Kabul City Clearance Project

Mohammad Akbar Oriakhil
Mine Action Coordination Centre of Afghanistan

Follow this and additional works at: https://commons.lib.jmu.edu/cisr-journal

Part of the Other Public Affairs, Public Policy and Public Administration Commons, and the Peace and Conflict Studies Commons

Recommended Citation
Available at: https://commons.lib.jmu.edu/cisr-journal/vol15/iss3/14

This Article is brought to you for free and open access by the Center for International Stabilization and Recovery at JMU Scholarly Commons. It has been accepted for inclusion in Journal of Conventional Weapons Destruction by an authorized editor of JMU Scholarly Commons. For more information, please contact dc_admin@jmu.edu.
The Belgian NR 413 fragmentation mine can be initiated by any of four tripwires.

The Belgian NR 413 is normally mounted on a steel stake and initiated by any of four tripwires. It is normally buried and initiates a propel-lant charge; this fires the mine body out at a height of about a meter. The mine contains 2,500 steel fragments that are lethal within 25 m but can cause injury or death at far greater ranges.

The NR 413 is normally mounted on a steel stake and initiated by any of four tripwires. At a time when the tripwire threat in most countries has virtually disappeared, clearance teams in Libya may once again be forced to adopt laborious and time-consuming tripwire search procedures in areas where this mine is suspected.

The NR 109 trip flare, also present in Libya, is easily confused with the NR 413. Despite the similarity of the fuze and body, the components of these two devices have different threads and are not interchangeable.

Other Mines

Other mines present in Libya include the Belgian NR 413 stake mine and NR 442 bounding mine, both of which are AP fragmentation weapons with significant ranges. The NR 442 is normally buried and uses a pressure fuze to initiate a propel-lant charge; this fires the mine body out at a height of about a meter. The mine contains 2,500 steel fragments that are lethal within 25 m but can cause injury or death at far greater ranges.

The NR 413 is normally mounted on a steel stake and initiated by any of four tripwires. At a time when the tripwire threat in most countries has virtually disappeared, clearance teams in Libya may once again be forced to adopt laborious and time-consuming tripwire search procedures in areas where this mine is suspected.

The NR 109 trip flare, also present in Libya, is easily confused with the NR 413. Despite the similarity of the fuze and body, the components of these two devices have different threads and are not interchangeable.

Two other mines, neither of which was previously associated with Libya, have also been found in Benghazi. Both the Yugoslav TMA-5 and the Czech PT Mi-Ba-III are minimum-metal AT blast mines that can be difficult to detect. These are large mines capable of immo-lizing main battle tanks, and would completely destroy any civilian vehicle.

The PT Mi-Ba-III fuze incorporates a cocked striker, meaning that the mechanism is spring-loaded and there-fore capable of functioning at any time. The plastic collar retaining the striker is vulnerable to deterioration in hot dry conditions, making this mine extreme-ly dangerous to handle. This mine was believed to have been responsible for a number of casualties during the First Gulf War (1990–1991) and is definitely a blow-in-place item.

Conclusion

The mine threat in Libya could create a significant challenge for deminers, with a combination of unrecorded minefields, difficult detection, the presence of tripwires and the poten-tial deterioration of fuze mechanisms. Demining nongovernmental organiza-tions have already begun clearance op-erations with the United Nations Mine Action Service Joint Mine Action Coor-dination Team, working to coordinate operations. In addition to the standard process of survey, minefield delineation and clearance, a major stockpile de-struction program will also be needed. Sadly, despite widespread adop-tion of AP Mine Ban Convention, mines that can be difficult to detect.

The KCCP is working to clear Kabul City of mines based on a two-phase plan. Phase 1, which is underway, consists of 44 of the confirmed hazardous areas; Phase 2 consists of 48 additional CHAs and will be implemented in early 2012.

The KCCP continues clearance at the current rate of progression, meeting or exceeding their target timeline, and they receive adequate funding for the second phase, they could completely remove all known hazards in Kabul City within an operating period of 18 months.

Kabul City is believed to have been responsible for a number of casualties during the First Gulf War (1990–1991) and is definitely a blow-in-place item. The plastic collar retaining the striker is vulnerable to deterioration in hot dry conditions, making this mine extremely dangerous to handle. This mine was believed to have been responsible for a number of casualties during the First Gulf War (1990–1991) and is definitely a blow-in-place item.

