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Preface 

 

This Thesis research effort discusses the advancement of digital investigative and 

analysis techniques, resulting in the ability to generate more comprehensive timelines 

using historical system activity.  It is assumed that in conjunction with proper digital 

investigative techniques, no evidentiary copy of a disk image, volume, etc, would be 

accessed directly in an investigation, including for the extraction of metadata/data.  A 

suitable working copy should first be made from the evidentiary copy (using appropriate 

hardware write-blocking technology or approved techniques to safeguard the evidentiary 

copy).  The working copy should then be used for the actual analysis and metadata/data 

extraction. 
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Abstract 

 

Modern day digital forensics investigations rely on timelines [1] as a principal method for 

normalizing and chronologically categorizing artifacts recovered from computer systems.  

Timelines provide investigators with a chronological representation of digital evidence so 

they can depict altered and unaltered digital forensics data in-context to drive conclusions 

about system events and/or user activities.  While investigators rely on many system 

artifacts such as file system time/date stamps, operating system artifacts, program 

artifacts, logs, and/or registry artifacts as input for deriving chronological representations, 

using only the available or most recent version of the artifacts may provide a limited 

picture of historical changes on a system.  For instance, if previous versions of artifacts 

and/or previous artifact metadata changes are overwritten and/or are not retained on a 

system, analysis of current versions of artifacts and artifact metadata, such as time/date 

stamps and operating system/program/registry artifacts, may provide only a limited 

picture of activities for the system. 

Recently, the Microsoft Windows Operating System implemented a backup mechanism 

that is capable of retaining multiple versions of data storage units for a system, 

effectively providing a highly-detailed record of system changes.  This backup 

mechanism, the Windows Volume Shadow Copy Service (VSS) [2], exists as a service of 

modern Microsoft Windows Operating Systems and allows data backups to be performed 

while applications on a system continue to write to the system‘s live volume(s).[3]  This 

allows a running system to preserve the system‘s state to backup media at any given point 

while the system continues to change in real-time.  After multiple VSS backups are 

recorded, digital investigators now have the ability to incorporate multiple versions of a 
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system‘s artifacts into a chronological representation, which provides a more 

comprehensive picture of the system‘s historical changes. 

In order to effectively incorporate VSS backup, or Volume Shadow Copy (VSC), data 

into a chronological representation, the data must be accessed and extracted in a 

consistent, repeatable, and, if possible, automated manner.[4]  Previous efforts have 

produced a variety of manual and semi-automated methods for accessing and extracting 

VSC data in a repeatable manner.  These methods are time consuming and often require 

significant storage resources if dealing with multiple VSCs.  The product of this research 

effort is the advancement of the methodology to automate accessing and extracting 

directory-tree and file attribute metadata from multiple VSCs of the Windows 7 

Operating System.  The approach extracts metadata from multiple VSCs and combines it 

as one conglomerate data set.  By capturing the historical changes recorded within VSC 

metadata, this approach enhances timeline generation.  Additionally, it supports other 

projects which could use the metadata to visualize change-over-time [4] by depicting how 

the individual metadata and the conglomerate data set changed (or remained unchanged) 

throughout an arbitrary snapshot of time. 



 

 

I. Introduction 

 

In the field of digital forensics, timelines [1] have been an invaluable asset for 

chronologically depicting items of interest during the analysis of digital evidence.  

They provide digital investigators with an extremely powerful mechanism for 

organizing, graphically aligning, and analyzing system events and/or user activities 

both in relation to one-another and to points in time.  Timelines also allow 

investigators to chronologically represent digital forensics data in-context to drive 

conclusions and ultimately to present the facts surrounding those conclusions to both 

technically and non-technically oriented audiences.  The data used to generate 

timelines may consist of system artifacts such as file system time/date stamps, 

operating system artifacts, program artifacts, logs, and/or registry artifacts.  The 

availability of such artifacts for timeline generation/analysis may be affected by a 

wide variety of influences, including: nefarious user activities, limited auditing and/or 

audit retention policies, careless or improper systems administration and/or incident 

response activities, space limitation issues such as log rotation, and other system 

limitations.  As an example, in the course of assessing a potential security incident, 

the actions of systems administrators may inadvertently alter the access timestamp of 

certain files. As another example, based on design, storage, and/or retention 

limitations, some systems may only retain the most recent version of certain files and 

associated metadata.  In all instances, having only the available, or most recent, 

version of file system artifacts as input for deriving chronological representations 

may provide a limited picture of historical changes on a system. 
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In order to offer a solution to this problem area, this research effort first delves into 

the inherent and largely undocumented backup mechanism of the Windows 7 

Operating System, the Windows Volume Shadow Copy Service [2] (VSS), which 

retains copies of data storage units just prior to changes taking place on a system‘s 

live volume(s).[3]  VSS ultimately captures various file, directory-tree, and time 

attribute aspects into Volume Shadow Copy (VSC) structures and therefore has the 

capability to record multiple iterations of change in a chronological context. 

Next, an overview and an independent verification and validation (IV&V) of several 

common methods of accessing VSCs and performing VSC metadata/data extraction is 

presented. The merits and limitations of each of the existing approaches are reviewed, 

followed by improvements to advance the automation of VSC metadata extraction in 

support of timeline analysis.  The resulting methodology will ultimately extract 

metadata from multiple VSCs, which in turn will support the creation of more 

comprehensive system timelines.  As an additional benefit, it will advance 

efficiencies of the forensics community‘s open-source capabilities for analyzing VSC 

contents, as well as potentially support digital forensics projects that visualize 

change-over-time.[4] 
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II. Background 

 

Timelines and Time Attributes in Digital Investigations 

Change, represented chronologically, is best visualized as a timeline, a linear illustration 

of important events in the order in which they occurred.  By creating timelines of system 

or user activity and the change(s) created by that activity, digital investigators may depict 

how various aspects of digital forensic data have been altered.  As Daniel points out, 

computer time artifacts and timelines are critical for validating events and witness claims 

when an investigation involves an alibi or a set of events that occurred during a specific 

period in time.[5]  Thus, time evidence plays a critical role in the attribution of system 

behavior and user behavior during specified periods. 

Key to the successful ability for a computer to maintain its timekeeping ability are several 

critical components; namely, the computer‘s Basic Input/Output System (BIOS), 

operating system, and file system.  The computer‘s BIOS contains an internal clock 

which should be established during system setup by calibrating it with a reliable outside 

time source; subsequently, it will maintain the system‘s representation of time.  A 

computer‘s operating system maintains its time in relation to the system BIOS, but also 

allows for additional customizations based on external influence, such as recognizing 

various time zones and the respective time changes that occur in each zone at the correct 

time of the year. 

In order for an operating system to record time activity relating to the directory-tree and 

file attributes, a computer‘s file system must provide a mechanism for the operating 

system to record time attributes.  Those attributes, which apply to directories and files, 
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are commonly referred to on Windows-based systems as the modification time (mtime), 

access time (atime), and creation time (ctime), or collectively, MAC times.[6]  The 

modification, access, and creation times record the time at which a file‘s content is 

changed in some manner, the time at which the operating system last recorded access to a 

file, and the time at which a file is first created locally on a file system, respectively.[5] 

The ability of the computer BIOS, the operating system, and the file system to maintain 

accurate time and allow for the accurate storage of time attributes provides the basis for 

our ability to generate timelines of system activities in support of digital investigations.  

A specialized adaptation that depicts multiple facets of change concurrently, or the 

visualization of change-over-time, is discussed further below. 

Visualization of Change-Over-Time 

Within the context of digital investigations, Leschke claims depicting change spanned 

across time is a principal method for digital forensics to answer the supreme question, 

―what happened?‖  His research defined change-over-time and its visualization as 

follows: 

―Time and change share a common quality that is often expressed as the 

single concept of ‗change-over-time.‘  Because more information can be 

obtained through vision than through all other senses combined, obtaining 

information through data visualization presents the greatest bandwidth for 

human perception.  We propose research into using data visualization 

techniques to enhance the perception of change-over-time as expressed in 

digital forensic data.‖[4] 
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Leschke proposed four (4) approaches to visualizing change-over-time, all of which 

directly support the role of the digital investigator.  These approaches include: 

1) visualizing changes to a directory-tree structure over time, 

2) visualizing changes to directory-tree content over time, 

3) visualizing changes to file attributes over time, and 

4) combining the three aforementioned visualization approaches into one 

conglomerate visualization.[4] 

A critical source of digital forensic data that may support the depiction of change-over-

time is VSC data; therefore, in addition to supporting the generation of more 

comprehensive timelines, this research also aims to provide input data which supports the 

visualization of change-over-time.  The background of VSS, methods of accessing VSC 

metadata/data, and the automation enhancements for extracting VSC metadata/data are 

discussed in the next subsection and following sections. 

Windows Volume Shadow Copy Service 

VSS, a service of modern Microsoft Windows Operating Systems that allows incremental 

system volume backups to be performed while applications on a system continue to write 

to a system‘s live volume(s), allows a running system to preserve the system‘s state to 

backup media at any given point while the system continues to change in real-time.  VSS 

has been in use since the introduction of Windows 2003 Server, is enabled by default on 

Windows Vista and Windows 7, and is a conglomerate of several underlying 

technologies that work together to provide incremental backups of data on an arbitrary 

volume as changes occur.[7]  VSS backups occur under three conditions: 

1. as part of timed, periodic [8] backups, 
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2. when new hardware or software installations occur (including Windows 

Update), and 

3. when a user manually initiates a backup via the user interface (UI).[9] 

The scope of the service is not limited to specific file types or specified folder locations, 

as was the case with the predecessor, Restore Points.  Rather, except for VSS files and a 

few temporary files such as paging files, the data corresponding to every file/folder on a 

system is subject to the incremental backup.  This can benefit digital investigations in 

several ways.  First, VSS may record traces of user actions or system changes; therefore, 

a digital investigator can use VSCs to recover changes and/or establish the timeframe 

when the system was operational as well as when user activity occurred on the system.  

Next, VSS may record multiple changes to data which correspond with any arbitrary 

file(s)/folder(s); thus, digital investigations benefit from having access to a record of 

changes, or essentially, another form of a ―log of change(s)‖ for the system. 

As an arbitrary theft of intellectual property example, let us assume an employee edits 

multiple company proprietary MS Office documents on his office computer to establish 

new templates for creating a competitive business.  Next, the employee copies the 

documents to external media and, finally, deletes the original versions from the office 

computer.  If VSS recorded the data changes and file system metadata changes associated 

with changes to the documents, timeline analysis of the VSCs could greatly enhance a 

digital investigator‘s ability to recover as well as link the before and after versions of the 

documents. 

Digital investigators have begun to rely on VSS as an inherent ―logging‖ and ―archival‖ 

utility based on its ability to incrementally backup data corresponding to an original 
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version of a file/folder just prior to the system recording the file/folder‘s changes to the 

live volume(s).  This incremental backup is referred to as copy-on-write technology and 

for efficiency, occurs at the block level rather than at the logical file level.[10]  It is 

particularly useful as an efficient backup and recovery mechanism for capturing or 

―snapshotting‖ previous versions of data at a point in time while maintaining the current 

representation of the data on the live volume.  Oltean states that VSS backs up the blocks 

corresponding to a file's data as changes occur and also backs  up the blocks 

corresponding to the Master File Table ($MFT) entry that changes if the file's metadata 

(size, last modification time, or other attribute) changes.[11]  The previous version of the 

data is viewable and recoverable as long as its data may be rendered in a special 

representation by overlaying the previous version data or ―delta‖ (from the backup 

location) against the live volume‘s data.  Mullen's example of reading and interpreting a 

VSC's metadata and data is paraphrased as follows: 

VSS works purely in terms of physical blocks.  With regard to reading 

metadata for a previous version, after reading a VSC's blocks 

corresponding to the $MFT, the system will interpret them as they existed 

at the time the backup was created.  The system will interpret the overlaid 

blocks such that each of the recreated $MFT entries point to the content of 

the clusters as they did at backup time.  Additionally, with regard to 

reading a VSC's blocks corresponding to file/folder data, the system will 

also interpret the overlaid blocks to "see" the files and folder structure as 

they were at that time.[12] 
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Similarly, Oltean's example of reading and interpreting a VSC's metadata and data is 

paraphrased as follows: 

The read on the VSC works in the following way: let's assume that the 

user "reads" a file.  The read I/O is intercepted by VSS as a sequence of 

reads for sectors.  For the previous versions or "saved" blocks, VSS sends 

back the "saved" versions of these sectors from the VSC.  For the blocks 

which weren't changed, VSS sends back the current contents from the live 

or "original" volume.  In the end, the "read" of the file system for the VSC 

receives an exact copy of the sectors as they existed at the time of VSC 

creation.[11] 

One benefit the reading and interpreting method offers is that a user may choose to 

recover the previous version of only one arbitrary file or folder, while not needing to 

restore an entire volume from backup.  Another benefit that makes VSS useful for 

recovering multiple states of file system data and metadata is that an arbitrary number, n, 

of VSCs (up to the maximum allowed by VSS) may exist at any particular time.  Since 

VSS provides for the visualization and recovery of the previous representation, or 

version, of a file/folder, Microsoft aptly named the function of the client-side user 

interface (UI) ―Restore Previous Versions.‖[10] 

The Previous Versions UI is included in all Windows 7 SKUs and allows one to 

selectively view and restore previous versions of files/folders by right-clicking on a 

file/folder and selecting the ―Restore previous versions‖ dialogue from the menu.  Figure 

1 depicts the Previous Versions UI, which is the dialogue an ―end user‖ sees when 

performing native data restoration ―by hand.‖ 
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Figure 1: Previous Versions UI 

The Previous Versions UI provides the file/folder name, date modified, and the ability to 

view, copy, or restore an arbitrary object.  A user may select any arbitrary file/folder and 

restore it to a ―snapshotted‖ state.  Figure 2 depicts the Previous Versions UI showing 

several versions of the FAU.x86 folder that may be restored. 

 

Figure 2: FAU.x86 Folder Versions in the Previous Versions UI 

As briefly discussed above, underneath the UI, Microsoft implemented the underlying 

VSS technology as a block level backup, meaning it backs-up ―blocks‖ of data from the 

disk versus backing-up the logical files/folders.[13]  VSS implements the backup size in 

16 kilobyte (KB) blocks.[10]  Figure 3, an adaptation from Whitfield‘s Shadow Warriors 



10 
 

 

[14], depicts a simplified relationship between a system‘s logical files, the system‘s 

arbitrarily formatted 4KB clusters (NTFS default cluster size under Windows 7), and 

VSS‘ 16KB blocks. 

 

Figure 3: Relationship of Arbitrary File.txt, 4KB clusters, and VSS’ 16KB blocks 

Time Warp further explains the relationship between a VSC and its data‘s originating 

logical volume, which is commonly referred to as the C (or D or other logical) 

volume.[10]  In Time Warp‘s example, the VSC, or C‘ volume, is the incremental backup 

medium for the original ―16KB Block‖ structures as the corresponding, overlying logical 

file/folder structure changes. Figure 4 depicts this relationship by showing the current 

state of the ―Arbitrary File.txt‖ file, or ―Arbitrary File.txt (Current)‖ file, as well as 

showing the two 16KB blocks that were ―preserved‖ to the VSC, or C‘ volume.  The two 

blocks from the C‘ volume may be used in conjunction with the current state to restore 

the file to its original state, or ―Arbitrary File.txt (Original).‖ 
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Figure 4: Relationship of Structures and Data on live (C) Volume and VSC (C’) Volume 

Understanding this relationship allows digital investigators to better comprehend the 

relationship between data that is obtained from the live volume‘s current state versus data 

that is obtained using the live volume and one or more VSCs. With regard to timeline 

analysis, digital investigations benefit from using the metadata/data from one or more 

VSCs as a complement to the live volume, since multiple states of data for the Arbitrary 

File.txt file as well as multiple states of timestamps and other attributes for the file‘s 

$MFT entry are available for recovery and subsequent timeline generation. 

The creation and management of one or more VSCs is handled by several underlying 

technologies; in particular, volsnap.sys, the VSS driver, swprv.dll, an intermediary 

service, and vssvc.exe, the high-level VSS service.  Supplementary information regarding 

the internals of the driver and service functionality is reserved for Appendix A.  

Additionally, while Figure 4 depicts the relationship between the live volume, the two 

original 16KB blocks of data from the live volume, and the VSC, more information is 

needed to better understand how the VSC concept fits within the Microsoft Windows 
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Operating System.  The following section provides additional insight into the location of 

VSCs on a real-world system. 

Windows Volume Shadow Copies 

On a Windows-based NTFS file system and within its logical file structure, VSCs are 

identified by their GUID filenames and reside in the Windows System Volume 

Information folder, along with other VSS files.[7]  VSC structures are ―largely self-

contained‖ and are: 

divided into three main parts: the VSS volume header, the VSS catalog, 

and the VSS stores.  …  [Note: Metz uses the term ―VSS‖ as ―Volume 

Shadow Snapshot,‖ which is synonymous with this document‘s use of the 

term VSC.] The header contains the VSS identifier, which is 

GUID:{3808876b-c176-4e48-b7ae-04046e6cc752} and the location (byte 

offset) of the catalog.  The catalog contains information about the stores 

… and the stores contain information about individual ‗snapshots.‘[15] 

The internal structure of the VSCs and other items in the System Volume Information 

folder remain largely unpublished outside of Metz‘ [15] and Whitfield‘s [16] work; 

however, several aspects of the VSS-associated registry structure and VSS processes that 

contribute to the VSC structure are discussed in further detail in Appendix A. Figure 5 

depicts the contents of the System Volume Information folder from an arbitrary system, 

which, with the exception of the ―Windows Backup‖ folder, appears consistent across 

Windows 7 instances. 
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Figure 5: System Volume Information Folder 

In order to analyze VSC evidence in support of investigations, digital investigators 

require the ability to explore the contents inside VSC structures.  This can be 

accomplished in several ways, such as via native Windows rendering or via manual and 

automated methods, as discussed briefly below and in further detail in the next section. 

Rendering VSC Contents 

A VSC‘s contents are not visible as-is to a user in an out-of-the-box Windows 7 

implementation, without first interfacing with the VSC.  In order to ―see‖ inside the 

VSCs in the System Volume Information folder, the Previous Versions UI must be used to 

interface with a VSC or the VSC must be accessed via a variety of manual and automated 

methods (discussed in this section and in additional detail in subsequent sections).  Using 

the VSS driver and services, as well as the Previous Versions UI, Microsoft designed the 

VSS technology to simulate a disk volume device, providing a static representation of the 

state of a file/folder/volume at a particular time.  To support this functionality, VSCs are 

queried and a list of snapshot times is returned.  As a user selects an arbitrary snapshot, 

the timestamp associated with the snapshot is used as a reference point for the disk 

volume‘s path.  The data is portrayed in a manner that allows the VSC‘s (C‘, or original) 
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data to be virtually applied to the live (C) volume data in a simulated, or pseudo-volume. 

This is accomplished via a call to the CreateFile function [17] with the timestamp-laden 

disk volume‘s path to mount the simulated volume.[10]  Russinovich states the pseudo-

volume ―path shown will include localhost\C$\<volume label> (<drive>:) 

(<date>,<time>), which is how Explorer virtualizes the different shadow copies 

taken."[8]  It is marked by the clock with the counter-clockwise green arrow on the left 

and is depicted inside the red box, below in Figure 6. 

 

Figure 6: Highlighted timestamp-laden file path of simulated volume 

The pseudo-volume representation exists as a read-only structure, which visually 

represents a logical file and folder structure view of the VSC‘s contents.  Figure 6, inside 

the green box, depicts the read-only logical structure; in that regard, mounted VSCs are 

essentially treated as read-only volumes.[10]  Of note is that this process works 

recursively such that multiple VSCs, or incremental backups, may be applied sequentially 

to render the representation connected to an arbitrary point in time.  Figure 7 depicts the 

recursive nature of the process.  It shows how restoration using only the difference blocks 

of Shadow Copy 3 could take the live volume‘s contents back to the original state for 

blocks one (A), four (D), six (F), and eight (H), but not for block seven, as only G2 is 

recoverable using Shadow Copy 3.  Additionally, the original state for blocks two (B), 
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three (C), five (E), and seven (G) are recoverable using Shadow Copies 1 and 2.  A 

restoration recursively using the difference blocks of all three shadow copies is required 

to take the live volume‘s contents back to the original state for all eight blocks. 

 

Figure 7: Recursive Restoration via Shadow Volumes 

Key to the rendered representation at an arbitrary point in time is the ability to recursively 

apply arbitrary numbers of incremental changes.  Should one or more VSCs (i.e., one or 

more incremental backups) be missing or corrupted, the rendering and recovery of 

corresponding previous version data may not be possible.  Figure 8, an arbitrary example, 

depicts this concept. 
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Figure 8: Shadow Volume Restoration Issues caused by Corrupt/Missing Shadow Copy #2 

Figure 8 depicts a corrupted and/or missing ―Shadow Copy 2‖ from a set of three shadow 

copies.  Restoration using data from that VSC will not be possible.  For example, it 

would be impossible to restore files/folders which stem from Shadow Copy 2‘s blocks 

three (C2), five (E), and seven (G), due to the corruption that has occurred.  Expounding 

on this example, while block seven may be restored to the Shadow Copy 3 block seven 

(G2) state, due to Shadow Copy 2‘s corruption, it may never be restored to the (G) state. 

Conversely, if a healthy VSC only contains a portion of a file‘s ―unchanged‖ data, the 

remainder of the file‘s data must be present on the live volume in order for VSS to apply 

the deltas and successfully read the file in its original state.  Thus, if the remainder of the 

data blocks of the current file have been corrupted or deleted on the live volume, recovery 

of a viable file may not be possible.[9]   

Since the aforementioned Shadow Copies consist of incremental blocks associated with 

―current‖ files/folders that have since changed on the live volume, when an ―original‖ 
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representation of an object is rendered, the pseudo-volume representation refers to the 

combination of the live volume and a VSC (C‘ volume). In the instance where no 

incremental block exists, such as block one (A) and block six (F), the pseudo-volume 

representation refers only to the live volume.  In addition to the method for rendering a 

pseudo-volume, a VSC‘s contents may also be rendered similarly via other methods, to 

include mounting the VSC, which is described next. 

At a high level, a VSC‘s contents are visible after a mount point is provided to the 

operating system and is accessed.  Figure 9, an Explorer view, depicts this concept by 

showing the top-level structure of a manually-mounted VSC (mounted as network share 

testshadow20). 

