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INTRODUCTION 

Sight, as interpreted by our visual system, is our most important sense and is 

critical for deciphering our surrounding environment. Vision is achieved through the 

remarkable organization of diverse ocular cell types and tissues (1). The retina is a 

layered neuronal tissue lining the back of the eye containing rod and cone 

photoreceptors which convert light into an electrochemical signal to make vision 

possible (Figure 1A).  

 

Figure 1. Anatomy of the eye (A) and layers of the retina (B). The vertebrate retina 
contains three layers of nerve cells, the outermost layer containing rod and cone 
photoreceptors, an inter neuronal layer containing bipolar, horizontal, and amacrine 
cells, and the innermost ganglion cell layer (1).  
 

Visual impairment is a significant public health problem, particularly among the 

aging population. With the increasing median age of our national population, the 

number of individuals in the Unites States over 40 experiencing vision loss is expected 

to rise to 7 million by 2030 and 13 million by 2050 (2). Humans have limited ability to 

regenerate neurons, therefore vision loss associated with retinal degeneration is 

permanent. Some diseases resulting in vision loss are present at birth, and are 

associated with genetic mutations in retinal genes. Retinitis pigmentosa (RP) is a 

genetic disease that begins primarily with rod photoreceptor degeneration in the 
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peripheral retina and eventually leads to secondary cone degeneration in the late 

stages of the disease (3). Leber congenital amaurosis (LCA) is one of the most severe 

retinal dystrophies, as it affects humans within the first year of life and has been linked 

to six genetic mutations. Several diseases affect the macula of the eye, a region rich in 

cone photoreceptors that is involved in high acuity color vision. A disease that affects 

the aging population is macular degeneration, which is one of the leading causes of 

blindness in the U.S. Age-related macular degeneration is characterized by 

accumulation of lipid and protein-containing deposits called drusen that build up and 

cause damage to the cones of the macula region due to fluid leakage behind the fovea 

(3). Thus, studying the retina has significant public health impacts.  

The vertebrate retina collectively contains three layers of nerve cells and two 

layers of synapses. The outermost layer contains rod and cone photoreceptors while 

the inner nuclear layer contains bipolar, horizontal, and amacrine cells. Lastly, the 

innermost ganglion cell layer contains the ganglion cell bodies and displaced amacrine 

cells. Just behind the outermost photoreceptor layer is the retinal pigment epithelium 

(RPE) (Figure 1B). RPE acts as a barrier between blood capillaries and retinal cells, is a 

support system for the retina, and works to recycle vital molecules for photoreceptor 

function. RPE is involved in the exchange of macromolecules, removal of shed 

membrane discs and retinoid recycling (1).  

The fovea centralis is the spot in the center of the retina responsible for the 

highest acuity vision as it contains cone photoreceptors concentrated at maximal 

density. The 3 mm region around the fovea is known as the central retina, and the 

portion surrounding the central retina is known as the peripheral retina (Figure 2).  
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Figure 2. Tissue collection strategy of cornea, macula, and peripheral retina. The 
cornea is the translucent layer of tissue lying over the iris and pupil in the anterior 
portion of the eye in the area indicated by the bracket in (A). (B) shows a flat mount of 
the posterior portion of the eye used to collect tissues in the inner eye. In (C) biopsy 
punches of the peripheral retina and macula were collected as rod-rich and cone-rich 
retinal tissues respectively.  
 

The peripheral retina is rich in rod photoreceptors and largely devoid of cone 

photoreceptors. In the center of the eye is the optic nerve responsible for transmitting 

the neuronal impulses from the retina to the brain. The optic nerve contains ganglion 

cell axons connecting the retina to the visual cortex of the brain, and is clustered close 

to blood vessels vascularizing the retina. The region of the retina through which the 

optic nerve passes is called the optic disk since this region lacks photoreceptors and 

therefore creates a blind spot in the retina. The ganglion cells lie in the innermost part of 

the retina, closer to the lens of the eye while the photoreceptors lie in the outermost 

portion of the retina, closer to the retinal pigment epithelium and choroid layers. The 

photoreceptors absorb photons of light and convert a biochemical signal to an 

electrochemical signal that stimulates the neurons of the retina. 
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Cone photoreceptors are conical shaped structures located mostly in the foveal 

region and are involved in high acuity color vision. Cones contain the visual pigments 

called cone opsins that are sensitive to long wavelengths of light between 420 nm and 

650 nm. Most humans have trichromatic vision due to the presence of long wavelength-

cones sensitive to red light, middle wavelength-cones sensitive to green light, and short 

wavelength-cones sensitive to blue light. Rods contain the visual pigment rhodopsin and 

are sensitive to shorter wavelengths of light (maximally sensitive at 496 nm of light) and 

are thus involved in low light or achromatic vision (1).  

There are various groups of genes implicated in the phototransduction cascade 

that occurs in photoreceptors. Rhodopsin (RHO) is the is a transmembrane G-Protein 

coupled receptor (GPCR) expressed only in rod photoreceptors that contains a 

chromophore to absorb photons of light (4). The opsin cone pigments include the long-

wave sensitive, medium-wave sensitive, and short-wave sensitive pigments known as 

OPN1LW, OPN1MW, and OPN1SW. The opsin cone pigment proteins OPN1LW, 

OPN1MW, and OPN1SW, are transmembrane GPCRs expressed exclusively in red, 

green, and blue cones respectively (5, 6) . Once light has been absorbed by the 

chromophores within photoreceptors, the GPCRs of rhodopsin or the cone opsin 

undergo conformation change and subsequently activate the heterotrimeric guanine 

nucleotide-binding proteins (G-proteins). Rod and cone-specific alpha subunits of the G-

protein complex are coded for by GNAT1 and GNAT2 respectively (7, 8). Activation of 

the G-protein complex next results in activation of the phosphodiesterase 6 complex 

during the cascade. The PDE6 beta subunit in rods is coded for by the rod-specific gene 

PDE6B, while the cone-specific beta subunit is coded for by PDE6C (9). Activation of 
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phosphodiesterase causes hydrolysis of cyclic guanosine monophosphate (cGMP) and 

closure of cGMP-gated cation channels, thus resulting in hyperpolarization of the 

photoreceptor. Hyperpolarization decreases the amount of glutamate in the synaptic 

terminal resulting in release of the electric signal that can be processed by the 

postsynaptic neuron (10).  

Complex transcription factor networks including the Cone-Rod Homeobox (CRX) 

transcription factor regulate phototransduction genes. CRX mutant analysis in mice has 

revealed the importance of the transcription factor in visual function (11). CRX knockout 

mice have dysfunctional photoreceptors that fail to develop normal outer segments, and 

thus this phenotype is accompanied by reduced expression of photoreceptor-specific 

genes including Rhodopsin (12). Deletion analysis paired with DNA binding assays 

revealed vital regulatory regions within CRX. A complete DNA binding domain is vital for 

the ability of CRX to bind DNA. Additionally, the OTX tail and WSP domain within CRX 

were determined to be necessary for transactivation activity of the transcription factor 

(11).  

