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Abstract 

  V 

Obtaining a molecular-level understanding of the reaction of alcohols with heterogeneous 

model catalysts is critical for improving industrial catalytic processes, such as the production of 

H2 from alcohols. Gold has been shown to be an excellent oxidation catalyst once oxygen is 

added to it. The use of reducible oxides provides a source of oxygen on Au(111) for the reaction 

of ethanol, which is easily regenerated in the presence of an oxygen background. In this work, 

ethanol operates as a probe molecule to investigate the role of Au(111), TiO2 nanoparticles, and 

TiO2/Au interfacial surface sites on the catalytic properties of TiO2/Au(111). Ultrahigh vacuum 

temperature programmed desorption (TPD) studies with ethanol/Au(111) elucidate previously 

unreported adsorption sites for ethanol. Ethanol molecularly adsorbs to Au terrace sites, step 

edges, and undercoordinated kink sites with adsorption energies of -51.7, -55.8, and -65.1 

kJ/mol, respectively. A TPD coverage study of ethanol on TiO2/Au(111) indicates ethanol 

undergoes dissociative adsorption to form H*(a) and CH3CH2O*(a) on the inverse model catalyst 

surface. The desorption temperature of low coverages of ethanol from TiO2/Au(111) (Tdes= ~235 

K) is at an intermediate temperature between the desorption temperatures from bulk Au(111) and 

TiO2(110), indicating both Au and TiO2 play a role in the adsorption of ethanol. Both low-

temperature adsorption and high-temperature reactions are studied and indicate that ethanol-

derived products—such as acetaldehyde and ethylene—desorb from TiO2/Au(111) at ~500 K. 

 

All the work reported herein is published in the Journal of Physical Chemistry C: 

Boyle, D. T.; Wilke, J. A.; Palomino, R. M.; Lam, V. H.; Schlosser, D. A.; Andahazy, W. J.; 

Stopak, C. Z.; Stacchiola, D. J.; Rodriguez, J. A.; Baber, A. E.  J. Phys. Chem. C 2017, Article 

ASAP. DOI: 10.1021/acs.jpcc.6b11764 
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Introduction 
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Heterogeneous Au/TiO2 model catalysts have been extensively studied due to their 

remarkable catalytic activity toward the water-gas shift reaction,1–4 production of H2 from 

alcohols,5–8 oxidation of CO to CO2,4,9–11
 and several other applications1. It has been proposed 

that the interface between Au nanoparticles and TiO2 is the catalytically active site of Au/TiO2 

heterogeneous catalysts for the conversion of small alcohols to their respective carbonyls and 

alkenes, water-gas shift reaction, and H2 dissociation.4,9,10,12,13 In order to determine the role of 

distinct Au, TiO2, and Au/TiO2 interfacial sites in Au/TiO2 heterogeneous catalysts, inverse 

model catalysts have become a material of interest. Using inverse model catalysts in which TiO2 

nanoparticles are deposited onto a Au(111) substrate allows for the use of surface science 

techniques to investigate the role of distinct surface sites on the overall reactivity of the 

TiO2/Au(111) catalyst. 

Ethanol is the simplest molecule containing C—H, C—O, C—C, and O—H bonds, 

which makes it an excellent probe molecule to elucidate active sites on TiO2/Au(111) inverse 

model catalyst surfaces. Additionally, ethanol is particularly interesting to the catalytic 

community, as it is used as an alternative fuel and chemical feedstock for important industrial 

reactions like the production of H2 and acetic acid.14 Ethanol has been utilized to probe the 

catalytic activity of several Au/TiO2-based surfaces including: O/Au(111),15,16 TiO2(110),17–20 

and Au/TiO2(110)1. It is well understood that ethanol undergoes molecular adsorption on clean 

