of
events occurs in promoter and enhancer regions of both rod and cone opsin genes (30).
These interactions mediate physical contact of the enhancer and promoter as well as
other coding regions in each opsin locus forming an intrachromosomal loop that drives
expression of photoreceptor-specific genes (31). It is currently not known however, what
mediates differential recruitment and binding of CRX in rod and cone photoreceptors
genomes. | hypothesized that observed patterns of differential DNA methylation on CRX
binding sites modulates the ability of the transcription factor to bind cis-regulatory
elements. This hypothesis predicts that DNA demethylation of regulatory elements
precedes CRX binding and is therefore the initiating event in photoreceptor-specific
gene expression. Bisulfite pyrosequencing analysis was used to examine tissue and
cell-specific patterns of DNA methylation in photoreceptor-specific genes of the retina in
murine and human samples. Additionally, the purified CRX protein was used to conduct
in vitro binding assays to characterize how DNA methylation and hydroxymethylation

modulate CRX binding in the genome of human retinal neurons.
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METHODS
Tissue Collection and Bisulfite Conversion of DNA for PCR Amplification

Post-mortem human donor eyes collected from the National Disease Research
Interchange were used to dissect out relevant tissues for quantification of DNA
methylation in retina-specific genes. Corneas were removed first from the donor eyes
and were placed on dry ice and ground into a powder. Retinal flat mounts were
prepared by making 4 radial cuts into the remaining eye cup and taking a 3 mm biopsy
punch of the macular retina (cone-rich tissue) and a 6 mm biopsy punch of the
peripheral retina (rod-rich tissue). Tissue samples were placed in Qiagen RNeasy Lysis
buffer and beta-mercaptoethanol to lyse the cells. Extracted DNA underwent bisulfite
(BS) conversion using the Zymo EZ DNA MethylGold Kit. Unmethylated cytosine bases
are converted to uracil during bisulfite conversion via attachment of a sulfite group to the
cytosine and subsequent deamination and desulfonation to uracil. Methylated cytosines
remain unchanged during conversion, and thus the amount of methylation in various
retinal genes can be quantified through subsequent PCR amplification and
pyrosequencing.

Either the forward or the reverse primer used in the polymerase chain reaction
(PCR) were biotinylated, and thus one strand of the PCR amplicon became tagged with
biotin to allow a specific strand to be marked for the sequencing reaction. BS PCR
reactions were set up in 30 uL volumes using Sigma-Aldrich JumpStart Taq polymerase
and gene-specific primers were used to amplify BS converted DNA from ocular samples

(Table 2). DNA from peripheral retina, macular retina, and cornea were set up in
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triplicate for each PCR reaction. PCR reactions were run at optimized annealing
temperatures on a Bio-Rad C1000 Touch Thermal Cycler.
Bisulfite Pyrosequencing

PCR products were mixed with streptavidin-conjugated beads and a sequencing
primer and a Qiagen Q24 Pyrosequencer was used to determine percent methylation at
CpG dinucleotides in the BS PCR amplicons. Percent methylation between triplicates of
each DNA sample was averaged, and methylation plots were visualized in Graph-Pad
Prism. Statistical significance between macula and peripheral retina was determined by
a one-tailed t-test with a p value threshold set at <0.05.
Expression of human CRX and NRL

Protein expression plasmids containing full-length and DNA binding domain
(DBD) coding sequences for the human CRX and NRL proteins fused to epitopes for
protein purification were purchased from Genscript. Constructs were transformed into
BL21 DE3 E. coli competent cells and transformants were selected for on lysogeny
broth plates containing either kanamycin for the full-length constructs or carbenicillin for
the DBD constructs. Single colonies were selected from each plate to set up broth
cultures for induction of protein expression with isopropyl B-D-1-thiogalactopyranoside
(IPTG). Starter cultures containing 3 mL of LB and 2.5 uL of kanamycin (for full length
constructs) or carbenicillin (for DBD constructs) were inoculated with a single colony
from the each culture plate. Starter cultures were incubated in a shaking incubator at
37°C and 230 rpm for 12 hours. Small-scale expression cultures were set up using 2 mL
of the starter cultures, 300 mL of LB, and 240 uL of the corresponding antibiotic. Small-

scale expression cultures were incubated (at 37°C and 230 rpm) until the optical density
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(OD) of the culture reached 0.5-0.6 as determined by spectrophotometry. The
spectrophotometer was set at 600 nm with a 1 cm path length cell, and was blanked
with LB prior to each OD reading. After reaching the desired OD, 60 uL 0.2 mM IPTG
was added to each culture. Aliquots of expression cultures were taken out of each
culture prior to induction; as well as 1.5 and 3 hours after induction. Post-induction time
course experiments were conducted using polyacrylamide gel electrophoresis (PAGE)
analysis.
Purification of human CRX and NRL

Small-scale purification using a nickel-column was performed using the batch
cultures of protein lysates from the 3-hour post-induction time point. Bacterial cells were
incubated in protein lysis buffer (50 mM sodium phosphate (pH 8), 300 mM NaCl, and 1
mM BME; 0.001 mM lysozyme) in a water bath at 37°C for 5 minutes to lyse the cells.
Samples were sonicated for 60 seconds total at an amplitude of 40% using a 5 second
on/off pulse, and the cycle was repeated twice. Lysates were then treated with a
nuclease mixture, prepared from 2 L of nuclease and 20 pL of 1 M MgCly, to help
degrade viscous DNA from the lysates. Samples were centrifuged at 4°C and 15,557 x
G for 30 minutes to pellet the insoluble materials. Aliquots of the supernatant as well as
the pellet were saved for SDS-PAGE. The remaining supernatant was used for further
purification with the nickel column.