 

 

 

 

 

 

 

 

 

 

 

 

This method provides digital investigators with the ability to mount and view the contents 

of any number of VSCs.  The ability to mount multiple VSCs in succession allows for the 

comparison of multiple VSCs‘ contents in a native Windows Explorer environment. 

This section discussed how timelines, time attributes, VSS, and using VSC metadata/data 

as a complement to the live volume are all significant to digital investigations.  The next 

section will provide more context to the approaches digital investigators actively use to 

Figure 9: Explorer view of top-level structure within VSC 
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access VSC metadata/data; it will also discuss how the merits and limitations of the 

approaches are significant to the realm of digital investigations. 
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III. Digital Investigations Using VSCs 

 

In the area of Digital Investigations, VSCs are useful for restoring a volume to the state in 

which it existed during the relative time of VSC creation.  This is useful for showing how 

data/metadata (files and folder structure as well as attributes) existed at the time of the 

backup and allows for recovery of that data/metadata, even though it was changed at a 

subsequent point in time.[7]  More importantly, analysis of VSCs allows digital 

investigators to interpret how files and folder structure have been altered, enabling them 

to incorporate multiple versions of a system‘s artifacts into a chronological 

representation, or timeline, to provide a more comprehensive picture of the system‘s 

historical changes.  After multiple VSS backups occur, in order to generate timelines 

using VSC metadata/data, the data must be accessed and then extracted in a consistent, 

repeatable, and if possible, automated methodology.[4]  Next, the data must be presented 

in a manner that allows a digital investigator to work with the data -- for example, to 

identify changes, or lack thereof, over a span of time.  The following subsection, 

Accessing VSC Metadata and Data, describes current manual approaches for accessing 

and mounting VSCs, and the subsequent subsection, VSC Metadata/data Extraction, 

describes current manual approaches for extracting VSC contents. 

Accessing VSC metadata and data 

Investigative work in the digital forensics field by Crabtree [9], Whitfield [14], Lee [19], 

Carvey [20], Larson [7], ―DC1743‖ [21], and Harrell [22] has produced manual, iterative 

methodologies for accessing and extracting directory-tree and file attribute metadata/data 

from VSCs.  Several of these methods rely upon mounting/accessing a VSC using a 
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Windows-based or digital forensics-based utility and then recovering VSC metadata/data 

using standard Windows-based utilities. 

The mount/access methods employ a variety of tools and techniques in order to achieve 

VSC metadata/data access as well as extraction. While each method brings merits that are 

beneficial to digital investigations, each also presents obstacles that must be overcome; 

specifically, the need to: 

1. access/mount the VSC(s), 

2. access and extract metadata/data from the VSC(s), 

3. adopt a format/method that presents the extracted metadata/data to the 

investigator, and 

4. automate the entire process. 

The majority of these challenges have been successfully overcome by leading digital 

investigators. This section provides analysis and discussion of several manual 

methodologies actively used in support of digital investigations, for the purpose of 

identifying one that may be automated. 

Using Windows Previous Versions 

The simplest methodology for manually accessing and extracting VSC metadata/data 

employs the Windows Previous Versions UI, as depicted in Section II, Figures 1 and 2.  

The method provides simple point-and-click access to VSC contents and is discussed 

further in subsection B.1 of Appendix B. 

The merit of using the Previous Versions UI approach is the ability to employ a native 

Windows UI for accurate, easy, and timely data extraction.  No additional tools or special 

methodologies are required; however, this method has several disadvantages, including: 
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1. The VSC must be accessed via a Windows-based system with Windows 

Previous Versions UI support (i.e., select versions of Vista, 7, etc.). 

2. While an iterative point-and-click approach will extract data from multiple 

VSCs, the approach does not extract metadata, nor can it be automated in such a 

fashion as to extract all metadata/data from all VSCs. 

The first challenge may be overcome by accessing a VSC using either a surrogate 

Windows-based system with the Previous Versions UI, or the original system (the latter 

approach is not recommended due to evidentiary preservation concerns).  For example, 

during IV&V testing, VSCs were accessed using a surrogate system and via VMWare, 

which was used to help mount the image.  The second challenge regarding lack of 

automation for extracting all metadata/data was not overcome using the Previous 

Versions UI, but may be overcome using other methods that access VSCs and provide for 

the extraction of their contents.  Therefore, this research effort will analyze and discuss 

additional methodologies that may overcome this challenge while providing for 

additional efficiencies.  The next method discussed uses vssadmin with mklink or net 

share. 

Using vssadmin with mklink or net share 

Digital investigators actively use the Windows vssadmin and mklink commands to access 

and mount VSC contents.  Vssadmin.exe (vssadmin), or the Volume Shadow Copy 

Service administrative command-line tool, is a native Windows 7 command line utility 

that may be used to display details about VSCs.[23]  The mklink command executes from 

within the native Windows 7 command interpreter, cmd.exe.  By default, mklink creates a 

symbolic link to a file; however, the mklink methodology for accessing VSCs uses the 
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―/d‖ argument, forcing mklink to create a directory symbolic link instead.  This directory 

symbolic link is used as the mount point for accessing the VSC. This approach provides 

multiple documented methodologies to mount VSCs, as detailed by Crabtree [9], 

―DC1743‖ [21], Carvey [24], Harrell [22], Hargreaves [25], and Oltean [26].  The 

Windows vssadmin tool is also used in combination with the net share command to 

access and mount VSC contents.  This approach is used to mount VSCs as Windows-

based (network) shares and serves as an alternative for mklink‘s directory-based access 

methodology.  Figure 9 from the previous section was created using this approach.  The 

use of vssadmin with mklink or net share is described in further detail in subsections B.2 

and B.3 of Appendix B. 

This methodology is actively used in digital investigations and offers the following 

merits: 

1. It offers the benefit of reliably accessing/mounting one or more VSCs. 

2. It may be combined with other techniques in order to extract VSC 

metadata/data in an automated fashion as well as to maintain the original date and 

time stamps for extracted data.   

While it offers several benefits, this methodology is not without shortcomings:  

1. It only provides access to the VSC contents and hence requires additional 

tools/techniques to extract metadata/data from VSC(s). 

2. It provides no automation to select and recover all metadata/data from all 

VSCs. 
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3. It also requires additional tools/techniques to store the metadata/data in a 

format that allows it to be used for timeline generation and/or other visualization 

purposes. 

None of the challenges are overcome without using additional manual and/or automatable 

methods that access VSCs and provide for the extraction of metadata/data.  The next 

method discussed is restoring and accessing. 

Restoring and accessing 

To provide another approach for restoring a VSC‘s contents from the special VSC 

structure, a methodology was developed to obtain what is commonly referred to as a 

―disk image,‖[27] or forensic snapshot, of a VSC, and then mount that disk image to 

access its contents.  This methodology differs from preceding methods in that it renders a 

completely new copy of the VSC‘s contents (combined with the live volume) in a ―flat‖ 

file prior to the VSC mounting process.  Essentially, it appears to capture, or image, the 

entire live volume with the VSC‘s data overlaid to provide the ―restored‖ volume.  After 

imaging is complete, mounting must be accomplished via either the mklink or net share 

approach.  The restoring and accessing approach is discussed in further detail in 

subsection B.4 of Appendix B. 

This methodology has been used in support of digital investigations and offers the merit 

of reliably capturing a complete snapshot of one or more VSCs in a forensically-accepted 

manner. As with the other methodologies presented, this too brings challenges: 

1. After mounting the image using either mklink or net share, this method requires 

additional tools/techniques to extract metadata/data from VSC(s). 
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2. It requires additional automation to select and extract all metadata/data from all 

VSCs. 

3. It also requires additional tools/techniques to store the metadata/data in a 

format that allows it to be used for timeline generation and/or other visualization 

purposes. 

As previously explained, none of the challenges are overcome without using additional 

manual and/or automatable methods that access VSCs and provide for the extraction of 

their contents.  The next method discussed is parsing VSCs. 

Parsing VSCs 

A method for accessing VSC metadata/data, without working through Microsoft‘s VSS 

application programming interface (API), is to manually parse a VSC and the associated 

live volume, then reverse VSS‘ incremental backup functionality.  This is implemented 

by applying the ―original‖ VSC blocks in place of the ―current‖ blocks that make-up the 

live volume, and then, reporting the resulting metadata/data.  This method, described by 

ProDiscover as ―rebuilding VSC data from the block-level up,‖ works iteratively when 

multiple VSCs exist, thus reassembly may take a significant amount of time.[28]  

McKinnon‘s adaptation of the method is discussed further in subsection B.5 of Appendix 

B.[29]  The approach may be automated into a VSC parsing utility (similar to the 

ProDiscover and Shadow Analyser utilities, which are discussed in Section IV and 

subsection C.4 of Appendix C, respectively). 

The advantage of this approach is its ability to rebuild the data ―from the ground up‖ 

without relying on the VSS API.[28]  Within the context of this research effort, the 

challenge of this method is that no open-source tool that utilizes this approach was 
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available for IV&V during the functional testing and analysis phase.  (A promising open-

source capability, recently introduced as ―alpha‖ and briefly discussed in the Future 

Work section, is the vshadow project.[15]) The proprietary ProDiscover utility is 

discussed in Section IV. 

In summary, this subsection discussed several manual mechanisms for accessing and 

mounting VSCs in order to allow for subsequent retrieval of the metadata/data they store.  

The approaches are summarized in Table 1: 

Approach Name Capability Limitations 

Windows Previous 

Versions 

Point-and-click manual 

VSC access and data 

extraction 

1. System must have UI 

2. Cannot automate 

vssadmin with mklink or 

net share 

Manually mount VSC 

and access data 

1. Access only, no 

extraction 

2. Iterative vs. automated 

3. Storage format/method 

Restoring and accessing Reliably capture snapshot 

in a forensically sound 

manner 

1. Access only, no 

extraction 

2. Iterative vs. automated 

3. Storage format/method 

Parsing VSCs VSC re-build approach 

from the ground up 

1. No publicly available 

open-source tool existed 

during research IV&V 

phase 
Table 1: Accessing VSCs: Approaches, Capabilities, and Limitations Summary 

VSC metadata/data extraction 

This subsection builds on the manual VSC access and mounting methodologies discussed 

in the preceding subsection by introducing additional tools and methodologies to extract 

metadata/data from VSCs.  The first approach discussed uses fls and mactime. 

Using fls and mactime to extract timestamp metadata 

The fls and mactime approach utilizes the filesystem parser and timeline generator 

utilities to extract timestamp artifacts, which supports the generation of a timeline of 
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activities.[18]  Fls and mactime are obtained via The Sleuth Kit (TSK).[30]  Fls ―walks 

through the directory hierarchy [of each partition in a disk image] and outputs a line for 

each file [and directory] in the file system.‖[31]  Olsen states that fls "operates at the file 

system layer‖ and then mactime takes fls output ―and turns it into an ASCII timeline of 

file activity that's human readable."[32]  In order to use this approach, a digital 

investigator may either use a forensics boot CD containing the fls and mactime utilities to 

analyze one or more VSCs or may analyze the VSC(s) on a system that has TSK 

installed.  The approach requires that the digital investigator mount the disk image file 

containing the VSCs and live volume using the Microsoft Windows 7 Computer 

Management Interface (including the corresponding Disk Manager element) or another 

utility.  The process relies on the Windows disk class driver, volume manager driver, 

partition manager, I/O manager, CreateFile function, and VSS API to facilitate access to 

the disk image file as well as the live volume and VSCs contained therein.[8]  The VSCs 

are accessed as disk device objects using the device object nomenclature, 

―\\.\HarddiskVolumeShadowCopy[shadow volume number],‖ which is similar to the 

nomenclature used to access standard disk volumes, ―\\.\HarddiskVolume[number].‖ 

This methodology does not extract all VSC data, but rather the VSC metadata, such as 

file and directory names and attribute metadata.  Specific actions to accomplish this 

method are discussed in subsection B.6 of Appendix B. 

This methodology is actively used in digital investigations and offers the following 

merits: 
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1. It quickly and recursively extracts file and directory names in an automated 

fashion as well as sorts and formats the metadata based on time stamp 

information. 

2. The fls extraction methodology may be scripted/automated for any arbitrary 

number of VSCs. 

3. The flexibility of executing this methodology from an Incident Responder‘s CD 

on a running system, in addition to previously discussed approaches, could prove 

beneficial in exigent circumstances. 

Although it provides several benefits, this methodology is not without challenges: 

1. It requires additional automation to select and recover all metadata from all 

VSCs. 

2.  Based on the combination of the date and time fields within the Date column, 

it may also require additional tools/techniques to store the metadata in a format 

that allows it to be used for extensible timeline generation and/or visualization 

purposes. 

The first challenge may be overcome with scripting/automation; however, a platform 

independent solution for the second is not inherent in this methodology‘s capabilities.  

The next approach discussed involves using ―specialized‖ methods. 

Using specialized utilities/methods 

Carvey discusses the ability to use a variety of specialized forensics utilities, such as 

RegRipper, a Windows Registry data extraction and correlation tool, to extract metadata 

from VSCs.[20]  After a digital investigator gains access to the VSC, RegRipper may be 
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used to extract useful data from any arbitrary registry key.  The methodology is discussed 

briefly in subsection B.7 of Appendix B. 

This methodology is actively used in digital investigations and offers the following 

advantages: 

1. In addition to the preceding two extraction methodologies, RegRipper further 

demonstrates that any utility may be used to extract information from VSCs. 

2. The extraction methodology may be scripted/automated for any arbitrary 

number of VSCs. 

As with the other methodologies explored, this approach is not without its disadvantages.  

Challenges are as follows: 

1. This methodology in and of itself does not select and recover all metadata/data 

from all VSCs (the majority of arbitrary utilities would require additional 

automation to access the VSCs and then select and recover all metadata from all 

VSCs). 

2.  It also requires additional automation as well as tools/techniques to store the 

metadata in a format that allows it to be used for timeline generation and/or other 

visualization purposes. 

A portion of the first challenge could potentially be overcome with scripting/automation; 

however, a solution for the second is not inherent in this methodology‘s capabilities.  

Additional approaches will be discussed and analyzed in order to overcome these 

challenges. 
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After presenting several manual approaches for accessing and mounting VSCs in the 

previous subsection, this subsection discussed two manual approaches for extracting VSC 

metadata/data. Table 2 summarizes both: 

Approach Name Capabilities Limitations 

fls and mactime Extract VSC metadata 

quickly 

1. Iterative vs. automated 

2. Storage format/method 

Specialized 

utilities/methods 

Extract VSC metadata 

quickly 

1. Iterative vs. automated 

2. Storage format/method 
Table 2: Extracting VSC Contents: Approaches, Capabilities, and Limitations Summary 

This section also provided the rationale for the use of VSC metadata/data in support of 

digital investigations.  The next section, Achieving Automation for VSC Metadata/Data 

Enhancements, builds upon this information by using scripting and coding of open-source 

and commercial products for more efficient and somewhat automated VSC access and 

metadata/data extraction. 
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IV. Achieving Automation for VSC Metadata/Data Extraction 

 

The previous section discussed several of the commonly used manual techniques for 

accessing and mounting VSCs; it also discussed several of the commonly used methods 

for extracting metadata/data from VSCs.  In order to tackle the scale of addressing 

metadata/data from multiple VSCs and gain additional efficiencies in support of digital 

investigations, methods of enhancing/automating the access and extraction approaches 

are explored further in this section. Four actively used open-source approaches and two 

commercial utilities will be analyzed to determine whether an automated methodology 

exists that best addresses the challenges previously identified by this research effort.  The 

open source methodologies and tools are: 

1. scripting manual tools [22], 

2. Robocopy [33], 

3. LogParser [34], and 

4. ShadowCopy.[35] 

The commercial utilities are: 

1. Shadow Explorer [36] and 

2. ProDiscover.[28] 

The first of the four open-source methods, scripting manual tools, provides an 

―introduction‖ into automation and efficiencies. 

Scripting manual tools 

As discussed in Section III, several manual methods may be used to iteratively complete 

a three-step process of mounting a VSC, extracting its contents, and unmounting the 
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VSC.  Enhancements to this methodology, such as using programming loops, are actively 

employed by digital investigators, such as Crabtree [9], ―DC1743‖ [21], and Hargreaves 

[25].  The programming loops approach first mounts a disk image file (of raw (dd [37]), 

Virtual Hard Disk (VHD [38]), or Virtual Machine Disk (VMDK [39]) format) and then 

uses a for loop to iteratively execute either the mklink command, thus creating directory 

symbolic links, or the net share command, thus creating a share, for each of the VSCs.  

After the VSCs are mounted and accessible via the directory symbolic links or shares, 

their contents are viewable for analysis and extraction using various utilities. When 

analysis is complete, unmounting, or ―cleanup,‖ of the VSCs is performed by using a for 

loop to iteratively execute the rd command. 

Harrell further automates the for loop controlled VSC mount/dismount process using 

vssadmin, mklink, and rd by encapsulating it within a batch script.[22]  Hargreaves also 

provides a command string, which may be added to a batch file to ―mount all Restore 

Points simultaneously.‖[25]  This method is further discussed in subsection C.1 of 

Appendix C.  Figure 10 depicts the output of this methodology, VSCs that are mounted 

and viewable as folders within Windows Explorer.  

 

 

 

 

 

 

 

This methodology is actively used by digital investigators. Its merits, include: 

Figure 10: Mounted VSCs, now accessible via Windows shares 
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1. It offers the benefit of reliably accessing/mounting one or more VSCs with 

limited automation. 

2. The scripting enhancement to this methodology provides even more automation 

and, when combined with other techniques, such as those performing metadata 

extraction, may provide initial steps for enhanced automation. 

This method also has a few challenges, which are as follows: 

1. It requires additional tools/techniques to extract all metadata/data from all 

VSCs. 

2. It also requires additional tools/techniques to store the data in a format that 

allows it to be used for timeline generation and/or other visualization purposes. 

A portion of the first challenge could potentially be overcome with scripting/automation; 

however, a solution for the second is not inherent in this methodology‘s capabilities.  The 

next method discussed is robocopy. 

Using robocopy 

Microsoft‘s Robust File Copy for Windows, or robocopy, utility allows digital 

investigators to ―copy out folders and files of interest from any notable shadow copies.  

The process will preserve folder and file paths and timestamps.  The key advantages are 

that it is efficient - both in storage and speed.‖[40] 

Robocopy has received significant interest/use from the digital investigations community, 

based on its reliability in extracting metadata/data from VSCs while maintaining the 

original date and time stamps.  It also offers the flexibility of extracting all metadata/data 

from a VSC, or the precision of extracting metadata/data from a single file/folder of 
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Figure 11: Resulting log of robocopy methodology 

interest within a VSC.  The methodology is described in further detail in subsection C.2 

of Appendix C. 

Validation testing with the robocopy methodology produced metadata of the file and 

folder information from within an arbitrary VSC, or when performed iteratively, multiple 

VSCs.  Figure 11 depicts the output produced using this approach, which first shows the 

robocopy command with arguments, followed by an excerpt of the robocopy log file, 

displaying the fields Type (i.e., New File, New Dir, or junction), (<Number of Files a 

Directory Contains>), (<Size>) in Bytes, (<mtime>), and Path. 

 

 

 

 

 

 

 

 

The robocopy methodology has merit in that: 

1. It extracts VSC metadata/data in an automated fashion as well as maintains the 

original date and time stamps of extracted data. 

2. It also offers many execution argument options, providing flexibility for 

specifying output content and format. 

Robocopy suffers from a few shortcomings, which are as follows: 

C:\Windows\system32>robocopy c:\vsc17 d:\Robocopy_test /E /XJ /w:0 /r:0 /log:d:\ 
robocopytest.log /L /X /V /TS /FP /BYTES /TEE /NJH /NJS 
 
 Log File : d:\robocopytest.log 
 
                                  2    c:\vsc17\ 
          New File              1006280704 2011/11/07 03:37:22  c:\vsc17\hiberfil.sys 
          New File              1341710336 2011/11/07 03:37:33  c:\vsc17\pagefile.sys 
          junction        -1    c:\vsc17\Documents and Settings\ 
          New Dir          0    c:\vsc17\$Recycle.Bin\ 
          New Dir          1    c:\vsc17\$Recycle.Bin\S-1-5-21-1616509852-2306045778-1518815187-1000\ 
          New File                   129 2011/11/07 01:07:42    c:\vsc17\$Recycle.Bin\S-1-5-21-1616509852-2306045778-1518815187-
1000\desktop.ini 
          New Dir          0    c:\vsc17\PerfLogs\ 
          New Dir          0    c:\vsc17\PerfLogs\Admin\ 
          New Dir          1    c:\vsc17\Program Files\ 
          New File                   174 2009/07/14 04:54:24    c:\vsc17\Program Files\desktop.ini 
… 
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1. While it extracts metadata/data from VSCs, it does not currently capture 

enhanced file and folder attribute metadata in the log.  I.e., this methodology does 

not capture MAC times information and it also does not capture file and folder 

attribute information. 

2. Robocopy‘s log is a flat file comprised of text entries; additional 

tools/techniques are required to process and store the metadata in a format that is 

conducive to easy retrieval, timeline generation, and/or other visualization 

purposes. 

It appears that neither challenge may be overcome without the addition of one or more 

third party utilities.  The next method discussed is LogParser. 

Using LogParser 

The LogParser utility is used by digital investigators to export metadata from VSCs into 

a comma-separated value (CSV) format.  The methodology sends the output of the 

vssadmin command to a text file on the analysis system, mounts all VSCs using the 

mklink command, and then determines the contents of each VSC utilizing the LogParser 

utility.  LogParser grabs the metadata for all the files and folders within each VSC and 

exports the metadata to CSV format. 

Validation testing with these options extracted metadata from an arbitrary VSC, or when 

performed iteratively, multiple VSCs.  Table 3 depicts the first five records of output 

produced using this approach. 

MD5 Hash 
Creation 

Time LastWriteTime 
LastAccessTim

e 
Attribute

s Name Path Size (Bytes) 

  
7/14/2009 

3:18 
11/7/2011 

1:07 11/7/2011 1:07 D-SH----- 
$Recycle.Bi
n 

C:\VSC17\$Recycle.Bi
n 0 

  
7/14/2009 

5:08 
7/14/2009 

5:08 7/14/2009 5:08 D-SH---N- 
Documents 
and Settings 

C:\VSC17\Documents 
and Settings 0 

15E2F5A2AB8A534534386CF5E068F950 
11/7/2011 

6:49 
11/7/2011 

3:37 11/7/2011 6:49 -ASH----- pagefile.sys C:\VSC17\pagefile.sys 
134171033

6 

  
7/14/2009 

3:20 
7/14/2009 

3:20 7/14/2009 3:20 D-------- PerfLogs C:\VSC17\PerfLogs 0 
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7/14/2009 

3:20 
7/14/2009 

7:47 7/14/2009 7:47 D---R---- 
Program 
Files 

C:\VSC17\Program 
Files 0 

Table 3: Resulting records of the LogParser methodology 

The output in Table 3 depicts the VSC‘s contents, to include the MD5 hash value, 

creation time, last write time, last access time, attributes, name, path, and file size (in 

bytes).  The time may be specified as local time or UTC; UTC was implemented during 

validation testing.  Additional analysis regarding this methodology is provided in 

subsection C.3 of Appendix C. 

