James Madison University JMU Scholarly Commons

Masters Theses

The Graduate School

Fall 12-18-2010

Sensitivity and exposure of brook trout (*Salvelinus fontinalis* habitat to climate change

Bradly Allen Trumbo James Madison University

Follow this and additional works at: https://commons.lib.jmu.edu/master201019 Part of the <u>Biology Commons</u>

Recommended Citation

Trumbo, Bradly Allen, "Sensitivity and exposure of brook trout (Salvelinus fontinalis) habitat to climate change" (2010). *Masters Theses.* 385. https://commons.lib.jmu.edu/master201019/385

This Thesis is brought to you for free and open access by the The Graduate School at JMU Scholarly Commons. It has been accepted for inclusion in Masters Theses by an authorized administrator of JMU Scholarly Commons. For more information, please contact $dc_admin@jmu.edu$.

Sensitivity and Exposure of Brook Trout (Salvelinus fontinalis) Habitat to Climate

Change

Bradly Allen Trumbo

A thesis submitted to the Graduate Faculty of

JAMES MADISON UNIVERSITY

In

Partial Fulfillment of the Requirements

for the Degree of

Master of Science

Department of Biology

December 2010

Acknowledgements

I would like to thank Mr. Mark Hudy for his support and leadership through the completion of this study. His assistance in project design, implementation, and data analysis will no doubt benefit my career and future success in the management of natural resources and environmental research.

I would also like to thank additional committee member Dr. Bruce Wiggins for offering his expertise with the use of Geographic Information Systems. His advice proved crucial to areas of my extensive GIS analysis of brook trout habitat. I would like to thank Dr. Heather Griscom for providing knowledge of forest ecology relative to stream riparian analysis and its use as a habitat metric, as well as review of and editing of any works in progress. I would also like to thank Dr. Eric Smith (Virginia Tech) for his expertise using SAS and statistical modeling. His knowledge of ecological data analysis proved crucial to the results of my research.

I would like to recognize fellow graduate student Chastine Kyger, fellow undergraduate Zachary Robinson, and LSU graduate student Alexandra Fitzgerald for their assistance throughout my study. Their willingness to work long hours, travel frequently overnight, and hike many miles into rugged national forest areas made the data collection process efficient and accurate during my research periods.

I thank Brenda Barker in the College of Mathematics and Science Deans Office for her purchasing and travel arrangement assistance during my study. I truly could not have completed my field work as efficiently without her assistance. I would also like to thank Sheila Santee for her help and patience with administrative tasks, as well as Lon

ii

Jarvis for his countless hours of technical support which made my data analysis and GIS possible.

I thank the Virginia Department of Game and Inland Fisheries (VDGIF) and the George Washington and Jefferson National Forest for providing funding for the purchase of thermographs necessary to conduct data collection. I would like to thank VDGIF biologists Steve Reeser, Larry Mohn, Paul Bugas and Jason Hallacher for assistance in sample site selection and securing the grant.

Table of Contents

List of TablesvList of FiguresviAbstractviiIntroduction1Methods4Study Area, Sample Unit Delineation and Selection4Sampling Protocol7Data Analysis8Predictions10Results11Sensitivity11Exposure11Classification12Predictions13Discussion21Appendix24A1: Landscape metric values24	Acknowledgements	ii
List of FiguresviAbstractviiIntroduction1Methods4Study Area, Sample Unit Delineation and Selection4Sampling Protocol7Data Analysis8Predictions10Results11Sensitivity11Exposure11Classification12Predictions13Discussion21Appendix24A1' Landscape metric values24	List of Tables	V
AbstractviiIntroduction1Methods4Study Area, Sample Unit Delineation and Selection4Sampling Protocol7Data Analysis8Predictions10Results11Sensitivity11Exposure11Classification12Predictions13Discussion21Appendix24A1: Landscape metric values24	List of Figures	. vi
Introduction1Methods4Study Area, Sample Unit Delineation and Selection4Sampling Protocol7Data Analysis8Predictions10Results11Sensitivity11Exposure11Classification12Prediction13Discussion21Appendix24A1: Landscape metric values24	Abstract	vii
Introduction1Methods4Study Area, Sample Unit Delineation and Selection4Sampling Protocol7Data Analysis8Predictions10Results11Sensitivity11Exposure11Classification12Prediction13Discussion21Appendix24A1' Landscape metric values24		
Methods.4Study Area, Sample Unit Delineation and Selection4Sampling Protocol.7Data Analysis8Predictions.10Results.11Sensitivity11Exposure11Classification.12Prediction13Discussion21Appendix.24A1: Landscape metric values24	Introduction	1
Study Area, Sample Unit Delineation and Selection4Sampling Protocol7Data Analysis8Predictions10Results11Sensitivity11Exposure11Classification12Prediction13Discussion21Appendix24A1: Landscape metric values24	Methods	4
Sampling Protocol7Data Analysis8Predictions10Results11Sensitivity11Exposure11Classification12Prediction13Discussion21Appendix24A1: Landscape metric values24	Study Area, Sample Unit Delineation and Selection	4
Data Analysis8Predictions10Results11Sensitivity11Exposure11Classification12Prediction13Discussion21Appendix24A1: Landscape metric values24	Sampling Protocol	7
Predictions10Results11Sensitivity11Exposure11Classification12Prediction13Discussion21Appendix24A1: Landscape metric values24	Data Analysis	8
Results11Sensitivity11Exposure11Classification12Prediction13Discussion21Appendix24A1: Landscape metric values24	Predictions	. 10
Sensitivity11Exposure11Classification12Prediction13Discussion21Appendix24A1: Landscape metric values24	Results	. 11
Exposure11Classification12Prediction13Discussion21Appendix24A1: Landscape metric values24	Sensitivity	. 11
Classification	Exposure	. 11
Prediction	Classification	. 12
Discussion	Prediction	. 13
Appendix	Discussion	21
A1. Landscape metric values 24	Appendix	. 24
	A1: Landscape metric values	. 24
A2: Thermograph Deployment SOPs	A2: Thermograph Deployment SOPs	. 38
A3: Sensitivity/Exposure classification values 2009-2010	A3: Sensitivity/Exposure classification values 2009-2010	43
A4: Sensitivity/Exposure classification prediction 2009-2010	A4: Sensitivity/Exposure classification prediction 2009-2010	. 45
A5: Paired air/water temperature relationships 2009-2010 for pour-point and	A5: Paired air/water temperature relationships 2009-2010 for pour-point and	
centroid sample sites	centroid sample sites	. 47
Bibliography	Bibliography	63

List of Tables

Table 1: Candidate landscape metrics summarized for watershed above each sample point.
Table 2: Explanation of how patches were grouped into clusters based on patch metrics6
Table 3: Sensitivity/Exposure classification percentages and differences 2009-201013
Table 4: Sensitivity/Exposure categories 2009-2010. Bold indicates category change.Data includes all sites with 2009 and 2010 classification
Table 5: Sensitivity/Exposure prediction percentages. Percentages shown are the predicted % true for each category
Table 6: Metrics used to predict Sensitivity/Exposure in 2009-2010. Sensitivity metrics were calculated using multiple linear regression, and exposure metrics were calculated using logistic regression

List of Figures

Figure 1: Unique brook trout habitat patches (N=272) in the state of Virginia cluster analyzed into 9 groups based on physical habitat metrics (see Table 1 for metrics)
Figure 2: Contiguous catchments containing brook trout were dissolved into "patches" of brook trout habitat
Figure 3: Proposed conceptual classification system for classifying brook trout habitats9
Figure 4: Boxplots of the response of daily maximum water temperatures to a 1°C increase in daily maximum air temperature
Figure 5: A plot of 2009 and 2010 sensitivity scores by site
Figure 6: Difference in air temperatures between 2009 and 2010 at a typical site19
Figure 7: A plot of 2009 and 2010 exposure scores by site
Figure 8: 2009 Sensitivity/Exposure classification
Figure 9: 2010 Sensitivity/Exposure classification

Abstract

Predicting coldwater fisheries distributions under various climate scenarios is of interest to many fisheries managers and researchers. Larger scale models have been useful in highlighting the potential large scale threat. However, the error associated with these models makes predictions of the persistence of individual cold water fisheries problematic. Most of this error is associated with predicted air and water temperatures which typically are simple elevation and location (latitude/longitude) models with simple caveats such as 1°C increase in air temperature equals 0.8°C increase in water temperatures. I directly measured paired air and water temperatures in watersheds containing reproducing populations of brook trout in Virginia during the critical summer period (July 1 to September 30) in both 2009 and 2010. I developed a classification system using sensitivity (change in the daily maximum water temperature from a 1°C increase in the daily maximum air temperature) and exposure metrics (frequency; duration; and magnitude of daily maximum water temperatures $> 21^{\circ}$ C) that classified brook trout populations into four categories: High Sensitivity-High Exposure; High Sensitivity-Low Exposure; Low Sensitivity-High Exposure and Low Sensitivity-Low Exposure. I found that my paired air and water temperature relationships were highly variable among sites and were a useful metric for classifying the sensitivity and exposure of individual brook trout populations to various climate change scenarios. I identified many (25%) Low Sensitivity- Low Exposure brook trout populations that appear to be resilient to climate change. The median sensitivity $(0.39^{\circ}C)$ in this study was much lower than the assumed rate (0.80°C) used in many regional models that predicted a complete extirpation of brook trout in Virginia. Several GIS generated metrics (sample area; %

vii

riparian canopy; solar insolation ; % groundwater; elevation; % watershed in forest cover) were useful for predicting (accuracy approximately 75%) sensitivity and exposure values. Directly measuring paired air and water temperature relationships can reduce the error of large scale models. I recommend that managers making investment decisions in protecting and restoring brook trout use my direct measurement approach when they cannot afford to make a Type I or Type II error.

Introduction

Although no known brook trout Salvelinus fontinalis populations have been extirpated due to climate change effects (Hudy et al. 2008), several studies have identified the potential threat of air temperature increases in dramatically reducing the current range of brook trout in the eastern United States (Meisner 1990; Flebbe 1994; Clark et al. 2001; Flebbe et al. 2006). While useful in highlighting the potential threat from increases in air temperature, the errors (Type I or Type II) associated with models using secondary data (predicted air temperatures (PRISM 2007); and predicted water temperature response relative to predicted air temperature) makes predictions of the persistence of individual brook trout populations under various climate change scenarios problematic (Johnson 2003). Models using secondary data often ignore site-specific landscape characteristics that may influence the relationship between air and water temperatures. Predictions of habitat loss based on models that assume a simple positive direct relationship between air and water temperature across all habitats are likely to be overly pessimistic (Meisner 1990; Flebbe 1994; Keleher and Rahel 1996; Rahel et al. 1996; Clark et al. 2001; Flebbe et al. 2006; Rieman et al. 2007; Williams et al. 2009). Some brook trout habitats may persist even under the most pessimistic climate change scenarios due to localized landscape conditions.

Variability in the relationship between water temperature and air temperature can be quantified (Cluis 1972; Pilgrim et al. 1998; Mohseni and Stefan 1999; Isaak and Hubert 2001; Johnson 2003) and has the potential to be effectively used by managers to rank the resistance of individual brook trout populations to various climate change scenarios. Identifying brook trout habitats that are more resistant than others to water temperature increases from air temperature increases is an important step in prioritizing the restoration and conservation work of the Eastern Brook Trout Joint Venture (EBTJV) (EBTJV 2006). Pilot studies and earlier research (Fink 2008) suggest that the relationship between air and water temperature is (1) highly variable at the current brook trout population scale and (2) influenced by local conditions and their interactions (i.e. elevation, aspect, topography shading, riparian cover, latitude, longitude, insolation and ground water sources). The influence of these characteristics at localized scales appears to play a more important role than expected in stream thermal stability (Meisner 1990; Pilgrim et al. 1998; Moore et al. 2005; Wehrly et al. 2007; Fink 2008).

I focused on metrics associated with daily maximum water temperature (Huff et al. 2005; Wehrly et al. 2007) during the critical period for this study because (1) increases in air temperature (and presumed increases in water temperature) have the highest probability occurrence in various climate change scenarios (IPCC 2007); (2) daily maximum water temperature metrics for presence and absence of reproducing populations of brook trout are known (Stoneman and Jones 1996; Picard et al. 2003; Wehrly et al. 2003; Huff et al. 2005; Wehrly et al. 2007); and (3) I believe lethal water temperature effects from climate change will likely have an immediate and dramatic effect on existing brook trout populations.

The specific objectives of this study are to (1) quantify the variability in the daily maximum air and daily maximum water temperature responses during the water temperature stress period (July 1 to September 30) for brook trout populations in Virginia; (2) develop a classification system using sensitivity and exposure metrics that will be of use to managers in prioritizing their work for brook trout; and (3) develop a

model to predict classification categories (sensitivity and exposure) based on land use metrics.

Methods

Study Area, Sample Unit Delineation and Selection

My research includes all habitats with reproducing populations of brook trout in Virginia. Brook trout presence-absence data from the EBTJV (Mohn and Bugas 1980; EBTJV 2006; Hudy et al. 2008) were overlaid on catchments from the National Hydrography Plus (NHD+) dataset (USGS 2008) to produce a dataset of catchments containing reproducing populations of brook trout. Contiguous catchments containing brook trout were then dissolved into individual watersheds or "habitat patches" of brook trout. Contiguous catchments that contained dams impassable to brook trout were further broken down into separate patches. Each patch was presumed to be genetically isolated from other patches by either distance barriers (physical, habitat/thermal) or invasive species (to include stocked waters). A total of 272 patches were found in Virginia (Figure 1).

Candidate landscape metrics hypothesized to be important to potential air temperature and water temperature relationships were summarized in a Geographic Information System (GIS) for the pour-point and centroid of all brook trout patches (Table 1). Values for all candidate landscape metrics are listed in Appendix A1. The pour-point is the intersection of the most downstream stream segment in the NHD+ dataset and the brook trout occupied catchment boundary. The centroid location of the brook trout habitat patch was determined by a GIS, and then adjusted in the field to the closest stream segment (Figure 2).