Au(111) and dissociative adsorption on O/Au(111) and bulk TiO2(110) to form ethoxy and 

hydroxyl adsorbates.15–20 The reaction of ethanol on bulk rutile-TiO2(110) single crystals showed 

that both acetaldehyde and ethylene were produced at ~620 K.20 The formation of a carbonyl 

group versus an alkene was dependent on the number of defects in the crystal surface, as an 

increased concentration of oxygen vacancies promoted the formation of ethylene.20 
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Interestingly, low temperature ethanol adsorption and ethanol chemistry on TiO2/Au(111) 

surfaces has not yet been reported. Studies with other simple alcohols methanol21 and 2-

propanol22 on TiO2/Au(111) inverse model catalysts showed that the alcohols underwent an 

elimination or oxidation reaction depending on the method of surface preparation. Both studies 

proposed that the formation of the oxidized products—formaldehyde and acetone—were the 

result of excess oxygen on the surface. The formation of elimination products—methane and 

propene—were the result of undercoordinated Ti cations within the TiO2 nanoparticles supported 

on Au(111). While TiO2/Au(111) showed catalytically valuable chemistry toward methanol and 

2-propanol, the role of distinct Au, TiO2, and Au/TiO2 interfacial sites on the overall reactivity of 

the surface was not reported. 

In this work, a comprehensive study of low temperature ethanol adsorption and chemistry 

over Au(111) and TiO2/Au(111) is reported across a wide temperature range to determine the 

catalytically active sites of TiO2/Au(111). The role of distinct Au, TiO2, and Au/TiO2 interfacial 

sites is investigated through the use of ultrahigh vacuum temperature-programmed desorption 

(UHV-TPD), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). 

Low-temperature desorption relays information about binding energies and adsorption sites of 

ethanol to Au(111) and TiO2/Au(111), and high-temperature desorption is used to investigate the 

chemistry of the ethanol over the TiO2/Au(111) surface. The results shown here demonstrate the 

TiO2–Au interface as the active catalytic site on inverse model catalysts for the reaction of 

ethanol.  

 



Methods 

 VIII 

Experiments were performed in a UHV-TPD chamber. The UHV chamber is pumped by 

turbo and titanium sublimation pumps and maintained a base pressure of ~5 x 10-10 Torr during 

experiments. The chamber contains a quadrupole mass spectrometer (Hiden HAL3F-RC) for 

TPD and residual gas analysis. The heating rate for TPD experiments was 1.05 K/s. Collimated 

high precision leak valves were used for controlling gas doses into the chamber. 

A Au(111) single crystal (Princeton Scientific) was mounted on a sample holder and held 

vertically by tungsten wires (Goodfellow, 99.95%, 0.25 mm diameter) between two copper 

blocks in the center of the chamber, which allowed the sample to be resistively heated and 

cooled with liquid nitrogen. Temperature measurements were recorded with a k-type 

thermocouple that was directly attached to a hole in the side of the Au(111) crystal. The Au(111) 

surface was prepared via cycles of 1 keV Ar+ sputtering and annealing in UHV at ~850 K. The 

cleanliness of the surface was determined via Auger electron spectroscopy (AES), TPD of probe 

molecules, ex situ AFM, and XPS. TiO2 was deposited on the Au(111) single crystal by the 

physical vapor deposition of Ti at an oxygen background pressure of 2 x 10-7 Torr at room 

temperature, and then annealed in O2 to 600 K.  For the physical vapor deposition, a homemade 

Ti filament made with Ti wire (0.125 mm diameter, 99.6 %, Goodfellow) was used. Monolayer 

coverages of TiO2 were controlled by monitoring the power input and deposition time and 

determined by ex situ AFM and XPS. Ex situ AFM images were recorded by a Digital 

Instruments MultiMode AFM in tapping mode under ambient conditions. The saturation 

coverage of ethanol is defined as 1 monolayer (ML) and was calibrated using TPD. XPS was 

performed on a PerkinElmer 5400 X-ray Photoelectron Spectrometer equipped with a 

monochromatized Mg(K) radiation source (1253.6 eV) and a position sensitive, multichannel 
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plate detector. Measurements were taken at a pressure of ~10-7 mbar and with a takeoff angle of 

15 with respect to the surface normal. Binding energies are referenced to Au 4f7/2 at 84.0 eV. 

