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Abstract 

  

 The tools and techniques of digital forensics are useful in investigating system 

failures, gathering evidence of illegal activities, and analyzing computer systems after 

cyber attacks.  Constructing an accurate timeline of digital events is essential to forensic 

analysis, and developing a correlation between a computer’s system time and a standard 

time such as Coordinated Universal Time (UTC) is key to building such a timeline.   

 In addition to local temporal data, such as file MAC (Modified, Accessed, and 

Changed/Created) times and event logs, a computer may hold timestamps from other 

machines, such as email headers, HTTP cookies, and downloaded files.  To fully 

understand the sequence of events on a single computer, investigators need dependable 

tools for building clock models of all other computers that have contributed to its 

timestamps. 

 Building clock models involves measuring the system times on remote hosts and 

correlating them to the time on the local machine.  Sending ICMP or IP timestamp 

requests and analyzing the responses is one way to take this measurement.  The Linux 

program clockdiff utilizes this method, but it is slow and sometimes inaccurate.  Using a 

series of 50 packets, clockdiff consumes an average of 11 seconds in measuring one 

target.  Also, clockdiff assumes that the time difference between the local and target hosts 

is never greater than 12 hours. When it receives a timestamp showing a greater 

difference, it manipulates this value without alerting the user, reporting a result that could 

make the target appear to be more tightly synchronized with the local host than it actually 

is.  Thus, clockdiff  is not the best choice for forensic investigators.   
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 As a better alternative, we have designed and implemented a program called 

clockvar, which also uses ICMP and IP timestamp messages.  We show by experiment 

that clockvar maintains precision when system times on the local and target hosts differ 

by twelve to twenty-four hours, and we demonstrate that clockvar is capable of making 

measurements up to 1400 times faster than clockdiff. 



I.  Introduction 

 

 Computers are very good at doing a multitude of operations quickly.  However, to 

keep track of time, they almost universally rely on inexpensive quartz crystals of 

unreliable quality.  Thus, they are not inherently good keepers of civil, or real-world, 

time.  Knowing the relationship between the time maintained by a computer and civil 

time is extremely useful in many situations, some of which are listed in an article entitled 

“Why is NTP Important?”, which appears on the NTP (Network Time Protocol) Public 

Services Project home page: 

“In a commercial environment, accurate time stamps are essential to everything 

from maintaining and troubleshooting equipment and forensic analysis of 

distributed attacks, to resolving disputes among parties contesting a commercially 

valuable time-sensitive transaction.  In a programming environment, time stamps 

are usually used to determine what bits of code need to be rebuilt as part of a 

dependency checking process as they relate to other bits of code and the time 

stamps on them, and without good time stamps your entire development process 

can be brought to a complete standstill.  Within law enforcement, they are 

essential for correlation of distributed communication events, forensic analysis, 

and potential evidentiary use in criminal proceedings.  In essence, all debugging, 

security, audit, and authentication is founded on the basis of event correlation 

(knowing exactly what happened in what order, and on which side).”  

Computer scientists have conducted a great deal of research on computer timekeeping, 

especially as it relates to digital forensic science.  Because many computers – even hosts 
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seemingly far removed from a potential digital crime scene – can be involved in a 

security incident, it may be helpful or even necessary to use time data from these 

machines in constructing or refining a timeline of events on a particular host.  In order to 

use temporal data from remote hosts in this timelining process, we must understand the 

correlation between the time on the remote hosts and time on the machine which is the 

target of the investigation.  Our analysis of existing tools and techniques for measuring 

time on computers across the Internet has revealed a need for improvement in this field, 

and it has led us to develop our own tool for measuring the difference between system 

times on local and remote hosts. 

1.1  The Significance of Establishing a Timeline of Digital Events 

 

 The ability to correlate computer events to real-world events is an essential 

element of digital investigations.  Establishing a timeline of events helps us to understand 

how the events relate to one another; that is, which events are causes or effects of other 

events.  Building a timeline has been useful in the prosecution of individuals for crimes 

that they have committed using a computer.  In the event of an intrusion into a network, 

multiple computers may be involved, and if their system clocks are not tightly 

synchronized, building an accurate timeline is even more critical to understanding the 

flow of events.  Timelining has also proven extremely useful in analyzing major system 

failures such as the widespread U.S. and Canadian blackout in 2003.  In both system 

failures and security incidents, rarely is only one computer affected; thus it is often 

necessary to understand how multiple computers’ perceptions of time relate to a standard 

civil time, even when these hosts are dispersed across the Internet. 
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1.2  Determining System Time on Local and Remote Hosts 

 

 A computer’s operating system maintains data about every object, such as a file or  

directory, on the local hard drive.  This data includes the Modified, Accessed, and 

Changed/Created (MAC) timestamps associated with each object.  (Regarding the 

Changed/Created time, Unix systems keep track of any time a file’s metadata, such as 

ownership or permissions, “changes”; Windows systems, however, preserve only the 

time a file was “created.”)  A close examination of the MAC times on a particular 

computer is foremost in importance to developing and understanding a timeline of events 

on that machine.  Additional temporal information may also be found on the computer, 

including timestamps embedded in documents, HTTP cookies, and email headers.  The 

MAC times themselves may show time data from other computers, as files downloaded 

from other sources may carry the timestamps from the computer on which they were 

created. 

 When temporal information from a remote host is found on a local computer, a 

forensic investigator needs to determine the correlation between the time on the local and 

remote machines.  Although he cannot make a comparison between the local and remote 

hosts at some point in the past, he can take multiple careful measurements of the time on 

the remote host in order to determine how that computer’s clock performs in the present, 

and then use this information to build a model of the clock’s behavior (Stevens 2005).  If 

a very precise model of the clock’s behavior can be constructed, the investigator can form 

an educated hypothesis about the clock’s past behavior. 

 One method of determining the current system time on a remote host is to send it 

either an ICMP timestamp request or a packet with IP timestamp options set and then 



4 

 

 

parse the response.  If the local host is tightly synchronized with standard time, the 

response can be used to determine how close to standard time the remote clock is.  Even 

if the local host is not synchronized, this method may be used to determine the correlation 

between timestamps generated by the local and remote machines.  The program clockdiff, 

which is a component of the Linux iputils package, uses this method to calculate the 

system time difference between two computers.  Having used this program to measure 

the time difference between a local host and very many servers across the Internet, we 

have observed that it is exceedingly slow; also, when the system times on the local and 

target host differ by more than 12 hours, it generates output that does not correspond to 

the raw timestamp data the program receives. 

1.3  Outline of our Work 

  

 Knowing that determining the correct system time on remote computers is 

important to digital investigations, and believing that clockdiff is not completely adequate 

for the task for which it was designed, we have developed an alternative to clockdiff 

called clockvar. This program measures the system time on remote hosts significantly 

faster than clockdiff without losing accuracy; furthermore, it displays the delta (system 

time difference between the hosts) without manipulating the result when the timestamps 

from the local and target hosts show a difference of between 12 and 24 hours. 

In Chapter II of this paper, we examine prior work in the areas of computer 

timekeeping and digital forensics.  After a further discussion of the importance of 

developing a timeline of digital events, we study how computer clocks work and the 

factors that affect the accuracy of these clocks.  We consider means of synchronizing 
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computer clocks with standard time sources and several studies on computer 

synchronization and the measurement of time on remote hosts. 

 In Chapter III, we examine in detail how clockdiff works and highlight the areas 

in which improvements can be made.  We then explain our solution, clockvar, which 

determines the system time on any number of remote computers using the same internet 

protocols as clockdiff, but without the limitations described above.  In Chapter IV, we 

describe the experiments we conducted to test the improvements in the speed of 

measuring system times on remote hosts without sacrificing the accuracy of these 

measurements.  We also demonstrate situations in which clockvar produces a result 

which more strongly correlates to the raw timestamp data it receives from target hosts 

than clockdiff does.  Finally, in Chapter V, we offer our conclusions and discuss some 

possibilities for future research in this area.