Mutations in the human CRX gene are associated with blinding diseases of the 

retina such as Leber congenital amaurosis, cone-rod dystrophy, and retinitis 

pigmentosa (13). CRX binds to cis-regulatory elements (CREs) in the genomes of rod 

and cone photoreceptors.  Genome-wide CRX binding regions (CBRs) have been 

characterized the mouse retina (14).  CRX has been found to bind predominantly to 

CREs with a known 8 bp motif, however, non-canonical CRX motifs with high GC 

content were also observed indicating a sequence context-independent feature of CRX 

binding to CREs (14, 15).   
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Among the many genes regulated by CRX is the rod-specific transcription factor 

Neural Retina Leucine zipper (NRL). NRL is a leucine zipper transcription factor 

expressed exclusively in rod photoreceptors. Deletion of NRL in mice results in 

complete loss of rod function. An important mouse model used to study gene 

expression in the retina is the Nrl -/- mutant retina.  Nrl -/- mice experience loss of rods 

replaced by S-cones (short wave blue cones) within their retinas (16). The Nrl -/- 

phenotype is associated with complete loss of rod function and super-normal cone 

function. However, the cones in Nrl -/- retina have short outer segments with abnormal 

disks. The function of NRL as a transcription factor is to direct rod cell development by 

activating transcription of rod-specific genes while inhibiting formation of S-cones via 

activation of the nuclear receptor subfamily 2, group E, member 3 transcription factor, 

also known as Nr2e3 (16). Over 300 genes have been associated as direct target genes 

of NRL, 22 of which are loci associated with human retinal diseases. Knockdown of 16 

of these NRL target genes resulted in photoreceptor-cell death of abnormal rod 

photoreceptors. High enrichment of NRL binding sites overlapping with CRX binding 

sites suggests that CRX and NRL work together to control rod photoreceptor cell fate 

(17). Additionally, mutations in NRL are also associated with degenerative diseases of 

the retina such as dominant and recessive retinitis pigmentosa (13). A better 

understanding of the transcriptional networks controlled by CRX and NRL in 

photoreceptor development and maintenance will be critical for developing novel 

therapeutic and replacement strategies for blinding retinal neuropathies.  

Transcriptional networks are known to be modulated by epigenetic modifications 

to the genome (18). Epigenetic modifications can be organized into two broad 
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classifications: histone tail modifications and genomic DNA methylation (19). Histone 

modifications are covalent, post-translational changes to the histone proteins around 

which DNA is wrapped to make up chromatin.  Histone modifications include 

acetylation, methylation, phosphorylation, ubiquitination, and various other modifications 

that modulate gene expression by changing the chromatin structure or by altering 

accessibility of DNA to regulatory proteins (20). Epigenetic modifications to the 

chromatin can result in transcriptional repression or activation depending on the context 

and type of modification. DNA methylation and histone modifications work in 

combination to recruit protein complexes to regulate transcription (21). Recently, it has 

been suspected that there is cross talk between DNA methyltransferases and histone 

methyl transferases in regulating transcriptional activity (19).  

DNA methylation is an epigenetic modification that involves addition of a methyl 

group to the fifth carbon position of a cytosine residue in a 5’-CpG-3’ dinucleotide 

(CpG). DNA methylation is typically associated with a repressed transcriptional 

chromatin state and therefore is inversely correlated with gene expression when 

accumulated in 5’ gene regulatory regions. Differentiation of the retina from neuronal 

precursors is a highly regulated process that involves coordinated control of gene 

expression during development (23). De novo DNA methylation in mammals primarily 

occurs during gametogenesis and embryogenesis (22). Thus, DNA methylation may 

play a role in control of gene expression during development of the retina. Several 

photoreceptor-specific genes have exhibited a cell-specific differential DNA methylation 

pattern inversely correlated with their expression level. Differential methylation patterns 

were observed in rhodopsin (RHO), retinal binding protein 3 (RBP3) cone opsin, short-
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wave-sensitive (OPN1SW), cone opsin, middle-wave-sensitive (OPN1MW), and cone 

opsin, long-wave-sensitive (OPN1LW), which suggests that DNA methylation is an 

important modification in controlling photoreceptor gene expression (23).  

DNA methyltransferases (DNMTs) are the enzymes that catalyze the addition of 

a methyl group to cytosine residues. Establishment and maintenance of DNA 

methylation in the genomes of plants and vertebrates is essential for development (24). 

The role of Dnmt3a and Dnmt3b is to establish de novo methylation followed by 

subsequent maintenance of methylation imprints by Dnmt1 during DNA replication. 

Mutation of Dnmts in the vertebrate retina results in transcriptional dysregulation and 

retinal degeneration. These finding supports the importance of DNA methylation in 

modulating expression of photoreceptors in the retina (25).  

A more recent discovery in epigenetics is the presence of an active 

demethylation pathway mediated by the oxidation of 5mC to 5-methylhydroxycytosine 

(5hmC). Hydroxymethylation of 5mC is catalyzed by the ten-eleven translocation (TET) 

family of enzymes. Active DNA demethylation triggered by the TET oxidation of 5mC to 

a 5hmC initiates a base excision repair mechanism removing a stretch of DNA including 

the epigenetically modified nucleotide(s) and replacing them with unmodified cytosines 

(26). Neuronal tissue demonstrates relatively high levels of the 5hmC epigenetic mark in 

vertebrate species indicating a potential role for active demethylation neuronal gene 

regulation (27).  

DNA methylation plays an essential role in cell fate in the retina and has disease 

implications in the retina since methylation has been linked to regulation of neuronal cell 

death in the retina. Programmed cell death plays an important role in vertebrate eye 



13 

morphogenesis and occurs selectively in certain cell types. A directed cell death 

process that is regulated by epigenetic mechanisms such as DNA methylation and 

hydroxymethylation characterizes the loss of photoreceptors caused by degenerative 

diseases in the retina. Cell-specific increases in DNA methylation and 

hydroxymethylation in the retina of normally developing mice as well as in an RP-like 

degenerated mouse retina were observed through immunostaining (28). During normal 

development of the retina, characterized by apoptotic cell loss in the inner retina, 

increases in methylation and hydroxymethylation were detected. Similarly, increased 

methylation and hydroxymethylation was detected in early stages of photoreceptor 

degeneration (29). Since Dnmts are expressed in retinal progenitors as well as in 

mature retinal neurons, this suggests the importance of DNA methylation in establishing 

normal cell-specific methylation patterns to control differentiation in the retina. The 

detection of hydroxymethylation during retinal degeneration and development also 

suggests that there is likely a homeostatic balance in retinal neurons established by 

both methylation and demethylation (leads to formation of hydroxymethylation), and the 

process of retinal degeneration involves complex pathways of methylation and 

demethylation (28).  

