Journal of Conventional Weapons Destruction

Volume 15
Issue 3 The Journal of ERW and Mine Action

October 2011

Lateral-approach Methodology and HSTAMIDS

Clifford Allen
MAG (Mines Advisory Group)

Shathel Fahs
MAG (Mines Advisory Group)

Follow this and additional works at: https://commons.lib.jmu.edu/cisr-journal

Part of the Other Public Affairs, Public Policy and Public Administration Commons, and the Peace and Conflict Studies Commons

Recommended Citation
Available at: https://commons.lib.jmu.edu/cisr-journal/vol15/iss3/18

This Article is brought to you for free and open access by the Center for International Stabilization and Recovery at JMU Scholarly Commons. It has been accepted for inclusion in Journal of Conventional Weapons Destruction by an authorized editor of JMU Scholarly Commons. For more information, please contact dc_admin@jmu.edu.
in a certain area is also calculable. Using the method for the data acquired in a blind test, a metal detector’s location error can be assessed, and the results can be used for the selection of a detector model. Moreover, the information may be used to establish an operating procedure for detection and safe excavation of landmines. For example, the perimeter of the path where deminers should begin excavating toward a target can more accurately be defined if the success and error rate of metal detections based on the model they use is known to the operators. The location-accuracy statistics obtained from the ITEP 2009 test was also discussed in relation to the way to pinpoint correctly and the differences in the sensitivity profiles of detectors. The data show a linear correlation between the pinpoint accuracy and the sensitivity profile for single-coil detectors. The result shows that a detector with a smaller search head produces more accurate results than larger search heads, making the smaller search heads generally better for locating targets. However, consider some time options when selecting a metal-detector model. A smaller search head is less sensitive to clutter, which also means it takes more time to thoroughly scan an area. Oval-shaped coils and double-D configurations may be good approaches for this trade-off. On the other hand, even a larger coil and wider sensitivity profile, accurately pinpointing a target is possible. As shown in Figure 7 (page 67), a sensitivity profile is elliptical in the vertical section, and the width becomes narrower farther from the coil. By lifting up the search head from the ground surface, a smaller part of the sensitivity area can be used for pinpointing. Experienced operators often use this technique to increase accuracy.

Components in the target plus 100m.™™2 It is a circular area with a 5cm radius for a point-like metal target. According to the results shown in Figure 4 (page 66), 60–80% of the detections are correctly counted as a hit, but the remaining 20–40% of detections are not by the halo definition, counted as a hit, because despite detecting the targets, these detections are outside of the halo. Obtained in this way, results may not show detection performance, but they include pinpointing performance in part. Thus, the definition in the CEN Work shop Agreement sounds a little too strict to evaluate only the detection performance. In the ITEP 2009 test, only a few operators per detector model were available. The number is unfortunately too small to discuss the difference between different operators. Since the accuracy of metal detector pinpointing probably depends on the operator’s skill and experience, this point could be investigated further, if and when more operators are available.

The authors are grateful to Dieter Galle with Mine Action Consulting, Berlin, Germany, for his helpful suggestions and to Dr. Adam Lewis with the Joint Research Centre, European Commission, Ispra, Italy, for providing the STEMD Lab Test data. He also wishes to acknowledge colleagues at the Technical Center for Pro tec tive and Special Technologies and the Federal Office of Defense Technology and Procurement (BFW), Obereisenbach, Germany, for their support in collecting data. A special thanks to the manufacturers for providing their prototypes (i.e., metal detectors) and trainers, and for actively seeking testing. The author is also grateful to BFW for supporting the work.

Sensitivity profile is influenced by many properties as theoretical works 13 and experiments have exhibited, such as the coil and electronic design of the devices, metal content and shape of the target, magnetic and electrical properties of the soil, etc. When clearance operations are planned at a site, the metal-detector model is the only choice users can make, and this determines the sensitivity profile and associated performance. Therefore, the choice is very important.

