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Abstract 

Network intrusion systems work on many models, but at their core they rely on 

algorithms to process data and determine if the network traffic is malicious in nature. 

Snort is the most widely-used open source network based Intrusion Prevention System / 

Intrusion Detection System (IPS/IDS) system. It works by comparing network traffic to a 

list or lists of rules to determine if and what action should be taken. These rules are 

referred to as signatures, since they are intended to identify a single pattern of network 

traffic just like a physical signature identifies a single author. I have developed an 

algorithm that accepts as input any file or a directory and outputs Snort signatures. This 

action allows a quick turnaround in creating a rule to stop specific information from 

traversing the network. By using such a tool, Systems Administrators can better protect 

their environments through custom rule sets. To verify the algorithm, I generated files of 

various types containing randomized content and parsed them to generate rules. I then 

used a Snort installation to process the rules and a packet capture containing the files to 

determine if the rules operated as intended. 

Previously, the creation of rules typically was limited to a very small group of experts 

that focus solely on such tasks. The core of this research is to enable users to easily create 

a custom Snort installation, in addition to utilizing the default signatures all Snort 

deployments use. This increases the security of the assets that each site considers 

valuable and can be used to prevent data breaches that a typical IDS/IPS deployment 

could not. The algorithm I have developed is a beginning to the process of creating 

custom rule sets in an automated manner based on the unique content of each user’s 

environment.  



 

 

Introduction 

The goal of my research is to generate Snort rules from any type of file. I designed and 

implemented an algorithm which takes as input a file or directory and supports optional 

arguments and outputs a valid rule(s) that will match the contents of the given file or 

directory. It would have two-fold use:   1. it can simplify the rule generation process and 

2. may also be used to automate the rule generation process when combined with a 

recurring scheduled task. Both of these functions increase the value of a Snort 

deployment, and they can be used to defend against unwanted traffic. Additionally, this 

tool would make the content matching feature of Snort available to less experienced 

administrators, while also reducing the time it would take to quickly deploy a content 

matching rule. In typical Snort deployments a Snort system will pull rules from a third 

party source and take action based on these stock rules. Great effort goes into creating 

stock rules that take action against the latest threats; but even in the best case scenario, 

the Snort system is limited to using rules designed for a generic environment. By 

implementing custom rules, in addition to the standard rule baseline, the Snort system can 

be tailored to the requirements of a unique network environment or to the unique business 

needs of a deployment. 

A security tool such as Snort is most valuable when it is used for its intended purpose and 

to its fullest extent. By lowering the requirements to utilize the advanced features of 

Snort, the security tool enables network administrators to more easily deploy a custom 

defense configuration. This security component is often overlooked, because a custom 

security configuration allows for a configuration designed to protect those assets valuable 

to an organization. By limiting Snort and other tools to the standard out-
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of-the-box configurations, they are being underutilized. The algorithms and processes 

developed during this research are designed to change the difficulty of deploying a 

custom configuration of Snort, as well as allowing for more interesting uses by adding 

onto the core algorithm. 

This project is a means to decentralize the control of a typical Snort installation’s security 

posture. By expanding the number of administrators who can create custom rule sets, the 

difficulty of extracting valuable information from a network is increased. This can work 

against attackers and an accidental exposure by a user of the network. By identifying the 

valuable information and limiting the paths it can take across the network, Snort can be 

used to prevent exposures and secure sensitive data. The algorithm developed through 

this project contributes to the field of information security by taking a new approach to a 

common problem of generating signatures. Through the current and future work the Snort 

system can be empowered to provide additional protection specific to each user’s needs. 

Intrusion Prevention / Intrusion Detection System 

The majority of network defense devices work in a similar high level manner. They are 

designed to allow good traffic in without permitting bad traffic in.  However, there are 

various methodologies these machines use to provide this security functionality. In the 

case of intrusion, IDS/IPS are operating in a set configuration which determines if traffic 

is good (allowed) or bad (other actions taken). 

Figure 1: IPS/IDS 

 

 

 

Figure 1: Firewall 
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Both intrusion prevention and intrusion detection systems work in the same way; 

intrusion prevention systems have the added ability to prevent certain actions where an 

intrusion detection system would simply detect the action and generate an alert or a log 

entry. These systems work based on two models: signature and anomaly, which dictate 

how they determine if action needs to be taken. In anomaly based systems a baseline of 

events is established over a period of time, and future events are compared to this 

baseline to determine if an alert should be generated. This process is often difficult to 

calibrate, but can be used to detect zero day exploits or any other potentially malicious 

traffic that falls outside of the set baselines. The difficulty with this type of system is it 

being sensitive enough to take action when needed without creating an abundance of 

false positives.  

In contrast, a signature based system will analyze actions and compare them to a database 

of signatures to determine if action should be taken. A common example is an anti-virus 

solution which will scan files of a system and determine if any match the signature of a 

malicious file.  

 

Snort 

Snort is a signature based network intrusion prevention system / intrusion detection 

system originally released in 1998; it has grown to be an industry leader in open source 

security solutions. At the latest count, it has over four million downloads and four 

hundred thousand registered users; thus making it the most widely deployed intrusion 
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protection technology in the world
1
. Snort has the ability to perform protocol analysis as 

well as content matching giving it the ability to detect and act on a large range of 

potentially malicious activity such as buffer overflows, stealth port scans, CGI attacks, 

SMB probes and OS fingerprinting attempts
1
. For this project, it is the content matching 

engine we are looking to utilize when generating a rule based on an input file. 

Snort is programmed in the C programming language and supports deployments across 

both the Windows and Linux operating systems. As an open source initiative, it has 

extensive support of supplementary projects as well as the integrity of being available for 

review by any user. Similar to the field of cryptography where the security should only 

rely on the security of the keys, an open source project does not provide security through 

obscurity.  

Snort signatures are created by analyzing protocols or the content of network traffic. For 

this project, the content matching ability of Snort will be utilized to create a rule which 

matches the content of a file and allows the specified action to be taken. This requires an 

algorithm which parses the file and additional optional parameters to generate an output 

rule following Snort syntax with content matching features, so that the file is matched 

while also minimizing the occurrence of false positives. 

Snort Rule Syntax 

Snort rules follow a set syntax. Consider the example rule below in Table 1: 
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tcp any any -> any 22 (msg:”SSH 

traffic 

detected”;) 

Table 1: Snort Rules 

 

Action: 

Each rule begins with an action which dictates what the rule will do once all the rule 

conditions are met. This is a required field and the typical default value is Alert. 

 Alert – Generates an alert using the configured alert method and then logs the 

offending packet 

 Log – Only logs the offending packet 

 Pass – Ignores the packet 

 Activate – Generates an alert and also activates a dynamic rule 

 Dynamic – Rules which are activated and then function as a log rule 

 Drop – Drops the offending packet and logs it 

 Reject – Drops and logs the offending packet and then sends a TCP Reset or 

ICMP host unreachable response 

 Sdrop – Block the packet but do not log it 
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Protocol: 

This field is also required and defaults to IP. However, it also supports TCP, UDP, and 

ICMP values. This list will most likely expand in the future, but for our usage we will 

focus on the IP protocol as it encompasses the majority of means for moving a file across 

a network.  

Source IP: 

This field is optional and can be defaulted to “any” which will match all source IP 

addresses. A single IP address can be provided such as 192.168.1.100 or a CIDR block 

can be specified such as 192.168.1.0/24 which allows a range of IP addresses to be input. 

Source Port: 

A source port allows the specification of a port or a range of ports that can be used to 

only process the content of the packets if it matches the provided source port information. 

Direction: 

The directionality operator can be used to limit the direction of traffic that is monitored. 

The most common scenario is to monitor from source -> destination but the reverse can 

also be configured using source <- destination and finally the bidirectional operator <-> 

allowing for traffic to monitored in both directions. 

Destination IP: 

Like the Source IP field this section can be used to limit the scope of a rule or it can be 

applied to all destinations by using the value “any”. 

Destination Port: 

Like the Source Port field, this field is used to limit the scope of a rule by specifying the 

destination port or port range to be monitored. 
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Parameters: 

This is where the bulk of the rule is contained and is only processed once all the 

preceding fields are matched. Since the parameters section typically requires the most 

processing, it is important to limit the scope of rules using the available fields so that the 

IPS/IDS device can process traffic in real time. A rule that is overly broad such as: 

alert ip any any <-> any any (msg:”Packet detected”;) 

would result in a vast amount of alerts as every single IP packet would be matched by this 

rule. The parameters most focused on are the content, message, and SID fields. 

Content: 

Content is used to match the provided rule’s content to that of the traffic that matches the 

rule conditions. An example rule would be: 

alert ip any any -> any 80 (content:!”GET”;) 

This rule would monitor the HTTP port of a web site and alert the end user when a 

request that did not contain the ASCII characters “GET”. This is because the negation 

operator was used to search for the absence of instead of the presence of a variable. The 

content parameter also supports the use of binary data through hexadecimal notation. For 

example: 

alert ip any any -> any any (content:”|0A|”;) 

This allows for packets to be parsed at the byte level. The pipe character | is used to 

specify the contained string to be parsed in its binary equivalent. In this instance, the 

hexadecimal content 0x0A is equal to the binary characters 00001010. This is the method 

that this project uses as not all files contain ASCII printable characters. Instead, the files 
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are parsed for a binary string represented as hexadecimal characters to be used with the 

content parameter. 

Message: 

The message parameter is specified using the keyword “msg” and is used to append a 

string to an alert or log so that it is easier to know what rule was triggered. By simply 

looking at rules it is not always obvious what the intent is. This creates alerts and log 

entries which are more actionable and subsequently more valuable. For example, adding 

the message parameter to a previous rule: 

alert ip any any -> any 80 (content:!”GET”; msg:”Non-get web request detected.”;) 

When this alert is triggered, the alert or log entry will contain the message “Non-get web 

request detected.” which allows the recipient to take any additional necessary action in a 

timely manner. 

SID: 

The SID, or Snort ID parameter, is used to give each individual rule a unique identifier, 

so that it can be referred to easily. This is useful because it allows the triggering rule to  

be easily be located within the rules file for editing or even temporary disabling (by 

commenting out the rule). In the absence of a message parameter, the SID parameter is a 

great tool for pairing an alert or log entry back to the generating rule. 

