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Abstract 
 

This project explores whether the Shenandoah Valley can achieve its 25x‟25 goals in the 

residential sector using the two most feasible solar energy technologies, solar photovoltaic 

electric power production and solar thermal hot water generation.  After a review of the barriers 

to the adoption of solar energy in households, the potential rates of adoption and energy output 

are estimated using U.S. Census data and Department of Energy data.  Multiple scenarios are 

explored, including the “maximum theoretical” contribution of solar energy to the residential 

sector as well as scenarios of household behavior under different constraints.  With respect to 

solar photovoltaic, it is argued that the “most likely” theoretical scenario is one in which about 

15% of all occupied Valley households adopt a 1 kilowatt system.  If that was so, then solar 

photovoltaic electricity would contribute about 1% of the residential sector‟s total energy needs in 

the Shenandoah Valley.  Solar thermal would meet 2.7% of the entire Valley‟s energy needs.  The 

associated carbon mitigation for solar PV is equivalent to about 5,222 passenger vehicles and 

9,801 passenger vehicles for solar thermal mitigation potential. 

 

 

 

 



Chapter 1: Introduction  
 

Global warming will affect all of humanity one day, but changes are already being seen 

worldwide in climate and landscapes.  With climate change an imminent and large scale issue, 

turning toward renewable energy is essential for survival.  The scope of this problem scares 

people into thinking they couldn‟t possibly make a difference individually, but uniting 

populations toward the same goal is not an easy task either, so the question becomes how do we 

begin to solve this issue?  The answer lies at the community level.  A step in the right direction is 

investigating the feasibility of renewable technology adoption at the community level and the 

possible impacts it could have on much larger scale issues.  Communities have the power to bring 

together smaller groups of people and collectively have the potential to make a bigger and 

positive impact on climate change. 

Research Question 
 

This dissertation will aim to identify the opportunities and barriers to achieving the goal 

of 25% of total energy being derived from renewable sources by 2025 in the Shenandoah Valley 

region with regards to the residential energy sector, via adoption and diffusion of solar 

photovoltaic and solar thermal technologies.  These two solar technologies will serve as the focus 

for this investigation because they are easily installed into the current housing stock.  New 

construction homes would certainly benefit from installing solar technologies, but new 

construction alone will not achieve the goal of 25x‟25, which is why retrofitting the existing 

building stock is critical.  Four categories of barriers and opportunities to solar technology 

adoption and diffusion will be addressed in depth including technical, economic, social, and 

public policy.  The purpose of the analysis will be to thoroughly understand the factors that both 

enhance and delay the uptake of solar energy technologies in the region.  The second part of this 

analysis is an estimate of the maximum possible adoption of such solar energy technologies and 

an estimate of their carbon dioxide displacement if adopted.  By estimating the amount of 
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electricity generated and offset via solar energy as applied to solar photovoltaic (PV) and 

domestic hot water respectively, an estimate of carbon dioxide mitigation levels will be 

determined. 

This research question is intricately tied to the residential housing sector and its energy 

consumption characteristics.  The residential sector in the United States accounts for about 22% 

of the total energy consumption from all sectors (EIA, 2009b).  Residential buildings are 

accordingly responsible for 21% of the total U.S. greenhouse gas emissions as well (Hinrichs & 

Kleinbach, 2006).  Almost one-fourth of the total energy in the United States is produced from 

the residential sector, which is why the 25x‟25 Initiative is an instrumental organization.  They 

strive to promote renewable energy technologies in all sectors, and focus on increasing the 

adoption of renewable energy.  This national initiative has constructed the goal of achieving 25% 

of all energy from renewable sources by the year 2025.  To achieve this goal, widespread changes 

will need to take place in energy use and correspondingly large amounts of greenhouse gas 

emissions need to be offset by renewable energies.  

The amount of carbon dioxide emitted into the atmosphere in 2009 by the United States 

was 6.6 billion metric tons (EPA, 2011c).  For perspective, this would equate to the annual 

greenhouse gas emissions of 1.3 billion passenger vehicles (EPA, 2011b).  Carbon dioxide, a 

greenhouse gas (GHG), accounts for 83% of total GHGs that contribute to greenhouse effect, 

climate change, and global warming (Hinrichs & Kleinbach, 2006).  GHGs, including methane, 

sulfur dioxides, particulate matter, carbon monoxide, and carbon dioxide are a byproduct of 

almost every activity, from electricity generation for heat and power to transportation to 

agriculture.  Global warming is a concern for everyone because it could result in higher global 

temperatures, disruption of ocean currents, extreme precipitation, ocean level rise and coastal 

flooding, droughts, species endangerment or extinction, shifts in agriculture production and 

countless other issues.  In order to slow climate change, major reductions in GHG emissions 
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would need to occur.  This could be partially accomplished with renewable energy sources such 

as solar, wind, biomass, hydro, and geothermal power (Hinrichs & Kleinbach, 2006).  

Renewable energy sources such as solar technology have a multitude of benefits 

including a reduction in GHG emissions, better local air quality, and little operational 

maintenance.  Renewable energies also supply a reliable source of domestic energy.  The benefits 

of choosing renewable energy may seem obvious, yet the occurrence of renewable technologies, 

especially solar technology in the residential sector is staggeringly low, especially considering 

that the residential sector in the U.S. alone accounts for 21% of the total carbon dioxide emissions 

(Hinrichs & Kleinbach, 2006).  The low occurrence of solar technology is due to a number of 

barriers which inhibit homeowners from choosing renewable technology.  Currently only 5.4% of 

the total energy consumed in the United States is derived from renewable sources (Gelman, 

Hummon, McLaren, & Doris, 2010).  Solar technology in particular only accounts for 0.1% of the 

total energy consumed, even though it has the potential to reach high market penetration which 

could have a large impact on the reduction of residential GHG emissions (Gelman et al., 2010). 

Slowing climate change is not the only reason to choose renewable energies like solar 

technology though.  Choosing renewable energy sources will reduce dependence on foreign oil 

and provide a reliable alternative to fossil fuels.  Renewable energy sources also increase the 

environmental quality of an area, an externality which is difficult to measure and quantify.  This 

externality is not accounted for in the consumption and real costs of fossil fuel sources.  

Renewable energies are also inherently localized energy sources which should be consumed close 

to where they are produced.  Their widespread implementation would create local, rural jobs and 

strengthen local economies.  Distributed generation of renewable energy would also increase 

national security with less demand on foreign fuel sources.  With energy demand and prices 

increasing every year, the role of renewable energy sources in the energy industry has been 

steadily gaining momentum.  As fossil fuel energy supplies dwindle, renewable alternatives will 
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need to rise to the challenge of meeting demand and protecting environmental quality for future 

generations (25x25 National Steering Committee, n.d.b.).  

Background 
 

Uniting regional communities toward a similar goal may sound easier than trying to 

coalesce an entire nation, but it is still a difficult task.  Organizations like the National 25x‟25 

Initiative help to accomplish this difficult task through regional demonstration projects which 

exemplify community activity and involvement in renewable energy alternatives.  The research 

conducted for this thesis is an example of progressing toward the national goal with regional level 

information and community participation. 

The 25x‟25 Initiative is a voluntary, grassroots, non-profit coalition of over 400 

organizations and people from agricultural, forestry, business, labor, and environmental industries 

that are dedicated to working towards the goal of deriving 25% of all energy from renewable 

sources like hydropower, wind, solar, and biofuels for the United States by the year 2025.  It is an 

organization which helps coordinate energy efficiency and renewable energy issues on a federal 

policy level.  This Initiative is financed by the Energy Future Coalition, a non-partisan group 

funded by foundations.  The 25x‟25 aims to bring new and clean technologies to the energy 

market (especially residential) and to consumers.  Other key goals of the Initiative include 

increasing national security by reducing dependence on foreign oil from the Middle East, creating 

local jobs, improving air quality, as well as reducing GHG emissions (25x‟25 National Steering 

Committee, n.d.a.).  The United States has an abundance of renewable resources that can be 

utilized for energy such as wind power, solar, biofuels and biomass, among others.  Total energy 

demand in the U.S. is expected to grow by 24% by 2025 (25x‟25 Action Plan, 2007).  By 

investing in clean technologies now, the energy demand for today and the future can be met with 

less of an impact on the environment and slow global warming (25x‟25 National Steering 

Committee, n.d.c.).  
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The 25x‟25 Initiative was originally focused on achieving its goals within the forestry 

and agriculture sectors in the western United States.  California in particular decided that the 

25x‟25 goals should be implemented on a smaller scale than the national initiative, and in 2005 

the San Joaquin Valley of California was the first regional demonstration project to take the 

25x‟25 goals to a community level.  The San Joaquin Valley Clean Energy Organization 

(SJVCEO) is comprised of contributors from partnership work groups, educational institutions, 

community-based organizations, and agriculture and business leaders. (25x‟25, n.d.).  The 

SJVCEO and the 25x‟25 Initiative decided to lead a regional effort to develop, plan and integrate 

energy efficiencies and clean energy in the San Joaquin Valley (25x‟25, n.d.).  A total of eight 

counties in the San Joaquin Valley joined together to support and encourage energy efficiency 

measures as well as the adoption of clean and renewable technologies (25x‟25, n.d.).   

The Valley 25x‟25 is a subset of the national organization which is devoted to the same 

goal but on a much smaller scale: the Shenandoah Valley in Virginia.  They are a voluntary, 

grassroots, non-profit organization.  They are promoting a sustainable future through the 

organization, making it a shared community resource which is focused on helping residents and 

businesses strive to choose alternative energies and to conserve energy through efficiency 

measures (Valley 25x‟25, 2011a).  Following the San Joaquin Valley‟s example, 25x‟25 

supporters from the Shenandoah Valley region decided to conduct a demonstration project in the 

Shenandoah Valley, closely outlining the goals of the national initiative.  Funding was sought and 

received from the 2010 Federal Budget, which allocated a grant of $750,000.  This money funds 

research projects conducted by students at educational institutions, supports an educational 

campaign to raise awareness about energy efficiency and renewable energy in the Shenandoah 

Valley, and supports agrotourism (K. Newbold, personal communication, 8 September, 2011).  

The Shenandoah Valley has a sizeable goal of getting to 25% renewable energy by 2025, which is 

only 14 years away.   
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Residential solar was chosen as the focus of this thesis because solar technology offers a 

reliable and available source of alternative energy regardless of location and the residential sector 

could potentially save energy and reduce emissions by implementing such technology.  The 

Valley 25x‟25 is using all types of renewable energy to get to 25% in the next 14 years, but solar 

technology in particular is flexible enough to be installed almost anywhere.  Virginia‟s solar 

resource is strong enough to make solar energy a viable option for almost all homeowners.  Even 

though residential solar will probably not contribute the largest percentage to the 25% Valley 

renewable goals, it is a contribution that should be given due consideration nonetheless. 

Solar Technology in the Residential Sector 
 

The residential sector has the opportunity to make great use of the energy that comes 

from the sun through solar technology.  There are numerous options for homeowners, including 

solar photovoltaic panels, building integrated elements, solar thermal domestic hot water heating, 

solar space heating, and passive design.  Certain types of solar technology are better suited for 

new construction or are easier to implement for retrofitting existing homes.  Technology which is 

easily installed as a retrofit will be of high importance, as this research is concerned more with 

retrofitting the existing housing stock rather than installations in new construction homes.  

Retrofitting the existing housing stock was chosen as a focal point because of the nature of this 

project.  With 14 years left to make changes, it was decided that the existing housing stock would 

make more headway toward the Valley 25x‟25 goals than new construction homes (which has 

shown a pattern of decline in the past 5 years).  Each type of technology has various price ranges, 

meets different household needs and has different implications for installation and maintenance.  

One feature that all solar technologies have in common though, is that they are beneficial for the 

environment.  

Photovoltaic panels use sunlight to generate electricity which can be used to power 

appliances and other electronic devices.  Figure 1 shows the configuration of a typical solar PV 
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system.  Sunlight is converted into electricity within the panel and transferred to an inverter, 

which converts the direct current into an alternating current which is then compatible with the 

electricity grid and for use in the home.   

 

 

Figure 1. Typical Residential Photovoltaic System Configuration 
Source: www.alternativeheatinginfo.com/Solar_Energy_for_Homes.html  

 

Several PV cells combined make up a module, and multiple modules comprise a solar 

array, or a panel.  Multiple solar panels combined create an entire solar PV system.  The amount 

of light energy which can be converted into electricity increases with the size of the PV system.  

The size of the system needed depends on the amount of energy consumed, the number of people 

in the household, and operating conditions for the system at a particular geographic location.  The 

typical system size for household energy consumption is roughly a 3 KW system (Yang, 2010).  

For reference purposes, a personal computer uses 50 watts when in use, or 0.4 kWh for 8 hours.  

A clothes dryer ranges from 1800 to 5000 watts of electricity use, and assuming 1 hour of use 

would consume a maximum of 5kWh in that time period.  A 16-cubic foot refrigerator would use 

725 watts over 24 hours but cycles on and off, and would require about 5.8 kWh of electricity 

daily (EERE, 2011c).  The amount of electricity generated from PV panels differs by geographic 

location for the same sized system.  For instance, in Virginia, a 3 KW system would generate 

14.4 kWh per day, given a daily insolation rate of 4.8 kWh/m
2
/day, which is the average amount 

http://www.alternativeheatinginfo.com/Solar_Energy_for_Homes.html
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of solar radiation that a solar PV panel in the Shenandoah Valley would receive.  A 3KW system 

in Maine would generate only 12 kWh daily and the same sized system in Arizona would 

generate 19.5 kWh per day (NREL, 2008). 

The cost effectiveness of a solar PV system varies however, depending on the output of 

the system, consumer rates for electricity, and the availability of subsidies.  Depending on various 

federal, state, and local incentives, the subsidized cost of a PV system could be between $4,000 

and $45,000.  In 2009, installed PV prices were around $8.60 per watt (NREL, 2011).  As prices 

fall to around $1.50 to $2.00 per watt, solar technologies will likely become competitive with 

traditional sources and therefore become more familiar and affordable in the residential energy 

market (Duke, Williams, & Payne, 2005; Yang, 2010).   

Solar PV technology is also commonly used in building integrated elements.  While it 

may be more convenient to integrate solar technology into new construction homes, being able to 

retrofit an existing home is essential because solar technology needs to be implemented without 

rebuilding an entire housing stock.  Retrofitting the existing housing stock is a core component of 

this thesis because new construction would not be able to achieve the 25x‟25 goals.  By 

integrating solar technology into an existing residence, it will help to increase overall efficiency 

and reduce energy loads for conventional fuels.  An example of building-integrated solar 

technology is solar shingles.  Solar shingles can reduce the amount of construction material 

needed to build or replace a roof, while adding durability and duality to a single building aspect 

(EERE, 2000).   
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     Photo A           Photo B 

Figure 2. Solar shingles 

Source: Photo A: Charlotte Solar Power, n.d. 

                Photo B: Durability and Design, 2010. 

 
The cost of solar shingles varies by brand and size of system, but shingles will generally 

cost around $7,000 per kilowatt installed (Wood, 2007).  A single PV shingle (86”x12”) will 

generate about 17 watts of electricity per square foot.  In order to create a 1 KW system, it would 

require about 60 shingles, and 420 square feet of roof space, which would equate to a roof 42 feet 

by 10 feet or a roof at least 20 feet by 22 feet. Clearly, solar shingles require significantly more 

space to generate the same output as about four PV panels which would require about 100 square 

feet of roof space (Uni-solar, 2003).  Compared to typical PV panels, the output for a solar 

shingle is less per square foot and costs are within a similar range, but shingles are marginally 

less expensive.  Homeowners may find solar shingles more attractive or less obtrusive 

aesthetically than conventional panels, however replacements are much more labor, time and 

money intensive.  For the purpose of this investigation, PV panels will be focused on because 

they are easier to implement on an existing home without as much renovation, as well as the fact 

that they are more familiar to the consumer than building-integrated solar shingles. 

Another form of solar technology that is widely used is solar thermal domestic hot water 

heating. There are two categories of solar hot water systems which can be used for domestic use, 

active and passive (or thermosiphoning).  Active systems utilize pumps and controls; passive 

systems do not use external sources of energy but rather circulate water by natural means with 
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temperature differentiation (EERE, 2011f; Hinrichs & Kleinbach, 2006).  Generically, a solar hot 

water (SHW) system will have a solar collector and a storage tank.  There are options for a one-

tank or two-tank solar hot water system.  Two-tank SHW systems use one tank to preheat the 

water with the solar collector before being sent to a conventional water heater, which minimizes 

additional heating by natural gas or electricity.  A one-tank system utilizes the conventional water 

heater as the storage tank for the water heated by the solar collector (EERE, 2011f).  

Domestic solar hot water system prices vary by size and location but will range from 

$4,000 to $10,000, but will likely be lower with government incentives.  Domestic solar hot water 

system sales are growing slowly at 5% annually even though they have the potential to meet a 

majority of a household‟s hot water needs (depending on the amount of daily solar radiation), 

according to a study done by The Sacramento Municipal Utility District (Hinrichs & Kleinbach, 

2006).  

Solar hot water in a residential setting varies in usefulness, though.  Depending on the 

amount of solar radiation, type of system, rate of recharge, and the number of household 

members, a solar hot water system will differ in cost effectiveness.  Passive solar hot water 

systems are best suited for climates where freezing temperatures are rare because such a system is 

more prone to freezing pipes due to the direct circulation of the water to be consumed in the 

household.  Active solar hot water systems frequently utilize indirect circulation.  Indirect 

circulation often adds an anti-freezing agent (such as propylene glycol) to water which is used as 

a heating medium that is then circulated through pipes and heats the water to be consumed within 

the storage tank itself.  Indirect circulation in a hot water system is best suited for colder climates 

where freezing is prone to happen.  The typical output for a residential solar hot water system will 

vary by geographic location.  For Virginia, it will be around 4,000 to 5,000 BTU annually, based 

on calculations from average household hot water use and total state energy consumption per 

household (EIA, 2005a; EIA, 2005b).  The flow rate for a solar hot water system varies between 

0.5 to almost 2 gallons per minute (Alternate Energy Technologies, LLC., n.d.).  Solar hot water 
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has the potential to meet much if not all, of a household‟s hot water needs, but the cost 

effectiveness of such a system will vary by a number of factors.  

  

Figure 3. Configuration of Domestic Active and Passive Hot Water Systems 

Source: (EERE, 2011f). 

 
Another option for residential solar technology is solar space heating and cooling.  Space 

heating and cooling account for about half of total energy use in a home (EIA, 2010c).  Solar 

space heating works much the same way as solar hot water, except that the medium being heated 

is air instead of water.  Two types of solar space heating include using a fluid as a heating 

medium or air.  Solar air heating systems include room heating and transpired air collectors.  A 

solar air collector can also be used to preheat the air for a heat pump.  The air collectors for space 

heating are usually installed on the roof or a south facing wall of a building.  The solar collector 

with glazing absorbs radiation from the sun and heats the air in an insulated box.  A fan, blower, 

or pump exchanges the hot and cool air via ducts to be distributed throughout the house or to a 

hot air storage container.  Transpired air systems use metal plates installed with a dead space on 

the south facing wall of a building.  Even on cloudy or cold days, the air between the plates and 

wall can heat up as much as 40°F.  Air systems do not degrade over time and do not freeze like 

liquid systems do, but are less efficient because a liquid is a better heat transfer medium than air 

(EERE, 2011e).   
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Liquid systems work very much like a solar hot water system, also heating a non-toxic 

antifreeze heating liquid such as propylene glycol rather than water, so that the heat can be 

transferred even in freezing temperatures.  The liquid flows from the collector to a storage tank or 

to be distributed as heat immediately to minimize heat losses from the system (EERE, 2011e).  

Heat storage for this type of system would be a standard water heater, or it could be piping under 

the flooring for radiant heating.  It is important to consider the storage needs of the home and the 

size of the system and the tank needed.  Radiant flooring is an integrated building technique using 

solar technology which is efficient, though slow to heat up initially.  Another option is to 

distribute the heat with baseboards or vents though they require higher temperatures to function 

which would require an additional input of energy from another source (EERE, 2011e).  Central 

forced air can also use a coil but this system would also require additional input from a furnace 

for example (EERE, 2011e). 

Solar space heating and cooling can be very useful in the residential sector, but the 

construction and implementation of solar in new homes is more likely because much of solar 

space heating technology is designed to be building-integrated.  It is harder to retrofit older homes 

for solar space heating, even though the technology is attractive to homeowners.  Solar walls, for 

instance (seen in Figure 4), can be installed not only in single family dwellings, but also in 

apartment complexes.  Active solar space heating can be implemented in existing homes, but 

would require extensive renovation in order for such a system to be operational and efficient.  An 

active solar space heating system will generally cost between $30 and $80 per square foot of 

collector area (EERE, 2011a).  The renovations would then create additional costs for installation 

of this type of system making it less cost effective and attractive for existing homeowners.  