The KCCP is working to clear Kabul City of mines based on a two-phase plan. Phase 1, which is underway, consists of 44 of the confirmed hazardous areas; Phase 2 consists of 48 additional CHAs and will be implemented in early 2012. The KCCP continues clearance at the current rate of progression, meeting or exceeding their target timeline, and they receive adequate funding for the second phase, they could completely remove all known hazards in Kabul City within an operating period of 18 months.
progress has been made toward ridding the city of these hazards, including the following:

- Almost 60,000 anti-personnel mines, 2,000 anti-tank mines and more than one million items of UXO were located and destroyed.\(^2\)
- More than 25 sq. km. (9.65 sq miles) of minefields were cleared and more than 168 sq. km. (64.87 sq miles) of battlefields were cleared.\(^1\)

The map in Figure 2 shows where clearance has taken place in Kabul City. Despite these successes, more than 23 years of conflict have resulted in Kabul becoming one of the world's most heavily mined capital cities, and Kabul City has experienced massive population growth. Since 2002, with a yearly increase of about 400,000 people, or 55,000 households, which urgently require access to land and services. Mines and UXO pose the threat of death and injury, and also block access to vitally needed resources for this rapidly growing city. These hazards directly impact approximately 584,703 men, women and children.\(^1\)

The presence of mines and UXO significantly affects resettlement and development within the city limits, and contributes to restricted economic growth and opportunity for the city’s most vulnerable and disadvantaged communities. Though many minefields were cleared in the central and high-profile areas of the city, until funding is available, KCCP will want to clear minefields in peripheral communities, such as mountainous areas and other locations that appear deserted or unused.

The accidents out of necessity as they search for fuel (e.g., grasses, wood), medicinal plants, food (e.g., mountain rhubarb) and graze their animals in areas suspected to be unsafe.

Current Situation

The project area has been divided into two phases in which the high-priority areas will be cleared during Phase 1 and the medium- and low-priority areas will be addressed during Phase 2.

The project’s first phase is funded through a contribution to the Voluntary Trust Fund made by the European Union. Clearance started 6 January 2011 and should be completed 5 January 2012. During the one-year period (two months training and 10 working months) of Phase 1, 19 community-based demining teams and one EOD team are working to clear the medium- and low-priority areas will be addressed during Phase 2.

The project objectives and expected outcomes.

The trained deminers are now busy clearing the city’s remaining hazards (size, location, contamination type, etc.), the assets required to most efficiently remove mine and UXO contamination were determined. Complete clearance of all known hazards in Kabul City will be achieved through the deployment of the following:

- Nineteen manual demining teams
- Three mine-detection dog teams
- One mechanical demining unit
- One EOD team

The KCCP will clear known recorded hazards in 12 out of 22 contaminated districts of Kabul City within wards 3, 5, 6, 7, 8, 14, 15, 16, 19, 20, 21 and 22 (see Figure 1). The direct beneficiaries of this project are the members from 36 mine- and UXO-affected communities. The cleared land will be used for a variety of purposes, including residential housing, livestock grazing, leisure activities and implementation of rehabilitation and development projects.

Cluster (size, location, contamination type, etc.), the assets required to most efficiently remove mine and UXO contamination were determined. Complete clearance of all known hazards in Kabul City will be achieved through the deployment of the following:

- Nineteen manual demining teams
- Three mine-detection dog teams
- One mechanical demining unit
- One EOD team

The KCCP will clear known recorded hazards in 12 out of 22 contaminated districts of Kabul City within wards 3, 5, 6, 7, 8, 14, 15, 16, 19, 20, 21 and 22 (see Figure 1). The direct beneficiaries of this project are the members from 36 mine- and UXO-affected communities. The cleared land will be used for a variety of purposes, including residential housing, livestock grazing, leisure activities and implementation of rehabilitation and development projects.

Cluster (size, location, contamination type, etc.), the assets required to most efficiently remove mine and UXO contamination were determined. Complete clearance of all known hazards in Kabul City will be achieved through the deployment of the following:

- Nineteen manual demining teams
- Three mine-detection dog teams
- One mechanical demining unit
- One EOD team

The KCCP will clear known recorded hazards in 12 out of 22 contaminated districts of Kabul City within wards 3, 5, 6, 7, 8, 14, 15, 16, 19, 20, 21 and 22 (see Figure 1). The direct beneficiaries of this project are the members from 36 mine- and UXO-affected communities. The cleared land will be used for a variety of purposes, including residential housing, livestock grazing, leisure activities and implementation of rehabilitation and development projects.

Cluster (size, location, contamination type, etc.), the assets required to most efficiently remove mine and UXO contamination were determined. Complete clearance of all known hazards in Kabul City will be achieved through the deployment of the following:

- Nineteen manual demining teams
- Three mine-detection dog teams
- One mechanical demining unit
- One EOD team

The KCCP will clear known recorded hazards in 12 out of 22 contaminated districts of Kabul City within wards 3, 5, 6, 7, 8, 14, 15, 16, 19, 20, 21 and 22 (see Figure 1). The direct beneficiaries of this project are the members from 36 mine- and UXO-affected communities. The cleared land will be used for a variety of purposes, including residential housing, livestock grazing, leisure activities and implementation of rehabilitation and development projects.