II.  Related Work 

 

 In order to underscore the relevance of our work to the science of digital 

forensics, we use this chapter to develop the following concepts:  1) constructing a 

timeline of digital events is an essential element of digital forensic analysis; 2) time 

stamped data from remote hosts may play a crucial role in establishing (or disproving) 

this timeline; 3) forensic investigators have no basis for an assumption that all computer 

clocks are synchronized with standard time; 4) thus, forensic investigators need reliable 

tools for understanding the correlation between time on remote hosts and the machine 

which is the target of an investigation; and, finally, 5) there is significant room for 

improvement in the current tools for measuring system time on remote hosts.   

 In this chapter, we provide examples that highlight just how important 

constructing an accurate timeline of events is to digital forensic investigations.  We 

consider many possible sources of time data available to investigators, including 

computers that are external to the host or network that is the subject of an investigation.  

In order to understand why we cannot presume a tight synchronization of computer 

clocks with civil time, we study how the computer clocks that produce time stamped data 

work along with factors that limit their accuracy.  After a discussion of the most popular 

protocols for synchronizing computers with a trusted time source, we analyze the results 

of several studies on the effectiveness of computer synchronization.  In the last part of 

this section, we explore various methods for measuring time on remote hosts, as building 

models of their clock behavior may prove essential in establishing or confirming a 

timeline of events.  Examining the currently available methods of determining time on 
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hosts across the Internet motivates the main goal of our research:  to improve upon the 

speed of system time measurement of remote hosts without adversely affecting the 

accuracy of these measurements, thus providing a more useful tool to assist forensic 

investigators in building timelines of digital events. 

2.1  An Introduction to Digital Forensics 

 

 In his technical report, A Road Map for Digital Forensic Research, Gary Palmer 

offers this as a definition of Digital Forensic Science: 

“The use of scientifically derived and proven methods toward the preservation, 

collection, validation, identification, analysis, interpretation, documentation and 

presentation of digital evidence derived from digital sources for the purpose of 

facilitating or furthering the reconstruction of events found to be criminal, or 

helping to anticipate unauthorized actions shown to be disruptive to planned 

operations” (Palmer 2001). 

Constructing an accurate timeline of digital events on a system plays a crucial part in this 

process of gathering, interpreting, and presenting digital evidence.  Stevens states that 

establishing a timeline may “provide a critical piece of evidence of information relating 

to the prosecution of involved persons” (Stevens 2005).  The reconstruction of events, 

both in criminal cases and otherwise, is thus one of the main goals of digital forensic 

investigation.  We begin our review of the related work with a discussion of the 

importance of determining the correct system time on a computer so that events can be 

ordered in a correct sequence. 
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2.1.1  The Importance of a Correct Timeline: Police Forensic Investigation 

 

 Collecting date and time evidence is often an essential part of digital forensic 

analysis.  This type of evidence is extremely important because it represents a concrete 

link between the real world and the realm of computer logs and other digital data.  

Unfortunately, gathering digital time and date evidence is neither straightforward nor 

guaranteed to yield an accurate result, as we can see from the following legal case 

analyzed by Boyd and Forster (2004). 

 In this case, several emails linked to a man in the United Kingdom led police to 

suspect him of involvement in the electronic transmission of images of child abuse and 

child pornography.  The police then arrested the suspect and seized his computer.  The 

computer crime unit of the local police department recovered an indecent image 

involving children from the media they had seized.  The suspect was charged with the 

relevant offences and pleaded “not guilty”.  The defense team hired a computer forensics 

expert to analyze the digital evidence provided by the prosecution, including a forensic 

image of the seized computer and the police forensic statement.  After the defense 

completed their analysis, they submitted a report containing allegations that the police 

had planted evidence on the suspect’s computer.  Their report claimed that the computer 

had been used to access the Internet while it was in police custody; in fact, their report 

cited around 750 records of internet access time stamped during the 6 hours immediately 

after the seizure.  The accessed sites included one that may have displayed indecent 

images depicting children.  The defense team alleged that the computer had been 

“altered” while in police custody, and that the police had planted the indecent image on 

the computer (Boyd and Forster 2004). 
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 Boyd and Forster point out that, when conducting a forensic analysis of a 

computer, it is important to know whether the timestamps on a system reflect the local 

time or have been converted to a standard time such as Coordinated Universal Time 

(UTC).  In this particular case, the seized computer’s time zone was set to Pacific 

Standard time (GMT +480 minutes).  This information was readily available to both the 

prosecution and the defense.  The registry contained the entry: 

ActiveTimeBias REG_DWORD 0x000001e0 

StandardName  REG_SZ  PacificStandardTime 

Although the defense’s expert had extracted this registry data, he neglected to configure 

the forensic analysis software (which was used to analyze activity involving internet 

access) so that it subtracted the 8-hour time difference.  Thus, the report that this software 

package generated failed to account for the difference between the actual local time and 

the system time on the computer being analyzed.  After the prosecution analyzed the 

defense report, they discovered the error and issued their own report explaining this facet 

of the evidence.  The defense was then forced to retract their allegations that the police 

had planted evidence, and the defendant shortly thereafter pleaded guilty to the charges.  

The authors conclude, “From an ethical viewpoint this case has shown the importance of 

establishing exactly what is happing forensically before anyone, prosecution or defense, 

commit themselves to a line of reasoning or a strong opinion” (Boyd and Forster 2004). 

2.1.2  The Importance of a Correct Timeline: Analysis of the 2003 Blackout 

 

 Digital forensic investigative techniques can be applied in situations other than 

those imagined by Palmer.  On August 14, 2003, a power grid failure occurred in eight 

states and in the province of Ontario, Canada, disrupting electric service to over 50 
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million people.  Shortly after this massive blackout, U.S. Energy Secretary Spencer 

Abraham revealed the complexity of the initial investigation, stating that thousands of 

events related to the blackout occurred across the network within a time span of only nine 

seconds.  Early on in the investigation, North American Electric Reliability Council 

(NERC) President Michehl R. Gent anticipated that it would take between 15 and 30 

NERC specialists several weeks to analyze the data collected from every component of 

the grid that lost power, thus enabling them to reach a conclusion about the causes of the 

power failure (McAlpin 2003).    

 One of the primary purposes of the investigation following this incident was to 

determine the specific causes in order to prevent similar outages in the future.  This task 

was exceedingly difficult due to the initial inability of power operators to determine the 

timeline of events after the failure.  The investigators had to calculate the time of each 

individual event and relate it to the authoritative time kept by an atomic clock.  

Unfortunately, due to the lack of synchronization of the all the pertinent system clocks, it 

actually took the investigators several months to construct an accurate timeline of events 

(Symmetricom 2004). 

2.2  Constructing a Timeline of Digital Events 

 

 The examples provided above are intended to highlight just how crucial a part the 

construction of an accurate timeline of events plays in digital forensic investigations.  

Willasen points out that the chief end of most investigations is to identify the person or 

persons directly responsible for the crime or incident.  Finding the exact times when 

various events have occurred is often a critical part of the investigation, especially in 



11 

 

 

cases when a host or network is attacked from the outside, as internet addresses are 

frequently assigned dynamically.   Building an accurate timeline by pinpointing the 

precise times of events thus allows an investigator to determine which computer was 

using a particular IP address at a certain point in time  (Willasen 2008).   

 Having established the importance of developing a timeline of digital events in a 

forensic investigation, we now explore some of the ways in which time stamped data on a 

system can be used to determine such a timeline.  Carrier and Spafford define a process 

for reconstructing the relevant events within a digital crime scene.  This process focuses 

on identifying events as causes or effects of other events, to the end that the sequence of 

events, called an event chain, can be determined.  They point out that knowing the actual 

time of a particular event is the easiest way to place the event in its correct position 

within the larger event chain.  MAC times of files involved in an incident provide a 

wealth of information that contributes to the understanding of cause and effect 

relationships among events.  While the accessed time does not prove that an object 

played a particular role in an event, the modified and changed/created times definitively 

show that a file object is the effect of some previous event (Carrier and Spafford 2004).   