The advantages of the LogParser approach are as follows: 

1.  It extracts metadata from VSCs in an automated fashion and does so without 

altering the original date and time stamps of the source files. 

2.  LogParser‘s ability to push VSC names to a text file to distinguish input 

sources, as well as its ability to extract metadata from multiple VSC‘s into a 

single file, may allow for additional automation. 

3. The LogParser utility also offers the System_TimeStamp() and 

System_UTCOffset() functions, which are helpful for baselining the time of a 

digital investigator‘s analysis system. 

The LogParser approach has the following challenges: 

1.  Since LogParser‘s automation stems from extracting metadata from iteratively 

selected VSCs, it requires additional automation to select and recover all metadata 

from all VSCs. 

2.  Validation testing produced multiple instances of the following error: ―Error 

retrieving files: Error searching for files in folder <folder>: Access is denied.‖  

Escalating privileges to NT Authority\System reduced the error frequency, 

however, it did not eliminate all instances. 
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3.  This methodology requires additional tools/techniques to extract VSC data 

such as folder structure and files. 

Overall, the LogParser methodology offers significant enhancement potential for 

mounting all VSCs, extracting all metadata from all VSCs, and storing the data in a 

format that is conducive to future retrieval, timeline generation, and/or other visualization 

purposes.  In order to overcome the disadvantages posed by the LogParser methodology, 

this research effort will discuss the shadowcopy.py approach next. 

Using shadowcopy.py 

The most extensible open source VSC metadata/data-extraction methodology analyzed 

during this research effort was shadowcopy.py.  Shadowcopy.py is a Python programming 

language script produced by Mike Hom of the Naval Postgraduate School in Monterey, 

California.  Hom used Brian Madden‘s Python script, ShadowVolume2.py, for accessing 

VSCs, and then wrote shadowcopy.py as the enhancement script for automating VSC 

parsing.[35] 

Shadowcopy.py was written with the intended use of Python version 3.2 libraries and 

therefore requires the Python interpreter to exist on the digital investigator‘s examination 

system.  Since shadowcopy.py is Python language-based, it offers the flexibility of multi-

platform execution.  Shadowcopy.py requires Administrator-level access rights as well as 

access to a VHD format disk image converter utility, vhdtool.exe (analysis of the 

vhdtool.exe method is discussed in Appendix B); however, both conditions are easily met 

on a digital investigator‘s examination system. 

The shadowcopy.py approach offers the following merits: 
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1. It extracts all accessible data, such as folder structure and files, in an automated 

fashion. 

2.  The Python script approach offers complete flexibility of executing multiple 

third party utilities as well as many execution arguments. 

3.  Shadowcopy.py also deduplicates extracted data based on the MD5 one-way 

hash value, and produces a report of each extracted file‘s name, MD5 hash, size, 

originating machine, VSC, and destination location (extraction directory path).  

Additionally, if the same file name is encountered, but with a different hash, 

shadowcopy.py will extract both files and rename all versions subsequent to the 

first with a three digit numerical delimiter. 

4.  Another merit is this method‘s ability to distinguish between processing the 

VSCs of the local (host) system or all non-local (external) VSCs; this provides an 

automated methodology for a digital investigator to process all evidentiary, or 

non-examination-system, VSCs. 

5. One final, critical shadowcopy.py merit is that the Python script is extensible 

and the Python language affords flexibility for additional automation, which 

provides outstanding extensibility for modifications and enhancements. 

Challenges of the shadowcopy.py approach are as follows: 

1. Shadowcopy.py extracts VSC data, such as directory structure and files, but it 

does not currently capture all common directory structure, file, and attribute 

metadata into the report file.  For example, it does not record directory structure, 

MAC times, or file attribute information, which could be critical in helping a 

digital investigator to determine ―items of interest‖ in the report file.  This 
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provides an incomplete picture, which makes it difficult for a digital investigator 

to use the report for gathering an initial picture of exactly what changed and 

when, outside of relying on the obvious filenames and hashes.  Additionally, 

during functional testing, the MAC times of the extracted VSC data, such as 

folder structure and files, were not restored to their original MAC times from 

within the VSCs, making the comparison of exactly when things changed or 

comparison of one item against another even more difficult. 

2.  Shadowcopy.py also does not currently support a seamless method for 

exporting metadata into a storage format conducive to future retrieval, timeline 

generation, and/or other visualization purposes.  While the existing methodology 

exports limited metadata to a tab-delimited file, without first importing the 

metadata into other repositories or storage formats, it is difficult for a digital 

investigator to review all VSC metadata to determine which data, such as folder 

structure and files, is of value to the investigation. 

3.  Shadowcopy.py can currently only extract all data and/or the aforementioned 

limited version of all metadata.  Due to the additional storage space required for 

capturing all exported data, extracting all data prior to conducting a cursory 

and/or thorough metadata/timeline analysis is not conducive to a digital 

investigator‘s analytical efficiency or effectiveness.  While the shadowcopy.py 

approach offers some data extraction efficiencies by eliminating duplicate files, 

the approach could be improved upon by extracting all needed metadata first and 

then subsequently offering the option to extract all data or only a subset of 

investigator-targeted data. 
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4.  A final challenge, which is identified by the author, is shadowcopy.py‘s 

inability to mount VHD format or raw (dd) format disk image files in an 

automated fashion.  Currently, the user must manually mount the files external to 

the shadowcopy.py script. 

Overall, the shadowcopy.py methodology and its extensibility, based on the second and 

fifth merits listed above, offers significant potential for: 

1. mounting all VSCs, 

2. extracting metadata from all VSCs, and 

3. storing the data in a format that is conducive for future retrieval, timeline 

generation, and/or other visualization purposes. 

In order to identify other potential best of breed capabilities which may enhance the 

shadowcopy.py approach, commercial and open-source GUI utilities will be analyzed 

next. 

Commercial & Open Source GUI Utilities 

In addition to the manual and automated approaches for accessing VSCs and extracting 

VSC metadata/data, several more automated and visually-enhanced utilities exist for 

providing even greater efficiencies to digital investigators.  These open source and 

commercial tools are equipped with GUIs to further automate the review, analysis, and 

extraction of metadata/data within VSCs.  Two easily obtainable utilities, Shadow 

Explorer and ProDiscover, are discussed in this section. 

Using ShadowExplorer 

ShadowExplorer displays VSC content in an Explorer-like interface and allows digital 

investigators to export VSC data, such as any file or folder, to an output folder on a 
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storage medium of choice.[41]  ShadowExplorer’s Windows Explorer-like interface is 

easy to follow and is depicted below in Figure 12. 

 

Figure 12: ShadowExplorer Interface Depicting a single VSC 

The utility allows the user to choose one (note: only one) VSC to view at a time from a 

list.  In addition to viewing a VSC in the Explorer-like interface, an operator may right-

click and export any file(s) and/or folder(s) to an export directory of choice. 

ShadowExplorer’s quick and simple, easy-to-use interface is valuable for gaining a 

cursory review of VSC contents.  The utility offers a single function consisting of a right-

click followed by the Export option, and performed the function as anticipated during 

validation testing.  Unfortunately, the ShadowExplorer utility suffers from several 

drawbacks, which are as follows: 

1. It provides no automation to select and recover all data from all VSCs. 

2. It does not offer the ability to extract VSC metadata in a format that allows it to 

be used for timeline generation and/or other visualization purposes. 
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3.  Based on GUI limitations, the list of available VSCs was only updated once 

during execution (i.e., there was no ―refresh‖ mechanism to update the VSC list). 

4. ShadowExplorer did not appear to recognize VSCs from a source other than the 

native drive upon which the running OS resided (i.e., it did not allow viewing of 

the VSCs that were mounted via the diskpart utility). 

The many challenges associated with the ShadowExplorer approach allowed us to 

eliminate it as a candidate for enhancing support to digital investigations involving VSCs.  

In order to identify other potential best of breed capabilities which solve the problems 

previously identified, this research effort will discuss one final methodology: using 

ProDiscover. 

Using ProDiscover 

Technology Pathways produces a family of ProDiscover utilities, including the 

ProDiscover Incident Response (IR) utility, which provides an ―integrated way for 

investigators to access Volume Shadow Copies from within the digital forensics 

environment.‖[28]  ProDiscover‘s documentation explains that the capability is achieved 

by analyzing and rebuilding a view of VSC data from the block-level up.  The utility 

allows investigators to mount and image VSCs from live machines, mount VSCs from 

any supported image format, and mount VSCs from any directly added ―at rest‖ disk. 

ProDiscover IR offers two underlying methods of processing and visualizing recreated 

VSCs.  According to documentation, in the first method, ProDiscover IR parses VSCs.  

In the second method, ProDiscover IR uses Microsoft‘s VSS API for processing and 

visualizing VSCs, which provides for quicker analysis. 



42 
 

 

Testing confirmed ProDiscover IR offers the ease of a point-and-click methodology to 

mount any VSC that is accessible via a physical drive or supported drive image.  Figure 

13 below depicts the ProDiscover IR ―Mount Shadow Volume‖ dialogue box which 

shows how a VSC and its mount point (volume) are selected.  Figure 14 below depicts 

the ProDiscover IR interface after two VSCs are mounted.  After VSCs are mounted, the 

interface displays them in the same manner as standard logical volumes, showing the 

directory structure and files as well as attributes of VSC contents.  ProDiscover IR allows 

easy ―side-by-side‖ visual comparison of VSC metadata/data. 

 

 

 

 

 

 

 

 

By selecting the ―Tools‖ and ―Compare Volumes‖ options, ProDiscover IR offers the 

ability to automatically compare the contents of one-to-many VSCs.  This method works 

by computing a hash for every file on every volume selected, which requires significant 

processing power and time.  After this option is executed, ProDiscover IR provides a 

visual depiction of the contents that have changed and offers the ability to filter results by 

action (i.e., no filter, added, modified, or deleted) or by file type (i.e., no filter, .txt, .doc, 

.pdf, .jpg, or .bmp).  A report of results is saved to .txt, .xml, or .csv file format.  Figures 

Figure 13: ProDiscover IR Dialogue for Mounting a VSC Figure 14: ProDiscover IR Visualization of Two 

Mounted VSCs 
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15 and 16 depict the ―Compare Volumes‖ dialogue box and the results of a simple one-

to-one volume (VSC) comparison, showing results filtered by .txt filetype. 

 

 

 

 

 

 

 

ProDiscover IR also offers the ease of a point-and-click methodology to compare VSC 

changes via the ―Extract Volume Shadow Copies‖ methodology, which determines 

changes by examining the $MFT and then comparing timestamps.  It extracts differences 

into a Logical File Collection (LFC) and offers the ability to preserve the directory 

structure.  Since the methodology compares timestamps of VSC contents with the $MFT, 

it completes one-to-one VSC comparison at a time, but offers faster execution over the 

―Compare Volumes‖ method.  After the process completes, ProDiscover IR has the 

capability of adding the LFC to the investigation, thus allowing digital investigators to 

display the changes between two particular VSCs.  Figures 17 and 18 depict the ―Extract 

Volume Shadow Copies‖ dialogue box and the ProDiscover IR GUI showing two 

mounted LFCs, respectively. 

 

 

 

Figure 15: ProDiscover IR Compare Volumes 

dialogue box 

Figure 16: Compare Volumes Result dialogue box 

filtered by “.txt” filetype 
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ProDiscover is actively used by digital investigators and offers the following merits: 

1. It provides an easy-to-use GUI, allowing digital investigators to mount one-to-

many VSCs (one at a time) via point-and-click methodology. 

2.  It offers the ability to capture and extract differences in VSC content metadata 

via the Compare Volumes feature. 

3. It can compare VSC data/metadata and visualize differences by selecting 

―Extract Volume Shadow Copies‖ and subsequently mounting the resulting LFCs. 

4.  It requires only minimal point-and-click user interaction to select, recover, and 

export the differences between selected VSCs for either of the aforementioned 

methods. 

5.  It extracts VSC metadata into several exportable formats.  The utility 

performed all functions as anticipated during validation testing. 

The ProDiscover utility presented the following disadvantages: 

Figure 17: Extract Volume Shadow 

Copies dialogue box 

Figure 18: Mounted LFCs Depicting Changes Between 

VSCs 
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1. The need to sequentially process differences between multiple VSCs was not 

fully automated/eliminated.  For example, one may compare the differences 

between a VSC and the live volume or any two VSCs; however, in order to 

complete the comparison process sequentially for n VSC or live volume items 

from a particular drive or drive image, n-1 iterations are required. 

2. The ProDiscover IR retail cost is approximately $8,000.00 US dollars per 

license, causing the functionality to be restricted to only those who may obtain a 

demo version of the utility or afford the license costs. 

3. ProDiscover IR‘s log format is a flat file (.txt, .xml, or .csv format) comprised 

of text entries, therefore, this utility does not inherently extract and store VSC 

metadata in a format that is conducive to retrieval, timeline generation, and/or 

other visualization purposes. 

4. During functional testing using Administrator credentials, ProDiscover IR did 

not recognize VSCs from a VHD format disk image file (i.e., it only allowed 

viewing of the VSCs that were mounted from a physical drive). 

Overall, the ProDiscover methodology offered significant potential for quickly mounting 

all VSCs, performing GUI-enhanced analysis, extracting metadata from all VSCs, and 

exporting results.  Some of the best of breed capabilities included in this utility provide 

great efficiencies and effectiveness for digital investigations. 

This section described the most popular methods of achieving automation for VSC 

metadata/data extraction, analyzed the methods, and discussed both the benefits and 

limitations of each approach.  Additional IV&V testing data is available in Appendix C.  

The following section provides analysis of common strengths and weaknesses of the 
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various approaches; it also provides an assessment of the enhancements which will solve 

the challenges identified in this research. 
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V. Merits and Limitations Analysis Confirms Requirements 

and Drives Enhancements 

Merits and Limitations Analysis 

Section III reviewed and provided analysis of several manual methods commonly used by 

digital investigators for accessing VSCs and extracting VSC metadata/data.  Section IV 

provided information on several automated methods, thus showing evolution and 

efficiencies. IV&V testing of all approaches determined that most, if not all, approaches 

require additional enhancements in order to access VSCs and extract all VSC 

metadata/data in an automated fashion. 

Analysis of the merits and limitations identified from all approaches provided a 

mechanism for comparison and contrast to confirm required capabilities, confirm 

shortcomings that must be eliminated, and identify must-have enhancements for 

developing a more robust solution. This review also provided insight into additional 

future areas of enhancement and expanded research. The current section will summarize 

the requirements presented for this research, then highlight three common 

challenges/limitations discovered in all current methodologies, and finally, discuss the 

benefits of multiple approaches, with the goal of developing best-of-breed capabilities 

and enhancement opportunities. 

The requirements this research aimed to address include: 

1. The VSC metadata/data extraction method must offer an automated approach 

for processing multiple (all) VSCs. 
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2. The user may process metadata/data for timeline generation and change 

visualization purposes (Phase 1). Next, the user may select arbitrary investigator-

targeted file(s)/folder(s) for extraction and analysis (Phase 2, future work). 

3. The data store resulting from metadata extraction must allow the user to select 

an arbitrary scope of data and view that data in any way the user desires (via 

extensible database queries against the dataset). 

The research conducted in Sections III and IV identified common limitations that must be 

overcome in order to avoid falling short of satisfying the aforementioned requirements.  

They include the following: 

1. All current methods require manual interaction outside of the tool/method 

employed in order to access the disk image containing all VSCs.  Additionally, 

once accessed, limitations affecting the ability to automate the extraction of 

metadata/data from all VSCs on the disk image must be eliminated. 

Enhancing the automation of disk mounting and the processing of all VSCs is a 

requirement for overcoming the current limitations.  The method employed for 

VSC metadata/data extraction should offer an innate ability to access disk images 

and then cannot be limited to singular or iterative processing of VSCs; rather, it 

must be able to extract metadata/data from all VSCs on a mounted drive or disk 

image in an automated fashion. 

2. Several methods extract only data files or limited aspects of metadata in 

support of timeline analysis.  This presents several disadvantages: By extracting 

only data files or by extracting data files prior to extracting metadata, a digital 

investigator must invest both the storage requirements and time to recover this 
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data from the VSCs.  As an example, even with a small 100GB volume as the 

dataset, if complete data extraction was required prior to metadata extraction, a 

digital investigator could be forced to wait while 1 to n VSCs worth of restored 

data were extracted.  This may require significantly more storage than if the 

method allowed the digital investigator to initially extract only metadata, allowing 

subsequent focus on the data files and folder structure if/when warranted. 

Another key limitation is with methods that only extract limited aspects of 

metadata; these methods must be enhanced to present metadata that is rich in the 

areas sought after by digital investigators.  The resulting dataset must contain 

ample directory-tree structure, directory-tree content, and file attribute 

information, allowing for timeline analysis to compare/contrast both change and 

lack of change. 

3. Most current methods extract metadata to some form of text-based log that is 

not inherently conducive to extensible analysis and comparison of the results.  In 

order to provide digital investigators with the flexibility required to conduct 

thorough timeline analysis, this area requires enhancement to extract the resulting 

dataset to a database that allows extensible queries to be performed for any 

requirements desired.  For example, if metadata is extracted to a database storage 

format, digital investigators would have the ability to visualize the metadata and 

execute queries to extract any subset of metadata they deemed valuable.  Whether 

the analysis requires sorting the data by time characteristics, file attributes, or 

another method, having the extracted metadata in a storage format allowing these 

types of analyses is critical. 
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In addition to satisfying requirements and overcoming the common limitations, the 

method employed should offer the type of extensibility and flexibility that is 

commensurate with use in current and future digital investigations, by including the 

following enhancements: 

1. the flexibility to execute any arbitrary third party utility, 

2. the flexibility of an open-source, high-level programming language, and 

3. platform flexibility (e.g., such as flexible execution from both a Microsoft 

Windows Operating System environment and potentially from Incident 

Responders‘ environments). 

Of all the approaches and utilities examined, ProDiscover was deemed to be most 

advantageous from an ease-of-use perspective and for offering comprehensive analytical 

capabilities.  ProDiscover showcased an impressive ability to mount individual VSCs and 

then view multiple VSCs simultaneously.  It then visually depicted all VSC contents, 

requiring only the initial point-and-click user input. It also demonstrated strong 

capabilities for comparing VSC contents based on either hash or timestamp evaluation 

measures. Unfortunately, ProDiscover requires iterative point-and-click direction in order 

to process all VSCs of a particular image/drive. It also presented a challenge when 

attempting to mount the VSCs of a VHD format disk image file – it did not mount the 

VSCs during IV&V testing.  Finally, its code base is closed-source (proprietary) and was 

only available via a demo license or at a cost of approximately $8,000.00 US dollars per 

license. 

Of all open-source methodologies, shadowcopy.py exhibited the most merit.  It performed 

most of the heavy lifting desired to solve this research‘s problem statement with only 
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moderate improvements needed to address shortcomings leading to the three limitations 

identified.  With regard to desired functionality, shadowcopy.py offered the inherent 

flexibility of accessing and extracting data from multiple VSCs in sequential order, yet in 

an automated fashion.  Its Python code offers programmers an open-source, high-level 

programming language with the flexibility to execute any arbitrary third party utilities at 

any time and with only slight code modifications.  Shadowcopy.py supports digital 

investigations with its deduplication [42] of extracted data using customizable filename 

delimiters as well as with its ability to identify and process all non-local VSCs.  

Shadowcopy.py also utilized the ShadowVolume2.py code, which employed mklink and 

vssadmin, therefore already making use of these previously evaluated methods for 

accessing VSCs.  Finally, as a possible extension, the potential use of Portable Python 

[43], which is preconfigured to allow Python code to be executed in a Windows 

environment from any USB storage device, along with shadowcopy.py, could provide 

even more future flexibility and rationale for using shadowcopy.py on removable media 

and Incident Responder‘s toolkits. 

With regard to moderate improvements needed for addressing the problem statement, 

proposed shadowcopy.py enhancements include: automating the disk image 

access/mounting process, enhancing shadowcopy.py‘s metadata extraction process, and 

improving shadowcopy.py‘s reporting mechanism.  The flexibility of the Python language 

and its cross-platform support made shadowcopy.py an easy programmer‘s choice for 

supporting these enhancements.  Finally, to ensure shadowcopy.py enhancements could 

address the complete list of limitations identified during the evaluation phase (Appendix 

D), a comparison was performed by cross-referencing proposed shadowcopy.py 
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enhancements against all limitations identified in the evaluation phase of this research.  

Several limitations were deemed not applicable to the existing shadowcopy.py 

methodology.  Other evaluation shortcomings were recognized limitations; however, they 

could be overcome with proposed shadowcopy.py enhancements.  Enhancing the 

shadowcopy.py capability to support this research‘s goal of performing automated 

metadata/data extraction from multiple VSCs provides the best chance of succeeding in 

solving the problem statement. 

Based on the numerous merits presented by the existing shadowcopy.py methodology as 

well as the proposed enhancements‘ ability to address identified limitations, the 

shadowcopy.py methodology was selected as the final candidate approach for 

enhancement to solve the problem statement of this research.  Exploring areas of 

enhancement via custom shadowcopy.py modifications is further discussed in the 

following section. 
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VI. Custom Modifications Extend Automation 

Exploration of Advancements 

The preceding sections summarized the approaches associated with accessing VSCs and 

performing VSC metadata/data extraction; the sections also described the limitations 

identified during analysis of the access and extraction approaches. The evolution of the 

methods and utilities that are actively used by digital investigators was discussed and 

then insight was provided into potential areas of improvement.  In order to advance VSC 

analysis, especially in support of digital investigations, this section will explore three 

areas of improvement.  It will provide concrete examples of methodology and then will 

present solutions that address the limitations identified in Sections III-V.  This section 

will also briefly touch upon the merits of additional shadowcopy.py enhancements which 

would further expand the scope of work toward resolving the problem statement. 

Utilities Used 

Table 4 highlights the utilities/methods used in support of the exploration of the three 

advancement areas. 

