April 2011

Clutter Reduction in Manual-demining Operations with the Help of a Handheld Magnet Tool

Arnold Schoolderman
TNO Defence, Security and Safety

Yolanda Rieter-Barrell
TNO Defence, Security and Safety

Follow this and additional works at: http://commons.lib.jmu.edu/cisr-journal

Part of the Other Public Affairs, Public Policy and Public Administration Commons, and the Peace and Conflict Studies Commons

Recommended Citation

Available at: http://commons.lib.jmu.edu/cisr-journal/vol15/iss1/23

This Article is brought to you for free and open access by the Center for International Stabilization and Recovery at JMU Scholarly Commons. It has been accepted for inclusion in Journal of Conventional Weapons Destruction by an authorized editor of JMU Scholarly Commons. For more information, please contact dc_admin@jmu.edu.
Clutter Reduction in Manual-Demining Operations with the Help of a Handheld Magnet Tool

The authors discuss a study investigating the potential of permanent magnets for the reduction of metal clutter in manual demining operations.

by Arnold Schoolderman and Yolanda Rieter-Barrell [TNO Defence, Security and Safety]

A handheld metal detector is the most common detection tool in humanitarian demining, not only in manual-demining operations but also as a follow-up to mechanical demining. Most demining organizations adopt the metal detector as the prime detection tool since it is easy to learn and operate, is affordable, and fits well in the standard operating procedures. However, organizations and deminers are also aware that false alarms occur frequently when metal detectors are employed. It is, generally speaking, not possible to distinguish between an alarm due to a piece of harmless scrap metal or due to a dangerous mine. False-alarm rates in manual-demining operations have been reported as high as 250 false alarms for every one alarm resulting from an actual mine. It is obvious that a technique to reduce the false-alarm rate would enhance the manual-demining process greatly.

This assertion is confirmed in a study by the Geneva International Centre for Humanitarian Demining on the different phases of a manual-demining operation. The study concludes that improvements in the “close-in” detection phase yield “very significant benefits” on the efficiency of the total operation. The study’s results show that decreasing the number of metal-detector false alarms by 50% will yield efficiency improvements of 21–47% in demining operations in 10 of the 12 scenarios defined in this study.

In the last five years, a few different types of dual-sensor detectors, in which a metal detector is combined with ground-penetrating radar, have been developed in Europe, Japan and the United States. These developments are aimed at the reduction of metal-detector false alarms by using the GPR alarm. The GPR will ideally only give an alarm if an object with a certain volume is present that has different electromagnetic properties than the soil in which this object is buried. Hence, a small piece of scrap metal or a nail will only result in a metal-detection alarm, while a mine will also set off the GPR alarm. Although the benefit of dual-sensor detectors in reducing the false-alarm rate has been shown in trials, it is questionable if dual-sensor detectors will be applied for humanitarian demining in large numbers in the future because these devices have a number of disadvantages. These disadvantages include the high price of the devices, complicated operation resulting in long operator training, the need for modifying the SOPs (since the use of a dual-sensor detector will generally not fit in the current SOPs for manual demining) and the need for implementation of a suitable quality-assurance method.

Permanent Magnets

Another method to remove metal clutter is a magnet tool; if a magnet is moved manually over the surface, ferromagnetic metal parts on and just under the ground’s surface will stick to the magnet. If the magnets are attached to a small handheld rake, the topsoil can be manipulated in order to loosen metal fragments from the soil. The magnets can then pick up these fragments. Though this idea is not new and several individuals and demining organizations have tried it over the past 10 years, substantiated information on the benefits is lacking. Magnets made from niobium, a so-called rare-earth metal, are nowadays affordable. These magnets are much stronger than those tried in the past.

In order to investigate the efficiency increase obtainable by using handheld permanent magnets in the “close-in” detection phase, a project was started by the Netherlands Organization for Applied Scientific Research (TNO). The Netherlands Ministry of Defence financed this project as part of the Netherlands’ contribution to the International Test and Evaluation Program for Humanitarian Demining, which ended in July 2010.

Trials

Based on criteria applicable to humanitarian demining, such as cost, weight, robustness, exerted force, etc., suitable magnet tools were selected and designed. Images 1–4 show examples of the magnet tools trialed in Cambodia and Angola. The data necessary to quantify the clutter reduction by applying the magnet tools was gathered during live demining operations in Cambodia and Angola with the Cambodian Mine Action Centre and Norwegian People’s Aid, respectively, as partners. To this end, a procedure was set up to train the local deminers in the magnet-tool use. During the trials, the deminers were divided into several groups. All deminers in one group worked with one magnet tool. The study defines improvements in the “close-in” detection phase yield “very significant benefits” on the efficiency of the total operation. The study’s results show that decreasing the number of metal-detector false alarms by 50% will yield efficiency improvements of 21–47% in demining operations in 10 of the 12 scenarios defined in this study.