Another point of contention for solar space heating in the Valley is that it does not readily fit into 

the time constraints of the Valley 25x‟25 Initiative.  The year 2025 is only 14 years away, and to 

expect widespread installation and renovation for solar space heating for homes in the 

Shenandoah Valley is unrealistic, even though it could make a small contribution.  Solar space 
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heating will not be an area of focus due to the fact that the existing housing stock in the 

Shenandoah Valley has a greater chance to make a positive impact by retrofitting and making use 

of solar PV and solar hot water systems.   

 
Figure 4. Diagram of a Solar Wall Illustrating  

the Heat Flow Process 

Source: http://www.iklimnet.com/save/passive_solar_heating.html 

 

 

 
Figure 5. Photo of a Commercial Solar Heating System on a Roof 

Source: http://ircmaine.com/solar/solar-thermal-2 

 
One of the market trends in residential solar technology is to integrate passive design.  

Passive design is an aspect of solar technology which does not require any mechanical or 

electrical parts in order to operate, but must be installed when the home is built.  Unlike active 

solar heating, there are no pumps or fans required for passive heating.  There are five main 

elements of passive solar design in a home: aperture, absorber, thermal mass, distribution, and 

control.  Aperture refers to the windows which allow light into the home (EERE, 2011d).  

http://www.iklimnet.com/save/passive_solar_heating.html
http://ircmaine.com/solar/solar-thermal-2
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Orientation of a home to the south for instance, may increase the efficiency of PV panels and 

allow for maximum natural daylight, reducing the heating and lighting demand.  South-facing 

orientation is optimal for most homes (EERE, 2000).  The absorber is an element within the home 

(a wall or floor) which is directly hit with sunlight and transfers the heat to the thermal mass, 

which stores the energy as heat (EERE, 2011d).  Certain materials (such as concrete or brick) can 

act as insulation on the outside (or inside) of a home, absorbing heat during the day and slowly 

losing it over night, acting as a buffer to temperature change.  This can reduce the need for 

heating or cooling (EERE, 2000).  The distribution of heat is usually achieved through 

conduction, convection or radiation from the absorber/thermal mass surface.  In certain cases, a 

fan will help the distribution of heat (EERE, 2011d).  The control aspect of a passive home refers 

to the ability to maintain a comfortable temperature.  Thermostats are an example of an automatic 

control which will only operate when the temperature reaches a certain point (EERE, 2011d).  

Overhangs can shade windows as a cooling mechanism in the summer when the sun is higher in 

the sky and allowing sunlight through in the winter when the sun path is lower.  Shading with 

deciduous trees or other nearby buildings is also important to consider for minimizing cooling 

demand (and therefore requiring less electricity) but the shading may also inhibit maximum PV 

panel functionality.  Even a simple act like installing double pane windows with a low emissivity 

coating can help to reduce heating and cooling loads, while allowing natural light to reduce 

lighting needs (EERE, 2000).  Figure 6 illustrates the elements of passive design. 
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Figure 6.  The Five Elements of Passive Solar Design 

Source: EERE, 2011d 

 

Passive design elements in the United States housing stock are fairly common.  

Overhangs and shading, insulation, and a tight building envelope are all factors that are usually 

considered.  These passive design elements are also fairly easy retrofit improvements which can 

be made to an existing home.  However, windows, thermal mass, and orientation are more 

expensive or harder to renovate (California Energy Commission, 2011).  Replacing old windows 

with newer double or triple pane windows with a glaze or coating can be expensive, or installing 

new windows to the south facing exposure on a home requires considerable renovation.  The 

thermal mass materials would also be very difficult to replace or renovate, and the orientation of a 

home cannot realistically be changed once it has been built (California Energy Commission, 

2011).  The passive design elements of a home that can easily be changed (shading, insulation 

and building envelope) are more closely related to energy efficiency improvements which will 

not lend a large addition toward the solar energy contribution from the residential sector‟s to the 

goal of achieving 25x‟25.  Because it will not make a sizeable contribution and due to the fact 

that extensive renovations could be required for some passive design elements (which are time 

and money intensive), passive solar design technology will not be included in the analysis.  



16 
 

 
 

Shenandoah Valley Demographics 
 

The Shenandoah Valley regional demographics, housing, and social characteristics will 

influence rates of adoption rates of solar technology.  Household distribution among counties and 

independent cities will also indicate where efforts should be focused for informational campaigns.  

New construction represents a small portion of the total households, and thus, owner occupied 

households and the distribution will be of great significance in order to determine potential solar 

technology adoption rates. 

The Shenandoah Valley Region as defined by the Valley 25x‟25 Initiative is comprised 

of 11 counties which include Allegheny, Augusta, Bath, Clarke, Frederick, Highland, Page, 

Rockbridge, Rockingham, Shenandoah, and Warren.  The Shenandoah Valley study area 

stretches from the northern city of Winchester south to Lexington, including the independent 

cities of Buena Vista, Covington, Harrisonburg, Staunton, Lexington, Waynesboro, and 

Winchester.   

 

 

 
Figure 7. Map of Virginia Counties with Shenandoah Valley Area of Interest 
Source: http://www.digital-topo-maps.com/county-map/virginia.shtml  

 
The Shenandoah Valley has a total population of about 382,000 people with an average 

age of 40 and median annual household income of around $46,000.  Generally speaking, the area 

has a high graduation rate from high school and close to one out of five residents chose higher 

http://www.digital-topo-maps.com/county-map/virginia.shtml
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education. Homeowners account for about 70% of the housing stock (US Census Bureau ACS, 

2009).  These demographics give a snapshot view of the Shenandoah Valley, which will be 

significant factors for calculating the maximum possible adoption of solar technology.  

The total number of housing units for the Shenandoah Valley is estimated to be 222,983 

housing units.  The occupied housing units are only roughly 89% of that total, or 199,166 housing 

units. Owner occupied housing units (OOHU) are approximately 70% of the total occupied 

housing units, and renter occupied housing units account for roughly 30% of the total housing 

units in the Valley.  These statistics are indicative of the existing housing stock and each year new 

homes are built in the Valley.  In order to follow building laws and codes, a dwelling permit must 

be issued before a home can be built.  Figure 8 below shows the number of single-family housing 

permits issued by the Shenandoah Valley for the last five years.  

 

 
Figure 8. Single Family Housing Permits Issued in the  

Shenandoah Valley, 2005-2010 
Source: U.S. Census Bureau, 1990; and author’s calculations.  See text. 
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Figure 9.  New Construction Homes as a Percent of Total Housing Stock  

in the Shenandoah Valley 
Source: U.S. Census Bureau, 1990; and author’s calculations.  See text. 

 

Clearly, Figures 8 and 9 demonstrate that the new construction in the Valley is only a 

small part of the housing stock.  In 2010, new construction didn‟t even account for 1% of the total 

housing stock.  For all five years, new construction single family dwellings accounted for roughly 

8% of the current total housing stock.  Even making full use of building integrated solar 

technology elements (including passive design), new construction would only contribute a small 

portion of solar technology toward the goal of 25x‟25.  The recent trend in housing clearly shows 

a downward decline which will probably not improve drastically enough to make the impact 

needed to achieve 25x‟25 in the residential sector in the Valley within the next 14 years.  

The Shenandoah Valley shows potential in regards to income, education, geographic 

location, and housing stock.  The median income is around $46,000, with a median age of 40 and 

about 20% of the populace attending some college.  In the last five years, only 8% of the total 

housing stock was new construction, and while it does not present much of an opportunity to 

achieve the goal of 25x‟25, it does indicate that much of the housing stock will be available for 

retrofit.  Barriers and opportunities to solar technology adoption and diffusion will influence the 

rates or likelihood of such adoption occurring. 
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Barriers and Opportunities to Solar Technology Adoption 
 

There are a number of barriers to the adoption and diffusion of solar technology in the 

residential sector, but fortunately there are also many advantages to help outweigh these 

disadvantages.  Various technical and non-technical barriers are examined at a broader, national 

scale to give context for smaller community-scale adoption and diffusion issues in the residential 

sector.  Adoption and diffusion factors specific for the Shenandoah Valley region will be 

explored in Chapter 2.  There are four main categories of barriers and opportunities to adoption of 

solar technology in the residential sector which includes: technical barriers, information and 

awareness barriers, consumer economic decision making barriers, and difficulty overcoming 

established systems.  

Technical barriers to solar technology adoption usually refer to the effectiveness of a 

particular technology, such as a solar PV panel.  Efficiency is not to be confused with 

effectiveness of a technology; efficiency is the capacity utilization or maximum possible output 

under prime operating conditions, whereas effectiveness refers to the maximum possible output 

given standard or average operating conditions (Hinrichs & Kleinbach, 2006).  The effectiveness 

of a PV panel will vary depending on amount of sunlight and shading, positioning, geographic 

location, time of year, and topography to name a few.  Good planning prior to installation can 

increase the effectiveness of solar energy technologies.  Another technical problem with solar 

technology is the ability to retrofit existing homes.  Some solar technology, such as passive 

design, needs to be incorporated into new construction which presents issues for the existing 

housing stock.  

The lack of information dissemination, knowledge and awareness of solar technology is 

considered a non-technical barrier for homeowners or consumers (Margolis & Zuboy, 2006).  

Information and awareness issues are often correlated with the amount of education attained.  

Homeowners should not only be educated about solar technologies such as solar PV, solar hot 
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water, and passive design and how it can be implemented in their home, but they should also be 

educated about electricity needs and their personal consumption trends (U.S. PV Industry 

Roadmap Steering Committee, 2001).  Lack of knowledge and education can also be applied to 

industry workers as well.  A concern for homeowners is the lack of qualified and competent 

installation technicians, which will also influence the rate of adoption. 

One of the most prominent barriers to adoption and diffusion of solar technology in 

residential homes is the high cost of solar technology, especially when compared to conventional 

energy sources (U.S. PV Industry Roadmap Steering Committee, 2001).  The perceived or real 

payback period required for a return on investment may deter homeowners from choosing solar 

energy sources for a number of reasons.  Homeowners are also likely to be skeptical about the 

ease of installation and the capital cost to install a system.  Other concerns include the length of 

time that a resident will be in their home, and whether or not they own their home.  These factors 

greatly contribute to whether or not a homeowner will decide to choose a solar energy system. 

Difficulty overcoming established energy systems is a barrier to overcome as well.  

Electricity grid systems are designed in a way that is practical for large, central power generation 

plants and distribution.  Solar distribution requires a more localized production and consumption 

system, which is not easily compatible with current systems.  Consumers who choose solar 

energy systems which require connection to the grid are met with interconnection, stand-by, and 

sell-back policies which mandate charges and fees. Net metering is sometimes required when 

connected to the grid, yet residential energy producers rarely receive market price for electricity 

production (Margolis & Zuboy, 2006; U.S. PV Industry Roadmap Steering Committee, 2001). 

These four categories of barriers and opportunities outline the factors influencing the 

adoption and diffusion of solar technology in the residential sector and will help determine the 

potential of such technology in the Shenandoah Valley.  The implications of these barriers and the 

factors which prove to be more easily surmountable will become clear as the Valley progresses 

towards the goal of achieving 25% renewable energy by 2025.   
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Methods and Key Findings  
 

The goals and time frame of the Valley 25x‟25 are ambitious to be sure, but projects like 

this feasibility assessment will help get the Valley moving in the right direction.  The residential 

sector accounts for about 22% of total energy consumed in the United States (EIA, 2009b), and is 

responsible for 21% of the total U.S. GHG emissions (Hinrichs & Kleinbach, 2006).  If the 

Shenandoah Valley is a representative population, the residential sector in the Valley has the 

potential to make a substantial contribution to the Valley 25x‟25 goals.  However, there are 

barriers which stand in the way of widespread solar technology adoption and diffusion throughout 

the Valley.  Technical issues, lack of knowledge and awareness, consumer economic decision 

making barriers, and overcoming established systems will all prove to be complex obstacles to 

the adoption and diffusion of solar technology. 

The technologies that have the best chances of high rates of adoption and diffusion in the 

Valley residential sector are solar PV and solar thermal hot water.  The most important factor in 

this consideration is that they are easily retrofitted into the existing housing stock.  Solar PV and 

thermal are also more likely to be familiar to the average resident than building integrated 

technologies, such as solar shingles or solar walls.  The Shenandoah Valley has a good solar 

resource, which will lend itself to sizeable outputs and offsets in GHG emissions for PV and solar 

thermal.    

The methodology followed to find the real feasibility included an assessment of the total 

number of owner occupied housing units and then a process of reducing the maximum number of 

potential homes by the demographic factors of income, education, and age, which influence 

adoption rates.  The scenario for the maximum theoretical number of homes proved to be very 

unrealistic, and the most likely solar technology adoption scenario conveyed that solar technology 

would meet less than 1% of the total energy needs for the Shenandoah Valley.  
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Overall Structure of Dissertation 
 

The following chapters of this dissertation will aim to explain and establish the real 

feasibility of attaining the 25x‟25 goal for the residential sector in the Shenandoah Valley.  

Chapter two will give a background and context for the research to be conducted in the Valley.  It 

will also explain the opportunities and barriers for the residential sector in the Shenandoah Valley 

and define the scope of energy use within the Valley, as well as list the financial incentives 

available to homeowners for solar technology.  Chapter three contains the benefits and costs of 

solar technology in the Shenandoah Valley, including the maximum theoretical concept, a benefit 

cost analysis for both solar PV and solar thermal, as well as a carbon dioxide mitigation analysis.  

Chapter four contains the estimates of rates of adoption of solar technology in the Valley.  

Various demographic scenarios are examined, and the real likelihood of solar technology 

adoption is determined.  Chapter five is a conclusion which will summarize results, explain the 

real likelihood of solar technology adoption in the Shenandoah Valley, and analyze the feasibility 

of achieving the goal of 25% by 2025 for solar thermal hot water and solar PV in the residential 

sector, as part of the larger scope of the 25x‟25goals in the Valley.  



Chapter 2: Background and Literature Review 
 

Determining the feasibility of achieving 25% renewable energy in the Shenandoah Valley 

by 2025 must first start with examining the bigger picture and the larger scope of energy use.  

This chapter seeks to understand the extent and uses of fossil fuels as well as the role renewables 

play in the residential sector at the national, regional, state, and community level.  The knowledge 

of energy use at various societal levels will provide context for energy use in the Valley.  The 

demographic and household characteristics will play a vital role in determining the amount of 

adoption and diffusion of solar technology which can be achieved in the Shenandoah Valley, 

especially the ease and ability of the existing housing stock to retrofit for solar technology.  The 

Valley demographics will be explored and applied to adoption and diffusion factors, which are 

extracted from a literature review.  Federal, state, and utility financial incentives available for the 

residential sector will also be examined to determine the role they play in the adoption and 

diffusion of solar technology for the Shenandoah Valley. 

National Energy Use 
 

In 2009 the United States‟ energy production totaled 73.5 quadrillion BTU.  Natural gas 

accounts for 33% of the total, followed closely by coal which produced 29.7% of the nation‟s 

energy.  Including hydropower, renewable energy generation for 2009 in the U.S. was 10.6%, 

with the remainder being generated by crude oil or nuclear power (Gelman, 2010).  These figures 

will be useful when Virginia‟s energy use is compared to the United States energy use patterns; if 

they are similar, the role of solar technology in the residential energy may be increased in scale 

and applied at a national level to increase use of renewable energies and reduce GHG emissions.  

The 25x‟25 Initiative could make an example of the regional demonstration projects which are 

taking place at the community level and implement them at the national level. 
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The residential sector in the United States consumes roughly 22% of total energy 

consumed in the nation each year (EIA, 2009b).  As seen in Figure10, natural gas accounts for the 

largest share of energy consumption, followed closely by electricity.  Fuel oil and propane 

together account for less than 15% of all energy consumed in the United States.  The residential 

sector includes energy consumption only for stationary combustion used in built structures, and 

does not include energy consumption from any other sector, such as commercial buildings or 

transportation.  Since the residential sector consumes almost one-fourth of the total energy 

consumed in the nation, it has great potential to reduce energy consumption and GHG emissions 

by implementing renewable energy alternatives.  Because natural gas and electricity are also used 

heavily in the Shenandoah Valley residential sector the potential to reach the 25x‟25 goals is 

hopeful.  

 

  

Figure 10. United States Share of Total Energy Use by Fuel Type 

in the Residential Sector 
Source: U.S. EIA, 2005 Residential Energy Consumption Survey 

 

The biggest contributors to household energy consumption are space heating, lighting, 

and hot water heating, as can be seen in Figure 11.  Combined, they account for 87% of all 

household energy use.  Lighting (26%) and water heating (20%) account for nearly half of all 
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residential household energy consumption (EIA, 2010b).  According to the Residential Energy 

Consumption Survey (RECS) from 2009 produced by the EIA, the average household in the 

United States consumes about 95 million BTU of energy each year, an average of almost 8 

million BTU each month (with expected fluctuations for heating and cooling seasonally) (EIA, 

2011c).  Also according to the survey, natural gas is the most prominent home heating fuel, used 

in nearly half of the homes.  Use of electricity for heating also increased, and fuel oil use declined 

by about 4% for the same year (EIA, 2011d). 

 

 

 Figure 11. United States Household Energy Use 
Source: U.S. Energy Information Administration, 2005 Residential Energy 

Consumption Survey 

 

The 2009 RECS also supplies statistics for energy efficiency measures, which help to 

lower heating/cooling and lighting costs.  Of all occupied houses in the United States, 58% had 

energy efficient multi-pane windows, 35% weatherized their home to prevent air leaks, 23% 

added insulation and roughly 37% purchased energy efficient appliances, including refrigerators 

and washing machines.  Sixty percent of the households in the U.S. invested in CFL or LED 

lighting (EIA, 2011d).  Energy efficiency measures are an easy investment to make when trying 

to lower utility bills which also explains the high acceptance percentages, but these measures 

alone will not be enough to reduce GHG emissions or any of the other benefits which come from 
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renewable energy alternatives.  The average national energy consumed in homes broken down by 

use provides context which can be compared to state and regional energy use.  If the Shenandoah 

Valley were to implement energy efficiency measures such as those listed above, combined with 

installing solar technologies, the potential for energy savings would be even greater.  If this took 

place, the goals of getting to 25% renewable energy in the next 14 years would be more easily 

achieved.   

Shenandoah Valley Scope of Energy Use 
 

The residential sector in Virginia consumed 289.2 trillion BTU of end-use energy (EIA, 

2009c).  Virginia also consumed 152.7 trillion BTU of electricity in 2009, which equates to about 

53% of all Virginia residential energy (EIA, 2009c).  To find the average household energy 

consumption, the total energy use in BTU was divided by the 2009 estimate of Virginia 

population, which totaled about 8 million people (U.S. Census Bureau, 2011b).  This calculation 

resulted in 36,150,000 BTU per capita, which was then multiplied by 2.36 to represent the 

average number of household residents in the Shenandoah Valley.  The result was an annual 

household consumption average of 85,314,000 BTU which can be used in calculations to 

determine the total percent of energy use which solar technology generates.  This is a limited 

estimation technique, due to the number of calculations required to move from the state level to 

the community level, to the household level.  Households will also vary by individual 

consumption characteristics. 

The residential sector in Virginia accounted for 12.1% of total energy consumption in the 

state in 2009 (EIA, 2009b).  This percentage accounts for energy actually consumed in the home, 

and does not account for energy losses through electricity transfer.  If the losses are included in 

this figure, the figure changes to 25.6% of Virginia‟s total energy consumption.  Virginia‟s 

residential sector consumes more energy by about 4% when compared to the national average.  

This is a substantial difference when 4% is measured in trillions of BTUs.  This difference could 
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be accounted for by the presence of the nuclear power plants which are energy intensive, and are 

used to generate electricity that supplies half of the energy consumed in the residential sector.  

Kentucky, which has no nuclear power plants, only consumes 19% of the total energy in the state 

in the residential sector.  North Carolina, which has eight nuclear power plants, consumes roughly 

28% of the total energy in the state in the residential sector (NRC, 2011).  Residential energy use 

in Virginia comes from a variety of sources but is provided primarily by electricity, accounting 

for 53%.  Natural gas (29%) and petroleum (14%) are also big contributors for providing energy 

to the households in Virginia (DMME, 2010).  Virginia has two nuclear power plants which 

supply electricity to about 1/3 of the entire state.  Virginia relies heavily on coal fired power 

plants for electricity, which typically provide about half of the state‟s electricity generation (EIA, 

2009d).  Because Virginia residential energy use (including losses) accounts for a higher 

percentage the national average, the state will have to work harder than other states to achieve 

25% of its total energy from renewables by 2025.  