Candidate Landscape Metrics	Units	Source
Total Annual Solar Insolation in riparian sample area	kWh	derived (Fu and Rich 1999)
Sample point Elevation	m	derived
Sample point 30-year Mean Max Temp	Celsius	PRISM 2007
% Groundwater (BFI) flow in sample area	% of patch	USGS 2003
% Forest Area in sample area	% of patch ha	USGS 2009
Sample Area	ha	derived
Sample Area in riparian corridor	ha	derived (100m buffer NHD+)
Mean Canopy Cover in sample area	% of patch	USGS 2009
Mean Canopy Cover riparian corridor of sample area	% of patch	USGS 2009
Land Use Area by Category in sample area	% of patch ha	USGS 2009
Land Use Area by Category in sample area	% of patch ha	USGS 2009
Geology Type and Category in sample area	*	DMME 2008
Sample Point Latitude Longitude	Decimal Deg.	derived
Stream Length	km	derived
% Forest In Sample Area Riparian Corridor	% ha	USGS 2009
% Groundwater flow in sample riparian corridor	% of patch	USGS 2003
Total Annual Solar Insolation in sample area	kWh	Fu and Rich 1999
Total Annual Solar Insolation per stream km	kWh/km	derived (Fu and Rich 1999)
Total Annual Solar Insolation per stream km in riparian corridor	kWh/30mpixel	derived (Fu and Rich 1999)
Total Annual Solar Insolation (July 1-Sept. 30)	kWh/30mpixel	derived (Fu and Rich 1999)
Total Annual Solar Insolation in riparian corridor (July 1-Sept. 30)	kWh/30mpixel	derived (Fu and Rich 1999)
Total Annual Solar Insolation per stream km (July 1-Sept. 30)	kWh/km	derived (Fu and Rich 1999)
Total Annual Solar Insolation in riparian corridor per stream km (July 1-Sept. 30)	kWh/km	derived (Fu and Rich 1999)
Total Annual Solar Insolation*Canopy Cover per stream km	kWh/km	derived (Fu and Rich 2002)
Total Annual Solar Insolation*Canopy Cover	kWh/km	derived (Fu and Rich 2002)
Total Annual Solar Insolation*Canopy Cover per stream km (July 1-Sept. 30)	kWh/km	derived (Fu and Rich 2002)
Total Annual Solar Insolation*Canopy Cover	kWh/km	derived (Fu and Rich 2002)
in riparian corridor per stream km (July 1-Sept. 30)		
Mean Annual Solar Insolation in sample area	kWh/30mpixel	derived (Fu and Rich 2002)
Mean Annual Solar Insolation in riparian corridor	kWh/30mpixel	derived (Fu and Rich 2002)
Mean Annual Solar Insolation*Canopy Cover	kWh/30mpixel	derived (Fu and Rich 2002)
Mean Annual Solar Insolation*Canopy Cover in	kWh/30mpixel	derived (Fu and Rich 2002)
riparian corridor		
Mean Solar Insolation*Canopy Cover (July 1-Sept. 30)	kWh/30mpixel	derived (Fu and Rich 2002)
Mean Solar Insolation*Canopy Cover	kWh/30mpixel	derived (Fu and Rich 2002)
In riparian corridor (July 1-Sept. 30) Mean Solar Insolation in Sample Area (July 1 Sept. 20)	1-W/h/20mnival	derived (Fu and Dich 2002)
Mean Solar Insolation in riparian corridor (July 1-Sept. 30)	kWh/30mpixel	derived (Fu and Rich 2002) derived (Fu and Rich 2002)

Table 1. Candidate landscape metrics summarized for watersheds above each sample point. A "derived" source refers to a personally calculated metric. Metrics in **bold** used for cluster analysis.

A cluster analysis (Ward's Method; SAS 2000) was used to group the 272 patches into 9 groups (Figure 1) (see Table 1 for grouping metrics). General grouping of the clusters are in Table 2. I then randomly selected 50 patches proportionally from the 9 groups to ensure a representative sample of habitats.

	<u>Riparian</u>	<u>Sample Point</u>	<u>Sample Point Max Air</u>	<u>% Forest Sample</u>	
<u>Cluster</u>	<u>Solar</u>	Elevation	<u>Temp</u>	Area	<u>%BFI</u>
1	Low	Low	High	High	Low
2	Low	Low	High	High	Low
3	Low	Medium	Medium	High	Low
4	Low	Medium	Medium	Medium	Medium
5	Medium	High	Low	High	Low
6	Medium	High	Medium	Low	Low
7	High	Medium	High	High	Medium
8	High	High	Medium	Low	Low
9	Medium	High	Low	Low	High

Table 2. Explanation of how patches were grouped into clusters based on patch metrics.

Figure 1. Unique brook trout habitat patches (N=272) in the state of Virginia clustred into 9 groups based on physical habitat metrics (see Table 1 for metrics).

Figure 2. Contiguous catchments containing brook trout were dissolved into "patches" of brook trout habitat. Paired air and water temperature thermographs were placed at pour point and at the stream section nearest to the centroid to directly measure water temperature responses to air temperatures.

Sampling Protocol

Paired (air and water) thermographs (HOBO Watertemp Pro v2; accuracy 0.2° C; drift <0.1 annually; Onset Computer Corporation 2008) were placed at the pour point and at the centroid of each sampled patch. All thermographs were set to record every 30 min (Dunham et al. 2005; Huff et al. 2005) from July 1st through September 30th for both 2009 and 2010 (Stoneman and Jones 1996), thus encompassing the most likely period when water temperatures are stressful or potentially lethal (> 21°C) for brook trout in Virginia. Thermographs were calibrated pre and post-deployment following methods summarized in Dunham et al. (2005). Due to the possibility that stream channels may become dry during summer low flow periods, water temperature thermographs were placed near maximum residual pool depths (Lisle 1987). A shield was used to reduce direct ultraviolet light contact with air temperature thermographs (Dunham et al. 2005; Wise et al. 2010). The raw 30 minute air and water temperature data was screened for outliers and summarized as daily maximums for most analyses. Outliers were primarily from dry stream channels. A Standard Operating Procedures guide was created for field crews (Appendix A2).

Data Analysis

Sensitivity and exposure metrics were created for analysis using daily maximum air and water temperature. Sensitivity is defined as the change in the daily maximum water temperature (DMAXW) from a 1°C increase in the daily maximum air temperature (DMAXA). Because this sensitivity varies throughout the DMAXA range for a given site, I report the median change for each sample location as a single sensitivity metric. In addition, a standardized exposure score was developed for each site from the DMAXW values. I chose 21°C DMAXW as my exposure value based on previous work from Rahel et al. (1996), as well as 21°C being a median value among several studies defining thermal maxima for brook trout (Eaton et al. 1995; Eaton and Scheller 1996; Johnstone and Rahel 2003). Duration (number of consecutive days above 21°C), frequency (proportion of days above 21°C) and magnitude (average DMAXW of all DMAXW days over 21°C) for the sample period were calculated for each site. The three measures of exposure were then combined into a single measure by standardizing each exposure measure ((x-mean)/SD) and taking the average. Because a number of sites have zero values of exposure, the index was adjusted so that the minimum value is zero.

I combined sensitivity and exposure scores into a conceptual classification system with four categories: (high sensitivity-high exposure (HS-HE); high sensitivity-low exposure (HS-LE); low sensitivity-high exposure (LS-HE) and low sensitivity-low exposure (LS-LE) (Figure 3). The quadrant in which each site appeared was defined by the sensitivity and exposure values of each site (Figure 3). For example, the LS-LE category contains sites that consistently have low exposure to water temperature > 21°C and are most resistant to increased water temperature from air temperature increases. These sites have stable stream temperatures with daily maximums never reaching or exceeding 21°C. The HS-HE category contains sites with high exposure to water temperature > 21°C and are most sensitive to increased water temperature from increased air temperature.

Figure 3. Proposed conceptual classification system for classifying brook trout habitats. LS-LE are least vulnerable to climate change, HS-LE are somewhat vulnerable, LS-HE are moderately vulnerable, and HS-HE are most vulnerable to climate change.

Predictions

Multiple linear regression was used to predict sensitivity values from land use metrics. Due to a large number of sites with exposure values of zero, logistic regression was used to predict exposure values from land use metrics. The measured sensitivity and exposure values were then compared to the predicted to determine model accuracy.

Results

Sensitivity

In 2009, the sensitivity response of DMAXW to a 1°C increase in DMAXA had a median of 0.38°C among all sites and air temperature ranges (Figure 4). However, there was considerable variation both among sites and temperature ranges. For example a 1°C DMAXA increase from 16 to 17°C averaged a 0.52°C increase in DMAXW but ranged from 0.13 to 0.98°C, while a 1°C increase in DMAXA from 25 to 26°C averaged 0.35°C with a range of 0.10 to 0.82°C (Figure 4).

In 2010, the sensitivity metric had a median of 0.40°C. Sensitivity within a site was significantly less (mean difference -0.069) (T test; t = -5.01; p < 0.0001) in 2010 than in 2009 (Figure 5). The two sensitivity years were correlated (Spearman Correlation; r = 0.690; p < 0.0001) (Figure 5). Individual sensitivity scores for both years are found in Appendix A3.

<u>Exposure</u>

Exposure metrics varied among sites in 2009; duration averaged 11.11 d; frequency averaged 23.4% and magnitude above 21°C averaged 1.78°C. Exposure metrics varied among sites in 2010; duration averaged 19.81 d; frequency averaged 46.5%; magnitude above 21°C averaged 3.78°C.

Exposure in 2010 was greater than exposure in 2009 (T test; t = 6.24; p < 0.0001) with a site mean of 0.34 exposure units greater. This was expected because of a 1.43°C mean air temperature increase in 2010 (Figure 6). The two exposure years measured were

highly correlated (Spearman Correlation; r = 0.911; p < 0.0001) (Figure 7). Individual exposure scores for both years are found in Appendix A3.

Classification

The cutoffs for sensitivity/exposure classification categories were: > 0.38°C high sensitivity, ≤ 0.38 °C low sensitivity; > 0 = high exposure, ≤ 0 = low exposure. I chose the median sensitivity as an arbitrary cutoff value simply because the variation within and among air temperature bins was so great (Figure 4). The exposure cutoff was set to zero because exposure values greater than zero indicate stress to brook trout (DMAXW >21°C). The 2009 Sensitivity-Exposure classification categorized 42.3% of sites as (HS-HE); 33.3% (LS-LE); 5.1% (HS-LE); 19.2% (LS-HE) (Figure 8).The 2010 Sensitivity-Exposure classification categorized 40.3% of sites as (HS-HE); 9.1% (LS-LE); 2.6% (HS-LE); 48.1% (HS-LE) (Figure 9).

Sensitivity was lower in 2010 than 2009 and 36.0% of sites changed classification group (Table 3). Thirteen sites became less sensitive changing from HS to LS, and 9 sites became more sensitive changing from LS to HS (Table 3). Conversely, exposure was higher in 2010 than 2009 and 26.0% of sites changed classification group. Zero sites experienced less exposure, but 16 sites experienced higher exposure changing from LE to HE (Table 3). Classification categories for all sites are shown in Table 4.

Prediction

In 2009, the measured sensitivity and exposure values matched the predicted values 77.8% of the time but varied by category. Percentages for prediction categories matching true categories between 2009 and 2010 were similar among the HS-HE and Table 3. Sensitivity/Exposure classification percentages and differences 2009-2010

Sensitivity/Exposure Difference 2009-2010				
	Sensitivity	Exposure		
Change	36%	26%		
No Change	64%	73%		
Less	13 sites	0 sites		
More	9 sites	16 sites		

Sensitivity/Exposure Classifications 2009-2010			
2009	2010		
42%	40%		
5%	3%		
19%	48%		
34%	9%		
	ure Classification 2009 42% 5% 19% 34%		

HS-LE categories; however, higher exposure values in 2010 changed prediction accuracy among the LS-HE and LS-LE categories (Table 5). Predicted and true categories for each site from 2009 and 2010 are shown in Appendix A4.

Metrics that significantly predicted sensitivity in 2009 were Sample Area (F = 9.63; df = 77; p < 0.0001); Mean Annual Solar Insolation in sample area (F = 9.31; df = 776; p = 0.002), with a model $r^2 = 0.25$ (Table 6). Metrics that significantly predicted sensitivity in 2010 were Stream Length (F = 14.95; df = 76; p = 0.0002); Mean Canopy Cover in riparian corridor (F = 16.81; df = 76; p = 0.0001); % Groundwater flow in

sample area (F = 17.64; df = 76; p < 0.0001); Mean Solar Insolation in sample area (July 1-Sept 30) (F = 21.25; df = 76; p < 0.0001) with a model $r^2 = 0.36$ (Table 6).

Metrics that significantly predicted exposure in 2009 were Sample Area (Wald Chi² =7.33; df = 23; p = 0.006); %Forest in sample area (Wald Chi² = 4.43; df = 23; p = 0.03); Sample Point Elevation (Wald Chi² = 11.38; df = 23; p < 0.001) (Table 6). Only one metric significantly predicted exposure in 2010, Mean Solar Insolation*Canopy Cover in riparian corridor (July 1-Sept 30) (Wald Chi² = 0.67; df = 25; p = 0.01) (Table 6).

Table 4. Sensitivity/Exposure categories 2009-2010. Categories are listed in consecutive year for comparison. Pop# = Patch ID; Site C = centroid, p = pour-point; Sens09-10 = Sensitivity 2009 or 2010; Exp09-10 = Exposure 2009 or 2010; S-E Class = Sensitivity-Exposure category. **Bold** indicates category changes between 2009 and 2010. Table includes only sites with complete 2009 and 2010 data.

.