Cluster (size, location, contamination type, etc.), the assets required to most efficiently remove mine and UXO contamination were determined. Complete clearance of all known hazards in Kabul City will be achieved through the deployment of the following:

- Nineteen manual demining teams
- Three mine-detection dog teams
- One mechanical demining unit
- One EOD team

The KCCP will clear known recorded hazards in 12 out of 22 contaminated districts of Kabul City within wards 3, 5, 6, 7, 8, 14, 15, 16, 19, 20, 21 and 22 (see Figure 1). The direct beneficiaries of this project are the members from 36 mine- and UXO-affected communities. The cleared land will be used for a variety of purposes, including residential housing, livestock grazing, leisure activities and implementation of rehabilitation and development projects.
Deminer working in a minefield during KCCP operations. Photo courtesy of ATC.

Conclusion
Following completion of the KCCP, all known recorded hazards will be removed from the city (except some residual threat from exposure of any subsurface UXO that appears during construction work, movement of ERW from other areas or identification of new hazardous areas), and civilian accident rates are expected to substantially decline. Also, a number of people trained as deminers during the implementation of this project will be given opportunities to be hired as deminers on other projects or to advance to higher positions such as section leaders or team leaders. As soon as funds are provided for Phase 2 of this project, and Phase 2 is completed, 22 wards in Kabul will be announced free from hazards of known minefields. The cleared land will be used for housing, agriculture, livestock pasturing, leisure activities, development projects and industrial revitalization, and the people who live close to the cleared areas will be able to live safely.

See endnotes page 83

Thailand and Compliance with the APMBC: Mission Impossible ... Or a Feasible Task?

This article addresses the mine-action challenges Thailand faces in maintaining compliance with the Anti-personnel Mine Ban Convention. Given the uncertainty of mine locations and the Thailand Mine Action Centre’s limited capacity, the delegation of Thailand’s mine-action resources can be an issue, as hazardous areas can be difficult to determine. The emergence of a new national land-release mine-action standard, however, means that Thailand’s ability to efficiently identify hazardous areas will allow limited resources to be appropriately assigned to areas needing clearance.

by Håvard Bach [APOPO]

The Khmer Rouge claimed yet another victim in July 2011, this time in Thailand’s Trat province near the Cambodian border. This recent incident stemmed from the legacy of fierce fighting played out between Khmer Rouge and Vietnamese forces on both sides of the Thai-Cambodian border in the 1980s. The war is finished, but casualties continue.

Fighting between the Khmer Rouge and the Vietnamese typically occurred on and around rocky hilltops and densely vegetated ridges, leaving grim conditions for survey and clearance. Most of Thailand’s mine-suspected areas are heavily overgrown with large sections scarcely populated and rarely visited because of the risk of potential landmines and explosive remnants of war. During the war, front lines regularly shifted, thus leaving a blurred picture of where mines may be located. While evidence of mines in many areas exists, other currently suspected areas have no real evidence of mines other than a general suspicion stemming from past warfare.

A Landmine Impact Survey was undertaken in Thailand from 2000 to 2001. More than 2,000 square kilometers (772 square miles) were enrolled in the TMAC database and interpreted as a real representation of the mine problem. Subsequent efforts to resurvey these areas have resulted in the cancellation of almost 1,500 sq. km. (579 sq. mi.) of land. Today 540 sq. km. (208 sq. mi.) of land remains suspect. Despite the good effort, Thailand cannot meet its APMBC deadline without a radical change of direction and a structured approach to resolving the problem.

APOPO, a Belgian nongovernmental organization, partnered with a local Thai organization, Peace Road Organisation (later referred to in this article as APOPO-PRO), and developed a survey and land-release methodology for Thailand, which is being implemented in full cooperation with the Thailand Mine Action Centre, Thailand’s military, Thai Civilian Deminer Association and Norwegian People’s Aid. The process raises interesting questions related to how mine-affected states will comply with the Convention on the Prohibition of the Use, Stockpiling, Production and Transfer of Anti-personnel Mines and on Their Destruction (also known as the Anti-personnel Mine Ban Convention or APMBC).

The newly endorsed system challenges a common perception of how to resolve a mine problem for convention compliance. By analyzing how European countries justify compliance with the APMBC, Thailand developed an approach that could enable full compliance within a reasonable timeframe, and breaches traditional belief that it would take more than 100 years to rid Thailand of landmines. Thailand’s solution may be an example of how similar problems could be addressed in other countries.

Mohammad Akbar Oriakhil was born in Kabul and graduated from Habibia High School before immigrating to Pakistan where he studied under the International Peace Action Centre’s Engineering Program. In August 1995, he joined Afghan Technical Consultations and worked as Assistant Operations Officer, Assistant Site Officer, Supervisor, and Operations Officer until February 2003. He then joined MACCA as Operations Assistant and was promoted in 2008 to Area Manager. He is also a graduate of James Madison University’s 2010 ERW Senior Managers Course.

Published by JMU Scholarly Commons, 2011

15.3 | fall 2011 | the journal of ERW and mine action | notes from the field | 3

Oriakhil: Kabul City Clearance Project

See endnotes page 83

Published by JMU Scholarly Commons, 2011

15.3 | fall 2011 | the journal of ERW and mine action | notes from the field | 51