 Chow et al. confirm that analyzing the MAC times of data retrieved from a digital 

crime scene is “a crucial process that carries significant value in the event reconstruction 

phase” (Chow et al. 2007).  They stress that there is a strong correlation between the 

construction of a digital timeline and established methods of analyzing evidence in 

traditional investigations.  Though a key focus of their process for MAC times analysis is 

to establish a particular user’s role in an incident, they caution that file timestamps may 

be changed as the result of previewing a file via a tool such as Windows Explorer or 
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“batch operations” such as automated virus and malware scanning tools.  Thus, 

identifying the last access time of a file does not necessarily prove that a particular user 

actually accessed or opened it (Chow et al. 2007).   

 Since often more than one computer may be involved in an incident, Kiernan and 

Terzi categorize data regarding network traffic, network alarms, and external logging 

systems as additional sources of time data that can be useful in establishing event 

sequences (Kiernan and Terzi 2008).  Furthermore, Stevens identifies additional sources 

of timestamps on a computer, such as temporal information embedded in email headers 

and application files such as Microsoft Word documents.  Discovering the source of a 

timestamp is often not a trivial task, but it is necessary to determine what clock produced 

each timestamp.  For instance, consider the case of a timestamp obtained from web 

browsing records.  Does the timestamp come from the machine on which the web page 

was viewed, or does it come from the remote server that supplied the web page?  Email 

headers may include timestamps from both the sending and receiving computer as well as 

from servers through which the email was routed, each having its own system clock.  

Files on a single computer can even contain timestamps from various sources, including 

the system clock on that machine and those of other computers, in the case that files have 

been created or edited on other machines (Stevens 2005).  Identifying the sources of all 

relevant timestamps thus adds a level of difficulty to a digital forensic investigation. 

 Stevens defines a process for unifying all of the digital events recorded from 

multiple sources into a single timeline.  Each piece of digital equipment likely has its own 

clock, so once an investigator has identified all of the machines involved in an incident, 

she must determine which time data are provided by each clock.  Then, because the 
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stability and predictability of computer clock performance varies widely (as we examine 

shortly), she needs to develop a model of the behavior of each clock during the time 

period of the incident.  Although this can be challenging, Stevens notes that having many 

sources of information can both help to corroborate the timeline developed from a single 

source and increase the chances that an investigator discover circumstances where the 

timestamp data have been intentionally manipulated (Stevens 2005). 

2.3  An Introduction to Computer Timekeeping 

 

 Having established the importance of knowing the correct system time on a 

computer for the sake of digital forensic investigation, we next consider the worldwide 

standard for civil time.  This is followed by an examination of the relevant aspects of 

computer timekeeping, including factors that influence the accuracy of computer clocks.  

This discussion highlights reasons why forensic investigators cannot assume that the 

machines they analyze maintain synchronization with standard time, thus motivating our 

work in providing a useful tool for correlating time on multiple computers. 

2.3.1  The Standard: Coordinated Universal Time  

 

 Coordinated Universal Time, or UTC, is the worldwide standard for civil time, 

and this standard serves as the basis for how system time is measured on computers.  

UTC is kept by several laboratories across the world, such as the U.S. Naval Observatory.  

This laboratory keeps track of time using a very precise atomic clock.  As defined by the 

International System of Units in 1967, one second is equivalent to the time it takes for 

9,192,631,770 transitions to occur between two energy levels in the ground state of the 

cesium 133 atom (Taylor and Mohr, 2000).  UTC is accurate to about one nanosecond (a 
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billionth of a second) per day.  The time kept by atomic clocks is distributed via Global 

Positioning System (GPS) satellites and radio stations such as WWV and WWVH 

(USNO, 2007).  Ideally, all computer clocks would maintain synchronization with UTC; 

if they did, this would greatly simplify the forensic investigator’s task of developing an 

accurate timeline of events after a systems failure, an intrusion, or other incident. 

2.3.2   How Computer Clocks Work 

 

 Computers have the ability to maintain time while they are switched off via a 

battery powered Real Time Clock (RTC), which may or may not be synchronized with 

civil time.  This is an independent chip on the computer’s motherboard; as it is frequently 

accessed via the BIOS, it is sometimes called the BIOS clock.  Once the computer boots, 

the operating system determines how to interpret the RTC.  The operating system may 

maintain a software clock, frequently referred to as the system clock, which is initialized 

from the RTC at startup and in many cases (especially in Unix systems and Windows 

2000 and newer systems) is updated via interrupts from the RTC timer (Stevens 2005, 

Schatz et al. 2006).  

 The primary components of a clock are an oscillator and a counter.  The 

oscillator’s purpose is to produce a consistent frequency, and the counter counts the 

oscillator’s pulses and renders them in a common time unit.  Counters are generally 

considered very reliable in that they can consistently convert the oscillator’s pulses into 

time units with nearly 100% accuracy.  The only difficulty with regard to a counter is to 

set it to the correct “zero-point” so that it is in agreement with other clocks.  Some form 

of standard time – typically UTC for computer clocks – is used as a foundation for this 

agreement (Symmetricom 2003). 
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2.3.3  Limitations on the Accuracy of Computer Clocks 

 

 Though a clock’s accuracy is dependent on the extent to which its oscillator 

behaves in a stable and predictable manner, this stability varies widely based on the type 

of oscillator employed in the clock.  Highly accurate oscillators include the Earth’s 

rotation (used for astronomical time) and cesium and rubidium energy transitions (used in 

atomic clocks).  The most common oscillators used in computer clocks, however, are 

inexpensive piezoelectric quartz crystals.  They tend to be far less accurate due to the fact 

that they are not nearly as stable and predictable as the atomic clocks described above.  

While these crystals are designed to vibrate at a frequency of 32,768 Hz, several factors – 

including the crystal’s size, cut, and orientation – typically cause the crystals to oscillate 

faster or slower than this frequency.  This condition of running faster or slower than the 

intended rate is called clock skew.  The actual frequency of oscillation is also 

dramatically affected by the crystal’s temperature, and to a lesser degree by other 

environmental factors such as magnetic fields and mechanical vibrations.  Due to these 

variations, clocks with crystal oscillators can drift away from standard time (that is, move 

faster or slower than standard time) by up to several seconds per day, and this drift can 

become quite significant over time (Symmetricom2003).  

 With the goal of building a clock model that relates time stamps on a computer to 

actual time, Stevens categorizes the issues that affect clock behavior into four major 

categories:  time zone, time zone variations, clock drift, and finally clock error and 

adjustment.  While the time zone represents a fixed offset from standard time (up to 

twelve hours before and after UTC), daylight savings time and other adjustments within a 

time zone can cause the actual local time to diverge from standard time by some 
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additional part of an hour.  The rate at which a clock inherently drifts away from standard 

time is likely unique to the particular clock.  Clock error – the condition of the clock 

being set to the wrong time – can be introduced by a number of causes, including 

synchronization to an imprecise clock, an accumulation of error due to clock skew, and a 

user who either accidentally or purposely sets the clock to the wrong time.  Stevens 

points out that users who wish to manipulate the time stamps on files may not only 

simply change the system time, but also use hex editors and disk partition editing 

programs (Stevens 2005).  Therefore, the correlation between a computer clock and civil 

time is an important factor for forensic investigators. 