Snort Configuration 

All of the Snort configuration is stored within a single file typically named snort.conf. It 

is here the various settings of a Snort deployment can be customized and additional rule 

sets added. As a typical rule, file inclusion would look like the below within the 

snort.conf file: 
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include $RULE_PATH/local.rules 

This allows a file called local.rules to have its contents included in the rule set the next 

time that Snort is started. The ability to add local customized rules files is important 

because it allows the third party rule sets to be updated without overwriting local rules. 

Snort contains a large list of customizable configuration options that each administrator 

should consider when adapting a deployment. However, these options outside of the 

inclusion of a rules file are outside of the scope of this project.  

Snort Rules Files 

Snort rules files follow the typical Python commenting syntax where any line that begins 

with the # character is not processed. This allows for a header that is commented out to 

be placed at the top of the file; then subsequent lines will contain the rules. Each rule is 

located on a single line. The file is simply a list of rules to be processed by Snort at 

runtime. These rule files are where the output of this algorithm should be placed so that 

on Snort restart the new rule is included in the active rule base. This can be done simply 

by appending the output of the script to the desired rules file through a command prompt 

or terminal. Alternatively, the output of the script can be manually added to the rules file. 

Snort supports the usage of multiple rules files which allows for a separate rules file as 

needed. This allows a deployment to still subscribe to the standard rules files while 

creating additional rules files containing their own custom rules. 

Snort rules files are parsed at start-up time which means any changes to the static rules 

files will not immediately take effect. For any changes to be applied, the Snort system 

must be stopped and restarted. If Snort processes a rule file that is not valid, then it will 
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exit and not provide network security. For this reason, it is vital that all Snort rules 

contained within a rules file follow the appropriate syntax. 

Packet Analysis 

Snort’s content matching system employs a packet level analysis to determine the content 

of network communications and parse them for signature matches. To better understand 

this process the structure of an IP packet must be understood. 

 ← 32 bits → 

Version IHL Type of Service Total Length 

Identification Flags Fragment Offset 

Time-to-live Protocol Header checksum 

Source Address 

Destination Address 

Options 

Data (variable length) 

Table 2: IP Packet 

Table 2 displays the standard format of an IP packet. The packet head contains the 

necessary information to route the packet from source to destination and is often updated 

as the packet transverses routers. The packet header is the portion of the packet which is 

processed initially to determine if it is a possible match for any of the signatures within 

Snort. If the packet header matches any rules, then the content of the packet is processed 

to determine if it matches any of the rules not yet eliminated. Through this process, Snort 

can process the smaller packet headers and limit the scope of the signatures to be 

checked. Only once matching rules are found is the packet’s contents checked. 
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Additionally the packet’s contents are still checked against all rules even if a previous 

rule was matched. This allows a single packet to trigger one or more rules. Snort also 

supports the ability to process fragmented packets where a single payload is spread across 

multiple packets. Snort will then collect all the fragmented packets and process the 

content as a single entity preventing the use of data fragmentation as a means to bypass a 

Snort signature. 

Relevant to this work is the ability to use packet capturing software to later be processed 

by the Snort system. This allows network traffic to be captured, analyzed, and then 

processed. This is important because it allows data to be permanently created, tested, and 

then verified manually by viewing the packet capture contents and searching for the 

generated signature. This also allows later verification of the testing process by another 

party using the generated network traffic, source file, and algorithm. The ability to 

duplicate results is vital to creating an algorithm that is dependable and brings value to 

the end users. 

Packet captures are stored within a file with extension .pcap and can be processed by 

Snort at a later time. This allows a set portion of network traffic to be saved and 

evaluated by Snort using various rule sets.  

Python 

When I first approached this problem, I knew that I needed to first select a programming 

language prior to attempting to outline the algorithm. The criteria I established was a 

concise language that could operate in the environments where Snort is utilized, fast, and 

powerful. I examined languages such as C, C++ and Java, but found they were lower 

level and performance oriented. This algorithm is not burdened with a high workload 
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since it processes files that are limited in size and processes files in a serial manner. As 

trade off for a slight performance loss, I used a language with very weak type casting and 

variables able to adapt to various input provided. This allowed me to focus on the 

transformation of the input into an acceptable output instead of worrying about pointers 

or variables with a maximum size.  

In addition to its concise and powerful notation, the Python language comes with built-in 

functionality for reading files and converting data to hex values. This greatly simplified 

the process, as demonstrated in the code printHex.py in Appendix B, of converting a file 

into a hex string. Once this was done, the task of parsing the file into a signature is much 

simpler. These built in functions allowed me to utilize known, good code while also 

keeping the length of my own code to a minimum. By keeping my own code base 

minimal, it is easier for outside parties to understand and validate contents. 

File Formats 

In the simplest form, all files are stored in binary format as a string of 1s and 0s. Like 

most data, it is not very useful until it is given meaning. With computers this is done by 

giving files types, so that they can be processed according to the contents they are 

storing. In this way, each string of 1s and 0s can identify that they should be parsed into a 

picture, an executable, or a document. Even within a specific file purpose, such as a 

picture, many formats are available to encode the data into a string of 1s and 0s (such as 

JPG, BMP, and PNG). 

This can lead to situations where the format of a file requires that it contain subsections 

of a certain length. Ideally, any algorithm that created signatures from files would only be 

concerned with the specific subsections that hold the data unique to a specific file. 
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However, this would require all file formats be known and each would be processed in a 

custom manner. 

Instead, the algorithm treats all file formats as a string of binary characters to be 

processed. Assumptions are made to attempt to align the signature generation algorithm 

with the portion of the files more likely to contain unique data. To do this, the beginning 

and end of the files are avoided as these are the common locations that a file format 

would use to store additional information such as the date created or the author. It is also 

assumed that the file(s) that are to be parsed are in the format they will transverse the 

network. Any later change such as encryption or compression would result in a change of 

the files binary content and thus the two formats would require separate signatures. 
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Related Work 

Automatic Signature Generation 

In a 2009 paper
2
 Alysson Santos of the Federal University of Pernambuco approached the 

problem of creating, testing, and characterizing signatures for a deep packet inspection 

(DPI) system in an automated manner. This work simply on topic alone mirrors my work 

with the primary difference being Santos was working with network traffic, whereas I am 

working with flat files. This differentiates the necessary algorithm since Santos is 

generating multiple signatures across a growing data set. In contrast the algorithm I 

developed takes a set data set defined at runtime and creates signatures on a one-to-one 

basis. Santos followed a methodology of creating tools which generated signatures, 

generated patterns, and finally a tool to generate traffic. This allowed her to create an 

environment that would mimic an actual network, and then test it to see how effectively 

she was generating signatures. 

Santos built upon a previously developed algorithm to parse the generated traffic and 

identify substrings that were repeating and could be used to classify traffic. Santos ran 

into difficulty handling large network traffic as it required an exponential amount of 

memory and computations to parse the file and generate signatures. Despite this, the 

signature was effective at generating usable signatures, but it did require calibration. The 

requirement of calibration caused her algorithm to be less automated than she desired. 

However, it did simplify the signature generation process and allowed for already 

generated signatures to be tested. 



15 

 

 

Santos also built a traffic generator which created point to point configured traffic that 

allowed her to test already generated signatures. This tool is independent of her own 

signature generation process and could test signatures generated by other means as well 

as her own. This allowed her to validate the algorithm she was utilizing to create the 

signatures as well as provide additional value to users of her tools.  

Santos' work provided a framework on how to approach my own research. I needed an 

algorithm that generated signatures as well as a means to test the validity of my results. 

This lead me to first focus on the Python algorithm which parses the file(s) and outputs 

the signature. From there, I developed a methodology that allowed me to verify the 

validity of the results I had obtained. Additionally, I focused on the performance aspects 

of my algorithm by limiting the total size of the file or file portion to be processed. I was 

also able to minimize the application’s footprint by processing files sequentially, which 

was not an option for Santos. This is achieved because each file is treated is a unique data 

set and processed individually. Santos was required to process all traffic as a single entity 

which is why she had problems with scaling her algorithms. 

Network Intrusion Detection Systems Using Random Forests Algorithm 

In a 2005 paper
3
 Jiong Zhang of Queen’s University approached the limitations of rule-

based signatures within intrusion detection systems. To do this he approached the concept 

of a hybrid system that utilized a rules-based system to detect known intrusions and also 

used an outlier detection algorithm to determine when traffic was outside the norm and 

possibly malicious. To do this he parsed random forests over training data to establish 

baselines, and then he detected events that were outliers. This combined approach to 
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intrusion detection is designed to provide better security by utilizing two technologies 

that have weaknesses that are offset by each other. 

This research is similar in that it wishes to automate the signature generation process and 

thus improve over the traditional intrusion detection system which operates on rules often 

created manually. Manual rule creation is a process that requires a high level of 

knowledge and is time consuming. This is a challenge that Zhang and I both approached 

using different methodologies. 

An interesting process employed by Zhang was to use the misuse detection engine which 

is rule based to screen data prior to parsing it for outliers. This removed the bulk of 

intrusions as they will utilize a known attack vector. By doing so, the resulting dataset 

was relatively clean and allowed for a more accurate baseline to be established. This 

resulted in baselines which accurately captured the benign traffic and could then be used 

to better identify outliers. Without this process, the number of intrusions attempted 

against a system that is publicly accessible leads to baselines that may include intrusion 

attempts and thus would not be good for establishing a baseline. 

The forests algorithm used by Zhang has been applied in other fields and is valid in its 

ability to predict future events based on a dataset. This allows Zhang to parse a dataset 

and use it to predict future events. This intrusion prediction data can then be used to 

better establish rules that protect against malicious traffic that is likely to come. This is 

very akin to machine learning where a dataset is used to allow an algorithm to learn to 

make better decisions over time. Applying this concept to intrusion detection just makes 

sense. 
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From this work I was able to better understand the limitations of rule based systems such 

as Snort. Using this knowledge I attempted to also bridge the gap of creating signatures in 

an automated manner. While Zhang applied his methods to network traffic, the concepts 

and the pitfalls he worked to overcome are also applicable to flat files.  

An Adaptive Automatically Tuning Intrusion Detection System 

In 2007, Zhenwei Yu wrote a thesis dissertation
4
 for the University of Illinois Chicago 

regarding an intrusion detection system that eases the calibration challenge typically 

associated with such devices. When an intrusion detection system is under calibrated it 

results in a large amount of false positives which can overwhelm an administrator 

resulting in valid alerts being disregarded or under-investigated. In contrast, a system that 

is overly tuned will not report intrusions and loses value, because it is not accomplishing 

its primary task. To overcome this problem, Yu proposed a system that would calibrate 

itself in an automated manner using user feedback. Primarily, the user would identify 

false positives as they arose and using this information the system could be calibrated to 

the user’s desired level without the user engaging in direct calibration. 