To prepare the nickel beads for use in the column, 1 mL portions of nickel bead
slurry were prepared by centrifuging at 750 rpm for 5 minutes. The supernatant of the
bead slurry was discarded. The remaining protein supernatant was added to the pellet

of beads. The protein-bead mixture was incubated at 4°C while shaking. To elute the

17



His-tagged proteins from the column containing the nickel beads, imidazole was used.
Three concentrations of imidazole (10 mM, 40 mM, and 250 mM) diluted in lysate buffer
were prepared in 50 mL volumes. The pH of the imidazole solutions in lysis buffer was
brought to 8.

Approximately 10 mL portions of the prepared protein-bead mixtures of each
sample were allowed to slowly flow through the nickel column. The protein-bead mixture
tubes were rinsed with lysis buffer to ensure no residue was left in the tube. The column
was then washed with 5 mL of lysis buffer. To elute each protein of interest from the
column, 5 mL washes of 10 mM imidazole, 40 mM imidazole, and 250 mM imidazole
were used. Each fraction was collected and saved after flowing through the column for
SDS-PAGE. The nickel column was not allowed to dry out, and approximately 1 mL of
each solution was always left in the column to prevent drying.

Bio-Rad Mini-PROTEAN TGX Stain Free Pre-cast gels were used with a 1X
tris/glycine/sodium dodecyl sulfate buffer system. Bio-Rad Precision Plus Unstained
Protein Standards (250 kD) were run on the gel as the marker. Protein samples were
mixed with 2X Laemmli Sample Buffer. Protein samples were prepared to run on the gel
by vortexing briefly and boiling for 5 minutes.

Bioinformatics Analysis of CRX and NRL Binding Sites

CRX binding regions (CBRs) as well as NRL binding regions (NBRs) obtained
from published murine chromatin immunoprecipitation sequencing data were mapped
as custom Browser Extensible Data (BED) annotation tracks in the University of
California Santa Cruz Genome Browser (genome.ucsc.edu). CBR data was obtained

from Corbo et al., (2010), and NBR data was obtained from Hao et al., (2012). The
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LiftOver tool in the UCSC Genome Browser was used to align the CBRs and NBRs from
the July 2007 mouse NCBI37/mm9 genome assembly to the human February 2009
GRCh37/hg19 assembly. Aligned murine CBRs and NBRs to the human genome were
added as custom tracks in the UCSC Genome Browser. Additionally, CRX binding
motifs were added as a custom track using data obtained from the Motif Map database.

A Plasmid Editor (ApE) was used to annotate the Rhodopsin genomic sequence
to determine relevant cytosine methylation sites for binding assays. The Rhodopsin
DNA sequence was annotated with CBRS, NBRs, and CRX binding motifs in ApE using
the custom tracks created in the hg19 assembly of the UCSC Genome Browser.
Synthesis of Epigenetically Labelled DNA Probes

Two primers were used to amplify regions of interest in the human Rhodopsin
gene to create probes for in vitro binding assays. The F1/R1 primer was used to
synthesize the 150 bp enhancer region (-6 kb upstream from exon 1) in Rhodopsin and
the F2/R2 primer was used to synthesize a 129 bp enhancer region adjacent to the first
exon of Rho. F1/R1 and F2/R2 refer to abbreviations used to identify the primers in
Table 2. PCR reactions were set up in 30 uL volumes using Sigma-Aldrich REDTaq
DNA Polymerase and human retinal pigment epithelium DNA. The different types of
deoxynucleotides (ANTPs) were added separately to their respective PCR reaction to
create epigenetically labeled probes. Normal dNTPs, 5mC dNTPs, a 1:1 mix of normal
dNTPs with 5SmCs, 5hmCs, and a 1:1 mix of normal dNTPs with 5hmC dNTPs were
used to create each EMSA probe using the respective primer. Additionally, a no dNTP
control was set up. PCR reactions were run at optimized annealing temperatures on a

Bio-Rad C1000 Touch Thermal Cycler. The 5mC-sensitive and ShmC-sensitive
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restriction enzymes Haelll and Cac8l were used to verify the synthesis of epigenetically
labeled probes. Digested probe fragments were run on a 1.2% agarose gel stained with
GelRed.