Utilities/Methods Description Notes 

Microsoft Windows 7 

Professional, Service Pack 

0 and Service Pack 1 

Operating System 64-bit and 32-bit variants 

were used for testing 

purposes 

VMWare Workstation, 

version 7.1.6-744570 

Hypervisor (virtual 

machine manager) 

www.vmware.com 

Python interpreter, version 

3.2 

High-level programming 

language interpreter 

www.python.org 

PSTools version 2.44 Suite of tools for managing 

local and remote systems 

PSexec.exe obtained NT 

Authority\System privileges  

Shadowcopy.py Original shadowcopy.py 

script 

Used for testing and 

enhancements 

Microsoft DiskPart 

version 6.1.7601 

Virtual disk mounting 

utility 

Standard with Windows 7 

Professional OS 

Microsoft attrib.exe  Utility for displaying file C:\Windows\System32\attri

 



54 
 

 

and folder attributes b.exe 

Other utilities/methods All other utilities/methods 

noted in Sections III-V 

Required for IV&V testing 

purposes 
Table 4: Utilities/methods supporting the exploration of advancements 

The testing environment consisted of both the 64-bit and 32-bit variants of the Windows 

7 Operating System, as well as the VMWare Workstation platform. This research effort 

also relied on the Python interpreter, Microsoft‘s psexec.exe utility, Microsoft‘s diskpart 

utility, Microsoft‘s attrib.exe utility, and the shadowcopy.py code.  Having provided a 

high-level description of the utilities/methods used to create the environment for the 

exploration of advancements, this research effort will now provide a detailed 

methodology as well as lessons learned for exploring solutions to the following three 

problems: 

1. automating disk image access/mounting (automating shadowcopy.py‘s disk 

image access and mounting), 

2. enhancing automated metadata extraction (enriching shadowcopy.py‘s metadata 

and enhancing shadowcopy.py‘s automated metadata extraction mechanism), and 

3. exporting extracted metadata into a storage format that offers extensible queries 

and comparison of metadata from all VSCs (storing shadowcopy.py‘s report in a 

format conducive to extensible queries and flexible metadata analysis). 

Automating Disk Image Mounting 

A challenge identified by many of the aforementioned methodologies and then manually 

implemented by several was the need for mounting VHD format or raw (dd) format disk 

image files using the Microsoft Windows 7 Computer Management Interface (including 

the corresponding Disk Manager element) or Microsoft‘s diskpart utility.  Identifying an 

automated method of enhancing the manual implementation is an extension of previous 
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work and was listed as the first item of ―future work‖ in Hom‘s ShadowCopy report.[35]  

Refining this technique into an automated disk image mounting mechanism for 

shadowcopy.py was critical in order to satisfy the first element of automating VSC 

metadata/data extraction; in response, the following advancements were made to 

shadowcopy.py using the diskpart utility methodology: 

1. Partially-automated mounting and un-mounting, using diskpart scripts. 

Testing was performed to identify manual methods of implementing the diskpart 

utility to successfully mount and un-mount a VHD format disk image file.  Initial 

testing of diskpart revealed the diskpart command‘s attach argument could mount 

a VHD file.  In order to do so, the disk image must first be the focus of the 

diskpart utility, or selected.  The select argument was used to focus the diskpart 

utility on an arbitrary VHD file.  Combining the steps in the proper order 

produced the following syntax: 

SELECT VDISK FILE=<Volume>:\<Disk image filename.vhd> 

ATTACH VDISK READONLY 

The readonly argument allowed mounting of the VHD file, without altering its 

state, which performed the same function as selecting the Read-only checkbox in 

the Computer Management interface methodology (depicted inside the red box in 

Figure 19). 
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Figure 20: Execution of a diskpart script to select and attach a virtual disk image 

(VHD) file 

 
 

Figure 19: Computer Management interface’s “Attach Virtual Hard Disk” element 

Executing the script from the command line determined it successfully selected 

and attached the VHD file, as depicted in Figure 20. 

 

 

 

 
 

 

 

Next, the methodology and a script were developed for un-mounting the VHD 

file.  The methodology utilizes the select and detach arguments, as noted below: 

SELECT VDISK FILE=<Volume>:\<Disk image filename.vhd> 

DETACH VDISK 

Executing the script from the command line determined it successfully selected 

and detached the VHD file, as depicted in Figure 21. 

 

 

 

 

 

 

2. Integrating a mounting and un-mounting methodology into shadowcopy.py. 

       D:\>diskpart /s "d:\ShadowCopy Testing and Results\diskpart_script.txt" 

       Microsoft DiskPart version 6.1.7601 

       Copyright (C) 1999-2008 Microsoft Corporation. 
       On computer: THESISVM-PC 

       DiskPart successfully selected the virtual disk file. 

         100 percent completed 
       DiskPart successfully attached the virtual disk file. 

 

       D:\>diskpart /s "d:\ShadowCopy Testing and Results\unmount_diskpart_script.txt" 

       Microsoft DiskPart version 6.1.7601 
       Copyright (C) 1999-2008 Microsoft Corporation. 

       On computer: THESISVM-PC 

       DiskPart successfully selected the virtual disk file. 

       DiskPart successfully detached the virtual disk file. 

Figure 21: Execution of a diskpart script to select and detach a virtual disk image 

(VHD) file 
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Figure 22: Execution of shadowcopy.py to select and attach a virtual disk image 

(VHD) file 

The diskpart script approach was incorporated into the shadowcopy.py script to 

implement disk image mounting automation that would support shadowcopy.py‘s 

existing VSC access/mounting automation.  To effectively integrate the new 

methodology, the shadowcopy.py Python code was modified with –mount and –

unmount options.  When executed with the –mount and –unmount options, the 

shadowcopy.py enhancement prompts the digital investigator for the path to the 

VHD file, verifies the path exists, and then calls diskpart to mount/unmount it, as 

depicted in Figure 22, below.  (Note: The shadowcopy.py utility previously 

included an –image option.  The –image option was removed and the image 

verification process was incorporated into the –mount code via the image() 

function.) 

 

 

 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

 
 

 

D:\>C:\Python32\python.exe shadowcopy.py --mount 
Please enter the path of the vdisk (VHD) file to mount. -->d:\testimage.vhd 

You entered: d:\testimage.vhd 

Is this correct? (Enter 'Y' or 'y') -->y 
The vdisk (VHD) path has been saved as: d:\testimage.vhd 

… 

DiskPart successfully attached the virtual disk file. 
 

Please enter next command: 

Usage: usage: shadowcopy.py [options] <EXTRACT-DIR> 
<imagefile> may be a .vhd or a .raw.    If it is a .raw, it will 

be converted to a .vhd IN PLACE, so be sure you have enough disk and the vhdtool.exe to do the 

conversion 
Note: this script must be run as administrator. 

Options: 
  -h, --help           show this help message and exit 

  --mount            Prompts the user for a vdisk (VHD) or raw (DD) image 

                         (converts to VHD format if necessary).  Then, mounts 
                         the selected image. 

  --list                Show the shadow volumes that are available. 

  --local              Analyze only the local machine 
  --maxsize=MAXSIZE    Specifies maximum size of a file to extract 

  --minsize=MINSIZE     Specifies minimum size of a file to extract 

  --noextract          Do not extract the shadow data 
  --reportfn=REPORTFN  Specify report output filename 

  --zap                Overwrite report file if it exists 

  --unmount         Unmount a selected VHD image 
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The shadowcopy.py –mount and –unmount method was automated to write the 

user-entered, image-validated path to two temporary diskpart script files.  The 

path is stored in the diskpart script files during shadowcopy.py execution and is 

then used for the –unmount process.  After the –unmount process completes, the 

enhanced shadowcopy.py script removes both temporary diskpart script files from 

the analysis system.  This enhancement, allowing shadowcopy.py to mount a 

VHD file in an automated manner, combined with its inherent capability of 

automatically processing all VSCs, satisfied the automated disk image 

access/mounting requirement. 

Enhancing Automated Metadata Extraction 

A second area for improvement was the ability to capture/extract all common directory 

structure, file, timestamp, and attribute metadata, which are commonly used by digital 

investigators when conducting timeline analysis or when determining whether certain 

system artifacts warrant further review during a digital investigation. This issue was 

identified as a limitation to many approaches of extracting VSC metadata, including the 

shadowcopy.py approach.   

As previously implemented, the shadowcopy.py methodology did not incorporate 

directory structure, timestamp, or attribute information--which could be critical for a 

digital investigator--into the report file.  However, of all the open-source utilities tested, 

shadowcopy.py showcased the best inherent approach for automating a combined 

metadata/data extraction capability.  Consequently, the shadowcopy.py metadata/data 

extraction methodology (reporting feature) was selected as a noteworthy candidate for 

additional enhancement. 
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In an effort to integrate increased functionality into the existing shadowcopy.py reporting 

mechanism, the enhancement approach focused on incorporating directory structure, 

timestamp, and attribute metadata, which are commonly deemed helpful in support of 

timeline analysis and digital investigations.  Portions of the shadowcopy.py code were 

modified to capture and report the additional required metadata.  An initial modification 

of the shadowcopy.py script tested execution of LogParser within the shadowcopy.py 

environment; however, the approach required the additional step of remounting VSCs 

using the mklink methodology.  In order to achieve the same functionality without adding 

additional steps, the shadowcopy.py script was modified to incorporate the required 

directory structure, timestamp, and attribute enhancements using Python code and a 

native Microsoft Windows 7 executable, attrib.exe.  The enhancements are as follows: 

1. To record directory structure information into the report, the enhancements to 

shadowcopy.py consisted of re-aligning code for efficiency and then writing new 

directory structure processing functionality into the process() function within the 

shadowcopy.py script.  Similar to the shadowcopy.py Python code that processes 

filenames, the directory structure processing code performs the following 

functions: 

a. executes the stat command, which is used to gather information used to 

record the mtime, atime, ctime, size, etc, for each directory, 

b. records the attributes of each directory, 

c. records the originating system name and VSC name for each directory, 

d. records MAC times for each directory, and 
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e. records errors, such as ―Access is denied‖ and ―The media is write 

protected,‖ as it processes each directory. 

The new functionality records the path and directory name metadata into the 

report, in addition to previously recorded filename metadata.  The value this 

enhancement creates is the most complete picture by combining a record of the 

system‘s folder structure with the existing record of the system‘s files.  The 

enhanced structure, combined with timestamps and attributes, will better help 

digital investigators depict a system‘s historical changes.  The red box around the 

second column, ―Path,‖ in Figure 23, depicts directory paths from the enhanced 

report.  The blue and green boxes in the seventh column, ―MTime,‖ coupled with 

the second red box in the sixth column, ―Volume,‖ depict how the 

―\Users\VSCTest\AppData\Local\Microsoft\Windows‖ directory has changed 

between VSCs 3 and 4.  Additionally, the different MD5 hashes for the 

UsrClass.dat file show its contents changed across all four VSCs and the MTime 

changes provide the timestamp of the data changes. 

 

Figure 23: Enhanced shadowcopy.py report capturing directory structure information. 

2. To incorporate timestamp information into the report, the enhancements to 

shadowcopy.py code were minimal.  Incorporating the following three lines of 

Python code into the process() function within the shadowcopy.py script 

introduced MAC time metadata into the report. 

datetime.datetime.fromtimestamp(st.st_mtime), 



61 
 

 

datetime.datetime.fromtimestamp(st.st_atime), 

datetime.datetime.fromtimestamp(st.st_ctime), 

Note: The Python class datetime.datetime provides a combination of date and 

time output whereas datetime.date and datetime.time provide only the respective 

individual date or time elements.  Figure 24 depicts the MTime, ATime, and 

CTime fields in the enhanced report. 

 

Figure 24: Enhanced shadowcopy.py report showing MTime, ATime, and CTime fields. 

This example depicts change to the MTime and ATime, relative to all five VSCs 

(HarddiskVolumeShadowCopy9 - 13), providing an example of historical 

artifacts that are now available to digital investigators through analysis of multiple 

VSCs.  This capability and the findings it produces will enhance timeline 

generation and historical analysis methods. 

3. To incorporate attribute information into the report, the enhancements to 

shadowcopy.py consisted of adding Python code and a call for the execution of 

attrib.exe from the process() function within the shadowcopy.py script.  The new 

functionality records the attributes of files and folders.  Figure 25 depicts the 

enhanced report, with the attribute information residing in the seventh column, 

―Attributes.‖ 

 

Figure 25: Enhanced shadowcopy.py report showing attributes field. 
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Two additional enhancements were made to improve metadata extraction and provide 

additional efficiency.  As previously engineered, shadowcopy.py reported metadata for 

files against which it could execute the stat command.  Shadowcopy.py processed errors 

as it attempted to stat every file, some of which were caused by permissions or access 

issues.  In order to enhance output, shadowcopy.py testing was executed using NT 

Authority\System permissions.  To obtain NT Authority\System permissions, testing 

consisted of issuing the psexec -hsi cmd command and then executing the shadowcopy.py 

script from within the new command window.  When shadowcopy.py was executed as NT 

Authority\System during testing, the number of output records from a 40GB source 

dataset increased by approximately 0.03%, from 96,525 records to 96,553 records for an 

arbitrary test.  This does not represent a significant increase in production; however, in 

the world of digital investigations, it may prove to be the differentiator in identifying 

inculpatory or exculpatory evidence. 

Finally, minor edits were made within the process function of the shadowcopy.py code to 

streamline the operation of the code that calls the make_filename_distinct function.  For 

example, if the noextract option was selected, files would not be extracted from VSCs; 

therefore, the need to determine a destination directory for those files or to create a 

distinct filename may be eliminated.  To allow for more efficient execution, minor 

segments of this code were removed and reinserted after shadowcopy.py‘s code checked 

for the absence of the noextract option – at the point where execution of code that checks 

for a destination directory and distinct filenames is more prudent. 
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Storage Format/Method 

As discussed in preceding sections, several VSC metadata/data retrieval methodologies 

recover VSC metadata to a custom report or other common forms of delimiter-separated 

values format, such as a tab-separated values format or comma-separated values format.  

In order to support automated export and storage of metadata information from multiple 

VSCs as well as provide a mechanism that offers adaptable data selection criteria and 

extensible queries, research into another format/method of storage was required. 

Specifically, it would be most beneficial to follow-on research efforts if the 

shadowcopy.py reporting mechanism output data were in a format that allowed any 

imaginable type of query to be issued, and the customization of those queries allowed for 

the production of one-to-many records of output (whichever is desired/needed).  This 

requirement may be met by storing the data in a SQL format such as that of a SQL server 

implementation or SQLite. 

Metadata Storage in Database Format (SQLite) 

To support the goal of exporting all VSC metadata into SQL storage, review of the 

various utilities determined the LogParser utility innately supported exporting results to 

SQL format.  Additionally, the Python interpreter supports collaboration with the SQLite 

database format; thus, testing and implementation was conducted to determine whether 

the shadowcopy.py method could export metadata to SQLite format.‖[44]  Additionally, 

research was conducted into supporting a combined shadowcopy.py/LogParser method 

that could export metadata to SQLite format. 

The Python interpreter, version 2.5 and newer, natively includes SQLite support via the 

―import sqlite3‖ command.  Based on the relative ease of incorporating this native 
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functionality into the shadowcopy.py methodology, it was selected as the desired method 

for enhancing the reporting function.  Additionally, since SQLite storage format allows 

anyone reviewing the data, especially digital investigators conducting timeline analysis or 

visualizing change, to issue any type of SQL query imaginable to produce one-to-many 

records of output, it became an ideal candidate. 

To support storing VSC metadata in SQLite format, the SQLite connect API was used to 

create/open a database file and provide its file handle.  The shadowcopy.py code was 

modified to change the reportfn variable to assign the new database filename.  A cursor 

was assigned to allow the shadowcopy.py code to iterate through the database contents.  

Next, three functions, createTable(), addRecord(), and deleteTable(), were added to the 

shadowcopy.py code.  Functions createTable() and deleteTable() are used to create and 

delete, respectively, a new table named ShadowCopy in the database file specified by the 

connect API.  The ShadowCopy table contains an ―id‖ record number variable of integer 

type that is used as the primary key, as well as the following variables of text or integer 

type: path, MD5, size, machine, volume, m_time, a_time, c_time, attributes, and 

filename.  The addRecord() function is called from the existing process() function within 

shadowcopy.py to report directory, file, time, and attribute metadata as the process() 

function ―walks‖ through each VSC.  After each VSC is processed, the changes are 

committed to the database and, when all VSCs are processed, the cursor to the database 

file is closed.  In Figure 26, a SQLite browser depicts sample output from 

shadowcopy.py‘s report (SQLite database) containing extracted VSC metadata, which has 

been queried for filenames that match ―index.dat.‖ 
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This example shows the shadowcopy.py output (report) is now enhanced to record 

metadata in SQLite format, which allows anyone reviewing the data, especially digital 

investigators conducting timeline analysis or visualizing change, to issue any type of 

SQL query imaginable to produce one-to-many records of output.  The sample query 

executed to produce the above result was ―SELECT * FROM ShadowCopy WHERE 

Filename LIKE ‗index.dat%‘ ORDER BY Path.‖  Review of the resulting metadata 

identifies changes to the index.dat file‘s MD5 hash and MTime across VSCs 

HarddiskVolumeShadowCopy40 – 43.  This provides an example of how, using an open 

source utility to show historical changes to a system, digital investigators may depict 

multiple versions of metadata artifacts, after extracting them from multiple VSCs.  The 

arbitrary result above is indicative of the data that will support timeline generation and 

visualization of change, both of which are possible using metadata extracted from 

multiple VSCs. 

After reviewing the enhanced metadata output and identifying files/folders of interest that 

require more in-depth analysis, a digital investigator would link the metadata results 

extracted from shadowcopy.py‘s output with the extracted data results.  In order to 

accomplish this, a digital investigator may use the MD5 hash value to make that critical 

link.  For example, in Figure 27, extracted metadata results show the ―ntuser.dat.log1‖ 

Figure 26: SQLite metadata output from an arbitrary VSC file 
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file changed between HarddiskVolumeShadowCopy22 and 23; therefore, it was 

identified as an item of interest. 

 

Figure 27: Results showing changes to the “ntuser.dat.log1” file 

A cursory review of the data extracted by shadowcopy.py shows two versions of the 

―ntuser.dat.log1‖ file extracted as ―ntuser.dat.log1‖ and ―ntuser.dat.000.log1,‖ as depicted 

in Figure 28. 

 

Figure 28: Results showing two versions of the extracted "ntuser.data.log1" file 
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In order to definitively link both versions of the files with the extracted metadata results, 

an MD5 hashing utility, such as md5deep, may be used to create an MD5 hash of each 

file, as depicted in Figure 29. 

 

Figure 29: MD5 hashing utility definitively links extracted metadata to extracted data 

Enhancement Results Summary 

The enhancement case studies demonstrate this research successfully achieved the 

following improvements: 

1. Automated disk image mounting: This improvement was achieved by 

modifying the shadowcopy.py script with a diskpart utility enhancement.  During 

testing, this methodology operated in a consistent and repeatable manner for a 

simple VHD format disk image file, which, based on review of the 

shadowcopy.py script and Hom‘s ShadowCopy report, supported the utility‘s 

original intent. 

2. Enhanced automated metadata extraction: The three reporting improvements 

listed below were achieved by enhancing the shadowcopy.py script. 

a. Reporting of directory structure information 

b. Reporting of MAC times information 

c. Reporting of file/folder attribute information 

During testing, the added directory structure, MAC times, and attribute 

information was consistently produced in the shadowcopy.py report (database). 
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3. Enhanced reporting to a SQLite database format: This improvement was 

achieved by leveraging the Python interpreter‘s SQLite integration, allowing 

results to be stored in a SQLite flat-file format (<filename>.Db) that is capable of 

handling multiple extensible queries for the return of one-to-many data records.  

Results were viewed in a SQLite browser and were consistent with expectations. 

Overall, the exploration of advancements, or case studies, produced results that 

showed increased richness of metadata as well as a significant decrease in 

storage requirements for metadata-only results, when compared with full data 

extraction.  As an example, in order to obtain metadata to generate a timeline for 

an arbitrary 100GB dataset with 10 arbitrary VSCs, a digital investigator would 

not need to have 1TB of disk space available and the time required to extract all 

10 versions of complete file and folder structure data.  Rather, digital 

investigators can now anticipate the time required for extraction of multiple 

VSCs‘ metadata in terms of hours (even with limited processing power) and the 

use of multiple MBs to low GBs of storage space for the resulting report.  Digital 

investigators can then view all output in the SQLite report and query any aspect 

of the data to obtain the desired view/output.  Queries may be as complex or as 

simple as desired for supporting timeline generation or cataloging a system‘s 

historical artifacts.  Combining these enhancements with the inherent 

shadowcopy.py capabilities offers: 

a. the inherent flexibility of accessing and extracting metadata and data 

from multiple VSCs in an automated fashion, 
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b. open-source and high-level Python programming language that is 

flexible to execute any third party utilities, 

c. an aid to digital investigators, with the deduplication of extracted data 

files and the ability to identify and process all non-local VSCs, 

d. the inherent use of the mklink and vssadmin methods via the 

ShadowVolume2.py code, 

e. enhanced VHD format disk image file mounting automation via 

diskpart enhancements, and 

f. enhanced metadata processing and reporting mechanisms. 

Although improvement in shadowcopy.py‘s overall capability has been realized, the 

enhancement case studies demonstrate insight into the following issues, which currently 

remain unresolved: 

1. Timeliness of the process: The original version of the shadowcopy.py script 

issued the stat command and calculated an MD5 hash for every file.  During 

testing, with error reporting suppressed, the execution time against arbitrary VSCs 

averaged approximately 2.09 minutes/GB.  After enhancements, the execution 

time against the same VSCs averaged approximately 3.43 minutes/GB.  The 

increase in processing time is best attributed to the additional capture and 

reporting of all directory structure, timestamp, and attribute information into the 

SQLite report. Hence, decreasing the time required to process all VSCs from an 

arbitrary VHD format disk image file is a lingering issue that could benefit from 

additional research, including parallel processing techniques, as initially noted by 

Hom.[35] 
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2. Automated disk image mounting/unmounting functioned consistently in 

controlled test scenarios across several test systems; however, it is speculated that 

this mechanism would require additional adjustments to allow it to support 

complicated instances involving multiple VHD format disk image files.  Testing 

multiple or complex source scenarios is an area that could benefit from additional 

research. 