To approach this problem, Yu first had to analyze an intrusion detection model and 

determine which components would need to be adjusted to calibrate the device. This 

became complicated because many intrusion detection models are in place including the 

rules-based system employed by Snort. Yu discovered the best solution was to employ a 

typical rules-based system and then combine it with a predictive system. It is these 

predictive systems that are tuned to reduce false positives. Since rules-based systems are 

designed to detect only certain instances they can do so with a high degree of assurance. 

From that point the predictive model was used to generate events which the administrator 
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would then classify as legitimate or as a false positive. This feedback was then used to 

feed the algorithm which would alter its detection algorithm and the wait for further user 

input. 

Similar to my research, the goal of this paper is to automate a difficult process involving 

intrusion detection systems. Also, similar to the work completed by Zhang, a hybrid 

model was employed that built upon the rule-based model employed by Snort. This 

model goes beyond a simple content checking system and attempts to determine outlier 

instances that may be malicious. This paper identifies the weaknesses and difficulty of 

working with a rules-based system and allowed me to focus my work on easing this 

process and creating a better value from rules-based systems. 

Stochastic Tools for Network Security: Anonymity Protocol Analysis and Network 

Intrusion Detection 

In 2012, while at Clemson University, Lu Yu researched anonymity protocol analysis and 

its impact on network based intrusion detection systems
5
. In specific, Yu analyzed the 

anonymity protocol The Onion Router (TOR) and how it may be possible to detect a 

protocol despite it being tunneled through such a system. The ability to detect protocols 

taken across an anonymity service such as TOR would be a boon for any large network 

provider, such as an Internet Service Provider (ISP) or an entity tasked with surveying a 

network. 

One such entity tasked with surveying a network is the intrusion detection system. Yu 

proposed a system that utilized a combination of honeypots and intrusion detection 

systems to provide a network security scheme that was able to make predictive protocol 

matching based on past data sets. A key challenge to such a system is the ability to scale 
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as the network and thus the network traffic grows. For the system to operate it requires 

the honeypots and intrusion detection systems to be placed throughout the network and 

then combine the data into a single data set that can be used to make predictive protocol 

matching and thus attempt to take action against traffic despite an end user using an 

anonymity service. This is a clear example of exponential growth as the number of data 

collection devices increases the likelihood of detecting traffic at multiple points increases;  

thus the total data to be processed grows by a factor greater than one. 

At the core of this research is the problem of attempting to identify certain behavior 

within a data set that has been anonymized. I was able to analyze the methods Lu used to 

improve my algorithm in order to extract a signature from within a file that could be of 

any data type. In essence, I had to approach each file without any assumption about the 

contents of the file since the algorithm was required to process all data types. This mind 

set is very similar to the process of attempting to extract from anonymized data.  

Yu concluded through side channel attacks it was possible to make predictive 

assumptions about activity being taken by users using anonymity services. This is done 

by analyzing the delay between each pair of successive packets and then identifying 

protocols based on the initiators of a particular service. This is done by eavesdropping on 

the respective communication partners to attempt to ascertain the identity of users. 

Finally, Yu proposed a combination of honeypots and host-based intrusion detection 

systems may be the best approach to limiting the effectiveness of anonymity services. If 

traffic can be monitored from one end point to another, then it is possible to make certain 

assumptions and in some cases determine the nature of the communications, despite the 

anonymity service. 
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A set of approaches to evaluate and address the accuracy problem in intrusion 

detection systems 

In a 2010 paper Frederic Massicotte of Ottawa-Carleton Institute of Eletrical and 

Computer Engineering wrote a thesis
6
 regarding the accuracy of intrusion detection 

systems. By accuracy, Massicotte was speaking primarily about the false positives that 

can overwhelm an administrator and distract him or her from the alerts worth 

investigating. To accomplish this he analyzed the process of testing and evaluating IDS 

devices to determine if and when they are accurate. Additionally, he looked into intrusion 

detection systems signatures and how to automatically generate signatures. 

One of the key components to Massicotte’s research was a model for testing of intrusion 

detection systems that determined accuracy of the device. As a specific example, 

Massicotte used the Snort intrusion detection system to illustrate how the process would 

work in a real-world scenario. This was valuable insight since the Snort program is 

featured prominently in my research as well. Massicotte tested across three levels 

(predicate, logic, and state machine levels). He designed test conditions and criteria 

allowing for meaningful results. This methodology can be applied to other intrusion 

detection systems to allow for comparison between systems or between different 

configurations of the same system.  

Massicotte also worked on the verification of signatures as a means to improve accuracy. 

In particular, he worked on signature overlap where one signature can apply to multiple 

subjects. This was a problem I encountered with certain data types where the algorithm 

would generate a signature that applied to multiple files. This is far from ideal, because 

each rule should have a one to one relationship with the content that it is intended to 
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match. By analyzing the causes and avoidances of these scenarios, Massicotte was able to 

improve the signatures and subsequently improve the overall accuracy of the system. 

Finally, Massicotte worked on a data mining methodology of creating signatures based on 

training data sets. In particular, he focused on multi-session intrusion detection systems 

where the generated rules would span multiple data sets and still be applicable. He also 

outlined his process for selecting a data set for training and the attributes such a data set 

should possess. This was applicable to my research as I took datasets and attempted to 

identify the subset of that data which would best create a rule. 

Much of Massicotte’s work utilized Snort-based examples and results. This insight into 

Snort was very valuable and related directly to my work. He also focused on the issue of 

accuracy by attempting to find an automated solution. As with any calibration process on 

a dynamic system the work is iterative. By automating this process, the accuracy of the 

system can be improved at each run time, and the technology is kept up-to-date with the 

best configuration and rules. 

Methods for Speculatively Bootstrapping Better Intrusion Detection System 

Performance 

In 2012 while with the University of New Mexico, Sunny James Fugate researched 

methods for improving intrusion detection system performance
7
. While much attention is 

given to false positives and generating rules within the intrusion detection community the 

impact of both on performance must be considered. As the number of threats grows, the 

number of rules actively being parsed also grows putting further strain on intrusion 

detection systems. Simply keeping up with the increase in legitimate traffic can be 

cumbersome, but these systems must be able to withstand attacks such as flooding or 
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denial-of-service attacks where the attackers simply try to make the system exceed its 

capacity. 

As was shown in Santos’ paper, the problem of scaling within intrusion detections can be 

overwhelming and limit the ability to effectively protect networks. Fugate focused 

primarily on the scaling of intrusion detection systems and what can be done to improve 

that scaling so that intrusion detection systems can continue to meet or exceed the 

bandwidth requirements networks are currently facing. To do this, Fugate focused on 

using predictive methodologies to improve system performance using past data sets and 

results to make decisions with less computational resources being used. By doing this, 

Fugate theorized that this model would be able to decrease the per signature 

computational costs and thus allow systems to scale to a larger rule base. 

To prove his theory was correct Fugate took two approaches. In the first, an algorithm 

took predictive action and then used feedback to decrease per signature costs. This 

process worked on creating thresholds where actions were taken once a threshold was 

met instead of looking for a 100% match within a rule. The second approach focused on 

instances where an overburdened intrusion detection system was attempting to function. 

The standard behavior in this scenario is to drop packets while the system attempts to 

catch up to the current data waiting to be processed. Fugate demonstrated in some 

scenarios performance is increased more by simply stopping the processing of rules 

instead of dropping packets. This theoretically would lower the total error rate and 

provide better performance for the intrusion detection system. 

Once again, this research used the Snort system to show practical implementations of the 

theoretical models proposed. By focusing on the performance of Snort systems under 
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stress Fugate was able to highlight some of the pitfalls of intrusion detection systems. 

One of these focuses was the per signature computational cost, which is directly 

applicable to my research as I attempted to automate the signature generation process. 

This influenced me to focus on the computational requirements of the signatures my 

algorithm was generating in an effort to keep the computational costs per rule down. If 

poor rules are actively used, then intrusion detection systems are vulnerable to flooding 

or denial or service attacks.   
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 My Approach 

I have created an algorithm which takes as input a minimum of a file or a directory and 

will output all required Snort syntax to comprise a valid addition to a Snort rules file. The 

valid arguments which can be provided to the algorithm are: 

-f, --file: The path or name of the file to be used. 

-a –all: The directory to be parsed. The file and all flags are exclusive. 

-s, --source: The source IP and optionally the source port as well. Defaults to the value 

‘any’ if a custom value is not provided at runtime. 

-d, --destination: The destination IP and optionally the destination port as well. Defaults 

to the value ‘any’ if a custom value is not provided at runtime. 

-p, --protocol: Allows specification of a particular protocol to monitor (IP, TCP, UDP or 

ICMP). Defaults to the value ‘any’ if a custom value is not provided at runtime. 

-l, --length: The signature length in number of bytes. Defaults to a signature length of 8 if 

a custom size is not provided at runtime. 

-v –verbose: Enable verbose output. 

-r –random: Randomizes the starting point of the signature generation process. With a 

fixed starting point, it may be possible for a malicious user to use this to manipulate the 

signature generation process. By default, random is not enabled. 

This encapsulates the basic requirements to generate all the necessary fields for a valid 

Snort signature. The only required field is the file or directory that is to be parsed. All 

other fields are optional and will be populated with a default entry if no custom value is 

provided. This allows for a quick and simple run as illustrated in Figure 2: 
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Figure 2: Example Run 

However it also allows for very complex rules to be created by using the majority of the 

flags shown in Figure 3. 

