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Abstract 

Symbiosis is defined as two species living together. This association between 

organisms is present at all taxonomic levels making it a ubiquitious phenomenon in 

ecology and evolution. I studied symbiosis among three species: a mutualistic bacterium, 

a parasitic fungus and an amphibian host. The first goal of my research was to examine 

how the mutualistic bacteria of amphibians‟ skin are acquired. I demonstrated that a 

cutaneous mutualistic bacterial species, Janthinobacterium lividum, was transmitted 

environmentally, via soil, to the skin of an amphibian species, Plethodon cinereus. These 

results indicate that amphibians‟ mutualistic bacteria can be acquired from the 

environment.  Based upon these results, I examined the use of soil bioaugmentation in 

amphibian disease prevention. I sought to determine if the environmental transmission of 

the mutualistic bacterial species J. lividum could mitigate parasite infection by the fungal 

pathogen Batrachochytrium dendrobatidis on the skin of an amphibian species, P. 

cinereus.  Cutaneous infection by B. dendrobatidis in amphibians causes the disease 

chytridiomycosis, which has decimated amphibian populations and species worldwide. I 

found that the environmental transmission of J. lividum inhibited initial colonization by 

B. dendrobatidis on the skin of P. cinereus (p<0.05) five days post-infection. The use of 

bioaugmentation may be a feasible conservation strategy that could supplant treating 

amphibians individually and protect global amphibian biodiversity against declines 

driven by chytridiomycosis.  

  



 

 

 

Introduction 

Symbiosis occurs when two species live in close association with one another. 

Symbiosis is typically divided into three categories: mutualism, in which both organisms 

benefit, commensalism, in which one organism benefits and the other is unharmed, and 

parasitism, in which one organism benefits and the other is harmed. These three 

interactions play important roles in ecology and evolutionary biology. My research 

focused upon bacterial mutualism and fungal parasitism on amphibian hosts.  

Mutualism can be observed in the diverse communities of bacteria that inhabit the 

moist, nutrient rich mucous on amphibians‟ skin (Austin 2000, Lauer et al. 2007). Studies 

have demonstrated that amphibians receive the benefit of disease mitigation from their 

cutaneous bacteria (Harris et al. 2006, Banning et al. 2008, Becker & Harris 2010). Other 

benefits to the amphibian may exist, but have yet to be studied. In humans, gut 

microbiota have been shown to direct immune system development (Mazmanian et al. 

2005). Amphibian microbiota may serve the same role or potentially other beneficial 

roles. The other species in the mutualism, the bacteria, benefit from the available 

nutrients found in the mucosal layer and a suitable, protected habitat (Austin 2000).  

Parasitism by the fungal pathogen Batrachochytrium dendrobatidis harms the 

infected individual amphibian and global amphibian biodiversity (Berger et al. 1998). As 

with the mutualistic bacteria, this pathogenic parasite is provided with a suitable, 

protected habitat within epidermal cells of amphibians‟ skin (Longcore et al. 1999). The 

pathogen may also use nutrients in the mucus, but this remains unclear (Piotrowski et al. 

2004). 
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The mutualistic bacteria and parasitic fungal pathogen interact with the host and 

with each other. The mutualistic and pathogenic microbes use the same space and 

possibly the same nutrients.  The principle of competitive exclusion is important in these 

interactions. It has been proposed that mutualistic bacteria have a direct antagonistic 

effect against pathogens (Chan et al. 1984, Fuller 1989, Brucker et al. 2008a, 2008b). 

Possible modes of action include competition for nutrients, competition for adhesion 

sites, production of toxic compounds (antibiotics), and stimulation of the host immune 

system (Fuller 1989). These mechanisms are not mutually exclusive; some 

microorganisms may inhibit pathogens by a single mechanism, whereas others may be 

inhibitory by using multiple mechanisms (Patterson & Burkholder 2003).  

The relationships among cutaneous mutualistic bacteria, the parasitic pathogen B. 

dendrobatidis, and the amphibian host provide an excellent model to study symbiosis. 

These interactions occur on the amphibian skin, which provides ease of study. In 

addition, the three interacting species are all amenable to experimental manipulation. 

Understanding these interactions can help elucidate general principles regarding 

metazoan/bacterial mutualisms and disease ecology. It is increasingly recognized that 

disease dynamics are related to the characteristics of the ecological community, such as 

the community of mutualistic microbes (Belden & Harris 2007). Anthropogenic changes 

to microbial communities may lead to an increase in some metazoan diseases if 

mutualistic microbes are negatively affected. Finally, global amphibian declines present 

an urgency to study these basic ecological interactions with the additional hope of 

identifying strategies to prevent future declines.  
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Amphibian declines: 

 Scientists working around the world are documenting a loss of vertebrate 

biodiversity that exceeds the normal background extinction rate (Hoffmann et al. 2010). 

According to the International Union for the Conservation of Nature (IUCN) Red List, 

which places species on a gradient from least concern to extinct, one-fifth of vertebrate 

species worldwide are listed as threatened (Hoffmann et al. 2010).  The most threatened 

class of the seven classes of vertebrates is Amphibia, with 41% of extant species 

classified as threatened (Hoffmann et al. 2010). This rate is an increase from 2004, when 

32.5% of amphibians were classified as globally threatened (Stuart et al. 2004). The 

current extinction rate for amphibians is estimated to be 211 times the background 

extinction rate (McCallum 2007). The current trend in amphibian declines indicates that 

there will be catastrophic future losses in amphibian biodiversity (McCallum 2007). 

Furthermore, Wake & Vredenburg (2008) proposed that amphibian declines might be a 

warning sign that we are in the midst of a sixth mass extinction in the history of life on 

Earth, one driven by anthropogenic disturbances and infectious disease.  

  Ironically, both the number of described amphibian species and the number of 

declining amphibian species are increasing at an unprecedented rate (Stuart et al. 2004, 

Hoffmann et al. 2010).  In regard to described amphibian species, this number has 

increased from 5,743 species in 2004 (Stuart et al. 2004) to 6,638 species in 2010 

(Hoffmann et al. 2010). In regard to amphibian declines, 662 amphibian species have 

moved one Red List category closer to extinction from 1980 to 2004, while 40 of those 

species have deteriorated in status by three or more categories (Hoffmann et al. 2010). 

These categories listed in order of increasing concern are: least concern, near threatened, 
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vulnerable, endangered, critically endangered and extinct (Hoffmann et al. 2010). Since 

1980 nine species have been listed as extinct, with another 122 considered „possibly 

extinct‟, i.e., not formally „extinct‟ until exhaustive studies have been performed (Stuart 

et al. 2004). Furthermore, the actual extinction total may be even greater since many 

species may reach extinction before they have been discovered. The paradox of 

increasing species descriptions with increasing species declines exemplifies the need for 

amphibian-based conservation studies.  

 Six major drivers of global amphibian declines have been identified:  habitat loss, 

emerging infectious disease, introduced species, over-exploitation, contaminants and 

global climate change (Collins & Storfer 2003). These drivers are not mutually exclusive, 

but most likely interact in complex ways. For instance, increasing UV radiation and 

concentrations of environmental contaminants (Blaustein et al. 2003) and changing 

climatic conditions and agricultural practices (D‟Amen et al. 2010) have been shown to 

act synergistically to make some amphibian populations more susceptible to decline. 

While all the drivers are contributing to decline, two drivers have been singled out as 

inflicting the most damage on amphibian biodiversity: habitat loss (Stuart et al. 2004) and 

the emerging infectious disease, chytridiomycosis (Skerrat et al. 2007). It has been 

proposed that the immunological stress inflicted on amphibian populations by 

anthropogenic disturbances, such as habitat loss, has given rise to the susceptibility of 

amphibians to disease (Blaustein et al. 2003). Chytridiomycosis has been linked to the 

decline or extinction of more than 200 amphibian species (Wake & Vredenburg 2008). 

This disease may be the most challenging driver of amphibian declines as there is no 

proven implementable strategy in the field that can combat this disease. However, one 
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potential strategy to mitigate chytridiomycosis may be the natural antagonist effects of 

mutualistic bacteria.  

Mutualisms between metazoans and microorganisms: 

As metazoans evolved so did the complexity of the microbial communities that 

inhabit the metazoan host (McFall-Ngai 2005). Both groups benefit from this 

evolutionary adaptation; the microbial species is provided nutrients and a suitable habitat 

and the metazoan is provided nutritive, reproductive, developmental or defensive benefits 

(Chaston & Goodrich-Blair 2010). An increase in fitness by the co-operating individuals 

sustains and modifies these interactions throughout time and space. The evolution of 

metazoan microbial mutualism is thought to have proceeded from binary bacterial 

symbioses in invertebrates to highly complex consortia of hundreds to thousands of 

bacterial mutualists in vertebrates (McFall-Ngai 2005).  Interestingly, it has been 

proposed that the shift to a complex assemblage of microbes in vertebrates led to the 

evolution of the adaptive immune system, which is absent in invertebrates (McFall-Ngai 

2005).  

Metazoan microbiota can provide their host a variety of nutritive, reproductive, 

developmental and defensive benefits. One example of a nutritional benefit is that 

bacteria-free mice must eat about a third more food than mice with a natural gut 

microbiota to maintain the same growth rate, suggesting a role in digestion (McFall-Ngai 

2005). In regards to reproductive benefits, the removal of symbiotic microbiota causes 

the cessation of proliferation via asexual budding in freshwater Hydra spp. (Fraune et al. 

2009). Developmental benefits have been documented by Mazmanian et al. (2005). They 

found that the common human gut bacteria Bacteroides fragilis produces a 
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polysaccharide that directs the cellular and physical maturation of the mammalian 

immune system by aiding in T cell production, correcting TH1/TH2 imbalances and 

directing lymphoid organogenesis. Guarner & Malagelada (2003) also suggested that 

other ubiquitous human gut bacteria might produce immunomodulatory molecules that 

direct maturation of the immune system. Finally, of main interest in this study is the role 

of microbiota in protection from disease, as this role may be crucial in the disease 

dynamics of chytridiomycosis. For example, human intestinal microbiota has been shown 

in vitro to directly block attachment of pathogens to epithelial cells (Chan et al. 1984). In 

addition, in fish species affected by the pathogen Vibrio anguillarum both skin and 

intestinal microbes were shown to inhibit the pathogen via the production of bactericidal 

metabolites (Olsson et al. 1992).  

Like all vertebrates, amphibians possess a diverse microbial community (Lauer et 

al. 2007). There is a small but growing knowledge of amphibians‟ mutualistic bacteria, 

what functions these microbes may serve and how they are attained. Most studies have 

only identified a partial set of microbial species on a limited number of amphibian 

species (Austin 2000, Culp et al. 2007, Lauer et al. 2007). However, several studies have 

found a role of amphibians‟ cutaneous bacteria in disease prevention (Lauer et al. 2007, 

Woodhams et al. 2007b, Harris et al. 2009a, 2009b, Becker & Harris 2010). Given this 

crucial role, it becomes important to determine how amphibians obtain their microbiota.  

Transmission of microbiota:  

Bacteria are transmitted to hosts by three methods: vertical (parent to offspring), 

horizontal (conspecific contact) and environmental (environment to organism).  In 

humans, studies have found that the intestinal microbiota is initially acquired through 
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vertical transmission during birth (Tannock et al. 1990) and during breast-feeding 

(Harmsen et al. 2000). However, past infancy the intestinal microbiota changes to be 

composed primarily of environmentally transmitted microbiota (Xu & Gordon 2003). 

The squid-vibrio association provides an ideal system to study metazoan-microbial 

mutualisms. The light organ of sepoilid squid is colonized by the marine bacterium 

Vibrio fischeri that produces bioluminescence (McFall-Ngai & Ruby 1991). 

Transmission of V. fischeri has been shown to occur both horizontally (McFall-Ngai & 

Ruby 1991) and environmentally (Nishiguchi 2002), with a preference for V. fischeri 

strains from squid of the same species (Nishiguchi 2002).  

It is likely that amphibians attain their mutualistic bacteria via all three 

mechanisms of transmission. However, the ecology of each species may dictate the 

predominate mode of bacterial transmission. In amphibians, vertical transmission may be 

common for species that attend or brood their offspring, while it is likely nonexistent for 

species that mature without any contact with their parent.  Horizontal transmission is 

likely prevalent during the mating season since contact occurs during mating in 

amphibians. In addition, horizontal transmission may occur in social amphibian species 

and in individuals that share the same hibernaculum. As amphibians have their nutrient 

rich mucosal layer in continual contact with the environment, environmental transmission 

may be the most universal form of transmission.  