The Shenandoah Valley currently uses electricity to meet roughly 43% of home heating 

needs, followed by utility gas, which makes up another 20% (U.S. Census Bureau American 

Community Survey, 2009).  Other fuels used in home heating in the Valley are fuel oil or 

kerosene (17%) and liquid propane gas (11%).  Less than 1% of heating comes from solar sources 

(U.S. Census Bureau American Community Survey, 2009).  Table 1 shows the fuel type used for 

home heating and percentage of homes that utilize each fuel.  Clearly, if solar is only being used 

for less than 1% of home heating fuels, then there is a long way to go to reach the 25x‟25 goals 

for residential home heating.  However, because a large percentage of the homes in the Valley use 

electricity for home heating, the adoption potential for solar PV is greater than for those homes 

which use fossil fuels, because a retrofit will be easier. A home using electricity will only need to 

install the solar equipment because it is already designed for heating with electricity whereas a 

home making use of oil will require more alterations.  The average electricity rate for Virginia 
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homes is 10.61 cents per kWh as of May 2011.  Virginia‟s residential electricity rate is lower than 

the average U.S. rate of 12.03 cents per kWh (EIA, 2011c).  

 

Table 1.  Percent of Homes Using Various Home Heating Fuels in the Shenandoah Valley 

 

Home Heating Fuel 
Occupied Housing Units Percent of Homes Using Fuel Type 

Utility gas 20% 

Bottled, tank, or LP gas 11% 

Electricity 43% 

Fuel oil, kerosene, etc. 17% 

Coal < 1% 

Wood 8% 

Solar energy < 1% 

Other fuel < 1% 

No fuel used < 1% 

Note: Percentages may not add up to exactly 100% due to rounding. 
Source:  U.S. Census Bureau American Community Survey, 2009,  

and author’s calculations.  See text. 

Demographics and Household Characteristics 
 

Demographics 
 

The demographics of the Shenandoah Valley are of interest to this research because the 

quantity and distribution of social, educational, and housing characteristics will influence the 

adoption rates of solar PV and solar thermal in the residential sector. The demographics of 

income, education, and age, will shape scenarios which will ultimately determine the likelihood 

and feasibility of adoption for the Shenandoah Valley. 

The Shenandoah Valley has a population (16 years and older) of over 411,000 people 

within its 11 counties.  Of the 411,527 residents age 16 or over living in the Shenandoah Valley, 

246,652 are employed in the civilian labor force (not in the armed forces) and 12,270 are 

unemployed.  The 12,270 people who are unemployed are defined by the U.S. Census Bureau 

American Community Survey (ACS) as without a job but looking for work.  There are also 

152,083 people which are included in the population which are not in the labor force.  Included in 

this category are those that are not looking for work, students, homemakers, retirees, seasonal 
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workers, etc.  The unemployment rate in 2009 for the Shenandoah Valley is 4.73%, which is 

lower than the national unemployment average of 9.3% for the same year (BLS, 2009).  

The age groups for the Shenandoah Valley population have a normal distribution.  From 

younger than age 5 to 15 the range varies between 30,000 and 31,000.  The population per age 

group increases with age until age 54, after which it declines drastically.  The median age for 

residents in these counties was estimated by the U.S. Census Bureau American Community 

Survey at around 40 years old.  This information is valuable because generally speaking, people 

at this age are typically established and stable with housing and career choice which could 

indicate a larger audience which may be more open to solar technology implementation than a 

population with an average age of 25.  The age distribution for the Shenandoah Valley is essential 

to understanding adoption patterns because certain age groups will be more likely to adopt 

renewable technologies than others.  The population aged 45 to 54 years has the highest numbers 

of people, at 74,821 people.  Depending on the barriers present for the region, it could be a 

favorable or unfavorable fact. 

There are 338,044 people in the Shenandoah Valley age 25 or older.  Of these, 149,262 or 

44% have attended at least some college, or have a degree.  Close to 22% of the population over 

age 25 has achieved a Bachelor‟s degree or higher, and for the entire Valley, over 80% of 

residents are at least high school graduates (or equivalent).  The amount of education directly 

correlates with income, which will indicate the amount of disposable income and therefore the 

affordability of solar technology for the “average” Shenandoah Valley resident.  Almost 20% of 

the population age 25 or over, however, never finished high school (U.S. Census Bureau ACS, 

2009).  This information will be important in correlating the education and awareness levels 

which are influential to renewable technology adoption. 

One of the most important factors to consider about the Shenandoah Valley population is 

household income.  The amount of income will directly affect the amount of disposable income 

which will in turn affect the ability of a homeowner to purchase a solar system.  The income data 
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acquired from the American Community Survey is reported in 2009 inflation adjusted dollars.  

There are ten income brackets, which are not evenly distributed.  It should be noted that the data 

was normalized by the Census to create a normal distribution.  The following table shows the 

distribution of income for the Shenandoah Valley. 

   

Table 2. Income and Benefits in 2009 Inflation Adjusted Dollars for the Shenandoah Valley 

 

Income and Benefits Number of Households 
Percent of Total 

Households 

Total Households = 199,166 

Less than $10,000 13,306 7% 

$10,000 to $14,999 12,253 6% 

$15,000 to $24,999 22,423 11% 

$25,000 to $34,999 23,064 12% 

$35,000 to $49,999 31,370 16% 

$50,000 to $74,999 40,428 20% 

$75,000 to $99,999 25,913 13% 

$100,000 to $149,999 20,527 10% 

$150,000 to $199,999 5,901 3% 

$200,000 or more 3,981 2% 
Source:  U.S. Census Bureau American Community Survey, 2009, and author’s calculations.  See Text. 

 

It is easily seen that the highest number of households earn between $50,000 and $74,999 

annually.  There are almost twice as many households that earn less than $50,000 than 

households that make more than $74,999 (102,416 compared to 56,322).  The median income of 

all counties was determined and then averaged together to find that the average median household 

income for the Shenandoah Valley was $46,140.   

Home Ownership and Household Characteristics 

 

The Shenandoah Valley has 199,166 total occupied households.  Multiple dwelling 

apartment buildings were excluded in this analysis because apartment buildings are often rented 

and therefore occupants would not have ownership of the roof.  There are 174,663 units which are 

either one unit attached or detached buildings.  These homes were selected because it was 

assumed that they would have the right or ability to install solar technology (i.e., landlord owned 

or owner occupied), whereas apartment buildings would require permission from a higher 
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authority, such as an apartment building supervisor or landlord.  If mobile homes are included, 

the total increases to 190,895 homes.  This only gives a picture of the total occupied housing 

units, and not ownership status, which will affect the ability to install solar panels.  The 190,895 

homes may include owner occupied as well as renter occupied housing units, so this number 

assumes that some landlords would be willing to install solar technology if they pay the utilities 

(namely water and electric).  Not all landlords pay utilities however, because it would not be cost 

effective or attractive to renters if the price of rent were to increase to cover the cost of the 

installed solar system.  For this study, renters and landlords will be excluded and only owner 

occupied dwellings will be studied.  

The owner occupied houses in the Shenandoah Valley totals 139,990 households (59,176 

renters).  This information can lead to the assumption that 70% of the housing stock in the 

Shenandoah Valley will be the maximum number of housing units which might adopt solar 

technology (U.S. Census Bureau ACS, 2009).  It is assumed that owner occupied houses are 

either stand alone dwellings (one unit detached), 1 unit attached (for example, duplexes) or 

mobile homes and not located in a multi-dwelling apartment building.  The owner occupied 

dwellings will be used as the baseline to determine the maximum possible adoption.  The 70% of 

the housing stock offers a baseline maximum adoption, but doesn‟t infer a realistic maximum 

possible adoption due to other factors which must be considered, such as income and economics 

of the region.   

Two factors closely related to income are whether or not a homeowner has a mortgage, 

and monthly home costs for a homeowner.  Out of 139,990 owner occupied homes in the Valley, 

63% (88,161) of homeowners have a mortgage on their home, and 37% (51,829) do not (own it 

free and clear).  The U.S. Census ACS reports data on the selected monthly costs for both 

homeowners with and without a mortgage.  The selected monthly owner costs include 

“everything paid to the lender including principal and interest payments, real estate taxes, fire, 

hazard, and flood insurance payments, and mortgage insurance premiums” (2009 ACS Subject 
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Definitions, pg 24).  The „selected monthly owner costs with and without a mortgage‟ will help to 

determine the amount of disposable income available to homeowners.  It does not take into 

account considerations such as maintenance, repairs, or utility bills for homes.  Figures 12 and 13 

below show the percentages of homes and the associated selected monthly owner costs. 

 

Figure 12.  Selected Monthly Owner Costs for Housing Units with a 

Mortgage in the Shenandoah Valley  
Source: U.S. Census American Community Survey, 2005-2009, and  

author’s calculations.  See text. 

 

 

Figure 13.  Selected Monthly Owner Costs for Housing Units without a 

Mortgage in the Shenandoah Valley  
Source: U.S. Census American Community Survey, 2005-2009, and  

author’s calculations.  See text. 
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From these graphs, it can be seen that for housing units with a mortgage, almost 1/3 of 

the homes spend between $1,000 and $1,499 each month.  Another 36% of the homeowners with 

mortgages spend more than $1500 on selected monthly costs.  For homeowners without a 

mortgage, the selected monthly costs are drastically less, with over 60% of all homeowners 

without mortgages spending less than $400.  

Another set of data available from the Census which is closely related to selected 

monthly costs for homeowners with or without a mortgage is „selected monthly costs as a 

percentage of income.‟  This information will show the percentage of a household‟s income that 

goes to housing costs.  It would also be a good indicator for how much disposable income is 

available, excluding utility and maintenance cost considerations.  This information is broken 

down by housing units with a mortgage and housing units without a mortgage.  Figures 14 and 15 

below show the selected monthly owner costs (taxes, insurance, interest payments, etc.) as a 

percentage of household income for homeowners with and without a mortgage. 

 

Figure 14.  Selected Monthly Owner Costs as a Percentage of Income for 

Homeowners with a Mortgage in the Shenandoah Valley 
Source: U.S. Census American Community Survey, 2005-2009, and author’s calculations.  See text. 
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Figure 15.  Selected Monthly Owner Costs as a Percentage of Income for 

Homeowners without a Mortgage in the Shenandoah Valley 
Source: U.S. Census American Community Survey, 2005-2009, and author’s calculations.  See text. 

Figure 14 shows that almost 35,000 owner occupied housing units with a mortgage spend 

less than 20% of their annual income on housing costs.  However, a little over 20,000 OOHU 

spend 35% or more on their housing costs alone.  Over 1/3 of total annual income for a household 

being spent on housing does not leave much disposable income with which renewable energy 

technology could be purchased.  Figure 15 shows that a majority (almost 25,000) of homeowners 

that do not have a mortgage spend less than 10% of their income on housing expenses.  This 

implies that there is more disposable income available to homeowners who do not have a 

mortgage. 

On average, 64% of the households in the U.S. that had discretionary income earned over 

$24,300 each year per household (Summers, 2011).  For the Shenandoah Valley, that would 

equate to 151,184 homes, or 76% of the households.  Disposable income is defined as personal 

income minus income taxes.  As a general budgeting rule, it is unwise to spend more than 30% of 

total income on housing expenses (Foreman, 2005).  Due to the larger scope of this project, 

additional monthly expenses (such as food or transportation) will not be included in calculations 
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for disposable income because an average of these expenses would be not accurate for the each 

household in the Shenandoah Valley.  The selected monthly owner costs from the U.S. Census 

American Community Survey as a percentage of income will be used however, as a guideline for 

disposable income.  Any housing costs which are more than or equal to 30% of total income will 

be excluded for the potential adoption of solar technology because it would not be economical or 

feasible for those households. 

Figure 16 below shows the total number of owner occupied households in each county or 

independent city for the Shenandoah Valley.  This information will be essential for the Valley 

25x‟25 Initiative so that efforts to educate homeowners about solar technology can be 

concentrated in locales where it will make the most impact.  Figure 16 shows that efforts 

concentrated in Augusta, Frederick, Rockingham, Shenandoah, and Warren Counties have the 

greatest likelihood for success.  This graph does not reflect the owner occupied homes which 

could afford this technology, but it is an excellent guideline for educational and informational 

purposes.  Total population per county or independent city is also a good factor for determining 

where concentrations of people are located within the Valley, but for residential solar technology 

adoption, the number of owner occupied housing units will serve the same general purpose in a 

more concise manner. 
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Figure 16.  Owner Occupied Housing Units by County and Independent City in 

the Shenandoah Valley 
Source: U.S. Census American Community Survey, 2005-2009, and author’s calculations. See text. 

 

The implications of demographic and household characteristics indicate some essential 

points to remember.  First, there is a total population in the Shenandoah Valley of 411,000, of 

which 44% have attained higher education of some kind.  Education and income are closely 

correlated, and the average household annual income is around $46,000.  The selected monthly 

owner costs as a percentage of income data is valuable because it allows the determination of 

average household annual disposable income which will later be used in calculations to determine 

the affordability of solar PV or solar thermal hot water systems.  

The household distribution and educational characteristics are significant because they 

will serve as a guide for the Valley 25x‟25.  With the average amount of household disposable 

income (household income minus housing costs) of about $32,000 (not including any other bills 

or financial responsibilities), the geographic distribution becomes very important.  A total of 

139,990 owner occupied housing units, or 70% of all occupied housing units are equipped with a 

relatively small annual disposable income, so making the location and effectiveness of education 

and awareness campaigns a high priority for the Valley 25x‟25 means that the efforts will be 
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concentrated where they can make the most impact.  From Figure 16, it can be seen that 

educational or informational efforts in Augusta, Frederick, Rockingham, and Shenandoah 

Counties will reach the highest number of homeowners.  The target of getting to 25% renewable 

energy by 2025 is ambitious considering 2025 is only 14 years away, so the Valley 25x‟25 needs 

to concentrate on locales which are most likely to succeed in this goal. 

Adoption and Diffusion Factors 
 

The synthesis of the adoption and diffusion factors as applied to the Shenandoah Valley 

demographics is the analysis that will determine the real feasibility of adoption.  By combining all 

of these aspects together, scenarios can then be created which demonstrate options and 

alternatives for the amount of adoption and diffusion which could take place.  The adoption and 

diffusion factors delineated in this chapter will guide the Valley 25x‟25 on which areas are laden 

with obstacles and those that have barriers which can be more easily overcome in order to 

accomplish the 25% renewable energy goal faster and more efficiently. There are four 

overarching categories for adoption and diffusion rates in the residential sector which include: 

technical barriers, information and awareness barriers, consumer economic decision making 

barriers, and difficulty overcoming established systems.  Listed below are the major categories 

and barriers or opportunities which fall under each category.  

 

 Technical 

 Household orientation 

and characteristics 

 Geographic location 

 Ease of retrofit 

 

 Consumer economic decision 

making 

 High capital cost 

 Disposable income 

 Length of payback 

 Return on investment 

 

 

 Information and awareness 

 Education 

 Workforce skills 

 True cost of 

clean/conventional 

energy 

 Social responsibility 

 Consumer perceptions 
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 Difficulty overcoming 

established systems 

 Net metering 

 Grid connectivity 

 Government policy 

 Financial incentives

Technical 
 

The effectiveness of any given solar system varies greatly by numerous factors.  Whether 

or not a resident owns or has control over their roof is an issue, and if the roof is available then 

the amount of space available will limit the size of the solar PV system that can be installed. Roof 

ownership is an issue for multi-home dwellings, which is why this barrier dictates that only owner 

occupied housing units be used.  Shading of the panels from trees or surrounding buildings is a 

technical concern as well, but can be more easily overcome than the amount of sunlight available 

at a geographic location.  Geographic location plays a role in the effectiveness of a PV panel.  For 

instance, a panel installed in Maine will get less solar radiation than a panel in Virginia, which 

would mean increased output for the panel.  One of the major concerns with technical barriers is 

the ability to retrofit a home with solar technology.  The chosen technologies of solar PV and 

solar thermal are inherently easier to integrate into existing homes than active space heating or 

certain passive design measures.  The technical barriers to adoption and diffusion in the 

Shenandoah Valley are partially overcome by focusing on the technologies which will lend 

themselves to ease of retrofit.  

Consumer Economics 
 

It is often assumed that the only barrier to implementing residential solar technology is 

the price of a system.  While it is a very important barrier, it is not the only one.  The largest 

barriers to technology adoption are both social and economic.  The amount of income, level of 

education of a homeowner, and the high capital costs of installed solar PV in particular are the 

greatest barriers to residential adoption.  The amount of education and income are directly 

associated; Sawyer (1982) uses education levels as an indicator for income attainment.  

Therefore, the connection can be made that the higher the education level attained, the greater the 
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income.  The higher the levels of both education and income indicate a higher likelihood of 

renewable technology adoption and energy efficiency measures in the home (Nair, Gustavsson & 

Mahapatra, 2010).   

A study on the geographic distribution of household solar energy in the United States by 

Zahran, Brody, Vedlitz, Lacy & Schelly (2008) also indicate that there are positive associations 

between the amount of wealth or income a homeowner has and solar energy adoption due to the 

fact that wealthier households can more easily absorb the capital costs of a system.  They are able 

to wait a reasonably longer amount of time for a return on investment (ROI) compared to a home 

which falls into a lower income bracket (Zahran, et al., 2008).  The current cost of installed solar 

in Virginia is around $8.60 per watt, which would equate to a total cost of between $4,300 and 

$43,000, assuming between a 0.5 KW and 5 KW system which is a typical range for residential 

systems.  Adachi (2010) states that a clear barrier to the adoption of residential solar PV is the 

high capital cost of a system, as well as lengthy payback periods.  

Conversely, the high cost of a solar system can be overcome by saving money, rebates 

and incentives, to name a few.  Median home value, for instance, is often used to assess solar 

system affordability because it represents a source of capital which could finance solar 

technology (Zahran, et al., 2008).  Other economic barriers which need to be considered by 

homeowners are the amount of time it will take for a return on investment (ROI), and the length 

of a payback period.  Leidl & Lubitz (2009) found that when comparing domestic water heating 

technologies, a long payback period was a significant barrier and subsidies were needed in order 

to gain acceptance by consumers.  If a consumer will experience a return on investment which 

suits their financial needs, the payback period could be considered an opportunity for adoption.  

On the other hand, a long payback period means a long-term investment which some 

homeowners might not be willing to make. Combs, et al, (1983) explain that a complication for 

solar technology is that it requires a long-term commitment with no real possibility for a low-risk 

trial period. 
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Information and Awareness 
 

An obstacle which is closely related to these economic benefits and barriers is the 

knowledge and awareness of residential solar technology, which is directly associated to the 

amount of education attained.  Residential solar technology is not a new concept; this technology 

has been around for decades, yet some homeowners are unfamiliar with it as an option for their 

home.  If homeowners are uneducated or unaware about a technology, it is unlikely they will be 

willing to install it in their home.  Duke, Williams, & Payne (2005) also state that people may be 

reluctant to gain the necessary knowledge to be a solar system owner because it may seem 

complicated.  Education and awareness programs for homeowners would ease negative 

associations about solar technology and with the perceived complexity of the operations and 

maintenance of solar equipment as well.  A social science study on residential solar technology 

conducted in the U.S. and France also found that adequate comprehension of solar technology is a 

factor for determining potential diffusion (Warkov & Monnier, 1985).  Teaching homeowners 

that it can save energy to run appliances (washer, dishwasher, etc.) during off-peak hours would 

also make a big difference in overall energy consumption.  Stakeholder familiarity with solar 

energy technologies could facilitate the adoption and diffusion through the residential sector.  

Building integrated materials and installation will also help to alleviate negative perceptions 

(aesthetics or otherwise) (U.S. PV Industry Roadmap Steering Committee, 2001).  

Another facet of the education barrier is the education of workers in the solar technology 

installation and maintenance field.  Inadequate workforce skills and training may not seem like a 

significant barrier to solar adoption and diffusion throughout the residential sector, but it is.  

Scientific, manufacturing, and labor skills are currently lacking in the solar technology industry, 

which directly slows the adoption of this technology.  Professionals need to be familiar with solar 

energy system components to be able to perform installation, maintenance, and inspection 

services skillfully.  Educational services are also lacking in this industry for training skilled 
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laborers (Margolis & Zuboy, 2006; US PV Industry Roadmap Steering Committee, 2001).  As the 

penetration of solar technology occurs within the energy sector, more laborers will become 

trained and skilled in the profession. 