 



Results and Discussion 

 X 

Prior to studying the low-temperature adsorption and chemistry of ethanol on 

TiO2/Au(111), a comprehensive understanding of ethanol adsorption on clean Au(111) is critical 

for interpreting the role of each individual material on the reactivity of the composite inverse 

model catalyst. In this work, the coverage-dependent TPD studies of ethanol/Au(111) elucidate 

previously unreported adsorption sites for ethanol on Au(111). Figure 1 shows TPD results from 

ethanol coverages below 0.20 ML, where a m/z ratio of 31 was followed, as it is the most intense 

fragment for ethanol. At ethanol coverages below 0.20 ML, the TPD spectra show two 

desorption features with desorption temperatures of Tdes=172 and 185 K. The desorption feature 

at Tdes=172 K is related to ethanol desorbing from the Au(111) terrace, and is in agreement with 

previous work on ethanol/Au(111).15 The consistency in Tdes=172 K as the monolayer coverage 

of ethanol increases indicates first-order kinetics of desorption, which confirms that ethanol 

adsorbs and desorbs molecularly from the Au(111) terrace. Interestingly, TPD spectra of low 

ethanol coverages on Au(111) show a desorption feature at Tdes=185 K. At ethanol coverages as 

low as 0.01 ML, the desorption feature at Tdes=185 K predominates with a slight low-temperature 

shoulder, indicating that the adsorption site corresponding to Tdes=185 K is preferentially 

populated prior to Au(111) terrace sites. Upon increasing the coverage of ethanol above 0.01 

ML, the desorption feature at Tdes=185 K saturates, and the desorption feature at Tdes=172 K, 

representing ethanol desorption from Au(111) terrace sites, continues to grow in intensity up to a 

coverage of 0.20 ML of ethanol.  
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Figure 1. TPD spectra of low coverages of ethanol (m/z = 31) from Au(111). The peak at 

Tdes=172 K represents submonolayer coverages of the molecular desorption of ethanol from Au 

terraces, and the peak at Tdes=185 K is assigned to the molecular desorption of ethanol from step 

edges. 

 

The observation of two distinct desorption features in the TPD spectra indicates that there 

are two distinct adsorption sites for ethanol on Au(111). Previous studies of CO/Au(111) 

demonstrated that a sputtered Au(111) surface enhanced the adsorption of CO by exposing more 

undercoordinated Au step edges and kink sites.23–28 CO had stronger binding energies to 

undercoordinated Au sites, which resulted in a higher Tdes.27 In order to investigate the desorption 
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of ethanol from undercoordinated Au sites, the clean Au(111) surface was sputtered by 

bombarding the surface with 1 keV Ar+ ions at 300 K. The morphology of a sputtered Au(111) 

single crystal was imaged using ex situ AFM, which showed the presence of large pits with 

roughened step edges (Figure S1). The sputtered surface results in an ethanol TPD spectrum with 

noticeable differences from the clean Au(111) surface (Figure 2). Upon sputtering the surface, 

the desorption feature at Tdes=185 K grows in intensity, whereas the desorption feature at 

Tdes=172 K decreases in intensity. Consequently, the peak at Tdes=185 K is assigned to the 

desorption of ethanol from undercoordinated Au sites. Annealing Au(111) to 400 K and above 

decreases the number of undercoordinated Au sites by smoothing the sputtered surface.27,29 After 

annealing the sputtered Au(111) surface to 400 K, the desorption feature at Tdes=172 K increases 

in intensity, while the desorption feature for undercoordinated Au sites (Tdes=185 K) decreases, 

indicating that the 400 K anneal results in a smoother Au(111) surface. While sputtering the 

surface results in an increased number of undercoordinated sites of both step edges and kink 

sites,23,25–28 the peak at 185 K is assigned to Au step edges, as the concentration of step edges is 

expected to be much greater than that of kink sites. 
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Figure 2. TPD spectra of ethanol on clean and sputtered Au(111) surfaces (m/z = 31). Annealing 

the surface to 400 K partially smooths the surface, which results in a decrease in ethanol 

desorption at Tdes=185 K (step edges) and an increase in ethanol desorption from the terraces at 

Tdes=172 K. 