Only a few studies have been conducted on amphibian bacterial transmission and 

none of these studies have used experimental manipulations. Austin (2000) found that the 

culturable resident and transient microbiota of Plethodon ventralis was 17% similar to the 

microbial community present in the amphibians‟ environment.  This indicates that 17% 
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of bacteria isolated in this study could occupy two vastly different niches (soil/leaf litter 

and salamander skin), which may suggest a long history of environmental transmission. 

Culp et al. (2007) also found that a sub-set of bacterial species in the environment of 

three amphibian species, Notophthalamus viridescens, Rana (Lithobates) catesbiana, 

Plethodon cinereus, was present on the amphibians‟ skin. Banning et al. (2008) presented 

evidence that a brooding salamander species, Hemidactylium scutatum, transmitted 

cutaneous bacteria vertically in communal nests.  To my knowledge, no studies have 

been conducted on horizontal transmission in amphibians.  

Transmission of mutualistic bacteria is an important concept in disease ecology. 

Since mutualistic bacteria have been shown to protect their host from disease, disruption 

of microbiota transmission may lead to an increase in disease susceptibility. These 

disruptions may be caused by anthropogenic environmental disturbances such as global 

climate change and the widespread use of antibiotics in humans and livestock. These 

disturbances may cause environmental microbial community structures to change, and 

ecologically important microbiota to become extinct, thus making transmission 

impossible (Belden & Harris 2007). The emergence of chytridiomycosis may be due in 

part to alteration to amphibians‟ mutualistic bacterial community (Belden & Harris 

2007).  Finally, an understanding of bacterial transmission may help design conservation 

and restoration strategies based on the use of mutualistic bacteria to mitigate the 

detrimental effects of the pathogen B. dendrobatidis.  

Parasitism of Batrachochytrium dendrobatidis: 

Understanding the basic biology of B. dendrobatidis is crucial to developing 

methods to control this pathogen. To begin, B. dendrobatidis is a member of the phylum 
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Chytridiomycota, which is largely composed of primitive, saprobic fungi that live on 

dead and decaying matter (Longcore et al. 1999).  Parasitism of protozoans and 

invertebrates by chytrids has previously been reported, but this species is the first chytrid 

known to parasitize vertebrate species (Berger et al. 1998). B. dendrobatidis lives in the 

keratin-rich internal mouthparts of tadpoles and inside the keratinized epithelial cells of 

adult amphibian skin (Berger et al. 1998). While B. dendrobatidis has only been found in 

keratinized cells, it still remains unclear if it is active in degradation of keratin as a 

nutrient source (Piotrowski et al. 2004). Piotrowski et al. (2004) proposed that B. 

dendrobatidis might live in keratinized cells since the cells are dead and easier to invade. 

The fungal pathogen exhibits a dimorphic life cycle (Figure 1) with a free-living, 

substrate independent zoospore stage and a substrate dependent zoosporangia stage 

(Longcore et al. 1999). Zoospores are active for a relatively short period and travel a 

relatively short distance, but they are the colonists that invade amphibians‟ keratinized 

epithelial cells (Piotrowski et al. 2004). Upon entry of the zoospore into the host‟s 

epithelial cells, the development of a zoosporangium begins; zoospores are subsequently 

produced by mature zoosporangia (Berger et al. 2005). Zoospores are then released into 

the surrounding aquatic environment by mature zoosporangia and can re-infect the host 

or attempt to locate a new host (Berger et al. 2005). Only asexual reproduction in the life 

cycle has been observed (Berger et al. 2005). 
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Figure 1. Life cycle of Batrachochytrium dendrobatidis (from Rosenblum et al. 2010). 

Colonization by B. dendrobatidis can then result in the disease chytridiomycosis 

(Berger et al. 1998). There is intraspecific (Woodhams et al. 2007a, Shaw et al. 2010) and 

interspecific variation in susceptibility to chytridiomycosis (Blaustein et al. 2005). Once a 

species-specific infection density is reached, susceptible species develop the disease 

chytridiomycosis (Stockwell et al. 2010).  Signs of the disease include lethargy, 

morbidity (weight loss), cutaneous erythema, irregular skin sloughing, abnormal posture, 

and loss of righting reflex (Voyles et al. 2009). The negative effects of the disease are 

seen in reduced developmental rates (Venesky, Parris & Storfer 2010) and reduced 

survival (Voyles et al. 2009). Infected individuals experience mortality due to the 

inhibition of electrolyte (notably potassium) transport across the skin, which leads to 

aystolic cardiac arrest (Voyles et al. 2009). At the population level, a mass mortality 

event is observed when a threshold density of zoospores is reached in a vulnerable 

population (Vredenburg et al. 2010). 
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Impact of chytridiomycosis on amphibian biodiversity: 

  Worldwide amphibian declines were first informally discussed in 1989 at the First 

World Congress of Herpetology (Collins & Crump 2009). In some amphibian 

populations, herpetologists had been observing abnormal declines since the late 1970s 

even in protected habitats (Collins & Crump 2009). For instance, at least 14 Australian 

frog species declined in numbers by more than 90% from 1979 to 1994 (Laurance et al. 

1996). Laurance et al. (1996) proposed that these declines were driven by an introduced 

pathogen. In 1998, Berger et al. proposed that chytridiomycosis was the cause of the 

recently observed amphibian declines in Australia and Central America. The etiological 

agent for chytridiomycosis was identified as the aquatic fungus B. dendrobatidis 

(Longcore et al. 1999). The appearance of B. dendrobatidis in natural populations has 

since been directly linked to the rapid loss of amphibian biodiversity (Daszak et al. 1999, 

Lips et al. 2006, Woodhams et al. 2007b), probably dating back to at least the 1970s. To 

date, B. dendrobatidis has been documented to infect over 350 of amphibian species 

(Fisher et al. 2009).  In turn, chytridiomycosis has caused the decline or extinction of 

more than 200 of these species (Wake & Vredenburg 2008). 

 There is some uncertainty in how long chytridiomycosis has been causing 

amphibian decline. The earliest amphibian species identified as being infected with B. 

dendrobatidis are Xenopus fraseri preserved in Cameroon in 1933 (Soto-Azat et al. 2010) 

and Xenopus laevis in South Africa in 1938 (Weldon et al. 2004).  Both studies found a 

consistent low infection load in Xenopus spp. specimens from the 1930s to the 1990s 

indicating a stable, endemic disease. International trade in Xenopus spp. from 1934 to 

1968 is likely to have been the initial cause of the global dissemination of the pathogen to 
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susceptible species according to the „out of Africa‟ hypothesis (Weldon et al. 2004). The 

next documented cases of B. dendrobatidis infection appear in North America in 1961, 

Australia in 1978, Central America in 1983, South America in 1986, Europe in 1997 

(Weldon et al. 2004), and Asia in 2008 (Une et al. 2008). The international trade in the 

resistant North American bullfrogs Rana (Lithobates) catesbeiana is likely to be the 

primary cause of the recent continual spread of the pathogen (Fisher & Garner 2007, 

Schloegel et al. 2010). Overall, the international amphibian trade in Xenopus and Rana 

has likely driven the transition of chytridiomycosis from an endemic disease in Africa to 

an epidemic disease worldwide (Fisher & Garner 2007). 

It is crucial to study natural amphibian defense mechanisms in order to potentially 

prevent future losses of amphibian biodiversity due to chytridiomycosis. Some amphibian 

species persist despite major declines due to chytridiomycosis and other species do not 

decline at all (Woodhams, et al. 2007a). Amphibians‟ antimicrobial peptides (AMPs) 

produced by the innate immune system (Woodhams et al. 2007a, Ramsey et al. 2010), 

adaptive immune responses (Ramsey et al. 2010) and mutualistic cutaneous bacteria 

(Harris et al. 2009a, 2009b) are factors that can potentially explain how some amphibians 

eliminate or prevent infection by B. dendrobatidis while others do not. In terms of using 

these factors in hope of preventing declines, AMPs and immune responses pose 

challenges for successful conservation strategies. For instance, AMPs are species-specific 

and cannot be easily transmitted to susceptible species as a conservation strategy. The 

adaptive immune system of susceptible amphibians is likely compromised by a 

proteolytic enzyme produced by B. dendrobatidis that down-regulates immune response 

(Rosenblum et al. 2009). In addition, vaccines have proven to be ineffective for 
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susceptible species (Stice & Briggs 2010). However, the addition of mutualistic bacteria 

on amphibian skin provides a feasible control of chytridiomycosis as demonstrated in 

studies previously carried out in our laboratory (Harris et al. 2006, Harris et al. 2009a, 

2009b, Becker & Harris 2010). 

Host, mutualistic bacteria and pathogen: 

Most studies that document the protective effects that indigenous microbiota 

provide to their host have been on the interaction of human gut microbiota with disease. 

For instance, the onset of atopic and asthmatic disorders is linked to aberrant immune 

development caused by the lack of mutualistic gut bacteria that produce 

immunomodulatory molecules (Mazmanian et al. 2005). Furthermore, treatment with the 

indigenous gut bacteria Lactobacillus has reduced the rate of atopic eczema in children 

thereby suggesting the importance of microbiota in the prevention of atopic disease 

(Kalliomaki et al. 2001).  Finally, greater pathogen resistance in humans has been 

associated with certain gut microbial community composition (Dethlefsen et al. 2007).  

Although cause and effect remains uncertain, this finding suggests that certain species or 

species combinations provide more protective effects than others.  

Several studies have also documented the protective effects of mutualistic 

microbiota in other metazoans. A vertically transmitted bacterial species Regiella 

insecticola present in a pea aphid species increases host survival rate after exposure to a 

fungal pathogen. The bacterial species lowers the rate of pathogen transmission by 

reducing the rate of successful sporulation by the fungus via an unknown mechanism 

(Scarborough et al. 2005) Also in a pea aphid species, it has been shown that it is not the 

aphid genotype, but rather the vertically and sometimes horizontally transmitted bacterial 
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species Hamiltonella defensa that confers resistance to parasitism by a parasitoid wasp 

(Oliver et al. 2005). According to the authors, nothing is known about the mechanism by 

which bacterial symbionts contribute to this resistance.  

Studies on the interactions between mutualistic bacteria and pathogens have 

provided potential mechanisms by which the bacterial species protects the host from 

infection. The indigenous gut microbiota in hamsters strongly inhibits the fungal 

pathogen Candida albicans through blockage of adhesion sites (Kennedy & Volz 1985). 

Chan et al. (1985) proposed that the mechanism of competitive exclusion in this system is 

due to steric hindrance, i.e., obstruction due to the physical structure of the organism 

rather than specific blockage of receptor sites. In several fungus-farming ant species, a 

mutualistic bacterial species Pseudonocardia controls the fungal pathogen Escovopis 

through the production of antibiotics (Fernandez-Marin et al. 2009).  In addition, 

bacterial species isolated from the intestinal and skin mucus of the fish species Limanda 

limanda likely inhibit a bacterial pathogen via the antibiotic properties of their 

metabolites (Olsson et al. 1992). 

Amphibians possess indigenous bacterial species on their skin that inhibit 

pathogens (Harris et al. 2006, Lauer et al. 2007, Banning et al. 2008). Banning et al. 2008 

proposed that embryos of H. scutatum in communal nests have increased survival rates 

due to inhibition of a fungal pathogen, Mariannaea spp., by mutualistic cutaneous 

microbiota. They found 17 resident bacterial species that directly inhibited the growth of 

Mariannaea sp. in vitro. On the salamander species Plethodon cinereus, Lauer et al. 