In the detection-performance analysis of blind tests, the concept of halo radius that sets a circular area around a target to define a hit was commonly used. In the CEN Workshop Agreement, the halo radius is “half of the maximum horizontal extent of the metal

Lateral-approach Methodology and HSTAMIDS

MAG Cambodia has used the Handheld Standoff Mine Detection System (HSTAMIDS) with lateral-approach methodology for three years within an operational field evaluation funded by the U.S. Department of Defense’s Night Vision and Electronic Sensors Directorate. MAG’s current research tested the productivity of two ways of using LAM combined with HSTAMIDS against the productivity of the traditional one-man one-lane drill methodology; this article presents the findings.

by Clifford Allen and Shathel Fhahs [MAG Cambodia]
as quick searching using a conventional metal detector that involves threat-ning the detector up to 1.2m and in out of the uncut vegetation, moving laterally along the front edge of the area to be cleared, and looking and listening for large signals that may not be at first visible. Any such sig-nals encountered are marked as an obstacle, signifying that these areas are not to be mechanically cut. If it is safe to do so, recognizable surface clutter is removed.

Vegetation-cutting/rock removal. The second phase is cutting the vegetation down to ground level using mechanical means. A long-reach tool with a strimming (mechanical vegetation-cutting) attach-ment is used in this process for various vegetation types. Strimming and rock removal of previously marked quick-search areas are avoi-ded, these areas may be cut manually with scissor-like or similar hand-cutting tools. This phase sometimes requires extra work because deminers must remove rocks from the lane first. Rocks are often prevails’ target, whereas mines were deployed to protect key installations.

Raking and Blowing. The cutting phase is followed by the removal phase, which can involve hand clearing of large vegetation. This phase is backed up by raking and brushing, and culminates in the use of an or-der long-reach tool with a blower attachment, leaving the lane to be cleared free of vegetation, loose soil and even some surface metal. Mag-netics can also be deployed at this stage if the area contains large amounts of surface metal clutter.

Marking. The red rope may have moved and be out of alignment due to the previous phases of strimming, raking and blowing, so it may have to be repositioned prior to marking. After these adjustments, a blue rope is placed 0.6m into the uncleared area running parallel to the red rope. This creates two 6m-long lanes along the length of the lane. The area cleared within each lateral lane is 0.6m, with the other 0.6m designated as overlap. The overlap area is covered twice as the lane progresses for-ward. Spaced are used every 6m to ensure the ropes are kept straight and parallel.

Lanes are normally defined as being 25m in length but can be any length. These 25m lanes form a grid that is logged with letters, allowing accurate data collection so that data can be used for quality-control/quality-assurance investigations as well as assisting in mapping, etc. The practice of working at some considerable distance away from the lane, sometimes at considerable distances, can maintain the overlap area. The overlap area is covered twice as the lane progresses for-ward. Spaced are used every 6m to ensure the ropes are kept straight and parallel.

Detection. The next phase is detection or clearance, and it can be executed using either conventional metal detectors or HSTAMIDS. If the former is adopted, the deminer starts a systematic search, sweeping sideways on straight lines, placing red chips on all signals encountered. If HSTAMIDS is used as the primary search tool, the detector operator can immediately differentiate between metal clutter and possible mines, and the operator places blue and red chips (markers) accordingly.

If the area being detected has many signals per cell, then a magnet can be utilized to reduce surface clutter. A senior deminer or a superior, such as a supervisor in Cambodia or a deputy team leader in Angola, should supervise this activity to negate any missed signals. The procedure is to lift a chip and sweep the magnet over the area where the chip was placed, attracting metal fragments to the magnet. A detector is then passed over the area again, and if the signal has disappeared, the chip is removed. However, if the signal remains, the chip is again placed on the spot for further action. When the cell sweep is completed, the operator moves the sensor/search head forward and continues with the next sweep. The op-erator progresses to the blue-colored rope, thus creating overlap. Overlap should also be maintained at the front and ends of all cells.