Previously, our lab has demonstrated that there is a tissue-specific pattern of 

DNA methylation in retina specific genes (Figures 4 and 6). Furthermore there is an 

inverse correlation between DNA methylation and mRNA expression. This inverse 

correlation between DNA methylation and mRNA expression was observed in a subset 

of genes analyzed, specifically in the rod-specific genes RHO, NRL, and PDE6B, as 

well as in the CRX gene expressed in both rods and cones. Additionally, cell type-
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specific patterns of DNA methylation were also observed within rod and cone 

photoreceptors. Conserved regulatory regions controlling photoreceptor-specific genes 

in which low methylation was observed with a presence of CRX or both CRX and NRL 

binding sites supported the cell-specific pattern of methylation between rods and cones.  

CRX binds to cis-regulatory elements in DNA and interacts with transcriptional 

co-activator protein complexes with histone acetyltransferase (HAT) activity (30). 

Transcription of rod and cone opsin genes requires binding of CRX followed by 

recruitment of HATs, acetylation of histone 3 (H3ac), and subsequent binding of other 

transcriptional activators such as NRL as well as RNA polymerase II. This sequence of 

events occurs in promoter and enhancer regions of both rod and cone opsin genes (30). 

These interactions mediate physical contact of the enhancer and promoter as well as 

other coding regions in each opsin locus forming an intrachromosomal loop that drives 

expression of photoreceptor-specific genes (31). It is currently not known however, what 

mediates differential recruitment and binding of CRX in rod and cone photoreceptors 

genomes. I hypothesized that observed patterns of differential DNA methylation on CRX 

binding sites modulates the ability of the transcription factor to bind cis-regulatory 

elements. This hypothesis predicts that DNA demethylation of regulatory elements 

precedes CRX binding and is therefore the initiating event in photoreceptor-specific 

gene expression. Bisulfite pyrosequencing analysis was used to examine tissue and 

cell-specific patterns of DNA methylation in photoreceptor-specific genes of the retina in 

murine and human samples. Additionally, the purified CRX protein was used to conduct 

in vitro binding assays to characterize how DNA methylation and hydroxymethylation 

modulate CRX binding in the genome of human retinal neurons.  
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METHODS 

Tissue Collection and Bisulfite Conversion of DNA for PCR Amplification 

Post-mortem human donor eyes collected from the National Disease Research 

Interchange were used to dissect out relevant tissues for quantification of DNA 

methylation in retina-specific genes. Corneas were removed first from the donor eyes 

and were placed on dry ice and ground into a powder. Retinal flat mounts were 

prepared by making 4 radial cuts into the remaining eye cup and taking a 3 mm biopsy 

punch of the macular retina (cone-rich tissue) and a 6 mm biopsy punch of the 

peripheral retina (rod-rich tissue). Tissue samples were placed in Qiagen RNeasy Lysis 

buffer and beta-mercaptoethanol to lyse the cells. Extracted DNA underwent bisulfite 

(BS) conversion using the Zymo EZ DNA MethylGold Kit. Unmethylated cytosine bases 

are converted to uracil during bisulfite conversion via attachment of a sulfite group to the 

cytosine and subsequent deamination and desulfonation to uracil. Methylated cytosines 

remain unchanged during conversion, and thus the amount of methylation in various 

retinal genes can be quantified through subsequent PCR amplification and 

pyrosequencing. 

Either the forward or the reverse primer used in the polymerase chain reaction 

(PCR) were biotinylated, and thus one strand of the PCR amplicon became tagged with 

biotin to allow a specific strand to be marked for the sequencing reaction. BS PCR 

reactions were set up in 30 uL volumes using Sigma-Aldrich JumpStart Taq polymerase 

and gene-specific primers were used to amplify BS converted DNA from ocular samples 

(Table 2). DNA from peripheral retina, macular retina, and cornea were set up in 
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triplicate for each PCR reaction. PCR reactions were run at optimized annealing 

temperatures on a Bio-Rad C1000 Touch Thermal Cycler.  

Bisulfite Pyrosequencing 

PCR products were mixed with streptavidin-conjugated beads and a sequencing 

primer and a Qiagen Q24 Pyrosequencer was used to determine percent methylation at 

CpG dinucleotides in the BS PCR amplicons. Percent methylation between triplicates of 

each DNA sample was averaged, and methylation plots were visualized in Graph-Pad 

Prism. Statistical significance between macula and peripheral retina was determined by 

a one-tailed t-test with a p value threshold set at <0.05. 

Expression of human CRX and NRL 

Protein expression plasmids containing full-length and DNA binding domain 

(DBD) coding sequences for the human CRX and NRL proteins fused to epitopes for 

protein purification were purchased from Genscript. Constructs were transformed into 

BL21 DE3 E. coli competent cells and transformants were selected for on lysogeny 

broth plates containing either kanamycin for the full-length constructs or carbenicillin for 

the DBD constructs. Single colonies were selected from each plate to set up broth 

cultures for induction of protein expression with isopropyl β-D-1-thiogalactopyranoside 

(IPTG). Starter cultures containing 3 mL of LB and 2.5 uL of kanamycin (for full length 

constructs) or carbenicillin (for DBD constructs) were inoculated with a single colony 

from the each culture plate. Starter cultures were incubated in a shaking incubator at 

37°C and 230 rpm for 12 hours. Small-scale expression cultures were set up using 2 mL 

of the starter cultures, 300 mL of LB, and 240 uL of the corresponding antibiotic. Small-

scale expression cultures were incubated (at 37°C and 230 rpm) until the optical density 
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(OD) of the culture reached 0.5-0.6 as determined by spectrophotometry. The 

spectrophotometer was set at 600 nm with a 1 cm path length cell, and was blanked 

with LB prior to each OD reading. After reaching the desired OD, 60 uL 0.2 mM IPTG 

was added to each culture. Aliquots of expression cultures were taken out of each 

culture prior to induction; as well as 1.5 and 3 hours after induction. Post-induction time 

course experiments were conducted using polyacrylamide gel electrophoresis (PAGE) 

analysis. 

Purification of human CRX and NRL 

Small-scale purification using a nickel-column was performed using the batch 

cultures of protein lysates from the 3-hour post-induction time point. Bacterial cells were 

incubated in protein lysis buffer (50 mM sodium phosphate (pH 8), 300 mM NaCl, and 1 

mM BME; 0.001 mM lysozyme) in a water bath at 37°C for 5 minutes to lyse the cells. 

Samples were sonicated for 60 seconds total at an amplitude of 40% using a 5 second 

on/off pulse, and the cycle was repeated twice. Lysates were then treated with a 

nuclease mixture, prepared from 2 µL of nuclease and 20 µL of 1 M MgCl2, to help 

degrade viscous DNA from the lysates. Samples were centrifuged at 4°C  and 15,557 x 

G for 30 minutes to pellet the insoluble materials. Aliquots of the supernatant as well as 

the pellet were saved for SDS-PAGE. The remaining supernatant was used for further 

purification with the nickel column. 