POP#	Site	Sens09	Sens10	Exp09	Exp10	S-E Class09	S-E Class10
23	С	LS	LS	LE	HE	LSLE	LSHE
26	С	HS	LS	HE	HE	HSHE	LSHE
27	С	LS	LS	LE	LE	LSLE	LSLE
33	С	HS	HS	HE	HE	HSHE	HSHE
39	С	LS	HS	HE	HE	LSHE	HSHE
40	С	LS	HS	LE	HE	LSLE	HSHE
61	С	LS	HS	LE	HE	LSLE	HSHE
63	С	HS	HS	HE	HE	HSHE	HSHE
64	С	HS	HS	HE	HE	HSHE	HSHE
72	С	LS	HS	LE	HE	LSLE	HSHE
84	С	LS	HS	LE	HE	LSLE	HSHE
87	С	LS	HS	LE	LE	LSLE	HSLE
105	С	LS	LS	LE	LE	LSLE	LSLE
106	С	LS	LS	HE	HE	LSHE	LSHE
143	С	LS	LS	HE	HE	LSHE	LSHE
168	С	HS	LS	HE	HE	HSHE	LSHE
172	С	HS	HS	HE	HE	HSHE	HSHE
174	С	LS	LS	LE	LE	LSLE	LSLE
182	С	LS	LS	HE	HE	LSHE	LSHE
185	С	LS	LS	LE	HE	LSLE	LSHE
220	С	LS	LS	HE	HE	LSHE	LSHE
229	С	LS	LS	HE	HE	LSHE	LSHE
234	С	HS	HS	HE	HE	HSHE	HSHE
247	С	LS	LS	HE	HE	LSHE	LSHE
260	С	HS	HS	LE	HE	HSLE	HSHE
262	С	LS	LS	LE	LE	LSLE	LSLE
273	С	LS	HS	LE	HE	LSLE	HSHE
276	С	LS	HS	LE	HE	LSLE	HSHE
298	С	HS	HS	HE	HE	HSHE	HSHE
307	С	HS	LS	HE	HE	HSHE	LSHE
308	С	LS	LS	LE	LE	LSLE	LSLE
312	С	HS	HS	HE	HE	HSHE	HSHE
315	С	HS	HS	HE	HE	HSHE	HSHE
19	Р	LS	LS	HE	HE	LSHE	LSHE
27	Р	HS	HS	HE	HE	HSHE	HSHE
30	Р	LS	HS	HE	HE	LSHE	HSHE
39	Р	HS	LS	HE	HE	HSHE	LSHE
40	Р	LS	LS	HE	HE	LSHE	LSHE
63	Р	HS	LS	LE	HE	HSLE	LSHE

_	POP_	Site	Sens09	Sens10	Exp09	Exp10	S-E Class09	S-E Class10
	64	Р	HS	LS	HE	HE	HSHE	LSHE
	72	Р	LS	LS	LE	HE	LSLE	LSHE
	77	Р	LS	LS	LE	HE	LSLE	LSHE
	84	Р	LS	LS	LE	HE	LSLE	LSHE
	102	Р	LS	LS	LE	LE	LSLE	LSLE
	105	Р	LS	LS	HE	HE	LSHE	LSHE
	106	Р	HS	HS	HE	HE	HSHE	HSHE
	112	Р	HS	LS	HE	HE	HSHE	LSHE
	143	Р	LS	LS	HE	HE	LSHE	LSHE
	168	Р	HS	LS	HE	HE	HSHE	LSHE
	172	Р	HS	HS	HE	HE	HSHE	HSHE
	174	Р	HS	LS	HE	HE	HSHE	LSHE
	182	Р	HS	HS	HE	HE	HSHE	HSHE
	185	Р	HS	LS	HE	HE	HSHE	LSHE
	220	Р	HS	LS	HE	HE	HSHE	LSHE
	229	Р	LS	HS	HE	HE	LSHE	HSHE
	234	Р	HS	LS	HE	HE	HSHE	LSHE
	247	Р	LS	LS	HE	HE	LSHE	LSHE
	260	Р	LS	HS	LE	HE	LSLE	HSHE
	273	Р	LS	LS	LE	HE	LSLE	LSHE
	298	Р	HS	HS	HE	HE	HSHE	HSHE
	307	Р	HS	HS	HE	HE	HSHE	HSHE
	308	Р	HS	HS	HE	HE	HSHE	HSHE
	312	Р	HS	HS	HE	HE	HSHE	HSHE
	315	Р	HS	HS	LE	HE	HSLE	HSHE
	319	Р	HS	LS	HE	HE	HSHE	LSHE

Table 4. Sensitivity/Exposure categories 2009-2010 continued

 Table 5. Sensitivity/Exposure Prediction percentages. Percentages shown are the predicted % correct for each category.

Sensitivity/Exposure Prediction percentages 2009-2010					
Category	2009	2010			
HS-HE	57.7%	59.7%			
HS-LE	94.9%	97.4%			
LS-HE	80.7	51.9%			
LS-LE	77.7%	90.9%			
Overall	77.8%	74.3%			

Sensitivity 2009	Model	Model r ² ≡ 0.25			
Metric	F value	df	p-value		
Intercept	105.96	77	< 0.0001		
Sample Area	9.63	77	0.002		
Mean Annual Solar Insolation	9.31	77	0.003		
*Canopy in Riparian Corridor					

Table 6. Metrics used to predict Sensitivity/Exposure in 2009-2010. Sensitivity metrics were calculated using multiple linear regression, and exposure metrics were calculated using logistic regression.

Sensitivity 2010 Model r ² = 0.3			0.36
Metric	F value	df	p-value
Intercept	18.35	76	< 0.0001
Stream Length	14.95	76	0.0002
%Canopy in Riparian Corridor	16.81	76	0.0001
Mean %groundwater	17.64	76	< 0.0001
Mean Solar Insolation (July 1-Sept 30)	21.25	76	< 0.0001

Exposure 2009			
Metric	Wald Chi ²	df	p-value
Intercept	7.33	23	0.006
Sample Area	4.43	23	0.03
%Forest in sample area	4.7	23	0.03
Sample Point Elevation	11.38	23	< 0.001

Exposure 2010			
Metric	Wald Chi ²	df	p-value
Intercept	0.67	25	0.41
Solar Insolation*Canopy			
(July 1-Sept 30) in Riparian	5.9	25	0.01
per Stream km			

Figure 4. Box plots of the response of daily maximum water temperatures to a 1°C increase in daily maximum air temperature (by one degree bins from 16 to 28 °C) during July 1 through September 30, 2009. The solid line represents the median $\Delta 0.38$ °C for 2009. Whiskers represent the 5th and 95th percentiles; circles represent outliers; diamonds represent means; solid line in boxes represent medians.

Sensitivity in 2009 and 2010

Figure 5. A plot of the 2009 and 2010 sensitivity scores by site. Circles below the solid line indicate sites where sensitivity was lower in 2010 than in 2009. The mean difference at a site was 0.069 °C lower in 2010 than in 2009.

Figure 6. Difference in air temperatures between 2009 and 2010 at a typical site. Mean air temperature increase (2009-2010) among all sites was 1.43 °C.

Figure 7. A plot of the 2009 and 2010 exposure scores by site. Circles below the solid line indicate sites where exposure was lower in 2009 than in 2010. The mean difference at a site was 0.34 exposure units higher in 2010 than in 2009.

Figure 8. 2009 Sensitivity/Exposure Classification. Sensitivity $\leq 0.38 =$ low sensitivity, > 0.38 = high sensitivity. Exposure $\leq 0 =$ low exposure, > 0 = high exposure.

Figure 9. 2010 Sensitivity/Exposure Classification. Sensitivity $\leq 0.38 =$ low sensitivity, > 0.38 = high sensitivity. Exposure $\leq 0 =$ low exposure, > 0 = high exposure.

Discussion

My direct measurement approach produced markedly different predictions of future brook trout distributions than models that used secondary data to predict the relationship between air and water temperatures (Meisner 1990; Flebbe 1994; Clark et al. 2001; Flebbe et al. 2006). In most cases, my direct measurement approach identified more brook trout watersheds (25%) that are not sensitive, and currently not vulnerable to many predicted air temperature increases. The secondary data models predict complete extirpation for many scenarios. While typical secondary data sources (maximum air temperature and elevation) used in regional models to predict water temperature are useful, my direct measurement approach reduces the risk of Type I or Type II error. Air temperature increases from the various climate change scenarios can be applied to the site specific air-water temperature relationship curves instead of secondary data model averages to better predict brook trout persistence.

I found considerable variability between 2009 and 2010 in sensitivity. The lower sensitivity in 2010 may have been a response to stream flow differences between 2009 (average precipitation year) and 2010 (drought year). In 2010, groundwater contributed a greater percentage of stream flow possibly lowering sensitivity.

Other explanations for fluctuations of sensitivity and exposure may be found in the land use characteristics at each site. For example, sample site c33 had the highest sensitivity/exposure values for 2009 (HS-HE category), but its values declined in 2010. Site c33 had low percent canopy cover with shallow water which may explain the differences between years. Greater surface water inputs in 2009 may have increased the variation in the sensitivity/exposure values in 2009. Both sensitivity and exposure prediction models could potentially be improved by sampling a larger geographic area encompassing a greater range of landscape metrics. Repeated paired air and water temperature data over several years that includes different temperature and hydrologic trends could also improve the prediction models. A lack of long-term temperature data coupled with a narrow geographic range of sample sites may explain why different land use metrics predicted sensitivity and exposure between years. Improved sensitivity and exposure models would allow managers to predict sensitivity and exposure from any point on a map and summarize responsive landscape metrics and values upstream of the point of interest. The applications of this type of model may span across disciplines.

I recommend that when managers make long term planning decisions, such as choosing among populations of brook trout for preserving genetic information, or for making investments in habitat restoration, that they develop site specific air-water temperature relationships instead of relying on existing secondary data models. Combined with my sensitivity-exposure classification system, the direct measurement approach gives managers a tool to assess potential persistence of individual brook trout habitats under various climate change scenarios. I recommend their use when the potential for costs of an error (either Type I or Type II) from the secondary data models are high.

Although climate change effects other than air temperature (i.e. rainfall, floods, droughts, changes in land cover, spawning times, invasive species, etc.) are important, the low predictability of these metrics (both in magnitude and direction) at this time make it

difficult for managers to incorporate this information into the decision making process. Predictions of increasing air temperatures have the highest reliability (IPCC 2007), and these increases may pose the highest risk of change to the current distribution of brook trout.

Appendix

A 1. Landscape Metric Values. Type (c = centroid, p = pour-point), Lat/Long (decimal degrees), Area (km²), Stream_LEN (km), Maxtemp (Celsius), Elev (m), Forest and Canopy (%), BFI (%), all Solar metrics (kWh, or kWh/km); Missing Values (-999). See Table 1 for explanation of metric titles.

POP#	Туре	LAT	LONG	AREA	Stream_LEN	Maxtemp	Elev	Forest%
10	С	38.73346556	79.04022583	32.4	22.9	16.3	580	98.2
19	С	38.42111285	79.1991183	16.5	3.3	16.6	644	99.3
23	С	38.20593758	79.26200604	11.3	1.3	17.0	609	97.8
26	С	38.10949313	79.30571523	35.6	9.8	18.1	512	93.3
27	С	38.17807336	79.45710783	13.9	7.8	17.4	599	96.3
30	С	37.9927401	79.42595154	2.5	1.7	18.8	449	100
33	С	37.98028769	79.62592875	17.7	12.9	18.9	418	96.4
39	С	37.7363163	79.74129299	7.3	6.9	19.1	384	96.5
40	С	37.75050653	79.91645196	13.8	8.1	17.3	508	86.2
49	С	37.93645201	79.80711347	10.4	10.9	17.3	603	96
61	С	38.31638684	79.35220278	23.8	5.9	16.2	712	100
63	С	38.37584998	79.64005552	31.5	6.3	15.6	824	39.4
64	С	38.44221798	79.5390406	19.1	6.6	15.6	791	56.3
66	С	38.51485169	79.64728827	27	13.5	13.1	994	92.8
72	С	37.71317689	79.98509481	7.2	8.9	17.0	670	79.5
75	С	37.72223412	80.18311132	5	3.8	17.5	574	99.3
77	С	37.7980823	80.19433938	13.3	7.1	16.8	669	94.2
84	С	37.48588356	80.28700769	2	-999.0	18.0	577	99.5
87	С	37.35488489	80.41423433	3.6	4.5	17.6	703	98.5
102	С	37.56700764	79.47649509	8.6	8.2	18.9	396	99.1
105	С	37.50786217	79.46863521	5.7	3.2	17.4	574	98.9
106	С	37.52976391	79.55216708	5	3.4	18.0	448	96.1
112	С	37.72581378	79.19955038	13.2	11.2	17.9	508	98.6
117	С	37.9295325	79.10548054	18.1	16.2	16.5	633	99.3
121	С	37.9744455	79.04651259	3.2	3.1	17.5	604	100
143	С	37.8923228	78.93564239	4.5	3.2	18.7	474	90.6
144	С	37.90149839	78.97063348	2.7	1.9	17.9	577	93
168	С	37.83180144	78.97359137	6.2	5.6	18.7	325	92.7
172	С	37.85577075	79.06740909	35	37.4	17.7	436	90.8
174	С	38.09641778	78.80804636	9.3	3.0	18.1	467	96.5
182	С	38.21193307	78.67785797	16.4	8.3	19.0	317	96.3
185	С	38.26833271	78.61204636	18.5	4.8	18.9	304	94.2
220	С	38.45098109	78.69294346	8.8	6.2	18.4	452	98.9
229	С	38.59741922	78.42443012	12.7	6.0	19.1	352	93
234	С	38.41723999	78.43709953	24.2	10.4	18.5	365	98.3
235	С	38.36938796	78.46858816	12.3	5.0	18.8	339	97.4
247	С	38.6571723	78.28225913	9.7	0.4	18.6	325	90.7
257	С	36.73067015	81.58716585	4.4	3.5	16.7	816	99.9
260	С	36.7358386	81.49324201	17.9	14.5	16.8	805	96.5
262	С	37.04298095	81.46103681	15.9	11.2	17.7	751	83.3
264	С	36.75282746	81.37324275	6.1	5.5	15.9	916	95.6
267	С	36.83263457	81.3445178	2.8	2.1	16.3	936	97.2
273	С	36.67898172	81.35310606	6.7	5.7	17.0	852	62.2
276	С	36.68964786	81.43143964	36.5	31.9	16.8	870	91.6
298	С	36.67592391	80.8113441	59.2	41.5	17.7	730	65.6
307	С	36.8951448	80.42961731	4.2	3.5	17.2	742	71.2
308	С	36.83813578	80.39188013	2.4	1.4	16.6	829	71.1
312	С	36.81239102	80.49770686	45.5	27.3	17.1	770	70.2
315	С	36.75959978	80.37217076	4.7	4.0	16.4	895	53.2
319	С	36.71224572	80.48310424	2.4	1.8	16.8	829	47.2

POP#	Tune	Foresto/ Com	Canony 0/	Canony ^{0/} Corr	Moor DEI	Moon REI Com
10 10	Type	rorest%_Corr		Canopy%_Corr		
10	C	95.8	/8.0	//.8	45.0	43.0
19	C	100	79.3	80.8	45.0	45.0
23	C	84.8	/4.0	82.5	48.4	48.0
26	C	81.7	//.4	/1.9	4/.0	46.7
27	C	86.6	83.1	83.8	40.5	40.5
30	C	100	88.2	88.4	42.7	42.6
33	C	92.6	83.0	/6.8	41.4	41.0
39	С	99.6	81.3	82.4	45.7	45.9
40	С	74.9	66.2	60.7	45.8	45.8
49	С	96.7	76.6	81.8	42.7	42.5
61	С	100	89.4	83.9	44.0	43.8
63	С	10.6	34.4	14.4	39.9	40.0
64	С	23.9	47.8	29.6	39.5	39.6
66	С	93.6	71.3	73.1	38.1	38.1
72	С	61.8	64.5	49.0	45.0	45.0
75	С	99.8	82.3	78.1	45.0	45.0
77	С	82.8	79.6	68.2	44.0	44.0
84	С	-999	77.9	-999.0	48.0	-999.0
87	С	100	85.4	84.7	48.9	49.0
102	С	97.5	84.8	85.2	47.0	47.0
105	С	100	85.7	84.9	49.0	49.0
106	С	97.5	88.2	88.8	48.7	48.6
112	С	93.3	76.1	71.4	49.0	49.0
117	С	100	83.0	85.0	51.3	51.2
121	С	100	80.6	79.4	51.2	51.3
143	С	89.3	73.6	77.6	53.0	53.0
144	С	86.8	75.2	76.6	53.0	53.0
168	С	79.4	74.6	60.5	52.4	52.6
172	С	87.5	76.3	74.4	50.3	50.4
174	С	98.6	83.3	86.3	47.9	48.0
182	С	97.5	80.3	77.8	44.1	44.2
185	С	94.6	77.1	72.7	43.8	43.6
220	С	98.9	80.3	80.2	44.3	44.3
229	С	78.4	82.1	73.9	47.0	47.1
234	С	92	78.9	81.0	45.6	45.7
235	С	97.7	79.3	79.5	44.6	44.5
247	С	49.3	81.1	82.0	48.0	48.0
257	С	99.3	93.7	92.4	55.0	55.0
260	С	95.5	90.1	87.9	55.0	55.0
262	С	89.8	82.8	82.5	51.9	51.9
264	С	99.7	89.8	93.3	54.0	54.0
267	С	85	89.6	88.9	54.0	54.0
273	С	68	56.6	63.2	54.0	54.0
276	С	88.3	85.8	82.6	55.0	55.0
298	C	69.8	60.4	63.5	59.9	59.9
307	Č	57.5	64.5	53.3	49.7	49.7
308	Ē	90.3	64.3	82.3	51.2	51.0
312	Č	67.4	64.2	62.8	52.2	52.3
315	Ē	43	47.7	40.3	54.0	54.0
319	Č	38	44.8	39.1	56.4	56.6

A1. Landscape Metric Values continued.