In Vitro Binding Assay (EMSA)

In vitro binding assays were carried out using 15 uL of the F1/R1 or F2/R2 EMSA
probe PCR product, mixed with 50 mM EDTA to help minimize nuclease activity of the
protein, and 30 uL of the CRX DBD purified protein. Samples were incubated for 30
minutes at room temperature. Samples not mixed with protein were prepared using 15
uL of the F1/R1 or F2/R2 EMSA probe PCR products with 2 uL of EDTA and 30 uL of
10 mM MOPS; 100 mM NaCl buffer (3-(N-morpholino)propanesulfonic acid). Samples
were run on a 2.5% agarose gel containing GelRed. The gel was run at 50 V for

approximately 3.5 to 4 hours.

RESULTS
Cell and Tissue Specific Patterns of DNA Methylation in Mouse Models

The initial pattern of tissue and cell-specific DNA methylation in genes of the
retina was examined in the mouse model. Primers designed to amplify conserved
promoter CRX binding regions (CBRs) were used to conduct bisulfite pyrosequencing

analysis to study the pattern of methylation in genes specific to the retina (Figure 3).
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Figure 3. Genome Browser View of the 5’ Regions of Rhodopsin and PDEGB in the mouse
genome. The purple Nrl -/- CBRs track shows CRX binding regions in the nearly all cone Nrl -/-
retina. The dark blue WT CBR alignments track shows CRX binding regions. The PCR amplicon
regions analyzed by bisulfite pyrosequencing are represented in black. The relative DNA
conservation between 100 species of vertebrates is represented in the bottom track. Light blue
highlighted regions represent areas where CRX is predicted to be able to bind due to the
presence of highly conserved CRX binding regions.

Bisulfite pyrosequencing revealed a tissue and cell-specific pattern of DNA
methylation in genes specific for subunits of photoreceptors in the retina (Figure 4).
Samples of Nrl mutant retina (Nrl -/-) composed of nearly all cones and CRX mutant
(CRX -) retina composed of dysfunctional photoreceptors lacking mature outer
segments accompanied by reduced expression of photoreceptor-specific genes were
compared to wild type retina and wild type brain. Wild type retina contains functional rod

and cone photoreceptors, while wild type brain lacks photoreceptors.
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Figure 4. Bisulfite pyrosequencing analysis of Mouse DNA methylation at CpG sites relative to
the transcriptional start site of (A) Rhodopsin, a rod photoreceptor gene, (B)
Phosphodiesterase-6b, another rod-specific photoreceptor gene, and (C) LINE1 retrotransposon
repeats. Error bars represent standard error of three replicates of each sample. Statistical
significance of both Nrl -/- retina and wt brain determined by a one-tailed t-test with a p<0.05 are
denoted by (1). Statistical significance of only wt brain determined by a one-tailed t-test with a
p<0.05 is denoted by (*).

In the proximal promoter sequence of the mouse rod-specific RHO gene, wt brain
had significantly higher methylation compared to wt retina, Nrl -/- and Crx - retina. At the
upstream RHO enhancer site analyzed using a separate PCR primer, wt brain as well
as Nrl -/- retina had significantly more methylation than wt retina and Crx - retina. This

pattern suggests that wt brain, devoid of photoreceptors has higher methylation than
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retinal samples containing some form of photoreceptors. The observation that Nrl -/-
retina did not have significantly higher methylation at all sites analyzed in the Rhodopsin
gene is not entirely consistent with the predicted pattern that a sample of retina
composed of nearly all cones would have high methylation in a rod-specific
photoreceptor gene. However, Phosphodiesterase-6b (PDE6B), another rod-specific
photoreceptor gene, did show a more consistent pattern of cell-specific DNA
methylation. At each CpG site analyzed in the PDE6B gene, both wt brain and Nrl -/-
retina had significantly more methylation than wt retina and Crx - retina. Thus, the
PDEG6B gene shows both a tissue and cell-specific pattern of methylation. As a positive
control, LINE1, a constitutively methylated retrotransposon repeat element, showed no
difference in methylation among samples since this gene is highly methylated at all
times (Figure 4).

Cell and Tissue Specific Patterns of DNA Methylation in Human Models
Observations of tissue and cell-specific patterns of DNA methylation in the
mouse model prompted further investigation in primary human retinal neurons. A similar
setup to the mouse experiment using various photoreceptor enriched tissues in human
donor eyes was used to conduct bisulfite pyrosequencing analysis in humans. Cornea
was collected as a non-retinal control tissue from human donor eyes (Figure 1A). After
creating a retinal flat mount, 6 mm biopsy punches of peripheral retina as well as 3 mm
biopsy punches of macula were collected (Figure 1B and 1C). Peripheral retina served

as a rod-enriched tissue while macula served as a cone-enriched sample (Figure 1C).
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Information regarding post-mortem human donor eyes used for tissue collection
of cornea, peripheral retina, and macula is recorded in Table 1. Primers designed for

both mouse and human methylation analysis are listed in Table 2.

Table 1. Human donor eye patient information.