3. Further investigation into eliminating errors produced during shadowcopy.py 

processing, such as when the Windows Operating System cannot access a 

particular folder or file, is warranted.  Other items that could produce errors 

and/or omissions also require further attention, such as: 

a. shadowcopy.py does not currently process NTFS junctions or the files in 

a system‘s root directory.  The root directory challenge is likely resolved 

via trivial code edits; however, the NTFS junction challenge may require 

additional research. 

b. attrib.exe is not producing the ―D‖ attribute indicative of directories.  

This challenge may also require further study. 

c. Variables for reporting into the SQLite database are currently of integer 

and text type.  The variable types should be reviewed and adjusted to 

eliminate overflows or other undesirable occurrences. 

4. As written, shadowcopy.py is confined to work with the VSS API; however, in 

order to adopt the Metz, McKinnon, and ProDiscover method of parsing VSCs, 

shadowcopy.py‘s metadata/data extraction component could be combined with 
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libvshadow or another method for a non-API-based metadata/data extraction 

solution. 

5. As written, shadowcopy.py is designed to gather all metadata/data from all 

VSCs.  (This was the boundary of the scope of the initial research concept.)  

Shadowcopy.py currently does not gather the metadata/data from the live volume 

in addition to the content from the VSCs; therefore, some may feel as though it 

does not capture all data potentially required for an investigation.  The capability 

could easily be integrated by extracting data from HarddiskVolume[number] in 

addition to HarddiskVolumeShadowCopy[number]. 

6. Command-line interface execution: The shadowcopy.py script could benefit 

from a GUI overlay controlling, at the very minimum, the ability to browse paths 

for the selection of VHD format disk image files to process.  A GUI could resolve 

additional issues, and is discussed further in Section VIII. 
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VII. Conclusion 

Overview 

The basis of this research consisted of an amalgamation of three areas, which are 

summarized as follows: 

1. deficiencies in completeness were identified when generating timelines using 

only the current, or ―available,‖ version of artifacts from a computer system, 

2. a backup mechanism of the Microsoft Windows 7 Operating System provides 

the ability to effectively preserve multiple versions of system artifacts; several 

methods already exist for accessing the backups, or VSCs, and extracting their 

data, thereby potentially mitigating the deficiencies, and 

3. additional automation of the VSC access and metadata extraction methods was 

identified as an area needing focus, and thus was established as the area of 

concentration for this research. 

First, this research noted a problem that existed during timeline generation when using 

only the available, or most recent, version of the artifacts from a computer system.  The 

resulting timeline would likely provide a somewhat limited picture of historical changes 

for the system, especially when compared with a timeline generated using all versions of 

the artifacts from the same computer system. For example, if previous versions of 

artifacts and/or previous artifact metadata changes are overwritten and therefore not 

retained on a system, analysis of current artifacts, such as time/date stamps and operating 

system/program/registry artifacts, may provide only a limited picture of activities for the 

system. 
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Second, this research noted the Microsoft Windows Operating System's backup 

mechanism, which is capable of retaining multiple versions of data storage units for a 

system, effectively provides a highly-detailed record of system changes, which may be 

used as a data source to resolve the problem statement.  As a potential solution, this 

research noted incorporating VSC metadata into a timeline as a potential aid to the 

problem statement, with the caveat that the data must be accessed and extracted in a 

consistent, repeatable, and if possible, automated manner.  This research noted multiple 

methods exist for accessing VSCs and extracting metadata/data. 

Third, this research aimed to identify the methodology, and subsequently, enhancements 

to automate accessing and extracting directory-tree and file attribute metadata from 

multiple VSCs of the Windows 7 Operating System.  With VSC metadata extracted and 

recorded in a format that allowed extensible querying for output of one-to-many records, 

the data required to support enhanced timeline analysis could be made available in 

support of digital investigations. 

Research Activities 

Due to the limited amount of published materials available, this research first set out to 

provide the reader with a background and general understanding of VSS and VSCs.  The 

goal of this portion of the research was to provide a limited, but structured review of 

several key facets of VSS and VSCs, which may benefit future research efforts.  Next, 

this research presented an overview of several common methods for accessing VSCs and 

extracting metadata and data.  Subsequently, the focus was sharpened toward 

highlighting existing methods of automating VSC metadata and data extraction.  Next, 

IV&V of the common methods of VSC metadata/data extraction was performed, and then 
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the merits and limitations of each of the existing approaches were assessed. The 

shadowcopy.py script was selected as the preeminent candidate approach for 

enhancement to solve the problem statement of this research effort.  Finally, 

improvements to the shadowcopy.py script were identified and implemented in order to 

advance the automation of accessing VSCs and performing VSC metadata extraction in 

support of timeline analysis: 

1. automating disk image access/mounting (automating shadowcopy.py‘s disk 

image access and mounting), 

2. enhancing automated metadata extraction (enriching shadowcopy.py‘s metadata 

and enhancing shadowcopy.py‘s automated metadata extraction mechanism), and 

3. exporting extracted metadata into a storage format that offers extensible queries 

and comparison of metadata from all VSCs (storing shadowcopy.py‘s report in a 

format conducive to extensible queries and flexible metadata analysis). 

Assessment of the Benefits to Timelines and the Visualization of 

Change 

Section II establishes the significance of time/timelines in digital investigations and the 

ability of a machine‘s Basic Input/Output System (BIOS), operating system, and file 

system to function as the baseline for timekeeping and time-stamping of certain system 

artifacts.  It also briefly describes how digital artifacts such as file attributes, directory-

tree structure, directory-tree contents, and the conglomeration of those data may support 

current research in a related area, the visualization of change-over-time.  This section 

culminates with an assessment of how the product of this research, enhancements to the 

automation of extracting VSC metadata, supports more comprehensive timeline 

generation as well as other projects, such as the visualization of change-over-time. 



75 
 

 

The tangible result of this research is the advancement of the methodology for 

automatically extracting VSC metadata and the storage of results in SQLite database 

format, allowing extensible queries for any subsequent need.  The methodology supports 

timeline generation using a more comprehensive dataset, as the resulting timeline should 

be able to depict artifact metadata from all VSCs of a particular VHD format disk image 

file.  This allows for the visualization of the progression of change, or lack thereof, for 

system artifacts across an arbitrary timeline.  As the richness of the extracted metadata 

advanced to include directory structure, MAC times, and attribute information, the 

resulting dataset should add further depth and breadth to timelines created using VSC 

metadata/data.  Another goal of this research is to provide enhancement value to other 

projects, such as those that visualize change-over-time, through the resultant dataset.. 

When considering the inherent file and folder structure export capability of the original 

shadowcopy.py script, coupled with the additional richness of the metadata that is now 

produced based on enhancing the script, it seems that together, the inherent and enhanced 

methodologies provide digital investigators with a more robust capability to export 

metadata from VSCs, analyze and/or depict items of interest, export complete data 

file/folder structure from VSCs, and analyze items of interest a final time. The combined 

methodology thus offers digital investigators the desired additional automation for 

processing VHD format disk image files and VSC data, as well as the ability to derive a 

more comprehensive chronological representation of a system‘s historical changes, by 

having the input of multiple instances of system artifacts. 
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VIII. Future and Related Work 

 

This research effort pursued enhancing automated methods of accessing VSCs and 

extracting metadata/data from all VSCs on a particular disk image, all in support of 

timeline generation for digital investigations.  The automation and reporting 

enhancements that were added to the shadowcopy.py script resulted in the ability to 

automatically mount disk images and then to extract directory structure, timestamp, and 

attribute-enhanced metadata into a SQLite database reporting format.  Based upon the 

analysis conducted during this research, several areas to consider for future work include: 

1. allowing interactive selection of investigator-targeted paths from which to 

extract data, 

2. implementing shadowcopy.py as a stand-alone static binary with GUI support, 

3. enhancing the interactive VHD format disk image file and VSC selection 

mechanism, and 

4. exploring a cross-platform implementation. 

Each of these areas is discussed in further detail below: 

1. Phase 2 (Future Work), could improve upon the current shadowcopy.py 

approach by offering the investigator an interactive mechanism to custom-select 

one-to-many investigator-targeted paths to extract data from, based upon review 

of the initial metadata output.  The enhancement would offer digital investigators 

the ability to sharpen their focus on items of interest more quickly by exporting 

and examining only items of interest from the digital evidence. 

2. Incorporating the shadowcopy.py script into a stand-alone binary with an 

interactive GUI could be extremely beneficial for allowing the investigator to 
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browse to the path of the VHD format disk image file, as well as for review of 

extracted metadata.  Along with the other Phase 2 enhancement described, this 

development could allow for digital investigators to review metadata results in a 

GUI format and then use the GUI to select the investigator-targeted data to 

extract for subsequent analysis. 

3. Providing interactive advancements for VHD format disk image file selection 

and VSC selection could be an extremely beneficial future development.  This 

would be useful in the event a digital investigator should need to conduct parallel 

analysis of multiple VHD format disk image files that each contain multiple 

VSCs.  For example, combining the portions of the shadowcopy.py script that 

extract metadata/data with portions of the libvshadow project, which mounts 

VSCs via open source methods on the Linux platform, may be an extremely 

beneficial approach for mounting any combination of VHD format disk image 

files and VSCs. 

4. An automated framework implementation that allows digital investigators to 

mount/access VSCs from a variety of operating system platforms, such as Linux, 

OS X, etc, could be a remarkably useful future enhancement.  The original 

version of shadowcopy.py claimed it was portable such that it could be employed 

from multiple operating system platforms.  The use of the attrib.exe executable in 

the enhanced metadata reporting limits this approach.  Finally, as a possible 

extension, the potential use of Portable Python in conjunction with 

shadowcopy.py could provide even more flexibility and rationale for using 

shadowcopy.py on removable media and in Incident Responder‘s toolkits. 
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IX. Appendix A 

 

Section II provides an initial overview of VSS technology, including the underlying 

services, the Previous Versions UI, the creation and management of VSCs, and methods 

used for rendering VSCs.  This section expounds on several aspects introduced in Section 

II by delving further into the VSS components and the interactions they have with other 

Microsoft Windows 7 Operating System and third party components as well as the 

purpose of the VSS artifacts found on a typical system. 

A.1. VSS Components and Interactions 

An initial overview of the services and driver responsible for the creation and 

management of VSCs was presented in Section II via introduction of volsnap.sys, the 

VSS driver, swprv.dll, an intermediary service, and vssvc.exe, the high-level VSS 

service.  This subsection provides additional detail regarding the functionality of these 

VSS services and the VSS driver.  Then, it expounds on the interactions between the VSS 

services and other components, such as requesters, writers, and providers, which all work 

together for seamless VSC creation.  Next, it discusses various backup methodologies, 

such as the copy-on-write, complete copy, and redirect-on-write, employed in support of 

VSC creation.  Finally, it ties the various components and interactions together by 

reiterating Microsoft‘s 10-step process used to create VSCs. 

A discussion of the VSS services, vssvc.exe and swprv.dll, and the VSS driver, 

volsnap.sys is a good starting point.  Volsnap.sys exists on the Windows 7 platform (as 

well as several other platforms) as a kernel-mode driver that operates ―both above and 

below‖ the Microsoft Windows NTFS file system.[10]  Expanding on this point, volume 
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snapshot technology operates below the file system, at the block level; however, 

Volsnap.sys must allocate shadow storage volumes as logical files, so it also operates 

above the NTFS file system in order to help create logical VSC files in the System 

Volume Information folder.[26]  Volsnap.sys is located in the 

C:\Windows\System32\drivers folder and is responsible for saving the previous versions 

of a particular block via the copy-on-write functionality as a change will occur to the 

overlying file/folder. 

Swprv.dll exists on the Windows 7 platform (as well as several other platforms) as the 

VSS software shadow provider.  Shadow providers are system, software, or hardware 

components that serve as interfaces to the point-in-time imaging capabilities.[45]  In 

simpler terms, shadow providers facilitate the creation of shadow copies by managing 

running volumes and are responsible for on-demand creation of shadow copies from the 

running volumes.[45]  Microsoft designed the VSS architecture to allow other, third 

party, VSS providers to exist at the intermediate service level at which swprv.dll 

operates.  Other VSS providers may provide alternate functionality for the interaction 

between the volsnap.sys driver and higher-level VSS service(s). 

In addition to being facilitated through the VSS service component, VSS activities also 

require the use of shadow requestors, writers, and as previously discussed, native and 

third party system, hardware, and software providers.  Figure 30 depicts this 

relationship.
[Credit to Microsoft]
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Figure 30: Relationship of VSS to Writers, Requestors, and Providers 

As depicted above, shadow requestors are backup applications that invoke the VSS 

service, which then communicates with providers and writers to perform backup 

functions.  In short, they initiate shadow copy creation as well as other functions.  

DiskShadow, the Windows shadow requestor, offers both interactive (command-line) and 

scriptable modes for controlling the VSS service.[46]  Shadow writers are application 

components in Windows applications that help prevent data inconsistencies and provide 

consistent shadow copies by: 

1. communicating with the VSS interface so that applications can prepare and 

quiesce their data stores, and 

2. communicating application information (name, icons, included files, excluded 

files, and restore strategy).[45] 

The native Windows Operating System VSS provider, Swprv.dll, employs a copy-on-

write methodology.  Additional methodologies include the complete copy and the 

redirect-on-write, both of which are discussed after the copy-on-write methodology. 

A copy-on-write (also known as an incremental copy) is a methodology which preserves 

original state by reading each block that will be modified and writing it to the VSC just 

prior to a write input/output operation updating the block‘s state on the original volume.  
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VSCs produced by the copy-on-write methodology are also termed as bit level 

incremental backups of a volume.[7]  Terminology refers to the ―diff area,‖ which for 

Windows VSS providers refers to the location where the data for the shadow copy that is 

created by the system software provider is stored.  This diff area can be located on any 

local NTFS volume with enough space to store it.  VSS may create shadow copies of 

non-NTFS volumes; however, persistent shadow copies, or those that persist across 

reboots, ―can be made only for NTFS volumes. In addition, at least one volume mounted 

on the system must be an NTFS volume.‖[47]  If accessed through Windows Explorer, 

VSCs appear as read-only shares.[10]  Figure 31, an adaptation of Crabtree [9], depicts a 

simplified version of an incremental copy. 

 

Figure 31: Simplified version of the incremental copy concept 

As depicted above, during the 1
st
 time period, or t1, only original data A-D exist.  During 

the 2
nd

 time period, or t2, just prior to B being overwritten by B2, the original B contents 
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are preserved via copy-on-write technology and are thus written to the 1
st
 VSC, or s1.  

During the 3
rd

 time period, or t3, just prior to B2 being overwritten by B3 and C being 

overwritten by C2, the original B2 and C contents are preserved via copy-on-write 

technology and are thus written to the 2
nd

 VSC, or s2. 

In contrast to the copy-on-write methodology described and depicted above, a complete 

copy (also known as a full copy, a clone, or a split mirror), is a full duplicate of the 

original data, created by a software or hardware provider. The clone remains 

synchronized until the mirror connection is broken.  The live volume continues to be 

written-to while the shadow copy remains a read-only version of the live volume‘s state 

at the exact instant the connection was broken.[45] 

A redirect-on-write is somewhat similar to the copy-on-write methodology, however, 

instead of writing changes to the original volume, it preserves the original state on the 

original volume and writes incremental changes to the VSC.[47]  Figure 32, an 

adaptation of Crabtree [9], depicts a simplified version of a redirect-on-write copy. 
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Figure 32: Simplified version of the redirect-on-write copy concept 

Regardless of whether the methodology employed is copy-on-write, redirect-on-write, or 

complete copy, the shadow copy creation process is similar.  The following figure, Figure 

33, and subsequent description, provide an overview of the Shadow Copy Creation 

Process: (Credit to Microsoft) 

 

Figure 33: Shadow Copy Creation Process 

To create a shadow copy, the requester, writer, and provider perform the 

following: 
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1. The requester asks the Volume Shadow Copy Service to 

enumerate the writers, gather the writer metadata, and prepare for 

shadow copy creation. 

2. Each writer creates an XML description of the components and 

data stores that need to be backed up and provides it to the Volume 

Shadow Copy Service. The writer also defines a restore method, 

which is used for all components. The Volume Shadow Copy 

Service provides the writer's description to the requester, which 

selects the components that will be backed up. 

3. The Volume Shadow Copy Service notifies all the writers to 

prepare their data for making a shadow copy. 

4. Each writer prepares the data as appropriate, such as completing 

all open transactions, rolling transaction logs, and flushing caches. 

When the data is ready to be shadow-copied, the writer notifies the 

Volume Shadow Copy Service. 

5. The Volume Shadow Copy Service tells the writers to 

temporarily freeze application write I/O requests (read I/O requests 

are still possible) for the few seconds that are required to create the 

shadow copy of the volume or volumes. The application freeze is 

not allowed to take longer than 60 seconds. The Volume Shadow 

Copy Service flushes the file system buffers and then freezes the 

file system, which ensures that the file system metadata is recorded 
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correctly and the data to be shadow-copied is written in a 

consistent order. 

6. The Volume Shadow Copy Service tells the provider to create 

the shadow copy. The shadow copy creation period lasts no more 

than 10 seconds, during which all write I/O requests to the file 

system remain frozen. 

7. The Volume Shadow Copy Service releases file system write 

I/O requests.  

8. VSS tells the writers to thaw application write I/O requests. At 

this point applications are free to resume writing data to the disk 

that is being shadow-copied.  

9. The requester can retry the process (go back to step 1) or notify 

the administrator to retry at a later time. 

10. If the shadow copy is successfully created, the Volume Shadow 

Copy Service returns the location information for the shadow copy 

to the requester. In some cases, the shadow copy can be 

temporarily made available as a read-write volume so that VSS and 

one or more applications can alter the contents of the shadow copy 

before the shadow copy is finished. After VSS and the applications 

make their alterations, the shadow copy is made read-only. This 

phase is called Auto-recovery, and it is used to undo any file-

system or application transactions on the shadow copy volume that 

were not completed before the shadow copy was created.[47]  
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An additional VSS feature noted by Mark McKinnon is that a single arbitrary VSC may 

store more than one change to the same source data blocks.  While unconfirmed, it is 

speculated this feature was created as a mechanism to record minor *intermediate* 

changes without taking on the overhead of an entire new incremental copy.  This 

discovery created additional research for McKinnon/Whitfield and ultimately led to a 

parsing methodology, discussed briefly in Section III and subsection B.5 of Appendix B, 

as well as added functionality to be incorporated into the Shadow Analyser utility, 

discussed briefly in subsection C.4 of Appendix C, to accommodate for it. 

This subsection discussed the functionality of the VSS services and the VSS driver as 

well as the interactions between the VSS services, requesters, writers, and providers.  It 

discussed the copy-on-write, complete copy, and redirect-on-write methods.  Finally, it 

reiterated Microsoft‘s 10-step process used to create VSCs.  The following subsection 

provides additional detail into the attributes and artifacts used on a system to manage 

VSS and the system‘s VSCs. 

A.2. VSS Attributes and Artifacts 

By default, 5% of a disk is reserved for the VSS service.  The reserved size is 

configurable and may be increased arbitrarily.  Should the VSCs arrive at consuming the 

5% or configured capacity of disk space, a pruning mechanism removes older VSCs in a 

FIFO capacity.  In order to conserve disk space, temporary files such as paging files are 

automatically omitted from shadow copies.[47]  

To make VSC writing more efficient, Volsnap.sys initially pre-allocates 600MB of space 

for shadow storage.  This occurs for three reasons: 



87 
 

 

1. to prevent deadlock when trying to write to the VSC (since the VSC space must 

immediately be available for writes and it must receive writes prior to the active 

file system receiving writes), 

2. to avoid file growth restrictions during shadow copy creation (―NTFS write I/O 

is essentially blocked for … the ‗flush-and-hold‘ interval‖), and 

3. to ensure the VSC is available at the earliest opportunity for copy-on-write of 

―hot blocks.‖[26]  

The Windows 7 Operating System has several registry keys that control various aspects 

of VSS and VSCs, to include the minimum initial disk space reserved for the VSS service 

as well as files that should not be backed-up.[47]  Table 5 lists the documented VSS 

registry artifacts and provides descriptive information regarding the usage of the artifacts. 

Key/Hive Usage Notes 

VssAccessContro

l (Key) 

Specifies which users 

have access to shadow 

copies. 

Default is NT Authority\NetworkService.  

Key is located in 

Computer\HKEY_LOCAL_MACHINE\SYS

TEM\CurrentControlSet[and 

ControlSet001]\services\VSS. 

MaxShadowCopi

es (Key) 

Specifies the limit for 

the Shadow Copies of 

Shared Folders feature. 

(Default is 64.) 

The maximum number of client-accessible 

software shadow copies that can be stored on 

each volume of the computer is 512. 

MinDiffAreaFile

Size (Key) 

Specifies the minimum 

initial size, in MB, of 

the shadow copy 

storage area. 

600MB of shadow copy storage area is pre-

allocated by Volsnap.sys. 

FilesNotToSnaps

hot (Key) 

Specifies which files to 

exclude from shadow 

copies. 

It cannot delete files from a shadow copy 

that was created on a Windows Server by 

using the Previous Versions feature. 

It cannot delete files from shadow copies for 

shared folders. 

It can delete files from a shadow copy that 

was created by using the Diskshadow utility, 

but it cannot delete files from a shadow copy 

that was created by using the Vssadmin 

utility. 
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Files are deleted from a shadow copy on a 

best-effort basis. This means that they are not 

guaranteed to be deleted. 

\System Volume 

Information\Sysc

ache.hve (Hive) 

 New registry hive. 

 

Table 5: VSS Registry Artifacts 
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X. Appendix B 

 

Sections III and IV provide high-level overviews and analysis of several methods 

commonly used in support of digital investigations.  Those include, but are not limited to, 

using the Windows Previous Versions UI, vssadmin and mklink, vssadmin and net share, 

restoring and accessing, parsing VSCs, fls and mactime, and specialized utilities/methods.  

Each subsection of this Appendix provides additional details, which were relevant to the 

analysis of each of the aforementioned tools/techniques, in an unstructured format. First is a use 

case for the Windows Previous Versions UI. 

B.1. Using the Windows Previous Versions UI 

The UI may be accessed by right-clicking on an arbitrary file or folder and then selecting 

the ―Restore previous versions‖ dialogue from the menu.  Next, the item desired is 

selected and the ―Restore‖ option is selected.  Figure 34 depicts this methodology. 

 

Figure 34: Previous Versions UI “Restore” option dialogue 

An alternate methodology for restoring a previous version of an item without overwriting 

the current version of that item is to select the item, but instead of selecting the ―Restore‖ 
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option, drag and drop the item to another location such as the Desktop.  Figure 35 depicts 

this methodology. 