 

Figure 3: Complex Run 

Functions 

Within the algorithm, many core functions have been split so that they can be called 

individually. This design process was chosen so that individual functions can be called 

either through the normal command line method or the code can be integrated with other 
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works with ease. This additionally allowed for easier trouble shooting and validation as 

each module could be tested individually.  

main() – The main function is the driver for the algorithm and works by first reading in 

the arguments passed at startup time. If the user specified a single file the fileParse 

function will be called or if a directory is specified the dirParse function will be called. 

fileParse(String) – The fileParse function calls all the necessary functions and routines 

to parse a single file and output a single signature. It does so by calling the fileRead 

function to read the file passed to it; then it validates the arguments using ipCheck, 

validSize, and validProtocol before finally using createSig and combineSig to update the 

signature String. Finally, it calls a print function to print out the complete signature. 

dirParse() – The dirParse function uses the line: 

 files = [f for f in os.listdir(directory) if isfile(join(directory,f)) ] 

to create a list of files that can then be parsed over one at a time using the fileParse 

function. To achieve this, the dirParse function loops over the files list and calls the 

fileParse function providing both the directory and file name to be parsed so that the 

fileParse function is passed a complete file path. 

vPrint(String) – This simple function checks if the verbose flag was set by the user. It 

will only print the passed String if the function has been set by the user. This allows 

certain informational output to be suppressed which is the default behavior so that the 

output can be piped into a rules file. 

argRead() – The argRead function utilizes the argparse functionality built into Python to 

process all the command line arguments and store them into global variables. It also 

determines the file extension is to be processed. This functions determines when a 
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directory is given if it  will alter the directory to be in the UNIX format using forward 

slashes instead of the Windows default back slash which Python interprets as an escape 

character. 

fileRead() – fileRead will open the file stored in the global file variable and then save the 

contents of the file into the global fileString variable as hex values. To limit the 

processing of very large files, the length of the fileString is limited to 2,621,440 

characters or roughly 10mb. This means that files over 10mb will only have the first 

10mb processed when generating a signature. This is a compromise between speed and 

signature accuracy. Processing further into files will result in decreased performance and 

the first 10mb should be sufficient to create a valid signature. 

ipCheck() – The ipCheck function begins by parsing the given source and destination 

which can include both port and IP or simply and IP address. At the command line this 

would look something like: 

 >python autoSnortSig.py –s 192.168.1.1:80 

Where a source IP address of 192.168.1.1 and a source port of 80 are passed to the 

algorithm. These strings have to be parsed  first by determining if the source or 

destination information was passed,  secondly, by checking if it contains both a port and 

IP or simply an IP, and finally by storing the port and IP into global variables if passed or 

storing the default value. Once completed, the validation functions are called if the global 

variables are not storing the default value. 

validPort() – First the port functions checks that the provided String is an integer. If is 

not, then an error is printed and the program exits. If an integer is detected, it must be in 

the range of 1-65536 or else an error is printed and the program exits. 
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validIP() – This is a driver function that works by separating the provided IP address into 

octets and then passing those octets one at a time to the validOctave function. If the IP 

address provided is not valid, then the function prints an error message and exits the 

program. 

validOctave() – As each octave is passed to this function, it verifies that it is an integer in 

the range of 0-255 and will return True if that is the case. For all other cases it returns 

False. 

validSize() – This function checks the user provided signature size,  verifies it is an 

integer, and  validates it is an acceptable value. The default value for size is eight, but 

values as small as four and as large as sixty four are accepted. If an unacceptable value is 

detected, then an error message is printed and the signature size is set back to the default 

value eight. 

validProtocol() – The list of acceptable protocols ("ip","tcp","udp","icmp","any") is 

stored within a list. Any protocol provided by the user must be contained within the list 

for it to be accepted. In order for this to be accomplished, the global variable protocol is 

first converted to lowercase and then the list is checked to see if it contains the global 

protocol. If it does not,  the user input is considered invalid causing an error message and 

the protocol to be set back to the default value of any. 

createSig() – This function is the core of the algorithm as it takes the file as a String of 

hex characters and parses it to generate a substring that will be used to populate the 

content portion of the rule. It also includes a check that will randomize the start location 

within the search for a valid substring if the random flag is passed by the user. The 

standard starting location is the middle of the file or the middle of the first 10mb, should 
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the file be larger than 10mb. The intent of starting in the middle of the file is to avoid any 

patterns that are common amongst file types appearing at the beginning or end of a file. 

The random flag changes that so that the algorithm starts at a random location anywhere 

from 25% to 75% of the files length. Once a start position is determined, a substring is 

pulled and then tested for validity. It must contain less than 50% of the hex value “0” to 

be considered valid. This check is put in place to make sure the substring pulled is not a 

portion of the file that has been padded with binary “0”. If the substring fails, the validity 

test the algorithm increases the starting location and pulls another substring. Since this 

process is designed to avoid padding within files it processes the file from the starting 

point in one direction so that it can find a point that is outside of the padding. The new 

substring is tested and the process continues until a valid substring is found or the length 

of the file is exhausted. If no valid substring is found an error message is printed and the 

program exits.  

combineSig() – The combineSig function takes the content generated by createSig and 

combines it with all the necessary syntax to create a valid rule. This includes parsing the 

already validated global variables to determine the protocol, source, and destination to be 

included in the final rule. These elements are all combined in the correct order and 

necessary grammar to form a complete rule. 

When all of these functions are combined the program follows a precise controlled flow. 

Either a single file is parsed or lists of files are parsed one at a time. Regardless, the same 

core functions are used to generate the signatures and print them as output.  

The creation of the signature focuses on the ability of Snort to content match rules to 

traffic in three ways using the content tag. The content tag allows for rules to be 
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compared to traffic using binary, hexadecimal, or ASCII strings. This requires the input 

file to be converted into one of these formats and then parse the file to choose a particular 

section to be used as the signature. After research, I discovered Python had the built-in 

functionality needed to read in files and convert them to all three formats prompting me 

to implement the algorithm. Additionally, with Python being such a high level language, I 

was able to implement the project using fewer lines of code which allowing better testing 

and understanding of the data flow. 

I quickly discovered ASCII was not the preferred format because many file types have 

data stored in what would result in non-printable characters. This prompted complications 

because the Snort rule required characters to be printed so that they could be included in 

the resulting rule (which are typically edited with a text editor such as Notepad or gEdit). 

When choosing between binary and hexadecimal, my findings concluded they were 

functionally the same, but hexadecimal characters permitted rules with sufficiently large 

signatures to be generated without creating excessively long rules. For instance, a 

signature that is 4 bytes long would require 8 hexadecimal characters, but would be 

composed of 32 binary characters. For this reason, I decided that all signatures would be 

output in hexadecimal format. 

The process of parsing the string of hex characters into a suitable signature was one that 

had a wide array of challenges. The primary challenge, however, is that each file format 

is unique and often includes standard header and footer content that is not unique to a 

specific file. Including this content is unique to a file type and would result in all files of 

the same type also being identified by the generated rule. To limit this likelihood, the 
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signature is extracted from the middle of the file attempting to target the area most likely 

to contain content unique to the inputted file. 

Another potential pitfall is in the splitting of bytes. Because a byte is represented using 

two hexadecimal characters, it is possible for the second half of a byte to be the first hex 

character in the signature and the first half of a byte to be the last character in the 

signature. When processed by Snort, this would result in unintended matches. For 

example, with a signature length of 3 it is possible for the following to occur: (see Table 

3): 

Byte Number 1 2 3 4 

File Content A0 78 3C FF 

Extracted Signature   0 78 3C F 

Signature that will be used 07 83 CF  

Table 3: Content Matching 

In this example, the last half of the first byte is taken from byte one and the first half of 

byte four is taken to create a signature that is three bytes long. However, the bytes “07 83 

CF” are not contained in the original file content so a bad signature has been created. 

To address this problem the hex characters are combined in pairs into an array so that 

each element of the array represents a single byte of data. This prevents the accidental 

splitting of bytes and the end result is signatures that are more likely to match the original 

file content. 

The final pitfall discovered was the padding within files which could output a signature 

whose content was composed either primarily or solely of “00” bytes. While this would 

result in a good match with the original file contents, it was also overly broad and would 
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match files it should not. To prevent this, the occurrence of “0” within the generated hex 

signature is checked. Based on the size of the signature, if the number of “0” characters is 

too high the signature is discarded and the file is iterated over until a suitable signature is 

found. 
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Experiments & Results 

Lab Configuration 

I had two primary requirements of the lab. My first requirement was the ability to run the 

Snort software and the need to create packet captures of files being moved across the 

network. The easiest configuration I found that met these goals was a virtual machine 

running Ubuntu 12.04 LTS. From there the necessary software, Snort, Wireshark, and an 

FTP server (vsftpd), were installed and configured to a functional level. To capture 

network traffic containing a specific file I utilized Wireshark while transferring files over 

the FTP protocol. The resulting packet captures were filtered by port so that only FTP 

traffic was contained within the created packet capture file. I selected the FTP protocol 

because of its simplicity in moving files over the network in an unencrypted and 

uncompressed manner. Moving files in an unencrypted and uncompressed manner is key, 

because once the content was encrypted or compressed the generated signatures would no 

longer be applicable. I could then use the created packet capture files as input to Snort 

using to test for matches to the created rules. By performing an offline analysis of the 

captured traffic I was able to recreate results and also perform multiple tests across the 

same packet captures. An example of such a test is shown in Figure 4. 
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Figure 4: Example Snort Run 

In an offline analysis Snort reads in the provided packet capture file and then parses each 

packet as if it were live data being passed across the network. Each packet is compared 

against the default rule set or a custom snort.conf file can be specified which includes 

alternative rule sets. After performing an offline analysis of the generated packet capture I 

was able to parse the results and determine if the generated output matched the intended 

results. For example while transferring a single file over FTP that has a rule generated for 

it in the rules files I would expect an alert to be generated. This process in whole allowed 

for the generated rules to be compared against various traffic and the results observed. 
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Next I took the output of the snort analysis and compared it to the contents of the packet 

capture file manually using Wireshark to determine if the signature was identifying a 

portion of the file or simply some portion of the FTP overhead. This process was repeated 

only for the first few transfers to validate the automated testing mechanisms. An example 

search is shown in Figure 5. 

 

Figure 5: Wireshark Search 

File Generation 

To test and verify the algorithm I needed to create data sets, in this case files, which the 

algorithm could parse. Then the generated signatures could be tested. To do this I 

populated various file formats with sufficient random data in order for a unique signature 

to be created without creating so much data that the unique format of each file type 

becomes a non-factor. I decided to focus on the file formats most popular in the typical 

business network settings, which are Microsoft Office formats, text files, and executables 

(.exe). The process was straight forward for populating documents, but the executables 
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were somewhat problematic. Therefore, I relied on publicly available executables to use 

as a testing data set for the executable file type. 

To generate the random ASCII printable characters, I created a short algorithm which 

printed out 1,000 characters randomly chosen from all possible ASCII printable 

characters. For reference, the algorithm is included under Appendix B as the file 

genText.py. The output of this algorithm was then piped to various text files to create the 

text file data sets. This was not possible for more advanced Microsoft Office file types, so 

instead I copied and pasted the output of the script into the files manually. For 

comparison, the similar Office files such as .docx and .doc are using the same random 

string of printable characters. Once the requisite files were created, then I was able to 

parse them with the signature generating algorithm and log the results for future testing 

with Snort. 