Death:enucleation Death:delivery
Sample ID Age Race Sex (hours) (hours)
Eye# 8670 | Unknown | Unknown |Unknown Unknown Unknown
Eye #7 75 caucasian M 7.2 27
Eye #8 78 caucasian M 5.1 45.58
Eye #9 82 caucasian M 6.75 35.9

Table 2. Oligonucleotides used for bisulfite PCR, pyrosequencing and analysis and EMSA probe synthesis.

Amplicon
Primer Name Sequence (5'-3") Region Analyzed Size (bp) [ Annealing temp (°C) Application
Human LINE1
hLINE1F proprietary (Qiagen product #970042) retrotransposon promoters 146 50 BS PCR
hLINE1R-BIO proprietary (Qiagen product #970042) BS PCR
hLINE1-seq proprietary (Qiagen product #970042) pyrosequencing
hPax6-F1 TAGTTATAGGTYGGGTTAAGGAAGGTTAAA Human PAX6 promoter 248 54-58 BS PCR
hPax6-R1-bio AACCTACCCCAAAATTTAAATATCAA BS PCR
hPax6-seq1 ATTAGTYGGYGTAGAGTTGTGTTTA pyrosequencing
JS_BS_hRho_F3 TTGAGTTGGGATTTTGGGATAGATAAG Human RHO promoter 241 54-58 BS PCR
JS_BS_hRho_R3_biotin TATAAAATAACCTCCCCCTCCT BS PCR
JS_BS_hRho_S3 TTTGGTTTTTTTTAGAAGTTAATTA pyrosequencing
Human RHO upstream
JS_hRho_F4 AGGGGTTTGTAAATAAATGTTTAATGA promoter 258 54-56 BS PCR
JS_hRho_R4-Bio ACTTTCTAATTTATTCTCCCAATCTCT BS PCR
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JS_hRho-seq4-2 ATTGGATGATTTTAGAGGT pyrosequencing
hPde6b-F1 TGGGAAGTTTTAGGGTTTGAGG Human PDE6B Promoter 120 54-58 BS PCR
hPde6b-R1-bio AAAACCCTATCATCAACAAAATCTTTCTTA BS PCR
hPde6b-seq1 TTTAGGGTTTGAGGAGA pyrosequencing
hRER-F2-Bio GTGGGTTAGTTTTGATTTAAGGTAT Human RHO Enhancer 284 54-62 BS PCR
hRER-R2 CCCAAAATTCCCAAATCTATCTACTCAA BS PCR
hRER-seq2-1 ACAAAACCAATAAAATAAAACCTCT pyrosequencing
EMSA-En-F1-BIO AAGAAAGCCAAGGAAGAGGAGGAG Human RHO -5 kb enhancer 150 54-64 probe for EMSA
EMSA-En-R1 TTTGCCTTTGCCTCGGTGGATTAG probe for EMSA
EMSA-RER-F2-BIO ACCCTCACCTTAACCTCATTAGCG Human RHO RER 129 54-64 probe for EMSA
EMSA-RER-R2 TGGTGTTGGGTCTAACAGCGTTTG probe for EMSA
VO_mPde6b_F1 GTATTTGGGGGTGGAGAAAG Mouse PDE6B Promoter 152 58 BS PCR
VO_mPde6b_R1_bio ACAAACCCCTACCACATTTTCAAA BS PCR
VO_mPde6b_S1 GGGGGTGGAGAAAGT pyrosequencing
Mouse LINE1
REmL1_F1 TTTTTTGGGGTTAGGATTTGGGGTATAAG | retrotransposon promoters 211 54 BS PCR
REmL1_R1_Bio AACCTACTTCCCTATATACTACAATCT BS PCR
REmL1_seq1 GATTTGGGGTATAAGTTTTT pyrosequencing
KTmRho-F1 AGGGAGAGAAGGTTATTTTATAAGG Mouse RHO Promoter 177 58 BS PCR
KTmRho-R1 AACACATAAAAATTAAAACCCTCTATAC BSPCR
KTmRho-§1 GGGGTTAGTGTTTGGA pyrosequencing
VO_m_Rho_F1 AGAGGATTTTGGGGTAGATAAG Mouse RHO Promoter 169 58 BS PCR
VO_m_Rho_R1_bio TCCCTAAACCAAAAACTAATTCAACA BS PCR
VO_m_Rho__S1 ATTTTTTTTTTTTTTTATTTAAGGG pyrosequencing
VO_m_Rho_S2 ATTTTGGTTTTTTTGTAAGTTAAT pyrosequencing
REmRho(-270)-F1 TGAGTTTAGGAGGAGATATTGTTAAT Mouse RHO Promoter 125 58 BS PCR
REmRho(-270)-R1-bio CCCCAAAATCCTCTAAAAATTCCT BS PCR
REmRho(-270)-seq1 AGTGAATTTAGGGTTTAAAG pyrosequencing
REmRho(up RER)-F1 GGGGTTGTTTTTGTTATTTAAGTGAGAGAG Mouse RHO Enhancer 219 58 BS PCR
REmRho(up RER)-R1-Bio CCTCAACAACCTCTACAACCAACTTATA BS PCR