 

 

Figure 35: Previous Versions UI copy restoration methodology 

After providing a very brief description of the use case for the Windows Previous Versions UI, the 

vssadmin and mklink method is addressed, next. 

B.2. Using vssadmin and mklink 

The use case for the vssadmin and mklink method is as follows: 

1. First, mount the image of the disk or partition containing the VSCs. 

2. Next, add the mounted image as a new disk to a VMWare guest that is 

loaded with the Windows 7 Professional Operating System.  Ensure the "use a 

physical disk (for advanced users)" option is selected.  Note: If mounting a 

Virtual Hard Disk (VHD) format disk image file versus a raw (dd) format disk 

image file, one may skip Step #1 and must use the ―use an existing virtual disk‖ 

option instead of "use a physical disk (for advanced users),‖ then browse to the 

VHD file, and select ―Independent‖ and ―Nonpersistent‖ mode. 
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3. Boot the VM and mount the shadow copies with vssadmin and mklink as 

follows: 

a. `vssadmin list shadows /for=[Volume]:` 

b. `mklink /d [Volume]:\rp[Shadow Volume Number] 

\\?\GLOBALROOT\ Device\HarddiskVolumeShadowCopy[Number]\` 

This executes the aforementioned mklink command (with the /d argument) in 

order to create a directory symbolic link for any arbitrary VSC previously 

referenced in the vssadmin command.  After the VSC(s) is mounted and 

accessible via the directory symbolic link(s), one may selectively view the VSC 

contents using the Windows command line commands cd and dir. 

4. After analysis of VSC contents is complete, one may perform ―cleanup‖ 

by executing the rd command below or by reverting to a snapshot in the 

surrogate, or "analysis VM." 

a. `rd [Volume]:\rp[Shadow Volume Number]` 

This executes the rd command (removes (deletes) a directory) in order to remove 

the directory symbolic link for any arbitrary VSC(s).  Afterward, the VSC(s) is 

unmounted and is no longer accessible via the directory symbolic link(s). 

Figures 36 through 40 depict these methodologies.  *Note: In the following test case, the 

surrogate system (native volume) VSCs (not pictured) were numbered 1...8 and the VSCs 

of the mounted VHD format disk image file (those intended for analysis) were numbered 

9...20.  This VSC numbering is only temporary, as VSC numbering is specific to the 

environment in which the vssadmin command is executed. 
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C:\Windows\system32>vssadmin list shadows /for=e: 
vssadmin 1.1 - Volume Shadow Copy Service administrative command-line tool 
(C) Copyright 2001-2005 Microsoft Corp. 
 
Contents of shadow copy set ID: {8c30bd38-30b4-47c7-ad91-b06400253f6a} 
   Contained 1 shadow copies at creation time: 11/6/2011 8:11:05 PM 
      Shadow Copy ID: {1b31f3da-1aac-485a-816f-e80dc029f958} 
         Original Volume: (E:)\\?\Volume{4c68be2f-60e8-11e1-bf0c-000c2922f57d}\ 
         Shadow Copy Volume: \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy9 
         Originating Machine: VSCTest-PC 
         Service Machine: VSCTest-PC 
         Provider: 'Microsoft Software Shadow Copy provider 1.0' 
         Type: ClientAccessibleWriters 
         Attributes: Persistent, Client-accessible, No auto release, Differential, Auto recovered 
... 
Contents of shadow copy set ID: {d1ff5136-a484-4753-b9cc-b70e3df8c46e} 
   Contained 1 shadow copies at creation time: 11/9/2011 6:02:18 AM 
      Shadow Copy ID: {beb2bc9d-7dff-495e-89d9-467d29144568} 
         Original Volume: (E:)\\?\Volume{4c68be2f-60e8-11e1-bf0c-000c2922f57d}\ 
         Shadow Copy Volume: \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy20 
         Originating Machine: VSCTest-PC 
         Service Machine: VSCTest-PC 
         Provider: 'Microsoft Software Shadow Copy provider 1.0' 
         Type: ClientAccessibleWriters 
         Attributes: Persistent, Client-accessible, No auto release, Differential, Auto recovered 

Figure 36: Executing the vssadmin list shadows command 

C:\Windows\system32>mklink /d c:\rp9 \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy9\ 
symbolic link created for c:\rp9 <<===>> \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy9\ 
 
… 
 
C:\Windows\system32>mklink /d c:\rp20 \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy20\ 
symbolic link created for c:\rp20 <<===>> \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy20\ 

Figure 37: Executing the mklink command 

C:\>dir 
 Volume in drive C has no label. 
 Volume Serial Number is 78B7-4C9A 
 
 Directory of C:\ 
06/10/2009  04:42 PM                24 autoexec.bat 
06/10/2009  04:42 PM                10 config.sys 
07/13/2009  09:37 PM    <DIR>          PerfLogs 
10/30/2011  09:14 PM    <DIR>          Program Files 
02/26/2012  09:43 PM    <SYMLINKD>     rp10 [\\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy10\] 
... 
02/26/2012  09:43 PM    <SYMLINKD>     rp20 [\\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy20\] 
02/26/2012  09:43 PM    <SYMLINKD>     rp9 [\\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy9\] 
10/09/2011  09:25 AM    <DIR>          Users 
10/10/2011  02:41 PM    <DIR>          Windows 
               2 File(s)             34 bytes 
              16 Dir(s)   6,874,152,960 bytes free 

Figure 38: Executing the DIR command to show symlinks 
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Figure 40: RD command removes symbolic 

directory links 

C:\>dir rp9\* 
 Volume in drive C has no label. 
 Volume Serial Number is 78B7-4C9A 
 
 Directory of C:\rp9 
 
07/13/2009  10:20 PM    <DIR>          PerfLogs 
07/14/2009  02:47 AM    <DIR>          Program Files 
07/13/2009  11:57 PM    <DIR>          Program Files (x86) 
11/06/2011  08:07 PM    <DIR>          Users 
11/07/2011  01:53 AM    <DIR>          Windows 
               0 File(s)              0 bytes 
               5 Dir(s)  29,727,424,512 bytes free 
 
C:\>dir rp20\* 
 Volume in drive C has no label. 
 Volume Serial Number is 78B7-4C9A 
 
 Directory of C:\rp20 
 
07/13/2009  10:20 PM    <DIR>          PerfLogs 
11/08/2011  06:51 AM    <DIR>          Program Files 
11/06/2011  11:18 PM    <DIR>          Program Files (x86) 
11/06/2011  08:07 PM    <DIR>          Users 
11/09/2011  05:54 AM    <DIR>          Windows 
               0 File(s)              0 bytes 
               5 Dir(s)  16,262,864,896 bytes free 

Figure 39: DIR commands showing differences in 

VSCs #9 and #20 

C:\>rd c:\rp9 
 
... 
 
C:\>rd c:\rp20 
 
C:\>dir 
Volume in drive C has no label. 
Volume Serial Number is 78B7-4C9A 
 
Directory of C:\ 
 
06/10/2009  04:42 PM                24 autoexec.bat 
06/10/2009  04:42 PM                10 config.sys 
07/13/2009  09:37 PM    <DIR>          PerfLogs 
10/30/2011  09:14 PM    <DIR>          Program Files 
10/09/2011  09:25 AM    <DIR>          Users 
10/10/2011  02:41 PM    <DIR>          Windows 
2 File(s)             34 bytes 
4 Dir(s)   6,874,128,384 bytes free 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After providing a very brief description of the use case for the vssadmin and mklink method, the 

vssadmin and net share method are addressed, next. 

B.3. Using vssadmin and net share 

The use case for the vssadmin and net share method is as follows: 

1. First, the command vssadmin list shadows /for=[Volume]: is issued to 

provide a listing of all shadows available for the volume specified. 

2. Next, the command net share 

testshadow=\\.\HarddiskVolumeShadowCopy [Shadow Volume Number]\ is 

issued to mount an arbitrary VSC under the share name testshadow.  After one or 

more VSC(s) is mounted and becomes accessible via the share(s), one may 

selectively view the contents using the command-line commands cd and dir. 
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C:\>net share testshadow9=\\.\HarddiskVolumeShadowCopy9\ 
testshadow9 was shared successfully. 
 
... 
 
C:\>net share testshadow20=\\.\HarddiskVolumeShadowCopy20\ 
testshadow20 was shared successfully. 

Figure 41: Executing the net share <VSC> command 

C:\Windows\system32>net share                     (Before) 
 
Share name   Resource                        Remark 
------------------------------------------------------------------------------- 
C$           C:\                             Default share 
E$           E:\                             Default share 
F$           F:\                             Default share 
IPC$                                         Remote IPC 
ADMIN$       C:\Windows                      Remote Admin 
The command completed successfully. 
 
C:\Windows\system32>net share                       (After) 
 
Share name   Resource                        Remark 
------------------------------------------------------------------------------- 
C$           C:\                             Default share 
E$           E:\                             Default share 
F$           F:\                             Default share 
IPC$                                         Remote IPC 
ADMIN$       C:\Windows                      Remote Admin 
testshadow10 \\.\HarddiskVolumeShadowCopy... 
… 
testshadow20 \\.\HarddiskVolumeShadowCopy... 
testshadow9  \\.\HarddiskVolumeShadowCopy9\ 
The command completed successfully. 

Figure 42: Windows shares before and after the 

VSCs are mounted as “testshadowX” 

3. After analysis of VSC contents is complete, one may perform ―cleanup‖ 

by running the net share {share} /DELETE command below or by reverting to a 

snapshot in the surrogate, or "analysis VM." 

―net share testshadow[Number] /DELETE‖ 

This executes the net share /DELETE command (removes (deletes) a network 

share) in order to remove the network share for any arbitrary VSC(s).  After 

executing the command, the VSC(s) is unmounted and is no longer accessible via 

the network share(s). 

Figures 41 through 44 depict these methodologies.  Figure 44 provides the best 

depiction of the end result a digital investigator sees when using this method – all 

VSCs are mounted as testshadow[x] within Windows Explorer. 
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C:\>net share testshadow9 /DELETE 
testshadow9 was deleted successfully. 
 
… 
 
C:\>net share testshadow20 /DELETE 
testshadow20 was deleted successfully. 

 

 

 

 

 

 

 

 

 

 

 

 

After providing a very brief description of the use case for the vssadmin and net share 

method, the restoring and accessing method is addressed, next. 

B.4. Using restoring and accessing 

The use case for the restoring and accessing method is as follows: 

Lee [19], Carvey [48], and ―DC1743‖ [41], describe mounting and file conversion 

methods using freeware tools, such as LiveView, VMWare VDDK 1.2 (vmware-mount), 

VHDTOOL.exe, and Windows 7‘s native Disk Manager, which are pre-requisites for 

preparing an original drive/partition image for the subsequent VSC imaging process.  Lee 

discusses the methodology for converting a raw (dd format) disk image file into a Virtual 

Machine Disk (VMDK) file using the LiveView utility.[18]  Carvey discuss manually 

mounting and accessing disk/partition files in two different ways: as a VMDK file [20] or 

as a Virtual Hard Disk (VHD) file [24].  If using the VMDK method, then using the 

Figure 43: Methodology for 

removing the Windows shares 

Figure 44: Mounted VSCs, now accessible via Windows 

shares 
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vmware-mount command, vmware-mount /p, one can see all partitions of a drive image as 

well as imaged shadowed volumes within a virtual disk file.  Figure 45 depicts this. 

 

 

 

 

 

 

Using the following approach, Microsoft‘s Virtual Hard Disk conversion tool 

(vhdtool.exe) and the Windows Operating System may be used to convert a raw format 

(dd) disk image file to a VHD file and then mount that file: 

1.  Execute vhdtool.exe /convert against the dd format disk image file 

2.  Open the Computer Management interface in Windows 7 followed by the Disk 

Manager 

3.  Select Action -> Attach VHD, ensuring the "Read-only" box is checked, and 

then select "ok." 

This causes the disk and the volume listing to be visible in the Disk Manager.  The drive 

icon should appear light blue in color (representing a VHD) versus the standard grey in 

color (physical Hard Disk) icons for other drives. 

Lee [19], ―DC1743‖ [49], Carvey [48], and ―ecophobia‖ [50] discuss the next step: using 

George Garner's data dump utility, dd.exe, from the Forensic Acquisition Utilities, to 

image the VSC.  The methodology to image a shadow copy to a ―flat‖ file using dd.exe 

may be accomplished as follows: dd.exe if=\\.\HarddiskVolumeShadowCopy[shadow 

volume number] of=[LOGICAL DRIVE LETTER]:\snapshot[shadow volume 

C:\Program Files (x86)\VMware\VMware Virtual Disk Development Kit\bin>vmware-mount 
/p "D:\Thesis DD Images for Analysis\VSCTest-PC_12Nov11_Liveview VMDK Files\VSCTest-
PC_12Nov11.dd.vmdk" (Drive image containing two partitions) 
Volume  1 :      100 MB, HPFS/NTFS 
Volume  2 :    38064 MB, HPFS/NTFS 
 
C:\Program Files (x86)\VMware\VMware Virtual Disk Development Kit\bin>vmware-mount 
/p "D:\Thesis Binaries\Liveview\d_19Feb12_image.img.vmdk" (imaged Shadow Copy) 
Volume  1 :    95386 MB, HPFS/NTFS 

Figure 45: Vmware-mount command demonstrating standard partitions and VSC container 
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number].img --localwrt.  The parameters given are the ―if,‖ or input file, and the ―of,‖ or 

output file.  The input file is set to point to the VSC the user wants to image.  The output 

file is set to point to a flat file on a logical volume.  The localwrt argument causes the 

dd.exe command to write to a locally mounted drive.  The dd.exe methodology is 

depicted below in Figure 46. 

 

 

 

 

 

 

 

 

 

After imaging is complete, mounting the VSC is the next process.  Lee demonstrates 

using the ntfs-3g —o ro,loop,show_sys_files snapshot[shadow volume number].img 

/PATH/snapshot[shadow volume number] command to mount the VSC.[19]  The VSC 

may also be mounted via the mklink, net share, and other discussed methods. 

After providing a very brief description of the use case for the restoring and accessing 

method, the (non API-restrictive) VSC parsing method is addressed, next. 

B.5. Parsing VSCs 

At a high level, the VSC parsing methodology consists of the following:  

D:\Thesis Binaries\FAU (Garner)\fau\FAU.x64>dd 

if=\\.\HarddiskVolumeShadowCopy1 

of=d:\d_19Feb12_image.img --localwrt 

The VistaFirewall Firewall is active with exceptions. 

Copying \\.\HarddiskVolumeShadowCopy1 to 

d:\d_19Feb12_image.img 

Output: d:\d_19Feb12_image.img 

100019466240 bytes 

95385+1 records in 

95385+1 records out 

100019466240 bytes written 

Succeeded! 

Figure 46: DD.exe methodology for imaging a VSC 

file://./HarddiskVolumeShadowCopy1
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1. Pre-processing (preparing the database which will store parsed information and 

parsing the master boot record and partitions of the drive image to be analyzed), 

2. Parsing the $MFT, 

3. Gathering the VSC information, 

4. Parsing the VSCs from newest to oldest, and 

5. Reporting. 

At a high level, the $MFT parsing subcomponent consists of the following: 

1. Reading the first $MFT record and obtaining the size of the $MFT file, 

2. Parsing all $MFT records, 

a. Writing all parsed data to database entries, 

b. Determining the run size for non-resident entries and processing each 

run.  Using the $DATA attribute to determine whether the data is resident 

in the $MFT or in a run list. 

3. Recreating the directory structure in a database table, and 

4. Creating the $MFT record lookup data structure. 

At a high level, the VSC parsing subcomponent consists of the following: 

1.  Opening the VSC, 

2.  Reading the VS header block and storing its information in the database, 

3.  Processing each 16KB block. 

a.  If the block is an Index block, then parsing as such, 

b.  If the block is an $MFT record block, then parsing as such, and 
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Reading the $MFT entries from oldest to newest (order is reversed such 

that if a record is newer, its contents are retrieved; if a record is not newer, 

then one has the current data). 

Courtesy of McKinnon, Figures 47 through 49 depict the processes involved in the VSC 

Parsing methodology, the processes for parsing the $MFT, and the processes for parsing 

VSCs, respectively.[29] 

 

Figure 47: VSC Parser Process Flow 

 

Figure 48: Parse $MFT Process Flow 
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Figure 49: Parse VS Diff Files Process Flow 

After providing a very brief description of the use case for the VSC parsing method, the 

fls and mactime method is addressed, next. 

B.6. Using fls and mactime 

The fls and mactime approach requires that the digital investigator mount the disk image 

file containing the VSCs and live volume using the Microsoft Windows 7 Computer 

Management Interface (including the corresponding Disk Manager element) or another 

utility.  The process relies on the Windows disk class driver, volume manager driver, 

partition manager, I/O manager, CreateFile function, and VSS API to facilitate access to 

the disk image file as well as the live volume and VSCs contained therein.[8]  The VSCs 

are accessed as disk device objects using the device object nomenclature, 
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―\\.\HarddiskVolumeShadowCopy[shadow volume number],‖ which is similar to the 

nomenclature used to access standard disk volumes, ―\\.\HarddiskVolume[number].‖  

After mounting the disk image file, the use case for the fls and mactime method is as 

follows: 

1. First, use fls to extract bodyfile info: 

The normal use of fls for extracting bodyfile info from a traditional partition is: fls 

-r -m [Drive]: \\.\[Drive]: > \\WORKSTATION\ShadowTime\bodyfile 

In order to extract bodyfile info from a ShadowVolume, use the command: 

fls -r -m Shadow[shadow volume number]/ \\.\HarddiskVolumeShadowCopy 

[shadow volume number] >> \\WORKSTATION\ShadowTime\bodyfile 

fls lists the files and directory names in the VSC.  The -r argument forces it to 

recursively display directories and the -m mnt argument forces it to display files in 

"time machine format" so that a timeline can be created with mactime. 

2. Next, run mactime to dump the bodyfile into a timeline in CSV format: 

mactime -d -b bodyfile > shadow_timeline.csv 

mactime "creates an ASCII timeline of file activity‖ based on fls’ output by 

importing the data from the body file, sorting that data, and printing the output.  

The –d argument forces it to format output in comma delimited format and the –b 

argument specifies the bodyfile name. 

A modification of this method provides all the results compiled into one bodyfile using 

the same –m mnt argument (instead of a separate argument for each arbitrary partition 

and/or VSC) and thus enhances one‘s ability sort uniquely, eliminating duplicate entries.  

This methodology does not retain the ability to determine which of the VSCs contained 
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any metadata of concern.  It may, however, be a viable method for extracting all non-

unique metadata in support of the visualization of change over time. 

Figure 50 depicts the syntax to validate the methodology using multiple bodyfiles: 

 

 

 

 

 

 

Table 6 depicts the final output after importing the results into Microsoft Excel and 

filtering results showing the NTUser.dat file for the user VSCTest: 

Date Size Type Mode Meta File Name 

Sun Nov 06 2011 20:07:28 524288 ...b r/rr-xr-xr-x 511-128-1 Shadow5/Users/VSCTest/NTUSER.DAT 

Sun Nov 06 2011 22:32:39 524288 .a.. r/rr-xr-xr-x 511-128-1 Shadow5/Users/VSCTest/NTUSER.DAT 

Sun Nov 06 2011 22:52:57 524288 m.c. r/rr-xr-xr-x 511-128-1 Shadow5/Users/VSCTest/NTUSER.DAT 

Sun Nov 06 2011 20:07:28 524288 ...b r/rr-xr-xr-x 511-128-1 Shadow10/Users/VSCTest/NTUSER.DAT 

Tue Nov 08 2011 05:52:41 524288 .a.. r/rr-xr-xr-x 511-128-1 Shadow10/Users/VSCTest/NTUSER.DAT 

Tue Nov 08 2011 06:28:18 524288 m.c. r/rr-xr-xr-x 511-128-1 Shadow10/Users/VSCTest/NTUSER.DAT 

Table 6: Timestamp-formatted Microsoft Excel depiction of VSC metadata using multiple bodyfiles 

The results show that the file record was originally created on November 6
th

 2011 at 

20:07.  It was subsequently modified at 22:52 and also on November 8
th

 2011 at 06:28. 

Table 7 (below) depicts the final output after validating the results using the single 

bodyfile methodology (all results combined in one file with the same –m mnt argument, 

Shadow), importing the results into Microsoft Excel, and filtering results showing the 

NTUser.dat file for the user VSCTest: 

Date Size Type Mode Meta File Name 

Sun Nov 06 2011 20:07:28 524288 ...b r/rr-xr-xr-x 511-128-1 Shadow/Users/VSCTest/NTUSER.DAT 

D:\Thesis Binaries\TSK\sleuthkit-win32-3.2.3\sleuthkit-win32-3.2.3\bin>fls -r -m 
 Shadow5/ \\.\HarddiskVolumeShadowCopy60 > "d:\bodyfile - VSC5(60)_only" 
D:\Thesis Binaries\TSK\sleuthkit-win32-3.2.3\sleuthkit-win32-3.2.3\bin>fls -r -m 
 Shadow10/ \\.\HarddiskVolumeShadowCopy65 > "d:\bodyfile - VSC10(65)_only" 
 
D:\Thesis Binaries\TSK\sleuthkit-win32-3.2.3\sleuthkit-win32-3.2.3\bin>mactime.p 
l -d -b "d:\bodyfile - VSC5(60)_only" > d:\shadow_timeline_separate.csv 
D:\Thesis Binaries\TSK\sleuthkit-win32-3.2.3\sleuthkit-win32-3.2.3\bin>mactime.p 
l -d -b "d:\bodyfile - VSC10(65)_only" >> d:\shadow_timeline_separate.csv 

Figure 50: fls and mactime syntax for exporting VSC timelines 
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Sun Nov 06 2011 22:32:39 524288 .a.. r/rr-xr-xr-x 511-128-1 Shadow/Users/VSCTest/NTUSER.DAT 

Sun Nov 06 2011 22:52:57 524288 m.c. r/rr-xr-xr-x 511-128-1 Shadow/Users/VSCTest/NTUSER.DAT 

Tue Nov 08 2011 05:52:41 524288 .a.. r/rr-xr-xr-x 511-128-1 Shadow/Users/VSCTest/NTUSER.DAT 

Tue Nov 08 2011 06:28:18 524288 m.c. r/rr-xr-xr-x 511-128-1 Shadow/Users/VSCTest/NTUSER.DAT 

Table 7: Timestamp-formatted Microsoft Excel depiction of VSC metadata using a single bodyfile 

This method loses the VSC association to the metadata, however, maintains a unique 

timeline without additional utilities.  Increasing the scope of this method to a larger scale 

would be necessary to validate whether it could solve the problems associated with 

extracting all data for all VSCs on a particular system. 