 Due to the fact that maintaining synchronization with standard time is highly 

desirable for a variety of reasons, and because computer clocks are inherently limited in 

their ability to keep highly accurate time, many professional system administrators make 

use of tools to keep their system clocks synchronized.  The most widely used method for 

synchronizing computer clocks running Unix systems (and related operating systems) 

with standard time is Network Time Protocol (NTP) (Schatz et al. 2006).  We examine 

this protocol in the next section. 

2.4  System Clock Synchronization via NTP 

 

 NTP was developed with the goal of maintaining a redundant pool of highly 

accurate, trusted time sources closely synchronized to standard time, and then distributing 

this time to hosts across the Internet.  The distribution of time follows a hierarchical 

arrangement, with the top level being the servers that are directly connected to sources of 

standard time such as atomic, radio, or GPS clocks (Mills 1992).  These are called 
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“stratum 1” time servers; higher strata numbers indicate the level in the hierarchy with 

which a particular host maintains synchronization.  Stratum 2 hosts utilize stratum 1 

servers to synchronize themselves; stratum 3 hosts utilize stratum 2 servers, and so on.  

According to the NTP.org website, as of January 2009, there are 228 stratum 1 and 314 

stratum 2 servers functioning across the Internet.   

 The NTP network consists of computers that can be classified into three 

categories:  primary servers, secondary servers, and client machines.  Primary servers are 

the ones that maintain a direct connection to a trusted time source (i.e., the stratum 1 

servers).  Secondary servers (i.e., stratum 2 and higher) act both as clients to the primary 

servers and as distributors of NTP time to their own clients.  Any host running NTP that 

becomes synchronized with an NTP server can itself become an NTP server for peers 

(NTP hosts at the same stratum) or higher level hosts (i.e., hosts at strata further away 

from stratum 1).  Client machines are merely consumers, but not providers, of the NTP 

service.  Hosts running NTP can expect to achieve synchronization to a trusted time 

source to within 1 to 50 milliseconds (Mills 2006). 

 There are three protocol variants that can be used to achieve synchronization.  In 

the client/server mode, a client initiates the process by sending NTP messages to a server 

and uses the data within the responses to adjust its system clock to conform with UTC.  

In broadcast client / broadcast server mode, a server initiates the process by broadcasting 

synchronization messages to its clients.  In peer mode, each machine acts as a client of 

the other; thus, each both pushes synchronization to and pulls synchronization from the 

other (Mills 2006). 
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 In order to better grasp the process of acquiring and maintaining synchronization 

with a source of standard time, it is helpful to analyze the data that is transmitted between 

servers and clients.  As shown in Figure 1, the NTP packet header consists of a minimum  
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MAC 
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Figure 1: NTP Packet Header Format 

 

of 48 octets (or twelve 32-bit words), primarily consisting of 4 octet (32-bit) and 8 octet 

(64-bit) timestamps.  The NTP packet header immediately follows the UDP and IP 

headers.  All data within the header are interpreted as integer values.  The first word of an 
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NTP packet consists of 6 different fields and starts with a 2-bit Leap Indicator, the value 

of which can indicate any of the following conditions: 

0 No warning (i.e., a normal NTP message). 

1 The last minute of the day will contain 61 seconds. 

2 The last minute of the day will contain 59 seconds. 

3 Alarm condition: the system clock has never been synchronized. 

 

The 3-bit NTP version number, the current being 4, follows this field.  The 3-bit mode 

field comes next, representing the mode of operation, including symmetric active / 

passive, client, server, and broadcast.  Following the mode is the 8-bit stratum field 

representing the level (between 0 and 255) the server occupies in the hierarchy: 0 

represents an unspecified or invalid stratum, while 1 indicates a primary server (Mills 

2006). 

 Next comes the 8-bit poll value, which indicates the span of time (in log2 seconds) 

that will elapse before the next exchange of synchronization messages.  This value falls 

between 16 seconds and 36 hours.  The fourth octet contains a signed integer that 

characterizes the precision of the system clock in log2 seconds, and it is calculated by 

timing a series of measurements of this clock. 

 The remaining 11 (or more) words in the packet header are all timestamps of one 

type or another.  NTP utilizes two different timestamp formats in packet headers during 

the synchronization process, shown in Figure 2 below.  The 32-bit Short Format is used 

in measuring round trip time and computing the error ranges in time measurements.  It 

contains a 16-bit value representing the number of seconds and another 16-bit value 

representing the fraction of a second.  The 64-bit timestamp format is an integer value 

representing the amount of time that has elapsed since the prime epoch (midnight on 
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January 1, 1970).  The first 32 bits hold the number of seconds (up to 136 years), and the 

last 32 bits represent the fraction of a second, with a resolution of 232 picoseconds (one 

picosecond being 10
-12

 seconds, or one trillionth of a second).  All NTP timestamp values 

are network byte ordered in big-endian format (Mills 2006).  

 
0 15 16 31  0 31 32 63 

Seconds Fraction  Timestamp Fraction 

      NTP Short Format          NTP Timestamp Format 

Figure 2: NTP Short and Timestamp Formats 

 

 The second word of the packet contains the root delay – a short format timestamp 

representing the measurement of the round trip time between the client and server.  Next 

comes the root dispersion, which is another short format timestamp, this one representing 

the maximum possible error range in the measurement.  The fourth word contains a 

reference identifier, particular to a server or reference clock.  Stratum 1 servers are 

assigned a unique 4-character ASCII string (left-justified and zero-padded) as their 

reference identifier.  Some examples include GOES (Geosynchronous Orbit Environment 

Satellite), GPS (Global Position System), and PPS (generic pulse-per-second).  When the 

stratum field contains a zero (invalid or unspecified), the reference identifier consists of a 

4-character string called a “kiss code” utilized in debugging and monitoring procedures 

(Mills 2006). 

 Following the reference identifier are four NTP timestamp format fields:  the 

reference, originate, receive, and transmit timestamps.  The time when the client’s system 

clock was last updated is placed in the reference timestamp field.  The originate 

timestamp is struck when the packet bound for the NTP server leaves the client machine.  
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The server strikes the receive timestamp when the client’s packet arrives and the transmit 

timestamp when it sends the response to the client.  A fifth timestamp is struck by the 

client upon the arrival of the server’s response.  Though this timestamp is not part of the 

packet header, it becomes part of the packet buffer data structure which is processed by 

the client (Mills 2006). 

 The optional extension fields, if included in the packet header, are utilized by the 

Autokey security protocol (Mills 2006), which is beyond the scope of this thesis.  If these 

fields are used, then a 32-bit key identifier (which designates a secret 128-bit MD5 key) 

and 128-bit MD5 message digest must follow.  The message digest is calculated on all 

the required fields and optional extension fields in the packet header (Mills 2006). 

 The NTP protocol can be broken down into five distinct processes:  poll, peer, 

system, clock discipline, and clock adjust process.  The poll process governs the 

transmission of messages from a client to an NTP server or other source of standard time, 

including the frequency at which this contact is initiated.  The peer process involves 

receiving responses (either from a peer, a server at lower level stratum, or directly from a 

reference clock) and then interpreting this data.  As NTP was developed, a great deal of 

consideration was given to the fact that some clocks on the network might not keep very 

accurate time, but advertise that they do.  The terms truechimer and falseticker apply 

respectively to clocks that can be trusted and those that cannot.  A large portion of the 

NTP specification deals with the system process:  algorithms that are employed to ensure 

that a host becomes synchronized with a truechimer.  The clock discipline process 

controls both the time and frequency of the system clock on a client machine, and the 
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clock adjust process helps to maintain a consistent frequency by generating a computed 

offset from the reference time once per second (Mills 2006).  