To prepare the nickel beads for use in the column, 1 mL portions of nickel bead 

slurry were prepared by centrifuging at 750 rpm for 5 minutes. The supernatant of the 

bead slurry was discarded. The remaining protein supernatant was added to the pellet 

of beads. The protein-bead mixture was incubated at 4°C while shaking. To elute the 
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His-tagged proteins from the column containing the nickel beads, imidazole was used. 

Three concentrations of imidazole (10 mM, 40 mM, and 250 mM) diluted in lysate buffer 

were prepared in 50 mL volumes. The pH of the imidazole solutions in lysis buffer was 

brought to 8. 

Approximately 10 mL portions of the prepared protein-bead mixtures of each 

sample were allowed to slowly flow through the nickel column. The protein-bead mixture 

tubes were rinsed with lysis buffer to ensure no residue was left in the tube. The column 

was then washed with 5 mL of lysis buffer. To elute each protein of interest from the 

column, 5 mL washes of 10 mM imidazole, 40 mM imidazole, and 250 mM imidazole 

were used. Each fraction was collected and saved after flowing through the column for 

SDS-PAGE. The nickel column was not allowed to dry out, and approximately 1 mL of 

each solution was always left in the column to prevent drying. 

Bio-Rad Mini-PROTEAN TGX Stain Free Pre-cast gels were used with a 1X 

tris/glycine/sodium dodecyl sulfate buffer system.  Bio-Rad Precision Plus Unstained 

Protein Standards (250 kD) were run on the gel as the marker. Protein samples were 

mixed with 2X Laemmli Sample Buffer. Protein samples were prepared to run on the gel 

by vortexing briefly and boiling for 5 minutes.  

Bioinformatics Analysis of CRX and NRL Binding Sites 

CRX binding regions (CBRs) as well as NRL binding regions (NBRs) obtained 

from published murine chromatin immunoprecipitation sequencing data were mapped 

as custom Browser Extensible Data (BED) annotation tracks in the University of 

California Santa Cruz Genome Browser (genome.ucsc.edu). CBR data was obtained 

from Corbo et al., (2010), and NBR data was obtained from Hao et al., (2012). The 
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LiftOver tool in the UCSC Genome Browser was used to align the CBRs and NBRs from 

the July 2007 mouse NCBI37/mm9 genome assembly to the human February 2009 

GRCh37/hg19 assembly.  Aligned murine CBRs and NBRs to the human genome were 

added as custom tracks in the UCSC Genome Browser. Additionally, CRX binding 

motifs were added as a custom track using data obtained from the Motif Map database.  

A Plasmid Editor (ApE) was used to annotate the Rhodopsin genomic sequence 

to determine relevant cytosine methylation sites for binding assays. The Rhodopsin 

DNA sequence was annotated with CBRS, NBRs, and CRX binding motifs in ApE using 

the custom tracks created in the hg19 assembly of the UCSC Genome Browser.  

Synthesis of Epigenetically Labelled DNA Probes 

Two primers were used to amplify regions of interest in the human Rhodopsin 

gene to create probes for in vitro binding assays. The F1/R1 primer was used to 

synthesize the 150 bp  enhancer region (-6 kb upstream from exon 1) in Rhodopsin and 

the F2/R2 primer was used to synthesize a 129 bp enhancer region adjacent to the first 

exon of Rho. F1/R1 and F2/R2 refer to abbreviations used to identify the primers in 

Table 2. PCR reactions were set up in 30 uL volumes using Sigma-Aldrich REDTaq 

DNA Polymerase and human retinal pigment epithelium DNA. The different types of 

deoxynucleotides (dNTPs) were added separately to their respective PCR reaction to 

create epigenetically labeled probes. Normal dNTPs, 5mC dNTPs, a 1:1 mix of normal 

dNTPs with 5mCs, 5hmCs, and a 1:1 mix of normal dNTPs with 5hmC dNTPs were 

used to create each EMSA probe using the respective primer. Additionally, a no dNTP 

control was set up. PCR reactions were run at optimized annealing temperatures on a 

Bio-Rad C1000 Touch Thermal Cycler. The 5mC-sensitive and 5hmC-sensitive 
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restriction enzymes HaeIII and Cac8I were used to verify the synthesis of epigenetically 

labeled probes. Digested probe fragments were run on a 1.2% agarose gel stained with 

GelRed.  

In Vitro Binding Assay (EMSA) 

In vitro binding assays were carried out using 15 uL of the F1/R1 or F2/R2 EMSA 

probe PCR product, mixed with 50 mM EDTA to help minimize nuclease activity of the 

protein, and 30 uL of the CRX DBD purified protein. Samples were incubated for 30 

minutes at room temperature. Samples not mixed with protein were prepared using 15 

uL of the F1/R1 or F2/R2 EMSA probe PCR products with 2 uL of EDTA and 30 uL of 

10 mM MOPS; 100 mM NaCl buffer (3-(N-morpholino)propanesulfonic acid). Samples 

were run on a 2.5% agarose gel containing GelRed. The gel was run at 50 V for 

approximately 3.5 to 4 hours.  

 

RESULTS 

Cell and Tissue Specific Patterns of DNA Methylation in Mouse Models 

The initial pattern of tissue and cell-specific DNA methylation in genes of the 

retina was examined in the mouse model.  Primers designed to amplify conserved 

promoter CRX binding regions (CBRs) were used to conduct bisulfite pyrosequencing 

analysis to study the pattern of methylation in genes specific to the retina (Figure 3).  
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A.  

 
B.  

 
Figure 3. Genome Browser View of the 5’ Regions of Rhodopsin and PDE6B in the mouse 
genome. The purple Nrl -/- CBRs track shows CRX binding regions in the nearly all cone Nrl -/- 
retina. The dark blue WT CBR alignments track shows CRX binding regions. The PCR amplicon 
regions analyzed by bisulfite pyrosequencing are represented in black. The relative DNA 
conservation between 100 species of vertebrates is represented in the bottom track. Light blue 
highlighted regions represent areas where CRX is predicted to be able to bind due to the 
presence of highly conserved CRX binding regions.  
 

Bisulfite pyrosequencing revealed a tissue and cell-specific pattern of DNA 

methylation in genes specific for subunits of photoreceptors in the retina (Figure 4). 

Samples of Nrl mutant retina (Nrl -/-) composed of nearly all cones and CRX mutant 

(CRX -) retina composed of dysfunctional photoreceptors lacking mature outer 

segments accompanied by reduced expression of photoreceptor-specific genes were 

compared to wild type retina and wild type brain. Wild type retina contains functional rod 

and cone photoreceptors, while wild type brain lacks photoreceptors. 
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A.                                                                           B.  

 
                                            C.  

 
Figure 4.  Bisulfite pyrosequencing analysis of Mouse DNA methylation at CpG sites relative to 
the transcriptional start site of (A) Rhodopsin, a rod photoreceptor gene, (B) 
Phosphodiesterase-6b, another rod-specific photoreceptor gene, and (C) LINE1 retrotransposon 
repeats.  Error bars represent standard error of three replicates of each sample. Statistical 
significance of both Nrl -/- retina and wt brain determined by a one-tailed t-test with a p<0.05 are 
denoted by (†). Statistical significance of only wt brain determined by a one-tailed t-test with a 
p<0.05 is denoted by (*).  
 