After providing a very brief description of the use case for the fls and mactime method, 

using ―specialized‖ utilities/methods is addressed, next. 

B.7. Using specialized utilities/methods 

The use case for specialized utilities/methods (also, arbitrary or ―other‖ methods) is as 

follows: 

―The UserAssist registry key resides in the NTUSER.DAT file on disk at 

Software\Microsoft\Windows\ CurrentVersion\ Explorer\UserAssist or, in the live 

registry, at HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\ 

UserAssist.‖[51]  The following methodology is used to extract data from the UserAssist 

registry key. 

1. Use RegRipper to access and extract a UserAssist registry key to 

determine shortcuts to applications most frequently used on the system: 

rip.exe –p userassist –r [Drive]:\VSC[shadow volume number]\ > 

user_userassist[shadow volume number].txt 

The –p argument specifies the RegRipper plugin to execute and the –r argument specifies 

the location of the target VSC. 
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XI. Appendix C 

 

Sections III and IV provide high-level overviews and analysis of several methods 

commonly used in support of digital investigations.  Those include, but are not limited to, 

scripting manual tools, Robocopy, and LogParser.  Each subsection of this Appendix 

provides additional details, which were relevant to the analysis of each of the 

aforementioned tools/techniques, in an unstructured format.  Shadow Analyser is an 

additional untested method that is briefly discussed. Discussed first is a use case for 

scripting manual tools. 

C.1. Scripting manual tools 

The methodology is described as follows: 

1.  First, mount the disk image (dd, VHD, or VMDK format) using a 

drive/partition mounting utility, the Windows 7 Professional Operating System, or 

a surrogate system. 

2. Next, the command vssadmin list shadows /for=[Volume]: is issued to provide 

a listing of all shadows available for the volume specified. 

3. Next, issue the following command: `for /l %[Number] in (start,1,stop) do 

mklink /d c:\rp%[Number] \\?\GLOBALROOT\Device\HarddiskVolume 

ShadowCopy%[Shadow Volume Number]\` 

This uses a for loop to iteratively execute the aforementioned mklink command 

(with the /d argument) in order to create a directory symbolic link for each of the 

VSCs previously referenced in the vssadmin command and provided in the loop 

via the start and stop options.  After the VSCs are mounted and accessible via the 
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directory symbolic links, one may selectively view their contents using the 

Windows command line commands cd and dir. 

4. After analysis of VSC contents is complete, one may perform ―cleanup‖ 

by running the rd command below or by reverting to snapshot in the surrogate, or 

"analysis VM." 

a. `for /l %i in (start,1,stop) do rd c:\rp%i` 

The rd method‘s for loop iteratively executes the rd command in order to remove 

the directory symbolic link for each of the VSCs.  Afterward, the VSCs are 

unmounted and are no longer accessible via the directory symbolic links. 

Figures 51 through 55 depict these methodologies.  *Note: In the following arbitrary test case, 

the surrogate system (native volume) VSCs (not pictured) were numbered 1..8 and the 

VSCs of the mounted VHD format disk image file (those intended for analysis) were 

numbered 9..20.  Numbering was temporary as VSC numbering is specific to the 

environment in which the VSSAdmin command executes. 

 

 

 

 

 

 

 

 

 

C:\Windows\system32>vssadmin list shadows /for=e: 
vssadmin 1.1 - Volume Shadow Copy Service administrative command-line tool 
(C) Copyright 2001-2005 Microsoft Corp. 
 

Contents of shadow copy set ID: {8c30bd38-30b4-47c7-ad91-b06400253f6a} 
   Contained 1 shadow copies at creation time: 11/6/2011 8:11:05 PM 
      Shadow Copy ID: {1b31f3da-1aac-485a-816f-e80dc029f958} 
         Original Volume: (E:)\\?\Volume{4c68be2f-60e8-11e1-bf0c-000c2922f57d}\ 
         Shadow Copy Volume: \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy9 
         Originating Machine: VSCTest-PC 
         Service Machine: VSCTest-PC 
         Provider: 'Microsoft Software Shadow Copy provider 1.0' 
         Type: ClientAccessibleWriters 
         Attributes: Persistent, Client-accessible, No auto release, Differential, Auto recovered 
... 
 

Contents of shadow copy set ID: {d1ff5136-a484-4753-b9cc-b70e3df8c46e} 
   Contained 1 shadow copies at creation time: 11/9/2011 6:02:18 AM 
      Shadow Copy ID: {beb2bc9d-7dff-495e-89d9-467d29144568} 
         Original Volume: (E:)\\?\Volume{4c68be2f-60e8-11e1-bf0c-000c2922f57d}\ 
         Shadow Copy Volume: \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy20 
         Originating Machine: VSCTest-PC 
         Service Machine: VSCTest-PC 
         Provider: 'Microsoft Software Shadow Copy provider 1.0' 
         Type: ClientAccessibleWriters 
         Attributes: Persistent, Client-accessible, No auto release, Differential, Auto recovered 

Figure 51: Executing the vssadmin list shadows command 
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C:\>dir rp9\* 
 Volume in drive C has no label. 
 Volume Serial Number is 78B7-4C9A 
 
 Directory of C:\rp9 
 
07/13/2009  10:20 PM    <DIR>          PerfLogs 
07/14/2009  02:47 AM    <DIR>          Program Files 
07/13/2009  11:57 PM    <DIR>          Program Files (x86) 
11/06/2011  08:07 PM    <DIR>          Users 
11/07/2011  01:53 AM    <DIR>          Windows 
               0 File(s)              0 bytes 
               5 Dir(s)  29,727,424,512 bytes free 
 
C:\>dir rp20\* 
 Volume in drive C has no label. 
 Volume Serial Number is 78B7-4C9A 
 
 Directory of C:\rp20 
 
07/13/2009  10:20 PM    <DIR>          PerfLogs 
11/08/2011  06:51 AM    <DIR>          Program Files 
11/06/2011  11:18 PM    <DIR>          Program Files (x86) 
11/06/2011  08:07 PM    <DIR>          Users 
11/09/2011  05:54 AM    <DIR>          Windows 
               0 File(s)              0 bytes 
               5 Dir(s)  16,262,864,896 bytes free 

Figure 54: DIR commands showing differences in 

VSCs #9 and #20 

C:\>for /l %i in (9,1,20) do rd c:\rp%i 
 
C:\>rd c:\rp9 
 
... 
 
C:\>rd c:\rp20 
 
C:\>dir 
 Volume in drive C has no label. 
 Volume Serial Number is 78B7-4C9A 
 
 Directory of C:\ 
 
06/10/2009  04:42 PM                24 autoexec.bat 
06/10/2009  04:42 PM                10 config.sys 
07/13/2009  09:37 PM    <DIR>          PerfLogs 
10/30/2011  09:14 PM    <DIR>          Program Files 
10/09/2011  09:25 AM    <DIR>          Users 
10/10/2011  02:41 PM    <DIR>          Windows 
               2 File(s)             34 bytes 
               4 Dir(s)   6,874,128,384 bytes free 

Figure 55: RD for loop removes symbolic 

directory links 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C:\Windows\system32>for /l %i in (9,1,20) do mklink /d c:\rp%i \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy%i\ 
 
C:\Windows\system32>mklink /d c:\rp9 \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy9\ 
symbolic link created for c:\rp9 <<===>> \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy9\ 

… 
 
C:\Windows\system32>mklink /d c:\rp20 \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy20\ 
symbolic link created for c:\rp20 <<===>> \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy20\ 

C:\>dir 
 Volume in drive C has no label. 
 Volume Serial Number is 78B7-4C9A 
 
 Directory of C:\ 
06/10/2009  04:42 PM                24 autoexec.bat 
06/10/2009  04:42 PM                10 config.sys 
07/13/2009  09:37 PM    <DIR>          PerfLogs 
10/30/2011  09:14 PM    <DIR>          Program Files 
02/26/2012  09:43 PM    <SYMLINKD>     rp10 [\\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy10\] 
... 
02/26/2012  09:43 PM    <SYMLINKD>     rp20 [\\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy20\] 
02/26/2012  09:43 PM    <SYMLINKD>     rp9 [\\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy9\] 
10/09/2011  09:25 AM    <DIR>          Users 
10/10/2011  02:41 PM    <DIR>          Windows 
               2 File(s)             34 bytes 
              16 Dir(s)   6,874,152,960 bytes free 

Figure 52: Executing the mklink command 

Figure 53: Executing the DIR command to show symlinks 
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5. Harrell further automates the for loop controlled VSC mount/dismount 

process using vssadmin, mklink, and rd by encapsulating it within a batch script.  

The script divides the process into three distinct phases by incorporating them into 

functions listvsc(), makelink(), and removelink().  Listvsc() prompts the user for 

the drive letter upon which to mount VSCs and then executes the vssadmin list 

shadows command.  Depending on user input, it produces output solely to the 

console or to the console as well as to a text file.  Makelink() prompts a user for 

the starting and ending VSC volumes and the executes a for loop controlled 

mklink command similar to Step #3 (above) to iteratively mount each one.  

Removelink() prompts a user for the starting and ending VSC volumes and the 

executes a for loop controlled rd command similar to Step #4 (above) to 

iteratively dismount each one.[22] 

Hargreaves also provides a command string, vssadmin list shadows /for=c:\ 

>c:\Restorepoints_on_C.txtfor /f ―tokens=4‖ %%f in ('vssadmin list shadows ^| 

findstr GLOBALROOT') do for /f ―tokens=4 delims=\‖ %%g in ("%%f") do 

mklink /d %SYSTEMDRIVE%\%%g %%f\, which may be added to a batch file to 

―mount all Restore Points simultaneously.‖[25] 

6. Similarly, for the previously mentioned command net share 

testshadow=\\.\HarddiskVolumeShadowCopy[volume number]\, one may 

automate the methodology by incorporating a for loop to control multiple 

iterations of the process such as: 

`for /l %i in (start,1,stop) do net share testshadow%i=\\.\HarddiskVolume 

ShadowCopy%i\` 
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This method uses a for loop to iteratively execute the aforementioned net share 

command in order to create a share for each of the VSCs previously referenced in 

the vssadmin command and provided in the loop via the start and stop options.  

After one or more VSC(s) is mounted and accessible via the share(s), one may 

selectively view the contents using the Windows command line commands cd and 

dir. 

7. After analysis of VSC contents is complete, one may perform ―cleanup‖ 

by running the net share {share} /DELETE command below or by reverting to a 

snapshot in the surrogate, or "analysis VM." 

a. `for /l %i in (start,1,stop) do net share testshadow%i /DELETE` 

This uses a for loop to iteratively execute the net share /DELETE command 

(removes (deletes) a network share) in order to remove the network share for each 

of the VSCs.  After executing the command, the VSCs are unmounted and are no 

longer accessible via the network shares. 

Figures 56 through 59 depict these methodologies. 

 

 

 

 

 

 

 

 

 

 

C:\>for /l %i in (9,1,20) do net share testshadow%i=\\.\HarddiskVolumeShadowCopy%i\ 
 
C:\>net share testshadow9=\\.\HarddiskVolumeShadowCopy9\ 
testshadow9 was shared successfully. 

... 
 
C:\>net share testshadow20=\\.\HarddiskVolumeShadowCopy20\ 
testshadow20 was shared successfully. 

Figure 56: Executing the net share command 
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C:\Windows\system32>net share                     (Before) 
 

Share name   Resource                        Remark 
------------------------------------------------------------------------------- 
C$           C:\                             Default share 
E$           E:\                             Default share 
F$           F:\                             Default share 
IPC$                                         Remote IPC 
ADMIN$       C:\Windows                      Remote Admin 
The command completed successfully. 
 

C:\Windows\system32>net share                       (After) 
 

Share name   Resource                        Remark 
------------------------------------------------------------------------------- 
C$           C:\                             Default share 
E$           E:\                             Default share 
F$           F:\                             Default share 
IPC$                                         Remote IPC 
ADMIN$       C:\Windows                      Remote Admin 
testshadow10 \\.\HarddiskVolumeShadowCopy... 
… 
testshadow20 \\.\HarddiskVolumeShadowCopy... 
testshadow9  \\.\HarddiskVolumeShadowCopy9\ 
The command completed successfully. 

Figure 58: Windows shares before and after the 

VSCs are mounted as “testshadowX” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After providing a very brief description of the use case for the scripting manual tools 

method, the robocopy method is addressed, next. 

C.2. Using robocopy 

Robocopy has received significant interest/use from the digital investigations community, 

based on documented approaches for extracting VSC data by Larsen [7], Butler [31], and 

others.  The use case for the robocopy method is as follows: 

C:\>for /l %i in (9,1,20) do net share testshadow%i /DELETE 
 
C:\>net share testshadow9 /DELETE 
testshadow9 was deleted successfully. 
 
… 
 
C:\>net share testshadow20 /DELETE 
testshadow20 was deleted successfully. 

Figure 59: Methodology for removing the Windows shares 

Figure 57: Mounted VSCs, now accessible via Windows 

shares 



110 
 

 

1. Crabtree [9] and ―DC1743‖ [21] provide the following extraction examples 

using robocopy: 

a. `robocopy [source volume]:\[source folder] [destination 

volume]:\[destination folder] *.exe /S /COPY:DAT /XJ /w:0 /r:0` 

This targets all .exe files and recurses subfolders.  /copy:dat is the default 

argument defining what to copy for each file and ensures all data, attributes, 

and timestamps, respectively, are copied.  /xj excludes any junction points – 

both for directories and for files.  W:0 and r:0, respectively, define waiting 

zero seconds between retries and retrying zero times after a failed copy. 

b. `for /l %i in (2,1,3) do robocopy c:\rp%i\Users\%user% 

z:\Shadows\rp%i\Users\%user% *.jpg *.bmp *.png /S /COPY:DAT /XJ /w:0 

/r:0` 

The robocopy methodology listed above uses a for loop to iteratively execute 

the aforementioned robocopy command (with the arguments listed) in order to 

copy .jpg, .bmp, and .png files for users for VSCs two and three. 

2. Another methodology described in Larsen [7] and ―DC1743‖ [21] utilizes a 

network share-mounted VSC as the source and copies all files (*.* is the default 

file type, when not specified) from subdirectories that are not empty.  This 

method outputs its status to a specified log file, D:\VSStestcopylog.txt, and is 

executed as follows: `robocopy /S /R:1 /W:1 /LOG:D:\VSStestcopylog.txt 

\\[computername] \testshadow D:\vssTest` 

Robocopy also supports the following additional arguments, which may support 

this research further: 
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/E - Copy subdirectories, including those that are 

empty 

/NJS - Do not produce a job summary in the log file 

/NHS - Do not produce a job header in the log file 

/L - Produces a log only; this option disables the 

copying, timestamping, and/or deletion of 

source files 

/X - Produces a report of all unselected, or ―extra,‖ 

files 

/V - Produces verbose output (shows files skipped 

during the process) 

/TS - Produces source file timestamps in the output 

/FP - Produces the full path name of files in the output 

/BYTES - Prints file sizes as bytes 

/TEE - Output to the console window in addition to the 

log file (allows for quicker verification of 

results during validation testing) 

/DCOPY:T - Copy directory timestamps 

/CREATE - Create directory tree and zero-length files only 

/Copy:copyflag[s] 

 - A=Attributes, T=Timestamps, S=Security=NTFS 

ACLs,  

   O=Owner info, U=aUditing info 

 

After providing a very brief description of the use case for the robocopy method, the 

LogParser method is addressed, next. 

C.3. Using LogParser 

The use case for the LogParser method is as follows: 

1. First, execute the command: `vssadmin list shadows /for=[Volume]: > 

"[Dest_Volume]:\VSC_Exam\VSCs.txt"`  This command sends the output of the 

vssadmin command to a text file on the analysis system. 

2. Mount all VSCs using the mklink command (as previously discussed in 

other sections). 

3. With the VSCs mounted via symbolic directory links, in order to 

determine the contents of each VSC without browsing through the folders, utilize 
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the LogParser utility.  LogParser allows one to grab the metadata for all the files 

within each VSC and export the metadata to CSV format.  The LogParser 

command syntax to accomplish this is: logparser -i:FS -o:CSV -

preserveLastAccTime:ON "Select 

HASHMD5_FILE(Path),CreationTime,LastWriteTime,LastAccessTime,Name,Pat

h,Size into '[Dest Volume]:\[Dest Path]\File.csv' From '[Source 

Volume]:\[Source VSC Path]\*.*'" 

The -i:FS argument, in this instance specifying a file system, is the input type for 

LogParser, while the -o:CSV argument, in this instance specifying comma 

separate value, is the output type for LogParser.  Edwards recommends using the 

―-preserveLastAccTime:ON‖ argument to maintain original timestamps and notes 

the benefit of this methodology as ―a directory structure … - complete with dates 

and times, names and sizes of files, and MD5 hashes.‖[34] 

LogParser also supports the following additional arguments, which may support this 

research further: 

-useLocalTime - Provides the option to turn off the default of using 

local time for dates (thus using UTC time format) 

-i:FS Attributes - Provides file attributes 

-o:CSV -fileMode:0 

 - Causes LogParser to append to the output file if it 

already exists; this will be especially useful when 

processing multiple VSC‘s. 

-o:SQL - Provides for a variety of options when exporting 

results to SQL-formatted output 

 

Validation testing was completed using the following command syntax: `LogParser.exe" 

-i:FS -o:CSV -preserveLastAccTime:ON -useLocalTime:OFF "Select 
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HASHMD5_FILE(Path),CreationTime,LastWriteTime,LastAccessTime, 

Attributes,Name,Path,Size into D:\OutputFile.csv FROM C:\VSC17\*.*‖`. 

After providing a very brief description of the use case for the LogParser method, the 

Shadow Analyser utility is briefly described, next. 

C.4. Shadow Analyser Utility 

Shadow Analyser is a Disklabs-branded utility created by Lee Whitfield and Mark 

McKinnon for achieving VSC data recovery.[52]  McKinnon explained that the Shadow 

Analyser code was continuously updated in several areas in response to ongoing VSC 

structure discoveries and issues.  Per online documentation, it appears the code was 

released to select experts for testing purposes; however, it was not found in a release that 

appeared available to the general public. 

In the absence of a generally-released utility, sites.google.com maintains Shadow 

Analyser screenshots.  Figure 60 depicts the Shadow Analyser GUI. 

 

Figure 60: Shadow Analyser GUI as depicted on sites.google.com 

This utility was not tested due to the absence of a downloadable product. 
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XII. Appendix D 

 

The following table provides a summary listing of the merits and limitations, as 

discovered by validation testing of each of the methodologies discussed in Sections III 

and IV: 

# Item Description Merit or 

Limitation 

Reference 

1 VSC must be accessed via surrogate (or 

native) Windows-based system that supports 

the Windows Previous Versions UI Limitation 

Windows Previous 

Versions 

2 Automation of the methodology in its current 

form is not possible Limitation 

Windows Previous 

Versions 

3 

Required additional tools/techniques to 

recover files/folders from VSC(s) Limitation 

vssadmin with mklink or 

net share, restoring and 

accessing, iterative 

loops/scripting 

4 

Required additional automation to access 

multiple VSCs and then select and recover all 

metadata/data from all VSCs Limitation 

vssadmin with mklink or 

net share, restoring and 

accessing, fls and mactime, 

iterative loops/scripting, 

LogParser, ShadowCopy, 

ShadowExplorer, 

ProDiscover 

5 

Required additional tools/techniques to store 

the metadata/data in a format that allows it 

to be used for visualization purposes (i.e., SQL 

or similar format) Limitation 

vssadmin with mklink or 

net share, restoring and 

accessing, specialized 

utilities/methods, iterative 

loops/scripting, Robocopy, 

ShadowCopy, 

ShadowExplorer, 

ProDiscover 

6 
Combined date and time fields within the 

Limitation fls and mactime 
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Date column 

7 Methodology resulted in parsing errors, which 

may require additional 

permissions/tools/techniques to retrieve all 

data Limitation LogParser, ShadowCopy 

8 Did not extract timestamp or attribute 

information into the report file Limitation Robocopy, ShadowCopy, 

9 Interface only refreshes once, at program 

startup time Limitation ShadowExplorer 

10 Failed to recognize VSCs from all sources (i.e., 

for ProDiscover, from a .vhd file, and for 

ShadowExplorer, from other than the native 

drive upon which the running OS resided (e.g., 

ShadowExplorer did not allow viewing of the 

VSCs that were mounted via the diskpart 

utility)) 

Limitation ShadowExplorer, 

ProDiscover 

11 Product has a retail cost for licensing, causing 

the functionality to be restricted to those who 

may afford the license costs Limitation ProDiscover 

12 Employed a native Windows UI for accurate, 

easy, and timely data recovery Merit 

Windows Previous 

Versions 

13 

Reliably accessed/mounted one or more VSCs 

(no metadata/data extraction performed) Merit 

vssadmin with mklink or 

net share 

With extraction -> iterative 

loops/scripting, 

ShadowCopy, 

ShadowExplorer, 

ProDiscover 

14 Must be combined with another technique to 

extract one or more files/folders in an 

automated fashion as well as to maintain the 

original date and time stamps for restored 

files/folders Merit 

vssadmin with mklink or 

net share, restoring and 

accessing 

15 
Reliably captured and then recovered either 

Merit 
fls and mactime, 
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metadata or data from one or more VSCs ProDiscover 

16 Quickly recursively extracted file and directory 

names in an automated fashion as well as 

sorted and formatted the metadata based on 

time stamp information Merit fls and mactime 

17 

May be scripted/automated for any arbitrary 

number of VSCs Merit 

fls and mactime, 

specialized 

utilities/methods 

18 Offered flexibility of executing this 

methodology from an Incident Responder’s 

toolkit in addition to other common methods 

-- a plus in exigent or first responder’s 

circumstances Merit 

fls and mactime, 

ShadowCopy 

19 Provided limited automation while 

maintaining the ability to keep original date 

and time stamps for restored files/folders Merit 

iterative loops/scripting 

combined with other 

utilities 

20 Scripting enhancement may provide initial 

steps for enhanced automation Merit 

iterative loops/scripting 

21 Extracted one or more files/folders in an 

automated fashion as well as maintained the 

original date and time stamps for restored 

files/folders Merit Robocopy, ProDiscover 

22 Extracted desired metadata of files/folders in 

a semi-automated fashion and maintained the 

original date and time stamps for source files Merit LogParser 

23 Offers complete flexibility of executing 

multiple third party utilities as well as with 

many execution argument options Merit 

specialized 

utilities/methods, 

ShadowCopy 

24 Data deduplication based on file hash and 

handled duplicate filenames with 

customizable filename delimiter Merit ShadowCopy 

25 Distinguished between processing the VSCs of 

the local (host) system or all non-local 

(external) VSCs Merit ShadowCopy 
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26 

Easy-to-use graphical user interface Merit 

ShadowExplorer, 

ProDiscover 

Table 8: Candidate Technology Merits and Limitations 
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XIII. Appendix E 

 

Enhanced Shadowcopy.py code: 

# This program browses and extracts data from VHDs that contain shadow volumes 

# c :\vhd − where the VHD gets mounted 

# c :\vhd\ 

 

VHD_DIR='c:\\vhd' 

TESTING_ON_or_OFF=0                           # Set to 1 for testing purposes; Set to 0 for non-testing purposes 

TESTING_THRESHOLD=7500                        # Establishes the number of file records to process prior to exiting 

 

import sys,os,glob,platform,ctypes,re,sqlite3 

from subprocess import call,Popen,PIPE 

import ShadowVolume2 

 

 

def get_vhd(fname): 

  """Return the filename of the VHD for fname.""" 