If a conventional metal detector is used for detection and marking of the entire lane with red chips, the HSTAMIDS detector then verifies all red chips placed by conducting isolation and moving in a zigzag manner over each chip. Since HSTAMIDS costs upwards of US$14,000–20,000, and conventional metal detectors cost roughly US$3,000, the use of a con-ventional metal detector is often used in place of HSTAMIDS. On the other hand, HSTAMIDS’ GPS sensors allow the operator to change up to 95% of the red chips to blue, which identifies the remaining 5% as being the only red chips necessary to manually excavate. If the HSTAMIDS is deployed as the primary clearance tool, then the blue and red chips are placed concurrently, depending on the signals HSTAMIDS gives.

Manual excavation. The next phase involves manual clearance with the help of a conventional metal detector. The deminer observes the lane for chips and moves to where the first red chip is placed. If this is, for example, in cell 4, then the excavation deminer will manually excavate the target using conventional standard-operating-procedures excava-tions, which is done by centralizing the chip using the metal de-tector. No sweeping toward the signal is required. If the chip is in the correct position, as indicated by the detector, the operator will proceed to excavate the signal location, moving along the lane until all locations are excavated. Mines are not completely excavated; they are only partial-ly excavated to allow a donor change to be placed alongside, unless they are to be neutralized or disarmed. QCQA is then conducted on the ex-cavations, and any mines are destroyed in situ.

Rapid excavation drill. The final phase is to proceed to rapid excava-tion of all blue chips using mechanical means, which is carried out by an operator using a long-reach tool with a digging attachment. This proce-dure is known as a rapid-extraction drill. The long-reach tool operator will excavate each blue chip by digging a trench to the rear or side of the blue chip as per manual drill, and will force their way forward with the long-reach tool until the operator is just behind or alongside the chip. At this point, the operator must stop the digging bit from revolving and brush the chip into the excavation behind and alongside the chip’s posi-tion before continuing excavating 5cm beyond the place where the chip was originally lying. Brushing the chip aside to continue excavation 5cm beyond will en-sure that all items will either be uncovered or flushed to the side, and will enable the long-reach tool operator to determine the source of the signal. Once all the rapid excavations are completed in a given lane, the lane is demined, and the next lane can be prepared. The rapid-extraction drill procedure achieves final quality assurance.

Modifications to LAM
Since the inception of LAM, a number of innovative ideas were ad-oped, and most of these have come from the deminers on the ground. For instance, since MAG first utilized LAM and the introduction of rapid-extraction drill in November 2008, marking has seen substantial changes. This methodology was simplified and re-engineered to opti-mize productivity.

Two improvements in the process were made. First, the red rope with white markers has eliminated the need for conventional minefield pickets at every meter, thereby removing these obstacles for the deminers. Sec-ond, the way in which these ropes are deployed, by means of polyvinyl chloride pipes reeled and stakes, is also an improvement. MAG is continu-ally refining marking to increase efficiency.

Even without HSTAMIDS, evidence suggests LAM is easier to con-trol, has improved safety benefits, and is more cost efficient on marking materials than the one-man, one-lane drill methodology. LAM could better benefit road/verge clearance than the current method of clearing with the one-man, one-lane drill methodology. Those productivity ad-vantages can be seen in Figures 1 and 2 (previous page).

On the other hand, using HSTAMIDS in LAM is additionally advan-tageous in a number of ways:

• As shown in Figures 3 and 4 (above), substantial increases in pro-ductivity occur.

• The number of time-consuming and labor-intensive manual exca-vations are minimized.

• Using a blower is seen to have morale-boosting effects on deminers as it clears everything from the lane in a less labor-intensive way.

Removing some surface metal and stones means the detector oper-ators have an easier time sweeping the detector close to the ground for better detection.

• Using magnets before and after clipping, depending upon con-tamination levels, is a time-saver. If a lot of surface clutter is en-countered, then the magnet can be swept over the cell before the detector is deployed. Correspondingly, after clipping, the magnet can be deployed on selected targets, particularly around red chips that can then be discounted if the magnet detects and lifts off the metal from the surface.

In a conventional minefield, the standard operating procedure for MAG Cambodia states that the safety distance between any working deminers should be not less than 25m. However, this distance is largely because all deminers work independently, and 25m is the default dis-tance that most demining organizations worldwide adopt in anti-per-sonnel minefields. Due to the nature of the methodology covered above, not all activities are deemed equally hazardous or potentially so. There-fore, the authors devised a system pertaining to the nature of the activ-ity shown in Table 1 (next page) giving various distances that should not be exceeded.