In the proximal promoter sequence of the mouse rod-specific RHO gene, wt brain 

had significantly higher methylation compared to wt retina, Nrl -/- and Crx - retina. At the 

upstream RHO enhancer site analyzed using a separate PCR primer, wt brain as well 

as Nrl -/- retina had significantly more methylation than wt retina and Crx - retina. This 

pattern suggests that wt brain, devoid of photoreceptors has higher methylation than 
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retinal samples containing some form of photoreceptors. The observation that Nrl -/- 

retina did not have significantly higher methylation at all sites analyzed in the Rhodopsin 

gene is not entirely consistent with the predicted pattern that a sample of retina 

composed of nearly all cones would have high methylation in a rod-specific 

photoreceptor gene. However, Phosphodiesterase-6b (PDE6B), another rod-specific 

photoreceptor gene, did show a more consistent pattern of cell-specific DNA 

methylation. At each CpG site analyzed in the PDE6B gene, both wt brain and Nrl -/- 

retina had significantly more methylation than wt retina and Crx - retina. Thus, the 

PDE6B gene shows both a tissue and cell-specific pattern of methylation. As a positive 

control, LINE1, a constitutively methylated retrotransposon repeat element, showed no 

difference in methylation among samples since this gene is highly methylated at all 

times (Figure 4).  

Cell and Tissue Specific Patterns of DNA Methylation in Human Models 

Observations of tissue and cell-specific patterns of DNA methylation in the 

mouse model prompted further investigation in primary human retinal neurons. A similar 

setup to the mouse experiment using various photoreceptor enriched tissues in human 

donor eyes was used to conduct bisulfite pyrosequencing analysis in humans. Cornea 

was collected as a non-retinal control tissue from human donor eyes (Figure 1A). After 

creating a retinal flat mount, 6 mm biopsy punches of peripheral retina as well as 3 mm 

biopsy punches of macula were collected (Figure 1B and 1C). Peripheral retina served 

as a rod-enriched tissue while macula served as a cone-enriched sample (Figure 1C).  
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Information regarding post-mortem human donor eyes used for tissue collection 

of cornea, peripheral retina, and macula is recorded in Table 1. Primers designed for 

both mouse and human methylation analysis are listed in Table 2.  

 

Table 1. Human donor eye patient information.  

Sample ID Age Race Sex 

Death:enucleation 

(hours) 

Death:delivery 

(hours) 

Eye# 8670 Unknown Unknown Unknown Unknown Unknown 

Eye #7  75 caucasian M 7.2 27 

Eye #8 78 caucasian M 5.1 45.58 

Eye #9 82 caucasian M 6.75 35.9 

 

Table 2. Oligonucleotides used for bisulfite PCR, pyrosequencing and analysis and EMSA probe synthesis.  

Primer Name Sequence (5'-3') Region Analyzed 

Amplicon 

Size (bp) Annealing temp (˚C) Application 

hLINE1F proprietary (Qiagen product #970042) 

Human LINE1 

retrotransposon promoters 146 50 BS PCR 

hLINE1R-BIO proprietary (Qiagen product #970042)    BS PCR 

hLINE1-seq proprietary (Qiagen product #970042)    pyrosequencing 

hPax6-F1 TAGTTATAGGTYGGGTTAAGGAAGGTTAAA Human PAX6 promoter 248 54-58 BS PCR 

hPax6-R1-bio AACCTACCCCAAAATTTAAATATCAA    BS PCR 

hPax6-seq1 ATTAGTYGGYGTAGAGTTGTGTTTA    pyrosequencing 

JS_BS_hRho_F3 TTGAGTTGGGATTTTGGGATAGATAAG Human RHO  promoter 241 54-58 BS PCR 

JS_BS_hRho_R3_biotin TATAAAATAACCTCCCCCTCCT    BS PCR 

JS_BS_hRho_S3 TTTGGTTTTTTTTAGAAGTTAATTA    pyrosequencing 

JS_hRho_F4 AGGGGTTTGTAAATAAATGTTTAATGA 

Human RHO upstream 

promoter 258 54-56 BS PCR 

JS_hRho_R4-Bio ACTTTCTAATTTATTCTCCCAATCTCT    BS PCR 
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JS_hRho-seq4-2 ATTGGATGATTTTAGAGGT    pyrosequencing 

hPde6b-F1 TGGGAAGTTTTAGGGTTTGAGG Human PDE6B Promoter 120 54-58 BS PCR 

hPde6b-R1-bio AAAACCCTATCATCAACAAAATCTTTCTTA    BS PCR 

hPde6b-seq1 TTTAGGGTTTGAGGAGA    pyrosequencing 

hRER-F2-Bio GTGGGTTAGTTTTGATTTAAGGTAT Human RHO Enhancer 284 54-62 BS PCR 

hRER-R2 CCCAAAATTCCCAAATCTATCTACTCAA    BS PCR 

hRER-seq2-1 ACAAAACCAATAAAATAAAACCTCT    pyrosequencing 

EMSA-En-F1-BIO AAGAAAGCCAAGGAAGAGGAGGAG Human RHO -5 kb enhancer 150 54-64 probe for EMSA 

EMSA-En-R1 TTTGCCTTTGCCTCGGTGGATTAG    probe for EMSA 

EMSA-RER-F2-BIO ACCCTCACCTTAACCTCATTAGCG Human RHO RER 129 54-64 probe for EMSA 

EMSA-RER-R2 TGGTGTTGGGTCTAACAGCGTTTG    probe for EMSA 

VO_mPde6b_F1 GTATTTGGGGGTGGAGAAAG Mouse PDE6B Promoter 152 58 BS PCR 

VO_mPde6b_R1_bio ACAAACCCCTACCACATTTTCAAA    BS PCR 

VO_mPde6b_S1 GGGGGTGGAGAAAGT    pyrosequencing 

REmL1_F1 TTTTTTGGGGTTAGGATTTGGGGTATAAG 

Mouse LINE1 

retrotransposon promoters 211 54 BS PCR 

REmL1_R1_Bio AACCTACTTCCCTATATACTACAATCT    BS PCR 

REmL1_seq1 GATTTGGGGTATAAGTTTTT    pyrosequencing 

KTmRho-F1 AGGGAGAGAAGGTTATTTTATAAGG Mouse RHO Promoter 177 58 BS PCR 

KTmRho-R1 AACACATAAAAATTAAAACCCTCTATAC    BS PCR 

KTmRho-S1 GGGGTTAGTGTTTGGA    pyrosequencing 

VO_m_Rho_F1 AGAGGATTTTGGGGTAGATAAG Mouse RHO Promoter 169 58 BS PCR 

VO_m_Rho_R1_bio TCCCTAAACCAAAAACTAATTCAACA    BS PCR 

VO_m_Rho__S1 ATTTTTTTTTTTTTTTATTTAAGGG    pyrosequencing 

VO_m_Rho_S2 ATTTTGGTTTTTTTGTAAGTTAAT    pyrosequencing 

REmRho(-270)-F1 TGAGTTTAGGAGGAGATATTGTTAAT Mouse RHO Promoter 125 58 BS PCR 

REmRho(-270)-R1-bio CCCCAAAATCCTCTAAAAATTCCT    BS PCR 

REmRho(-270)-seq1 AGTGAATTTAGGGTTTAAAG    pyrosequencing 

REmRho(up RER)-F1 GGGGTTGTTTTTGTTATTTAAGTGAGAGAG Mouse RHO Enhancer 219 58 BS PCR 