A barrier which is both economically and socially related to solar technology adoption 

(or any renewable energy) is the failure to account for all costs and benefits of energy choices 

(Margolis & Zuboy, 2006).  The full value of clean energy is not realized because intangible costs 

(GHGs, air pollution, emissions, etc.) are externalities, and therefore are not seen, felt, or 

accounted (or even sometimes acknowledged) for by the consumer.  Fossil fuels do not account 

for these externalities and clean technologies do.  This increases the costs of solar technologies, 

but they are "hidden" costs.  Good air quality and a clean environment are difficult to internalize 

or to even assign a monetary value (Reddy, 2010). 

There are a few intangible social factors which are significant to solar technology 

adoption and are both economically and educationally related.  Multiple authors agree on the fact 

that feelings of environmental concern or social responsibility drive whether or not a consumer 

will chose renewable energies (Sawyer, 1982; Adachi, 2010).  While environmental concern or 

feelings of social responsibility (for the environment, neighbors, future generations, etc.) are a 

propellant for adoption, these intangibles alone are generally not enough to drive adoption for 

homeowners.  Consumers thinking about purchasing solar technology must be motivated by a 

number of factors (ideally, economic and social), such as monetary benefits in terms of monthly 

utility savings, affordability of upfront costs via rebates or incentives, and social/environmental 

responsibility (Sawyer, 1982).  It is a factor which increases the likelihood of adoption, but is not 

a driver alone.  People generally are not willing to strain themselves financially if it means only a 

negligible change in environmental condition.  Other social factors to consider are the age of the 

home and homeowner.  Consumption of expensive durable goods often peaks during midlife, 

ages 40-49 which is fairly predictable, independent of other factors such as family size, 

education, occupation, etc. (Zahran, et al., 2008).  This could lead to the assumption that areas 
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with populations in this age range will be more likely to purchase solar technology regardless of 

other social influences.  

An additional influential adoption factor is a homeowner‟s perception of solar 

technology.  Two common perceptions are that solar equipment on a roof will affect the 

aesthetics of a home, and the other is that a particular region or locale doesn‟t receive enough 

sunlight for solar technology to be cost-effective (Zahran, et al., 2008).  These perceptions by 

homeowners could be an opportunity or a barrier to adoption.  If a homeowner believes that the 

aesthetics will be enhanced on the home or if it will improve the homes‟ status or environmental 

image, then it would be a beneficial factor.  Likewise, if a consumer believes that the amount of 

sunlight they receive in a day would result in large energy savings then the perception (not 

necessarily the actuality) of the amount of sunlight would be positive.  However, the actual 

amount of solar radiation a place receives is significant because it will determine the cost 

effectiveness of installing solar technology.  Additionally, homeowners in cold climates are less 

likely to adopt due to fear of damage to the equipment, such as snow or ice weight, or freezing 

pipes (Zahran, et al., 2008).  The counterargument applies to both of these ideas held by 

consumers as well, which would make them more of a hindrance to solar adoption.  The amount 

of insolation and aesthetics are not as influential on consumers‟ decisions to purchase solar 

technology however, as the high capital costs or amount of disposable income.   

There are a few social factors which are questionable among authors for the adoption of 

solar technology.  The presence of a technical occupation in the home (29% of the total Valley 

population) is said to be positively associated with solar technology adoption due to the 

understanding of how the equipment operates and how to maintain it (Nair, Gustavsson, & 

Mahapatra, 2010).  It could be seen as an offset to the group of homeowners which lack adequate 

knowledge and awareness of solar technology; though no substantial correlations can be made 

between the two.  The other factor which may or may not influence adoption rates of solar 

residential systems is the presence of an environmental leader in the community.  In the context 
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of the Shenandoah Valley, James Madison University could be considered an environmental 

leader based on its sustainability campaign, however, there are no instances of installed solar 

within Harrisonburg city limits.
 1
  Rockingham County has 25 installed solar systems for home 

heating, but no strong association can be made between the two (U.S. Census ACS, 2009). 

Overcoming Established Systems 
 

More often than not, electricity grid systems are designed for large power plants in a 

central generation and distribution location, which is contrary to the needs of residential solar 

generation and distribution.  Utility companies almost always require consumers to connect to the 

grid for safety purposes, but conversely, also require fees, charges, and permits to connect to the 

grid (SEIA, 2011).  There can sometimes be lengthy interconnection procedures; however, the 

option to connect to the grid is much cheaper than storing the solar energy produced in batteries 

for later use.  Utility companies are not required by law to provide or incentivize net metering 

(SEIA, 2011).  Net metering is a policy which allows energy consumers to sell back excess 

electricity generated from their system to the utility company.  Net metering might create a 

quicker return on investment for a homeowner, but it could also be a considerable hindrance if a 

homeowner considers all the rules, regulations, and formalities of connecting to the grid prior to 

installing solar technology.  Another aspect of this hindrance is that residential energy producers 

rarely receive market price for electricity production, so the return on investment time period with 

net metering might not meet homeowners‟ expectations. 

Government policies could be implemented to make the symbiotic relationship between 

utility companies and residential energy producers more equal.  Both parties benefit from grid 

interconnection and net metering; utility companies receive a good image for incorporation 

renewable energy into their profile while gaining electricity reliability, and producers sell 

                                                           
1
 One homeowner in Harrisonburg now owns a solar PV system.   
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unneeded power to accelerate the payback process (Margolis & Zuboy, 2006; U.S. PV Industry 

Roadmap Steering Committee, 2001). 

Another barrier related to overcoming the established system is the lack of or 

inconsistencies of government policy supporting renewable energies. This includes any policies 

or regulations supporting research and development of solar technologies, or policies which 

hinder the R&D.  Regulations which make zoning or permitting processes for solar technology 

difficult are also an obstacle.  This barrier also includes the policies which support conventional 

fuel sources, such as subsidies for fossil fuels.  Creating policies to incentivize the R&D and 

installation of solar technology can help to overcome this barrier (Margolis & Zuboy, 2006; U.S. 

PV Industry Roadmap Steering Committee, 2001).  Local incentives by utility companies may 

also support solar technology adoption rates. 

Inadequate financing options for solar technology projects are yet another concern for the 

diffusion and adoption of solar technology.  Solar energy systems are not yet competitive with 

conventional sources.  There are some federal and state programs which supply incentives and 

rebates for installing a solar energy system, but even after incentives and rebates, the cost is still 

high to consumers.  Until the cost of conventional energy and solar energy systems balance out a 

little more, programs which provide financial aid are needed if solar energy technology has a 

hope of diffusing in the residential sector (Margolis & Zuboy, 2006; U.S. PV Industry Roadmap 

Steering Committee, 2001). 

Based on the barriers and opportunities found from the literature review as applied to the 

demographics of the Shenandoah Valley, the biggest barriers (or opportunities) to residential 

solar adoption will be the high capital cost of solar equipment, income, education, age of 

homeowner, and length of payback period.  The literature review revealed the recurring theme of 

high capital costs for solar PV, income and education of consumers are the biggest influences on 

whether or not a homeowner will decide to install solar technology.  The demographics of the 

Shenandoah Valley suggest that the average resident in the Valley is a middle class, working 



45 
 

 
 

homeowner in middle age with little extra money (roughly $32,000 per year disposable income) 

to spend.  With a small amount of money remaining at the end of each month, the average 

homeowner would probably not be inclined to purchase a solar PV system which is seen as a long 

term investment and perhaps risky.  Consumers are concerned with the economic bottom line and 

the bottom line for solar at this point in time is that it is not easily affordable and has a lengthy 

return on investment period, which is does not seem attractive or advantageous for homeowners.  

Ease of financing could also be a significant factor to consider because it could outweigh the high 

capital cost barrier. 

Education was chosen as a factor of focus because it equally poses as an opportunity or 

barrier for adoption.  Almost 45% of the population in the Valley currently has at least some 

college education, and educational and awareness campaigns could potentially increase this 

number so that more residents are informed about solar and other renewable technologies and the 

implications in their own home.  The average homeowner however may not understand the 

implications and importance of global warming, climate change, or GHG emissions, but chances 

are they have at least heard of solar panels.   

The average age for a resident in the Valley is around 40 years old.  This could 

potentially be an excellent opportunity because it is in the low end of the age range of the group 

that consumes the most durable goods regardless of other factors.  These people will remain in 

the group most likely to purchase solar PV systems for the next few years.  This age for the 

average resident could also be a barrier to adoption because within the next decade, that group of 

people will be looking forward to retiring and not investing in a solar PV system which currently 

takes longer to pay off than the life of the system.  High PV system costs, income, education, and 

age were chosen from the literature and demographics of the Valley review because they deserve 

further evaluation and analysis to fully determine their impact on the Shenandoah Valley and 

solar technology adoption rates. 
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Financial Incentives   
 

Financial incentives often discern if a renewable technology will be affordable or not.  

There are a number of options for financial incentives for residential solar technology, including 

those supplied by the federal and state governments and local rebate and financing options from 

utility companies.  Federal and state incentives are most commonly tax rebates or credits, while 

utility rebates often include financing options or some variance of net metering.   

The rate at which electricity is credited to homeowners for their renewable electric power 

production is also a factor that significantly affects payback periods and life cycle costs.  In 

Europe, “feed-in-tariffs” are used extensively and usually reflect a preferential rate for renewable 

energy production (in other words, the “price” at which electricity is purchased from a renewable 

energy source is higher than from conventional fossil fuels).  In the U.S., “net metering” is 

required by federal law for all electric power utilities except municipal utilities.  Each state 

decides the exact terms of the net metering provisions, which include the maximum size of the 

systems that may be net metered, the rate at which the electricity is to be credited to the owner, 

the rate at which excess generation is to be purchased, and the terms of service of interconnection.  

In a net metering environment, electricity is actually purchased from a renewable system 

owner only when there is net excess generation at the end of the year (e.g., the system has 

generated more electricity than the owner uses in their home).  When there is no excess 

generation, electricity is credited at the full retail rate to the owner‟s electric bill.  In Virginia, if 

there is excess generation at the end of the year, the owner may sell this to the utility at the 

utility‟s “avoided cost” rate for purchasing electricity, which is close the wholesale rate for 

electric power (currently about 3.5 cents per kilowatt hour).   

The main federal incentive available currently is a residential renewable energy tax 

credit.  It is available for solar PV and solar thermal, as well as other renewable technologies.  It 

allocates a personal tax credit for 30% of the total installed costs for the solar system.  In order for 
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solar thermal to be eligible, it must be used to heat at least half of the dwelling‟s water needs 

(DSIRE, 2011).  For the Shenandoah Valley, this tax credit is beneficial, but does not bring the 

costs of solar technology into the realm of affordability for all homeowners.   

There is also a federal financing option, which is a federal loan program.  Homeowners 

can opt for an energy efficient mortgage which can finance renewable energy technologies to 

improve an existing home.  The U.S. federal government guarantees these loans through the 

Federal Housing Authority (FHA).  The loan has certain restrictions based on county, state, and 

number of occupants in a dwelling, but allows for the least of 5% of either: the value of the 

property, 115% of the median area price of a single-family dwelling, or 150% of the Freddie Mac 

conforming loan limit.  One restriction which applies is that the loan may not exceed the 

projected savings of the installed technology (DSIRE, 2011).  The average median home value 

for a Shenandoah Valley home is about $187,600. If the first financing option was utilized, 5% of 

$187,600 is $9,380 available to finance a system, which would allow only the purchase of a 1 

KW system. The problem with the financing options is that the loan amount may not exceed the 

savings of the system.  It will later be determined in a benefit cost analysis that a 1 KW system 

does not generate a savings of over $9,000. 

A state incentive option is a property tax exemption for solar in the residential sector.  

The state of Virginia (only selected counties) allows solar energy equipment to be exempted from 

local property taxes.  The only county in the Shenandoah Valley in which this applies however, is 

Warren County (DSIRE, 2011).  This incentive, while useful for over 10,000 homeowners in 

Warren County, will not be effective enough to cause widespread implementation of solar 

technology, especially considering it only affects one out of 11 counties striving for the 25x‟25 

goal. 

There are four main utility companies which service the Shenandoah Valley, including 

Dominion Virginia Power, Shenandoah Valley Electric Cooperative, Rappahannock Electric 

Cooperative, and BARC Electric Cooperative.  Dominion Virginia Power offers net metering for 
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the residential sector for systems which are no larger than ten kilowatts.  To take advantage of 

this option, homeowners with a system must complete an application and have an inspection by 

the company (Dominion Virginia Power, 2011).  Like Dominion Virginia Power, the Shenandoah 

Valley Electric Cooperative also offers net metering in the residential sector to homes which have 

a system no larger than ten kilowatts.  An application must be submitted to the company.  

Avoided cost rates for residential solar producers are not listed (Shenandoah Valley Electric 

Cooperative, 2011).  The other two utility companies, Rappahannock Electric Cooperative and 

the BARC Electric Cooperative serve a smaller portion of the Valley and both have net metering 

programs, though the Rappahannock Electric Cooperative also offers energy audits for 

homeowners (Virginia Energy Sense, 2011).    

The financial incentives listed above are certainly helpful if the decision to install a solar 

PV or solar thermal system has already been made by a homeowner, but the incentives are not 

strong enough to invoke homeowners in the Valley to adopt solar technology.  The incentives are 

not enough to create a quick return on investment or an attractive up front cost for the 

homeowner.  This reaffirms the fact that homeowners will not install solar technology unless they 

are motivated by a number of factors, and in this case, savings from financial incentives would 

not be enough. 

Conclusion 
 

Currently, the Shenandoah Valley uses less than 1% of solar power to heat homes 

compared to 43% of electricity which is used for home heating.  This will have implications for 

the adoption of solar thermal water heating systems, as the fuel for water heating is generally 

electricity or natural gas.  The payback periods will be different for each fuel, and depending on 

the ease of retrotfit, may be more or less attractive to some homeowners.  The spatial distribution 

of households within the Valley indicates that there are a key number of counties/independent 

cities where the Valley 25x‟25 Initiative should focus its campaign and educational efforts.  The 



49 
 

 
 

factors of income, amount of education attained, and the age of the homeowners within these 

counties/independent cities should be considered for these educational efforts as well.  These 

factors are the biggest barriers to residential solar technology adoption, along with the high up 

front costs of a system.  Valley homeowners will benefit from the federal tax credit of 30% of 

total installed costs of a solar PV or solar thermal system, but the incentive is not enough to make 

this technology very attractive in the residential sector.  



Chapter 3: Benefits and Costs of Solar Technology 

in the Shenandoah Valley 

Introduction 
 

Solar technology is clearly an environmentally friendly energy choice, but the costs 

associated with solar technologies in the home must be first taken into consideration before 

installation occurs.  A maximum theoretical concept will be used to determine the maximum 

possible number of housing units which could install solar PV or solar thermal hot water systems 

in their home.  The cost effectiveness of these systems will be influenced by a number of factors, 

including the amount of annual solar radiation the Shenandoah Valley receives.  A life cycle cost-

benefit analysis will be conducted to determine the most cost effective choice for an average 

Valley homeowner, while taking into account the impact that the length of payback period has on 

homeowner purchasing decisions.  Greenhouse gases will also be examined to establish the 

possible impact homes in the Valley could have on a larger scale.   

Maximum Theoretical Output Concept 
 

The maximum theoretical output concept is used in this research to quantify the 

maximum number of households which are able to install solar technology in the Shenandoah 

Valley.  The maximum technical output for each size solar PV system is calculated, assuming 

optimal operating conditions.  The technical output of energy is reported in kWh of electricity for 

each system.  Using Census data, the number of households which are able to adopt the 

technology is determined, and in the Shenandoah Valley the number of owner occupied housing 

units totaled 139,990.  The maximum theoretical concept assumes 100% adoption of the 

technology for owner occupied housing units.  Housing units which are rented could not 

realistically be included in the maximum theoretical output because the likelihood of a renter 

installing solar technology is not probable. 
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In order to facilitate meeting the 25x‟25 goals, a maximum theoretical yield for possible 

residential solar adoption was calculated using the Shenandoah Valley social, economic, housing 

and demographic characteristics.  The maximum theoretical potential adoption for solar PV was 

then broken down into more realistic scenarios based specifically on values for the Shenandoah 

Valley.  Barriers and opportunities were applied to the scenarios to provide a more realistic 

picture of the likely adoption which could take place for the Valley.  Electricity generation is a 

key component of the maximum theoretical yield which was calculated as well, which will later 

be used to help determine the maximum possible (and likely) carbon dioxide mitigation.  

Solar PV 
 

Technical Output 
 

In order to determine how much electricity any given PV system will generate, the daily 

insolation rate must also be established.  The map in Figure 17 shows the PV Solar Resource for 

the United States to give a general idea of how much sun Virginia receives.  The amount of solar 

radiation that the Shenandoah Valley receives is not very distinct, so weather data was acquired 

from the Weather Bureau Army Navy (WBAN), specifically, the Roanoke meteorological station.  

The Roanoke weather station was the closest geographically to the Valley with the specific 

information that was required.  The Roanoke station supplied information on 30-year averages of 

monthly solar radiation between the years 1961-1990.  The average solar radiation this location 

receives is 4.8 kWh/m2/day with +/- 9% uncertainty (WBAN Identification Numbers, 1990). 
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Figure 17.  Photovoltaic Solar Resource of the United States   
Source: NREL, 2008 

 

The equation which will be used to determine the annual electricity output for various sized PV 

systems in a given scenario is as follows:   

(# of owner occupied housing units x size of PV system (KW)) x daily insolation rate (4.8 

kWh/m2/day) x 365 days/year = kWh/year of electricity generated 

 

 

Table 3. Annual Output for Various Sizes of Solar PV Systems in the Shenandoah Valley 

 

Size of PV System 

(KW) 

Annual Electricity 

Generated (kWh) 

0.5 876 

1 1752 

3 5256 

5 8760 

Source:  Author’s calculations.  See Text. 

Maximum Theoretical Output 
 

The maximum theoretical potential for the Shenandoah Valley will use the total number 

of owner occupied housing units (with the assumption that they have control over the roof or 

adequate ground space for a solar system) which is 139,990 households.  For alternate scenarios, 
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barriers such as income, age and education will be applied to the total OOHU.  Using the above 

equation for calculations, the following table shows the theoretical maximum possible annual 

outputs generated by PV technology.  

Table 4. Maximum Possible Solar PV Electricity Generation in the Shenandoah Valley 

 

Number of 

Housing 

Units 

kWh 

Generated 

Annually 

Size of PV 

system (KW) 

Percent of Total SV 

OOHU Electricity 

Need Met by PV 

Percent of Total SV 

Household Energy 

Need Met by PV 

139,990 122,631,240 0.5 6%    2% 
 

139,990 245,262,480 1 12% 5% 

139,990 735,787,440 3 37% 15% 

139,990 1,226,312,400 5 62% 25% 

Source: U.S. Census Bureau, ACS 2005- 2009 and Author’s calculations.  See text. 

Using the monthly consumption values for the average Virginia household, it can be 

determined that annual consumption for a single household is about 14,040 kWh.  If this number 

is multiplied by the total number of owner occupied housing units in the Shenandoah Valley, the 

total kWh consumed can be found, which is 1,965,459,600 kWh, or almost 2,000 Gigawatt hours 

each year.  Compared to the electricity generation from maximum adoption, the 0.5 KW system 

would only provide 6% of the consumption needs, the 1 KW would provide 12%, the 3 KW 

system would supply over one third, and the 5 KW system would come the closest with 62% but 

still falls short of the Valley‟s total electricity consumption needs.  To find the percent of total 

energy consumed, the kilowatt hours generated for each system was multiplied by 3412.1 to 

convert kWh to BTU.  This number was divided by the total number of occupied houses which as 

multiplied by the average energy consumption per household (BTU).  The result is the percentage 

of need met by PV for all occupied housing units in the Valley.  This clearly shows the need for 

energy efficiency and conservation measures in addition to the need to transition toward 

renewable energies because even if every homeowner in the Valley installed a 5 KW system, it 

would generate enough electricity to meet 60% of the total electricity needs, and roughly 40% 

would be generated from other sources, likely fossil fuels.  If all owner occupied housing units 
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installed a 5 KW system would generate about 24.6% of the total energy needs, which is a 

substantial percentage, and close to the Valley‟s goal of 25%. 

Solar Thermal Hot Water 
 

Technical Output 
 

The solar thermal system for domestic hot water which will be used for this research is a 

system which utilizes a flat plate collector and one hot water storage tank.  Figure 18 below 

shows a schematic of the solar thermal hot water system which will reasonably be considered 

typical for the Shenandoah Valley in this research.  A drainback system refers to a system which 

uses gravity instead of pressurization, and usually water is used instead of a glycol-water mix for 

a heating medium (Patterson, 2011).  The temperature differential dictates when the water is 

pumped to the collector.  In times of freezing, cold, or non-sunny weather, the water drains from 

the collector back into the internal storage unit, preventing the system from freezing (Patterson, 

2011).  For this reason, a drainback system is well suited for cold climates which are prone to 

freezing. 