 The flow of these five processes can be summarized in this manner.  A client host 

running this protocol initiates contact with an NTP server on a schedule determined by its 

poll interval, which is some span of time (2
t
 seconds) ranging from 16 seconds (2

4
) to 36 

hours (2
17

 seconds).  The host strikes the reference and originate timestamps, and then 

sends an NTP message to one or more NTP servers.  The server responds with a message 

that provides the client with the correct offset – that is, the amount the local clock should 

be adjusted in order to become synchronized with the standard time provided by the 

server.  The offset is calculated from the receive and transmit timestamps (struck by the 

server) and the root delay and root dispersion.  The client adjusts its system clock via 

system calls such as (Unix) settime() or adjtime().  The message may also provide 

data that the client may use to choose the best source from multiple time servers.  A 

series of messages are used so that the server can calculate the round trip delay and send 

its message so that it will arrive at the client at a specific time.  Mills notes that a host can 

initially become synchronized with a trusted source very quickly, but many careful 

measurements are required over an extended period of time in order to determine the rate 

at which the local clock drifts from standard time.  This is done so that the NTP daemon 

running on the local machine can calculate its poll interval – that is, schedule when it 

needs to contact the trusted time server in order to maintain synchronization to the 

millisecond (Mills 1992).   
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2.5  System Clock Synchronization via SNTP 

 

 Another popular method by which a host can be synchronized to a time server is 

the Simplified Network Time Protocol (SNTP). This is, in fact, a simplified version of 

NTP.  The basics of the protocols work the same, the packet formats are the same,  and 

SNTP algorithms to calculate the client time, clock offset, and round trip delay work just 

as they do in NTP.  The primary difference is that SNTP clients typically synchronize 

with only one trusted source rather than consulting multiple time servers in order to 

determine the best source.  The second major difference is that SNTP clients, according 

to the SNTP specification, are not intended to serve as reference sources for additional 

clients (Mills 2006).  

 Starting with Windows 2000, Microsoft systems have had the capability of 

synchronizing with a trusted time source via SNTP.  For example, Windows XP systems 

are set by default to synchronize with the server time.windows.com once a week.  

Because SNTP does not employ NTP’s clock discipline algorithms, and because the 

synchronization occurs only once per week, the system clocks on Windows systems can 

be expected to drift further away from civil time than UNIX hosts utilizing NTP (Schatz 

et al. 2006). 

2.6  Studies on Synchronization and the Measurement of System Time 

 

 We have analyzed how computer clocks work, the characteristics which make 

them susceptible to deviate from standard time, and the primary tools that many systems 

administrators employ to achieve synchronization with standard time.  In this section, we 

examine several studies on computer clock synchronization, including hosts that do and 
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do not employ NTP or SNTP.  These studies reveal that employing a synchronization 

protocol neither guarantees that a host keeps accurate system time nor makes it easy for 

an investigator to fully understand clock behavior on a remote host.  Our analysis further 

emphasizes the need for practical and accurate tools for correlating a remote host’s 

system clock to standard time. 

2.6.1  An Early Survey of the Accuracy of the NTP Network 

 

 In a study of the accuracy of the NTP network in 1999, Minar commented, “As 

more distributed systems are built across the Internet, the quality of the Internet's time 

synchronization is becoming more significant” (Minar 1999).  Unfortunately, his study 

revealed a “surprising number of bad timekeepers” among the stratum 1 clocks he 

surveyed.  As discussed above, these stratum 1 clocks serve as the reference for the entire 

NTP network. 

 Minar estimated that (at the time of his survey) the NTP network consisted of 

over 175,000 hosts.  He identified 907 servers operating as stratum 1 clocks, but he was 

shocked to discover that only 254 (28%) were keeping accurate time.  638 (70.3%) of 

these machines were configured to use the local system clock (not a trusted source of 

standard time) as their reference clock, and that 391 (43.1%) of these stratum 1 servers 

deviated from standard time by more than 10 seconds.  One, in fact, was over 6 years off.  

Through this survey, he discovered that the Red Hat Linux version of the NTP software 

had been distributed with the local system clock configured as stratum 0, hence the 

source of so many machines referencing the local clock as opposed to a trusted source of 

standard time (Minar 1999).  Although this software error has been since corrected, the 
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study does call into question the accuracy of system clocks that are supposed to be 

synchronized with standard time. 

2.6.2  Observing Clock Skew While Measuring Packet Transit Times 

 

 In a study aimed at carefully measuring packet transit times on a network, Paxson 

discovered that clock skew was a frequent problem.  Even when two hosts on a network 

were tightly synchronized, the differing rates of skew of their system clocks caused it to 

appear that the network delays experienced by the packets were shrinking and growing 

though the actual delay remained fairly stable.  In fact, when the hosts were synchronized 

using NTP, the packet transit times sometimes appeared to be very inconsistent.  Paxson 

concluded that the local clock adjustments (made when the NTP server would tell each 

host to apply a certain offset to bring it back into synchronization), not varying network 

delays, were the source of the inconsistencies.  Thus, we can reason that even employing 

NTP cannot guarantee that a host exhibits accurate and predictable clock behavior over 

an extended time (Paxson 1998). 

2.6.3  Time Synchronization on Various Operating Systems 

 

 Kohono et al. tested the installations of many popular operating systems and 

concluded that most are configured by default either to synchronize with a trusted time 

server infrequently or not to do so at all.  Windows XP Professional systems do contact 

Microsoft’s NTP server when they boot up, but they maintain synchronization with this 

server only once a week subsequently.  While Red Hat 9.0 Linux systems allow the user 

to specify an NTP server, they are not configured to use NTP by default.  Under the 

“typical user” configurations of OpenBSD 3.5, FreeBSD 5.2.1, and Debian 3.0 Linux 
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installations, the ntpd service may not even be enabled by the user  (Kohono et al. 2005).  

We can deduce that, even though protocols for synchronizing with an accurate time 

source exist, a large number of hosts on the Internet likely do not perform consistent or 

frequent synchronization with a trusted time source. 

2.6.4  Time Synchronization Across a Network 

 

 Schatz et al. studied how me might use a “commonly logged corroborative 

source” to determine the behavior of another host’s system clock.  They studied a small 

business network consisting of a Windows 2000 server (the domain controller), several 

Windows 2000 and XP workstations, and a Linux machine serving as a firewall between 

the network and the Internet.  The firewall was running NTP, but the domain controller 

performed no synchronization with a reliable time source, and thus continued to drift 

further from civil time (from around 8 to around 10 seconds) throughout the course of the 

experiment.  The Windows workstations were configured to perform synchronization 

with the domain controller via SNTP.  Over the course of a month, the authors frequently 

sampled the system time on each host and compared it to the firewall’s interpretation of 

civil time (as this machine maintained synchronization with a stratum 2 NTP server).  

They found that, in most cases, the Windows machines on the network maintained fairly 

close synchronization with the domain controller (via SNTP); thus, each machine drifted 

away from civil time at about the same rate as the unsynchronized domain controller.  

One conclusion of their work is that system clocks tend to drift from civil time at a linear 

rate.  Due to the several anomalies they encountered, however, they also concluded that it 

is very difficult to make authoritative statements about the behavior of system clocks 

within a Windows domain (Schatz et al. 2006). 
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 In the above study, the authors revealed several factors that influenced computer 

clock accuracy, even those that are supposed to be synchronized with a trusted time 

source.  They found that the RTC (BIOS clock) on many of the Windows systems they 

surveyed was not set correctly.  Often, the time zone was set not to local time, but to the 

default installation time zone.  They claim that SNTP is only capable of maintaining 

synchronization to “within 2 seconds in a particular site and 20 seconds within a 

distributed enterprise.”  Furthermore, they state that unless hosts running NTP and SNTP 

are configured to use cryptographic authentication, they are vulnerable to attacks based 

on these protocols.  (The latest SNTP specification does recommend employing 

cryptographic authentication (Mills 2006).)  Finally, they caution that “software errors in 

the implementation of software clocks or the timestamp serialization algorithm have the 

potential for adversely affecting timekeeping accuracy” (Schatz et al. 2006). 