In the last five years, a few different types of dual-sensor detectors, in which a metal detector is combined with ground-penetrating radar, have been developed in Europe, Japan and the United States. These developments are aimed at the reduction of metal-detector false alarms by using the GPR alarm. The GPR will ideally only give an alarm if an object with a certain volume is present that has different electromagnetic properties than the soil in which this object is buried. Hence, a small piece of scrap metal or a nail will only result in a metal-detection alarm, while a mine will also set off the GPR alarm. Although the benefit of dual-sensor detectors in reducing the false-alarm rate has been shown in trials, it is questionable if dual-sensor detectors will be applied for humanitarian demining in large numbers in the future because these devices have a number of disadvantages. These disadvantages include the high price of the devices, complicated operation resulting in long operator training, the need for modifying the SOPs (since the use of a dual-sensor detector will generally not fit in the current SOPs for manual demining) and the need for implementation of a suitable quality-assurance method.

Permanent Magnets

Another method to remove metal clutter is a magnet tool; if a magnet is moved manually over the surface, ferromagnetic metal parts on and just under the ground’s surface will stick to the magnet. If the magnets are attached to a small handheld rake, the topsoil can be manipulated in order to loosen metal fragments from the soil. The magnets can then pick up these fragments. Though this idea is not new and several individuals and demining organizations have tried it over the past 10 years, substantiated information on the benefits is lacking. Magnets made from niobium, a so-called rare-earth metal, are nowadays affordable. These magnets are much stronger than those tried in the past.

In order to investigate the efficiency increase obtainable by using handheld permanent magnets in the “close-in” detection phase, a project was started by the Netherlands Organization for Applied Scientific Research (TNO). The Netherlands Ministry of Defence financed this project as part of the Netherlands’ contribution to the International Test and Evaluation Program for Humanitarian Demining, which ended in July 2010.

Trials

Based on criteria applicable to humanitarian demining, such as cost, weight, robustness, exerted force, etc., suitable magnet tools were selected and designed. Images 1–4 show examples of the magnet tools trialed in Cambodia and Angola. The data necessary to quantify the clutter reduction by applying the magnet tools was gathered during live demining operations in Cambodia and Angola with the Cambodian Mine Action Centre and Norwegian People’s Aid, respectively, as partners. To this end, a procedure was set up to train the local deminers in the magnet-tool use. During the trials, the deminers were divided into several groups. All deminers in one group worked with one
only the results of the trial conducted in Malanje province, Angola are different, the results of these trials were quite similar. For this reason, bodia in 2006 and in Angola in 2007. Although many aspects—such as procedures, recording the cleared area day by day, all encountered metallic clutter and how each metallic clutter piece was processed (formally, with the magnet tool, or during excavation). The TNO project team analysed the data after corrections for the absence of deminers due to other duties, vacation days, illness, etc.

Trial Results and Pilot Implementation

The trials of several types of magnet tools were conducted in Cambodia in 2006 and in Angola in 2007. Although many aspects—such as the mine threat, SOFs of the two demining organizations, etc.—were different, the results of these trials were quite similar. For this reason, only the results of the trial conducted in Malanje province, Angola are presented. Figure 1 shows the average area cleared per deminer per day (in square meters) for the deminers working with the magnet tool under trial (this tool is shown in Image 2 and Image 6) and for the deminers of the reference group, working without a magnet tool. Surprisingly, the deminers without the magnet tool were the most productive: On average they cleared 11% more land per day. This revelation can only be attributed to the fact that the deminers working with the magnet tools encountered more magnetic clutter than the reference group. However, the deminers experienced the tools as a useful addition to their toolkit as they are convinced that the magnet tools speed up the demining process. Therefore, the magnet tools are useful in supporting a deminer’s strenuous job and are now in redesigning and manufacturing the magnet tools used for the pilot implementation with NPA.

Figures 1 (top) and 2 (bottom): Average area cleared per deminer per day (Figure 1) and the average number of metal parts found per square meter (Figure 2). Here the results of this trial in Malanje province, Angola, with NPA deminers are given. The blue represents the deminers using the magnet tool and the purple represents the deminers in the reference group who did not use the magnet tool.

Conclusion

Strong handheld magnet tools with niobium magnets can be used in manual demining operations to remove metal clutter and thereby reduce the number of metal-detector false alarms. The magnet tools are cheap and easy to handle in comparison to a dual-sensor detector. Various magnet-tool trials in live demining operations did not show a quantitative increase in the cleared area per day. This is most likely due to the fact that the deminers working with the magnet tools encountered more magnetic clutter than the reference group. However, the deminers experienced the tools as a useful addition to their toolkit as they are convinced the magnet tools speed up the demining process. Therefore, the magnet tools are useful in supporting a deminer’s strenuous job and are now included in the toolkit of the NPA deminers in Angola.