 

Figure 18.  Schematic of a Drainback Solar Collector System  
Source: http://www.homefreesolar.com/water-made-hot-by-the-sun.html 

http://www.homefreesolar.com/water-made-hot-by-the-sun.html
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Since the Shenandoah Valley has an average household size of 2.36 people, it can be 

generously estimated that the hot water needs of an entire household can be met with one 

domestic solar thermal system.  This assumption is generous but not unreasonable considering 

that seasonal fluctuations and changes in hot water demand will vary, but it is important to 

analyze the potential adoption of solar thermal hot water systems under the best possible 

circumstances.  Due to the assumption that the solar thermal water system will meet 100% of the 

household needs, the calculations required to determine the maximum output become minimal.  

Maximum Theoretical 
 

The maximum theoretical scenario for the case of solar thermal hot water assumes that all 

household hot water needs are met by one system.  Because of this assumption, average 

household consumption averages for the state of Virginia can be used.  The average total 

household energy consumption in Virginia is 1.65 quadrillion BTU (EIA, 2005b).  The average 

household consumption of energy for hot water heating in Virginia is equal to 0.30 quadrillion 

BTU (EIA, 2005a).  If the household hot water consumption is divided by the total energy 

consumed, the result is average BTU used in Virginia to heat hot water as a percentage of total 

energy consumed.  This resulted in 18.2% of total energy use being used for hot water heating.   

As previously explained, the estimated total BTU of energy consumption for a Shenandoah 

Valley household was 85,314,000 BTU (EIA, 2005a; EIA, 2005b).  Thus, the average household 

in the Shenandoah Valley will use roughly 15,527,148 BTU of energy, or about 4,550 kWh of 

electricity annually to heat water. See the equation below for further clarity. 

 

(Estimated energy use in BTU per Valley household * State estimate of percent of total energy 

used for hot water heating)/ Conversion factor for kWh = kWh per household consumed for hot 

water heating 

The maximum theoretical output for the solar hot water system in the Shenandoah Valley 

will therefore be 15,527,148 BTU of energy or 4,550 kWh of electricity per household.  If this 
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number is multiplied by the total number of owner occupied housing units, the result is 

637,052,493 kWh of electricity.  To find the equivalent in natural gas, BTU are converted to 

cubic feet of natural gas instead, which equals 15,060 cubic feet of natural gas consumed for hot 

water heating per household annually.  The conversion is 1,031 BTU per cubic foot of natural 

gas.  This would equate to a maximum theoretical offset of 2.1 billion cubic feet of natural gas. 

 

Economic Benefits and Costs 
 

In order to determine real feasibility and affordability of solar PV adoption in the 

Shenandoah Valley, a benefit cost analysis needs to be completed.  There are a number of 

analytical options for benefit cost analyses, but the one which will be used for this thesis is 

termed life cycle costing and it is commonly used to evaluate investments for renewable energy 

and energy conservation technology over the life of the product or service.  Life cycle cost (LCC) 

analysis has several advantages to other types of benefit cost analyses.  An LCC can answer how 

savings can be compared to costs, how large of an investment to make, how much overall costs 

will be lowered by increased conservation, and how to compare competing projects for the same 

purpose (Marshall & Ruegg, 1980).  The total life cycle costs for a product or system can be used 

to compare products for the same purpose at a per unit price to determine which is the smartest 

investment economically.  The disadvantages of such an analysis are that it does not allow the 

rate of return on investment to be determined, nor does it take into account the real time value of 

money (Marshall & Ruegg, 1980).  

Life cycle costing provides a clear analysis which allows simple comparison of various 

products or services; however it does not take into account the time value of money and therefore 

is considered to be a simple payback period calculation.  If a product has a long payback period 

(many years), generally the assumption is that the value of money will be reported in present 

value, which is defined as “the equivalent value of past and future dollars corresponding to 

today‟s values” (Marshall & Ruegg, 1980).  Essentially, the life cycle benefit cost analysis does 
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not take into consideration discounting of money, or the fact that electricity (and natural gas) 

prices are expected to rise over the next 15 to 20 years.  The costs could also be reported in 

annual value, which indicates that all past, present, and future dollar amounts are converted into 

an equivalent, constant amount for the given time period.  This is also called discounting.  The 

benefit cost analysis which follows will assume present values for each scenario evaluated.   

The life cycle costing process will be applied to each of the four sizes of a solar PV 

system to determine which system size is the most cost effective investment.  The following 

equation will be used:  

Life Cycle Costs = Purchase & Installation costs – Salvage value + Maintenance and Repair 

costs + Replacement costs + Energy costs 

The purchase and installation costs include the total cost of a solar PV system and all components 

installed, including labor costs and any installation fees.  If a tax credit or rebate is applicable, it 

is subtracted from the purchase and installation costs prior to calculating the life cycle costs. The 

purchase and installation costs in Table 5 include the 30% available to homeowners.  The 

purchase and installation cost for a solar PV system in the Shenandoah Valley is $8.60 per watt 

(NREL, 2011).  This amount assumes labor costs are included.   

Salvage value refers to the value of a system which could be gained from selling it at the 

end of its useful life.  The average life for a solar PV system is 30 years.  Salvage value is 

difficult to pinpoint for residential systems, so a variety of scenarios will be discussed.  

Maintenance and repair costs include any cost incurred over the life of the product (PV system).  

For the purpose of this analysis, maintenance and repair costs will be $0 because very little 

maintenance is required for PV systems.   

Replacement costs for a solar PV system would most likely be incurred from the system 

components rather than the actual panels.  Inverters generally need to be replaced every 10 years, 

because that is the length of the warranty on many types of inverters.  There is an option for 

consumers to buy an additional 10 year warranty which is sometimes equal to the cost of a new 
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inverter, but for this investigation it will be assumed that the inverter will last ten years, the 

additional warranty will not be purchased, and that the inverter will need to be replaced twice 

over the life of the solar PV system (30-year life cycle).  On average, a typical inverter will cost 

$0.70 per watt.  This number was calculated by averaging the cost per watt for SMA Solar 

Technology AG inverters, which is an American subsidiary of the German solar technology 

manufacturing company and the most widely used inverter manufacturer (SMA America, LLC., 

2011).   

The energy costs related to the life cycle of a product include the cost to operate the 

system over its lifetime; therefore the cost to operate a solar panel would be $0 since the energy 

comes from the sun.  It can be compared to grid connected electricity, which would be equal to 

the amount of electricity multiplied by the amount of electricity consumed (in kWh) per 

household and multiplied by the evaluated time period.  It is assumed that the price of electricity 

will not increase over the 30-year life cycle of the solar PV system.  While this may not be 

realistic, it provides an estimate for the length of the payback period. 

Another assumption in this LCC is that the solar PV system payback period will be 

determined using only from the savings from using solar power compared to grid connected 

electricity.  It should also be noted that all of the chosen PV systems will not provide 100% of 

household electricity needs and therefore the solar electricity generated would only serve as a 

supplement and grid electricity would still be required.  Table 5 shows the cost of each factor in 

the LCC equation for each size solar PV system, with a salvage value of $500.  This value was 

used because an accurate value could not be determined for salvage values of residential systems, 

and thus several scenarios were proposed. The $500 value was estimated to be a moderate salvage 

value.  Residential systems are smaller compared to commercial or utility sized PV systems so the 

residual value or salvage value would also be less, but the value is difficult to determine, 

especially considering a 30-year life cycle.  
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Benefit Cost Analysis for Solar PV 
 

Table 5. Life Cycle Costs for a 0.5, 1, 3, & 5 KW PV System 

Source: Author’s calculations.  See text.

                                                           
2
 The sensitivity of the life cycle cost analyses to cost estimates will be addressed in the final conclusions. 

Life Cycle Costing
2
 0.5 KW System 1 KW System 3 KW System 5 KW System 

 
PV System 

Grid-tied 

electricity 
PV System 

Grid-tied 

electricity 
PV System 

Grid-tied 

electricity 
PV System 

Grid-tied 

electricity 

 

Purchase and 

Installation 
$4,300 $0 $8,600 $0 $25,800 $0 $43,000 $0 

Cost after 30% Tax 

Credit 
$3,010 $0 $6,020 $0 $18,060 $0 $30,100 $0 

Salvage $500 $0 $500 $0 $500 $0 $500 $0 

Maintenance and 

Repair 
$0 $0 $0 $0 $0 $0 $0 $0 

Replacement Costs $710 $0 $1,420 $0 $4,260 $0 $7,100 $0 

Energy Costs $0 $2,788 $0 $5,577 $0 $16,730 $0 $27,883 

*Annual Energy 

Savings 
$93 $0 $186 $0 $558 $0 $929 $0 

Total Life Cycle Cost 
$3,220 $2,788 $6,940 $5,577 $22,260 $16,730 $37,100 $27,883 

$ Difference between 

Solar and Grid 

Electricity  

(30 years) 

N/A $432 N/A $1,363 N/A $5,090 N/A $8,817 

Payback Period 

(years) 
35 N/A 37 N/A 40 N/A 40 N/A 
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Table 5 shows that the total life cycle cost for a 0.5 KW system would be about $3,220 

over 30 years, compared to almost $2,800 for grid electricity.  This is a difference of $432, which 

indicates no savings at all even for a small residential solar PV system.  However, because $432 

is not an exorbitant amount of money, a savings may occur with the expected increases in the cost 

of electricity over 30 years.  A 0.5 KW system would provide very little of a household‟s 

electricity needs, however.  Another scenario is shown below using a salvage value of 15%, 

which is more generous but perhaps not as realistic.  In comparing the higher kilowatt systems 

and the smaller sized systems, it shows that a $500 return for salvage value is negligible.  From 

the literature examined, it was found that a commercial system (around 500 kW or half of a 

Megawatt) will draw a 20% salvage value at the end of 30 years.  Twenty percent was thought to 

be too generous for a residential sized system and the $500 is a moderate estimate which was why 

15% was used for an alternate salvage value.  Table 6 shows the total life cycle costs for a system 

which would receive 15% of the initial purchase cost as a salvage value at the end of its life. 
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Table 6. Life Cycle Costs for a 0.5, 1, 3, & 5 KW PV System 

 

Life Cycle Costing 0.5 KW System 1 KW System 3 KW System 5 KW System 

 
PV System 

Grid-tied 

electricity 
PV System 

Grid-tied 

electricity 
PV System 

Grid-tied 

electricity 
PV System 

Grid-tied 

electricity 

 

Purchase and 

Installation 
$4,300 $0 $8,600 $0 $25,800 $0 $43,000 $0 

Cost after 30% Tax 

Credit 
$3,010 $0 $6,020 $0 $18,060 $0 $30,100 $0 

Salvage $452 $0 $903 $0 $2,709 $0 $4,515 $0 

Maintenance and 

Repair 
$0 $0 $0 $0 $0 $0 $0 $0 

Replacement Costs $710 $0 $1,400 $0 $4,260 $0 $7,100 $0 

Energy Costs $0 $2,788 $0 $5,577 $0 $16,730 $0 $27,883 

*Annual energy 

savings 
$93 $0 $186 $0 $558 $0 $929 $0 

Total Life Cycle Cost $3,268 $2,788 $6,537 $5,577 $19,611 $16,730 $32,685 $27,883 

$ Difference between 

Solar and Grid 

Electricity  

(30 years) 

N/A $480 N/A $960 N/A $2,881 N/A $84,802 

Payback Period (years) 35 N/A 35 N/A 35 N/A 35 N/A 

Source: Author’s calculations.  See text.
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The 15% salvage value showed a slight reduction in the length of payback periods for the 

three larger PV systems, but extended the amount of time required to pay off a 0.5 KW system.  

The annual energy savings shown in both LCC tables is a figure derived from the cost of grid 

electricity.  It was found by multiplying the current electricity rate with the hours of insolation, 

days per year, and the size of the system.  Essentially, it is what a homeowner‟s electric bill 

would be using grid electricity annually.  If the salvage value were to be $0 after 30 years, the 

payback period would increase to 40 years.  The life cycle costs for systems with $0 acquired 

from salvage would be $3,720 for a 0.5 KW system, $7,217 for a 1 KW system, $21,651 for a 3 

KW system, and $36,085 for a 5 KW PV system.  A $0 return for salvage value is a conservative 

estimate but not entirely unrealistic.  As seen in all of the above scenarios for life cycle costs, the 

savings derived from the system never exceed the costs, therefore indicating that they never pay 

for the system.  The payback periods in all cases are longer than the expected life of a system.  

In order to determine affordability, the most likely demographic scenario was used, 

which was the maximum likely adoption for households restricted by income and education, as 

explored in Chapter 4.  The total number of households able to adopt solar PV which were 

restricted by income and education was 46,205.   

First, the median household income for the Shenandoah Valley was established, which 

was $46,140 annually.  Then, 30% was subtracted to determine the average amount of disposable 

income per household.  Thirty percent was used because it was previously established to be the 

maximum allowable percentage of income which could go toward housing costs.  For the purpose 

of this thesis, any money remaining after housing costs is considered disposable income.  This 

calculation resulted in an average disposable income for the Valley of $32,298.  The average 

disposable income for the Shenandoah Valley automatically eliminates all 5 KW PV system 

options because they are all at least $36,000, as found from the LCC.  Regardless of whether or 

not a homeowner would choose to finance a PV system or incur the costs upfront, they would 

need at least a sizeable portion of the income to cover installation costs.  The affordability for the 
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remaining sized solar PV systems was determined using the ACS Census data.  The Census data 

was referenced to determine the percentage of households which made at least $33,000 which 

resulted in 64% of total OOHU.  It is assumed that the homeowners restricted by income and 

education are a representative portion of the population with respect to income.  The 64% was 

then applied to the OOHU restricted by income and education and the result implies that only 

29,530 households would be able to afford a 3 KW system or smaller because they have at least 

$33,000 in disposable income annually.  

The difference between average household disposable income and costs for a 3KW 

system with varying salvage values ranges from $8,000 to $10,600.  This is the portion of annual 

income which would remain after the purchase of such a system.  This is likely not enough to 

cover annual expenses for an average family of 3-4 (car payments, groceries, bills, etc.).  Thus, it 

would not be likely that a 3 KW system would be installed either, but that a 1 KW PV system 

would appear more attractive financially to homeowners.    

By using a life cycle benefit cost analysis, it appears that the most likely scenario for 

solar PV adoption in the Shenandoah Valley is a scenario which is restricted demographically by 

income and education and economically by the high cost of a PV system.  This results in 29,530 

OOHU able to afford a 3 KW system but unlikely to install it; it is more likely that homeowners 

would install a 1 KW system because it is more affordable and would generate a quicker return 

on investment.  This benefit cost analysis is limited because it does not consider the time value of 

money which makes it difficult to determine the actual length of payback for a system and 

provides a generous estimate on the length of payback.  However, it does indicate that a 1 KW 

system would be most beneficial because it would meet more of a households electricity needs 

than a 0.5 KW system while being more affordable than a 3 or 5 KW system.  A 3 KW system 

may be the most economical if the time value of money was considered; discounting and its 

associated implications will be explored later. 
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Benefit Cost Analysis for Solar Thermal 
 

The benefit cost analysis for solar thermal hot water has similar implications as a solar 

PV system; it is assumed that a solar thermal hot water system has a 30-year life, and little to no 

maintenance and repair costs.  The typical drainback solar system is a reliable design that often 

out performs its pressurized counterparts (Patterson, 2011) so replacement costs will also be 

assumed to be $0 over the life of the system.  The annual energy costs for the solar thermal hot 

water system are also assumed to be zero, since 100% of a household‟s hot water needs are being 

met with solar radiation.  For conventional heating, an installation cost of $500 is assumed for the 

cost of a new hot water heater.  Tables 7 and 8 below show the life cycle costs for a solar thermal 

hot water system compared to grid electricity and natural gas.  

Table 7. Life Cycle Costs for a Solar Thermal Hot Water System Compared to Electricity 

 

Solar Hot Water One size meets 100% of hot water need 

Life Cycle Costing for Electricity 
Solar Thermal Hot 

Water System 
Grid-tied Electricity 

    

Purchase and Installation $8,795 $500 

Cost after 30% Personal Tax Credit $6,157 N/A 

Salvage $0 $0 

Maintenance and Repair $0 $0 

Replacement Costs $0 $0 

Energy Costs* $0 $982.83 

Annual energy savings $482.83 N/A 

Total Life Cycle Cost $6,157 $982.83 

Difference between Solar and Grid 

Electricity 
$5,174 

Payback Period (years) 12.8 
 

Source: Author’s calculations.  See text. 
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Table 8. Life Cycle Costs for a Solar Thermal Hot Water Compared to Natural Gas 

 

Solar Hot Water One size meets 100% of hot water need 

Life Cycle Costing for Natural Gas 
Solar Thermal Hot 

Water System 
Natural Gas 

    

Purchase and Installation $8,795 $500 

Cost after 30% Personal Tax Credit $6,157 N/A 

Salvage $0 $0 

Maintenance and Repair $0 $0 

Replacement Costs $0 $0 

Energy Costs* $0 $289.46 

Annual energy savings $289.46 N/A 

Total Life Cycle Cost $6,157 $789 

Difference between Solar and Natural 

Gas 
$5,367 

Payback Period (years) 21.3 
 

Source: Author’s calculations. See text. 

As can be seen above, the payback periods for a solar thermal hot water system compared 

to solar PV are staggeringly smaller, even with comparable purchase and installation costs (of a 1 

KW PV system).  This life cycle cost analysis is more straight-forward than solar PV because it is 

assumed there is one typical system that can be installed which will meet 100% of a homes hot 

water heating needs.  Based on the current price of electricity, the payback period for solar 

thermal hot water heating with electricity is almost half of that compared to heating water with 

natural gas.  A payback period of 12.8 years for the system which offsets electricity consumption 

is still a long payback period for a homeowner, especially when outside factors are considered.  

The payback period for a solar hot water system which replaces natural gas heating is 21.3 years, 

which is considered a long payback period.   

These payback periods have difficulty competing with the low costs of conventional fuels 

in addition to the fact that homeowners may not want to make a long term investment for hot 

water heating.  The cost of electricity per month to heat water in a Valley home according to the 

above calculations is roughly $40, and for natural gas the cost per month is about $24.  A 

homeowner comparing their current cost of heating water to the cost of a installing a solar 
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thermal system would not likely be inclined to give up the low monthly cost of water heating to 

install solar thermal equipment for almost $6,200.  However, the cost of a solar thermal hot water 

system is very similar to a 1 KW solar PV system, yet the payback period is much shorter.  This 

alludes to the fact that if a homeowner is willing to install solar technology and aware of all the 

current options and costs, the first choice would likely be a solar thermal system because it has a 

shorter payback period (regardless if using electricity or natural gas).  The solar thermal system 

would meet 100% of a homeowners hot water needs for a slight increase in upfront costs.   

Discounting 
 

Taking into account the time value of money is essential to get a realistic picture of the 

length of time for payback required for a solar system.  The value of money in the future is less 

than the value of money in present value which means that the monetary savings of each size 

system will decrease and the length of time required to pay off the system will increase.  Two 

discounting formulas were used to determine the discounted life cycle costs of PV and thermal 

systems.  To find the discounted solar PV life cycle cost, the replacement costs (inverters) were 

discounted using a single present worth formula as follows: 

 

 
 

where P is the present value, F is the future sum of money, „i‟ is an interest or discount rate, and n 

is the number of years or discounting periods.  This equation is used because the replacement 

costs are incremental costs as opposed to a uniform series of payments.  Shown below in Table 9 

is a comparison of the simple and discounted life cycle costs and payback periods.   
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Table 9. Comparison of Life Cycle Costs and Payback Periods for Simple and Discounted 

Computation Methods of Solar PV Technology 

 

 

Life Cycle Costs for Solar PV 
 

 

0.5 KW 1 KW 3 KW 5 KW 
Payback 

(Years) 

Simple Payback $3,720 $7,440 $22,320 $37,200 40 

Discounted Payback $3,471 $6,942 $20,827 $34,712 57 

Source:  Author’s calculations.  See text. 

 

The present value of an inverter is $0.71 per watt, which is used in the above equation 

(SMA America LLC., 2011).  The discount rate used is 3%, which is used by the Virginia Federal 

Credit Union for a home equity line of credit.  This figure is used because homeowners in the 

Valley that can afford a system will likely combine it with house payments or a mortgage (if they 

have one) rather than paying out of pocket or applying for a personal loan.  A home equity line of 

credit loan payback period is generally 15 years, but it will be assumed that the length of loan will 

not be shorter than the life of the technology.  For this reason, it will be assumed that the loan for 

the solar technology will be paid off in 30 years.   