REmRho(up RER)-seq1

AGAGTTTAGGAGATGG

pyrosequencing
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REmRho(down RER)-F1

AGGAAGGGGGTTGTTTTTTTAA

Mouse RHO Enhancer

182

58

BS PCR

REmRho(down RER)-R1-Bio

CTATACCCCTTACCACATAAATATCC

BS PCR

REmRho(downs RER)-seq1

GGGTTGTTTTTTTAAGTAAATAT

pyrosequencing

Bioinformatics analysis was used to determine regions of interest for studying

DNA methylation patterns in the human genome where CRX may be able to bind. In

addition to mapping the CRX binding regions (CBRs) obtained from previous mouse

ChiIP-seq data, CRX binding motifs lifted over from the mouse genome to the human

genome were mapped to determine areas in which CRX is likely to bind. Conserved

regions of the human genome containing CRX binding regions with CRX motifs were

analyzed by bisulfite pyrosequencing analysis to investigate methylation patterns in

retina-specific genes (Figure 5).

A similar pattern of tissue and cell-specific DNA methylation observed in

photoreceptor genes of the retina in mice was also observed in the human study. Both

human rod-specific genes RHO and PDE6B demonstrated significantly higher

methylation in cone-enriched macula as well as non-retinal cornea samples compared

to rod-rich peripheral retina (Figure 6). LINE1, a constitutively methylated

retrotransposon repeat element, as well as PAX6, an unmethylated eye field gene

expressed constitutively in the retina, showed no significant difference in methylation

among cornea, macula, and peripheral retina (Figure 6).
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Figure 5. Genome Browser View of the 5’ Regions of Rhodopsin and PDEGB. The blue WT
CBR alignments track shows murine CRX binding region data that has been aligned to the
human genome. CRX binding motifs are represented in pink, along with the PCR amplicon
regions analyzed by bisulfite pyrosequencing. The relative DNA conservation between 100
species of vertebrates is represented in the bottom track. Blue highlighted regions represent
areas where CRX is predicted to be able to bind due to the presence of highly conserved CRX
binding regions with binding motifs.
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Figure 6. Bisulfite pyrosequencing analysis of Human DNA methylation at CpG sites relative to
the transcriptional start site of (A) LINE1 retrotransposon repeats, (B) Paired Box-6, an eye field
gene, (C) Rhodopsin, a rod photoreceptor gene, and (D) Phosphodiesterase-6b, another rod-
specific photoreceptor gene. Error bars represent standard error of three replicates of cornea
samples, and four replicates of peripheral retina and macula samples. Statistical significance of
macula and peripheral retina determined by a one-tailed t-test with a p<0.05 are denoted by (7).

Expression and Purification of CRX and NRL

The pattern of tissue and cell-specific DNA methylation in predicted CRX binding
regions of rod and cone photoreceptor genes of the retina in both mouse and human
models prompted further exploration of the biochemical nature of the interaction

between DNA methylation and CRX binding. Thus, expression and purification of CRX,
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and additionally the NRL protein, was carried out using plasmid constructs designed for

affinity purification of the DNA binding domain portions of both proteins (Figure 7).
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DNA Binding Domain
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Figure 7. DNA Binding Domain Plasmid Constructs used for Expression. (A) shows the PMAL-
c5x vector from GenScript containing the ampicillin resistance gene and maltose binding
domain used to clone in the CRX and NRL DNA binding domain sequences. The plasmid maps
of the expression constructs of CRX DBD in (B) and NRL DBD in (C) show the predicted sizes

of the proteins.
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Post-induction time course experiments indicated successful expression of both
CRX and NRL DNA binding domain plasmid constructs (Figure 8). The presence of
robust bands at approximately 54.2 kDa and 52.5 kDa consistent with the predicted
sizes of the CRX and NRL DNA binding domain expressed proteins were observed in
the post-induction analysis. The CRX and NRL full length proteins (not pictured)

presented problems with expression and purification and were not further characterized

in this study.
CRX DBD NRL DBD
Hours Post Induction
M 0 1.5 3 0 1.5 3
kD .

250-

75-

50-
37-1 %

10-

| MBD | hCRXDBD (480 AA) | 6x His | 54.2 kDa (Predicted)

| MBD | hNRLDBD (466 AA) |6X His | 52.5 kDa (Predicted)

Figure 8. Bacterial expression of CRX and NRL DBD constructs. BL21 E. coli cultures
harboring CRX DNA binding domain (lanes 2-4) and NRL DNA binding domain protein
expression constructs (lanes 5-7) were induced with IPTG and monitored for protein expression
at 1.5 hour intervals out to 3 hours post-induction. Protein marker is loaded in lane 1.
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Affinity purification of CRX DBD using nickel resin and an increasing gradient of
imidazole indicated that the 10 mM imidazole elution contained the CRX DBD (band at
approximately 54.2 kDa). The 10 mM Imidazole elution containing CRX DBD was used
for binding assay analysis (Figure 9).