POP#	Туре	Solar_ann_ can mean	Solar_ann can km	Solar_ann_can mean Corr
10	C	292.5	459,343.8	292.8
19	č	285.3	1 565 319 7	253.0
23	č	360.1	3.361.364.5	231.7
26	Č	314.6	1 267 097 8	385.6
27	č	230.4	454 856 5	221 7
30	č	154.2	250 020 5	157.2
33	Č	227.5	347.624.7	307.4
39	Č	247.2	291 986 0	233.2
40	Č	463.2	874 400 1	520.5
49	Č	333.0	354,683.5	248.3
61	Č	143.7	648.573.8	210.6
63	č	924.4	5.121.047.0	1201.7
64	Č	737.7	2.382.621.4	979.5
66	Č	414.6	920.063.2	379.1
72	Č	494.2	442.631.4	708.7
75	Č	232.4	343,578.1	288.3
77	Č	282.0	587,822.2	433.6
84	č	324.1	-999.0	-999.0
87	Č	210.9	188.222.7	220.0
102	Č	201.5	236.642.3	190.8
105	Č	201.1	398.003.1	209.5
106	č	145.2	234,604,3	131.1
112	C	337.0	440.083.8	397.8
117	С	232.8	288,760.1	197.3
121	С	252.6	286,971.0	249.9
143	С	379.2	596,152.4	309.5
144	С	370.0	587,224.6	343.8
168	С	346.1	427,290.1	537.2
172	С	327.0	339,475.5	344.6
174	С	224.4	777,262.3	181.4
182	С	269.9	593,500.8	291.2
185	С	308.3	1,325,332.9	353.3
220	С	268.5	426,318.2	260.4
229	С	231.3	549,254.7	334.8
234	С	290.5	754,666.4	253.2
235	С	284.1	772,388.6	276.8
247	С	250.3	6,032,788.4	239.1
257	С	85.5	116,941.0	104.0
260	С	142.3	194,703.8	176.9
262	С	258.7	406,729.3	259.1
264	С	149.5	182,382.6	100.8
267	С	157.2	236,959.8	165.8
273	С	640.5	838,297.1	538.9
276	С	207.0	263,575.4	254.9
298	С	577.4	916,144.0	525.3
307	С	510.7	681,728.2	671.0
308	С	508.4	935,071.9	248.5
312	С	522.4	968,070.9	534.4
315	С	768.2	1,019,589.3	878.5
319	С	815.2	1,200,005.4	894.3

A1. Landscape Metric Values continued.

POP#	Type	Solar ann can km Corr	Solar crit can mean	Solar crit can km
101 #	C	64 222 2		152 712 4
10	C	58 527 0	97.2	502 812 0
22	C	57,742,2	91.0	1 076 625 0
23	c	96 577 1	113.5	405 421 7
20	C	50,377.1	74.0	403,421.7
21	c	28 210 2	74.9 52.4	147,795.5 84.024.4
30 22	C	58,210.5	52.4 75.9	04,924.4
33 20	C	69,004.0 52,477.2	/3.8	115,778.0
39	c	52,477.5	85.0	98,790.8
40	C	116,896.1	151.0	285,151.0
49	C	55,185.5	104.5	111,262.8
61	C	47,989.8	47.0	212,355.5
63	C	270,175.5	290.7	1,610,732.6
64	C	220,745.3	231.2	/46,866.4
66	C	83,275.3	127.2	279,999.6
72	C	156,621.8	158.7	142,089.0
75	C	66,715.6	/9.3	117,271.4
77	C	98,018.5	91.3	188,635.5
84	C	-999.0	99.2	-999.0
87	С	50,173.8	65.9	58,856.5
102	С	42,839.1	68.0	79,886.5
105	С	48,883.8	63.9	125,545.7
106	С	30,454.4	52.9	84,537.4
112	С	88,712.8	106.9	139,576.6
117	С	43,648.3	75.9	94,199.2
121	С	58,368.4	86.5	98,226.7
143	С	70,692.4	118.0	185,529.9
144	С	82,185.0	110.9	176,000.5
168	С	121,505.4	113.5	140,163.6
172	С	76,230.5	106.1	110,195.7
174	С	42,168.3	74.1	256,815.6
182	С	65,627.0	87.7	192,746.0
185	С	80,725.6	101.7	436,977.1
220	С	58,756.1	87.2	138,385.7
229	С	75,905.9	79.2	188,014.9
234	С	56,578.1	93.7	243,470.1
235	С	63,855.7	91.9	249,966.3
247	С	72,818.6	83.5	2,012,701.0
257	С	24,027.4	28.5	38,996.2
260	С	39,347.6	44.7	61,230.7
262	С	57,669.9	78.0	122,609.6
264	С	22,729.6	46.3	56,490.1
267	С	39,628.9	47.4	71,413.8
273	С	120,458.7	197.1	257,947.4
276	С	55,477.2	64.6	82,209.7
298	С	116,152.9	179.6	285,044.5
307	С	154,586.2	160.7	214,565.1
308	С	61,707.2	161.6	297,183.2
312	С	118,990.7	162.5	301,216.5
315	С	202,985.5	237.3	314,972.9
319	С	216,576,9	250.8	369,213.6

A1. Landscape Metric Values continued.
POP#	Type	Solar crit can mean corr	Solar crit can km Corr	Solar ann mean
10	Type	Solar_crit_can_inean_corr		
10	C	98.1 95.2	21,331.3	1,287.9
22	C	83.2 77.9	19,709.2	1,331./
23	C	//.8	19,3/9.8	1,353.1
26	C	125.2	28,106.7	1,382.5
27	C	/2.1	16,361.4	1,333.5
30	С	51.5	12,513.2	1,301.8
33	С	103.3	23,180.0	1,319.0
39	С	78.5	17,677.9	1,285.8
40	С	175.9	39,499.7	1,352.8
49	С	81.1	18,034.4	1,370.3
61	С	71.3	16,241.8	1,336.7
63	С	379.3	85,275.0	1,398.4
64	С	312.0	70,322.5	1,401.8
66	С	119.1	26,157.7	1,418.6
72	С	228.3	50,452.5	1,381.2
75	С	97.7	22,606.2	1,301.9
77	С	142.0	32,107.3	1,362.3
84	С	-999.0	-999.0	1,462.5
87	С	69.0	15,728.8	1.436.4
102	С	66.3	14,896.9	1,243.8
105	Č	67.5	15.753.6	1.384.1
106	č	50.3	11.681.5	1.227.4
112	č	128.1	28 556 7	1 394 5
117	č	67.0	14 824 3	1 347 5
121	č	91.6	21 388 2	1 270 9
143	Ċ	100.2	22,300.2	1 408 3
143	č	104.5	22,075.7	1 118 7
169	č	176 /	27,271.7	1,440.7
170	Ċ	114 4	25 205 0	1,333.1
174	C	61 1	23,503.0	1,324.2
1/4	C	01.1	14,200.3	1,524.5
182	C	70.4 101 2	22,100.9	1,344./
185	C	121.3	2/,/20.1	1,328.0
220	C	8/.8	19,/99.6	1,338.6
229	C	115.4	26,154.4	1,253.5
234	C	84.0	18,777.1	1,336.9
235	С	90.8	20,942.4	1,329.5
247	С	79.5	24,213.4	1,292.0
257	С	34.4	7,954.1	1,342.8
260	С	54.8	12,187.1	1,384.4
262	С	79.2	17,631.1	1,472.9
264	С	30.5	6,874.3	1,438.6
267	С	50.4	12,044.5	1,480.8
273	С	167.0	37,328.8	1,459.9
276	С	79.0	17,205.9	1,432.2
298	С	165.7	36,646.3	1,442.2
307	С	211.7	48,775.0	1,408.4
308	С	80.2	19,925.1	1,413.7
312	С	168.6	37,547.1	1,427.3
315	С	271.1	62,646.8	1,462.2
319	Ċ	276.3	66,920.3	1,445.4

A1. Landscape Metric Values continued.

POP#	Type	Solar ann km	Solar ann mean Corr	Solar ann km Corr
1017	C	2 022 075 5	1 295 9	281 500 0
10	C	2,022,073.3	1,203.0	201,300.0
17	C	12 620 840 1	1,31/./	303,970.1
43 24	C	12,030,849.1	1,314.8	327,004.0
20	C	5,507,018.5	1,308.1	307,994.2
27	C	2,032,031.0	1,324.0	298,752.5
30	C	2,111,137.8	1,354.5	330,135.9
33	C	2,015,345.8	1,305.6	291,561.0
39	C	1,520,651.4	1,291.2	291,556.7
40	C	2,553,865.1	1,275.0	285,714.3
49	C	1,459,669.1	1,358.2	301,652.7
61	C	6,039,569.1	1,316.8	296,930.7
63	С	7,741,745.4	1,396.4	316,601.2
64	С	4,530,895.5	1,392.1	313,504.7
66	С	3,148,089.9	1,384.1	303,297.2
72	С	1,237,032.1	1,368.6	301,998.9
75	С	1,916,790.4	1,309.9	299,960.2
77	С	2,839,222.6	1,369.3	309,726.4
84	С	-999.0	-999.0	-999.0
87	С	1,292,332.5	1,437.0	329,674.1
102	С	1,460,532.4	1,221.5	274,145.1
105	С	2,739,306.5	1,358.8	317,059.7
106	С	1,982,639.8	1,170.2	271,842.4
112	С	1,819,161.4	1,381.2	309,583.4
117	С	1,675,074.5	1,316.4	293,292.3
121	С	1,447,577.3	1,206.7	280,722.0
143	С	2,213,973.7	1,360.6	315,025.3
144	С	2,299,299.5	1,460.2	349,048.7
168	С	1,648,174.2	1,365.5	309,852.5
172	С	1,376,234.8	1,307.8	289,295.7
174	С	4,587,595.2	1,291.4	298,891.6
182	С	2,959,811.6	1,304.7	295,576.6
185	Ċ	5,708,498,0	1.245.9	288.585.8
220	С	2.125.268.2	1,289.4	290.478.5
229	C	2,975,902.0	1,251.5	283,494.4
234	Ē	3,472,481.7	1,321.6	295,460.4
235	Č	3.610.723.2	1.312.0	301.106.8
247	Č	31.124.300.1	1.324.1	403.303.5
257	č	1.837.049.9	1.367.3	317,508 1
260	č	1 894 591 8	1 437 2	319 923 3
262	č	2 333 232 4	1 461 4	327 464 4
264	č	1 754 568 3	1 494 1	337 637 3
267	č	2 266 000 5	1 440 2	342 779 2
207	č	1 910 659 6	1,450.1	323 630 6
213	č	1,910,039.0	1,430.1	314 107 0
210	C	1,020,034.0	1,440.0	314,127.2
270 207	C	2,275,207.5	1,424.1	220 401 4
3U/ 200	C	1,0/9,901.9	1,419.3	529,401.0 242,700 1
308	C	2,570,897.9	1,407.8	342,/90.1
312	C	2,042,103.0	1,421.8	510,1/0.8
315	C	1,940,693.0	1,462.8	338,011.8
319	C	2,101,034.0	1,452.2	331,681.6

A1. Landscape Metric Values continued.

POP#	Type	Solar crit mean	Solar crit km	Solar crit mean Corr	Solar crit km Corr
101 #	C	A41 717	603 785 A		06 877 2
10	C	441.717	2 421 752 2	441.0	102 442 5
22	C	443.204	2,431,732.3	442.9	110,625,0
25 26	C	444.030	4,143,183.3	444.0	00.005.2
20	C	444.984	1,791,999.7	445.0	99,905.2
27	C	444.11	8/0,/98.1	444.0	100,746.6
30	C	445.247	/22,076.4	445.4	108,307.9
33	C	445.456	680,643.4	445.3	99,954.2
39	С	447.128	528,157.9	447.1	100,637.8
40	С	447.146	844,135.0	447.0	100,390.8
49	С	446.334	475,436.7	446.2	99,189.3
61	С	443.691	2,002,714.2	443.5	101,069.5
63	С	443.238	2,455,589.7	443.1	99,618.2
64	С	443	1,430,763.4	443.0	99,833.1
66	С	443.053	975,450.1	443.0	97,309.3
72	С	447.37	400,662.6	447.3	98,865.4
75	С	447.152	661,187.4	447.1	103,441.6
77	С	447.006	923,427.7	447.0	101,041.1
84	С	448.54	-999.0	-999.0	-999.0
87	С	451.213	402,733.7	451.3	102,925.9
102	С	447.958	526,002.0	447.9	100,575.7
105	С	448.55	881,335.9	448.4	104,620.4
106	С	448.113	716.258.5	448.0	104.077.2
112	Ċ	447 547	584 532 2	447 4	99 761 5
117	č	446 584	554 025 9	446.5	98 792 0
121	č	445 468	506 130 7	445.2	103 998 8
143	Č	446 765	702 365 3	446.6	102,019,0
143	Č	446 838	709 208 6	446.9	106,820,9
168	Č	446.056	551 736 6	447.0	101,109,9
172	Ċ	446.795	463 905 8	446.7	08 815 3
174	C	440.795	1 541 422 4	445.0	103 /38 1
100	c	444.977	076 100 1	443.0	100,025,2
102	C	443.990	970,190.1	445.9	100,055.5
105	c	445.704	702 242 (445.0	101,337.0
220	C	442.939	/03,242.0	442.8	99,894.2
229	C	442.358	1,050,234.4	442.1	100,215.4
234	C	445.105	1,151,112.0	443.0	98,994.5
235	C	445.175	1,205,030.3	443.1	102,229.7
247	C	441.982	10,652,116.5	442.0	134,629.3
257	C	453.804	620,859.9	453.7	104,846.6
260	C	453.861	621,121.5	453.9	100,967.9
262	С	452.733	711,691.0	452.6	100,741.3
264	С	453.888	553,585.6	453.9	102,322.8
267	С	453.606	683,563.5	453.6	108,389.3
273	С	453.998	594,184.4	454.0	101,479.4
276	С	454.006	577,997.2	454.0	98,820.5
298	С	453.998	720,401.1	454.0	100,379.2
307	С	453.036	604,727.2	453.1	104,381.9
308	С	453.178	833,563.9	453.0	112,509.0
312	С	453.579	840,530.3	453.5	100,972.4
315	С	453.993	602,540.0	454.0	104,905.4
319	С	453.999	668,337.4	454.0	109,948.3

A1. Landscape Metric Values continued.