The rate of 3% is also a common estimate used for the rate of inflation over time.   It is 

assumed that the replacement inverters will have the same price point in the future as they do 

today.  This scenario is favorable, but not the most favorable and not the most conservative 

estimate for the price of an inverter replacement.  From Table 9 above, it can be seen that the 

discounted life cycle costs are lower for each size system, but not by significant amounts.  The 1 

KW system has a difference of about $500 when the time value of money is accounted for.  The 

payback period, however, lengthens because the purchasing power of money is less in the future.  

Also taken into account in the above table is the changing cost of energy.  The equation below 

was used to determine the present value for the cost of energy in the future.  
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The cost of energy is accounted for in the discount rate in this equation because the discount rate 

is the same as the inflation rate.  This is true because of the assumption that the inflation rate is 

3% and the increasing cost of energy also occurs at a rate of 3%.  They are moving in opposite 

directions, basically cancelling each other out.   

Greenhouse Gas Mitigation 
 

Greenhouse Gases 
 

Greenhouse gases such as carbon dioxide (CO2), methane, nitrous oxide, 

chlorofluorocarbons (CFC‟s) and many others are found naturally in the atmosphere.  However, 

anthropogenic activities have increased GHGs substantially since the Industrial Revolution and 

the result will be global warming and climate change.  Since the Industrial Revolution, a 30% 

increase has been reported in atmospheric carbon dioxide concentrations.  Not all GHGs are 

created equal though.  One CFC molecule, such as Freon, has the same ability to heat the Earth‟s 

atmosphere (global warming potential) as 10,000 carbon dioxide molecules.  Carbon dioxide 

occurs in much higher atmospheric concentrations, but it is by no means the most potent.  

Greenhouse gases are sometimes grouped together for ease of explanation in what is referred to 

as CO2 equivalent (CO2e) because CO2 is more widely understood in its effects on global 

warming.  For the purpose of this carbon dioxide mitigation analysis, CO2 will be examined for 

mitigation potential, but CO2e will also be reported (Hinrichs & Kleinbach, 2006). 

The combustion of fossil fuels for energy is a primary contributor to GHG emissions.  In 

the residential sector, it is used mostly for electricity.  The energy to power homes comes from 

utility companies which burn either coal or natural gas, or use combined heat and power cycles.  

Combined heat and power (CHP) utilizes the heat (often in the form of steam) as well as the 

typical mechanical energy generated from the combustion of fossil fuels which is then converted 

into electricity.  Combined heat and power is a more efficient use of energy and often cleaner, but 
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less common than conventional fossil fuel sources.  The map below shows the Shenandoah 

Valley utility companies which provide electricity to the region. 

 
Figure 19. Virginia Electric Service Territories 
Source: Division of Energy Regulation, 2010. 

 

The Shenandoah Valley is supplied with electricity from four main utility companies, 

which include Dominion Virginia Power, Shenandoah Valley Electric Cooperative, 

Rappahannock Electric Cooperative, and BARC Electric Cooperative.  Dominion Power and the 

Shenandoah Valley Electric Cooperative are the main suppliers of energy for the region.  

Normally, the fuel ratio for each utility company would need to be determined in order to 

evaluate the amount of carbon dioxide emissions; however, there is a tool available from the 

Greenhouse Gas Protocol which will calculate GHG emissions.  The calculation tool has the 

option of selecting a geographic region which automatically assigns a fuel mix ratio which is 

characteristic of that region to determine the correct amount of emissions (WRI, 2011).   

The Greenhouse Gas Protocol tool is designed to calculate the GHG emissions resulting 

from the generation of electricity for a given area.  Information which is required to use the tool 

includes the amount of electricity being consumed and the country and region where electricity is 

being consumed.  The fuel mix ratio can be manually chosen, but generally, the preselected fuel 
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mix for each region is a good indicator of the fossil fuels being used for electricity generation.  

The predetermined region of SERC Virginia/Carolina was used, which uses the fuel mix specific 

for Virginia and North and South Carolina.  The percentage of electricity that is being consumed 

by a building must also be specified, and since the GHGs are being calculated for the residential 

sector, it is assumed they are using 100 percent of the purchased electricity, whereas a single 

apartment in an apartment complex would only use a portion of the purchased electricity (WRI, 

2011).   

The Greenhouse Gas Protocol uses the Emissions & Generation Resource Integrated 

Database (eGRID) which is published by the U.S. EPA.  The database reports data on 

environmental characteristics for much of the electric power generated in the U.S., including 

information for carbon dioxide, nitrogen oxides, sulfur dioxide, methane, and nitrous oxide.   It 

gives details on emissions rates, net generation, resource mixes, among others (EPA, 2011a).  The 

eGrid explains the differences in calculations for various GHGs as well.  

 

While CO2 can be reasonably estimated by applying appropriate emission 

factors to the fuel quantity consumed, estimating CH4 and N2O depends not 

only upon fuel characteristics, but also on technology type and combustion 

characteristics, usage of pollution control equipment, and ambient 

environmental conditions (WRI, 2011).  

The Greenhouse Gas Protocol Initiative tool was selected to determine potential carbon 

dioxide mitigation for the Shenandoah Valley because it is a reliable and credible source of 

information.  The GHG Protocol Initiative is a long-standing partnership between the World 

Resources Institute and the World Business Council for Sustainable Development.  The Protocol 

is held to high reporting standards, and each tool is accompanied by a guidance document which 

includes instructions on how to properly use the tool as well as explanations for equations or 

processes.  
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Solar PV Mitigation 
 

For the maximum potential carbon dioxide mitigation in the Shenandoah Valley, 

electricity generated from each sized solar PV system (and varying numbers of OOHU) was used 

in calculations.  The following table shows the electricity generated/consumed for each size solar 

PV system assuming the maximum theoretical potential, and the associated carbon dioxide 

offsets. 

 

Table 10. GHG Emissions Mitigation for Solar PV Electricity Generation 

 

 Emissions 

Number of 

OOHU 

Size of PV 

System 

(KW) 

Electricity 

Generated 

(MWh) 

CO2 

(tonnes) 

CH4  

(kg) 

N2O  

(kg) 

CO2e 

(tonnes) 

139,990 0.5 122,631 63,127 1,322 1,100 6,349 

139,990 1 245,262 126,254 2,644 2,201 126,992 

139,990 3 735,787 378,763 7,933 6,604 380,977 

139,990 5 1,226,312 631,271 13,221 11,007 634,961 

Source: World Resource Institute, 2011 and author’s calculations.  See text. 

From the above table, it can be seen that the carbon dioxide emissions for the maximum 

number of OOHU (assuming the likely 1 KW system) is about 126,000 metric tons.  For 

reference, this amount would be equal to the offset in emissions from 22,458 passenger vehicles 

(EPA, 2011b).  This is a noteworthy reduction in the emissions for the residential sector in the 

Shenandoah Valley.  The emissions of carbon dioxide for every occupied housing unit in the 

Valley equal over one million metric tons.  The offset of emissions if all owner occupied housing 

units (maximum theoretical potential) installed a 3 KW system would be about 37% of the total 

emissions from occupied homes; if every homeowner installed a 1 KW system it would offset 

12.5% of total emissions from occupied homes in the Valley.  

Solar Thermal Mitigation  
 

In order to determine the amount of carbon dioxide that would be mitigated in the Valley 

by homeowners who choose to install solar thermal hot water systems, a weighted average of 
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natural gas and electricity as fuel sources was used.  This weighted average was determined using 

the U.S. Census American Community Survey data on primary home heating fuel.  It is assumed 

that if a homeowner heats their home with one fuel, the same fuel will also likely be used to heat 

their water.  From the Census data, it was found that 43% of the total occupied housing units used 

electricity as a heating source, and 31% used natural gas.  When added together, they account for 

74% of the total.  Because other sources (wood, biogas, etc.) are not commonly used for hot water 

heating, the percent of electricity and natural gas were divided by 74% to give a new ratio that 

would equal 100%.  This calculation resulted in 58% of the homes using electricity and 42% 

using natural gas for home hot water heating.  

Because CO2 emissions are different for electricity and natural gas, each hot water 

heating source was calculated individually and then added together for each scenario to get the 

total amount of carbon dioxide emissions that would be mitigated.  The same calculation tool 

from the GHG Protocol that was used to calculate PV emissions mitigation was used for solar 

thermal hot water users who heat with electricity (WRI, 2011).  This tool was utilized again due 

to the fuel mix which is exploited in this region to generate electricity, and therefore takes into 

account the varying amounts of GHG emissions from each primary energy source.  However, 

because this tool calculates only emissions for electricity, another calculation tool was needed for 

natural gas.  Because natural gas is a primary energy source and not region-specific with respect 

to GHG emissions, the EPA greenhouse gas emissions calculator tool was used (EPA, 2011b).  

The amount of energy which a household uses for hot water was converted from BTU into kWh 

for electricity and therms for natural gas, to be compatible with each tool used. 

Because it is a ratio of the number of owner occupied housing units which use each fuel, 

58% and 42% were multiplied by the number of owner occupied housing units in each scenario to 

determine the number that were using electricity and natural gas to heat their water, respectively.  

Then, the amount of hot water used in BTU was converted to kWh or therms for each fuel, and 
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then input into their respective calculation tools.  Table 11 shows the GHG emissions for the 

maximum theoretical scenario of solar thermal adoption in the Valley.  

Table 11. Maximum Theoretical GHG Emissions Mitigation for  

Solar Thermal Hot Water Systems 

 

Maximum theoretical: 139,990 housing units Electricity: 58% Natural Gas: 42% 

# Owner-Occupied Housing Units 81,194 58,796 

kWh offset (metric tons of CO2e)* 369,494,244 N/A 

Therms offset (metric tons of CO2e)* N/A 9,129,311 

Metric Tons CO2e 191,317 45,647 

Total Emissions Mitigated (metric tons of CO2e) 236,964 

*Note: The average household in the Shenandoah Valley uses 15,527,148 BTU of energy for hot water heating 

annually.  This number was converted into kWh (4,451) and therms (15,060).  Each of these numbers was input 

into a GHG calculator specific for electricity and natural gas, respectively. 

Source: World Resource Institute, 2011; EPA 2011b, and author’s calculations.  See text. 

 

As can be seen above, the total GHG emissions mitigated from solar thermal hot water 

systems is equal to almost 237,000 metric tons of carbon dioxide equivalent (CO2e).  This would 

equate to offsetting the emissions of 46,464 passenger vehicles (EPA, 2011b).  The carbon 

dioxide equivalent was used for emissions mitigation potential for solar thermal because the 

calculation tool for natural gas only reported CO2e, and not CO2.  Carbon dioxide equivalent 

differs from carbon dioxide in that it includes methane, nitrous oxide, and other non-CO2 gases.  

It is still an accurate picture though, of the mitigation potential for the maximum theoretical 

adoption scenario in the Valley.  

Conclusions 
 

This chapter outlines the methodology used to determine the affordability of solar 

technology for the average homeowner, which is influenced by the solar resource available to the 

Shenandoah Valley.  The Valley receives 4.8 kWh/m
2
/day of solar radiation which is average for 

the United States, considering the Southwest can receive up to 7 kWh/m
2
/day and the Northwest 

may only receive 2 kWh/m
2
/day.  The maximum theoretical output for a PV system in the Valley 

would include a 5 KW system on 139,990 owner occupied housing units, which would produce 

enough electricity to meet 24.6% of the entire Valley‟s energy needs.  Using the U.S. Census data 
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of selected monthly owner costs as a percentage of income, the average disposable income for a 

Shenandoah Valley homeowner was determined and this information was then used with various 

assumptions to find the real likelihood of adoption for each size solar PV system.  It was found 

that the most likely size solar PV system to be adopted would be 1 KW system, which would cost 

$7,217 over the 30-year life of a system, which would take 39 years to pay off.  A salvage value 

of $0 after 30 years is the most likely scenario for both solar PV and solar thermal systems.  The 

average homeowner would not be able to afford a 5 KW system, and installation of a 3KW is 

unlikely due to the amount of disposable income remaining after housing costs are considered.  A 

solar thermal hot water system life cycle cost is $6,157 with a 12.8 year payback period if the 

solar thermal system offsets electricity, and 21.3 years if the system offsets natural gas use for hot 

water heating.  The solar thermal system is more likely to be attractive to a homeowner in the 

Valley when compared to a 1 KW PV system, because it will meet 100% of the hot water needs 

for a home, with a shorter payback period and a faster return on investment, as well less 

expensive upfront costs.   



Chapter 4: Estimates of the Rates of Adoption of 

Solar Technology in the Shenandoah Valley 
 

The estimates of rates of adoption the in Shenandoah Valley are a core component to 

determine the feasibility of achieving the Valley 25x‟25 goals.  These estimates were generated 

using U.S. Census data with the assumptions that the Shenandoah Valley households are a fairly 

accurate representation of the whole population.  The scenarios below present options and 

alternatives for the rates of adoption in the Shenandoah Valley with various demographic 

restrictions.  These scenarios could help policy officials to see the real situation in the Valley and 

therefore plan and develop policies (such as those dealing with financial incentives) to increase 

the adoption and diffusion of solar technology while aiding the Valley in working toward the goal 

of 25% renewable energy by 2025.  

Data Resources 
 

The data which was used for this research was acquired from the U.S. Census Bureau 

American Community Survey (ACS).  The ACS was conducted as part of the 2010 Decennial 

Census Program and its primary goal was to survey the American population each year to keep 

current with demographic, socio-economic, and housing trends.  The Decennial Census data can 

quickly become outdated when used for research and statistical purposes and therefore would not 

be recent enough on which to base solid conclusions or decisions.  The ACS aims to keep 

population information up to date so that governments and organizations continually have current 

data to make decisions, especially when it comes to financing public works such as schools, 

hospitals, and roads (U.S. ACS, 2011b).  This survey supplies the most recent information to 

“help determine how more than $400 billion in federal and state funds are distributed each year” 
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(U.S. ACS, 2011a).  As with the Decennial Censuses, it is required by law that United States 

residents respond to the ACS.  

The American Community Survey (ACS) is conducted every year in order to keep 

current data available.  Therefore, the ACS has 3 sets of data available to the public which are the 

1-year, 3-year, and 5-year estimates, of which the latter two are compiled from multiple years of 

data.  The ACS 5-year estimate was used for the research conducted because it provided data for 

small locales- counties and independent cities.  The Decennial Censuses, 3-year estimates, and 1-

year estimates do not release information with that level of detail.  The 5-year estimates include 

the largest sample size and most months of collected data and information for areas with 

populations smaller than 20,000.  The 2005-2009 5-year estimate data was available for more 

than 600,000 geographic areas.  Compared to the Decennial 2000 Census, the ACS is less reliable 

due to the design of the form and also the ACS does not follow up with all non-respondents like 

the 2000 Census does.  However, because the response form is shorter than the Decennial Census 

forms, response levels have been consistently high as well as data completeness on the forms.  

Responses from the ACS also indicate that the target populations are being reached with the 

survey.  When compared with the 1-year and 3-year estimates however, the 5-year estimates 

survey is more reliable because it averages more data over time but for the same reason it is also 

the least current. 

The 5-year estimates were used for this research by searching the ACS database for the 

Shenandoah Valley counties and independent cities.  The Census Bureau separates the 

independent cities from counties for Virginia because of legal jurisdictions.  The data supplied 

information on social, economic, housing and demographic statistics for these areas.  The ACS 

data is credible because the U.S. Census Bureau is held to high reporting standards and the 

equitable dispersal of government money depends on the Census Bureau being reliable and 

accurate.   
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Demographic Scenarios 
 

The specific social, economic, housing and demographic characteristics for the 

Shenandoah Valley are extremely influential in determining the possible solar technology 

adoption. Without this information, the realistic potential for the Valley could not be determined.  

The maximum theoretical potential for the number of households in the Shenandoah Valley for 

solar technology adoption is 139,990 homes because this is the number of owner occupied 

housing units (OOHU).  However, since this number is the absolute maximum and does not take 

into account any barriers to implementing a solar PV or thermal system, other scenarios will also 

be addressed based on the barriers and opportunities to adoption found for the Shenandoah 

Valley.  Each scenario will be assessed with each size solar PV system of 0.5, 1, 3, and 5 

kilowatts, and a „typical‟ solar thermal hot water system.  For all calculations, installed PV 

systems are assumed to be current, flat-plate, off-the-shelf technology, facing south with a fixed 

tilt, receiving the maximum amount of sunlight.  The solar thermal system is assumed to be a 

drainback system which meets 100% of a home‟s hot water needs.  Income, education, and age 

will be applied to each size of system and a realistic adoption scenario for the Valley will be 

identified.  

In 2009, the average U.S. household electricity consumption was 908 kWh per month.  

For Virginia, the average was 1,170 kWh per month or roughly 14,040 kWh annually (EIA, 

2011c).  Given the current electricity prices of around 10.61 cents per kWh for Virginia (EIA, 

2011c), the average monthly utility bill for a Virginia resident would be about $124.06 (EIA, 

2011c).  For reference, Table 12 shows the cost for each size of a system, given the average 

installation cost for Virginia of $8.60 per watt (NREL, 2011).  A 3KW system is a typical size for 

residential PV.  
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Table 12.  Installed Costs of a Solar PV System 

 

Size of Solar PV System Installed Cost 

0.5 KW $4,300 

1 KW $8,600 

3 KW $25,800 

5 KW $43,000 

Source: NREL and author’s calculations 

Scenarios 
 

Scenario 1. Income Barriers 
 

Because the high capital cost of solar technology is a very significant obstacle, the 

income barrier is the first applied to the total OOHU.  In order to determine the number of 

homeowners which could afford a system based on income, the „selected monthly owner costs as 

a percentage of household income‟ (SMOCAPI) data was used from the ACS.  By using this 

information as opposed to the raw income data, this gives a better picture of affordability and 

amount of disposable income.  A homeowner may make $75,000 annually, but if housing costs 

require half of that, they will likely not be able to afford solar technology.  The figure used for 

determining the number of households which could afford solar PV or solar thermal technology 

based on income is 104,654 homes.   This was determined by adding together the number of 

households (mortgaged and owned free and clear) which have SMOCAPI less than 30% of total 

household income.  This percentage was used because conventionally a loan will not be given to 

any applicant whose monthly costs are more than 30% of total income because it presents a 

financial liability to the lender for repayment.  Table 13 shows the amount of electricity which 

can be generated from households restricted by income, for solar PV.  Table 14 shows the 

households restricted by income for a solar thermal hot water system. 
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Table 13. Solar PV Electricity Generation in the Shenandoah Valley,  

with Adoption Levels Restricted by Income 

Source: U.S. Census Bureau, ACS 2005- 2009 and author’s calculations.  See text. 

 

Table 14. Solar Thermal Electricity Generation in the Shenandoah Valley,  

with Adoption Levels Restricted by Income 

 

Number of 

Housing Units 

kWh Generated 

for a Single Solar 

Hot Water Heater 

Total kWh 

Generated 

Annually 

Percent of Total SV 

Household Energy 

Need Met by Solar 

Thermal 

104,654 4,550 476,175,700 10% 

Source: U.S. Census Bureau, ACS 2005- 2009 and author’s calculations.  See text. 

Table 13 clearly shows that even if every household that could possibly afford PV 

installed the largest system (5 KW), less than half of the total Shenandoah Valley OOHU 

electricity needs would be met.  Notably, if a single household has lower electricity needs, it 

might meet a larger percentage of the individual total.  The table also shows that if every person 

who could afford solar PV installed a system, the percent of total household energy use in the 

Valley would equate to about 18%.  Table 14 shows that if all homeowners who were restricted 

by income installed a solar thermal hot water system, 10% of all energy consumed in occupied 

housing units in the Valley would be met. 

Scenario 2. Education Barriers 
 

Another barrier which needs to be applied to the PV adoption scenarios is the attainment 

of education.  It is inferred that the amount of education a person receives will directly influence 

the likelihood of knowledge and awareness of renewable technologies.  Therefore, for this 

scenario only residents which achieved higher education of some kind (at least some college 

education) were included in the calculations.  Because the Census data was not directly 

Number of 

Housing Units 

kWh Generated 

Annually 

Size of PV 

system (KW) 

Percent of Total SV 

OOHU Electricity 

Need Met by PV 

Percent of Total SV 

Household Energy 

Need Met by PV 

104,654 91,676,904 0.5 5%               2% 
 

104,654 183,353,808 1 9% 4% 

104,654 550,061,424 3 28% 11% 

104,654 916,769,040 5 47% 18% 
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correlated, some assumptions were made.  In order to find the number of households which 

would be able (or restricted) to install solar technology based on education, the total number of 

residents age 25 or older who achieved at least some college education for each county in the SV 

was added together.  Then, the “educated” residents were divided by the total population age 25 

or older to determine the percentage of the population that was educated.  This percentage 

(44.15%) was then multiplied by the total number of OOHU in the Valley.  The assumption is 

that the number of OOHU is a representative portion of the population, so that the same 

percentage could be applied to both (i.e. homeowners are not necessarily more or less educated 

than those who rent).  This resulted in 61,806 households which may be able to install solar 

technology based on their educational attainment.  Tables 15 and 16 show the calculations for 

annual electricity generation for these households. 