CRX DBD
Imidazole (mM)

L P SN M FT 0 10 40 250

| MBD hCRX DBD (480 AA) 6X His | 53.7 kDa (Predicted)

Figure 9. Affinity Purification of CRX DBD using nickel resin. Lane 1 contains the crude lysate
after treatment to lyse open the cells prior to centrifugation. Lane 2 contains the pelleted
insoluble material and lane 3 contains the supernatant after centrifugation. Lane 5 contains the
flow through after placing the prepared supernatant on the column, and lanes 6-9 contain
protein elutions after treatment with an increasing gradient of imidazole from 0 mM to 250 mM.
Lane 10 contains the left-over beads in the column. The 250 kDa protein marker is loaded into
lane 4. The purified protein appears to be present in lane 7 with the 10 mM imidazole elution at
approximately 54.2 kDa.

Affinity purification of NRL DBD using nickel resin and an increasing gradient of
imidazole indicated that the 40 mM imidazole elution contained NRL DBD (band at

approximately 52.5 kDa). The 40 mM imidazole elution containing NRL DBD will be
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used for future binding assay analysis characterizing NRL interaction with methylated

DNA (Figure 10).

NRL DBD
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Figure 10. Affinity Purification of NRL DBD using nickel resin. Lane 1 contains the
crude lysate after treatment to lyse open the cells prior to centrifugation. Lane 2
contains the pelleted insoluble material and lane 3 contains the supernatant after
centrifugation. Lane 5 contains the flow through after placing the prepared supernatant
on the column, and lanes 6-9 contain protein elutions after treatment with an increasing
gradient of imidazole from 0 mM to 250 mM. Lane 10 contains the leftover beads in the
column. The 250 kDa protein marker is loaded into lane 4. The purified protein appears
to be present in lane 8 with the 40 mM imidazole elution at approximately 52.5 kDa.

Synthesis of Epigenetically Labeled DNA Probes
Epigenetically labeled DNA probes for use with the purified proteins in
electrophoretic mobility shift assays (EMSA) were designed to the upstream enhancer

regions of the rod-specific RHO gene using bioinformatics analysis in the UCSC
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genome browser. In the conserved upstream -5 kb enhancer region of RHO containing
a CBR and CRX binding motif, the Cac8l restriction enzyme was chosen as an enzyme
sensitive to both DNA methylation and hydroxymethylation (Figure 11B). Digestion of
the PCR product with the Cac8l enzyme confirmed that the probe synthesized with each
type of ANTP would accordingly mimic conditions to test how methylation and
hydroxymethylation affect the ability of CRX and NRL to bind DNA. The -5 kb enhancer
probe made with normal dNTPs was cut down to one small band on the gel, while the
probes made with 5mCs or 5hCs were entirely blocked from being cut with Cac8l. The
1:1 mix of normal:5mC dNTPs created a probe that was cut into 2 bands by Cac8l, and
the same result was observed for the probe synthesized with a 1:1 mix of normal:5hmC
dNTPs. No evidence of synthesis was observed in the negative control since dNTPs
were not added to the sample (Figure 11A).

In the conserved upstream enhancer region of RHO containing a CBR and CRX
binding motif, the Haell restriction enzyme was chosen as an enzyme sensitive to both
DNA methylation and hydroxymethylation (Figure 12B). Digestion of the PCR product
with the Haell enzyme confirmed that the probe synthesized with each type of dNTP
would appropriately simulate how methylation and hydroxymethylation affect the ability
of CRX and NRL to bind DNA. The enhancer probe made with normal dNTPs was cut
down to one small band on the gel. Once again, the probe made with 5mCs was
blocked from being cut with Haell, and the probe made with 5hCs was blocked from
cutting as well. Probes made with a 1:1 mix of normal:5mC dNTPs or a 1:1 mix of
normal:5hmC dNTPs were cut into 2 bands by Haell. The negative control showed no

evidence of synthesis since no dNTPs were added (Figure 12A).
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Figure 11. Synthesis of epigenetically labeled DNA probes of the human Rho upstream -5 kb
enhancer for EMSA (A) with a genome browser view of the region used to design the probe (B).
The epigenetically labeled PCR amplicons were synthesized using normal dNTPs (lanes 2-3),
5mC dNTPs (lanes 4-5), a 1:1 mix of normal:5mC dNTPs (6-7), 5ShmC dNTPs (8-9), a 1:1 mix of
normal:5hmC dNTPs (10-11), and without any dNTPs as a control (13). The 100 bp ladder is
loaded into lane 1. The (+) indicates samples cut with Cac8l and (-) indicates samples that were
not digested. The highlighted region of the genome browser (B) shows the upstream enhancer
region used to make the probe in which CRX is predicted to bind. The restriction enzymes track
shows the Cac8l cut sites used to confirm that CRX may be able to bind the probe when made
with certain dNTPs.
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Figure 12. Synthesis of epigenetically labeled DNA probes of the human Rho enhancer for
EMSA (A) with a genome browser view of the region used to design the probe (B). The
epigenetically labeled PCR amplicons were synthesized using normal dNTPs (lanes 2-3), 5mC
dNTPs (lanes 4-5), a 1:1 mix of normal:5mC dNTPs (6-7), 5hmC dNTPs (8-9), a 1:1 mix of
normal:5hmC dNTPs (10-11), and without any dNTPs as a control (13). The 100 bp ladder is
loaded into lane 1. The (+) indicates samples digested with Haell and the (-) indicates
undigested samples. The highlighted region of the genome browser (B) shows the upstream
enhancer region used to make the probe in which CRX is predicted to bind. The restriction
enzymes track shows the Haell cut sites used to confirm that CRX may be able to bind the
probe when made with certain dNTPs.