POP#	Туре	LAT	LONG	AREA	Stream_LEN	Maxtemp	Elev	Forest%
10	Р	38.76674573	78.94244552	80.2	56.5	17.9	434.0	90.2
19	Р	38.39453846	79.16115255	41.2	12.7	17.7	539.0	99.0
23	Р	38.20193918	79.18157282	59.5	20.0	18.6	451.0	81.1
26	Р	38.08505197	79.34999072	61.2	15.1	18.4	471.0	90.4
27	Р	38.19128776	79.41995877	32.8	11.5	17.9	548.0	95.3
30	Р	37.99210535	79.43787903	4.2	4.9	19.0	416.0	99.2
33	Р	37.9947288	79.63072547	24.1	18.1	19.2	392.0	94.3
39	Р	37.71845881	79.78962212	35.3	29.6	19.9	313.0	96.3
40	Р	37.7873588	79.88445261	40.2	25.6	20.1	348.0	91.3
49	Р	37.90481234	79.80202986	42.3	36.4	18.9	441.0	95.0
61	Р	38.24035891	79.33633806	55.4	16.3	17.8	551.0	94.0
63	Р	38.2915511	79.66145357	101.4	23.6	16.5	687.0	66.5
64	Р	38.48224968	79.50864962	69.6	17.2	16.4	712.0	71.1
66	Р	38.57521123	79.59112866	71.6	54.4	15.3	803.0	96.0
72	P	37.72857699	79.99925476	11.9	12.6	18.2	496.0	87.1
75	P	37,73925854	80,18793649	93	9.0	18.5	485.0	97.4
77	P	37.78140203	80,19731781	18.5	13.2	17.1	630.0	96.1
84	P	37 47254675	80 27843252	17.2	19.6	18.6	500.0	95.7
87	P	37 34133181	80 41 293 661	6.5	62	17.7	623.0	88.4
102	P	37 59455629	79 50928751	16.7	15.9	20.4	247.0	93.5
102	D	37 /0800/60	79 //8/6509	87	5.4	19.3	361.0	94.5
105	I D	37 5/308573	79.61602573	30.0	25.5	20.1	272.0	06.2
112	I D	27 680222	79.01002373	27	23.3	10.8	272.0	90.2
112	I D	27 02026052	79.22143424	41	22.3	19.0	487.0	97.0
117	r D	37.93030033	79.10233033	41	62	18.5	467.0	90.0
141	r D	27 99462915	79.04187202	71	0.2	10.7	220.0	99.2
143	r	37.00403013	78.89903409	/.4 5.6	/.1	19.9	229.0 415.0	09.0 01.4
144	r	37.8800230	70.00159125	5.0 12.5	4.0	10.2	413.0	91.4
100	r	37.8113102	79.00158155	15.5	14./	20.1	242.0	8/.1
172	r	3/.82/3594/	79.01030851	115.4	100.4	19.8	261.0	91.5
1/4	r	38.09/56208	78.85022916	10.3	/.1	18.8	395.0	92.3
182	P	38.1/101/4/	/8.6/388/94	29.7	13.4	19.3	231.0	88.9
185	r	38.23885196	/8.569/5052	31.1	12.9	19.2	213.0	88.1
220	P	38.4202862	/8.66159661	16.9	10.9	18.9	303.0	81.2
229	ľ	38.6562804	/8.4612/391	44.2	14.7	19.1	244.0	57.2
234	ľ	38.33864541	/8.40585369	59.7	25.3	19.3	189.0	89.2
235	P	38.342689/8	/8.45835509	25.1	15.7	19.0	238.0	93.8
247	P	38.65/19/62	/8.21/64121	28.1	/.0	19.1	195.0	86.9
257	P	36.75752564	81.57498463	8.3	8.9	18.1	707.0	89.6
260	P	36.74517123	81.49365742	4.4	3.2	17.4	7/3.0	96.7
262	P	37.03362587	81.48199673	25.1	23.2	17.8	680.0	80.5
264	Р	36.77355256	81.40361397	18.1	15.8	17.6	797.0	89.4
267	P	36.82651337	81.28976452	23	19.2	17.7	757.0	86.0
273	Р	36.6540272	81.36632711	11.9	9.5	17.4	762.0	64.3
276	Р	36.66180357	81.37837121	93.5	87.6	17.5	771.0	79.5
298	Р	36.74480538	80.87907806	134.3	99.6	17.9	675.0	54.6
307	Р	36.90420321	80.39797584	42	42.8	17.5	693.0	64.4
308	Р	36.85785313	80.38808792	26	20.1	17.3	754.0	69.9
312	Р	36.78451403	80.59562456	106.3	75.8	17.6	685.0	75.3
315	Р	36.73924587	80.37784012	16.1	12.4	16.4	866.0	43.0
319	Р	36.69110958	80.52096141	12.6	7.7	17.2	773.0	48.6

A1. Landscape Metric Values continued.

DODI			<i>a</i> • •	a		
POP#	Туре	Forest%_Corr	Canopy%	Canopy%_Corr	Mean_BFI	Mean_BFI_Corr
10	P	87.4	70.4	68.3	42.8	42.8
19	Р	97.1	79.3	77.7	45.0	45.0
23	Р	69.1	63.5	60.3	48.9	49.4
26	Р	71.3	76.1	61.0	46.1	46.3
27	Р	76.9	81.6	69.8	41.1	41.0
30	Р	99.4	87.8	87.6	42.2	41.8
33	Р	83.2	79.9	69.3	41.0	40.7
39	Р	89.5	77.2	72.6	45.3	45.4
40	Р	83.3	74.8	69.9	45.2	45.2
49	Р	93.4	80.0	80.8	42.4	42.4
61	Р	83.8	83.1	70.6	43.4	43.5
63	Р	20.4	54.9	27.5	39.6	39.6
64	Р	38.3	58.6	39.4	40.2	40.1
66	Р	96.1	77.0	78.1	38.0	38.0
72	Р	70.6	73.4	59.9	45.0	45.0
75	Р	95.3	81.5	76.8	45.0	45.0
77	Р	90.1	81.0	75.4	44.0	44.0
84	Р	94.2	76.6	76.3	48.0	48.0
87	Р	86.6	73.4	72.7	48.9	49.0
102	Р	89.3	79.4	77.9	47.0	47.0
105	P	94.2	80.5	76.3	49.1	49.2
106	P	92.9	88.2	86.6	48.3	48.4
112	P	88.9	76.2	67.8	49.0	49.0
117	P	97.2	82.2	83.0	50.8	50.8
121	P	99.1	79.9	78 7	51.7	51.9
1/3	P	82.8	70.4	68.3	53.0	53.0
143	D	80.6	70.4	73.3	53.0	53.0
144	r D	76.5	60.6	73.3 59 7	52.0	52.8
100	D	70.5 86.4	09.0 75.6	72.1	51.5	51.6
174	r D	80.4 85.4	73.0	/3.1	31.3 48.6	31.0 40.1
1/4	r	0J.4 79.2	79.0	00.0	46.0	49.1
182	r D	70.5	72.7	01.8 52.0	44.2	44.2
192	r P	12.3	/1.5	55.U	43.9	43.8
220	r	/0.8	04.1	01.5	44.2	44.2
229	r	45.4	48.6	38.7	46.5	40.5
234	P	11.2	12.9	63.3	45.5	45.5
235	P	8/.4	/6.5	/0.6	44.9	44.9
247	P	38.8	/4.6	36.6	4/.9	4/./
257	P	86.1	83.2	78.1	55.0	55.0
260	P	95.8	90.3	87.9	55.0	55.0
262	P	89.4	82.7	84.1	51.9	51.9
264	Р	87.4	84.3	84.0	54.0	54.0
267	Р	79.7	78.0	74.3	54.2	54.1
273	Р	71.8	58.3	65.2	54.0	54.0
276	Р	74.7	74.2	69.5	54.5	54.5
298	Р	59.2	49.4	52.3	59.4	59.3
307	Р	60.8	57.9	50.3	50.1	50.0
308	Р	68.5	64.2	77.4	51.8	51.6
312	Р	66.9	68.3	61.0	53.5	53.6
315	Р	46.9	38.2	40.8	54.7	54.8
319	Р	43.5	45.6	42.6	57.1	57.3

A1. Landscape Metric Values continued.

DOD#	Turne	Solar ann can mag-	Solon one con lu-	Salar ann an man Carr
10 10	гуре	<u>solar_ann_can_mean</u>	Solar_ann_can_km	Solar_ann_can_mean_Corr
10	ľ	393.9	623,149.0	410.0
19	P	282.1	1,01/,1/4.0	292.7
23	P	493.9	1,630,029.0	529.5
26	P	331.7	1,489,128.0	506.4
27	Р	247.3	782,161.0	399.6
30	Р	164.3	157,035.0	165.9
33	Р	269.4	398,482.0	400.2
39	Р	305.2	404,825.0	363.2
40	Р	338.3	590,655.0	390.6
49	Р	284.4	367,626.0	263.5
61	Р	228.9	864,286.0	383.8
63	Р	630.9	3,013,824.0	1,018.9
64	Р	576.8	2,594,336.0	832.9
66	Р	324.8	474,551.0	298.3
72	Р	364.6	380,936.0	557.8
75	Р	241.5	279,959.0	307.9
77	Р	264.6	455,694.0	337.2
84	Р	335.9	326,314.0	342.3
87	Р	364.4	425,818.0	365.0
102	Р	274.0	320,067.0	282.4
105	Р	273.5	494,374.0	255.3
106	Р	153.8	206,793.0	172.4
112	Р	330.1	443,719.0	433.0
117	Р	237.4	288,953.0	222.5
121	Р	262.9	224,457.0	273.5
143	Р	408.9	477,495.0	404.4
144	Р	367.5	562,074.0	362.9
168	Р	423.1	432,693.0	559.7
172	Р	333.2	425,790.0	354.2
174	Р	284.5	724,512.0	399.9
182	Р	367.7	904,123.0	497.6
185	Р	378.4	1,012,995.0	613.6
220	Р	481.6	833,670.0	495.0
229	Р	671.8	2,238,150.0	795.2
234	Р	363.3	951,619.0	480.0
235	Р	313.7	558,448.0	384.5
247	Р	331.8	1,483,321.0	804.6
257	Р	238.3	247,862.0	292.6
260	Р	139.7	940,393.0	175.2
262	Р	260.6	312,164.0	239.8
264	Р	229.3	292,368.0	223.7
267	Р	312.5	415,054.0	363.6
273	Р	600.9	834,282.0	478.6
276	Р	378.3	447,658.0	443.8
298	Р	730.3	1,092,299.0	680.8
307	Р	604.9	659,114.0	664.0
308	Р	522.6	753,306.0	544.1
312	Р	455.6	710,306.0	555.4
315	Р	911.5	1,298.920.0	868.6
319	Р	804.2	1,462,326.0	831.6

A1. Landscape Metric Values continued.

POP#	Туре	Solar_ann_can_km_Corr	Solar_crit_can_mean	Solar_crit_can_km
10	Р	91,208.0	130.8	207,046.4
19	Р	64,631.0	91.6	330,014.8
23	Р	117,887.0	161.9	534,270.4
26	Р	110,570.0	106.5	481,885.5
27	Р	88,745.0	81.6	258,006.3
30	Р	37,215.0	54.2	51,765.8
33	Р	88,022.0	89.6	133,265.4
39	Р	80,182.0	101.8	135,036.5
40	Р	87,011.0	112.6	196,889.8
49	Р	57,740.0	89.4	115,405.3
61	Р	85,576.0	74.9	282,909.4
63	Р	223,825.0	200.0	955,951.3
64	Р	184,998.0	183.3	823,957.0
66	Р	65,078.0	101.8	150,663.1
72	Р	122,064.0	119.1	125,206.8
75	Р	69,091.0	82.8	95,999.4
77	Р	73,643.0	85.0	146,336.5
84	Р	75,656.0	104.8	102,205.1
87	Р	80,862.0	120.0	140,180.2
102	Р	61,466.0	92.2	107,589.1
105	Р	59,187.0	87.3	157,848.5
106	Р	37,832.0	52.9	71,608.9
112	Р	94,083.0	106.4	143,303.9
117	Р	49,094.0	79.7	97,252.8
121	Р	61,436.0	89.4	76,374.5
143	Р	87,631.0	132.3	154,518.5
144	Р	80,551.0	114.1	174,446.8
168	Р	122,852.0	135.7	138,766.5
172	Р	78,465.0	109.0	139,483.8
174	Р	87,313.0	93.5	238,260.0
182	Р	109,786.0	121.4	298,331.9
185	Р	136,505.0	126.4	339,910.2
220	Р	110,123.0	158.8	274,902.5
229	Р	176,343.0	227.2	757,131.1
234	Р	106,610.0	120.0	314,277.6
235	Р	85,267.0	104.3	185,670.6
247	Р	178,248.0	112.5	502,667.5
257	Р	64,788.0	76.3	79,357.2
260	Р	189,465.0	44.2	297,534.3
262	Р	52,133.0	78.5	94,584.9
264	Р	49,073.0	71.3	91,284.9
267	Р	80,294.0	99.6	133,121.2
273	Р	104,160.0	189.4	267,514.9
276	Р	97,049.0	117.2	138,970.4
298	Р	149,009.0	229.8	344,642.4
307	Р	144,820.0	190.8	209,170.4
308	Р	121,252.0	162.4	233,155.4
312	P	121,925.0	143.8	224,767.1
315	Р	193,759.0	280.4	403,553.4
319	Р	184,044.0	247.1	449,306.0

A1. Landscape Metric Values continued.