2.7  Measuring System Time on Hosts Across the Internet 

 

 We have seen that, though protocols such as NTP and SNTP are widely available, 

it cannot be assumed that a particular host (say a web or email server) on the Internet 

maintains synchronization with standard time.  If this server is the source of timestamped 

data found on a computer involved in an incident, a forensic investigator needs to be able 

to correlate the system time on this server with standard time.  In this section, we 

examine methods of measuring the system time on remote hosts. 

2.7.1  Sources of Internet Timestamps 

 

 Zander and Murdoch have developed several techniques for estimating the clock 

skew of hosts across a network or the Internet.  Their work includes developing methods 
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of eliminating errors in measurements from sources such as “network jitter”, which is the 

variability in packet transit times across a network, due to factors such as unpredictable 

and asymmetric paths through the network, or collisions during periods of high traffic.  

Their research demonstrates that quantization error (the difference between real time and 

a computer clock’s approximation of real time) has the greatest effect on measurements 

of time on another host.  Thus, the frequency of the clock that generates the timestamps is 

an important factor in the accuracy of the measurement (Zander and Murdoch 2008). 

 They cite four sources of timestamps from such hosts:  ICMP, TCP, and HTTP 

packet headers, as well as TCP sequence numbers.  They conclude that TCP sequence 

numbers, which are generated by summing a 1MHz clock and a cryptographic function, 

work well for approximating a target’s clock skew only for a short duration, as the 

function is rekeyed every five minutes.  ICMP timestamps may be measured for any 

given duration; however, they are less accurate than TCP sequence numbers (their 

frequency is only 1kHz).  Furthermore, they (along with other ICMP traffic) are often 

blocked by firewalls, and they may introduce an element of inaccuracy in that the system 

clock of a host running NTP may be adjusted by that protocol in between the time that a 

timestamp request arrives and its response is generated.  The frequency of TCP 

timestamps is dependent upon the operating system (if the OS supports them), and it 

ranges from 1 Hz to 1 kHz.  Zander and Murdoch consider utilizing TCP timestamps the 

most effective method for measuring time on a wide range of remote hosts, even though 

they cannot be used in conditions such as the Tor anonymisation network (a major focus 

of their recent study), as this network does not provide an end-to-end TCP connection 
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between hosts.  HTTP timestamps are generated by all web servers, but have a frequency 

of only 1 Hz (Zander and Murdoch 2008). 

 As quantization noise has the most detrimental effect on the accuracy of time 

measurements on remote hosts, Zander and Murdoch developed a technique for reducing 

this factor by synchronizing the timestamp measurements with the tick of the system 

clock on the target host.  They present an algorithm for determining the target’s clock 

frequency and adjusting the probe interval (the amount of time before the next packet is 

sent to the target) such that each timestamp from the target comes virtually right after the 

target’s clock tick, and thus contains the lowest possible quantization error.  Their study 

demonstrates that this type of synchronized sampling is possible using each of the 

aforementioned timestamp sources, and that it achieves a significant reduction of 

quantization error over random (non-synchronized) measurements (Zander and Murdoch 

2008). 

2.7.2  A Large Scale Study of Time Synchronization Across the Internet 

 

 Apart from Minar’s analysis of the NTP network, each of the studies discussed 

above has focused on a relatively small number of hosts.  In this section, we explore a 

survey of the clock behavior of a large numbers of computers across the Internet using 

multiple methods of time measurement.   

 Buchholz and Tjaden conducted a large-scale study of the degree to which over 

8,000 servers on the Internet maintained synchronization with standard time over a six 

month period.  Goals of this study included gathering data on what percentage of hosts 

connected to the Internet are synchronized to standard time, collecting data useful to 

assembling a description (or model of the behavior) of a computer’s system clock, and 



30 

 

 

exploring methods of measuring the system time on remote hosts.  As various other 

authors have discussed, they reiterate the necessity of being able to understand the clock 

behavior of a remote computer, since the forensic investigation of even a single host is 

likely to yield timestamps introduced by external sources.  A full understanding of the 

clock behavior of these external hosts can be very helpful in either establishing or 

confirming a timeline of events on the local computer (Buchholz and Tjaden 2007). 

 The authors used the DMOZ Top Listed Domains website as the source for 

choosing servers across the Internet whose clocks they might sample.  Using DNS to 

resolve the 8,329 domain names they gathered, they compiled a list of 8,410 unique IP 

addresses.  They wrote a program called web-time to collect HTTP timestamp data from 

the servers, 90% of which responded regularly with a valid timestamp.  Using this tool, 

they discovered that around 74% of the servers were synchronized to within 10 seconds 

of standard time (UTC).  Of the remaining servers, around 41% were between 10 seconds 

and 24 hours ahead of standard time, while 59% ran slower than standard time, being 

behind by an average of 21 days.  Discarding the 2 clocks reading farthest in the past 

(which were off by a century), the average was about 3 ½ hours behind standard time 

(Buchholz and Tjaden 2007). 

 Interested in comparing these results with another method of measuring time, they 

surveyed the same 8,410 hosts with clockdiff, using each of the three options available 

with this program.  Because of the considerable time consumed by clockdiff’s evaluation 

of each target, the initial survey of the same hosts took several days.  4,413 of these 

computers responded to at least one of the options, and thus only these hosts were 

included in the daily analysis, each round taking about 18 hours to complete.  The results 
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from the clockdiff experiment also showed that 74% of the hosts kept reasonably accurate 

time to within 10 seconds of UTC.  Due to the limitations of the IP and ICMP timestamp 

fields, and possibly due to inaccurate results reported by clockdiff, the other 26% of hosts 

showed time differences averaging 10 minutes behind and 12 minutes ahead of standard 

time, with the greatest differences being only 11 hours behind and nearly 12 hours ahead 

(Buchholz and Tjaden 2007). 

 Comparing the performance of the two tools, the study showed that web-time and 

clockdiff generally yielded results that were consistent with one another.  The delta 

between the two measurements was within 10 seconds for 95% of the hosts surveyed 

(92% of the deltas were less than 1 second).  Thus, for 5% of the hosts (187 of the 3,714 

which responded to both methods), the disagreement between web-time and clockdiff was 

greater than 10 seconds.  It is this discrepancy, along with our subsequent examination of 

clockdiff’s source code, which has stimulated our interest in testing the accuracy of 

clockdiff.  One of the conclusions reached by Buchholz and Tjaden is that “additional 

tools are needed for measuring time on a remote system over the Internet … Additional 

methods of sampling a remote clock may be able to perform better measurement or at 

least give us additional evidence about the time on a remote system when performing a 

forensic analysis” (Buchholz and Tjaden 2007).  In Chapter III, we show why clockdiff is 

not entirely adequate as a tool for assessing the system time on a remote host and discuss 

ways in which its underlying method of  time measurement can be improved. 

 

 

 

 

 



III.  Problem Definition and Solution 

 

 We have pointed out that multiple computers may be involved in an intrusion, 

accident, or other incident.  When conducting a forensic investigation of an incident, an 

investigator may discover digital evidence, including timestamps, from a variety of 

sources on a network, even across the Internet – this would certainly be true in cases such 

as email headers or HTTP data from a web server.  In order to use these timestamp data 

to help establish a timeline of events, the investigator will need to fully understand the 

correlation between the digital timestamps from the various sources and a standard time 

such as UTC.  It is likely that he will have to make multiple comparisons between the 

system time on these remote hosts and a standard time source in order to build a model of 

clock behavior for each remote clock that can contribute to the accuracy of the timeline 

he is attempting to establish. 