REmRho(up RER)-R1-Bio CCTCAACAACCTCTACAACCAACTTATA    BS PCR 

REmRho(up RER)-seq1 AGAGTTTAGGAGATGG    pyrosequencing 
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REmRho(down RER)-F1 AGGAAGGGGGTTGTTTTTTTAA Mouse RHO Enhancer 182 58 BS PCR 

REmRho(down RER)-R1-Bio CTATACCCCTTACCACATAAATATCC    BS PCR 

REmRho(downs RER)-seq1 GGGTTGTTTTTTTAAGTAAATAT    pyrosequencing 

 
 

Bioinformatics analysis was used to determine regions of interest for studying 

DNA methylation patterns in the human genome where CRX may be able to bind. In 

addition to mapping the CRX binding regions (CBRs) obtained from previous mouse 

ChIP-seq data, CRX binding motifs lifted over from the mouse genome to the human 

genome were mapped to determine areas in which CRX is likely to bind. Conserved 

regions of the human genome containing CRX binding regions with CRX motifs were 

analyzed by bisulfite pyrosequencing analysis to investigate methylation patterns in 

retina-specific genes (Figure 5).    

A similar pattern of tissue and cell-specific DNA methylation observed in 

photoreceptor genes of the retina in mice was also observed in the human study. Both 

human rod-specific genes RHO and PDE6B demonstrated significantly higher 

methylation in cone-enriched macula as well as non-retinal cornea samples compared 

to rod-rich peripheral retina (Figure 6). LINE1, a constitutively methylated 

retrotransposon repeat element, as well as PAX6, an unmethylated eye field gene 

expressed constitutively in the retina, showed no significant difference in methylation 

among cornea, macula, and peripheral retina (Figure 6).  
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A. 

 
 
B.  

 
Figure 5. Genome Browser View of the 5’ Regions of Rhodopsin and PDE6B. The blue WT 
CBR alignments track shows murine CRX binding region data that has been aligned to the 
human genome. CRX binding motifs are represented in pink, along with the PCR amplicon 
regions analyzed by bisulfite pyrosequencing. The relative DNA conservation between 100 
species of vertebrates is represented in the bottom track. Blue highlighted regions represent 
areas where CRX is predicted to be able to bind due to the presence of highly conserved CRX 
binding regions with binding motifs.  
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A.                                                                                      B.  

 
C.                                                                                               D.  

 
Figure 6. Bisulfite pyrosequencing analysis of Human DNA methylation at CpG sites relative to 
the transcriptional start site of (A) LINE1 retrotransposon repeats, (B) Paired Box-6, an eye field 
gene, (C) Rhodopsin, a rod photoreceptor gene, and (D) Phosphodiesterase-6b, another rod-
specific photoreceptor gene.  Error bars represent standard error of three replicates of cornea 
samples, and four replicates of peripheral retina and macula samples. Statistical significance of 
macula and peripheral retina determined by a one-tailed t-test with a p<0.05 are denoted by (†).  
 
Expression and Purification of CRX and NRL 

The pattern of tissue and cell-specific DNA methylation in predicted CRX binding 

regions of rod and cone photoreceptor genes of the retina in both mouse and human 

models prompted further exploration of the biochemical nature of the interaction 

between DNA methylation and CRX binding. Thus, expression and purification of CRX, 
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and additionally the NRL protein, was carried out using plasmid constructs designed for 

affinity purification of the DNA binding domain portions of both proteins (Figure 7).  

 

 

Figure 7. DNA Binding Domain Plasmid Constructs used for Expression. (A) shows the PMAL-
c5x vector from GenScript containing the ampicillin resistance gene and maltose binding 
domain used to clone in the CRX and NRL DNA binding domain sequences. The plasmid maps 
of the expression constructs of CRX DBD in (B) and NRL DBD in (C) show the predicted sizes 
of the proteins.  
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Post-induction time course experiments indicated successful expression of both 

CRX and NRL DNA binding domain plasmid constructs (Figure 8). The presence of 

robust bands at approximately 54.2 kDa and 52.5 kDa consistent with the predicted 

sizes of the CRX and NRL DNA binding domain expressed proteins were observed in 

the post-induction analysis.  The CRX and NRL full length proteins (not pictured) 

presented problems with expression and purification and were not further characterized 

in this study.  

 
Figure 8. Bacterial expression of CRX and NRL DBD constructs. BL21 E. coli cultures 
harboring CRX DNA binding domain (lanes 2-4) and NRL DNA binding domain protein 
expression constructs (lanes 5-7) were induced with IPTG and monitored for protein expression 
at 1.5 hour intervals out to 3 hours post-induction. Protein marker is loaded in lane 1.  
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Affinity purification of CRX DBD using nickel resin and an increasing gradient of 

imidazole indicated that the 10 mM imidazole elution contained the CRX DBD (band at 

approximately 54.2 kDa). The 10 mM Imidazole elution containing CRX DBD was used 

for binding assay analysis (Figure 9).  

 

Figure 9. Affinity Purification of CRX DBD using nickel resin. Lane 1 contains the crude lysate 
after treatment to lyse open the cells prior to centrifugation. Lane 2 contains the pelleted 
insoluble material and lane 3 contains the supernatant after centrifugation. Lane 5 contains the 
flow through after placing the prepared supernatant on the column, and lanes 6-9 contain 
protein elutions after treatment with an increasing gradient of imidazole from 0 mM to 250 mM. 
Lane 10 contains the left-over beads in the column. The 250 kDa protein marker is loaded into 
lane 4. The purified protein appears to be present in lane 7 with the 10 mM imidazole elution at 
approximately 54.2 kDa.  
 

Affinity purification of NRL DBD using nickel resin and an increasing gradient of 

imidazole indicated that the 40 mM imidazole elution contained NRL DBD (band at 

approximately 52.5 kDa). The 40 mM imidazole elution containing NRL DBD will be 
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used for future binding assay analysis characterizing NRL interaction with methylated 

DNA (Figure 10).  