POP#	Туре	Solar_crit_can_mean_corr	Solar_crit_can_km_Corr	Solar_ann_mean
10	P	139.9	30,787.8	1,284.6
19	Р	97.9	21,811.4	1,336.1
23	Р	176.0	39,524.1	1,353.8
26	Р	172.2	37,811.4	1,374.0
27	Р	131.5	29,495.2	1,317.3
30	Р	54.3	12,004.5	1,316.6
33	Р	133.8	29,433.7	1,321.9
39	Р	122.0	27,061.6	1,313.7
40	Р	133.4	29,691.5	1,309.0
49	Р	84.6	18,434.4	1,345.4
61	Р	127.7	28,555.6	1,334.2
63	Р	321.8	70,939.1	1,388.3
64	Р	267.3	58,777.7	1,380.8
66	Р	97.2	21,244.9	1,388.0
72	Р	180.8	39,664.7	1,339.5
75	Р	100.5	22,249.4	1,298.5
77	Р	110.9	23,885.1	1,367.2
84	Р	105.4	23,347.2	1,429.5
87	Р	115.5	25,506.6	1,426.9
102	Р	98.1	21,348.0	1,269.8
105	Р	90.5	22,043.6	1,375.3
106	Р	59.9	13,038.5	1,280.3
112	Р	142.1	30,774.5	1,363.5
117	Р	75.8	16,654.8	1,306.9
121	Р	91.8	21,543.3	1,295.9
143	Р	137.0	30,107.5	1,391.8
144	Р	111.6	23,948.3	1,390.9
168	Р	184.2	39,799.7	1,341.4
172	Р	120.2	26,617.8	1,314.4
174	Р	136.6	29,490.0	1,315.7
182	Р	168.3	36,828.8	1,325.1
185	Р	208.3	46,400.5	1,322.9
220	Р	168.3	37,804.5	1,342.2
229	Р	269.9	59,325.1	1,269.7
234	Р	161.8	35,767.7	1,325.3
235	Р	128.0	28,365.2	1,335.3
247	Р	276.7	61,775.9	1,280.4
257	Р	95.2	21,250.2	1,360.0
260	Р	54.6	58,732.1	1,377.7
262	Р	72.0	15,532.7	1,483.5
264	Р	71.2	15,747.8	1,419.8
267	Р	114.8	25,410.7	1,446.4
273	Р	157.7	33,891.2	1,453.9
276	Р	138.4	30,279.7	1,446.5
298	Р	216.8	47,557.4	1,429.6
307	Р	225.0	56,852.9	1,419.0
308	Р	102.4	15,371.6	1,408.0
312	Р	176.4	38,828.8	1,418.6
315	Р	269.0	59,464.2	1,471.1
319	Р	258.3	56,321.4	1,448.9

A1. Landscape Metric Values continued.

POP#	Type	Solar ann km	Solar ann mean Corr	Solar ann km Corr
1017	п	2 033 050 8	1 272 5	280.050.4
10	r P	2,033,939.8	1,2/3.3	200,930.4
19	r P	4,810,629.2	1,301.0	291,275.5
23	P	4,465,245.3	1,338.3	301,447.5
26	r	6,218,765.3	1,339.9	296,746.4
27	P	4,166,588.5	1,318.3	296,702.6
30	P	1,258,912.9	1,354.0	306,588.0
33	P	1,966,217.1	1,309.7	292,141.6
39	P	1,742,499.3	1,311.1	291,523.6
40	P	2,294,500.1	1,298.9	290,835.2
49	Р	1,736,969.8	1,357.2	297,581.5
61	Р	5,039,981.8	1,329.3	299,035.9
63	Р	6,630,981.3	1,365.8	302,111.8
64	Р	6,207,995.3	1,365.4	300,825.7
66	Р	2,053,696.5	1,339.5	292,572.7
72	Р	1,404,246.0	1,320.5	287,915.0
75	Р	1,497,324.9	1,303.0	292,665.1
77	Р	2,360,830.3	1,360.7	298,960.2
84	Р	1,393,903.1	1,410.5	318,218.8
87	Р	1,667,180.7	1,416.0	320,508.6
102	Р	1,484,319.1	1,260.7	277,673.6
105	Р	2,487,001.7	1,348.2	353,247.2
106	Р	1,734,784.4	1,258.7	274,360.5
112	Р	1,832,961.1	1,338.1	291,449.6
117	Р	1.594.468.7	1.272.1	279.440.8
121	Р	1.105.611.0	1.273.7	304,988,8
143	P	1.625.284.7	1.328.0	296,963,2
144	P	2,127,256,1	1 390 8	313 508 0
168	P	1 371 796 6	1 351 6	292,909,3
172	P	1 683 649 8	1 279 6	283 091 3
174	P	3 351 207 2	1 283 9	282 508 6
182	P	3 253 805 1	1 296 1	287 797 6
185	P	3 559 861 4	1,256.9	285 192 5
220	P	2 323 120 9	1 294 8	292 713 7
220	P	4 231 047 6	1,254.0	284 005 0
234	P	3 470 183 0	1 298 5	288 896 6
235	P	2 375 065 3	1 298 3	200,000
233	р	5 721 346 9	1,270.5	294 354 5
257	r P	1 /1/ 777 1	1,205.0	213 762 0
257	I D	0 273 661 0	1,300.5	1 530 022 3
200	r P	1 787 884 3	1,410.0	318 785 8
202	r P	1,707,004.3	1,400.9	315,005.0
204 267	r P	1,027,755.5	1,429.3	210,222 4
207	r P	1,933,003./	1,429.9	319,203.0
213	r	2,055,550.0	1,433.3	511,5/9.5
276	r	1,/1/,/62.8	1,439.4	314,609.3
298	P	2,142,819.9	1,403.0	308,518.8
307	P	1,556,029.0	1,398.1	354,495.6
308	Р	2,012,346.4	1,395.1	208,416.5
312	Р	2,216,059.0	1,398.5	307,686.3
315	Р	2,117,038.9	1,460.2	324,804.6
319	Р	2,606,725.3	1,430.8	318,325.2

A1. Landscape Metric Values continued.

DOD#	T	G - 1	G_14 1	6-1 C	Salar and land C
rur#	туре	Solar_crit_mean	Solar_crit_km	Solar_crit_mean_Corr	Solar_crit_Km_Corr
10	P	441.7	699,394.3	441.6	97,221.4
19	P	443.2	1,596,543.3	442.9	98,643.0
23	P	444.0	1,465,425.0	444.0	99,691.9
26	Р	445.0	2,013,493.7	445.0	97,725.7
27	Р	444.1	1,404,614.2	444.0	99,614.3
30	Р	445.2	425,460.0	445.3	98,467.6
33	Р	445.5	662,563.2	445.3	97,928.4
39	Р	447.1	593,043.3	447.1	99,147.1
40	Р	447.1	782,135.0	447.0	99,484.4
49	Р	446.3	576,188.0	446.2	97,238.0
61	Р	443.7	1,675,944.0	443.6	99,171.4
63	Р	443.3	2,118,474.5	443.1	97,685.3
64	Р	443.0	1,991,777.9	443.0	97,396.7
66	Р	443.1	655,564.0	443.1	96,793.0
72	Р	447.4	470,386.3	447.3	98,132.6
75	Р	447.2	518,412.6	447.1	99,037.4
77	Р	447.0	769,945.4	447.0	96,245.4
84	Р	448.5	437,320.7	448.4	99,306.4
87	Р	451.1	527,114.6	451.2	99,669.9
102	Р	448.0	522,983.8	447.9	97,452.0
105	Р	448.4	810,942.8	448.3	109,181.9
106	Р	448.2	606,341.5	448.1	97,606.9
112	Р	447.4	602,575.8	447.3	96,836.7
117	Р	446.5	544,741.1	446.4	98,140.8
121	Р	445.3	380,223.5	445.1	104,482.8
143	Р	446.6	521,546.3	446.4	98,110.2
144	Р	446.7	683,215.8	446.6	95,817.2
168	Р	447.0	457,075.7	447.0	96,563.1
172	Р	446.7	571,805.8	446.6	98,927.8
174	Р	445.0	1,133,390.6	444.9	96,084.6
182	Р	444.0	1,090,949.7	444.0	97,156.4
185	Р	443.7	1,193,469.0	443.6	98,833.3
220	Р	443.0	766,723.1	442.9	99,470.2
229	Р	442.2	1,473,223.9	442.0	97,153.7
234	Р	443.1	1,160,515.5	443.0	97,952.6
235	Р	443.1	788,823.9	443.1	98,227.8
247	Р	442.0	1,975,729.5	442.0	98,673.4
257	Р	453.8	472,114.8	453.8	101,311.3
260	Р	453.9	3,054,986.7	453.8	487,842.1
262	Р	452.7	545,608.7	452.6	97,627.2
264	Р	453.9	580,810.8	453.9	100,355.7
267	Р	453.4	606,175.2	453.3	100,367.7
273	Р	454.0	641,174.9	454.0	97,558.1
276	Р	454.0	538,299.0	454.0	99,300.3
298	Р	454.0	681,007.3	454.0	99,606.3
307	Р	453.1	496,826.5	453.0	114,481.2
308	Р	453.2	650,547.5	453.1	68,027.6
312	Р	453.5	708,648.5	453.4	99,791.4
315	Р	454.0	653,343.3	454.0	100,358.9
319	Р	454.0	825,573.2	454.0	98,995.4

A1. Landscape Metric Values continued.

Standard Operating Procedures for Field Deployment of Thermographs Used in Climate Change Monitoring of Eastern Wild Trout Habitat

Version 1.2; Onset HOBO Water Temp Pro V2 05/2010

USFS Fish and Aquatic Ecology Unit

Brad Trumbo

Purpose:

Standard Operating Procedures (SOP) are necessary *in the field* for proper site location of air and water temperature sensors, anchoring of each HOBO to a stationary streamside object, suitable anchoring equipment, running/hiding anchoring apparatus along streambed, placing tree tags, photographs and documentation of HOBO placement. Following SOPs for each sample site will expedite the deployment process, as well as simplify finding the site and HOBOs upon returning to collect data and apparatus.

Key Words: Centroid, Pour-point, Patch, Site, HOBO, Residual Pool

I. HOBO Calibration

- 1) Launch HOBOs and set in ambient air for 1 hour recording a temperature every 1 minute
- 2) After 1 hour, stop and readout the HOBOs. Plot the data for each HOBO to be sure each one recorded data within the same data range
- 3) Re-launch HOBOs and place in ice for 1 hour recording a temperature ever 1 minute.
- 4) Repeat Step 2

II. Site Location

- 1) Before departing headquarters, it is necessary to have a route plan as to which site are to be set. The use of a handheld GPS unit, as well as a map will allow for more expedient travel
- 2) Handheld GPS units should be pre-programmed with "theoretical" centroid and pourpoint locations for each patch. Theoretical centroid points will not likely be directly overtop of stream segments on the GPS unit. It is necessary to determine the closest stream segment to the centroid point as the site for deploying HOBOs in each patch.
 - The goal should be to navigate to the closest possible location to the "theoretical" centroid and pour-point in the GPS unit
 - IF the point falls WITHIN, or requires passing THROUGH PRIVATE property, try to contact the landowner.
 - If a remote site and landowner cannot be contacted, one of the following options should be based upon best professional judgment:
 - a site may be set as close as possible to the theoretical site where access is granted or public land is available
 - in cases of danger or serious inconvenience a new patch may be randomly selected for sampling
- 3) Once a site is located, HOBOs placed in the water should be placed near maximum residual pool depth. Residual depth is defined as "the difference in depth or bed elevation between a pool and the downstream riffle crest" (Lisle 1987).
 - Pools with at least knee depth should be selected when possible to ensure the HOBO will be submersed throughout late summer

III. Setting In-stream HOBOs

1) Copper wire (coated 14ga.) has been used with great success in Virginia. It is necessary to use some type of extremely tough material for attaching HOBOs to the stream bank, etc., since debris will likely catch on, and greatly stress the material

- 2) Protective rubber boots with caps should be used to set HOBOs in water to prevent surfaces and serial numbers from being worn off. Friction between substrate particles and the clear surface where data is transferred could be damaged causing potential data lost
- 3) Once maximum residual pool depth has been located, determine what stream bank structure will be used to anchor the HOBO. Be certain the tree, root, boulder, log etc. is PERMANENT
- 4) Secure wire tightly around structure wrapping wire back upon itself a minimum of five wraps
- 5) Estimate the length of wire necessary to reach the location where the HOBO is to be placed
- 6) Cut wire to length leaving extra length for movement around substrate. Attach HOBO, and place HOBO in stream
 - Place HOBO FIRMLY under a rock large enough to be stationary with high flow
 - DO NOT bury HOBO into substrate
 - Lay wire along substrate burying it under rocks, etc. It is necessary to have wire hidden as well as possible from human detection, but more importantly from debris such as leaves that may catch and dislodge the HOBO
- 7) Use handheld GPS to collect a "Waypoint" while standing where the HOBO was placed. These coordinates are required for future mapping and locating the HOBO
 - Rename the waypoint to the patch number, centroid or pour-point, air or water
 - Example: 172CW = Patch 172 Centroid, Water
- 8) Place a tree tag in plain view of the HOBO attachment point from the most likely direction of approach
 - Tree tag placement has proven to be highly beneficial when finding set HOBOs since it offers a visual cue to the submerged HOBO

IV. Setting Air Temperature HOBOs

- 1) Carry copper wire for attachment, PVC shield to reduce direct UV contact with HOBO (Dunham et al. 2005; Wise et al. 2010), tree tags and GPS unit for air set
- 2) If possible, locate a tree within 50m of stream set, upslope (Dunham et al. 2005), away from stream
 - Not all sites will offer "upslope" areas, or a 50m wide buffer zone. Use best professional judgment to find a suitable area
- 3) Use GPS unit to locate NORTH aspect/compass direction

- 4) Run wire through PVC shield cap, attach HOBO to wire, and then attach wire to tree at approximately head height
 - Head height may vary depending upon who is setting the HOBO. Keep in mind that someone else may be checking the HOBO at a later date; therefore, anyone greater than 6 feet in height should set HOBOs at shoulder height
- 5) Use handheld GPS to collect a "Waypoint" while standing where the HOBO was placed. These coordinates are required for future mapping and locating the HOBO
- 6) Place a tree tag in plain view of the HOBO attachment point from the most likely direction of approach

V. Site/HOBO Documentation

- 1) A "Site Description" datasheet should be completely filled out upon setting HOBOs at a site, and a "Status Report" should be filled out when checking HOBOs at each site.
- 2) Site Description datasheet requirements:
 - Date
 - Time
 - Stream/Site Name and Number
 - Pour-point or Centroid
 - Datum and UTM zone
 - Serial Number for both In-Stream and Near-Stream HOBOs
 - GPS coordinate for both In-Stream and Near-Stream HOBOs
 - Driving direction and drive time from headquarters (may be filled in at the office)
 - Hiking directions, time, and distance from vehicle
 - Physical description of location of both In-Stream and Near-Stream HOBOs with photo numbers noted
 - Should include tree tag placement and what the HOBO was attached to
- 3) Status Report requirements:
 - Date
 - Time
 - Stream/Site Name and Number
 - Pour-point or Centroid check
 - Serial Number for both In-Stream and Near-Stream HOBOs
 - Checklist of HOBO conditions such as Near-Stream shield intact, In-Stream rubber boot intact, In-Stream HOBO submersed, etc.
 - Comments area
 - Replacement HOBO Serial Number (if a HOBO is missing or damaged)

VI. Site Photography

This may appear to be common sense, but guidelines may actually result in better quality, more useful photos.