 

Table 15. Solar PV Electricity Generation in the Shenandoah Valley,  

with Adoption Levels Restricted by Education 

 
Number of  

Housing 

Units 

kWh Generated  

Annually 

Size of PV 

system 

(KW) 

Percent of Total SV 

OOHU Electricity 

Need Met by PV 

Percent of Total SV 

Household Energy 

Need Met by PV 

61,806 54,141,692 0.5 3% 1% 

61,806 108,283,385 1 6% 2% 

61,806 324,850,155 3 17% 7% 

61,806 541,416,925 5 28% 11% 

Source: U.S. Census Bureau, ACS 2005- 2009 and author’s calculations.  See text. 

 

 

Table 16. Solar Thermal Electricity Generation in the Shenandoah Valley,  

with Adoption Levels Restricted by Education 

 

Number of 

Housing Units 

kWh Generated for a 

Single Solar Hot Water 

Heater 

Total kWh 

Generated 

Annually 

Percent of Total SV 

Household Energy 

Need Met by Solar 

Thermal 

61,806 4,550 281,215,412 6% 

Source: U.S. Census Bureau, ACS 2005- 2009 and author’s calculations. See text. 

Because this scenario took into account the barrier of education, it can be seen that there are 

even fewer households than those restricted by income which might be willing to install a solar 

PV system.  A 3 KW system is thought to be a typical size for residential solar PV.  If every 
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household which had achieved at least some college education installed a 3 KW solar PV system, 

the electricity generated would meet 17% of the total electricity needs and 7% of total energy 

needs for the homeowners in the Shenandoah Valley.  Table 16 shows that if all homeowners 

who were restricted by education installed a solar thermal hot water system, 6% of all energy 

consumed in occupied housing units in the Valley would be met. 

Scenario 3. Age Barriers 
 

Another significant barrier to adoption rates for the Shenandoah Valley is homeowner 

age.  Zahran, et al. (2008) stated that the consumption of expensive durable goods often peak 

during midlife, usually between the ages 40-49.  It was also stated that this generally occurs 

regardless of other social factors such as family structure, education, and occupation.  Because 

solar PV systems are expensive durable goods, age of homeowner was included as a major barrier 

(or opportunity) for residential solar technology adoption.  For this scenario, two age groups from 

the ACS were used in the calculations; one group age 35 to 44 and the other group ages 45 to 54.  

These age groups were used because they included Zahran et al.‟s target age population, and 

because residents younger than 35 are less likely to have a static living situation or the financial 

means to install solar technology.  People over age 55, even if educated and aware of renewable 

technologies will probably not be eager to take the financial risk as they are closer to retirement 

age.  The total number of residents in these age ranges was added together and then divided by 

the total population.  Again, the assumption was made that the OOHU includes residents who are 

representative of the total population.  This assumption is carried out throughout the remaining 

scenarios as well.  Therefore, the percentage of the total population age 35 to 54 was found to be 

28.36%.  This value was then multiplied by the total number of OOHU (139,990) to find the 

number of OOHU whose owners were in the target age range.  Tables 17 and 18 shows the likely 

electricity generated from homes which have been restricted by age. 
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Table 17. Solar PV Electricity Generation in the Shenandoah Valley,  

with Adoption Levels Restricted by Age 

 

Number of 

Housing 

Units 

kWh 

Generated 

Annually 

Size of PV 

system 

(KW) 

Percent of Total 

SV OOHU 

Electricity Need 

Met by PV 

Percent of Total SV 

Household Energy 

Need Met by PV 

39,701 34,778,220 0.5 2% < 1% 

39,701 69,556,439 1 4% 1% 

39,701 208,669,318 3 11% 4% 

39,701 347,782,197 5 18% 7% 

Source: U.S. Census Bureau, ACS 2005- 2009 and author’s calculations.  See text. 

 

 

Table 18. Solar Thermal Electricity Generation in the Shenandoah Valley,  

with Adoption Levels Restricted by Age 

 
Number of 

Housing 

Units 

kWh Generated 

for a Single Solar 

Hot Water Heater 

Total kWh 

Generated Annually 

Percent of Total SV 

Household Energy Need 

Met by Solar Thermal 

39,701 4,550 180,640,296 4% 

Source: U.S. Census Bureau, ACS 2005- 2009 and author’s calculations.  See text. 

As can be seen by the number of housing units, age is far more limiting than income or 

education for homeowners.  If all the homeowners between the age of 35 and 54 installed a 3 KW 

solar system, it would generate about 11% of the total electricity needs, and 4% total energy 

needs of the homeowners in the Shenandoah Valley.  Table 18 shows that if all homeowners who 

were restricted by age installed a solar thermal hot water system, 4% of all energy consumed in 

occupied housing units in the Valley would be met. 

Scenario 4. Combined Barriers 
 

Even though just one of these barriers applied to the total number of Shenandoah Valley 

homeowners seems very restrictive, it is probably not realistic.  A number of homeowners may be 

restricted by more than one factor, such as income and education, or age and income, or age and 

education.  Income and education are the two barriers which are most closely correlated.  The 

methodology to determine the number of housing units and generated electricity for each one is 

very similar.  Because the high capital cost of a system and therefore the amount of household 
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disposable income is the most common barrier, it was used as the baseline to apply the education 

and age percentages.  For example, to find the number of housing units restricted by income and 

education, the percentage of the population which has achieved higher educational attainment 

(44.15%) was multiplied by the number of housing units already restricted by income (104,654).  

This resulted in a new value which is restricted by both factors.  The same methodology was used 

to find adoption levels restricted by income and age, and age and education.  When determining 

which percentage to apply to which factor, the most significant factor was used as the baseline.  

For instance, income is more influential than age or education so for all barriers which include 

income, the percentage of either education or age is multiplied by the number of households 

already restricted by income.  It was determined that education is the least influential of the three 

because it is the most easily changed.  Knowledge and awareness of solar technology can be 

gained through classes or social networking regardless of income and age, whereas it is 

significantly more difficult to change one‟s income.  Age is a significant adoption component but 

it is considered a static factor for this research.  Tables 19 through 24 below show the number of 

OOHU and possible electricity generation for solar PV and solar thermal hot water systems 

taking into account the combined barriers.   

Table 19. Solar PV Electricity Generation in the Shenandoah Valley,  

with Adoption Levels Restricted by Income and Education 

 

Number of 

Housing Units 

kWh 

Generated 

Annually 

Size of PV 

system 

(KW) 

Percent of Total 

SV OOHU 

Electricity Need 

Met by PV 

Percent of Total SV 

Household Energy 

Need Met by PV 

46,205 40,475,353 0.5 2% < 1% 

46,205 80,950,706 1 4% 2% 

46,205 242,852,119 3 12% 5% 

46,205 404,753,531 5 21% 8% 

Source: U.S. Census Bureau, ACS 2005- 2009 and author’s calculations.  See text. 

 

 

 

 

 

 



84 
 

 
 

Table 20. Solar Thermal Electricity Generation in the Shenandoah Valley,  

with Adoption Levels Restricted by Income and Education 

 

Number of 

Housing Units 

kWh Generated 

for a Single Solar 

Hot Water Heater 

Total kWh 

Generated 

Annually 

Percent of Total SV 

Household Energy Need 

Met by Solar Thermal 

46,205 4,550 210,231,572 4% 

Source: U.S. Census Bureau, ACS 2005- 2009 and author’s calculations.  See text. 

 

 

Table 21. Solar PV Electricity Generation in the Shenandoah Valley,  

with Adoption Levels Restricted by Income and Age 

 

Number of 

Housing Units 

kWh 

Generated 

Annually 

Size of PV 

system 

(KW) 

Percent of Total SV 

OOHU Electricity 

Need Met by PV 

Percent of Total SV 

Household Energy 

Need Met by PV 

29,575 25,907,893 0.5 1% < 1% 

29,575 51,815,786 1 3% 1% 

29,575 155,447,358 3 8% 3% 

29,575 259,078,931 5 13% 5% 

Source: U.S. Census Bureau, ACS 2005- 2009 and author’s calculations.  See text. 

Table 22. Solar Thermal Electricity Generation in the Shenandoah Valley,  

with Adoption Levels Income and Age 

 

Number of 

Housing Units 

kWh Generated 

for a Single Solar 

Hot Water Heater 

Total kWh 

Generated 

Annually 

Percent of Total SV 

Household Energy Need 

Met by Solar Thermal 

29,575 4,550 134,567,253 3% 

Source: U.S. Census Bureau, ACS 2005- 2009 and author’s calculations.  See text. 

 

 

Table 23. Solar PV Electricity Generation in the Shenandoah Valley,  

with Adoption Levels Restricted by Age and Education 

 

Number of 

Housing Units 

kWh Generated 

Annually 

Size of PV system 

(KW) 

Percent of Total 

SV OOHU 

Electricity Need 

Met by PV 

Percent of Total 

SV Household 

Energy Need Met 

by PV 

17,528 15,354,584 0.5 < 1% < 1% 

17,528 30,709,168 1 2% < 1% 

17,528 92,127,504 3 5% 2% 

17,528 153,545,840 5 8% 3% 

Source: U.S. Census Bureau, ACS 2005- 2009 and author’s calculations.  See text. 
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Table 24. Solar Thermal Electricity Generation in the Shenandoah Valley,  

with Adoption Levels Restricted by Age and Education 

 

Number of 

Housing Units 

kWh Generated 

for a Single Solar 

Hot Water Heater 

Total kWh 

Generated 

Annually 

Percent of Total SV 

Household Energy Need 

Met by Solar Thermal 

17,528 4,550 79,752,691 2% 

Source: U.S. Census Bureau, ACS 2005- 2009 and author’s calculations.  See text. 

 

Using the above tables, it can be assessed that those scenarios restricted by age have the 

least adoption potential.  The age factor is significant because it implies that there is only a 20-

year span when a homeowner would want to install a solar PV system, which may or may not be 

accurate.  Without that restriction, all ages of the population of homeowners are included in the 

pool for solar technology adoption which increases the odds greatly.  Given the above 

information, it is logical to expect that since two barriers were more restrictive than one, three 

barriers applied to the OOHU would create the lowest adoption rates and generation of electricity.  

Table 25 shows the electricity generated from PV and adoption levels if the barriers of income, 

education and age are all applied to the residential sector.  Table 26 shows the same constraints 

and adoption levels for solar thermal hot water systems in the Valley.  

Table 25. Solar PV Electricity Generation in the Shenandoah Valley,  

with Adoption Levels Restricted by Income, Age, and Education 

 

Number of 

Housing 

Units 

kWh 

Generated 

Annually 

Size of PV 

system (KW) 

Percent of Total SV 

OOHU Electricity 

Need Met by PV 

Percent of Total 

SV Household 

Energy Need Met 

by PV 

13,057 11,438,335 0.5 < 1% < 1% 

13,057 22,876,670 1 1% < 1% 

13,057 68,630,009 3 3% 1% 

13,057 114,383,348 5 6% 2% 

Source: U.S. Census Bureau, ACS 2005- 2009 and author’s calculations.  See text. 

 

 

Table 26. Solar Thermal Electricity Generation in the Shenandoah Valley,  

with Adoption Levels Restricted by Age and Education 

 

Number of 

Housing Units 

kWh Generated for 

a Single Solar Hot 

Water Heater 

Total kWh 

Generated 

Annually 

Percent of Total SV 

Household Energy 

Need Met by Solar 

Thermal 

13,057 4,550 59,411,442 1% 
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Source: U.S. Census Bureau, ACS 2005- 2009 and author’s calculations.  See text. 

 

This information was determined in the same way that two-barrier scenarios were 

calculated, except the order of factors was important to consider.  Because education is more 

variable than income or age, the percentage of the population (and assuming the number of 

OOHU) was multiplied by the scenario which was already restricted by income and age (Table 

13).  In order of factors subtracted from the maximum possible adoption level, income was 

restricted from the total number of OOHU based on affordability using the SMOCAPI of less 

than 30%.  Then, the age barrier was accounted for by multiplying the result by 0.2836 (28.36%) 

to find those restricted by income and age.  The final condition was placed on the OOHU by 

multiplying the percentage of the population with some college education (44.15%).  The 

resulting number of housing units which might apply residential solar technology is 13,057.  

Assuming the 3 KW PV system size which is average for residential homes, 68 million kWh of 

electricity would be generated, or about 3% of the total electricity needs for owner occupied 

housing units in the Shenandoah Valley.  A 3 KW system would also generate about 1% of the 

total energy for the occupied housing units in the residential sector.  Table 24 shows that if all 

homeowners who were restricted by income installed a solar thermal hot water system, only 1% 

of all energy consumed in occupied housing units in the Valley would be met. 

A three-barrier situation is very realistic, however for this paper, it cannot be confidently 

stated whether or not a majority of the population would be affected by all three barriers.  A 

majority of the people would likely be affected by two barriers to solar PV installation, however.  

For that reason, the moderate scenario will be restricted by income and education.  To generalize 

about the population that would or would not adopt solar PV technology, income and education 

are better gauges together than any of the other combinations, mostly because they are easily 

correlated together and the age range barrier between 35 and 54 is the most restrictive. 
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Scenario 5. Most Likely Scenario 
 

In conclusion, the maximum theoretical adoption potential for the Shenandoah Valley is 

139,990 homes and assuming the installation of an “average” sized PV system of 3 KW, it would 

generate 735,787,440 kWh of electricity annually, or 37% of the total electricity needs, and 

14.8% of the total Shenandoah Valley household energy needs.  The maximum theoretical output 

for solar thermal hot water systems in the Valley is equal to 13% of the total energy used in 

occupied Valley homes.  A moderate scenario and probably the most realistic is the two-barrier 

scenario restricted by income and education.  A 3 KW system in this case would generate 

242,852,119 kWh or about 242 gigawatts of electricity annually from 46,205 housing units, or 

12.4% of the total electricity consumption needs of the homeowners in the Valley, and 5% of the 

total household energy in the Valley.  Solar thermal water heating systems would produce enough 

to meet 4% of the Valley‟s total energy consumption needs, assuming the same restrictions as 

solar PV.  Another scenario considered all three barriers to adoption in a conservative scenario 

which resulted in 13,057 households generating 68,630,009 kWh of electricity annually.  This 

much electricity generated from PV panels would meet only about 3% of the total electricity 

needs for the homeowners in the Valley, and 1% of the total energy needs for Valley 

homeowners.  The solar thermal offset of electricity generation in this scenario would meet only 

1% of the Valley‟s total energy needs.  The most likely scenario, however, as shown in Tables 27 

and 28, occur when homeowners in the Valley are restricted by income, education, and the 

affordability of solar technology. 
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Table 27. Solar PV Electricity Generation in the Shenandoah Valley,  

with Adoption Levels Restricted by Income, Education, and Affordability 

 

Number of 

Housing Units 

kWh Generated 

Annually 

Size of PV 

system (KW) 

Percent of Total SV 

OOHU Electricity 

Need Met by PV 

Percent of Total 

SV Household 

Energy Need Met 

by PV 

29,530 25,868,280 0.5 1% < 1% 

29,530 51,736,560 1 3% 1% 

29,530 155,209,680 3 8% 3% 

29,530 258,682,800 5 13% 5% 

Source: U.S. Census Bureau, ACS 2005- 2009 and author’s calculations.  See text. 

 

 

Table 28. Solar Thermal Electricity Generation in the Shenandoah Valley,  

with Adoption Levels Restricted by Income, Education and Affordability 

 

Number of 

Housing Units 

kWh Generated 

for a Single Solar 

Hot Water Heater 

Total kWh 

Generated 

Annually 

Percent of Total SV 

Household Energy 

Need Met by Solar 

Thermal 

29,530 4,550 134,361,500 3% 

Source: U.S. Census Bureau, ACS 2005- 2009 and author’s calculations.  See text. 

 

This scenario clearly shows that a 1 KW system would meet 2.6% of the total OOHU 

electricity needs and about 1% of the total Shenandoah Valley household need.  The most likely 

scenario for solar thermal indicates that it would offset 134,361 megawatts of electricity and meet 

3% of the total Shenandoah Valley energy needs.  It should be noted that the scenarios restricted 

by income do not take into account financing options or federal, state, or local incentives, but 

affordability calculations do include the tax breaks for homeowners.  The cost effectiveness and 

affordability issues are addressed in Chapter 3, which would make the results a more reasonable 

and practical assessment of the true adoption potential for the Shenandoah Valley. 

Likelihood of Adopting Both Solar PV& Solar Thermal 
 

The most likely scenario for adoption in the Valley for each type of solar technology is 

restricted by income, education, and affordability.  While this is the most likely scenario for each 

type of system individually, the likelihood of installing both a solar PV and a solar thermal hot 

water system in the same housing unit is far less likely.  The compounded cost of purchase and 
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installation for both systems would equate to $12,177 after rebates.  This amount would be about 

a third of the average annual household disposable income (roughly $32,000).    

To find the likelihood of both types of solar technology adoption, an estimate of adoption 

rate will be taken from the most likely scenario.  The number of housing units in the most likely 

scenario is about 15% of the total occupied housing units (139,990) which might be willing and 

able to adopt solar technology.  For this reason, an adoption rate of 15% will be assumed for the 

adoption of solar PV and solar thermal.  It will be assumed that 15% of the homeowners who 

install solar thermal hot water will also be likely to install solar PV.  The reason that the solar 

thermal hot water system is the baseline technology is because it is more likely to be attractive 

and therefore installed than a solar PV system.  This is due to the shorter payback period and also 

the fact that the solar hot water system would meet 100% of a home‟s needs, or 18.2% of their 

total annual energy costs.  If 15% of the homeowners who installed a solar thermal system also 

installed a1 KW solar PV system, the result is 4,430 households.  If this number is divided by the 

total number of occupied housing units in the Valley, it is found that 3.2% of all homeowners in 

the Valley are likely to install both types of systems. 

The estimate of 3.2% of homeowner adoption of both types of solar technology in the 

Valley is only a rough approximation, as the estimation technique assumes that if a homeowner is 

able then they are also willing to install both technologies, which may or may not be the case.  

Only a small portion of the homeowner population will actually fit optimal criteria for willingness 

to install both technologies.  Some of the criteria would include wealthy homeowners that earn 

more than the average annual disposable income, household innovators who like to install new 

technologies, and homeowners with strong environmental values.  The homeowners who are most 

likely to install both solar technologies are going to be those that are intrinsically motivated by a 

number of factors and probably will not adopt both systems because someone convinced them to.  

The approximation of 3.2% of homeowners who would install both technologies would 

lead to 0.68% of total energy needs met by occupied housing units in the Valley.  This was found 



90 
 

 
 

by determining the percentage of Valley total energy need met by solar PV and solar thermal 

from the 15% adoption rate situation and adding them together.  This is a small percentage, but it 

should be noted that this is only for homeowners who will install both technologies, or 15% of 

households from the most likely scenario for each technology.  The likelihood of all solar 

technology adoption in the Valley is higher than this, because this situation does not account for 

homeowners which would install just one system. 

GHG Mitigation 
 

Table 29 shows the most realistic demographic scenario where the number of housing 

units is restricted by income and education.  The amount of electricity generated for a 3 KW 

system is almost 243,000 megawatt hours compared to almost 81,000 megawatt hours for a 1 KW 

system.  The carbon dioxide offset is around 125,000 metric tons for a 3 KW system and about 

42,000 for a 1 KW system.  Clearly, there is a considerable difference in carbon dioxide 

mitigation between the two systems.  For the same scenario, solar thermal hot water could offset 

78,212 metric tons of CO2e which is between a 1 and 3 KW PV system for perspective of 

mitigation potential. 