The quantity of 1,000 random ASCII characters was chosen to attempt to highlight the 

challenges of finding unique content within various file types. In the simplest example of 

a text file the chances of finding a substring of the 1,000 ASCII characters within a 1KB 

text file is very high. In other formats which contain a larger amount of formatting and 

configuration information the chances of finding the unique content is much lower. 

Signature Matching 

To determine if the generated signatures were valid I needed to upload the generated 

signature to a rules file, restart Snort, and then have Snort process a packet capture file 

that included the file being transferred. I used the default signature size with no additional 

options (such as protocol or port) so that the rule would search simply for the presence of 

the file signature instead of searching only a subset of the packet capture file that met the 
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rule requirements. While this is not best practice in a real world application, the goal of 

this test was to determine the validity of the content portion of the rule so removing all 

other possible causes of a signature mismatch was needed. For each file type 10 files 

were tested to establish a baseline of success / failure for that particular data type. While 

this is not a large enough quantity to determine if the algorithm works against all files of 

a particular data type, it does allow for a reasonable determination of success when 

processing a data type. The following file types were tested with included results as 

depicted in Tables 4-10. 
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Text Files Signature Generated Results File Size 

randText0.txt alert any any any -> any any 

(content:"|4c6c5b326c7c346e|";) 

Match 1KB 

randText1.txt alert any any any -> any any 

(content:"|2031577929200d0a|";) 

Match 1KB 

randText2.txt alert any any any -> any any 

(content:"|5b656c2e2371555b|";) 

Match 1KB 

randText3.txt alert any any any -> any any 

(content:"|09553e56557b694f|";) 

Match 1KB 

randText4.txt alert any any any -> any any 

(content:"|2a470b78792c366d|";) 

Match 1KB 

randText5.txt alert any any any -> any any 

(content:"|6d0b6b39300d614b|";) 

Match 1KB 

randText6.txt alert any any any -> any any 

(content:"|3b59432e2756617e|";) 

Match 1KB 

randText7.txt alert any any any -> any any 

(content:"|682f7b7576657039|";) 

Match 1KB 

randText8.txt alert any any any -> any any 

(content:"|656c567473357155|";) 

Match 1KB 

randText9.txt alert any any any -> any any 

(content:"|6747247e0d2e5832|";) 

Match 1KB 

Table 4: Text Files 
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Docx Files Signature Generated Results File Size 

randText0.docx alert any any any -> any any 

(content:"|ca5d7399e4b6afab|";) 

Match 15KB 

randText1.docx alert any any any -> any any 

(content:"|2db7e623ec03acd8|";) 

Match 15KB 

randText2.docx alert any any any -> any any 

(content:"|8dbdf066afd1fc51|";) 

Match 15KB 

randText3.docx alert any any any -> any any 

(content:"|f2ef0bec98317471|";) 

Match 15KB 

randText4.docx alert any any any -> any any 

(content:"|9a7fadbc29cd4d60|";) 

Match 15KB 

randText5.docx alert any any any -> any any 

(content:"|93723e8f0aa79894|";) 

Match 15KB 

randText6.docx alert any any any -> any any 

(content:"|a1ee4d8c36203371|";) 

Match 15KB 

randText7.docx alert any any any -> any any 

(content:"|0796c938ec0d9335|";) 

Match 15KB 

randText8.docx alert any any any -> any any 

(content:"|ccb2f3243b9f65b8|";) 

Match 15KB 

randText9.docx alert any any any -> any any 

(content:"|72642f7765625365|";) 

Match 15KB 

Table 5: Word Files 
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Doc Files Signature Generated Results File Size 

randText0.doc alert any any any -> any any 

(content:"|8643a2c3a74346e7|";) 

Match 23KB 

randText1.doc alert any any any -> any any 

(content:"|0c3258726c6f765f|";) 

Match 23KB 

randText2.doc alert any any any -> any any 

(content:"|9822266798222667|";) 

Match 23KB 

randText3.doc alert any any any -> any any 

(content:"|b400818132300000|";) 

Match 23KB 

randText4.doc alert any any any -> any any 

(content:"|b400818132300000|";) 

Match 23KB 

randText5.doc alert any any any -> any any 

(content:"|9526d50403b7c743|";) 

Match 23KB 

randText6.doc alert any any any -> any any 

(content:"|530c696f6d3a537d|";) 

Match 23KB 

randText7.doc alert any any any -> any any 

(content:"|9e2226679e222667|";) 

Match 23KB 

randText8.doc alert any any any -> any any 

(content:"|4433487b705b7a0b|";) 

Match 23KB 

randText9.doc alert any any any -> any any 

(content:"|0000ffffff7fffff|";) 

Match 23KB 

Table 6: 1997 Word Files 
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Xlsx Files Signature Generated Results File Size 

randText0.xlsx alert any any any -> any any 

(content:"|c6e751cc195885a5|";) 

Match 10KB 

randText1.xlsx alert any any any -> any any 

(content:"|ba9942d311a2d0ad|";) 

Match 10KB 

randText2.xlsx alert any any any -> any any 

(content:"|a33b3fd18cba0567|";) 

Match 10KB 

randText3.xlsx alert any any any -> any any 

(content:"|e701ca9951c9aeb6|";) 

Match 10KB 

randText4.xlsx alert any any any -> any any 

(content:"|5fe7f777e911ddde|";) 

Match 10KB 

randText5.xlsx alert any any any -> any any 

(content:"|9996fd82f31a6dc6|";) 

Match 10KB 

randText6.xlsx alert any any any -> any any 

(content:"|daaddb1a92944129|";) 

Match 10KB 

randText7.xlsx alert any any any -> any any 

(content:"|71daaddb1a929441|";) 

Match 10KB 

randText8.xlsx alert any any any -> any any 

(content:"|b79f929032e8a537|";) 

Match 10KB 

randText9.xlsx alert any any any -> any any 

(content:"|9f929032e8a53709|";) 

Match 10KB 

Table 7: Excel Files 

 



42 

 

 

Xls Files Signature Generated Results File Size 

randText0.xls alert any any any -> any any 

(content:"|2848000050243563|";) 

Match 25KB 

randText1.xls alert any any any -> any any 

(content:"|0c50212e4044245d|";) 

Match 25KB 

randText2.xls alert any any any -> any any 

(content:"|7e5321206273316a|";) 

Match 25KB 

randText3.xls alert any any any -> any any 

(content:"|4f24575d725d705d|";) 

Match 25KB 

randText4.xls alert any any any -> any any 

(content:"|23e6561393c2e784|";) 

Match 25KB 

randText5.xls alert any any any -> any any 

(content:"|7422516573556877|";) 

Match 25KB 

randText6.xls alert any any any -> any any 

(content:"|553a54602a676d2b|";) 

Match 25KB 

randText7.xls alert any any any -> any any 

(content:"|7056596e64537a44|";) 

Match 25KB 

randText8.xls alert any any any -> any any 

(content:"|5d257b374e424354|";) 

Match 25KB 

randText9.xls alert any any any -> any any 

(content:"|40422924707d6b79|";) 

Match 25KB 

Table 8: 1997 Excel Files 
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Exe Files Signature Generated Results File Size 

AIM_Install.exe alert any any any -> any any 

(content:"|7176493855395036|";) 

Match 18MB 

putty.exe alert any any any -> any any 

(content:"|00006a146a506a02|";) 

Match 484KB 

FirefoxSetupStub29.0.1.exe alert any any any -> any any 

(content:"|2c0c084040b31f41|";) 

Match 277KB 

ChromeSetup.exe alert any any any -> any any 

(content:"|cccccccc8bff558b|";) 

Match 898KB 

Hearthstone-Setup-

enUS.exe 

alert any any any -> any any 

(content:"|465004747251508d|";) 

Match 6.7MB 

FileZilla_3.7.4.1_win32-

setup.exe 

alert any any any -> any any 

(content:"|00002bd1c1fa0503|";) 

Match 4.7MB 

Gw2Setup.exe alert any any any -> any any 

(content:"|8bf185c0742f85d2|";) 

Match 22.2MB 

winscp518setup.exe alert any any any -> any any 

(content:"|c465842653a29724|";) 

Match 4.9MB 

Wireshark-win64-

1.10.3.exe 

alert any any any -> any any 

(content:"|b663c553c2c6d637|";) 

Match 27.3MB 

WinPcap_4_1_3.exe alert any any any -> any any 

(content:"|0d0a6129664b0d0a|";) 

Match 894KB 

Table 9: Executable Files 
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PDF Files Signature Generated Results File Size 

randText0.pdf alert any any any -> any any 

(content:"|2532fc8a467945e5|";) 

Match 108KB 

randText1.pdf alert any any any -> any any 

(content:"|2a8ce811da093f7a|";) 

Match 111KB 

randText2.pdf alert any any any -> any any 

(content:"|020fbff42278f819|";) 

Match 111KB 

randText3.pdf alert any any any -> any any 

(content:"|f2e0c47e801378f9|";) 

Match 110KB 

randText4.pdf alert any any any -> any any 

(content:"|3a46859d63ec00dc|";) 

Match 110KB 

randText5.pdf alert any any any -> any any 

(content:"|800ddae363a89f67|";) 

Match 109KB 

randText6.pdf alert any any any -> any any 

(content:"|0c82a6e90baff21c|";) 

Match 111KB 

randText7.pdf alert any any any -> any any 

(content:"|41e5296149f35369|";) 

Match 107KB 

randText8.pdf alert any any any -> any any 

(content:"|dcbef3b5dffefa12|";) 

Match 110KB 

randText9.pdf alert any any any -> any any 

(content:"|90ba89d6c54a5ee5|";) 

Match 107KB 

Table 10: PDF Files 
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Tables 4-10 illustrate the generated output when the various files are parsed by the 

algorithm. Looking at the match results for the one to one test of generated signature to 

file the algorithm is generating signatures that match well with all the tested file types. 