In Vitro Binding Assay
Purified CRX DBD protein was separately incubated with unmodified and

epigenetically modified DNA probes containing experimentally validated CBRs.
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Figure 13. Electrophoretic mobility shift assay (EMSA) showing how methylation and
hydroxymethylation affect CRX DBD binding to the upstream -5 kb RHO enhancer (A) and the
further downstream enhancer (B). (+) indicates samples mixed with CRX DBD and (-) indicates
samples lacking CRX DBD. The epigenetically labeled PCR amplicons were synthesized using
normal dNTPs (lanes 2-3), 5mC dNTPs (lanes 4-5), a 1:1 mix of normal:5mC dNTPs (6-7),
5hmC dNTPs (8-9), a 1:1 mix of normal:5hmC dNTPs (10-11), and without any dNTPs as a
control (13). The 100 bp ladder is loaded into lane 1.
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When protein extract and probes were mixed, no DNA was visible. In control
samples in which no protein was added, unshifted probes were visible (data not shown).
This result suggested a nuclease activity in our protein purification appeared to cleave
the DNA probes . In an effort to ablate this activity, this experiment was repeated in the
presence of 50 mM EDTA to chelate metal ions required for nucleases. This
modification to the experiment however did not preserve the DNA probes mixed with
purified protein (Figure 13). Further modifications to the binding assay procedure are

necessary to determine if epigenetically modified DNA has altered interaction with CRX.

DISCUSSION

Through bisulfite pyrosequencing analysis of both human and mouse DNA
samples, a tissue and cell-specific pattern of DNA methylation in retina-specific genes
was observed. In genes specific to rod photoreceptors (RHO and PDE6B) within the
mouse retina, wt retina had significantly lower methylation compared to wt brain (Figure
4). This relationship between wt retina and wt brain demonstrates a tissue-specific
pattern of DNA methylation as rod-photoreceptor genes are less methylated in wt retina
tissue rich in rod-photoreceptors. Rod-specific genes would be expected to be highly
methylated in the wt brain tissue lacking photoreceptors. This pattern is supported by
the inverse correlation between DNA methylation and gene expression (21).

Additionally, the comparison between wt retina and Nrl -/- retina in mice further
demonstrated a cell-specific pattern of DNA methylation between photoreceptor cell
types inversely correlated with transcription and CRX binding in retina-specific genes.

RHO and PDEG6B were significantly less methylated in wt retina than compared to Nrl -/-
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retina (Figure 4). The inverse correlation between DNA methylation and transcription
supports the observation that rod-specific genes would be less methylated in their cell-
specific wt retina tissue and would be highly methylated in a non-cell specific tissue
such as Nrl -/- retina rich in cone-photoreceptors.

The tissue and cell-specific pattern of DNA methylation found in regions of the
mouse genome presumed to be CRX binding regions of the mouse genome suggests
that DNA methylation may regulate the spatial and temporal binding of CRX. To further
investigate this observation, the pattern of methylation in Crx - retina suggests a
possible explanation for how methylation affects the sequence of events involved in
CRX binding and initiating transcription. After CRX binds to its target recognition site,
CRX recruits histone acetyltransferases that acetylate local histone tails (25). Chromatin
loops then bring the enhancer in close proximity to the promoter and transcriptional start
site, and this looping recruits RNA polymerase and initiates transcription (24). The
pattern of methylation observed in Crx - retina suggests that unlike the epigenetic
modification histone acetylation, CRX is not required for demethylation. In retina in
which there is no functional CRX, significantly lower methylation in the rod-
photoreceptor specific genes PDE6B and RHO was observed (Figure 4). Thus, it is
predicted that because CRX is not required for demethylation, perhaps demethylation of
cis-regulatory elements is required for CRX binding to DNA.

Additionally, in close proximity to the regions of the genes analyzed in RHO and
PDEG6B, only some CRX binding regions overlap with NRL binding regions (Figure 3).
This observation further contributes to the question of what contributes to the spatial

and temporal pattern of CRX binding, and if DNA methylation is involved in determining
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when and where CRX binds. The pattern of low methylation observed in Crx - retina
offers a possible suggestion that demethylation of DNA precedes CRX binding to
regulate when and where CRX binds. Collectively, these methylation patterns in mice
suggest a possible mechanism of DNA methylation regulating binding of CRX to cis
regulatory elements.