- 1) Understand how to use your camera thoroughly
- 2) Take photos of In-Stream and Near-Stream HOBO locations from the most likely direction of approach
- 3) Be certain the person taking photos is far enough from the site that recognizable landmarks such as unique trees or boulders, etc. may be included in the photo.
- 4) Be certain the person taking photos is close enough to the site that landmarks and tree tags are recognizable
- 5) Photos organized by date and camera (given there are multiple crews working) are easily matched to the "Site Description" datasheet by photo number for future reference

VI. Definitions

Patch: unique brook trout habitat area being studied defined by researcher and GIS

- **Centroid:** central area of patch designated a point defined by GIS. Centroid site within each patch is defined as the closest stream segment to the actual centroid point of the patch
- **Pour-Point:** downstream-most point where brook trout exist within each patch defined by the intersection of the stream layer and patch boundary in GIS
- Site: Actual centroid or pour-point location within a patch where HOBOs are placed

References:

- Dunham, J., G. Chandler, B. Rieman, and D. Martin. 2005. Measuring stream temperature with digital data loggers: a user's guide. USDA Forest Service General Technical Report RMRS-GTR-150WWW
- Lisle, T. E. 1987. Using "residual depths" to monitor pool depths independently of discharge. US Forest Service Research Note PSW-394
- Onset Computer Corporation. 2009. HOBO U22 Water Temp Pro v2 users manual. Document # 10366-C. <u>http://www.onsetcomp.com/files/manual_pdfs/10366-C-MAN-U22-001.pdf</u>
- Wise, L. M., B. A. Trumbo and M. Hudy. 2010. Determining Drift in Electronic Temperature Sensors Used in Climate Change Modeling. James Madison University undergraduate research (un-published).

POP#	Туре	Sens2009	Sens2010	Exp2009	Exp2010
10	С	0.528		0.881	
19	С				
23	С	0.059	0.120	0.000	0.132
26	С	0.509	0.209	1.657	1.725
27	С	0.235	0.272	0.000	0.000
30	С		0.403		1.771
33	С	0.809	0.494	3.285	1.987
39	С	0.362	0.494	1.056	1.385
40	С	0.384	0.494	0.000	0.407
49	С		0.494		0.704
61	С	0.297	0.494	0.000	0.188
63	С	0.797	0.494	1.923	1.910
64	С	0.539	0.494	0.854	1.405
66	C		0.494		0.174
72	Ċ	0.368	0.494	0.000	0.190
75	Č		0.494		0.000
77	Č				
84	Č	0.259	0.494	0.000	0.182
87	Č	0.192	0.494	0.000	0.000
102	Č				
105	Č	0 264	0.109	0.000	0.000
106	č	0.392	0.338	0.108	1 136
112	č	0.308	0.550	0.000	1.150
117	č	0.500	0 308	0.000	0.870
121	č		0.500		0.070
143	č	0.279	0.271	0.038	0.643
143	c	0.279	0.289	0.050	0.841
168	Ċ	0.428	0.394	1 897	2 007
172	Ċ	0.454	0.412	0.241	0.973
174	c	0.124	0.043	0.000	0.000
182	c	0.187	0.191	0.856	1 500
185	C	0.075	0.151	0.000	0.916
220	C	0.391	0.234	0.000	0.976
220	C	0.223	0.120	0.247	0.079
223	c	0.475	0.120	0.220	1 401
234	C	0.475	0.415	0.795	0.864
233	č	0 306	0.211	0 308	0.004
27	č	0.390	0.209	0.370	0.950
257	č	0.546	0.470	0.000	0.400
200	č	0.340	0.4/2	0.000	0.400
202	Ċ	0.209	0.275	0.000	0.000
204 267	Ċ	0.291	0 272	0.000	0.000
207	Ċ	0 3 2 2	0.272	0.000	0.000
213	C	0.322	0.414	0.000	0.989
2/0	C	0.298	0.430	0.000	0.833
298	C	0.440	0.403	0.014	0./94
307 200	C	0.438	0.295	0.624	1.096
308 212	C	0.329	0.295	0.000	0.000
312 217	C	0.534	0.464	0.814	1.24/
315	C	0.499	0.494	0.507	1.073
319	С	0.372		0.000	

A 3. Sensitivity/Exposure Classification Values 2009-2010. Type c = centroid, p = pour-point, HS = high sensitive, LS = low sensitive, HE = high exposure, LE = low exposure

DOD#	T -	G	G 2010	E 2000	E 2010
10 10	Гуре	Sens2009	Sens2010	Exp2009	Exp2010
10	P P	0.476	0.252	1.046	2 0 4 0
19	P	0.335	0.253	0.148	2.848
25	r P	0.254	0.200	0.000	2.042
26	P	0.452	0.398	1 510	2.043
27	P	0.453	0.407	1.510	1.471
30	P	0.324	0.472	0.473	1.383
33	P		0.381	1.077	1.879
39	P	0.442	0.381	1.866	1.901
40	P	0.381	0.381	0.999	1.575
49	P				
61	Р	0.589		2.448	
63	Р	0.569	0.381	0.000	0.685
64	Р	0.568	0.381	0.602	1.227
66	Р				
72	Р	0.186	0.381	0.000	0.040
75	Р		0.381		0.125
77	Р	0.315	0.381	0.000	0.438
84	Р	0.257	0.381	0.000	0.225
87	Р	0.134		0.000	
102	Р	0.274	0.213	0.000	0.000
105	Р	0.355	0.242	0.175	1.130
106	Р	0.574	0.498	2.747	3.226
112	Р	0.549	0.398	2.145	2.494
117	Р				
121	Р		0.155		3.251
143	Р	0.323	0.390	1.029	1.890
144	Р	0.288		0.000	
168	Р	0.497	0.331	1.852	1.396
172	Р	0.539	0.414	2.744	2.885
174	Р	0.405	0.301	1.781	2.402
182	Р	0.638	0.513	3.099	3.212
185	Р	0.541	0.253	3.311	2.837
220	Р	0.551	0.388	2.153	2.645
229	Р	0.391	0.433	1.091	2.115
234	Р	0.528	0.207	3.079	2.757
235	Р				
247	Р	0.392	0.398	1.623	2.936
257	Р				
260	Р	0.228	0.407	0.000	0.423
262	Р	0.459		0.000	
264	Р	0.549		0.071	
267	Р	0.382		0.216	
273	Р	0.306	0.295	0.000	0.450
276	Р	0.499		0.376	
298	Р	0.459	0.472	0.965	1.930
307	Р	0.636	0.599	1.426	1.328
308	Р	0.526	0.486	0.900	1.222
312	Р	0.540	0.459	1.631	1.694
315	Р	0.406	0.413	0.000	0.637
319	Р	0.470	0.381	0.138	0.746

A3. Sensitivity/Exposure Classification Values 2009-2010 continued.

POP#	Туре	S-E Class09	P-Class09	S-E Class10	P-Class10
23	С	LSLE	LSLE	LSHE	LSHE
26	С	HSHE	HSHE	LSHE	LSHE
27	С	LSLE	LSLE	LSLE	LSHE
33	С	HSHE	LSHE	HSHE	HSHE
39	С	LSHE	LSHE	HSHE	LSHE
40	С	LSLE	LSHE	HSHE	LSHE
61	С	LSLE	LSLE	HSHE	LSHE
63	С	HSHE	HSHE	HSHE	HSHE
64	С	HSHE	HSHE	HSHE	HSHE
72	С	LSLE	HSLE	HSHE	HSHE
84	С	LSLE	LSLE	HSHE	HSLE
87	С	LSLE	LSLE	HSLE	LSHE
105	С	LSLE	LSLE	LSLE	LSHE
106	С	LSHE	LSHE	LSHE	LSHE
143	С	LSHE	LSHE	LSHE	LSHE
168	С	HSHE	LSHE	LSHE	LSHE
172	С	HSHE	HSHE	HSHE	LSHE
174	С	LSLE	LSHE	LSLE	LSHE
182	С	LSHE	LSHE	LSHE	LSHE
185	С	LSLE	LSHE	LSHE	LSHE
220	С	LSHE	LSHE	LSHE	LSHE
229	С	LSHE	LSHE	LSHE	LSHE
234	С	HSHE	LSHE	HSHE	LSHE
247	С	LSHE	LSHE	LSHE	LSHE
260	С	HSLE	LSLE	HSHE	LSHE
262	С	LSLE	LSLE	LSLE	LSHE
273	С	LSLE	LSLE	HSHE	HSHE
276	С	LSLE	LSLE	HSHE	LSHE
298	С	HSHE	HSHE	HSHE	LSHE
307	С	HSHE	HSLE	LSHE	HSHE
308	С	LSLE	LSLE	LSLE	LSHE
312	С	HSHE	HSHE	HSHE	HSHE
315	С	HSHE	HSLE	HSHE	HSHE
19	Р	LSHE	HSHE	LSHE	LSHE
27	Р	HSHE	HSHE	HSHE	LSHE
30	Р	LSHE	LSHE	HSHE	LSHE
39	Р	HSHE	HSHE	LSHE	HSHE
40	Р	LSHE	HSHE	LSHE	HSHE
63	Р	HSLE	HSHE	LSHE	HSHE
64	Р	HSHE	HSHE	LSHE	HSHE
72	Р	LSLE	LSHE	LSHE	HSHE
77	Р	LSLE	LSLE	LSHE	HSHE
84	Р	LSLE	LSHE	LSHE	LSHE
102	Р	LSLE	LSHE	LSLE	LSHE
105	Р	LSHE	LSHE	LSHE	LSHE
106	P -	HSHE	LSHE	HSHE	LSHE
112	Р	HSHE	HSHE	LSHE	LSHE
143	Р	LSHE	LSHE	LSHE	LSHE

168

P

HSHE

HSHE

LSHE

LSHE

A4. Sensitivity/Exposure Classification Prediction 2009-2010. Bold indicates site predictions matching true classification.

POP_	Туре	S-E Class09	P-Class09	S-E Class10	P-Class10
172	Р	HSHE	HSHE	HSHE	HSHE
174	Р	HSHE	LSHE	LSHE	LSHE
182	Р	HSHE	HSHE	HSHE	LSHE
185	Р	HSHE	HSHE	LSHE	LSHE
220	Р	HSHE	LSHE	LSHE	LSHE
229	Р	LSHE	HSHE	HSHE	LSHE
234	Р	HSHE	HSHE	LSHE	LSHE
247	Р	LSHE	HSHE	LSHE	LSHE
260	Р	LSLE	LSLE	HSHE	LSHE
273	Р	LSLE	LSLE	LSHE	HSHE
298	Р	HSHE	HSHE	HSHE	HSHE
307	Р	HSHE	HSHE	HSHE	HSHE
308	Р	HSHE	HSHE	HSHE	HSHE
312	Р	HSHE	HSHE	HSHE	HSHE
315	Р	HSLE	HSHE	HSHE	HSHE
319	Р	HSHE	HSHE	LSHE	LSHE

A4. Sensitivity/Exposure Classification Prediction 2009-2010 continued.

A5. Paired air/water temperature relationships 2009-2010 for pour-point and centroid sample sites. Pink line at 21°C is brook trout thermal tolerance limit. Missing sites or plots missing curves are due to missing data from thermograph loss, animal destruction, etc.

Population 10 Pour-Point German River 2009-2010

Population 19 Pour-Point Little River 2009-2010 Critical Period Air/Water Temperature Relationships

Population 23 Centroid East Dry Branch 2009-2010 Critical Period Air/Water Temperature Relationships

Population 23 Pour-Point East Dry Branch 2009-2010 Critical Period Air/Water Temperature Relationships

Population 26 Centroid Little Calfpasture River 2009-2010 Critical Period Air/Water Temperature Relationships

Population 26 Pour-Point Little Calfpasture River 2009-2010 Critical Period Air/Water Temperature Relationships

Population 27 Centroid Hamilton Branch 2009-2010 Critical Period Air/Water Temperature Relationships

Population 30 Centroid Kelso Spring 2009-2010 Critical Period Air/Water Temperature Relationships

Population 30 Pour-Point Kelso Spring 2009-2010 Critical Period Air/Water Temperature Relationships

Population 33 Centroid Lick Run 2009-2010 Critical Period Air/Water Temperature Relationships

30

25

20

15

10

5

0

0

10

Water Temperature C

Population 39 Pour-Point Sinking Creek 2009-2010

Air Temperature C

2010

Brook Trout Thermal Limit

Population 40 Pour-Point Karnes Creek 2009-2010 Critical Period Air/Water Temperature Relationships

Air Temperature C

2010

Brook Trout Thermal Limit

Population 49 Centroid Wilson Creek 2009-2010 Critical Period Air/Water Temperature Relationships

Air Temperature C

Population 49 Pour-Point Wilson Creek 2009-2010 Critical Period Air/Water Temperature Relationships

A5. Paired air/water temperature relationships 2009-2010 continued.