(2007) found 32 resident bacterial species that directly inhibited Mariannaea sp. growth 

in vitro. In addition, Harris et al. (2006) isolated seven genera of bacteria from H. 
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scutatum and three genera of bacteria from P. cinereus that had specific anti-B. 

dendrobatidis properties. Further studies demonstrated that the transfer of mutualistic 

bacteria through aquatic media in small laboratory containers to amphibian skin 

prevented symptoms of chytridiomycosis (Harris et al. 2009a, 2009b). The bacterial 

species Pseudomonas reactans (Harris et al. 2009a) and Janthinobacterium lividum 

(Harris et al. 2009b) produce secondary metabolites that have anti- B. dendrobatidis 

properties. Pseudomonas spp. produces the metabolite 2,4-diacetylphloroglucinol, among 

others, (Brucker et al. 2008a) and J. lividum produces the metabolites violacein and 

indole-3-carboxyaldehyde (Brucker et al. 2008b).  These metabolites are one mechanism 

by which these bacterial species inhibit B. dendrobatidis.  

Hypotheses: 

Mutualistic bacteria in amphibians are positively associated with host fitness 

when pathogenic fungi are present. While mutualisms are important in ecology and 

evolutionary biology, their origin and maintenance are poorly understood (Hillesland and 

Stahl 2010).  I had three questions: (1) does the amphibian host obtain mutualistic 

bacteria via environmental transmission, (2) does the transmission of an amphibian 

mutualistic bacterial species inhibit B. dendrobatidis infection and (3) is there evidence 

of interaction between B. dendrobatidis and the mutualistic bacteria? My a priori 

hypotheses are given in Table 1.  
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Table 1. Experimental a priori hypotheses. 

Environmental Transmission 

1:  J. lividum can be introduced successfully into natural soil. 

2:  J. lividum can be transmitted environmentally to salamanders exposed to J. lividum in 

soil. 

3. There is a positive correlation between J. lividum population densities on the 

salamanders and the J. lividum population densities in the soil. 

 Disease Mitigation  

1:  B. dendrobatidis prevalence will be lower on Bd-infected salamanders exposed to J. 

lividum in soil than Bd-infected salamanders not exposed to J. lividum in soil.  

2: Bd-infected salamanders exposed to J. lividum in soil will experience lower morbidity 

and mortality than infected salamanders not exposed to J. lividum in soil.  

 
Interaction between symbionts 

1: Bd-infected salamanders exposed to J. lividum in soil will have population densities 

and prevalence of J. lividum that is different than non-infected salamanders exposed to J. 

lividum in soil.  

  

 

 

 



 

 

 

Materials & Methods 

Study species: 

 The Eastern red-backed salamander, Plethodon cinereus, was used as the 

experimental species. P. cinereus is a small, terrestrial salamander in the family 

Plethodontidae, which is composed of lungless salamanders. In order to respire through 

their skins these salamanders require continual inhabitance of moist environments. P. 

cinereus is commonly found in leaf litter or small burrows as well as under rocks or logs 

in deciduous forests. This species was chosen for study because they are common and 

have large local populations, previous work has been done on their skin microbes, and in 

their habitats, they are commonly in contact with soil that typically contains 10
6
 to 10

9
 

bacterial cells/g. This continual interaction of moist, nutrient rich salamander skin with a 

bacterially rich environment likely provides transmission of microbes to salamander skin. 

In fact, a diverse community of bacteria has been documented to inhabit the skin of P. 

cinereus (Lauer et al. 2007, Culp et al. 2007). Some of these bacterial species are also 

present in the salamanders‟ environment (Austin 2000, Culp et al. 2007). In addition, 

mutualistic bacterial species isolated from the skin of P. cinereus have been shown to 

inhibit the amphibian fungal pathogens Mariannaea sp. (Lauer et al. 2007) and B. 

dendrobatidis (Harris et al. 2006).  

The geographic range of P. cinereus spans most of the northeastern United States, 

southern Quebec, and the Maritime Provinces of Canada. While this species is abundant 

within its range, widespread declines have recently been reported (Highton 2003). Forest 

fragmentation due to logging practices is likely one cause of these declines (Kolozsvary 

and Swihart, 1999). While there have been no confirmed cases of declines due to 
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chytridiomycosis, this pathogen may still play a role in these observed declines in some 

parts of the Eastern red-backed salamander‟s range. In a recent survey in the Great 

Smoky Mountains National Park no declines in the salamander species were observed 

and all tested individuals were negative for B. dendrobatidis (Caruso 2011). However, in 

other parts of its range (Virginia and Connecticut), individuals have tested positive for 

infection by B. dendrobatidis (Harris et al. 2009b, Richards 2010). However, infection 

load and prevalence in these populations were low (Harris et al. 2009b, Richards 2010) 

and data on the status of these populations does not exist. Experimental trials have shown 

susceptibility of P. cinereus to B. dendrobatidis infection (Becker et al. 2009, Harris et al. 

2009b, Becker & Harris 2010) and mortality due to infection has been observed (Becker 

et al. 2009).  At low infection levels this species can clear infection by unknown 

mechanisms (personal observations).  One potential mechanism may be by the 

antagonistic effect of cutaneous mutualistic bacteria against fungal pathogens (Harris et 

al. 2009a, 2009b).  

The bacterial species Janthinobacterium lividum was used as the experimental 

mutualistic bacterium. J. lividum is a Gram-negative, motile, aerobic bacterium found in 

a variety of environmental conditions including soil (Pantanella et al. 2006) and the skin 

of P. cinereus (Lauer et al. 2007). During stationary and early death phase of growth the 

bacterium produces the secondary metabolite violacein that is violet in color (Pantanella 

et al. 2006). The production of violacein by J. lividum has been shown to positively 

influence its survival (Pantanella et al. 2006). In addition, violacein and another 

secondary metabolite (indole-3-carboxyaldehyde) produced by J. lividum can directly 

inhibit B. dendrobatidis growth (Brucker et al. 2008b).  
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Salamander collection and housing: 

 Forty-four adult red-backed salamanders were collected on Flag Pole Knob 

(elevation 1329m) in the George Washington National Forest in Rockingham County, 

Virginia in June 2010. Salamanders were housed in individual 17 x 12 x 7 cm (L x W x 

H) sterile plastic containers with soil collected from the site of collection until the start of 

the experiment.  Individuals were held in incubators at a temperature of 17°C and with a 

12-hour light, 12-hour dark cycle. On a weekly basis, salamanders were fed 10-15 fruit 

flies. Five days before the beginning of the experiment all salamanders were bathed in 25 

ml of 1.5% hydrogen peroxide for 30 seconds and then rinsed in sterile artificial pond 

water (Wyngaard and Chinnappa 1982).  The hydrogen peroxide bath was performed to 

reduce bacterial numbers on the salamanders‟ skin (Becker & Harris 2010), and to 

minimize variation in the microbial community on the salamanders, thereby allowing me 

to manipulate the presence or absence of J. lividum without confounding factors.   

Bacterial isolation and rifampin-resistant selection: 

J. lividum was isolated from the skin of the four-toed salamander H. scutatum in a 

previous study. The isolate was maintained in glycerol stock at -80°C. In order to 

quantify J. lividum present in the soil throughout the experiment, colony forming units 

(CFU) were counted from plated samples. Since J. lividum has been documented to 

naturally occur in soil (Pantanella et al. 2007), an antibiotic resistant strain was used to 

detect J. lividum that I added to the soil.  Furthermore, many microorganisms live in soil, 

and by using an antibiotic resistant strain only the microorganism of interest grew on the 

selective media. An antibiotic resistant J. lividum strain was selected for by using a 

rifampin gradient on 1% tryptone plates. Selection for colonies that were resistant to the 
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highest concentration of rifampin was done for four weeks. After a resistant culture was 

obtained, cultures of J. lividum were maintained at room temperature on 1% tryptone 

containing 100 ug/l of rifampin. New cultures were made weekly. 

Soil collection: 

Soil was collected from three locations prior to initiation of the experiment (see 

Appendix). Soil was collected from Flag Pole Knob in June 2010, from the James 

Madison University (JMU) Arboretum, Harrisonburg, VA in August 2010 and from 

Hone Quarry in George Washington National Forest in August and September 2010. Due 

to several factors (see Discussion), J. lividum survival in these soils was low and did not 

persist. Therefore, none of these soils were used in my experiment.  

Survival and persistence of J. lividum was finally observed in soil collected from 

the JMU Arboretum in October 2010 (see Appendix). Therefore, this soil was used to 

initiate my experiment in November 2010. Soil was sieved (mesh size < 2mm, Newark 

Wire Cloth Company, Clifton, NJ) to remove debris such as rocks and twigs, which led to 

a uniform soil environment.  Soil was stored at 17°C and soil moisture content was 

maintained around 50% throughout the course of the experiment. Sterile artificial pond 

water was added as necessary to maintain consistent moisture level.  

Experimental design: 

Each individual salamander was assigned a number and placed in treatments 

using random numbers generated from www.random.org. My a priori hypotheses (Table 

1) were tested using four treatments (Table 2). The salamanders in the first treatment 

(n=16) were exposed to J. lividum in soil and also exposed to B. dendrobatidis 
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(J.liv+Bd+). The salamanders in the second treatment (n=6) were exposed to J. lividum in 

soil without being exposed to B. dendrobatidis (J.liv+Bd-). This treatment controlled for 

any possible effects that the presence of J. lividum in soil might have had on the 

salamanders. The salamanders in the third treatment (n=15) were not exposed to J. 

lividum in soil, but were exposed to B. dendrobatidis (J.liv-Bd+). This treatment was 

compared to the first treatment to determine if the transmission of J. lividum from soil to 

salamander had any effect on inhibiting the transmission and the effects of B. 

dendrobatidis. Since this comparison was of primary interest, treatments one and three 

had the highest sample size. The salamanders in the fourth treatment (n=6) were not 

exposed to J. lividum in soil and were not exposed to B. dendrobatidis (J.liv-Bd). This 

treatment controlled for any possible effects that the experimental procedures such as 

housing and handling might have had on the salamanders.  
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Table 2.  Experimental design. J.liv+ treatment salamanders were housed throughout the 

experiment in soil initially inoculated with 2.9x10
7
 CFUs of J. lividum/dry g of soil. 

Individuals in Bd+ treatments were exposed to five ml of 1x10
6
 B. dendrobatidis 

zoospores/ml for five hours at day 8. J.liv- and Bd- treatments received sham soil 

inoculations and sham infections, respectively.  

  

Fungal Pathogen Status 

Exposed to 

Batrachochytrium 

dendrobatidis (Bd+) 

Not Exposed to 

Batrachochytrium 

dendrobatidis (Bd-) 

Soil 

Bacterial 

Status 

Inoculated with 

Janthinobacterium 

lividum (J.liv+) 

J.liv+ Bd+                               

n=16 

J.liv+ Bd-                                         

n=6 

Not inoculated with 

Janthinobacterium 

lividum (J.liv-) 

J.liv- Bd+                         

n = 15 

J.liv- Bd-                                   

n=6 

 

Soil inoculation: 

Bacterial suspensions of J. lividum used for soil inoculation were cultured in 20 

ml of 1% tryptone broth at room temperature. After 24 hours of growth, the broth culture 

was added to 250 ml of 1% tryptone broth containing sterile three-millimeter diameter 

microbeads (Kimble Glass Inc., Vineland, NJ). This J. lividum suspension was grown at 

25°C on a rotary shaker at 150rpm. After 24 hours of growth, the suspension was washed 

twice by centrifugation (7500rpm, 10 minutes) and re-suspended in sterile artificial pond 

water.  
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On day 0 of the experiment, 150 grams of soil were added to each terrarium and 

inoculated with a J. lividum suspension or artificial pond water. The concentration of the 

J. lividum suspension used for inoculation was determined by plating 10-fold serial 

dilutions and was found to be 1.4x10
9
 CFUs/ml. To inoculate the soil, 1.5 ml of the J. 

lividum suspension was added to each terrarium by pipette. One gram of soil from an 

independent sample was dried (90°C for 24 hours) to determine the dry weight of the soil 

at inoculation. The concentration in the soil at inoculation was determined to be 2.9x10
7
 

cells/g of dry soil. Soil in the J. lividum negative treatments (J.liv-Bd+ and J.liv-Bd-) was 

inoculated with a 1.5 ml of sterile artificial pond water.  Each terrarium was shaken 

uniformly for five seconds after introduction of the J. lividum suspension or the sham 

inoculum. The salamanders were introduced into their appropriate treatment terrarium 24 

hours after introduction of the inoculums onto the soil, designated day 1.  

 Janthinobacterium lividum detection in soil: 

Soils were sampled for J. lividum by plating serial dilutions of soil suspensions. 