 

Figure 10. Affinity Purification of NRL DBD using nickel resin. Lane 1 contains the 
crude lysate after treatment to lyse open the cells prior to centrifugation. Lane 2 
contains the pelleted insoluble material and lane 3 contains the supernatant after 
centrifugation. Lane 5 contains the flow through after placing the prepared supernatant 
on the column, and lanes 6-9 contain protein elutions after treatment with an increasing 
gradient of imidazole from 0 mM to 250 mM. Lane 10 contains the leftover beads in the 
column. The 250 kDa protein marker is loaded into lane 4. The purified protein appears 
to be present in lane 8 with the 40 mM imidazole elution at approximately 52.5 kDa.  
 

Synthesis of Epigenetically Labeled DNA Probes 

Epigenetically labeled DNA probes for use with the purified proteins in 

electrophoretic mobility shift assays (EMSA) were designed to the upstream enhancer 

regions of the rod-specific RHO gene using bioinformatics analysis in the UCSC 
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genome browser. In the conserved upstream -5 kb enhancer region of RHO containing 

a CBR and CRX binding motif, the Cac8I restriction enzyme was chosen as an enzyme 

sensitive to both DNA methylation and hydroxymethylation (Figure 11B). Digestion of 

the PCR product with the Cac8I enzyme confirmed that the probe synthesized with each 

type of dNTP would accordingly mimic conditions to test how methylation and 

hydroxymethylation affect the ability of CRX and NRL to bind DNA. The -5 kb enhancer 

probe made with normal dNTPs was cut down to one small band on the gel, while the 

probes made with 5mCs or 5hCs were entirely blocked from being cut with Cac8I. The 

1:1 mix of normal:5mC dNTPs created a probe that was cut into 2 bands by Cac8I, and 

the same result was observed for the probe synthesized with a 1:1 mix of normal:5hmC 

dNTPs. No evidence of synthesis was observed in the negative control since dNTPs 

were not added to the sample (Figure 11A).  

In the conserved upstream enhancer region of RHO containing a CBR and CRX 

binding motif, the HaeII restriction enzyme was chosen as an enzyme sensitive to both 

DNA methylation and hydroxymethylation (Figure 12B). Digestion of the PCR product 

with the HaeII enzyme confirmed that the probe synthesized with each type of dNTP 

would appropriately simulate how methylation and hydroxymethylation affect the ability 

of CRX and NRL to bind DNA. The enhancer probe made with normal dNTPs was cut 

down to one small band on the gel. Once again, the probe made with 5mCs was 

blocked from being cut with HaeII, and the probe made with 5hCs was blocked from 

cutting as well. Probes made with a 1:1 mix of normal:5mC dNTPs or a 1:1 mix of 

normal:5hmC dNTPs were cut into 2 bands by HaeII. The negative control showed no 

evidence of synthesis since no dNTPs were added (Figure 12A).  
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A. 

 

B. 

 

Figure 11. Synthesis of epigenetically labeled DNA probes of the human Rho upstream -5 kb 
enhancer for EMSA (A) with a genome browser view of the region used to design the probe (B). 
The epigenetically labeled PCR amplicons were synthesized using normal dNTPs (lanes 2-3), 
5mC dNTPs (lanes 4-5), a 1:1 mix of normal:5mC dNTPs (6-7), 5hmC dNTPs (8-9), a 1:1 mix of 
normal:5hmC dNTPs (10-11), and without any dNTPs as a control (13). The 100 bp ladder is 
loaded into lane 1. The (+) indicates samples cut with Cac8I and (-) indicates samples that were 
not digested. The highlighted region of the genome browser (B) shows the upstream enhancer 
region used to make the probe in which CRX is predicted to bind. The restriction enzymes track 
shows the Cac8I cut sites used to confirm that CRX may be able to bind the probe when made 
with certain dNTPs.  
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A.  

 

B.  

 

Figure 12. Synthesis of epigenetically labeled DNA probes of the human Rho enhancer for 
EMSA (A) with a genome browser view of the region used to design the probe (B). The 
epigenetically labeled PCR amplicons were synthesized using normal dNTPs (lanes 2-3), 5mC 
dNTPs (lanes 4-5), a 1:1 mix of normal:5mC dNTPs (6-7), 5hmC dNTPs (8-9), a 1:1 mix of 
normal:5hmC dNTPs (10-11), and without any dNTPs as a control (13). The 100 bp ladder is 
loaded into lane 1. The (+) indicates samples digested with HaeII and the (-) indicates 
undigested samples. The highlighted region of the genome browser (B) shows the upstream 
enhancer region used to make the probe in which CRX is predicted to bind. The restriction 
enzymes track shows the HaeII cut sites used to confirm that CRX may be able to bind the 
probe when made with certain dNTPs.  
 
In Vitro Binding Assay  
 

Purified CRX DBD protein was separately incubated with unmodified and 

epigenetically modified DNA probes containing experimentally validated CBRs.  
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A. 

 

B. 

 

Figure 13. Electrophoretic mobility shift assay (EMSA) showing how methylation and 
hydroxymethylation affect CRX DBD binding to the upstream -5 kb RHO enhancer (A) and the 
further downstream enhancer (B). (+) indicates samples mixed with CRX DBD and (-) indicates 
samples lacking CRX DBD. The epigenetically labeled PCR amplicons were synthesized using 
normal dNTPs (lanes 2-3), 5mC dNTPs (lanes 4-5), a 1:1 mix of normal:5mC dNTPs (6-7), 
5hmC dNTPs (8-9), a 1:1 mix of normal:5hmC dNTPs (10-11), and without any dNTPs as a 
control (13). The 100 bp ladder is loaded into lane 1. 
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When protein extract and probes were mixed, no DNA was visible. In control 

samples in which no protein was added, unshifted probes were visible (data not shown).  

This result suggested a nuclease activity in our protein purification appeared to cleave 

the DNA probes . In an effort to ablate this activity, this experiment was repeated in the 

presence of 50 mM EDTA to chelate metal ions required for nucleases. This 

modification to the experiment however did not preserve the DNA probes mixed with 

purified protein (Figure 13). Further modifications to the binding assay procedure are 

necessary to determine if epigenetically modified DNA has altered interaction with CRX.  

 

DISCUSSION 

Through bisulfite pyrosequencing analysis of both human and mouse DNA 

samples, a tissue and cell-specific pattern of DNA methylation in retina-specific genes 

was observed.  In genes specific to rod photoreceptors (RHO and PDE6B) within the 

mouse retina, wt retina had significantly lower methylation compared to wt brain (Figure 

4). This relationship between wt retina and wt brain demonstrates a tissue-specific 

pattern of DNA methylation as rod-photoreceptor genes are less methylated in wt retina 

tissue rich in rod-photoreceptors. Rod-specific genes would be expected to be highly 

methylated in the wt brain tissue lacking photoreceptors. This pattern is supported by 

the inverse correlation between DNA methylation and gene expression (21).  

Additionally, the comparison between wt retina and Nrl -/- retina in mice further 

demonstrated a cell-specific pattern of DNA methylation between photoreceptor cell 

types inversely correlated with transcription and CRX binding in retina-specific genes. 