 One method he might use is to synchronize a computer with a trusted time server 

via NTP, and then use a tool such as clockdiff to sample the system time on each 

computer he is interested in.  We have seen from the study conducted by Buchholz and 

Tjaden that, when clockdiff and web-time (i.e., parsing the HTTP headers) are used 

together to determine the system time on a remote host, these two methods do not always 

produce consistent output.  We believe that, in many of these instances of inconsistency, 

clockdiff is actually reporting inaccurate results.  Our discussion of this problem reveals 

that clockdiff’s process is needlessly time-consuming and only accurate when the two 

hosts are roughly synchronized.  We then present clockvar, a tool that we developed to 

measure time on remote hosts with greater speed and without data adjustments that are 
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opaque to users, and our own version of web-time, which we used to corroborate our 

findings when clockdiff and clockvar disagreed on the time difference between two hosts. 

3.1  Problem Definition: Clockdiff’s Slowness and Possible Inaccuracy 

 

 Because clockdiff uses many packets in an attempt to calculate the network delays 

in each direction, it takes a considerable time to produce a result.  We determined by 

experiment that clockdiff takes an average of around 11 seconds to process one target 

host.  In addition to being unnecessarily slow, we offer evidence that clockdiff does not 

always generate a result that is in accord with the raw timestamp data it receives.  In 

order to demonstrate why we lack confidence in clockdiff’s output, we examine how it 

works in detail, including the Internet protocols on which it is founded and the 

methodology employed to calculate the time difference between the local and target 

hosts.  We conclude the problem definition with the reasons for which we suspect 

clockdiff may generate inaccurate results. 

3.1.1  Internet Timestamps 
 

 Before examining the inner workings of clockdiff in detail, we discuss the 

message formats utilized by the program.  The default mode uses ICMP timestamp 

requests/replies, and additional methods employ ICMP echo requests with IP timestamp 

options set in the IP headers. 

 ICMP timestamp requests and replies have the same format.  The first field in an 

ICMP datagram is an 8-bit field for the ICMP type.  Type 13 represents a timestamp 

request, and type 14 a timestamp reply.  This is followed by an 8-bit code, and 16-bit 

fields for the identifier and sequence number.  The actual timestamp data are contained in 
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the three subsequent 32-bit fields.  The first, the Originate Timestamp, is the time the 

message was last handled by the sender (the host requesting a timestamp) prior to sending 

it.  This information is returned to the sender in the same field when the reply message is 

sent.  The remaining two fields, the Receive and Transmit Timestamps, represent 

timestamps from the request recipient.  The former is the time the recipient first touched 

the message, and the latter is the time it was last handled prior to sending the reply to the 

requester (Postel, 1981b). 

 Each 32-bit timestamp represents the number of milliseconds since midnight 

UTC. If a host cannot provide a timestamp in milliseconds or with respect to midnight 

UTC, then it may insert any number into this field, as long as it sets the high order bit of 

the timestamp to indicate that it contains a non-standard value (Postel, 1981b).  Since 

there are 86,400,000 milliseconds in a day (24 ∙ 60 ∙ 60 ∙ 1000), this is the highest value a 

timestamp should theoretically contain.  This number can be represented by a 24-bit 

number, which means that the timestamp field has space to store the number of 

milliseconds in 24.8 days (2
31

 milliseconds).  However, since a timestamp is the number 

of milliseconds since midnight UTC, it is not clear how to interpret a value representing a 

number larger than 86,400,000.   

 ICMP echo / echo reply datagrams have a similar structure to the ICMP 

timestamp request/reply datagrams.  The header contains the same five fields described 

above (type, code, checksum, identifier, and sequence number); however, the code is 8 

for an echo message and 0 for an echo reply.  Instead of fields for timestamps, the data 

portion of this message contains whatever data the sender wants to be returned  (Postel, 

1981b). 
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 IP timestamp options follow the standard 20-octet IP header.  The first option 

field, the option type (1 octet), must be set to 68 for IP timestamps.  The second octet is 

the total length of the options (in octets), including the type, length, pointer, 

overflow/flag, and timestamps; the maximum value is 40.  The next field (1 octet) 

contains a pointer (number of octets) to the space where the next timestamp begins.  The 

next field (4 bits) represents the number of IP modules that were unable to record 

timestamps on account of a lack of space.  The last field (4 bits) prior to the beginning of 

the timestamps is a flag which signals how the timestamps and the corresponding IP 

addresses of the hosts that register them (each as 32-bit values) are to be recorded.  A 

value of 0 indicates that only timestamps are to be recorded.  A value of 1 indicates that 

each host which registers a timestamp should also record its IP address; the IP address is 

recorded in the first four octets of a pair, and the timestamp in the second four octets.  

With this option, there are room for up to four pairs of IP addresses and timestamps (the 

fifth “pair” is used by the host originating the timestamp request).  A flag value of 3 

indicates that only the IP addresses (within the options portion of the IP header) specified 

by the originating host may record timestamps.  If the packet is routed through other 

hosts whose addresses are not specified, they forward the packet to the next hop without 

registering a timestamp (Postel, 1981a). 

3.1.2  Packet Formats Used by Clockdiff 

 

 Clockdiff, which is based on code from the BSD timed daemon and compiled by 

Dr. Alexey Kuznetsov, is part of the Linux iputils package.  It is used to determine the 

difference in time between the local host and one other remote host.  Clockdiff is invoked 
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from the command line by entering:  clockdiff [-o] [-o1] <destination>, with 

<destination>, being a fully-qualified URL or IP address.  

 Clockdiff supports two different methods for obtaining a timestamp from the 

target host.  The default option sends a series of fifty ICMP timestamp requests to the 

target host.  The other method (invoked with –o or –o1 arguments) involves sending fifty 

ICMP echo requests with the IP timestamp option selected in the IP header (RFC 791).   

 The ICMP timestamp message used by clockdiff is 20 octets in length and is 

constructed as shown in Figure 3. 

type = 0x0D (13) code = 0x00 checksum 

identifier = clockdiff’s process ID sequence number 

local host’s originate timestamp (32 bits, network byte order) 

0x00000000 (all zeroes; space for target host’s receive timestamp) 

0x00000000 (all zeroes; space for target host’s transmit timestamp) 

Figure 3: Clockdiff’s ICMP Timestamp Packet 

 

The first of two IP options uses four-term specified hop addresses, while the other uses 

three-term specified hop addresses.  The IP options portion of the IP header for the four-

term specified hop addresses is 36 octets in length and looks like this: 
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code = 0x44 (68) length = 0x24(36) pointer = 0x0D (13) oflw/flag = 0x03 

local host’s address (32 bits, network byte order) 

local host’s originate timestamp (32 bits, network byte order) 

target host’s address (32 bits, network byte order) 

0x00000000 (all zeroes; space for target host’s timestamp) 

target host’s address (32 bits, network byte order) 

0x00000000 (all zeroes; space for target host’s timestamp) 

local host’s address (32 bits, network byte order) 

0x00000000 (all zeroes; space for local host’s receive timestamp) 

Figure 4: Clockdiff’s 4-Term Specified IP Options Packet 

 

The IP options portion of the IP header for the three-term specified hop addresses is 28 

octets in length and looks like this: 

code = 0x44 (68) length = 0x1C(28) pointer = 0x0D (13) oflw/flag = 0x03 

local host’s address (32 bits, network byte order) 

local host’s originate timestamp (32 bits, network byte order) 

target host’s address (32 bits, network byte order) 

0x00000000 (all zeroes; space for target host’s timestamp) 

local host’s address (32 bits, network byte order) 

0x00000000 (all zeroes; space for local host’s receive timestamp) 

Figure 5: Clockdiff’s 3-Term Specified IP Options Packet 
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3.1.3  How Clockdiff Obtains the Time Difference Between Two Computers 

 

 When clockdiff is invoked against a target host, it sends the target a series of 

ICMP timestamp request messages (or ICMP echo messages with IP timestamp options 

set) and then measures the delta, or time difference, by parsing the responses.  The 

following pseudo code illustrates the process clockdiff uses when sending either an ICMP 

timestamp request or echo request with IP timestamp option: 

 

 

 