However Table 6 uses the simple format of Word documents .doc, and it shows a 

potential problem with this methodology. Files 3 and 4 share the same generated 

signature, despite containing unique randomized content, which will result in both 

generated rules creating an alert when either file is detected. This is because the algorithm 

is selecting a signature from a portion of the file that contains information on the 

formatting of the file instead of the portion that contains the unique random ASCII 

printable strings. Each file contains 1,000 random ASCII characters which makes it is 

easy to compare the 1KB text files and the 23KB word files and see that the word files 

contain an additional 22KB of file format specific content. Since these files are the same 

size, format, and use the same content generation methods, it makes sense that the 

algorithm will select a similar portion of each file.  However, in a real world application 

these files sharing the same signature is not advantageous. To overcome this problem the 

algorithm can either be run using the random flag to select a randomized starting point or 

a larger signature can be generated. To discover how deep these matching signatures ran, 

I generated signatures for files 3 and 4 of increasing length until they generated a unique 

signature. 

 

Length randText3.doc Signature randText4.doc Signature 

8 alert any any any -> any any 

(content:"|b400818132300000|";) 

alert any any any -> any any 

(content:"|b400818132300000|";) 
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9 alert any any any -> any any 

(content:"|b400b4008181323000|";) 

alert any any any -> any any 

(content:"|05a005b400b4008181|";) 

10 alert any any any -> any any 

(content:"|a005a005b400b4008181|";) 

alert any any any -> any any 

(content:"|ffa005a005b400b40081|";) 

11 alert any any any -> any any 

(content:"|00ffffff7fffffff7fffff |";) 

alert any any any -> any any 

(content:"|05a005b400b40081813230|";) 

12 alert any any any -> any any 

(content:"|a005a005b400b40081813230|

";) 

alert any any any -> any any 

(content:"|a005a005b400b40081813230|";) 

13 alert any any any -> any any 

(content:"|040000ffffff7fffffff7fffff|";) 

alert any any any -> any any 

(content:"|ffff7fffffff7fffffff7fffff|";) 

14 alert any any any -> any any 

(content:"|00004b831100f010000800fcfd

21|";) 

alert any any any -> any any 

(content:"|00a005a005b400b40081813230

00|";) 

15 alert any any any -> any any 

(content:"|24500000e4040000ffffff7ffffff

f|";) 

alert any any any -> any any 

(content:"|0f000924500000e4040000ffffff

7f|";) 

16 alert any any any -> any any 

(content:"|ffffff7fffffff7fffffff7fffffff7f|";

) 

alert any any any -> any any 

(content:"|ffffff7fffffff7fffffff7fffffff7f|";) 

Table 11: Word File Comparison 

This leads to an interesting discovery where the generated signatures of length eight 

through sixteen have a pattern of matches at length eight, twelve, and sixteen. Further 
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analysis shows that many of the signatures share components with other signatures. This 

is shown clearly in the signatures for file three where the signature of length 12 contains 

substrings of the length 8 and 9 signatures. Signature 12 of file 3 contains 75% of 

signature 8 and it contains 89% of signature 9. This also occurs across files where the 

signature of length 11 from file 4 is found in its entirety within signature length 12 of file 

3. From this I can infer that the two files share similar content at the algorithms starting 

point which is causing them to create signatures that have commonalities. This is counter 

intuitive to the idea that a longer signature is more likely to be unique. This illustrates the 

concept that unique file formats may present unique challenges in creating signatures. 

Based on the data collected, the algorithm is generating signatures that match with the 

contents of the file(s) being parsed. However, through analysis of the created packet 

capture files I found some of the matches did not align with the unique content of the 

files (such as the words and phrases of a word document). Within the simple text files it 

was easy to pair the generated signatures to the generated ASCII characters. See Figure 5 

for an example of a Wireshark capture of a text file where the ASCII contents can be read 

in the bottom right. However the .docx and .xlsx files utilize an XML based format that is 

spread across multiple files and then compressed to save space. This compression made 

the process of identifying where the document contents started difficult. Ideally, each 

supported extension would have a unique handling that generated the signature from the 

portion of the file that would contain unique content. 

Signature Length 

I wanted to consult both theoretical and real world scenarios that would lead me to an 

ideal signature length for the default for the algorithm. For the theoretical scenario, I 
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wanted to determine the average amount of bytes processed before a positive occurred 

assuming that the data is random. For a single byte this is simple, because a byte is 

composed of 8 binary digits and has 2
8
 or 256 possible values. Therefore, any byte would 

have a 1 in 256 chance of being the byte we are searching for leading to an average false 

positive every 256 bytes. Beginning with a signature of two bytes, the formula changes 

slightly as content of 100 bytes will only have 99 byte pairs (determined by: length – 

(size – 1)). In order to determine the average false positive rate, we need to determine the 

chance of any random byte pair being the same and then calculate the length that would 

result in an average of 1 false positive. 

𝑟𝑎𝑡𝑒 = 2𝑘 + (𝑙𝑒𝑛𝑔𝑡ℎ − (𝑠𝑖𝑧𝑒 − 1)) 

However the average rates grow exponentially with 2
k
 so the linear growth of (length – 

(size – 1)) can be discarded as trivial.  

 

Signature Length Average Size Signature Length Average Size 

1 2
8
 bytes 9 2

72
 bytes 

2 2
16

 bytes 10 2
80

 bytes 

3 2
24

 bytes 11 2
88

 bytes 

4 2
32

 bytes 12 2
96

 bytes 

5 2
40

 bytes 13 2
104

 bytes 

6 2
48

 bytes 14 2
112 

bytes 

7 2
56

 bytes 15 2
120

 bytes 

8 2
64

 bytes 16 2
128

 bytes 

Table 12: False Positives 
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Based on Table 12, the best case signature length would limit the rate of false positives 

while also keeping the computational requirements to a minimum. A signature of length 8 

would produce a positive at the rate of once every 16,384 petabytes. This is sufficiently 

large enough to deter false positives and is still small enough to conserve computational 

resources. For this reason the default signature size within the algorithm is 8 bytes. 

To determine the real world implementation, I created a ~100mb packet capture file and 

searched it for signatures of increasing size beginning with 1 byte and ending at 8 bytes. 

Each signature was a randomly generated hex string with no relation to the randomly 

generated content of the packet capture. I created the packet capture using a variety of 

normal activities, such as web browsing and video streaming, totaling in size at 

106,915kb. This was all done over an encrypted HTTPS connection which should result 

in an acceptable level of randomness based on the encryption algorithms used.  This test 

was performed five times with the signatures changing each time and the results averaged 

in Table 13 to illustrate the rate of false positives. The rate of positives could then be 

compared between Table 12 and Table 13 to verify that the theoretical results mapped to 

the real world implementation. A larger packet capture could have provided results into a 

higher signature length but at a length of four the packet capture would need to be 

4,096mb to generate an average of 1 false positive. The adherence to similar rates among 

the smaller signatures is sufficient to prove that the theoretical and real world 

implementation support each other: 

Signature Size Occurrences Average Size 

1 432,069.8 253.39 bytes 

2 1626.6 67,306.6 bytes 
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3 6.2 17,244.4 kilobytes 

4 .2 547.4 megabytes 

5 0 N/A 

6 0 N/A 

7 0 N/A 

8 0 N/A 

Table 13: False Positives Rate 

False Positives 

In this experiment, I took the generated signatures from the signature matching test and 

compared them against the single large packet capture file (106,915kb) generated in the 

signature length experiment. By doing so, I wanted to examine the use of the generated 

signatures in a real world implementation to determine if they were creating an 

abundance of noise through false alerts. Ideally, none of the signatures would generate an 

alert since the file they were derived from was not part of the packet capture file. 

Additionally, the random packet capture file was generated without transferring any of 

the file types being tested for so the danger of signatures catching other files of the same 

type was not addressed with this experiment. 

File Type Results 

10 .txt files No Match 

10 .doc files No Match 

10 .docx files No Match 

10 .exe files No Match 
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10 .pdf files No Match 

10 .xls files No Match 

10 .xlsx files No Match 

Table 14: Packet Capture False Positives 

Based on these results, I feel that the signatures are not prone to creating false positives 

when compared to random data. However, I still needed to test the possibility of 

signatures being specific to file types and not simply a single file. To do this I created a 

packet capture file for each file type that consisted of 10 different files of the same type 

being transferred over FTP. This packet capture was then tested for one of the original 

signatures found in Tables 4-10. The occurrence of false positives is shown in Table 15: 

 

File Type False Positives 

.txt 0 

.doc 0 

.docx 3 

.exe 1 

.pdf 0 

.xls 1 

.xlsx 2 

Table 15: File Types False Positives 

Based on these results, I believe there is concern for false positives of the same file type. 

In particular, I believe the most troubling are the newer Microsoft Office formats because 
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they are compressed which complicates the algorithm locating the starting point of 

unique content. In these instances, it would be best to use a larger signature then the 

default 8 bytes. This should limit the occurrence of false positives but comes at the cost 

of a computationally more challenging signature. To test this hypothesis I repeated the 

previous experiment with a signature length of 16 bytes. 

 

File Type False Positives 

.txt 0 

.doc 0 

.docx 0 

.exe 0 

.pdf 0 

.xls 0 

.xlsx 0 

Table 16: Large Signature False Positives 

This is in contrast to the results obtained in the experiments on optimal signature length. 

The optimal signature length assumed the data being processed was random; thus it 

would only be by chance that the signatures would match. When compared to real world 

data that is in another format this assumption held. However, when comparing content 

with the same format the occurrence of false positives is much higher and requires a 

longer signature length. However this was only true across some of the file formats so 

increasing the default signature length was not necessary. Instead a larger signature length 
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can be manually specified when dealing with files known to cause a higher rate of false 

positives. 

Signature Validity 

While I verified that the signature was being generated and it worked within my 

environment, I wanted to take extra precaution that the signatures generated were valid. 

To perform this test I created a rules file with all the signatures from the signature 

matching and parsed it using a tool called DumbPig
9
. DumbPig is a tool that belongs to 

the SourceFire, and it currently is under development by Leon Ward. This tool not only 

checks for bad grammar or bad syntax which would result in a failure of Snort to launch, 

but it also checks for possible performance-intense rules. This test in particular 

highlighted the performance problems of using the default configuration that specifies 

any source and any destination over any protocol. The application is called from the 

command line with a flag specifying the rules file: 

>./dumbpig –r allRules.rules 

While rules that use the default any for protocol, source and destination are performance 

problems, I was not able to identify a more suitable default value. The onus of creating 

good rules with enough variables to filter the processing to an acceptable level will be 

placed on the users.  

Random Distribution 

To work around the commonalities between files that share the same starting point I 

created the ability to randomize the starting point by including the random flag at startup 

time. The default starting location is at the middle of the hex String file, and this location 
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is either incremented or decremented by 25% resulting in a potential starting location of 

25-75% of the file String length. 