 

The adsorption energies of ethanol on Au(111) terrace sites and Au step edges can be 

calculated using the Redhead approximation for first-order desorption 

 

where  is the heating rate of 1.05 ± 0.07 K/s and  is the pre-exponential factor. A pre-

exponential factor of 1015 was used to calculate adsorption energies of -0.54 eV (-51.7 kJ/mol) 

and -0.58 eV (-55.8 kJ/mol) for ethanol adsorbed to terrace Au(111) sites and Au step edges, 

Edes = RTdes[ln(nTdes / b)-3.46]
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respectively. The calculated adsorption energy on Au(111) terraces of -0.54 eV is in agreement 

with previous DFT studies, which resulted in an adsorption energy of -0.536 eV.30 The same 

DFT calculations, which included a van der Waals correction, predict that ethanol adsorbs to the 

Au(111) surface with the C–C bond parallel to the surface.30  

To further investigate the desorption of ethanol from Au(111), TPD studies of ethanol 

coverages above 1.0 ML were performed on clean Au(111) (Figure 3). As the coverage of 

ethanol increases, the Au terrace peak (Tdes=172 K) increases in intensity and saturates at 1.0 ML 

of ethanol. It is important to note that the peak previously observed for step edges (185 K) is now 

obscured by the terrace desorption peak. Additionally, upon increasing the ethanol coverage 

above 1.0 ML, low-temperature peaks corresponding to multilayered ethanol appear (Tdes < 155 

K). The desorption feature corresponding to multilayered ethanol increases to a maximum 

desorption temperature of Tdes=150 K, until a low-temperature shoulder appears at Tdes=145 K 

above 1.8 ML. The desorption of multilayered ethanol at Tdes=150 K and ethanol from Au(111) 

terraces at Tdes=172 K is consistent with previous reports.15 The desorption peaks at Tdes=150 and 

Tdes=145 K are assigned as multilayers of ethanol. Previous work with methanol exhibited more 

than one multilayer peak on Au(111),31 Ag(111),32 and Pt(111),33 which were labeled as 

amorphous and crystalline phases due to the early work of Ehlers using UV photoemission and 

IR reflection to differentiate between multilayer structures.33 However, ethanol multilayer studies 

on highly oriented pyrolytic graphite (HOPG) resulted in two desorption peaks (Tdes=145 K and 

Tdes=142 K), labeled as a bilayer and multilayer of ethanol, respectively.34 We cannot rule out 

one assignment over another in this case to differentiate the peaks; therefore, we label desorption 

peaks below Tdes=155 K as multilayers of ethanol. 
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Figure 3. TPD spectra of a series of ethanol coverages (m/z = 31) at saturation coverage (1.0 

ML) and above on Au(111). Desorption peaks for ethanol from multilayers (Tdes< 155 K), Au 

terrace sites (Tdes=172 K), and undercoordinated Au kinks (Tdes=215 K) are present.  

 

In addition to desorption peaks for multilayers of ethanol and ethanol adsorbed to 

Au(111) terraces, a small peak at Tdes=215 K appears with coverages of ethanol above 1 ML, as 

seen in Figures 3 and 4. The adsorption energy for ethanol desorbing at 215 K, calculated using 

the Redhead approximation described above, is -0.67 eV (-65.1 kJ/mol). The difference in 

adsorption energy between Au step edges and the higher temperature desorption peak (Tdes=215 

K) is -9.3 kJ/mol (-0.096 eV), which is in excellent agreement with the calculated difference in 

adsorption energy between step edges and kink sites on Au(111) for CO.27 Therefore, the 
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desorption peak at Tdes=215 K is labeled as ethanol desorption from undercoordinated kink sites 

on Au(111) step edges.  