The J. lividum negative treatment terrariums were sampled first during sampling days to 

prevent contamination. To detect J. lividum in soil, one gram of soil was removed from 

well-mixed soil and suspended in nine ml 0.1% sodium pyrophosphate in 15-ml Falcon 

tubes (Becton Dickinson, Franklin Lakes, New Jersey). The soil suspensions were shaken 

by hand vigorously for 15 seconds and placed on a rotary shaker at 200rpm at 25°C for 

40 minutes. Serial 10-fold dilutions in 1xPBS (phosphate-buffered saline, pH 7.4) were 

plated onto 1% tryptone plates containing 100 ug/l cycloheximide, to inhibit fungal 

growth, and 100 ug/l rifampin, for selection of rifampin-resistant J. lividum.  Plates were 

incubated at 26°C for 48 hours. 
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After incubation, colony forming units (CFU) were counted on plates. The 

countable range for CFUs was 25-250 colonies per plate. During some sampling events, 

plates containing above 250 CFU were recorded as too numerous to count (TNTC) and 

plates containing below 25 CFU were recorded as too few to count (TFTC). The lowest 

CFU count from the lowest dilution (10
-1 

plate) made the countable detection limit 

2.5x10
2
 J. lividum CFU/g of soil.  

Soil J. lividum densities were expressed as CFUs /g of dry soil. To obtain dry soil 

weights, one gram of fresh soil was weighed, dried at 90°C for 24 hours and then 

weighed again. A proportional relationship was used to calculate the dry weight of the 

one gram of soil used in the soil suspension.  

The J. lividum positive treatment terrariums were sampled on days 2, 8, 19, 30, 

and 41 of the experiment. During the sampling events in which TNTC and TFTC data 

were present, these data was omitted in order to calculate the average densities of J. 

lividum at each time point. TNTC data were present at days 2 and 8 indicating that for 

those dates the average densities were higher than calculated. TFTC data were present at 

days 30 and 41 indicating that for those dates the average densities were lower than 

calculated. The J. lividum negative terrariums were treated the same at these time points, 

i.e., two grams of soil were removed from well-mixed soil, but the determination of J. 

lividum presence was only conducted on days 2 and 41. An assumption was made that if 

these soils were negative at the beginning and at the end of the experiment then they were 

negative throughout the experiment.  
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Batrachochytrium dendrobatidis exposure: 

 On day 8 of the experiment, J.liv+Bd+ and J.liv-Bd+ treatment salamanders were 

exposed to B. dendrobatidis. The B. dendrobatidis isolate, JEL 423, was obtained from 

Joyce E. Longcore (University of Maine). JEL 423 was isolated from El Copé, Panama 

on a frog in the species Phyllomedusa lemur on December 17, 2004. Cultures were 

maintained in 1% tryptone broth at 23°C and transferred weekly until the salamanders 

were exposed. Zoospores for exposure were prepared by growing a one week old broth 

culture on 1% tryptone plates. After six days of growth, plates were flooded with six ml 

of sterile artificial pond water. After sitting for 20 minutes, the water was removed by 

pipette and transferred to a 15-ml Falcon tube. The concentration of the zoospore solution 

was determined by duplicate counts using a hemacytometer and then calculating the 

average density per ml. Salamanders in treatments J.liv+Bd+ and J.liv-Bd+ were exposed 

to approximately 1 x 10
6
 zoospores in five ml of solution for five hours in Falcon tubes at 

room temperature. J.liv+Bd- and J.liv-Bd- individuals were treated identically, but placed 

in five ml of a sham (sterile artificial pond water).  

The initial duration of exposure to B. dendrobatidis was set to be eight hours; 

however, a temperature malfunction in the laboratory cooling system caused the room 

temperature to reach 30°C. One salamander experienced mortality and four salamanders 

displayed sub-lethal lethargy due to the temperature malfunction, and exposure was 

ended at five hours to avoid additional stress. At six days post-infection (day 14 of the 

experiment) the four salamanders that experienced sub-lethal trauma were euthanized 

with two g of tricaine methane sulfonate per L of sterile deionized water because they did 

not show signs of recovery. The data collected for these salamanders were not used. 
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Swabbing to sample for Janthinobacterium lividum and Batrachochytrium 

dendrobatidis: 

Salamanders were swabbed at initial collection and thereafter on days 3, 8, 13, 20, 

29 and 42. Before swabbing occurred each salamander was rinsed in sterile artificial pond 

water to remove transient bacteria from the skin (Lauer et al. 2007) and soil debris. 

During rinsing, the weight in grams of each salamander was taken. Then, on day 3, each 

individual was swabbed with MW100 Fine-tip swabs (Medical Wire & Equipment, 

Corsham, Wiltshire, England) on its ventral surface 10 times, the dorsal surface 10 times 

and two limbs 10 times. On day 8 immediately before infection with B. dendrobatidis, 

only two limbs were swabbed 10 times each to avoid reducing the J. lividum on the trunk 

that may occur during swabbing.  

After exposure to B. dendrobatidis (days 13, 20, 29 and 42) one side of the 

individual was swabbed for J. lividum detection and the other side of the individual was 

swabbed for B. dendrobatidis detection following the procedure used on day 3. It was 

later determined that the DNA extraction protocol from DNeasy Blood & Tissue Kit 

(Qiagen, Germantown, MD) could extract J. lividum and B. dendrobatidis DNA from the 

same swab, and that enough DNA was extracted to perform separate PCR reactions; only 

one swab was actually necessary. Swabs were frozen immediately after swabbing at -

20°C until further processing.  

Janthinobacterium lividum detection on salamanders: 

DNA was extracted from swabs using DNeasy Blood & Tissue Kit following the 

manufacture‟s protocol for Gram-positive DNA extraction. J. lividum is a Gram-negative 

bacterium, but the Gram-positive bacteria extraction protocol also extracts Gram-negative 
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bacteria DNA. By using this extraction protocol, the extracted DNA can then also be 

analyzed in the future for microbial community composition.  

Salamander swabs taken before the application of J. lividum were analyzed to 

determine presence of naturally occurring J. lividum by performing diagnostic PCR on 

the DNA extracted from the swabs. The J. lividum specific primers and the PCR protocol 

as described in Harris et al. (2009a) were used. All salamanders were determined to lack 

J. lividum at the beginning of the experiment. The soil pH at the site of collection was 5. 

Growth of J. lividum does not occur below pH 5 and this may be an explanation as to 

why J. lividum was not present on these salamanders. 

The number of environmentally transmitted J. lividum cells present on the 

salamanders‟ skin during the experiment was estimated by performing quantitative real-

time PCR (qRT-PCR). Swabs from day 3 could not be analyzed by qRT-PCR due to an 

error in extracting DNA. For J.liv+Bd+ and J.liv+Bd- treatments, DNA was extracted 

from swabs on days 8, 13, 20, 29 and 42 using DNeasy Blood & Tissue Kit following the 

manufacture‟s protocol for Gram-positive bacteria DNA extraction. For J.liv-Bd+ and 

J.liv-Bd- treatments, DNA was extracted from swabs on days 8, 20 and 29. Population 

densities were calculated by dividing the number of J. lividum cells by the area swabbed 

(see below). DNA was also extracted from a positive control swab and a negative control 

swab at the same time as DNA extraction from the sample swabs. The positive control 

consisted of a swab dipped in a liquid culture of J. lividum. The negative control 

consisted of a swab dipped in sterile artificial pond water.   

Amplification of each sample for J. lividum quantification was completed using a 

Roche LightCycler (Applied BioSystems, Foster City, CA). The J. lividum specific 
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primers as described in Harris et al. 2009a were used.  qPCR reactions (10µl) contained 

2.5µl of DNA template, 0.5µM of each primer, 2µl of LightCycler Fast Start DNA 

Master
Plus

 SybrGreen Master Mix (Applied Biosystems, Foster City, CA) and PCR grade 

H2O. The LightCycler protocol included pre-incubation for 10 minutes at 95°C, followed 

by 50 cycles of 10 seconds at 95°C for denaturation, 5 seconds at 60°C for annealing, and 

16 seconds at 72°C for extension and then a final cycle for the melting curve of 1 second 

at 95°C for denaturation, 30 seconds at 60°C for annealing and 0.1°C/second increase to 

95°C for melting.  

Quantification of samples was performed using a standard curve and the 

determined concentration was expressed as the number of J. lividum cell equivalents. A 

standard curve was constructed using known concentrations of 10
7
, 10

6
, 10

5
, 10

4
, 10

3
 and 

10
2
   J. lividum cells. Samples were amplified in duplicate. When the difference between 

the cycle threshold values for the duplicate samples were greater than one, the duplicates 

were considered to be inconsistent, and a third sample was run. The cycle threshold value 

is the cycle at which a detectable increase in fluorescence (indicating amplification of 

DNA) is observed. The third sample allowed a better estimation of the numbers of J. 

lividum present by indicating which of the first two samples was an outlier. Positive 

samples were confirmed by melting curve analysis. A positive control and a negative 

control were run with each qRT-PCR reaction. The positive control consisted of a J. 

lividum standard. The negative control was PCR grade water.  

All salamanders were measured at the end of the experiment to determine the area 

that was swabbed and their total length. For the area swabbed, trunk area and limb area 

were calculated.  To calculate trunk area, the length from axilla to groin and the width at 
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the widest spot on the trunk were measured. To calculate limb area, the length from the 

elbow joint to the tip of the foot and the width at the ankle were measured for one 

posterior limb and one anterior limb. The area swabbed for each set of measurements was 

determined by multiplying length times width. The total area swabbed for day 8 was 

determined by adding the two limb area measurements together. The total area swabbed 

for days 13, 20, 29 and 42 was determined by dividing the total trunk area by two (only 

one side of the individual was swabbed) and adding that value to the total for the two 

limb area measurements.  The quantitative measure of J. lividum abundance as 

determined by qRT-PCR was divided by the area swabbed to calculate the number of J. 

lividum cell equivalents per mm
2
 for each salamander at each swabbing event. As the true 

area swabbed was probably less than the estimated area, the number of J. lividum cell 

equivalents per mm
2
 was a conservative estimate. The total length was measured from the 

tip of the snout to the tip of the tail. This was performed to generate an index of body 

condition for each salamander, which is defined as mass for a given length.   

Batrachochytrium dendrobatidis detection:  

In order to determine the presence of B. dendrobatidis on the salamanders‟ skin 

during the experiment, diagnostic PCR was performed. The B. dendrobatidis specific 

primers and the protocol described in Annis et al. (2004) were used to perform PCR. The 

DNA extracted from the swabs used for J. lividum quantification was also used to 

determine B. dendrobatidis prevalence on day 13 and 20 of the experiment, which were 5 

days and 12 days post-infection, respectively. The extraction protocol for Gram-positive 

bacteria used for J. lividum DNA extraction was tested using known concentrations (10
3
, 

10
2
, 10, 1) of B. dendrobatidis. I determined that the detection level for B. dendrobatidis 
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using this DNA extraction protocol was 10 zoospores. This detection level is sensitive 

and is similar to that determined for two other protocols listed in the DNeasy Blood & 

Tissue Handbook. During each PCR run, a positive control and a negative control were 

run. The positive control consisted of DNA extracted from a swab dipped in a liquid 

culture of B. dendrobatidis. The negative control consisted of PCR grade water. By 12 

days post-infection, only one salamander tested positive for B. dendrobatidis; therefore, 

no further testing for B. dendrobatidis prevalence was performed.   

Statistical analysis: 

All statistical analysis was performed using SAS statistical software (SAS 

Institute Inc., Cary, North Carolina). To determine if there was a correlation between the 

density of J. lividum on the salamanders and the density of J. lividum in the soil, I 

analyzed data for three time points. On day 8, soils and salamanders were sampled on the 

same day. Soils sampled on day 19 were compared with salamanders sampled the next 

day. Salamanders sampled on day 29 were compared with soils sampled the next day. 

After day 8, it was determined that sampling soil and salamanders on one day was not 

practical. Day 8 soil data contained a number of soil samples with TNTC data. Day 19 

soil data contained all numerical values. Day 30 soil data contained a number of soil 

samples with TFTC data.  