To test this I selected a single file (randText0.txt) and ran it through the algorithm with 

the –r flag 20 times using the command: 

 >python autoSnortSig.py –f randText0.txt –r 

Which generated the output: 

>alert any any any -> any any (content:"|6c61476273365556|"; 

>msg:"randText0.txt";) 

 

As a control, I included the original signature “4c6c5b326c7c346e,” which should have a 

starting point at the middle of the file since the text files are under 10mb. Then, I 

determined the starting point using the algorithm within randCheck.py, found in 

Appendix B, to find the percentage of the file’s length at which the signatures were 

found. That data is shown graphically in the Figure 6 below. 
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Figure 6: Percentage of file length 

Analyzing the data, the starting points are spread uniformly between the values 0.25 and 

0.75 which is the intended result. The smallest value was 0.3130 and the largest value 

was 0.7130 which shows the results spanning the entire spectrum of intended starting 

points.  
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Conclusion & Future Work 

It is possible to create signatures for files in automated fashion, but they have inherent 

flaws that leave them inferior to manually created signatures. Most noticeable is the fact 

that some file types have content that is not unique to the file in question. This would 

result in a signature that could identify the file and would not cause an abundance of false 

positives when compared against random data; however, it would result in false positives 

when analyzing files of the same extension. This can be compensated for by using a 

larger signature or by altering the algorithm to take specific measures based on the file 

extension. The biggest challenge, however, was attempting to develop a single algorithm 

which was applicable to all file types. The current algorithm provided no false negatives 

while testing but it is susceptible to false positives across the same file types. Digging 

deeper into the file type with the highest false positive rate, Word documents, led to 

superior results at a larger signature size. It is clear that each file type would have 

superior results by altering the starting location (or using the randomization function) as 

well as using a custom signature size. However, the default behavior of this algorithm 

was designed to address an unknown file type; therefore, it is currently configured to use 

the settings that lead to good signatures across many file types. 

Going forward I believe additional research can be done into the various file formats to 

identify a custom algorithm that limits the number of false positives for files of the same 

type. For files stored in a binary format, this may be trivial or even unnecessary. 

However, for more complex file formats the process of identifying the start of unique 

content could be challenging. In particular, the new Microsoft Office file format would 

require a unique approach allowing the beginning of the document’s unique content to be 
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identified when it is unencrypted and then again identify the start of that same content in 

the resulting encrypted file. In these cases, it may be best to not look for a set starting 

point, but rather choose a starting point based on a set offset or a certain percentage of 

file size. These settings could be tested by file type to determine best practices and 

implemented into the algorithm which already determines the file type that is being 

processed. 

Finally, Snort has the ability to perform various actions based on the conditions of the 

rule being met. At this time, the algorithm only supports alerting when the conditions are 

met but scenarios may arise where other actions would better serve the end user’s needs. I 

would like to add this option as another optional argument. 

Signature Generation 

The signature generation process currently employed takes a broad stroke with no special 

processing dependent on the type of file being processed. This shows that an algorithm 

can be used to create signatures in an automated manner. However I believe further 

research can be done into popular data types to determine what methodologies work best. 

Each data type may be better served by a unique signature size as well as a unique 

starting point so that the unique data of that data type is best collected by the algorithm. 

This would result in signatures less likely resulting in false positives due to signatures 

being pulled from areas common to multiple files within a data type. 

Service 

I believe that the algorithm would provide great value, if it could be run as a service and 

set to monitor a directory or directories. When it notices a new or changed file, it would 

update a rules file accordingly. To do this, the service would need to track the files by 
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storing values in memory or keeping a log file containing entries for each file. I believe 

the best way to track the files would be to create an entry per line containing the file 

name, signature content, last modified date, and hash value. With this data set, it would 

be possible to quickly check last modified date or if a new file exists while only hashing 

all the files at a separate longer interval. Additionally the service would have access to a 

larger data set since it will have a history of past runs and can be trained to identify 

signatures that are shared across multiple files and identify them as bad. By expanding 

the data set and establishing a history the algorithm can then begin to create better 

signatures in an automated manner. 

Script 

As an alternative to operating the algorithm as a service, operation can also be configured 

as a recurring script (i.e. through a schedule task or a cron job). This process would not 

be difficult, but it would require a separate rules file where the output overwrote the files 

content each run. This would provide another way to automate the updating of a single 

file or a directory’s signature generation. This is ideal for a server, such as an FTP server, 

whose contents can update without an administrator’s knowledge. These files could be 

protected without any administrator actions being taken, once the recurring script was 

configured. 

Additional Parameters 

The Snort rule set allows for additional customization not available for automation in the 

algorithm’s current version. I have included all elements necessary to create a solid rule 

set, but additional options create additional value for a small subset of users. I would like 

the direction of these additional parameters to be need-driven based on user feedback. A 
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good example of an additional parameter is the directionality of the rule. Currently the 

directionality is defaulted to “source -> destination” but Snort rules also allow a bi-

directional operator “<->” and the reverse direction “<-“. An additional parameter could 

be accepted at runtime allowing for the directionality to be specified as well as other 

parameters. 

Two parameters which could create better performing rules are the offset and depth flags 

within the content. These rules give more specificity to Snort as to where to search for the 

content that is chosen as the signature. By being more specific the computational costs of 

the signatures are reduced and this allows for more rules to be used within the same 

environment. 

Integration 

The Snort community has a large list of add-ons developed either in house, by 

SourceFire, or by outside companies or individuals. This algorithm could be included in 

those offerings or integrated into some of the products they already offer. I believe that 

this tool would be an ideal candidate for an open source community, as they could 

identify and pursue additional file types ensuring file types used are most likely to have 

the best support. 

GUI 

A graphical front end would simplify the process of using the algorithm. Python toolkits 

such as Tkinter and wxPython exist to allow for GUI to be constructed in 2D or ever 3D. 

The back end functions have been designed to tap into a GUI with the ability to provide 

superior feedback or even generate the signature on the fly as the user updates his or her 

entries. Since the goal of this research was to simplify and automate the Snort rule 



60 

 

 

generation process, I believe that going a step further and creating a GUI is something 

that should be pursued in the future. 

Noise Traffic 

In the current experiments the packet captures are limited to either randomized data or a 

single protocol (FTP). Additional testing should be done using packet captures that 

contain the element being searched for as well as other traffic that would emulate a 

typical networking environment. This would identify if the algorithm is creating rules 

that can differentiate between the intended content and all the additional noise. While the 

signatures were tested against just noise traffic and against just the intended content there 

is a possibility of the combined traffic producing unintended results. These tests should 

be performed to eliminate the possibility of difficulties when the algorithm is 

implemented into a real world environment where the intended content and noise will be 

within a single data set. 

Summary 

Information security is a tricky business. It takes only one vulnerability for an attacker to 

exploit and compromise the entire system’s integrity. Additionally, large data leaks are 

done by employees or other privileged users. This tool is designed to build on the success 

of Snort and empower administrators to control the flow of their valuable information. It 

is possible to generate signatures for Snort rules in an automated fashion across a file or 

an entire directory. The process is quick and requires little knowledge of how the rule’s 

content is generated. The algorithm takes in content and parses it making limited 

decisions on how to generate a valid signature. This process has been shown to work and 
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is a starting point for turning Snort into a content protection system that limits data 

leakage. 

By enabling protectors to be proactive, they can have the free time to better understand 

their unique needs and adapt their technology accordingly. Security is often referred to as 

a game of cat and mouse where the attackers are always on the forefront of exploits and 

administrators are racing to stop the latest exploit. Without the ability to detect and stop 

zero day attacks that scenario may never change. To compensate a defense in depth 

approach must be taken so that multiple layers of defense stand between an attacker and 

the valuable information or services being hosted. This algorithm is another tool that can 

provide administrators further ability to protect key files or directories from traveling 

certain directions across their network. 

The primary strength of this algorithm is that it can be applied to any file type, and the 

fact that it generates a valid, tested signature to match the content of the parsed file. This 

conclusively shows that an algorithm can be used to parse files and output Snort 

signatures. 

The greatest weakness of this approach is that it takes a non-specific approach to files 

dependent on their file type. This leads to scenarios where a better signature could be 

generated by using an algorithm tuned to a specific data type. I believe that this is where 

the greatest future work of this algorithm lies, and that further research may be done for 

each file type to determine the best case starting point and signature length independent 

of file size.  
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Appendix A: Source Code – autoSnortSig.py 

#!/usr/bin/python 

#Designed to read in files and print out snort signatures 

#Requires Python 3.3 

# 

# 

#JMU Thesis Program 

#Computer Science 

#ricebf@dukes.jmu.edu 

# 

# 

#Coded by: Brandon Rice 

#Last modified 6/23/2014 

 

 

import sys, argparse, binascii, os, random 

from os.path import isfile, join 

 

#Begin global variables 

file = "" 

fileString = "" 

source = "any" 

destination = "any" 

sourcePort = "" 

destinationPort = "" 

protocol = "any" 

matchSignature = "" 

signature = "" 

size = 8 

fileExtension = "" 

verbose = False 
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directory = "" 

rand = False 

 

#Begin Classes 

#main executes the core logic 

def main(): 

    global file 

    global directory 

    argRead() 

    #Determine if a file or a directory needs to be parsed 

    if file == "" and directory == "": 

        print("Either a directory or a file must be specified.") 

    elif file != "" and directory != "": 

        print("File and directory are exclusive options. Only one may be enabled at a time.") 

    elif file != "": 

        fileParse(file) 

    else: 

        dirParse() 

     

 

#Function to process a single file 

def fileParse(toDo): 

    global fileString 

    global fileExtension 

    global file 

    file = toDo 

    vPrint("File to be read " + file) 

    vPrint("File extension: " + fileExtension) 

    fileRead() 

    #test if file is being read in properly 

    #print(fileString) 

    ipCheck() 

    validSize() 
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    validProtocol() 

    createSig() 

    combineSig() 

    print(signature) 

 

#Function to parse a directory calling all filse within the directory 

def dirParse(): 

    global directory 

    print("Processing directory: " + directory) 

    #Create a list of files to be parsed 

    files = [f for f in os.listdir(directory) if isfile(join(directory,f)) ] 

    vPrint(files) 

    for x in files: 

        #Parsing each file requires path + file name 

        fileParse(directory + x) 

     

 

#Function to print certain lines only if verbose is True 

def vPrint(x): 

    global verbose 

    if verbose == True: 

        print(x) 