 

Table 29. GHG Emissions Mitigation for Solar PV Electricity Generation  

Constrained by Income and Education 

 

 Emissions 

Number of 

OOHU 

Size of PV 

system  

(KW) 

Electricity 

Generated (MWh) 

CO2 

(tonnes) CH4 (kg) 

N2O 

(kg) 

CO2e 

(tonnes) 

46,205 1 80,950 41,671 872 726 41,914 

46,205 3 242,852 125,013 2,618 2,179 125,744 

Source: World Resource Institute, 2011 and author’s calculations.  See text. 
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Table 30. GHG Emissions Mitigation for Solar Thermal Hot Water Systems  

Constrained by Income and Education 

 

46,205 housing units Electricity: 58% Natural Gas: 42% 

# Owner-Occupied Housing Units 26,799 19,406 

kWh offset (metric tons of CO2e) 121,955,008 N/A 

Therms offset (metric tons of CO2e) N/A 3,013,214 

Metric Tons CO2e 63,146 15,066 

Total Emissions Mitigated (metric tons of CO2e) 78,212 

Source: U.S. Census Bureau, ACS 2005- 2009 and author’s calculations; EPA, 2011b;  

and author’s calculations.  See text. 

 

Taking economics into consideration to develop the most likely adoption scenario, Table 31 

shows the amount of GHG emissions which would be offset by the most likely number of houses 

to adopt solar PV based on affordability.  The life cycle benefit cost analysis resulted in a new 

number of housing units which would likely adopt a smaller PV system based income, education, 

and the cost of a system (affordability).   

 

Table 31. GHG Emissions Mitigation for Solar PV Electricity Generation  

Constrained by Income, Education, and Affordability 

 
 Emissions 

Number of 

OOHU 

Size of PV 

system 

(KW) 

Electricity 

Generated 

(MWh) 

CO2 

(tonnes) 
CH4 (kg) 

N2O 

(kg) 

CO2e 

(tonnes) 

29,530 1 51,736 26,633 557 464 26,788 

Source: World Resource Institute, 2011, and author’s calculations.  See text. 

 

Table 32. GHG Emissions Mitigation for Solar Thermal Hot Water Systems 

Constrained by Income, Education, and Affordability 

 

29,530 housing units Electricity: 58% Natural Gas: 42% 

# Owner-Occupied Housing Units 17,127 12,403 

kWh offset (metric tons of CO2e) 77,942,460 N/A 

Therms offset (metric tons of CO2e) N/A 1,925,770 

Metric Tons CO2e 40,357 9,629 

Total Emissions Mitigated (metric tons of CO2e) 49,986 

Source: U.S. Census Bureau, ACS 2005- 2009 and author’s calculations; EPA, 2011b;  

and author’s calculations.  See text. 
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Tables 31 and 32 show the most likely scenario to occur for solar PV and solar thermal 

adoption in the Shenandoah Valley.  The amount of GHG emissions which would be offset by the 

number of homeowners which can afford and are likely to adopt solar PV is equal to 26,633 

metric tons of CO2, and 3% of the total electricity consumption needs of the owner occupied 

houses.  This scenario would generate about 1% of the total energy needed for occupied homes in 

the Shenandoah Valley.  Solar thermal hot water systems would offset almost twice as much 

carbon dioxide equivalent as a 1 KW solar PV system.  Mitigating 49,986 metric tons of CO2e 

would equate to offsetting the emissions from 9,801 passenger vehicles.  

Conclusions 
 

In conclusion, greenhouse gases emitted from the residential sector are a large contributor 

to global emissions and account for 21% of the total emissions in the United States which impact 

local air quality, weather patterns, and the condition of the environment (Hinrichs & Kleinbach, 

2006).  Solar PV technology may be out of reach for many of the homeowners in the Valley due 

to various obstacles, but if those that could afford it installed a PV system, it could lead to a 

noteworthy reduction in the amount of carbon dioxide emissions from the residential sector in the 

Shenandoah Valley.  A little over 12% change may not seem like much in terms of slowing 

global warming and climate change, but it is a necessary step in the right direction toward 

transitioning to renewable energies.  Realistically, the affordability of solar PV is a significant 

obstacle and considering it, the Shenandoah Valley would only be able to meet roughly 3% of the 

residential electricity consumption needs and 1% of the total energy needs.  Solar thermal would 

meet 13% in the maximum theoretical scenario and in the most realistic scenario, 3% of the total 

energy needs in the Valley.  There is a long way to go for solar PV and solar thermal to be 

considered a realistic option to getting to 25% renewable energy by 2025 in the Valley residential 

sector. 



Chapter 5: Conclusions 
 

Results of analysis 
 

The results of this research analysis conclude that the maximum theoretical potential for 

solar technology adoption in the Shenandoah Valley is an unrealistic goal in the next 14 years.  

The 25x‟25 goal would require all owner occupied housing units to implement either a solar PV 

or solar thermal hot water system which is equal to 139,990 homes, and would meet 24.6% of the 

total Valley‟s energy consumption needs and offset 631,271.7 metric tons of carbon dioxide.  

This is equivalent to the emissions of 123,779 passenger vehicles.  There are a number of barriers 

which prohibit the maximum potential from occurring in the Valley, including those which fall 

into the categories of technical issues, lack of knowledge and awareness, consumer economic 

decision making barriers, and overcoming established systems.   

A life cycle benefit cost analysis was integral in determining if Valley homeowner would 

be able to afford each type of solar technology.  The results indicated that a 1 KW PV system 

would be the most affordable and likely for an average homeowner.  This type of system would 

have a life cycle cost of $7,217 over 30 years after the 30% personal tax credit.  The payback 

period of this system would take 39 years given the current electricity costs of $0.1061 per kWh, 

which means that the system would never pay for itself since the expected life of a system is 30 

years.  This is an undiscounted, simple payback period calculation and does not reflect the time 

value of money.  The solar thermal system was assumed to meet 100% of the homeowner‟s needs 

and cost $6,157 after the 30% federal rebate.  It also had a life cycle of 30 years but would be 

paid off in 12.8 years if it replaced electricity as a heating fuel and in 21.3 years if it replaced 

natural gas.  These calculations are also undiscounted and do not reflect the time value of money. 

From the barriers to residential adoption, it was deduced that the technologies that had 

the best chances of adoption would be solar PV and solar thermal hot water because they are 

easily retrofitted into the existing housing stock.  Regional geography is a key issue to adoption 
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and diffusion of solar technology as well.  Matching the local demand with a region-specific 

renewable energy portfolio is vital to the success of any renewable energy program or campaign 

(Feder, 2004).  For the case of the Shenandoah Valley, the amount of solar radiation as a resource 

is good but will not get any better.  Therefore, with the current technology available and 

associated costs, the amount of solar radiation received will not make it cost effective or attractive 

for homeowners to install a system.  In order for the geographic influences not to matter, the cost 

of system would have to decrease drastically or the cost of conventional fuels would have to 

increase accordingly. 

Demographics also played a big role in the adoption rates in the Shenandoah Valley and 

the main factors which influenced adoption rates were household income, amount of education 

attained, and the age of homeowners.  The affordability was combined with these factors to 

determine the real likelihood of adoption solar technology.  The most likely scenario for adoption 

is 29,530 homes, or about 15% of the total number of homes in the Valley.  Given this scenario, 

the technologies would generate about 1% of the Valley‟s total energy needs for solar PV and 

about 3% would be met assuming solar thermal hot water installation.  The carbon dioxide 

mitigation which would occur from the most likely solar PV scenario is equal to 26,632.6 metric 

tons, or the equivalent of mitigating the emissions from 5,222 passenger vehicles. 

One opportunity that solar technology has to be more successful in the Valley is through 

educational campaigns.  It has been found from literature that the adoption rate of solar water 

heaters in the residential sector is most inhibited by educational barriers (Leidl & Lubitz, 2009).  

New water heating technology adoption rates are low compared to the momentum of 

conventional water heating sources, such as electricity and natural gas, because they are familiar 

to the homeowner (Leidl & Lubitz, 2009).  Another author used a technology adoption model 

developed by Rogers (2005. Diffusion of Innovations. Free Press, New York.)  in urban Mexico 

to determine social acceptance patterns of solar technology.  The predominant factor influencing 

adoption was also education, followed closely by complexity and trial-ability of the technology 
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(Mallet, 2007).  Hirschberg & Schoen (1974) also state that while consumers understand the 

growing energy problems and the need for energy alternatives, it is not seen as an issue for 

individuals until it affects them personally.  While these cases span geography and time and are 

not easily compared to the Valley, they provide a guide for social acceptance patterns of solar 

energy technology.  The Valley should focus first on educating the public and homeowners about 

the benefits of solar technology and then continue to progress with persuasion and incentives.  

The role of financial incentives is essential to widespread diffusion of solar technology in 

the residential sector.  Currently there are very few incentives, and only one which makes a small 

difference for the average homeowner.  This one incentive is a federal tax credit of 30% of the 

purchase and installation costs of solar equipment.  If solar technology were more affordable to a 

Shenandoah Valley homeowner with an average annual income of about $32,000, adoption and 

diffusion rates would likely increase.  Sadly, this is the result of deficient policies which do not 

aid the adoption and diffusion of solar technology in the residential sector.  Increasing the 

strength and quantity of policies and financial incentives which support and promote solar 

technologies is one way which would help the Valley achieve its 25x‟25 goals. 

Sensitivity of Solar Technology Adoption to Cost Estimates 
 

The calculations completed throughout this research assume that electricity rates and the 

price of solar technology do not change.  While this is probably accurate for the near future, it 

may not be true long-term.  For this reason, the sensitivity of solar technology adoption to current 

cost estimates is explored.  Two options for price changes in solar technology exist: an increase in 

electricity prices, or a decrease in the cost of PV technology (with or without incentives or 

subsidies).  Fluctuations in these prices could influence the rate of adoption of solar PV by 

homeowners in the residential sector.   

It should be noted that while prices of electricity and the purchase costs of solar 

technology may change, the current rate for labor (installation, maintenance, etc.) will not likely 
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change much.  For example, the „average‟ solar thermal system for the Valley included almost 

$5,000 in materials costs, and $3,100 was attributed to the cost of labor.  This means that even 

extreme reductions in the cost of solar technology has a limited potential for changing the overall 

costs due to the current cost of labor.  Solar thermal sensitivities will not be explored in this 

section, but would be an excellent opportunity for further research.  

In order to make solar PV more affordable, a simple assumption will be made that 

homeowners will not likely install a PV system unless the payback period is 10 years or less.  Ten 

years is a reasonable length of time to pay off a system for a homeowner and still gain a return on 

investment.  It is also assumed that homeowners are willing to install a 1 KW system because it is 

the most affordable while producing more electricity than a 0.5 KW system.  

In order to find what the installed cost of a system would have to be with a 10-year 

payback period, the energy savings per year was multiplied by 10 years.  The annual savings for a 

1 KW system in Virginia is about $186, (assuming a constant electricity rate of about 10.6 cents 

per kilowatt hour).  Thus, the net installed cost of a system would have to be $1,860 to achieve a 

payback period of 10 years.  This cost would reflect a mix of installed cost and any available 

incentives or subsidies.  This result does not seem very realistic, especially for the next several 

years.  

Another option is to hold the cost of a PV system at current prices and determine what 

the electricity rates would have to be in order to effect a 10-year payback period.   Without 

incentives, the cost of a 1 KW system is $8,600.  The cost without subsidies divided by the 

annual energy savings would have to equal 10 years.  This results in a projected annual energy 

savings of $860.  If the annual energy savings is divided by the annual energy output of a 1 KW 

system (1,752 kWh), the result is $0.49 per kWh.  This is what the cost of electricity would need 

to be in order to achieve a 10-year payback period assuming the cost of PV technology does not 

change.  Obviously, $0.49 per kilowatt hour is an outrageous electricity rate and is highly 

unlikely to occur. 
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A third option is a more practical estimate, where the cost of electricity increases but to a 

more realistic price.  For this scenario, $0.16 per kilowatt hour (a reasonable increase from $0.10 

per kWh) will be multiplied by the annual output of a 1 KW PV system (1,752 kWh), which 

results in an annual energy savings of $280.  If this savings is multiplied by 10 years, the net cost 

of a system would be $2,800 which could be achieved through incentives and/or subsidies.  The 

cost of electricity could be either the regulatory price from the utility company, or it could reflect 

the net metering or feed-in tariff rate for the electricity produced.  

Strengths and Weaknesses of Methodology 
 

The data used for this research was essential for the type of investigation that was 

conducted.  The U.S. Census American Community Survey 5-year estimates data is reliable, 

credible and specific at the county and independent city level , which was advantageous for 

calculations.  If this data was not available, estimations would have been made from Virginia 

state data, which would be less detailed and reliable. 

Alternatively, some calculations required use of state data to make generalizations about 

the Shenandoah Valley when specific information was not available.  The estimations which 

required extrapolating from the national to state to regional level are only approximations and 

should not be taken as exact calculations.  Another weakness which could be considered is that 

not all forms of solar technology were included in the feasibility assessment.  Some were 

excluded based on design and ease of retrofit issues. Therefore, this feasibility assessment only 

exemplifies the change solar PV and solar thermal hot water systems could make in energy 

savings and greenhouse gas reductions.
3
  However, solar PV and solar thermal hot water are well-

known technologies which would increase the likelihood of quality workmanship by installation 

                                                           
3
 Preheating water and the associated economic benefits is one example of an exclusion which is not 

accounted for because it is not a common type of heating system in the Valley.  The purpose of these 
estimates is to have useful generalizations which can be applied to large portions of the population rather 
than specific cases for individual homeowners.  
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technicians.  These technologies are also familiar to homeowners which increases the likelihood 

of adoption.  This assessment, which does exclude some types of solar technology, provides a 

very real picture of the possibilities of adoption and diffusion in the residential sector in the next 

14 years.   

Opportunities for Further Study  
 

One option for further study would be the impact that new construction homes would 

have on the goal of getting to 25x‟25.  New construction homes have more opportunities to 

integrate passive design, energy efficiency measures, and building integrated technologies.  New 

construction homes can also be designed more efficiently with tighter building envelopes which 

would increase energy savings and reduce GHG emissions.  Duke, Williams, and Payne (2005) 

found that by scaling up thin-film PV production, the market for solar technology opened because 

the technology was more affordable and cost effective at about $1.50 per watt.  At this price, they 

estimate that solar PV technology would be affordable to about 125,000 new construction homes 

annually (Duke, Williams, & Payne, 2005). 

Closely related to this study, another option would be to continue the current research 

completed and determine the impact that lower renewable technology prices would have on 

adoption rates in the Valley. Solar technology may or may not improve or get better at a rate 

which would influence the decisions of homeowners on whether or not it would be beneficial and 

cost effective to install solar technology.  If prices do fall to around $1-$2 per watt, it would be 

economically beneficial for homeowners to consider installation because a system would actually 

become an investment which would pay for itself before the end of life expectancy.  

Another opportunity for further study would be to examine the impacts of population 

patterns and cultural influences on adoption rates.  Population growth/decline and migrations in 

and out of the Shenandoah Valley counties could change existing housing stock occupancy which 

would affect the maximum potential adoption for the Valley.  Owner occupied housing units are 
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necessary for solar technology to be installed, because the benefit cost ratio would not be 

advantageous for a landlord or renter to consider.  Another option would be the socio-cultural 

influence of political affiliation and perceptions of renewable technologies by homeowners.  In a 

political climate where there is a majority of liberals, the likelihood for renewable technology 

adoption is greater compared to a more conservative climate.   

Similar to the research already conducted, the Valley 25x‟25 organization could delve 

further into the demographics at the county level to determine where campaign and educational 

efforts would be best focused.  Instead of considering the Shenandoah Valley as one community 

which is striving to reach the 25x‟25 goals, more specific conclusions could come from county 

level research with respect to the impact of introducing educational and awareness campaigns on 

solar technology adoption and diffusion rates. 

Perhaps one of the most important opportunities for further study would be to investigate 

the possibilities for policy to increase the adoption rates of solar technology.  Whether or not 

financial incentives definitively influence the rates of adoption of solar technology has been taken 

into consideration in one study, where ten western states were examined (Durham, Colby, & 

Longstreth, 1988).  From this research, it was found that both the policies advocating solar 

thermal systems as well as the policies influencing the cost of conventional fuel sources will 

influence a homeowner‟s decision to install such technology (Durham, Colby, & Longstreth, 

1988).  Net metering is another example of one type of policy which can be used as a substitute 

for affordable PV system pricing.  It incentivizes homeowners and internalizes the benefits of 

solar technology, such as reduced local air pollution and a more reliable electricity supply (Duke, 

Williams, & Payne, 2005).  

Closing Remarks 
 

It can be concluded from the research conducted that the Shenandoah Valley is not likely 

to reach the goals of the 25x‟25 in the residential sector solely through solar technology.  The 
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expectations of homeowners to adopt solar technology are high, even with the barriers present 

which make the technology not cost effective or advantageous for the homeowner.  The offset in 

greenhouse gas emissions however, would be beneficial, even though it is not tangible or easily 

quantified.   

The year 2025 is only 14 years away, which is a short time period considering all that 

would have to happen to make the implementation of solar technology in the residential sector 

more feasible for the average homeowner.  In order for adoption of solar technology to be more 

feasible, the costs of the technology would have to become more affordable including a shorter 

payback period.  Policies promoting solar technology installation and use are needed.  Financial 

incentives which make the up-front costs of a system affordable would also aid the adoption and 

diffusion in the residential sector.  Educational and awareness campaigns for homeowners would 

make the technology more familiar and less complicated which would favorably impact adoption 

and diffusion rates throughout the residential sector. 

Solar technology in the residential sector is not the only technology available to help the 

Valley achieve its goals, however.  Various types of renewable technologies such as wind, 

hydropower, biomass, and geothermal would have to be implemented in a collaborative and 

aggressive effort to get to 25x‟25.  The Valley initiative is using all tools at its disposal to try to 

make 25% renewable energy happen by 2025.  Changes in energy sources and efficiency 

measures will also need to occur in all sectors including agricultural, non-agricultural industrial, 

commercial, transportation, and not just residential energy.  
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Appendix A 
 

Table 33. Discounted Life Cycle Costing for Solar PV 

 
Life Cycle Costing with 

Discounting -Electricity 
0.5 KW 1 KW 3 KW 5 KW 

 

PV 

System 

Grid-tied 

electricity 
PV System 

Grid-tied 

electricity 
PV System 

Grid-tied 

electricity 
PV System 

Grid-tied 

electricity 

Purchase and Installation $3,010 $0 $6,020 $0 $18,060 $0 $30,100 $0 

Salvage $0 $0 $0 $0 $0 $0 $0 $0 

Maintenance and Repair $0 $0 $0 $0 $0 $0 $0 $0 

Replacement Costs 
 

Simple $710 $0 $1,420 $0 $4,260 $0 $7,100 $0 

Discounted at 3% $461 
 

$922 
 

$2,767 
 

$4,612 
 

Energy Costs* $0 $2,788 $0 $5,577 $0 $16,730 $0 $27,883 

Annual energy savings $92.94 $0 $185.89 $0 $557.66 $0 $929.44 $0 

*Discounted stream of 

annual savings over 30 

years 

N/A $1,822 N/A $3,643 N/A $10,930 N/A $18,217 

Total Life Cycle Cost $3,471 $2,788 $6,942 $5,577 $20,827 $16,730 $34,712 $27,883 

Difference between Solar 

and Grid over 30 years 
$683 $1,366 $4,097 $6,829 

Discounted Payback Period 57 N/A 57 N/A 57 N/A 57 N/A 

Source: Author’s calculation
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Table 34. Discounted Life Cycle Cost Analysis for Solar Thermal Technology 

which Offsets Electricity 

 

Solar Hot Water One size meets 100% of hot water need 

Discounted Life Cycle Costing for 

Electricity 

Solar Thermal Hot 

Water System 
Grid-tied Electricity 

  

  Purchase and Installation $8,795 $0 

Cost after 30% Personal Tax Credit $6,157 
 

Salvage $0 $0 

Maintenance and Repair $0 $0 

Replacement Costs $0 $0 

Energy Costs* $0 $482.83 

Annual energy savings $482.83 N/A 

*Discounted stream of annual savings 

 over 30 years 
$9,463.76 N/A 

Total Life Cycle Cost $6,157 $482.83 

Difference between Solar and Grid $5,674 

Payback Period 19.5 
 

Source: Author’s calculations.  

 

Table 35. Discounted Life Cycle Cost Analysis for Solar Thermal Technology 

which Offsets Natural Gas 

 

Solar Hot Water One size meets 100% of hot water need 

Discounted Life Cycle Costing for Natural 

Gas  

Solar Thermal Hot 

Water System 
Natural Gas 

   Purchase and Installation $8,795 $0 

Cost after 30% Personal Tax Credit $6,157 $0 

Salvage $0 $0 

Maintenance and Repair $0 $0 

Replacement Costs $0 $0 

Energy Costs* $0 $289.46 

Annual energy savings $289.46 N/A 

*Discounted stream of annual savings  

over 30 years 
$5,673.52 N/A 

Total Life Cycle Cost $6,157 $289.46 

Difference between Solar and Grid $5,867 

Payback Period 32.6 
 

Source: Author’s calculations
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