Before performing the correlation analysis, I first determined whether I could pool 

the J.liv+Bd+ and J.liv+Bd- treatments to increase sample size at each time point.  To 

determine if there was a difference between these treatments, I used a nonparametric 

Wilcoxon two-sample test for soil and salamander data separately at each time point. Soil 

data on days 8 and 30 that were TNTC and TFTC, respectively, were omitted to test for a 
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difference between treatments. The results indicated that there was no evidence of a 

difference in J. lividum density and the data were pooled from the two treatments for soil 

and salamander data separately to create a J.liv+ treatment at each time point.  

The pooled data were analyzed with a nonparametric Spearman rank correlation 

test to determine if a correlation existed. Due to TNTC or TFTC soil data on days 8 and 

30, respectively, the data on these days were categorized. On day 8, three ordinal 

categories were formed, each representing roughly one-third of the data: the one-third 

highest values (TNTC), the one-third middle values, and the one-third lowest values. On 

day 30, two ordinal categories were formed: TFTC and all counted points. Salamander 

data for days 8 and 29 were also categorized into three categories and two categories, 

respectively, so that both soil data and salamander data could be analyzed together by 

categorized ranks. For the salamander categorization, an even distribution of densities in 

each category was achieved by identifying clear separations in the data. The exact 

Spearman rank correlation test is appropriate for the analysis of ordinal categorical data 

(R. Domangue, personal communication). Soil data on day 19 contained all quantitative 

data. Thus, soil and salamander data for day 19/20 did not have to be categorized.                        

To determine if B. dendrobatidis prevalence on infected salamanders was related 

to presence or absence of J. lividum in soil (J.liv+Bd+ and J.liv-Bd+), I performed a 

Fisher‟s exact test. If a salamander exposed to B. dendrobatidis (J.liv+Bd+ and J.liv-Bd+) 

did not get infected, as determined by PCR analysis, then it was considered negative for 

B. dendrobatidis. Only data for day 13 were analyzed because by day 20 only one 

salamander of the remaining 27 that were initially infected tested positive for B. 
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dendrobatidis.  No mortality (other than temperature malfunction mortality) in any 

treatment was observed during the experiment and was not statistically analyzed. 

An analysis of variance was performed to compare the proportion of body mass 

lost from day 1 to day 42 of the experiment. Some salamanders lost their tail before or 

during the experiment due to handling; these individuals were removed from the analysis 

(n=5). Means presented in the results are shown as ± one standard deviation. Proportion 

of body mass lost was compared between J.liv+Bd- and J.liv-Bd- to determine if adding 

J. lividum to soil affected body mass of uninfected individuals. Proportion of body mass 

lost was compared between J.liv-Bd+ and J.liv-Bd- to determine if exposure to B. 

dendrobatidis affected the body mass of individuals.  Proportion of body mass lost was 

compared between J.liv+Bd+ and J.liv-Bd+ to determine if the presence or absence of J. 

lividum in soil affected the body mass of individuals infected with B. dendrobatidis.  

Body condition is an indicator of the general health of an individual (Schulte-

Hostedde et al. 2005) and can be thought of as the fatness (good condition) or thinness 

(poor condition) of the individual relative to total length. The body condition of each 

salamander was examined by regressing its body mass at days 1 and 42 on its total 

length. Individuals that lost their tail before or during the experiment were removed from 

the analysis (n=5). The residuals from the regression were used as an index of body 

condition for the initial body condition and the day 42 body condition.  In addition, an 

analysis of covariance (ANCOVA) was performed with body condition at day 42 as the 

response and the initial body condition as the covariate. Treatments were compared in the 

generated ANCOVA model using the same comparisons as the general linear model 

above. 
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 To determine if there was an effect of B. dendrobatidis treatment on the density 

of J. lividum on the salamanders, I compared the J.liv+Bd+ and J.liv+Bd- treatments. In 

the first analysis, the J. lividum cell densities in these treatments at each sampling time 

point were compared using a Wilcoxon two-sample test.  This test was used because the 

assumption of normality for a parametric test was not met. Secondly, J. lividum 

prevalence (presence or absence) at each sampling time point was compared between the 

treatments using a Fisher‟s exact test.   

Interestingly, not all individuals in the J.liv+Bd+ tested positive for infection of B. 

dendrobatidis five days post infection, i.e., day 13 of the experiment. This led to the 

statistical question of whether J.liv+Bd+ individuals that tested negative should be put in 

the J.liv+Bd- category since it is likely that they were not infected. Consequently, 

salamanders in this treatment were categorized as being infected on day 13 

(J.liv+Bd+(+)) or not being infected on day 13 (J.liv+Bd+(-)). A set of analyzes was 

performed to determine if there was an effect on J. lividum density on the salamanders 

based on these new treatments. First, the J. lividum cell densities in these two categories 

within the J.liv+Bd+ treatment were compared using a Wilcoxon two-sample test.  This 

test was used because the assumption of normality for a parametric test was not met. 

Second, J. lividum prevalence was compared between the categories within the J.liv+Bd+ 

treatment using a Fisher‟s exact test.   



 

 

 

Results 

Janthinobacterium lividum survival in soil: 

In my experiment, all soils inoculated with J. lividum (J.liv+Bd+ and J.liv+Bd-) 

were positive for J. lividum at all sampling time points. The hypothesis that J. lividum can 

be successfully introduced into natural soil is supported. Following the establishment of 

J. lividum in the soil, the densities of J. lividum declined over time (Figure 2). For this 

analysis, J.liv+Bd+ and J.liv+Bd- treatments were pooled together to increase sample 

size. Pooling was justified because there was no difference in the number of J. lividum 

cells/dry g of soil between J.liv+Bd+ and J.liv+Bd- treatments (Wilcoxon two sample 

test, day 2: W=41 n=5,12 p=0.72; day 8: W=88.5 n=3,12 p=0.30; day 19: W=54 n=6,15 

p=0.35; day 30: W=18.5 n=3,5 p=0.23; day 41: W=10 n=3,7 p=0.18). All soils inoculated 

with a sham (J.liv-Bd+ and J.liv-Bd-) were negative for J. lividum throughout the 

experiment. Two pilot studies conducted in April and in June of 2010 using soil collected 

in the James Madison University (JMU) Arboretum showed similar results in which J. 

lividum could colonize soil for at least 30 days and that the average cell density decreased 

over time (data not shown).   
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Figure 2. Average J. lividum soil survival over time for the pooled J. liv+Bd+ and 

J.liv+Bd- treatments. Soil was inoculated with 2.9x10
7
 cells/dry g of soil at day 0. TNTC 

data points were omitted at days 2 and 8 and TFTC data were omitted at days 30 and 41. 

Error bars represent one standard error.  

 

Prior to the initiation of the experiment, soil was collected from three locations in 

Virginia from June to September 2010 and experimentally inoculated (see Appendix). J. 

lividum survival in these soils was low. I attempted to determine what factors were 

affecting J. lividum soil survival in these soils (see Appendix). J. lividum soil survival 

remained negligible throughout these trials. The hypothesis that J. lividum can be 

successfully introduced into soil was not supported for soil collected in the summer of 

2010 from these locations. In October 2010, I collected soil from the JMU Arboretum 

which was the soil I used for my main experiment. The fall season had begun and the 

local weather was cooler and moister than when the other soils had been collected. From 
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these results, I hypothesize that season may be an important factor in survival of bacteria 

introduced into soil.  

Environmental transmission: 

All salamanders exposed to J. lividum in soil were negative for J. lividum at the 

beginning of my experiment, but all salamanders became positive during the experiment. 

This result supports the hypothesis that environmental transmission of J. lividum from 

soil to salamander can occur. Similar results were seen in a pilot study I conducted in 

June 2010 in which all salamanders exposed to J. lividum in soil (n=7) became positive 

for J. lividum (data not shown). All salamanders not exposed to J. lividum in soil (J.liv-

Bd+ and J.liv-Bd-) were negative for J. lividum throughout the experiment (day 8, 20 and 

29). 

J. lividum was detected on salamander skin up to the 29
th

 day of the experiment 

(Figure 3 & 4). By day 42 of the experiment, J. lividum was no longer detected. The 

average number of J. lividum cell equivalents transmitted per mm
2
 of salamander skin on 

days 8, 13, 20, 29 and 42 in treatments J.liv+Bd+, J.liv+Bd- is displayed in Figure 3. The 

average J. lividum density in soil had dropped from 6.3x10
3
 CFU/g of soil on day 29 to 

below 5.6x10
2
 CFU/g of soil at day 42 (Figure 2). Densities below a certain threshold 

may potentially impede environmental transmission. 

The median number of salamander J. lividum cell equivalents/mm
2
 in both J.liv+ 

treatments were fairly constant on days 8, 13 and 20, increased at day 29, then declined to 

zero by day 42 (Figure 3). Interestingly, on day 29 all salamanders tested positive for J. 

lividum (Figure 4) with the average density being higher than at any other sampling time 

point (Figure 3). On day 29, the soil J. lividum density was continuing to decline (Figure 
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2), which suggests that the densities of J. lividum on the salamander are independent of 

densities of J. lividum in the soil. Although salamanders in the J.liv+Bd+ treatment 

tended to have higher densities of J. lividum than those in the J.liv+Bd- treatment, 

especially on day 13, these differences were not statistically significant (Figure 3) at any 

sampling time point (Wilcoxon two-sample test; day 8: W=50 n=16,5 p=0.24; day 13: 

W=45 n=16,5 p=0.11; day 20: W=64 n= 15,6 p=0.90; day 29: W=64 n=15,6 p=0.90).  

 Figure 3. Transmission of J. lividum from soil to salamander over time for J. liv+Bd+ 

and J.liv+Bd-. Variation between treatments in salamander J. lividum cell 

equivalents/mm
2
 is observed from day 8 to day 20. An increase amongst all salamanders 

was observed on day 29. By day 42 J. lividum was no longer detected on any salamander. 

No difference between treatments was observed (Wilcoxon two-sample test, p>0.05). 

Medians are shown with error bars representing the 25
th

 and 75
th

 percentiles.  

 

Every salamander in the J.liv+ treatments tested positive at some point during the 

experiment, but not all salamanders tested positive for J. lividum at all sampling time 

points. The percentage of salamanders positive for J. lividum varied from 0-100% during 
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the experiment (Figure 4). There was no difference in percentage of salamanders positive 

for environmental transmission between the J.liv+Bd+ and J.liv+Bd- treatments at any 

sampling time point (Fisher‟s exact test, day 8 p=.35; day 13 p=0.07; day 20 p=1) (Figure 

4).  However, a strong trend on day 13 was observed in which a higher prevalence of J. 

lividum was present on J.liv+Bd+ salamanders in comparison to J.liv+Bd- salamanders. 

Both treatments followed the same cyclical trend of an increase, decrease and then 

increase and decrease again in J. lividum prevalence. At the same time, all soils in these 

treatments tested positive for J. lividum presence and a steady decline was observed in 

the J. lividum soil densities (Figure 2). Therefore, the independence of J. lividum in soil 

and J. lividum on salamanders is suggested.  

 

Figure 4. Percentage of salamanders positive for J. lividum over time for J. liv+Bd+ and 

J.liv+Bd-.  No difference between treatments was observed (Fisher‟s exact test, p>0.05). 

 

On days 8, 13 and 20, there was individual variation in the density of J. lividum 

on salamanders exposed to J. lividum in soil. Interestingly, this variation on individual 

salamanders could be categorized in two ways (Figures 5 & 6). The data presented in 
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Figures 5 and 6 is based on the trend the J. lividum density followed on each individual 

salamander in the J.liv+ treatments. The first trend (Figure 5) was seen as negligible or 

relatively low densities of J. lividum on the salamander (in comparison to day 13) on day 

8 to higher densities on day 13 to lower densities on day 20. The second general trend 

(Figure 6) was seen as relatively high densities of J. lividum on the salamander (in 

comparison to day 13) on day 8 to lower densities on day 13 to relatively equal or still 

lower densities on day 20. Two outliers in the J.liv+Bd+ treatment are not shown due to 

extremely high densities of J. lividum cell equivalents/mm
2
 (9.2x10

2
 and 2.1x10

3
) on day 

8; both followed the trend seen in Figure 6. Two outliers in the J.liv+Bd- treatment are 

not shown and followed neither trend. One outlier had zero values present on days 8 and 

13 and the other had zero values present at the three sampling time points.  
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Figure 5. One of two trends observed in the distribution of J. lividum cell 

equivalents/mm
2
 over three sampling time points. The trend was seen as negligible or 

relatively low densities (in comparison to day 13) on day 8 to higher densities on day 13 

to lower densities on day 20. Each line represents an individual salamander. 