  (root,ext) = os.path.splitext(fname) 

  if ext.lower()==".vhd": 

    return fname                       # it's already a vhd 

                                              # See if the .vhd is there; if it isn't , make it 

  vhdname = root + ".vhd" 

  if os.path.exists(vhdname): 

    return vhdname                       # there was a vhd there already; use it 

  print ("Converting %s to %s" % (fname,vhdname)) 

  p = call(['vhdtool.exe','/convert',fname]) 

  if p!=0: 

    print("Cannot convert; vhdtool returns error code %d" % p) 

    exit (1) 

  return vhdname 

 

 

def make_needed_dirs(fn): 

  "Make all of the directories required to get to path fn " 

  import os.path 

  if len(fn)>0 and not os.path.exists(fn): 

    (head,tail) = os.path.split(fn) 

    make_needed_dirs(head) 

    os.mkdir(fn) 

 

 

def make_filename_distinct(fn): 

  """ If filename.ext exists, replace with filename.NNN.ext, where NNN is between 0 and 

  if we have more than 999 files, just keep incrementing...""" 

  import os.path 

  if not os.path.exists(fn): 

    return fn 

  counter = 0 

  while True: 

    (path,ext) = os.path.splitext(fn) 

    newfn = path+".{:03}".format(counter)+ext 

    if not os.path.exists(newfn): 

      return newfn 

     

 

def include_volume(v,include_local): 

  """Returns True if volume v should be included.""" 

  import platform 

  if not include_local: include_local=False # handle case of include_local==N 

  return include_local == (platform.node()==v.originatingMachine()) # If platform.node name is same as VSC's originatingMachine, 

                                                # return True for a printed "+" and subsequent processing 

 

def deleteTable():                              # Drop the table ShadowCopy within the options.reportfn database 

  queryCurs.execute('''DROP TABLE ShadowCopy''') 

 

 

def createTable():                              # Create the table ShadowCopy within the options.reportfn database 

  queryCurs.execute('''CREATE TABLE ShadowCopy 

  (id INTEGER PRIMARY KEY,Path TEXT,MD5 TEXT,Size INTEGER,Machine TEXT,Volume TEXT,M_Time TEXT,A_Time TEXT,C_Time 

TEXT, 

  Attributes TEXT, Filename TEXT)''') 
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def addRecord(Path,MD5,Size,Machine,Volume,M_Time,A_Time,C_Time,Attributes,Filename): # Add a record into ShadowCopy within the 

options.reportfn database 

 queryCurs.execute('''INSERT INTO ShadowCopy (Path,MD5,Size,Machine,Volume,M_Time,A_Time,C_Time,Attributes,Filename) 

 VALUES (?,?,?,?,?,?,?,?,?,?)''',(Path,MD5,Size,Machine,Volume,M_Time,A_Time,C_Time,Attributes,Filename)) 

  

 

READSIZE=65536 # read in 64kb 

def process(seen,destdir,v,report): 

  """Scan through the shadow volume denoted by v. Look for files 

  that have a hash not in seen. Write the files not seen to dest. 

  Save results in report. 

  """ 

  import mmap,hashlib,csv,datetime 

  global options 

# Testing only, next line -> 

  testnum=0                                     # Initialize testing counter variable, testnum, to zero 

# Process directory   

  for (dirpath,dirnames,filenames) in os.walk(v.volumePath()): 

    try: 

      st = os.stat(dirpath)                     # Run the stat command against the directory 

      original_dn = dirpath.replace(v.volumePath(),"");  # Remove the VSC path & save as orig dirname 

# Call attrib and then addRecord here to add the dirpath to the database 

# Start the gather attribute information section while processing directories 

      p = os.popen('attrib ' + dirpath)  # Calls the Windows attrib.exe binary; may want to include another option for non-Windows platforms 

      t = p.read()                       # Perform read to get the results from the attrib call 

      if t[:12]=="Parameter fo" or "Path not fou":       # Check first 12 chars of attributes; if "Parameter fo" or "Path not fou," 

        t=""                             # then discard and save an empty result (command could not retrieve attributes). 

      p.close()                          # Cleanup 

# End the gather attribute information section 

# Start the addRecord section while processing directories 

      addRecord(original_dn,             #Record the dirpath 

              "0 (dirpath)",             #Record "0 (dirpath)" instead of MD5 hash 

              os.path.getsize(dirpath), 

              v.originatingMachine(), 

              v.volumeName(), 

              datetime.datetime.fromtimestamp(st.st_mtime), 

              datetime.datetime.fromtimestamp(st.st_atime), 

              datetime.datetime.fromtimestamp(st.st_ctime), 

              t[:12],                    # Save attribute info, which is the first 12 chars of output of the attrib command 

              original_dn) 

# End the addRecord section for directories 

    except (WindowsError) as ex: 

      print("Windows cannot read: {}; \n{} continuing ... ".format(dirpath, str(ex)),file=error_report) # Log the exception 

      continue 

    except (IOError) as ex: 

      print("Windows cannot open: {}; \n{} continuing ... ".format(dirpath, str(ex)),file=error_report) # Log the exception 

      continue 

 

 

# Process files 

    for filename in filenames:                  # For each file in the array of filenames, do... 

# Testing segment code -- exits gracefully when TESTING_THRESHOLD records have been processed 

      if TESTING_ON_or_OFF==1:                  # If the testing flag is turned on ... 

        testnum=testnum+1                       # Increase testnum by one 

        if testnum==TESTING_THRESHOLD:          # If TESTING_THRESHOLD records are in the DB, then ... 

          report.commit()                       # Commit the changes to the database and 

          queryCurs.close()                     # Close the cursor to the database file and 

          exit(0)                               # Exit gracefully. 

# End of testing segment code 

      shadow_fn = os.path.join(dirpath,filename)# Join the directory path and filename to create a complete path 

      try: 

        st = os.stat(shadow_fn)                 # Run the stat command against the file 

        if options.minsize <= st.st_size <= options.maxsize:    # If the files size is within range, then... 

          with open(shadow_fn,"rb") as f:       # Open the path as a file in readonly, binary mode 

            map = mmap.mmap(f.fileno(),length=0,access=mmap.ACCESS_READ)  # assign to map 

            md5 = hashlib.md5(map)              # MD5Sum the file 

            original_fn = shadow_fn.replace(v.volumePath(),"");   # Remove the VSC path & save as orig filename 

# Start the gather attribute information section while processing files 

            p = os.popen('attrib ' + shadow_fn) # Calls the Windows attrib.exe binary file; may want to include another option for non-Windows platforms 

            t = p.read()                        # Perform read to get the results from the attrib call 

            if t[:12]=="Parameter fo" or "Path not fou":           # Check first 12 chars of attributes; if "Parameter fo" or "Path not fou" ... 

              t=""                              # then discard and save an empty result (command could not retrieve attributes). 

            p.close()                           # Cleanup 

# End the gather attribute information section 

# Start the addRecord section while processing files 

            addRecord(original_fn, 

                      md5.hexdigest(), 

                      os.path.getsize(shadow_fn), 

                      v.originatingMachine(), 

                      v.volumeName(), 



120 
 

 

                      datetime.datetime.fromtimestamp(st.st_mtime), 

                      datetime.datetime.fromtimestamp(st.st_atime), 

                      datetime.datetime.fromtimestamp(st.st_ctime), 

                      t[:12],                   # Save attribute info, which is the first 12 chars of output of the attrib command 

                      filename) 

# End the addRecord section for files 

# If we are extracting, make the directories and copy the data 

            if not options.noextract:           # If extracting... 

              if md5.digest() not in seen:      # If the file is not in seen array, then... 

                                                # This file hasn't been seen before. 

                                                # Write the file's info to the report and copy it to the dest 

                dest_fn = shadow_fn.replace(v.volumePath(),destdir)   # Replace destdir for VSC path & save as dest_fn 

                dest_fn = make_filename_distinct(dest_fn)     # Ensure filename.NNN.ext if dup filename 

              make_needed_dirs(os.path.dirname(dest_fn)) 

              # Now copy over the file data 

              map.seek(0) 

              with open(dest_fn,"wb") as fdest: 

                while True: 

                  buf = map.read(READSIZE) 

                  if len(buf)==0: # End of file! 

                    break 

                  fdest.write(buf) 

              # put back times 

              os.utime(shadow_fn,(st.st_atime,st.st_mtime)) 

              os.utime(dest_fn,(st.st_atime,st.st_mtime)) 

            # Now we've seen this file! 

            seen.add(md5.digest())              # Add the md5sum for the file just hashed into the seen[] hash array 

      except (WindowsError) as ex: 

        print("Windows cannot read: {}; \n{} continuing ... ".format(shadow_fn, str(ex)),file=error_report) # Log the exception 

        continue 

      except (IOError) as ex: 

        print("Windows cannot open: {}; \n{} continuing ... ".format(shadow_fn, str(ex)),file=error_report) # Log the exception 

        continue 

  report.commit()                               # Commit the changes to the database 

 

 

if __name__=="__main__": 

  from optparse import OptionParser 

  global options 

  import sys,time,datetime 

 

  parser = OptionParser() 

  parser.usage = """usage: %prog [options] <EXTRACT-DIR> 

 

<imagefile> may be a .vhd or a .raw. If it is a .raw, it will 

be converted to a .vhd IN PLACE, so be sure you have enough disk 

and the vhdtool.exe to do the conversion 

 

Note: this script must be run as administrator. 

""" 

# *****Note: The --image option was removed and the --mount and --unmount options were added***** 

  parser.add_option("--mount",help="Prompts the user for a vdisk (VHD).  Then, mounts the selected image.", 

                    action="store_true") 

  parser.add_option("--list",help="Show the shadow volumes that are available.", 

                    action="store_true") 

  parser.add_option("--local",help="Analyze only the local machine", 

                    action="store_true") 

  parser.add_option("--maxsize",help="Specifies maximum size of a file to extract", 

                    type='int',default=1024*1024*1024*1024) 

  parser.add_option("--minsize",help="Specifies minimum size of a file to extract", 

                    type='int',default=1) 

  parser.add_option("--noextract",help="Do not extract the shadow data", 

                    action="store_true") 

  parser.add_option("--reportfn",help="Specify report output filename (default='report.Db')", 

                    default="report.Db") 

  parser.add_option("--zap",help="Overwrite report file if it exists", 

                    action="store_true") 

  parser.add_option("--unmount",help="Unmount a selected VHD image", 

                    action="store_true") 

  if len(sys.argv)==1: 

      parser.print_help() 

      exit(0) 

 

  global options 

  (options,args) = parser.parse_args() 

 

 

  if not ctypes.windll.shell32.IsUserAnAdmin(): 

      os.system("color c") 

      print("") 
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      print("***** This script must run as the Windows Administrator. *****\n") 

      time.sleep(1) 

      os.system("color 07") 

      print("") 

      exit (1) 

 

  # Gather the VHD image path so that we can mount/unmount the vdisk 

  # Then, call diskpart_mount() here with the script to mount the vdisk 

  if (options.mount):                           # if the --mount option was selected, then... 

      imagep = ShadowVolume2.image()            # prompt the user for the VHD path and confirm it 

      time.sleep(2)                             # sleep for two seconds 

      ShadowVolume2.diskpart_mount(imagep)      # mount the image 

      os.system("color 2") 

      print("\nPlease enter next command:\n") 

      time.sleep(3)                             # Sleep for three seconds since diskpart execution requires time. 

      parser.print_help() 

      os.system("color 07") 

      print("") 

      exit(0) 

 

  # Call diskpart_unmount() here with the script to unmount the vdisk 

  if (options.unmount):                         # if the --unmount option was selected, then... 

      ShadowVolume2.diskpart_unmount()          # unmount the image using the existing diskpart script from the mount option 

      time.sleep(3)                             # sleep for three seconds 

      exit(0) 

 

  # Get all volumes (local and non—local) for the --list listing 

  vols = ShadowVolume2.availableVolumes()       # Call ShadowVolume2 to get all VSCs 

  if (options.list):                            # if the --list option was selected, then... 

      include_legend = {True:"+",False:" "}     # Set True="+" and False=SPACE 

      fmt ="{:1} {:15} {:25} {}"                # Format the output columns 

      print(fmt.format("","Source", "Creation Time", "Volume Name"))  # Format column headers 

      print(fmt.format("","------", "-------------", "-----------"))  # Format column spacers 

      for v in vols:                                                  # For all VSCs.... 

          print(fmt.format(include_legend[include_volume(v,options.local)],   # Print either a "+" or a SPACE 

                           v.originatingMachine(),v.ctime(),v.volumeName()))  # Print source system, CTime, VSC name 

      print("") 

      print("+ means volume will be included in analysis") 

      exit(0) 

 

  seen = set()                                  # for seen MD5 hashes, call set().  ???This loads the seen[] array.??? 

  destdir = "" 

  if not options.noextract:                     # if the --noextract option was NOT selected, then... 

      if len(args)!=1:                          # if there is not an argument for the extraction directory, then... 

          os.system("color c") 

          print("")                             # Demand that we did not get an extract dir 

          print("***** No extraction directory provided. *****\n") 

          parser.print_help() 

          time.sleep(1) 

          os.system("color 07") 

          print("") 

          exit (1) 

      destdir = args[0] 

 

 

  if os.path.exists(options.reportfn) and not options.zap: # if report file exists and --zap was NOT selected, then... 

        os.system("color c") 

        print("{} exists. Delete it via the --zap option or specify a new report filename with --report option.\n".format(options.reportfn)) 

                                                # Print error message to stdout... 

        time.sleep(1) 

        os.system("color 07") 

        print("") 

        exit (1) 

 

  if os.path.exists(options.reportfn) and options.zap:     # if report file exists and --zap WAS selected, then... 

        os.remove(options.reportfn) 

        os.system("color 2")                    # Provide user feedback message to stdout... 

        print("\n{} existed; however, was removed per the user-specified --zap option.\n\n".format(options.reportfn)) 

        time.sleep(2) 

        os.system("color 07") 

        print("") 

 

# Timekeeping code for determining processing time 

  current_time = datetime.datetime.now() 

  current_time_text = current_time.strftime("%Y-%m-%d %H:%M:%S") 

  print("\n\n\nStart time is: {}".format(current_time_text)) 

 

  error_report = open("error_log.txt",'w',encoding='utf —8')  # Open the error report filename in write mode 

  report = sqlite3.connect(options.reportfn)    # Create a new Db file or opens existing Db file and provide a handle 

  queryCurs = report.cursor()                   # Set a cursor to allow Python to iterate through the database file 
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  createTable()                                 # Create the table ShadowCopy within the options.reportfn database. 

                                                # The ShadowCopy table in the report database is an array of arrays of metadata. 

 

  for v in vols:                                # For the current to last VSC... 

      if not include_volume(v,options.local):   # If current VSC should be "included" (i.e., had a + mark), then... 

          continue 

      os.system("color 2") 

      print(" Processing {} from {}".format(v.volumeName(),v.originatingMachine())) # Alert user which VSC is getting processed now 

      process(seen,destdir,v,report)            # Walk the VSC, processing all folders and files... 

      report.commit()                           # Commit the changes to the database 

      os.system("color 07") 

      print("") 

      time.sleep(2) 

       

#  deleteTable()                                 # Delete the table ShadowCopy so that it will not exist for subsequent testing purposes 

  queryCurs.close()                             # Close the cursor to the database file 

# End of timekeeping code for determining processing time 

  current_time = datetime.datetime.now() 

  current_time_text = current_time.strftime("%Y-%m-%d %H:%M:%S") 

  print("\n\n\nEnd time is: {}\n\n".format(current_time_text)) 

 
 

Enhanced ShadowVolume2.py code: 
 
# Code taken from Brian Madden 

import re,os,time 

from subprocess import call,Popen,PIPE 

 

class ShadowCopy: 

  def __init__(self, attrs): 

    self.attrs = attrs 

  def originatingMachine(self): 

    return self.attrs['Originating Machine'] 

  def ctime(self): 

    return self.attrs['creation time'] 

  def volumePath(self): 

    return self.attrs['Shadow Copy Volume'] 

  def volumeName(self): 

    return self.volumePath().split('\\')[-1] 

 

def vssadmin_list_parse(vssadmin_out): 

  """ This function takes the output from the vssadmin command and returns 

a set of objects that describe each shadow copy""" 

  ret = [] # list to return 

  current = None # copy we are currently processing 

  fix1 = re.compile("Contained.*copies at ")  # Find the phrase "Contained......copies at " 

  for line in vssadmin_out.splitlines():       

    if line=="": 

      if current: 

        ret.append(ShadowCopy(current)) 

        current = None 

        continue 

    if line.startswith("Contents of shadow copy set ID:"):  # Find the phrase ... 

      current = {} # start of the new one 

      id = line.split(":")[1][1:] 

      current['id'] = id  # Set the current[id] to the VSC GUID we're looking at 

      continue 

    if not current: # not in the data 

      continue 

    # If we get here, we have a name, a colon, and a value 

    line = line.strip() # remove whitepsace 

    colon = line.find(':') # we only want to work with the first colon, so we can't 

    if colon >=0: 

      name = line[0:colon] 

      value = line[colon+2:]  # Set value equal to 2 columns after the colon (i.e., the creation date/time) 

      if name.endswith("creation time"): name="creation time" # if there is no creation time, set it to "creation time" to avoid NULL 

      current[name] = value   # Set the current name  

  return ret 

 

def availableVolumes(): 

  " Return a list of available shadow volumes" 

  list_output = Popen(['vssadmin.exe','list','shadows'], stdout=PIPE).communicate()[0] 

  list_output = list_output.decode('utf -8') 

  return vssadmin_list_parse(list_output) 

 

def diskpart_mount(mountpath): 

  """Run diskpart.exe with the mount script and print results""" 

  dpscript = open('diskpart_script1.txt','w',encoding='utf -8')       # Open the diskpart script in write mode 
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  print('SELECT','VDISK','FILE=',mountpath,file=dpscript)             # Print the select statement into the diskpart script 

  print('ATTACH','VDISK','READONLY',file=dpscript)                    # Print the attach statement into the diskpart script 

  dpscript.close()                                                    # Close the diskpart script file 

  mountvar = Popen(['diskpart','/s','diskpart_script1.txt'], stdout=PIPE).communicate()[0]  # Call diskpart with the /s option to run the script 

  print(mountvar.decode('utf -8'))                                    # Output results 

 

def diskpart_unmount(): 

  """Run diskpart.exe with the unmount script and print results""" 

  if os.path.exists('diskpart_script1.txt'):                          # If the diskpart script file exists... 

    dpscript = open('diskpart_script1.txt','r')                       # Open the diskpart script in read mode 

    lines = dpscript.readlines()                                      # Count the number of lines in the file 

    dpscript.close()                                                  # Close the diskpart script file 

    w = open('unmount_diskpart_script1.txt','w',encoding='utf -8')    # Open the unmount diskpart script file in write mode 

    w.writelines([item for item in lines[:-1]])                       # Write all lines but the last (all but the attach statement) 

    print('DETACH','VDISK',file=w)                                    # Print the detach statement into the diskpart script 

    w.close()                                                         # Close the unmount diskpart script file 

    mountvar = Popen(['diskpart','/s','unmount_diskpart_script1.txt'], stdout=PIPE).communicate()[0]  # Call diskpart with the /s option to run the script 

    print(mountvar.decode('utf -8'))                                  # Output results 

    time.sleep(2)                                                     # Sleep two seconds prior to removing files since diskpart takes time 

    os.remove('diskpart_script1.txt')                                 # Since unmount was successful, remove the diskpart_script1.txt file 

    os.remove('unmount_diskpart_script1.txt')                         # Since unmount was successful, remove the unmount_diskpart_script1.txt file 

  else: 

    print("Cannot find record of mounted image file (i.e., diskpart_script1.txt file).") # If diskpart script is not found, print an error message 

 

def image(): 

  """Prompt the user for a vdisk (VHD) image path to mount""" 

  response="N"                                                #set response to '(n)o' 

  while response not in ("y","Y"):                            #enter loop 

      imagepath = input("\nPlease enter the path of the vdisk (VHD) file to mount. -->")  #prompt the user for the path and record it to variable imagepath 

      print("You entered: "+imagepath+"\n")                   #provide user with feedback on the path he/she provided 

      response = input("Is this correct? (Enter 'Y' or 'y') -->") #require user confirmation on the validity of the path 

      if os.path.exists(imagepath) and response in ("y","Y"): #if the path is legitimate and the user confirmed '(y)es', then 

        break                                                 #exit loop 

      else:                                                   #else 

        if response in ("y","Y"):                             #if the user confirmed '(y)es' and the path is not valid 

          print("The path of the vdisk (VHD) file to mount, "+imagepath+", was not found.\n") #let the user know the path is invalid 

        response="N"                                                                          #set the response to '(n)o' since the path is invalid 

  print("\nThe vdisk (VHD) path has been saved as: "+imagepath+"\n")  #after getting out of the loop with a valid path and user confirmation, print this 

msg 

  return imagepath                                                    #return the path to the image to process 
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XIV. Glossary 

 

Quiesce: Quiesce is used to describe pausing or altering the state of running processes on 

a computer, particularly those that might modify information stored on disk during a 

backup, in order to guarantee a consistent and usable backup. This generally requires 

flushing any outstanding writes. See also: buffering.[53] 

 

Virtual Hard Drive: When an entire system is backed-up, a Virtual Hard Drive (VHD) 

file is created.  This file may be mounted as a virtual disk.  ―The VHD format captures 

the entire virtual machine operating system and the application stack in a single file.‖[38] 
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