RHO and PDE6B were significantly less methylated in wt retina than compared to Nrl -/- 
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retina (Figure 4). The inverse correlation between DNA methylation and transcription 

supports the observation that rod-specific genes would be less methylated in their cell-

specific wt retina tissue and would be highly methylated in a non-cell specific tissue 

such as Nrl -/- retina rich in cone-photoreceptors.  

The tissue and cell-specific pattern of DNA methylation found in regions of the 

mouse genome presumed to be CRX binding regions of the mouse genome suggests 

that DNA methylation may regulate the spatial and temporal binding of CRX. To further 

investigate this observation, the pattern of methylation in Crx - retina suggests a 

possible explanation for how methylation affects the sequence of events involved in 

CRX binding and initiating transcription. After CRX binds to its target recognition site, 

CRX recruits histone acetyltransferases that acetylate local histone tails (25). Chromatin 

loops then bring the enhancer in close proximity to the promoter and transcriptional start 

site, and this looping recruits RNA polymerase and initiates transcription (24). The 

pattern of methylation observed in Crx - retina suggests that unlike the epigenetic 

modification histone acetylation, CRX is not required for demethylation. In retina in 

which there is no functional CRX, significantly lower methylation in the rod-

photoreceptor specific genes PDE6B and RHO was observed (Figure 4). Thus, it is 

predicted that because CRX is not required for demethylation, perhaps demethylation of 

cis-regulatory elements is required for CRX binding to DNA.  

Additionally, in close proximity to the regions of the genes analyzed in RHO and 

PDE6B, only some CRX binding regions overlap with NRL binding regions (Figure 3). 

This observation further contributes to the question of what contributes to the spatial 

and temporal pattern of CRX binding, and if DNA methylation is involved in determining 
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when and where CRX binds. The pattern of low methylation observed in Crx - retina 

offers a possible suggestion that demethylation of DNA precedes CRX binding to 

regulate when and where CRX binds. Collectively, these methylation patterns in mice 

suggest a possible mechanism of DNA methylation regulating binding of CRX to cis 

regulatory elements.  

Human studies were used to determine if a similar regulatory mechanism exists 

in primary human retinal tissue. A similar pattern of tissue and cell-specific DNA 

methylation was also observed in studies of the human retina. Rod-specific genes were 

observed to have low methylation in the rod-rich peripheral retina, but had significantly 

more methylation in non-retinal cornea and in macula tissue rich in cone photoreceptors 

(Figure 6). In these regions of rod-specific genes in which a pattern of tissue and cell-

specific DNA methylation was observed, conserved CRX binding regions with CRX 

motifs were present (Figure 5). Thus, the presence of photoreceptor-specific DNA 

methylation patterns in regions of the genome where CRX is predicted to bind suggests 

that DNA methylation is involved in the mechanism of determining when and where 

CRX binds in human retinal tissue.  

To examine the biochemical relationship between DNA methylation and the 

binding of retina-specific transcription factors CRX and NRL, in vitro binding assays 

using the DNA binding domain portion of CRX and NRL were attempted. Post-induction 

analysis indicated successful expression of the DNA binding domains of CRX and NRL. 

The CRX and NRL full length proteins presented problems with expression and 

purification. The NRL full length protein was unable to be expressed in BL21 DE3 E. coli 

competent cells, and perhaps transforming the NRL full length construct into a different 
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strain of cells in the future will allow for successful expression. The CRX full length 

proteins were successfully expressed; however, attempts to purify the CRX full length 

protein were not successful. Optimization of expression and purification of these 

proteins is currently being conducted in the lab.  The DNA binding domain proteins 

became the focus for this study since they proved to be more of a success in 

expression and purification, and could subsequently be used for in vitro binding assays.  

Affinity purification of the DBD proteins using the affinity of the 6X His tag for 

nickel resin was successful but did not achieve absolute purity of either protein. In both 

cases of CRX DBD and NRL DBD, the most pure elution with imidazole still left behind 

several faint bands of contaminating protein. Subsequent purification with ion exchange 

chromatography as well as concentration of the protein was attempted but did not seem 

to achieve better purity of the protein (data not shown). Thus, binding assays were 

attempted using the purified proteins eluted directly from affinity purification with the 

hope that the proteins would be pure enough despite the lack of total purity.  

Analysis of the epigenetically labeled probes in the enhancer regions of the RHO 

gene indicated successful synthesis of methylated and hydroxymethylated probes using 

various types of dNTP mixtures. Probes made with the two primer sets for enhancer 

regions of the RHO gene known to bind both CRX and NRL showed predicted patterns 

of digestion with methyl-sensitive and hydroxymethyl-sensitive restriction enzymes.  

Binding assays carried out with the F1/R1 probe and the F2/R2 probe incubated 

with the CRX DBD purified protein appeared to be cleaved by the added protein and 

were unable to be observed on the gel even in the presence of high molarity EDTA, a 

metal ion chelator (Figure 13). Thus, it is suspected that the purified protein used for 
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binding assays most likely possesses residual nuclease activity interfering with binding 

assays because perhaps the EDTA did not chelate away all of the metal ions. Further 

modifications to the protein purification scheme for both CRX and NRL DNA binding 

domain proteins will be used in the future to reduce nuclease activity.  

 In addition to optimizing the EMSA procedure to see if a detectable change in 

binding occurs when CRX DBD is added with the epigenetically labeled probes, binding 

assays with NRL DBD will be carried out. Although NRL DBD was successfully 

expressed and purified, time did not allow for the protein to be used for binding assays. 

Additional NRL DBD will need to be expressed and purified for downstream analysis. 

The CRX full length protein was able to be expressed and purified while the NRL full 

length protein was not. Expression of the NRL full length protein could be attempted by 

transforming the construct into a different strain of competent cells other than BL21 DE3 

competent E. coli cells. After optimizing binding assays with the DBD proteins, it would 

also be helpful to attempt EMSA with the full length proteins.  

 Although binding analysis was inconclusive due to procedural setbacks, 

expression and purification of the CRX and NRL DBD proteins was optimized. Further 

modifications to the assays will hopefully allow for determination of the sequence of 

events involved in DNA demethylation and CRX and NRL binding to control expression 

of retina-specific genes. The tissue and cell-specific patterns of DNA methylation, 

supported by the inverse correlation between methylation and transcription of both 

humans and mice suggests that DNA methylation plays a role in determining the spatial 

and temporal binding of CRX and NRL. Furthermore, the pattern of DNA methylation in 

observed in Crx - mouse retina suggests that CRX is not required for demethylation, 



42 

and perhaps CRX binding is responsible for initiating demethylation of DNA. 

Collectively, these data suggest a possible role for DNA methylation regulating when 

and where CRX and NRL bind to cis-regulatory elements to control gene expression in 

the retina. These data suggest that DNA demethylation of CRX binding sites precedes 

CRX binding and histone acetylation, which subsequently allows NRL to bind in rod 

photoreceptors to coordinate expression of photoreceptor-specific genes essential for 

vision. Optimizing the binding assay procedure will further help to provide support for 

this hypothesis.  
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