 

Figure 4. TPD, m/z = 31. Zoomed in perspective of desorption features corresponding to terrace 

Au sites (172 K) and Au kink sites (215 K). At ethanol coverages >1 ML, desorption from kink 

sites increases and desorption from terrace sites decreases. 

 

It is expected that undercoordinated Au sites, including step edges and kinks, would act 

as preferential binding sites due to their increased adsorption energy and desorption temperature 

compared to terrace Au sites. Interestingly, Figures 3 and 4 show an opposite trend for the 

population of kink sites (Tdes=215 K) and terrace sites (Tdes=172 K) as the coverage of ethanol 

sequentially increases. At an ethanol coverage of 1.0 ML, the only observed desorption peak is 
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172 K. As the coverage of ethanol increases, the desorption peak at 172 K decreases in intensity 

and shifts to lower temperatures while the kink site desorption peak appears (Tdes=215 K) and 

continually increases (Figure 4). We hypothesize that the shift to lower temperatures of the 172 

K desorption peak arises from the depletion of step edge desorption sites (Tdes=185 K) to form 

kink desorption sites. These results indicate that the presence of high coverages of ethanol 

roughen Au(111) step edges below room temperature, increasing the concentration of 

undercoordinated kink sites (Tdes=215 K). In a separate set of experiments, the coverage of 

ethanol was increased to >1 ML to produce the kink site desorption feature. Subsequently, a 1 

ML ethanol dose was exposed to the surface, and the kink site desorption peak was not observed, 

indicating that the higher coverages of ethanol lead to the roughening of Au(111) step edges. 

While future studies will be required to understand the mechanism behind the formation of 

kinks, it is speculated that the interaction between ethanol molecules and surface Au atoms will 

decrease the Au–Au bond energy, which would thereby decrease the barrier for Au diffusion. 

While we do not suspect the interaction between ethanol and Au is strong enough to lift the 

herringbone reconstruction, it is plausible that Au step edge atoms, which exhibit mobility at 

room temperature on clean Au(111), will have an enhanced mobility in the presence of ethanol, 

resulting in the rearrangement of step edge atoms to form kinks. Furthermore, the high coverage 

of ethanol required to visualize the kink site desorption feature indicates that intermolecular 

repulsion of ethanol molecules may also play a role in the destabilization of Au–Au bonds. It 

was previously reported that intermolecular repulsion influenced the molecular packing of 

methanol on Au(111) even at submonolayer coverages.35  

The rearrangement and restructuring of Au surface atoms has been observed at low 

pressures and temperatures after exposing small molecules to Au(111).36–38 It is expected that 
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ethanol roughens the surface of reducible oxides. However, the oxide is reduced by ethanol via a 

reaction with the lattice oxygen and acidic hydrogens from ethanol to form hydroxyl groups, 

which recombine to form water and leave oxygen vacancies in the surface.39–41 The TPD spectra 

in Figures 3 and 4 therefore demonstrate the first reported roughening of the Au(111) step edges 

by ethanol at low temperatures. Future imaging studies will allow us to investigate the 

morphology of the Au(111) before, during, and after the desorption of ethanol, to investigate the 

reversibility of the kink formation. Additionally, imaging studies will be conducted to visualize 

the change in surface morphology due to ethanol adsorption at high coverages, as well as to 

identify a mechanism for atomic rearrangement at the step edges.  

The elucidation of ethanol adsorption and desorption from distinct Au(111) surface sites 

allows for the subsequent study of low-temperature ethanol adsorption on the TiO2/Au(111) 

inverse model catalyst. Several preparations of Au(111)–supported TiO2 nanoparticles are 

reported in the literature.42–46 For the experiments reported herein, TiO2 nanoparticles were 

deposited onto Au(111) via physical vapor deposition in an O2 background (2x10-7 torr) at 300 K 

and annealed to 600 K in O2 prior to experiments. Ex situ AFM and ex situ XPS confirmed the 

successful deposition of TiO2 nanoparticles on the Au(111) surface as compared to clean 

Au(111) (Figure 5, S2). Figure 5A shows an ex situ AFM image of the Au(111) surface prior to 

the deposition of TiO2 nanoparticles, with Au step edges running diagonally across the image. 