 

 

Figure 6. The second of two trends observed in the distribution of J. lividum cell 

equivalents/mm
2
 over three sampling time points. The trend was seen as relatively high 

densities (in comparison to day 13) on day 8 to lower densities on day 13 to relatively 

equal or still lower densities on day 20. Each line represents an individual salamander.   
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Correlation between Janthinobacterium lividum found in soil and on salamanders: 

The densities of J. lividum in the soil and on the salamander were not correlated 

on three sampling dates (Spearman rank correlation, day 8: r=0.21 n=21 p=0.42; day 

19/20: r=-0.06 n=21 p=0.78; day 29/20: r=0.07 n=21 p=1). Based on these results, the 

hypothesis that there is a positive relationship between J. lividum densities in soils to J. 

lividum densities on the skin of the salamanders is not supported. This conclusion is also 

evident by comparing Figures 2 with Figures 3 and 4. This result suggests that 

populations of J. lividum on the salamander have population dynamics that are 

independent of population patterns on J. lividum in the soil.  

Batrachochytrium dendrobatidis prevalence: 

An a priori one-tailed hypothesis was generated before data collection that B. 

dendrobatidis prevalence in the J.liv+Bd+ treatment will be lower than B. dendrobatidis 

prevalence in the J.liv-Bd+ treatment. This is based on previous findings that mutualistic 

bacteria (Harris et al. 2006, Woodhams et al. 2007b, Harris et al. 2009b, Lam et al. 2010) 

and specifically J. lividum (Brucker et al. 2008b, Becker et al. 2009, Harris et al. 2009b, 

Becker & Harris 2010) inhibit B. dendrobatidis.  

The inoculation of soil with J. lividum halved the prevalence of B. dendrobatidis 

on salamanders (Fisher‟s exact test, two-tailed p=0.047, one-tailed p=0.028) five days 

after the salamanders were exposed to B. dendrobatidis (day 13 of the experiment) (Table 

3). In the J.liv+Bd+ treatment 40% of salamanders (n=15) were infected with B. 

dendrobatidis, whereas, 83% of salamanders (n=12) were infected with B. dendrobatidis 

in the J.liv-Bd+ treatment. This result supports the hypothesis that the exposure of 

salamanders to J. lividum in soil will decrease the prevalence of B. dendrobatidis. By 12 
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days post-infection (day 20), only one salamander in the J.liv+Bd+ treatment tested 

positive for B. dendrobatidis. Based on this result no further testing for B. dendrobatidis 

was performed.  

Table 3. Disease outcome at five days post exposure to B. dendobatidis. Significantly 

fewer salamanders were infected with B. dendrobatidis in the treatment exposed to J. 

lividum in the soil (Fisher‟s exact test, two-tailed p=0.047, one-tailed p=0.028). 

 

  

Disease Outcome 

Batrachochytrium 

dendrobatidis 

positive 

Batrachochytrium 

dendrobatidis 

negative 

Salamander 

Bacterial 

Status 

Exposed to  

Janthinobacterium 

lividum in soil 

6 9 

Not exposed to 

Janthinobacterium 

lividum in soil 

10 2 

 

Morbidity and mortality effects caused by Batrachochytrium dendrobatidis infection: 

The hypothesis that infected salamanders would experience lower morbidity and 

mortality in J. lividum augmented soil was rejected. Over the course of the experiment all 

salamanders on average lost the same relatively small amount of weight from day 1 to 

day 42 in all treatments (ANOVA, p>0.05; J.liv-Bd- mean=-0.09±0.06, n=5; J.liv-Bd+ 

mean=-0.05±0.04, n=10; J.liv+Bd- mean=-0.06±0.07, n=5; J.liv+Bd+ mean=-0.06±0.09, 
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n=13). The slight reduction in weight over time was likely due to a diet of only fruit flies. 

In addition, the body condition of all salamanders did not differ when the body condition 

at day 42 was adjusted for the body condition at day 1 (ANCOVA, p>0.05). Of the 27 

salamanders infected with B. dendrobatidis all of them with the exception of one 

salamander had cleared the infection by day 20. All salamanders survived during the 

experiment.  

Interaction between infection status and Janthinobacterium lividum on salamanders: 

Densities of J. lividum tended to be higher on salamanders that were B. 

dendrobatidis negative. As indicated above, there was no difference in salamander J. 

lividum cell equivalents/mm
2
 (Figure 3) or in salamander J. lividum prevalence (Figure 4) 

when the J.liv+Bd+ and J.liv+Bd- treatments were compared.  However, not all 

individual salamanders in the J.liv+Bd+ treatment became infected with B. dendrobatidis 

as determined by PCR five days post infection (day 13). Therefore, I categorized the 

J.liv+Bd+ treatment as being infected with B. dendrobatidis (J.liv+Bd+(+)) or not being 

infected with B. dendrobatidis (J.liv+Bd+(-)) on day 13. No difference in salamander J. 

lividum cell equivalents/mm
2 

was observed before infection on day 8 (Wilcoxon two-

sample test, W=59 n=6,9 p=0.93) (Figure 7). A trend on day 13 was observed in which a 

higher density of J. lividum cell equivalents/mm
2 
were present on J.liv+Bd+(+) 

salamanders (Wilcoxon two-sample test, W=78 n=6,9 p=0.11) (Figure 7). A significantly 

higher density of J. lividum cell equivalents/mm
2 
on J.liv+Bd+(+) salamanders was 

observed on day 20 (Wilcoxon two-sample test, W=69 n=6,9 p=0.026) and on day 29 

(Wilcoxon two-sample test, W=67 n=6,9 p=0.047) (Figure 7).  
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Figure 7. Transmission of J. lividum from soil to salamander over time based on the 

categories of being infected (J.liv+Bd+(+)) or not being infected with B. dendrobatidis 

(J.liv+Bd+(-)) on day 13 within the J. liv+Bd+ treatment. A difference between 

treatments as indicated by an asterisk(*) was observed on days 20 and 29 (Wilcoxon two-

sample test, p<0.05).  Medians are shown with error bars representing the 25
th

 and 75
th

 

percentiles.  

 

B. dendrobatidis presence was associated with a higher proportion of salamanders 

having J. lividum on day 20 (Figure 8). The categories (J.liv+Bd+(+)) and J.liv+Bd+(-)) 

within the J.liv+Bd+ treatment were analyzed at each time point by salamander J. lividum 

prevalence. No difference in salamander J. lividum prevalence (Figure 8) was observed 

on days 8, 13 and 29 (Fisher‟s exact test, days 8, 13 and 29 p=1). A significantly higher 

number of salamanders tested positive for J. lividum in the J.liv+Bd+(+) category on day 

20 (Fisher‟s exact test, p=0.03) (Figure 8). In sum, the B. dendrobatidis infection status 

of the salamander positively affects the salamander J. lividum density on days 20 and 29 

(Figure 7) and the salamander J. lividum prevalence on day 20 (Figure 8). These results 

1.0

10.0

100.0

1000.0

10000.0

0 5 10 15 20 25 30 35

Sa
la

m
an

d
e

r 
J.

 li
vi

d
u

m
 c

e
ll 

e
q

u
iv

al
e

n
ts

/m
m

^2

Time (days)

J.liv+Bd+(-)

J.liv+Bd+(+)
*

*



45 

 

  

support the hypothesis that infection status causes a difference in J. lividum density and 

prevalence. In addition, while it is controversial to pool J.liv+Bd+(-) with J.liv+Bd-, if 

pooling is done, I obtain the same results when comparing this pooled treatment to 

J.liv+Bd+(+).  

 

Figure 8. Percentage of salamanders positive for J. lividum over time based on the 

categories of being infected (J.liv+Bd+(+)) or not being infected with B. dendrobatidis 

(J.liv+Bd+(-)) on day 13 within the J. liv+Bd+ treatment.  A difference between 

treatments as indicated by an asterisk(*) was observed on day 20 (Fisher‟s exact test, 

p=0.03). 
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Discussion 

The results of this study showed that the mutualistic bacterial species J. lividum 

could be introduced into soil, that environmental transmission of J. lividum from soil to 

the skin of P. cinereus occurred, and that this transmission inhibited infection by the 

pathogen B. dendrobatidis. After introduction into natural soil, J. lividum survival was 

observed for 41 days. Persistence of environmentally transmitted J. lividum on 

salamander skins was observed to the 29
th

 day of the experiment. No relationship or 

correlation between soil J. lividum densities and salamander J. lividum densities was 

observed, suggesting the population dynamics of J. lividum in soil and on the 

salamanders were independent. A steady decline in soil J. lividum density was observed 

during the experiment. Once the soil J. lividum density dropped to an average of 5.6x10
2
 

CFU/g of soil at day 41, J. lividum was not detected on salamanders, suggesting that 

environmental transmission no longer occurred. Environmental transmission of J. lividum 

to salamander skin decreased the prevalence of B. dendrobatidis five-days post infection. 

The presence of B. dendrobatidis on salamander skin was associated with an increased 

density of J. lividum on salamanders at 12 and 21 days post infection and increased the 

prevalence of J. lividum on salamander skin at 12 days post infection.  

Survival of introduced bacteria into soil: 

 In the experiment, all soils inoculated with J. lividum showed colonization and 

survival by the bacteria for 41 days. In preliminary trials (see Appendix), J. lividum did 

not survive long enough to colonize the soil. For several decades, bacteria have been 

introduced into soil to improve the growth and health of crops (Gentry et al. 2004). 

Recently, the introduction of bacteria into soil has also been used to degrade 
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environmental contaminants (bioremediation) (Gentry et al. 2004). The survival of 

bacterial inoculants in soil in these applications typically varies over time and space (Van 

Elsas & Heijnen 1990, Van Veen et al. 1997, Gentry et al. 2004). Similarly, my 

preliminary trials and experiment showed that survival of J. lividum after introduction 

into soil varied.  

Survival of J. lividum in soil depends on multiple factors, as revealed by studies 

of agricultural and bioremediation applications. Abiotic factors that have been suggested 

to govern survival of introduced bacteria into soil include: soil moisture (Postma et al. 

1989), soil temperature (Vandenhove et al. 1991, Zogg et al. 2007), soil type (Latour et 

al. 1999), soil pH and salinity (Kästner et al. 1998). Biotic factors that have been 

suggested to govern survival include: predation by protozoa (Clarholm 1981), microbial 

antagonism and competition (Postma et al. 1990) and the physiological status of the 

introduced bacteria (Vandenhove et al. 1991, Van Veen et al. 1997). I examined soil 

moisture, temperature, pH, and the physiological status of the bacteria in my preliminary 

study (see Appendix). I found that in altering these factors in the laboratory, J. lividum 

survival remained negligible in soil collected in the hot, dry summer of 2010. However, 

J. lividum did survive in soil collected in the fall of 2010. This soil was moister, cooler 

and had a higher pH than similar soil collected from the same location in the summer of 

2010 (see Appendix). Two pilot studies also demonstrated that J. lividum could survive 

after introduction into soil collected during moister, cooler conditions in the spring of 

2010 (data not shown). Changes in climate due to season or anthropogenic disturbances 

affect many abiotic and biotic factors in the soil (Waldrop & Firestone 2006, Castro et al. 
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2010), which include most of the factors mentioned above. Thus, seasonality or climate 

may be strong determinants of introduced bacterial survival.  

I observed an exponential decrease in J. lividum soil density during the 41 days of 

detectable persistence (Figure 2). The decline may have been due to limited nutrients, 

high levels of predation or other factors that were not examined. Similar declines in 

bacterial numbers after introduction into soil have been observed in other studies (Postma 

et al. 1990, Van Veen et al. 1997). However, in one study, the bacterial density in 

different soil types reached an equilibrium density 50-100 days after introduction in 

which silt loam soil reached a higher equilibrium density earlier than loamy sand (Postma 

et al. 1990). In my experiment, J. lividum was below the detectable limit by day 41 so 

determination of equilibrium status of the soil bacteria was not feasible. Future work 

should be pursued to determine if J. lividum reaches an equilibrium state when inoculated 

into different soil types or at higher densities than I used. 