     

 

#argRead() takes in the args and prints help if needed 

def argRead(): 

    global file 

    global source 

    global destination 

    global protocol 

    global size 

    global fileExtension 

    global verbose 
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    global directory 

    global rand 

    parser = argparse.ArgumentParser(description="AutoSnortSignature") 

    parser.add_argument("-f","--file",help="Input file name",required=False) 

    parser.add_argument("-s","--source",help="Source IP (port optional). Format example 

192.168.100.1 or 192.168.100.1:22",required=False) 

    parser.add_argument("-d","--destination",help="Destination IP (port optional). Format 

example 192.168.100.1 or 192.168.100.1:22",required=False) 

    parser.add_argument("-p","--protocol",help="Specify the protocol. Acceptable input IP, 

TCP, UDP, ICMP",required=False) 

    parser.add_argument("-l","--length",help="Specify the signature length in number of 

bytes (1-64)",required=False) 

    parser.add_argument("-v","--verbose",help="Enable verbose output 

mode",required=False,action='store_true') 

    parser.add_argument("-a","--all",help="Parse all files within the given 

directory",required=False) 

    parser.add_argument("-r","--random",help="Randomize starting point to provide 

additional security",required=False,action='store_true') 

    args = parser.parse_args() 

    if args.file is not None: 

        file = args.file 

    temp, fileExtension = os.path.splitext(file) 

    if args.source is not None: 

        source = args.source 

    if args.destination is not None: 

        destination = args.destination 

    if args.protocol is not None: 

        protocol = args.protocol 

    if args.length is not None: 

        size = int(args.length) 

    if args.verbose is not False: 

        verbose = True 

    if args.all is not None: 

        directory = args.all 

        directory = directory.replace("\\","/") 
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        if directory[-1] != '/': 

            directory = directory + '/' 

    if args.random is not False: 

        rand = True 

 

 

#Reads in the provided file and stores it as a String of hex characters 

def fileRead(): 

    global fileString 

    global file 

    with open(file, "rb") as f: 

        content = f.read() 

    fileString = binascii.hexlify(content) 

    #Limit maximum portion of file to be processed to 10mb 

    if (len(fileString) > 2621440): 

        fileString = fileString[:2621440] 

 

#Validates source and destination if set otherwise defaluts to any 

def ipCheck(): 

    global source 

    global destination 

    global sourcePort 

    global destinationPort 

    #Extract the port from the source 

    where = source.find(":") 

    #print("Source where is " + str(where)) #Enable for diagnostics 

    if where == -1: 

        sourcePort = "any" 

    else: 

        sourcePort = source[(where+1):] 

        source = source[:where] 

    #Extract the port from the destination 

    where = destination.find(":") 
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    #print("Source where is " + str(where)) #Enable for diagnostics 

    if (where > -1): 

        destinationPort = destination[(where+1):] 

        destination = destination[:where] 

    else: 

        destinationPort = "any" 

    #Code here to validate the ports 

    if sourcePort != "any": 

        vPrint("Validating source port") 

        validPort(sourcePort) 

    if destinationPort != "any": 

        vPrint("Validating destination port") 

        validPort(destinationPort) 

    #Code here to validate the IP addresses 

    if source != "any": 

        vPrint("Checking source IP") 

        validIP(source) 

    if destination != "any": 

        vPrint("Checking destination IP") 

        validIP(destination) 

    #Print values to be used. Can later be disabled 

    vPrint("Source IP is " + source) 

    vPrint("Source port is " + sourcePort) 

    vPrint("Destination IP is " + destination) 

    vPrint("Destination port is " + destinationPort) 

 

#Check whether a port is numeric and within the correct range (0-65535) 

def validPort(port): 

    if port.isdigit() == True: 

        num = int(port) 

        #test = (-1 < num) 

        #print(test) 

        if -1 < num and \ 
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           num < 65536: 

            return True 

        else: 

            print("Invalid port found. Exiting") 

            sys.exit(2) 

    else: 

        print("Invalid port found. Exiting") 

        sys.exit(2) 

 

#Check whether a valid IP address is provided 

def validIP(ip): 

    if ip.count(".") != 3: 

        print("Invalid IP address found. Exiting") 

        sys.exit(2) 

    vPrint("Checking octave 1") 

    where = ip.find(".") #Check first octave 

    if (where > -1): 

        if (validOctave(ip[:where]) == False): 

            print("Invalid IP found") 

            sys.exit(2) 

        else: 

            ip = ip[where+1:] 

    else: 

        print("Invalid IP found") 

        sys.exit(2) 

    vPrint("Checking octave 2") 

    where = ip.find(".") #Check second octave 

    if (where > -1): 

        if (validOctave(ip[:where]) == False): 

            print("Invalid IP found") 

            sys.exit(2) 

        else: 

            ip = ip[where+1:] 
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    else: 

        print("Invalid IP found") 

        sys.exit(2) 

    vPrint("Checking octave 3") 

    where = ip.find(".") #Check third octave 

    if (where > -1): 

        if (validOctave(ip[:where]) == False): 

            print("Invalid IP found") 

            sys.exit(2) 

        else: 

            ip = ip[where+1:] 

    else: 

        print("Invalid IP found") 

        sys.exit(2) 

    vPrint("Checking octave 4") 

    if (validOctave(ip) == False): #Check fourth octave 

            print("Invalid IP found") 

            sys.exit(2) 

 

#Check if provided input is a valid octave 

def validOctave(octave): 

    if octave.isdigit() == True: 

        if (-1 < int(octave) < 256): 

            #print("Returning true on octave check") 

            return True 

        else: 

            print("Invalid octave found. Exiting") 

            sys.exit(2) 

    else: 

        print("Invalid octave found. Exiting") 

        sys.exit(2) 

 

#Check if the size is between 1 and 64. If not set the size to the default 8. 
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def validSize(): 

    global size 

    vPrint("Size is: " + str(size)) 

    if 3 < size and size < 65: 

        vPrint("Valid signature size found") 

        return True 

    else: 

        print("Invalid size found setting size to the default") 

        size = 8 

 

#Check if a valid Snort protocol was specifed. If not alter protocol to any 

def validProtocol(): 

    global protocol 

    acceptable = ["ip","tcp","udp","icmp","any"] 

    protocol = protocol.lower() 

    if protocol not in acceptable: 

        protocol = "any" 

        print("Invalid protocol value detected. Setting to the default any") 

     

#Reads the file contents and stores the hex string that needs matching 

#Starts at the middle of the file and pulls hex strings until one is found with an acceptable 

amount of empty (0) values 

def createSig(): 

    global matchSignature 

    global fileString 

    global size 

    global rand 

    #copy hex string for local manipulation 

    temp = fileString  

    #variable to store the hex pairs that represent a byte 

    fileHexArray=[]  

    #populating the array 

    while temp.__len__() > 0: 
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        fileHexArray.append(temp[:2]) 

        temp = temp[2:] 

    length = len(fileHexArray) 

    start = int((length/2) - (size/2)) 

    #Check if random is true 

    #If true alter the starting point by placing it in a random location from 25% to 75% of 

file length 

    if rand == True: 

        random.seed 

        #Create variable for 0 to 25% file length  

        alter = random.randint(0,start//2) 

        #Either add or subtract the variable from start 

        add = random.randint(0,1) 

        if add == 0: 

            start = start + alter 

        else: 

            start = start - alter 

    matchSignature = "" 

    #extracting the signature 

    for i in range(size): 

        temp = fileHexArray[start + i] 

        temp = str(temp) 

        temp = temp[2:4] #stripping the b' and ' characters leaving only the two hex 

characters 

        matchSignature = matchSignature + temp 

    #Determine the occurence of 0 in the signature. If greater then 50% loop through the 

hex string searching 

    #for a signature that has few enough 0 to be unique. Designed to prevent signatures 

that are padding. 

    count = matchSignature.count("0") 

    while (count > (size//2)): 

        start = start + size 

        if (start + size) > length: 

            print("Unable to find a suitable string. Try decreasing the string size") 
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            sys.exit(2) 

        matchSignature = "" 

        for i in range(size): 

            temp = fileHexArray[start + i] 

            temp = str(temp) 

            temp = temp[2:4] 

            matchSignature = matchSignature + temp 

        count = matchSignature.count("0") 

         

     

 

#Combines all the signature elements into a valid signature string 

def combineSig(): 

    global signature 

    global protocol 

    global source 

    global sourcePort 

    global destination 

    global destinationPort 

    global matchSignature 

    global file 

    signature = "alert " 

    signature = signature + protocol + " " 

    signature = signature + source + " " 

    signature = signature + sourcePort + " -> " 

    signature = signature + destination + " " 

    signature = signature + destinationPort + " " 

    signature = signature + "(content:\"|" + matchSignature + "|\";" 

    signature = signature + " msg:\"" + file + "\";)" 

     

 

#Begin application by calling main 

main() 
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Appendix B: Supplementary Code 

printHex.py 

##print file as hex 

 

import binascii 

filename = 'randText0.txt'  ##Must be manually changed 

with open(filename, 'rb') as f: 

    content = f.read() 

print(binascii.hexlify(content[0:])) 

genText.py 

##Prints a string of 1000 random ASCII printable characters 

 

from random import choice 

import string 

 

def genText(length=8, chars=string.printable + string.digits): 

    return ''.join([choice(chars) for i in range(length)]) 

 

print(genText(1000,string.printable)) 

randCheck.py 

##Check validity of randomness 

##Open randText0.txt and then find where the signatures 

##are located within the file as a percentage of total length 

 

import binascii 

 

signatures = ["6c61476273365556", "5c363e316572274b", 

              "6f54402b43724a74", "4d2d476c21375d61", 

              "6f4d556a7b70477e", "5d733f3d4c5a6e66", 

              "4f4050794253403a", "0d0a595672653474", 

              "0a46562f245c363e", "70567e0b224a2b49", 

              "4b56334c7247402f", "5834510c70375359", 

              "7a462c5b59547727", "59696c70567e0b22", 

              "474e38750d0a4656", "54652f36556f473b", 

              "34510c703753595a", "380d21477c724068", 

              "3d3a7c6e38636f4d", "235834510c703753"] 

 

with open("randText0.txt", "rb") as f: 

    content = f.read() 

fileString = binascii.hexlify(content) 



74 

 

 

fileString = str(fileString) 

length = len(fileString) 

 

for sig in signatures: 

    temp = fileString.find(sig) 

    print("File found at: " + str(temp/length)) 
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