Figures 5B and 5C show TiO2 nanoparticles well-dispersed across the Au terrace and step edges. 

Analysis of the XPS data and the Au 4f peak attenuation confirmed a TiO2 coverage of ~0.6 ML 

on the Au(111) surface. The average diameter of the TiO2 nanoparticles is 10.1 ± 2.2 nm, and a 

particle distribution histogram is shown in Figure S3.  
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Figure 5. Ex situ AFM images of (A) Au(111) and (B, C) ~0.6 ML TiO2/Au(111). TiO2 

nanoparticles are highly dispersed across the Au(111) surface, residing on Au terraces and step 

edges. 

 

TPD experiments of ethanol on TiO2/Au(111) showed significantly different results from 

those of the clean Au(111) surface. A coverage dependent study of ethanol on ~0.7 ML 

TiO2/Au(111) indicated several differences from clean Au(111) TPD spectra (Figure 6). First, 
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the Tdes of ethanol from the TiO2/Au(111) surface trends toward lower Tdes with increasing 

coverages of ethanol. Ethanol desorption from the TiO2/Au(111) surface is Tdes= ~235 K after 

only 0.3 L of ethanol exposure, whereas ethanol desorbs from the same TiO2/Au(111) surface at 

Tdes= ~195 K after 2.0 L of ethanol exposure. This trend suggests that ethanol undergoes 

dissociative adsorption on the surface into an adsorbed H and ethoxy group. The dissociative 

adsorption of ethanol was expected on the TiO2/Au(111) surface as previous work with aliphatic 

alcohols on bulk TiO2(110) showed that ethanol dissociates into H and ethoxy on the surface.15–

20  

CH3CH2OH(g)  H*(a) + CH3CH2O*(a) 

The dissociative adsorption of ethanol on TiO2/Au(111) indicates the potential for the addition of 

other reactant molecules to react with the activated H and ethoxy species on the surface. 
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Figure 6. Coverage-dependent study of ethanol/TiO2/Au(111) TPD, m/z = 31. The trend in TPD 

spectra indicates dissociative adsorption of ethanol to H and ethoxy species. 

 

The Tdes= ~235 K of ethanol from TiO2/Au(111) is at an intermediate temperature 

between those of ethanol desorption from clean Au(111) (172 K, Figure 3) and bulk TiO2(110) at 

300-400 K.17–20,47 The intermediate Tdes of ethanol from the TiO2/Au(111) surface indicates that 

both Au and TiO2 sites may contribute to the adsorption of ethanol. As the size of TiO2 decreases 

from bulk to nanoparticles, the number of undercoordinated atoms increases as the surface area 

increases, and it is expected that the desorption temperature at the undercoordinated atoms of 

TiO2 would be higher than that of bulk TiO2. Instead, in Figure 6, the desorption temperature 

related to TiO2 sites is lower than that of bulk TiO2, indicating that the ethanol adsorbs to 
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interfacial sites between the TiO2 and Au. Previous work with ethanol/CeOx/Au(111) proposed 

that the oxide/metal interface played a strong role in the catalytic activity of the material toward 

ethanol using XPS.41 The intermediate Tdes of ethanol from TiO2/Au(111) suggests that the 

interface between the TiO2 nanoparticles and the Au(111) substrate plays a role in the conversion 

of ethanol to ethoxy.  

The TPD spectra of higher coverages of ethanol on TiO2/Au(111) indicate that the 

presence of TiO2 increases the total adsorption of ethanol (Figure 7). Ethanol desorption from 

clean Au(111) has a sharp desorption peak in the TPD spectrum that occurs at Tdes=172 K. 