Environmental transmission: 

My study demonstrated that environmental transmission of J. lividum from soil to 

salamander skin could occur. The presence of environmentally transmitted J. lividum on 

salamanders was detected to the 29
th

 day of the experiment, although I could not 

distinguish environmental transmission from bacterial survival and reproduction after the 

first positive sampling date. Environmental transmission of symbiotic bacteria occurs 

throughout the animal kingdom with examples including marine bivalves (Gros et al. 

1996), terrestrial isopods (Wang et al. 2007), dolphins (Goldman et al. 2009) and humans 

(Xu & Gordon 2003).  For amphibians, Austin (2000) suggested that environmental 

transmission of soil microbiota to salamander skin likely occurs. However, to my 
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knowledge, this study is the first empirical demonstration of environmental transmission 

of a beneficial bacteria species to the skin of an amphibian species under simulated 

natural conditions.  

The population densities of J. lividum on the salamander were independent of 

those in the soil. In the experimental soil, it appears that over time mortality was greater 

than reproduction, and numbers declined in a steady exponential decay (Figure 2). On the 

salamander, the median density of J. lividum remained relatively constant over the first 

20 days, then spiked to its highest density on day 29 and then dropped to zero on day 42 

(Figure 3).  Decreases in bacterial density likely reflected high mortality on the 

salamanders, reduced or absent transmission and possibly emigration from the 

salamanders. Increases in density likely reflected reproduction on the salamanders and 

continued transmission.  These population processes may help explain the variation seen 

in the densities of J. lividum on the salamanders (Figure 3), in the prevalence of J. 

lividum on the salamanders (Figure 4), and in the two population trends of J. lividum 

observed at the individual salamander level (Figures 5 & 6). In this study, I was unable to 

distinguish bacterial reproduction from transmission or mortality from emigration. A 

future study to distinguish continual transmission from survival and reproduction on 

salamander skins would be of interest. 

Mortality and emigration or reproduction and transmission of J. lividum are likely 

due to the conditions of the soil and the salamander.  Bacterial mortality on the 

salamander and emigration from the salamander occur due to lack of nutrients, microbial 

competition, or immune defenses by the salamander. For instance, an increase of J. 

lividum to 100% prevalence in all salamanders, and an increase to the highest density 
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across all other sampling time points occurred on day 29. At this time point, J. lividum in 

the soil had declined to relatively low densities. Wang et al. (2007) proposed that it is 

advantageous for microbes to colonize the hindgut of terrestrial isopods, as the hindgut is 

a more favorable environment than soil and leaf litter (Wang et al. 2007). It is possible 

that the soil environment was becoming inhospitable for J. lividum (increased microbial 

competition, decreased nutrients) so that the bacteria were colonizing the skin of the 

salamanders (less competition, more nutrients) to escape mortality in the soil, which led 

to continual environmental transmission.  It is also possible that conditions for survival 

and reproduction of J. lividum were optimal at that time point. For example, immune 

defenses by the salamanders may have been down regulated. Ramsey et al. (2010) found 

variability in the number and quantity of antimicrobial peptides (AMPs) produced by 

individual frogs in the species Xenopus laevis suggesting that amphibians may produce 

varied levels of skin defenses. Therefore, salamanders may vary in their innate immune 

responses to the presence of J. lividum leading to variation in colonization, reproduction, 

emigration and mortality rates of J. lividum.  

J. lividum on salamanders was no longer detected by day 42. The average density 

of soil J. lividum density had dropped from 6.3x10
3
 CFU/g of soil at day 29 to 5.6x10

2
 

CFU/g of soil at the point in which transmission was not detected. These results imply 

that if J. lividum is present in densities higher than 6.3x10
3
 cells/g of soil then it is likely 

that transmission from soil to salamander will occur, but below this point transmission 

will likely be absent. A study conducted by Doring et al. (1993) in children‟s hospitals 

found that concentrations greater than 10
5
 Pseudomonas aeruginosa CFU/ml in sink 
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drains were more likely to result in hand contamination (environmental transmission) 

during hand washing than lower concentrations (Doring et al. 1993).  

Disease mitigation: 

 The presence of J. lividum in the soil decreased the prevalence of B. 

dendrobatidis infection at five days post infection. The proportion of B. dendrobatidis 

infected salamanders in soil augmented with J. lividum was half that of salamanders in 

non-augmented soil. This suggests that the presence of J. lividum in soil helped the 

salamanders clear the infection earlier than the salamanders in the non-augmented soil. 

Brucker et al. (2008b) demonstrated that two metabolites produced by J. lividum, 

violacein and indole-3-carboxaldehyde, directly inhibited B. dendrobatidis growth at 

relatively low concentrations. They also found that J. lividum naturally present on P. 

cinereus skins produces these metabolites at high enough concentrations to be inhibitory. 

Thus, the production of antifungal bacterial metabolites may be one mechanism by which 

J. lividum protected its amphibian host from disease. 

At 12-days post infection regardless of soil augmentation status all salamanders 

except one individual tested negative for B. dendrobatidis. It is likely that infection by B. 

dendrobatidis did not persist long enough to cause chytridiomycosis. Thus, no morbidity 

or mortality effects of chytridiomycosis were observed. In other experimental studies, 

morbidity (Harris et al. 2009b, Becker & Harris 2010) and mortality effects (personal 

observation, Becker et al. 2009) in P. cinereus infected individuals have been observed.  

In my study, I ended pathogen exposure at five hours, so pathogen load at exposure may 

not have been high enough to cause morbidity and mortality effects.  
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The rapid clearing of infection may be due to several factors other than low 

infection load. P. cinereus have been shown to possess 32 bacterial species with 

antifungal properties (Lauer et al. 2007) and three genera of bacteria with anti-B. 

dendrobatidis properties (Harris et al. 2006). The presence of these or other mutualistic 

bacterial species may explain the observed clearing of infection in all experimental 

salamanders. In field studies, the presence of multiple species of anti-B. dendrobatidis 

bacteria is associated with persistence of Rana muscosa populations (Woodhams et al. 

2007b, Lam et al. 2010). Moreover, the adaptive immune system of X. laevis has been 

shown to be activated by B. dendrobatidis infection (Ramsey et al. 2010). Thus, like X. 

laevis, P. cinereus may have an adaptive immune response, although the presence of 

adaptive immunity against B. dendrobatidis remains controversial (Rosenblum et al. 

2009). Finally, caudates in general have been found to be less vulnerable to the effects of 

chytridiomycosis than many other anurans (Lips et al. 2006). 

The results of experimental infection trials in the Lature can be challenging to 

interpret which makes it difficult to design an infection study. In experimental trials 

exposure times have varied from 4 hours (Shaw et al. 2010) to 48 hours (Blaustein et al. 

2005). Furthermore, studies have shown that pathogen densities at exposure (Chinnadurai 

et al. 2009), the amphibian species being exposed (Blaustein et al. 2005, Chinnadurai et 

al. 2009, Vazquez et al. 2009), and the strain of B. dendrobatidis being used for exposure 

(Retallick & Miera 2007) are factors that affect outcomes.  Thus, systematic study of 

durations of exposure, exposure loads, amphibian species and experimental strains of B. 

dendrobatidis are important projects to continue to pursue in the future.  Therefore, to 
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determine the generality of my conclusion, it is important to conduct my study again with 

a pathogen load that produces morbidity and mortality effects. 

Interaction between symbionts: 

For the salamanders in the J.liv+Bd+ treatment, a higher density and prevalence 

of J. lividum were observed on salamanders that tested positive for B. dendrobatidis than 

those that did not. AMPs that are part of the innate immune system of amphibians may be 

a factor in this observed difference. First, there may be a co-evolutionary relationship 

between the salamander and the bacteria in which AMPs target B. dendrobatidis and 

other non-protective microbial species and not J. lividum. If so, this targeted response 

would provide J. lividum with more space and available nutrients. Protective bacteria and 

AMPs could work in synergy to combat infection by B. dendrobatidis. Meyers (2011) 

found that a metabolite produced by an amphibian symbiotic bacterial species and AMPs 

work in synergy against B. dendrobatidis. Second, B. dendrobatidis may suppress AMP 

production that would lead to enhanced bacterial growth of most or all bacterial species. 

Third, infected salamanders are sick and have less energy to produce AMPs, which 

would lead to an increase in bacterial growth. The higher density and prevalence of J. 

lividum on infected salamanders were seen at time points after the salamanders had 

cleared infection. Population growth is an exponential process so that small changes in 

growth rate early in the experiment would have been exaggerated later in the experiment. 

Microbial composition change leads to increase in disease: 

Environmental factors can contribute to an increase in disease prevalence. 

Climate change is a one environmental factor that may influence disease outbreaks.  The 

direct link between climate change and chytridiomycosis remains inconclusive (Lips et 
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al. 2008, Rohr et al. 2008). However, Longo et al. (2010) proposed an indirect effect of 

climate change in which drought conditions likely induced behavioral changes in 

amphibians, i.e., crowding in moist areas, which led to an increase of chytridiomycosis. 

Further research is merited to examine such complex effects of climate change on 

chytridiomycosis. For instance, it is possible that climate change and other anthropogenic 

changes may affect microbial communities, which may lead to an increase of 

chytridiomycosis (Belden & Harris 2007).  

Climate change could alter the composition of microbial communities (Zogg et al. 

1997). My study demonstrated that the presence of a mutualistic bacterial species could 

inhibit prevalence of a disease-causing species. What happens if the presence naturally 

occurring protective bacteria is altered? Zogg et al. (1997) proposed that large seasonal 

variation in soil temperature or small annual increases due to global climate change 

would alter the structure and function of soil microbial communities. If seasons are 

shifting due to climate change, then microbial compositions in soil may be temporally 

altered and environmental transmission of anti-B. dendrobatidis microbes may be 

occurring at an inappropriate time. Alternatively, microbial composition in the soil or on 

the skin of amphibians could be spatially altered such that anti-B. dendrobatidis species 

would be present in reduced densities or completely absent in all seasons. Studies have 

found that incidences of chytridiomycosis vary by season (Berger et al. 2004, Kriger et 

al. 2007a, 2007b, Conradie et al. 2011). Higher prevalence are typically found in cooler, 

moister months (Berger et al. 2004, Kriger et al. 2007a, 2007b), but a recent study found 

a higher prevalence during warmer, drier months (Conradie et al. 2011). Local changes in 

skin microbial community may be an alternative explanation for these observed 
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differences in prevalence. No published research has been conducted on the variation of 

amphibian skin microbiota throughout seasons or the relationship of microbial 

community structure to weather patterns. Future work on seasonal variations in microbial 

community structure on amphibian skin is warranted.  

Evolution: 

 Chytridiomycosis is expected to drive evolutionary processes in amphibian and 

bacterial natural defenses. Evolution in susceptible amphibians could occur via the 

evolution of AMPs that specifically target B. dendrobatidis or the evolution of the 

adaptive immune system in which recognition of infection by B. dendrobatidis would 

occur. Alternatively, amphibians and anti-B. dendrobatidis bacteria could co-evolve in 

which amphibians‟ AMPs do not target the anti-B. dendrobatidis bacteria and the bacteria 

colonize the amphibian‟s skin. Another possibility is that amphibian symbiotic cutaneous 

bacteria evolve to combat the pathogen since the bacteria are under strong selection to do 

so. Vorburger et al. (2010) found that a common endosymbiont of aphids had evolved the 

trait to confer resistance to a parasitoid wasp. This result suggested that the ability of 

symbiotic bacteria to protect their host against natural enemies could evolve readily. 

Furthermore, James et al. (2009) proposed that due to low genetic diversity of B. 

dendrobatidis, the species might not be able to co-evolve with adapting amphibian 

populations. The time needed for these or other evolutionary processes to occur are 

unknown. However, the use of probiotics or protective bacteria (bioaugmentation) may 

provide susceptible amphibians the necessary time to evolve natural defenses or for 

evolution to drive the extinction of B. dendrobatidis. 

 



56 

 

  

Bioaugmentation & probiotics: 

Bioaugmentation is the introduction of bacteria by humans to the environment or 

an organism to produce a beneficial effect. Probiotics are live active cultures of bacteria 

introduced for beneficial effects. Bioaugmentation has been used in legume production 

dating back to the 1800s, and probiotics have been consumed for centuries by humans. 