Human studies were used to determine if a similar regulatory mechanism exists
in primary human retinal tissue. A similar pattern of tissue and cell-specific DNA
methylation was also observed in studies of the human retina. Rod-specific genes were
observed to have low methylation in the rod-rich peripheral retina, but had significantly
more methylation in non-retinal cornea and in macula tissue rich in cone photoreceptors
(Figure 6). In these regions of rod-specific genes in which a pattern of tissue and cell-
specific DNA methylation was observed, conserved CRX binding regions with CRX
motifs were present (Figure 5). Thus, the presence of photoreceptor-specific DNA
methylation patterns in regions of the genome where CRX is predicted to bind suggests
that DNA methylation is involved in the mechanism of determining when and where
CRX binds in human retinal tissue.

To examine the biochemical relationship between DNA methylation and the
binding of retina-specific transcription factors CRX and NRL, in vitro binding assays
using the DNA binding domain portion of CRX and NRL were attempted. Post-induction
analysis indicated successful expression of the DNA binding domains of CRX and NRL.
The CRX and NRL full length proteins presented problems with expression and
purification. The NRL full length protein was unable to be expressed in BL21 DE3 E. coli

competent cells, and perhaps transforming the NRL full length construct into a different
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strain of cells in the future will allow for successful expression. The CRX full length
proteins were successfully expressed; however, attempts to purify the CRX full length
protein were not successful. Optimization of expression and purification of these
proteins is currently being conducted in the lab. The DNA binding domain proteins
became the focus for this study since they proved to be more of a success in
expression and purification, and could subsequently be used for in vitro binding assays.

Affinity purification of the DBD proteins using the affinity of the 6X His tag for
nickel resin was successful but did not achieve absolute purity of either protein. In both
cases of CRX DBD and NRL DBD, the most pure elution with imidazole still left behind
several faint bands of contaminating protein. Subsequent purification with ion exchange
chromatography as well as concentration of the protein was attempted but did not seem
to achieve better purity of the protein (data not shown). Thus, binding assays were
attempted using the purified proteins eluted directly from affinity purification with the
hope that the proteins would be pure enough despite the lack of total purity.

Analysis of the epigenetically labeled probes in the enhancer regions of the RHO
gene indicated successful synthesis of methylated and hydroxymethylated probes using
various types of dNTP mixtures. Probes made with the two primer sets for enhancer
regions of the RHO gene known to bind both CRX and NRL showed predicted patterns
of digestion with methyl-sensitive and hydroxymethyl-sensitive restriction enzymes.

Binding assays carried out with the F1/R1 probe and the F2/R2 probe incubated
with the CRX DBD purified protein appeared to be cleaved by the added protein and
were unable to be observed on the gel even in the presence of high molarity EDTA, a

metal ion chelator (Figure 13). Thus, it is suspected that the purified protein used for
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binding assays most likely possesses residual nuclease activity interfering with binding
assays because perhaps the EDTA did not chelate away all of the metal ions. Further
modifications to the protein purification scheme for both CRX and NRL DNA binding
domain proteins will be used in the future to reduce nuclease activity.

In addition to optimizing the EMSA procedure to see if a detectable change in
binding occurs when CRX DBD is added with the epigenetically labeled probes, binding
assays with NRL DBD will be carried out. Although NRL DBD was successfully
expressed and purified, time did not allow for the protein to be used for binding assays.
Additional NRL DBD will need to be expressed and purified for downstream analysis.
The CRX full length protein was able to be expressed and purified while the NRL full
length protein was not. Expression of the NRL full length protein could be attempted by
transforming the construct into a different strain of competent cells other than BL21 DE3
competent E. coli cells. After optimizing binding assays with the DBD proteins, it would
also be helpful to attempt EMSA with the full length proteins.

Although binding analysis was inconclusive due to procedural setbacks,
expression and purification of the CRX and NRL DBD proteins was optimized. Further
modifications to the assays will hopefully allow for determination of the sequence of
events involved in DNA demethylation and CRX and NRL binding to control expression
of retina-specific genes. The tissue and cell-specific patterns of DNA methylation,
supported by the inverse correlation between methylation and transcription of both
humans and mice suggests that DNA methylation plays a role in determining the spatial
and temporal binding of CRX and NRL. Furthermore, the pattern of DNA methylation in

observed in Crx - mouse retina suggests that CRX is not required for demethylation,
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and perhaps CRX binding is responsible for initiating demethylation of DNA.
Collectively, these data suggest a possible role for DNA methylation regulating when
and where CRX and NRL bind to cis-regulatory elements to control gene expression in
the retina. These data suggest that DNA demethylation of CRX binding sites precedes
CRX binding and histone acetylation, which subsequently allows NRL to bind in rod
photoreceptors to coordinate expression of photoreceptor-specific genes essential for
vision. Optimizing the binding assay procedure will further help to provide support for

this hypothesis.
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