Interestingly, the presence of TiO2 nanoparticles results in a broad higher temperature peak 

centered around Tdes= ~190 K with a long high temperature tail. We hypothesize that the increase 

in total adsorbed ethanol which is demonstrated by increased area and broadening of the 

desorption peak, could be the result of several factors: (1) The presence of TiO2 could increase 

the total number of adsorption sites on the surface. Figure 5 C shows that the Au(111) substrate 

has several step edges across the surface and TiO2 nanoparticles could pin the step edges during 

annealing cycles. TiO2 pins the Au step edges and results in a roughened surface with an 

increased number of ethanol adsorption sites on Au in addition to the increased number of 

adsorption sites on TiO2 nanoparticles. Figure S4 shows the peak fitting for the 

ethanol/TiO2/Au(111) spectrum in Figure 7. The peak fitting suggests that the low-temperature 

desorption features occur at temperatures that correspond well with our assignments for ethanol 

adsorbed on terrace Au (Tdes= 175 K), step edges (Tdes= 195 K), kink sites (Tdes= 217 K), and a 

new peak (Tdes = 265 K) corresponding to TiO2 (Figure S4). (2) The presence of TiO2 

nanoparticles potentially disrupts the ordered packing of ethanol on the exposed Au(111) 

surface. Previous work with methanol on Au(111) showed that H-bonding significantly 
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influenced the packing structure of methanol on the surface.35 The presence of TiO2 

nanoparticles on the surface causes the dissociative adsorption of ethanol, which could disrupt H-

bonding between ethanol molecules on the surface and allow for the enhanced total adsorption of 

ethanol by tightly packing ethanol on the surface. Furthermore, the stronger adsorption energy 

between TiO2 and ethanol could influence the density of the molecules on the nanoparticles, as 

compared to on the Au surface, where the H-bonded networks35 will dominate the packing 

density. 

 

Figure 7. TPD spectra of ethanol desorption from clean Au(111) (black line) and nanoparticle 

TiO2/Au(111) (red line). The increased area under the red curve suggests an increase in the 

distribution of adsorption sites as well as the concentration of surface-bound molecules.  
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Temperature-programmed reaction spectroscopy (TPRS) experiments of 

ethanol/TiO2/Au(111) show that the nanoparticle TiO2/Au(111) surface is active for the 

transformation of ethanol into both ethylene and acetaldehyde (Figure 8). Previous work with 

methanol and 2-propanol demonstrated that both alcohols underwent redox chemistry that 

depended on the specific method of surface preparation and the oxidation state of TiO2.21,22 The 

preparation of the Au(111) supported TiO2 nanoparticles was consistent for the TPRS 

experiments described herein. Prior to TPRS experiments, the TiO2/Au(111) surface was 

oxidized at 600 K with an O2 background of 2 x 10-7 torr. Several m/z ratios were monitored 

during experiments to elucidate different products, as several m/z ratios for potential reaction 

products overlap. The main species monitored were ethanol (m/z=31, 46, 45), ethylene, (m/z=28, 

27, 26), and acetaldehyde (m/z=29, 44, 43). Coupling products as well as smaller molecules 

resulting from the cleavage of C—C bonds were not detected. Six representative m/z ratios are 

shown to represent ethanol (m/z=46), acetaldehyde (m/z=29, 43, 44), ethylene (m/z=27), and 

water (m/z=18). The left panel displays the full temperature range of the TPR spectrum, which 

expectedly shows the desorption of ethanol over the lower temperature range between 170 and 

250 K.  
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Figure 8. TPR spectrum shows the ethanol–derived products formed over TiO2 nanoparticles 

supported on Au(111). The left panel shows low-temperature ethanol desorption, and the right 

panel highlights the product formation at Tdes= ~500 K.  