As more research documents the health benefits of indigenous bacteria, the use of 

bioaugmentation with probiotics in mitigating disease is increasing. In recent decades, 

bioaugmentation has been used for disease mitigation in fish (Olsson et al. 1992), poultry 

(Patterson & Burkholder 2003), peaches (Restuccia et al. 2006), and humans (Cherif et 

al. 2009) and has been suggested for use in coral reef disease mitigation (Teplitski & 

Ritchie 2009).  The use of bioaugmentation may be a strategy to combat declines in 

amphibians driven by chytridiomycosis.  

A bioaugmentation strategy for combating disease in amphibians can be 

implemented by adding bacteria to water, soil or other biotic materials present in 

amphibians‟ environment. To date, bacteria have been added to amphibians by placing 

them in small solutions of protective bacteria in water, which has mitigated symptoms of 

chytridiomycosis in R. muscosa (Harris et al. 2009a) and in P. cinereus (Harris et al. 

2009b, Becker et al. 2009) in vitro. This method may be a promising conservation 

strategy. However, in the field, amphibians need to be located, captured and treated 

individually. Using soil augmentation would potentially be less time consuming and 

costly if the use of soil augmentation proves to be effective and safe to the environment. 

It is important in soil inoculation trials to consider the various methods that have been 

designed by other researchers to increase survival of bacterial inoculants into soil (Van 



57 

 

  

Elsas & Heijnen 1990, Van Veen et al. 1997, Gentry et al. 2004). One such method is the 

use of carrier materials such as peat and encapsulation of the bacterial cells in alginate 

beads (Van Elsas & Heijnen 1990, Van Veen et al. 1997).  

An important question regarding the use of bioaugmentation is the safety of the 

ecosystem as a whole. For example, it is important to maintain the biodiversity of the soil 

and the amphibians‟ skin microbiota. The introduction of a microbial species could 

potentially shift the microbial community composition of the soil. A study was conducted 

by Edel-Hermann et al. (2009) to assess the alteration of the soil microbial community 

after the introduction of the biocontrol agent Fusarium oxysporum. They demonstrated 

that little to no community structure change was observed after introduction of a 

beneficial fungal strain of F. oxysproum. Although encouraging, this work needs to be 

repeated in amphibian systems before large-scale bioaugmentation is considered. 

If bioaugmentation is to be pursued further it is important to select appropriate 

bacterial strains as probiotics. The characteristics needed for a bacterial strain to serve 

effectively as a probiotic include the capability to adhere to amphibian epithelial cells, to 

colonize the skin for the time needed for protection, and to produce molecules that inhibit 

the growth of the pathogen. Furthermore, the use of an indigenous strain that is dominant, 

competitive and adapted to local conditions may improve survival rates and maintains the 

biointegrity of the environment (Paau 1989). It may also be critical to find a probiotic that 

works synergistically with amphibians AMPs. In addition, the skin microbial community 

of amphibians may be species specific (Lauer et al. 2007) suggesting that appropriate 

probiotics will likely vary amongst species. However, Pseudomonas spp. may be good 

candidates for bioaugmentation trials. They are found naturally in the environment and 
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on several amphibian species in Virginia (Culp et al. 2007, Lauer et al. 2007) and in 

Australia (Alford 2010). Furthermore, one species of Pseudomonas, P. reactans, has been 

transmitted to amphibian skin via bacterial baths and has provided salamanders 

protection from chytridiomycosis (Harris et al. 2009b).  

Field trials are important to determine if bioaugmentation can work in nature. 

Lips et al. (2003) found that amphibians associated with water are more likely to be 

susceptible to chytridiomycosis than terrestrial amphibians in Central America. Thus, an 

aquatic or semi-aquatic amphibian species susceptible to B. dendrobatidis would be a 

good candidate for field trials. In addition, breeding season is likely a time of high 

transmission of the pathogen. Thus, it would be of interest to implement bioaugmentation 

directly before breeding. First, an appropriate bacterial species would be identified using 

the criteria above. Then, the riparian zone of a breeding location would be bioaugmented. 

Finally, it would need to be determined if the environmentally transmitted bacteria 

provide the susceptible amphibian additional protection from the pathogen during and 

after breeding. A field trial is currently underway in California in which R. muscosa were 

captured, placed in bacterial baths of J. lividum, and released to determine if these baths 

can protect the frogs from chytridiomycosis and early results are encouraging (Rex 

2010).  

 Additional work should be pursued in developing strategies for bioaugmentation. 

Comparing the efficacy of bacterial baths versus soil inoculations would provide insight 

into appropriate strategies to use for amphibians species. Species that vary in on life 

history, geographical range and distribution should be examined as well. In soil trials, the 

compositional change of the soil microbial community could be examined. In addition, 
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the microbiota of amphibian skin before and after the introduction of bacteria could be 

determined. Testing the soil and amphibian microbial community structures will indicate 

if the introduction of the bacteria is shifting the natural microbial composition. In 

addition, future work should be directed towards the use of a combination of microbes for 

bioaugmentation. The augmentation of multiple species could increase the chance of 

successful colonization of the amphibians‟ skin and inhibition of the pathogen. However, 

the proper choice of multiple species cocktails would have to be carefully done, e.g. so 

that natural competitors are not chosen. The use of bioaugmentation in amphibian disease 

prevention is a new concept that should be explored as it is the only strategy proposed to 

date that has the potential to halt amphibian extinctions within a reasonable time frame. It 

may prove to be an implementable conservation strategy to combat chytridiomycosis 

driven amphibian declines. Regardless, in the process of exploring bioaugmentation, a 

fundamental understanding of amphibian bacterial mutualisms will be gained.  
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Appendix 

Introduction 

 Initial studies of J. lividum survival in soil demonstrated both survival and 

absence of survival. This observed difference in survival related to changes in season. 

Pilot studies using soil collected in spring 2010 demonstrated both survival of J. lividum 

at high density in soil and high rates of environmental transmission of J. lividum from 

soil to salamander (data not shown). Preliminary trials using soils collected in summer 

2010 did not demonstrate long-term survival of J. lividum or environmental transmission 

of J. lividum. A preliminary trial using soil collected in fall 2010 again showed survival 

of J. lividum at high densities. The data presented here describes the trials conducted in 

summer and fall of 2010. 

Methods & Results 

Flag Pole Knob soil: 

Soil was collected from Flag Pole Knob in June 2010 when salamanders were 

collected. The soil was inoculated with 3.3x10
6
 J. lividum cells/dry g of soil. Six days 

post-inoculation only 18% of soil samples (n=22) tested positive for J. lividum and those 

positive had low cell densities of J. lividum (< 5x10
2
 CFU/dry g of soil).  

Another inoculation trial using the Flag Pole Knob soil was performed to 

determine if culture duration of the isolate affected survival of J. lividum. The J. lividum 

isolate being used had been cultured weekly on plates for over one year in the laboratory. 

A new J. lividum culture from -80C stock was started to use for inoculation. 

Colonization of J. lividum in the soil in this trial was low (10%, n=22). Soil pH was then 

determined to be the main factor that inhibited colonization by J. lividum. The soil pH for 
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the Flag Pole Knob soil was 5. Testing of pH levels in this soil and subsequent soils was 

performed using a Rapitest pH meter (Luster Leaf Products, Woodstock IL). According 

to Bergey‟s Manual of Systematic Bacteriology the optimal pH for J. lividum is 7-8, and 

no growth occurs below pH of 5.   

James Madison University Arboretum soil: 

 Soil was collected with a pH above 5 from James Madison University (JMU) 

Arboretum (pH 6) in August 2010 to determine if inoculum density affected J. lividum 

survival. Different inoculum densities (1x10
6
, 5x10

6
, 1x10

7
, 5x10

7
, 1x10

8
 J. lividum 

cells/g) were inoculated into the soil. Inoculum density has been shown to be a factor that 

affects bacterial survival in soil (Postma et al. 1990, Vandenhove et al. 1991).  Two 

replicates per inoculum density were conducted (n=10). Regardless of inoculum density 

by three days post-inoculation survival was either minimal or undetectable.   

Hone Quarry soil: 

Survival of J. lividum in soil was observed in soil collected from Hone Quarry in 

August 2010 (pH 6.5), but varied based upon bacterial isolate and inoculation density. 

Three J. lividum isolates were used: an isolate from the skin of H. scutatum, and two 

isolates from separate soil samples and five different inoculum densities (4x10
6
, 7x10

6
, 

1x10
7
, 2x10

7
, 3x10

7 
J. lividum cells/g) were tested to see if isolate or density affected 

survival. One replicate per isolate per inoculum density was conducted (n=15). There was 

J. lividum survival at six days post-inoculation in the soil for all three isolates, but 

survival across inoculum densities varied.  The isolate from the skin of H.                                                                                                                                                                                                                                                                                                                                           

scutatum was the only isolate to exhibit survival across all inoculum densities. The 

inoculum density of 2x10
7
 J. lividum cells using the H. scutatum isolate exhibited the 
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highest survival rate (2.5x10
5
 CFUs/g) at six days post-inoculation. Only one replicate 

was performed so no statistical analysis could be performed. Survival in relatively high 

densities for the H. scutatum isolate was encouraging; I ended this trial to begin a new 

trial to test environmental transmission.  

In the second trial, I used the soil collected in Hone Quarry in August and 

incorporated salamanders into the design of this trial. The J. lividum isolate from the skin 

of H. scutatum was inoculated into soil. The starting density after inoculation was 2x10
7
 

J. lividum cells/dry g of soil.  Salamanders were introduced one day after inoculation. By 

six days post-inoculation 55% of the soils (n=22) tested positive for J. lividum. Those 

that were positive had a cell density generally less than 3x10
3
 CFUs/g of soil. 

Environmental transmission from soil to salamander was detected in 1 of 22 salamanders 

that were exposed to J. lividum in soil at six days post inoculation. The density of J. 

lividum in the soil in which the salamander obtained the bacteria contained the highest 

amount of J. lividum of all 22 soils tested (1.8x10
4
 CFU/dry g of soil). All other positive 

soils sampled at this time point had a density of less than 2.5x10
3
 J. lividum CFU/dry g of 

soil on average. Therefore, I hypothesized that without relatively high numbers of J. 

lividum in soil (>2.5x10
3
 J. lividum CFU/dry g) environmental transmission will likely 

not occur. Due to the inability to test further hypotheses additional trials were conducted.  

The physiological stage of the bacteria was tested to see if it was a factor causing 

the limited survival of J. lividum in these soils. A study by Vandenhove et al. (1991) 

found that the physiological stage of bacteria at inoculation affects bacterial survival in 

soil. Soil with a pH of 6.8 was collected from Hone Quarry in September 2010 to 

examine the role of this factor in survival. I tested late exponential phase and stationary 
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phase (three replicates per phase). There was initial survival, but it was not consistent and 

by nine days post-inoculation J. lividum was undetectable.  

Survival of Janthinobacterium lividum in fall soil: 

Survival and persistence of J. lividum was finally obtained in soil collected from 

JMU Arboretum in October 2010 (pH 6.7).  During soil collection, five P. cinereus 

individuals were seen in the location indicating that the soil was collected in a natural P. 

cinereus environment. A trial was conducted where soil moisture, sieving of soil, and 

inoculum densities (5x10
6
, 1x10

7 
and 2x10

7
 J. lividum cells/g) were varied (n=12). 

Relatively high densities of J. lividum were detected in all categories over 15 days of 

testing. By 15 days post-inoculation moist, sieved soil with an inoculum density of 2x10
7
 

J. lividum cells/g of soil
 
displayed the highest cell density count (1.2x10

4
 CFU/g). Thus, 

these soil and bacterial characteristics were used as a basis for my main experimental 

design. One replicate was conducted for each soil moisture level, sieve status and 

inoculum density combination so no statistical analysis could be performed.  

Discussion 

Negligible survival in the preliminary trials conducted in summer 2010 may have 

been related to the soil being collected in the hot, dry summer climate of 2010 in 

Virginia. Smit et al. (2001) found that the soil bacterial community present in summer 

was an outlier when compared to relatively similar bacterial communities from fall, 

winter and spring in the Netherlands. It is feasible that the ecological niche of J. lividum 

was not present in these summer soils and thus survival was not possible. The possible 

seasonal variability in the presence of J. lividum has implications for bioaugmentation.  
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