Population 61 Centroid Ramsey's Draft 2009-2010 Critical Period Air/Water Temperature Relationships

Population 63 Pour-Point Jackson River 2009-2010 Critical Period Air/Water Temperature Relationships

Population 64 Centroid Strait Creek 2009-2010 Critical Period Air/Water Temperature Relationships

Air Temperature C

Population 64 Pour-Point Strait Creek 2009-2010 Critical Period Air/Water Temperature Relationships

Population 66 Centroid Laurel Fork 2009-2010

Population 72 Centroid Hays Creek 2009-2010

Critical Period Air/Water Temperature Relationships

Population 72 Pour-Point Hays Creek 2009-2010 Critical Period Air/Water Temperature Relationships

Population 75 Centroid Crow Run 2009-2010 Critical Period Air/Water Temperature Relationships

Population 75 Pour-Point Crow Run 2009-2010 Critical Period Air/Water Temperature Relationships

2009

2010

20

Air Temperature C

30

25

20

15

10

5

0

0

10

Population 84 Centroid Granny's Creek 2009-2010 Critical Period Air/Water Temperature Relationships

Population 84 Pour-Point Granny's Creek 2009-2010 Critical Period Air/Water Temperature Relationships

Population 87 Centroid Laurel Creek 2009-2010 Critical Period Air/Water Temperature Relationships

Population 87 Pour-Point Laurel Creek 2009-2010 Critical Period Air/Water Temperature Relationships

Population 102 Pour-Point East Fork Elk Creek 2009-2010 Critical Period Air/Water Temperature Relationships

2009 2010

20

Air Temperature C

30

25

20

15

10

5

0

0

10

Population 105 Pour-Point Reed Creek 2009-2010

Critical Period Air/Water Temperature Relationships Water Temperature C Brook Trout Thermal Limit Air Temperature C

Population 106 Centroid North Creek 2009-2010

Critical Period Air/Water Temperature Relationships

Population 112 Centroid Buffalo River 2009-2010 Critical Period Air/Water Temperature Relationships

Population 112 Pour-Point Buffalo River 2009-2010 Critical Period Air/Water Temperature Relationships

Population 117 Centroid St Mary's River 2009-2010 Critical Period Air/Water Temperature Relationships

Population 121 Centroid John's Run 2009-2010 Critical Period Air/Water Temperature Relationships Population 121 Pour-Point John's Run 2009-2010 Critical Period Air/Water Temperature Relationships

Population 143 Centroid Spruce Creek 2009-2010 Critical Period Air/Water Temperature Relationships

Population 143 Pour-Point Spruce Creek 2009-2010 Critical Period Air/Water Temperature Relationships

Population 144 Centroid South Fork Rockfish River 2009-2010 Critical Period Air/Water Temperature Relationships

Population 144 Pour-Point South Fork Rockfish River 2009-2010 Critical Period Air/Water Temperature Relationships

Air Temperature C

Population 168 Pour-Point Cub Creek 2009-2010

0 Brook Trout Thermal Limit 0 10 20 30 Air Temperature C

Population 172 Centroid South Fork Tye River 2009-2010 Critical Period Air/Water Temperature Relationships

Population 172 Pour-Point South Fork Tye River 2009-2010 Critical Period Air/Water Temperature Relationships

Population 174 Centroid Sawmill Run 2009-2010 Critical Period Air/Water Temperature Relationships

Population 174 Pour-Point Sawmill Run 2009-2010 Critical Period Air/Water Temperature Relationships

Population 168 Centroid Cub Creek 2009-2010

Population 185 Centroid Lynch River 2009-2010 Critical Period Air/Water Temperature Relationships

Population 185 Pour-Point Lynch River 2009-2010 Critical Period Air/Water Temperature Relationships

Population 220 Centroid Boone Run 2009-2010 Critical Period Air/Water Temperature Relationships

Population 220 Pour-Point Boone Run 2009-2010 Critical Period Air/Water Temperature Relationships

Population 229 Centroid East Hawksbill Creek 2009-2010 Critical Period Air/Water Temperature Relationships

Population 229 Pour-Point East Hawksbill Creek 2009-2010 Critical Period Air/Water Temperature Relationships

Population 234 Centroid Conway River 2009-2010 Critical Period Air/Water Temperature Relationships

Population 235 Centroid South River 2009-2010 Critical Period Air/Water Temperature Relationships

2009

2010

30

20

Air Temperature C

30

25

20

15

10

5

0

0

10

Population 235 Pour-Point South River 2009-2010 Critical Period Air/Water Temperature Relationships

Population 247 Centroid Thronton River 2009-2010 Critical Period Air/Water Temperature Relationships Population 247 Pour-Point Thronton River 2009-2010 Critical Period Air/Water Temperature Relationships

Population 260 Centroid Comer's Creek 2009-2010 Critical Period Air/Water Temperature Relationships

Population 260 Pour-Point Comer's Creek 2009-2010 Critical Period Air/Water Temperature Relationships

Population 262 Centroid Roaring Fork 2009-2010 Critical Period Air/Water Temperature Relationships

30

25

20

15

10

5

0

0

10

Population 262 Pour-Point Roaring Fork 2009-2010 Critical Period Air/Water Temperature Relationships

Population 264 Centroid Cressy Creek 2009-2010 Critical Period Air/Water Temperature Relationships Population 264 Pour-Point Cressy Creek 2009-2010 Critical Period Air/Water Temperature Relationships

Population 267 Centroid Killinger Creek 2009-2010 Critical Period Air/Water Temperature Relationships

Population 267 Pour-Point Killinger Creek 2009-2010 Critical Period Air/Water Temperature Relationships

Population 273 Centroid Guffy Creek 2009-2010 Critical Period Air/Water Temperature Relationships

Population 276 Pour-Point Fox Creek 2009-2010

Population 298 Centroid Crooked Creek 2009-2010 Critical Period Air/Water Temperature Relationships

Population 298 Pour-Point Crooked Creek 2009-2010 Critical Period Air/Water Temperature Relationships

Air Temperature C

Population 307 Centroid West Fork Little River 2009-2010 Critical Period Air/Water Temperature Relationships

A5. Paired air/water temperature relationships 2009-2010 continued.

Population 276 Centroid Fox Creek 2009-2010

Population 308 Centroid Rush Fork 2009-2010

Population 308 Pour-Point Rush Fork 2009-2010

Critical Period Air/Water Temperature Relationships

Population 312 Centroid Burk's Fork 2009-2010 Critical Period Air/Water Temperature Relationships

Population 312 Pour-Point Burk's Fork 2009-2010 Critical Period Air/Water Temperature Relationships

Population 319 Centroid Stone Mountain Run 2009-2010 Critical Period Air/Water Temperature Relationships Population 319 Pour-Point Stone Mountain Run 2009-2010 Critical Period Air/Water Temperature Relationships

References

- Clark, M. E., K. A. Rose, D. A. Levine, and W. W. Hargrove. 2001. Predicting climate change effects on Appalachian brook trout: Combining GIS and individual-based modeling. Ecological Applications 11:161-178.
- Cluis, D. A. 1972. Relationship between stream water temperature and ambient air temperature: A simple autoregressive model for mean daily stream water temperature fluctuations. Nordic Hydrology 3:65-71.
- DMME (Virginia Department of Mines, Minerals, and Energy). 2008. General Geologic Map of Virginia. Available: <u>http://www.dmme.virginia.gov/DMR3/dmrpdfs/VA%20geol%20map.pdf</u> (July 2010)
- Dunham, J., C. Gwynne, B. Reiman, and D. Martin. 2005. Measuring stream temperature with digital data loggers: A user's guide. USDA Forest Service, Report RMRS-GTR-150WWW, Fort Collins, CO.
- Eaton, J. G., J. H. McCormick, B. E. Goodno, D. G. O'Brien, H. G. Stefany, M. Hondozo, and R. M. Scheller. 1995. A field information-based system for estimating fish temeprature tolerances. Fisheries 20(4):10-18.
- Eaton, J. G., and R. M. Scheller. 1996. Effects of climate warming on fish thermal habitat in streams of the United States. Limnology and Oceanography 41(5):1109-1115
- Ebersole, J. L., W. J. Liss and C. A. Firssell. 2003. Thermal heterogeneity, stream channel morphology, and salmonid abundance in northeastern oregon streams. Canadian Journal of Fisheries and Aquatic Science 60:1266-1280.
- EBTJV (Eastern Brook Trout Joint Venture). 2006. <u>http://www.easternbrooktrout.org</u> (July 2010)
- Fink, D. B. 2008. Artificial shading and stream temperature modeling for watershed restoration and brook trout (*Salvelinus fontinalis*) management. Master's thesis. James Madison University, Harrisonburg, Virginia.
- Flebbe, P. A. 1994. A regional view of the margin: Salmonid abundance and distribution in the southern Appalachian mountains of North Carolina and Virginia. Transactions of the American Fisheries Society 123:657-667.
- Flebbe, P. A., L. D. Roghair, and J. L. Bruggink. 2006. Spatial modeling to project southern Appalachian trout distribution in a warmer climate. Transactions of the American Fisheries Society 165:1371-1382.
- Fu, P. and P.M. Rich. 1999. Design and implementation of the Solar Analyst: An Arcview extension for modeling solar radiation at landscape scales. Proceedings of the 19th Annual ESRI User Conference, San Diego, California. <u>http://esri.com/library/userconf/proc99/proceed/papers/pap867/p867.htr</u>
- Fu, P. and P.M. Rich. 2002. A geometric solar model with applications in agriculture and forestry. Computers and Electronics in Agriculture. Volume 37(1-3): 25-35.
- Hudy, M., T. M. Thieling, N. Gillespie, and E. P. Smith. 2008. Distribution, status, and land use characteristics of subwatersheds within the native range of brook trout in the eastern United States. North American Journal of Fisheries Management 28:1069-1085.
- Huff, D.D., S.L. Hubler, and A.N. Borisenko. 2005. Using field data to estimate the realized thermal niche of aquatic vertebrates. North American Journal of Fisheries Management 25: 346-360.
- Intergovernmental Panel on Climate Change. 2007. Climate Change 2007: The Physical Science Basis Summary of Policy makers. <u>http://www.ipcc.ch/SPM2feb07.pdf</u>
- Isaak, D. J., and W. A. Hubert. 2001. A hypothesis about factors that affect maximum summer stream temperatures across montane landscapes. Journal of the American Water Resources Association 37:351-366.
- Johnson, S. L. 2003. Stream temperature: Scaling of observations and issues for modelling. Hydrological Processes 17:497-499.
- Johnstone, H. C., and F. J. Rahel. 2003. Assessing temperature tolerance of bonneville cutthroat trout based on constant and cycling thermal regimes. Transactions of the American Fisheries Society 132:92-99.
- Lisle, T. E. 1987. Using "residual depths" to monitor pool depths independently of discharge. US Forest Service Research Note PSW-394
- Keleher, C. J., and F. J. Rahel. 1996. Thermal limits to salmonid distributions in the rocky mountain region and potential habitat loss due to global warming: A geographic information systems (GIS) approach. Transactions of the American Fisheries Society 125:1-13.
- Meisner, J. D. 1990. Effect of climate warming on the southern margins of the native range of brook trout, salvelinus fontinalis. Canadian Journal of Fisheries and Aquatic Science 47:1065-1070.
- Mohn, L. and P. E. Bugas, Jr. 1980. Virginia trout stream and environmental inventory. Federal Aid in Fish Restoration, Project F-32, final report. Virginia Department of Game and Inland Fisheries. Richmond, Virginia.

- Mohseni, O., and H. G. Stefan. 1999. Stream temperature/air temperature relationship: A physical interpretation. Journal of Hydrology 218:128-141.
- Moore, R. D., D. L. Spittlehouse, and A. Story. 2005. Riparian microclimate and stream temperature response to forest harvesting: A review. Journal of the American Water Resources Association :813-834.
- Onset Computer Corporation. 2009. HOBO U22 Water Temp Pro v2 users manual. Document # 10366-C. <u>http://www.onsetcomp.com/files/manual_pdfs/10366-C-</u> <u>MAN-U22-001.pdf</u>
- Picard, C. R., M. A. Bozek, and W. T. Momot. 2003. Effectiveness of using summer thermal indices to classify and protect brook trout streams in northern Ontario. North American Journal of Fisheries Management 23:206-215.
- Pilgrim, J. M., X. Fang, and H. G. Stefan. 1998. Stream temperature correlations with air temperatures in Minnesota: Implications for climate warming. Journal of the American Water Resources Association 34(5):1109-1121.
- PRISM. 2007. Title. Oregon State University, Corvallis. Available: <u>http://www.prism.oregonstate.edu/</u>. (November 2009).
- Rahel, F. J., C. J. Keleher, and J. L. Anderson. 1996. Potential habitat loss and population fragmentation for coldwater fish in the north platte river drainage of the rocky mountinas: Response to climate warming. Limnology and Oceanography 41(5):1116-1123.
- Rieman, B. E., D. Isaak, S. Adams, D. Horan, D. Nagel, C. Luce, and D. Meyers. 2007. Anticipated climate warming effects on bull trout habitats and populations across the interior columbia river basin. Transactions of the American Fisheries Society 136:1552-1565.
- SAS. 2000. SAS/STAT User's Guide, Version 8(1). SAS Institute, Cary
- Stoneman, C. L., and M. L. Jones. 1996. A simple method to classify stream thermal stability with single observations of daily maximum water and air temperatures. North American Journal of Fisheries Management 16:728-737.
- Trumbo, B. A., M. Hudy, E. P. Smith, D. Y. Kim, B. A. Wiggins, K. H. Nislow and C. A. Dolloff. 2010. Sensitivity and vulnerability of brook trout populations to climate change. (unpublished)
- USGS (United States Geological Survey) 2008. The national map seamless server. <u>http://seamless.usgs.gov/website/seamless/viewer.htm</u>. Accessed 24 September, 2008

- USGS (United States Geological Survey) 2009. National land cover dataset 2001. USGS, Washington, D.C. Available: <u>www.mrlc.gov</u>. (February 2009).
- USGS (United States Geological Survey) 2003. Base-flow index grid for the conterminous United States. USGS, Washington, D.C. Available: <u>http://water.usgs.gov/lookup/getspatial?bfi48grd</u> (February 2009).
- Webb, B. W., and F. Nobilis. 1997. Long-term perspective on the nature of the air-water temperature relationship: A case study. Hydrological Processes 11:137-147.
- Wehrly, K.E., L. Wang, and M. Mitro. 2007. Field-based estimates of thermal tolerance limits for trout: Incorporating exposure time and temperature fluctuation. Transactions of the American Fisheries Society 136:365-374.
- Wehrly, K. E., M. J. Wiley, and P. W. Seelbach. 2003. Classifying regional variation in thermal regime based on stream fish community patterns. Transactions of the American Fisheries Society 132:18-38.
- Williams, J. E., A. L. Haak, H. M. Neville, and W. T. Colyer. 2009. Potential consequences of climate change to persistence of cutthroat trout populations. North American Journal of Fisheries Management 29:533-548.
- Wise, L. M., B. A. Trumbo and M. Hudy. 2010. Determining Drift in Electronic Temperature Sensors Used in Climate Change Modeling. James Madison University undergraduate research (un-published).