 

The right panel highlights the high-temperature component of the TPR spectrum. This 

data indicates the formation of acetaldehyde (m/z=29, 44, 43), ethylene (m/z=27), and water 

(m/z=18) from ethanol (m/z=46) over the TiO2/Au(111) surface. While m/z=29 corresponds to 

both ethanol and acetaldehyde, the combination of high Tdes peaks for m/z=29, 44, 43 with the 

lack of a high Tdes peak for m/z=46 shows that the desorption features are not the result of 

ethanol fragmentation but rather that acetaldehyde is in fact a high Tdes product. Similarly, a m/z 

ratio of 27 is observed for both ethanol and ethylene, but the lack of high-temperature desorption 
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of m/z=46 indicates that the desorption of m/z=27 corresponds to ethylene. The desorption 

temperatures of acetaldehyde and ethylene are significantly lower on the TiO2/Au(111) surface 

(Tdes = ~500 K) as compared to those on the TiO2(110) surface (Tdes = ~620 K)20. Sequential 

ethanol TPR experiments did not result in a change in a distribution in the ethanol–derived 

products, i.e., after multiple experiments the ratio between oxidized (acetaldehyde) and reduced 

(ethylene) products did not change, indicating that there was not a significant oxidation or 

reduction of the surface due to ethanol reaction. We hypothesize that ethanol deprotonates at the 

interface to form ethoxy and adsorbed H at low temperatures. Future work will extend to isotopic 

studies, as well as altering coverages and surface preparations of TiO2 to discern the effect of 

TiO2 nanoparticle size and surface condition on the reaction pathway for the reaction of ethanol. 

 



Conclusions 

 XXVII 

The desorption of ethanol from multilayers, Au terraces, Au step edges, and Au kink sites 

were differentiated via coverage-dependent TPD studies. Upon the deposition of TiO2 

nanoparticles on Au(111), a broadening of the low-temperature ethanol desorption peak is 

observed with a maximum desorption temperature of Tdes= ~235 K. The desorption of ethanol 

from TiO2/Au(111) occurs at an intermediate temperature between bulk Au(111) and TiO2(110). 

This intermediate desorption temperature indicates that ethanol dissociatively adsorbs into 

ethoxy and adsorbed hydrogen at the interface between TiO2 nanoparticles and Au(111) prior to 

forming acetaldehyde or ethylene. 

 



Supporting Information/Appendix 
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Ex situ AFM images show the morphology of the clean (left panel) and roughened (right 

panel) Au(111) surface. The roughened AFM image has roughly 50 kinks in the 1000 nm square 

image on the right. While this is not a true count of the total number of kinks in the surface, the 

shape of the edges allows for the rough estimation of the low end number of kinks per area.  

 

Figure S1. Ex situ AFM images of Au(111) (left) and roughened Au(111) (right). The roughened 

Au(111) was sputtered and annealed to 600 K.  
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Figure S2. Ex situ XPS: Clean Au(111) (Blue) and 0.6 ML TiO2/Au(111) (Orange). 
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Figure S3. Ex situ AFM Analysis: Histogram of particle diameters for nanoparticle TiO2 

coverage (0.6 ML) on a Au(111) surface. The average diameter of the TiO2 nanoparticles is 10.1 

± 2.2 nm. 
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Peak analysis indicates that the broad low Tdes is the result of several desorption peaks for 

ethanol, which make up the overall peak (Figure 7). The formation of several new peaks for 

ethanol with a higher Tdes indicates that TiO2 forms new adsorption sites with higher binding 

energies to ethanol. Analysis of the underlying peaks shows that a portion of the broad low 

temperature peak is made up of ethanol desorption from the Au(111) terrace (175 K), Au step 

edges (195 K), Au kink sites (217 K) and TiO2 nanoparticle sites (265 K) (Figure S4).  

 

Figure S4. Peak fitting of ethanol desorption from ~0.3 ML TiO2/Au(111). The peaks 

correspond to ethanol adsorbed to the Au(111) terrace (175 K), Au step edges (195 K), Au kink 

site (217 K), and TiO2 site (265 K). 
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