Usage of and Adaptations to Long-Reach Tools/MAG used Honda long-reach tools for strimming before it began using LAM. However, since MAG began using LAM with HSTAMIDS, a range of tools designed for gardening produced by Stihl, a German manufacturer, were procured. These tools were modified in many ways to adapt them for the demining industry. For example, the shafts MAG uses are half shafts held together in the center by a coupling, which has also been modified. This facilitates quick tool change—a shaft change...
The basic design of the pineapple and the alignment of drill heads maximizes the potential for digging.

Sometimes overhanging trees and bamboo must be removed before clearance. Teams are supplied withchain-like attachments to deal with the heavier branches and bamboo shoots. These raw attachments on the end of a half shaft are easier to transport and operate than a completely independent method.

Various digging devices weretrialled andmostly discarded, although the cutting blades designed by engineers at NVESD have had some success in soil that is not densely compacted and is largely free of rocks and roots.

The rapid-excavation drill uses the pineapple drill head, which is the mainstay of mechanical-extraction activity.

Two Methods of Clearance Utilizing HSTAMIDS

The agreement between MAG and NVESD is that HSTAMIDS should be the primary clearance tool, therefore, the lateral approach methodology was largely developed with this in mind. More recently, the purchase of additional HSTAMIDS units, funded by the Office of Weapons Removal and Abatement in the U.S. Department of State’s Bureau of Political-Military Affairs (PMWRA), is allowing MAG to experiment with other approaches outside of the NVESD operational field evaluation.

The OGE methodology has evolved as three-by-three-person sub-teams, each with an HSTAMIDS detector and all the ancillary equipment needed to conduct operations. Each sub-team is allocated an area of the minefield and concentrates its efforts in this area only. Each member of the sub-team is multi-skilled in as many of the activities as possible, needed to conduct operations, thus allowing for flexibility and continuity. These three individuals can operate the various phases independently and without strict supervision. Each team member knows what the next step is and equips themselves with the necessary equipment from a focal point (out area) close to their working lane, which has been found to work very well that the sub-team is continually allocated between five and seven lanes minimum to allow for observation of safety distances while conducting constant activity.

Teams outside the OFE are equipped with one HSTAMIDS detector and two operators and they support a number of metal detector operators. The team is roughly divided into two parts. On average, five or six conventional metal-detector operators are deployed, conducting quick search and marking all signals in lanes with red chips. This practice ensures that the HSTAMIDS has sufficient work to sustain it for an entire day. Later, these operators also manually excavate the red chips that remain after HSTAMIDS has verified them.

The other team members (up to six in a standard MAG mine-action team configuration) perform the other activities, which revolve around the long-reach tools. These are strimming, cutting, sawing, blowing and rapid excavation drill. All of the operations are also involved in marking when the HSTAMIDS is being used as the verification detector.

This methodology needs further study to ascertain whether this procedure should be altered to remain flexible in order to account for varying contamination levels. Metal contamination is the main factor governing the number of metal detectors deployed at any given time because this affects whether more than one HSTAMIDS detector is necessary.

Productivity

MAG continually strives to increase efficiency and effectiveness, and the introduction of HSTAMIDS has greatly enhanced its ability to do so, as illustrated in Figures 3 and 4 (page 47). In 2008, MAG’s productivity has significantly improved with the introduction of HSTAMIDS to the tunnel.

The methods MAG Cambodia uses when deploying HSTAMIDS with the lateral approach methodology exhibit certain advantages when compared with the traditional one-man, one-lane approach, particularly with regard to productivity. The analysis of HSTAMIDS and LAM is still an ongoing process within the program with further technological advances and improvements in productivity expected.

The various outlined approaches are open for improvement and adjustment, with expectations that as HSTAMIDS is introduced into other programs, the improvements in these methodologies will ensure that HSTAMIDS and LAM continue to give significant benefits over standard metal detectors and more conventional clearance methodology.

Table 1. LAM safety distances.