 

 

 

 

 

 

 

for (1 to 50) 

begin loop 

Originate timestamp = gettimeofday() % 86,400,000 

send timestamp request to target host 

receive reply 

recvtime = gettimeofday() % 86,400,000 

rtt = recvtime – Originate timestamp 

if (Receive timestamp & 0x80000000 != 0) 

exit loop; report non-standard timestamp format 

end if 

delta1 = Originate timestamp – Receive timestamp 
if (delta1 == min(delta1) 

store this delta1 

else 

discard delta1 

end if 

delta2 = recvtime – Transmit timestamp 

if (delta2 == min(delta2) 

store this delta2 

else 

discard delta2 

end if 

if (delta1 < -43,200,000) 

delta1 += 86,400,000 

else if (delta1 > 43,199,999 

delta1 -= 86,400,000 

end if 

if (delta2 < -43,200,000) 

delta2 += 86,400,000 

else if (delta2 > 43,199,999 

delta2 -= 86,400,000 

end if 

measure_delta = (delta1 – delta2) / 2 

end loop 

output: host name, average rtt, minimum rtt, measure_delta, ctime() 
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 The details of the process clockdiff executes are laid out in the 16-step process 

below.  The first 15 of 16 steps are performed fifty times (as a series of fifty packets is 

sent to the target host), and the last step produces the output seen by the user: 

1. The current system time on the local host is obtained using gettimeofday(). 

2. The result (a timeval struct containing the number of seconds and microseconds 

since the epoch) is converted to the number of milliseconds since the epoch. 

3. This number is divided modulo 86,400,000 milliseconds (24 hours), resulting in 

the number of milliseconds since midnight UTC (in essence, a timestamp from 

the local host). 

4. This timestamp is placed in the field for the “Originate” timestamp in the 

outgoing ICMP message, and the packet is sent to the target host. 

5. When the response from the target host is received, clockdiff again obtains the 

current system time on the local host using gettimeofday(). 

6. The result is also divided modulo 24 hours and is stored as the variable 

recvtime.   

7. The data in the Originate field (the local host’s system time just prior to sending 

the request) are stored as the variable sendtime.   

8. The round trip time (rtt) is calculated by subtracting sendtime from recvtime.  

As this occurs fifty times, the program stores the shortest round trip time.   

9. The data in the “Receive” timestamp field are stored in the variable histime. 

10. The data in the “Transmit” timestamp field are stored in the variable histime1. 

11. If the high order bit in histime is set, then processing halts, and clockdiff reports 

that the target’s timestamp has been sent in a non-standard format. 
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12. delta1 is calculated by subtracting sendtime from histime.  This result is 

the difference in system times on the two hosts, measured by subtracting the local 

host’s time from the target host’s time at the point when the target host received 

the timestamp request.  Each time through the loop, the new delta1 is compared 

to the previously stored smallest delta1.  If the new delta1 is smaller, this value 

is stored; otherwise, the value is discarded. 

13. delta2 is calculated by subtracting histime from recvtime.  This result is the 

difference in times measured by subtracting the target host’s time from the local 

host’s time at the point when the local host received the timestamp reply.  As in 

step 12, the smallest delta2 value is stored. 

14. An adjustment is made under certain circumstances (we pass over this step for the 

moment). 

15. The difference in system time of the two hosts, measure_delta, is calculated 

thus:  measure_delta = (delta1 – delta2) / 2.  

16. The output contains the host name, average round trip time, smallest round trip 

time, the delta (difference in system time of the two hosts), and the current system 

time on the local host, which is calculated by a call to ctime(). 

Consider this toy example to illustrate the process.  The local host determines that it is 

exactly 4 milliseconds past midnight UTC and sends a timestamp request to a target host 

at that time.  The target host receives this request 2 ms later, but determines that it is 

exactly 7 ms past midnight UTC (thus the target host is exactly 1 ms behind the local 

host).  The target sends this number back in its reply as the receive timestamp.  2 ms 
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later, the target host receives the reply and determines that its system time is now 8 ms 

past midnight UTC.  According to the algorithm above, the following are true: 

sendtime =  4 recvtime =  8 

histime =  7 delta1 =  3 

delta2 =  1 measure_delta =  (3-1) / 2  =  1 

 

In this example, clockdiff correctly reports a delta of 1; that is, the target host is exactly 1 

ms behind the local host.  Consider, however, what would happen if everything in the 

previous example remained the same except that it takes 6 ms for the trip back from the 

target to local host.  Now these would be the values determined by clockdiff: 

sendtime =  4 recvtime =  12 

histime =  7 delta1 =  3 

delta2 =  5 measure_delta =  (3-5) / 2  =  -1 

 

Now clockdiff reports that the same target is 1 ms ahead of the local host.  Herein lies a 

fundamental difficulty in determining the difference in system times between two hosts 

on the Internet (or possibly even on the same network):  the path a packet takes traveling 

from a remote host back to the local host is not necessarily the reverse of the path that a 

similar packet takes going from the local host to the target.  Not only are network paths 

asymmetrical, but also the travel time from host to host is neither consistent nor 

predictable from one packet to the next. 

 Clockdiff attempts to correct for this inconsistency by sending a series of fifty 

timestamp requests to the target host.  For each iteration of the above processing 

algorithm, it determines and stores the smallest travel times between local and target 
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hosts (in both directions) and ultimately uses these values in step 15.  This increases the 

likelihood that clockdiff will report a more accurate result than if only one timestamp 

request were sent.   

3.1.4  Situations in Which Clockdiff Generates Questionable Results 

 

 While all of this makes sense and appears correct, a fundamental flaw of clockdiff 

rises from the assumption that the two hosts are synchronized to within twelve hours of 

one another.  The following procedure takes place in step 14 of the processing algorithm 

above: 

If delta1 (or delta2) is less than -43,200,000 (half the number of milliseconds 

in a day, or about twelve hours), then the value 86,400,000 is arbitrarily added to 

this number.  Likewise, if delta1 (or delta2) is greater than 43,199,999, then 

the value 86,400,000 is arbitrarily subtracted from this number. 

The author’s comments in clockdiff’s source code explain the reason for this adjustment:  

“Handles wrap-around to avoid that around midnight small time differences appear 

enormous. However, the two machine's clocks must be within 12 hours from each other.”  

While well-intentioned, we do not believe that it is correct to make this adjustment in all 

circumstances.  It would seem correct in the following case:  Host A (the local host) is 

tightly synchronized to NTP time, while Host B (the target) is running precisely 10 

seconds behind NTP time.  If Host A runs clockdiff against Host B at, say 5 seconds after 

midnight UTC on Tuesday, then the Originate timestamp from this machine would state 

its time as 00:00:05 UTC, while the Transmit timestamp from Host B would state 

23:59:55 (and however many milliseconds it took to receive and process the request from 
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Host A) UTC (as Host B thinks it is still Monday).  Without any adjustment, clockdiff 

would report a delta of +23:59:50 (or 86,390,000 milliseconds), which would not reflect 

the true difference between the host.  Instead, when clockdiff processes this delta, it 

subtracts 86,400,000 milliseconds, reporting a delta of -00:00:10, which is the correct 

difference in this case. 

 While one could use the above situation to support clockdiff’s inclusion of this 

step in its algorithm, we believe it is impossible to assert its general correctness.  As 

stated in the source code, this adjustment is appropriate “around midnight.”  But how 

close to midnight is “around midnight?”  Ten seconds? Ten minutes? Ten hours?  Any 

cutoff that we or others might propose for when to perform or not perform this delta 

adjustment would be completely arbitrary.  As shown by previous studies of how well 

thousands of servers across the Internet maintain synchronization with a standard time 

such as UTC (Buchholz and Tjaden 2007), there is no valid basis for the assumption that 

all computers are synchronized to within 12 hours of standard time.  Many hosts have 

been shown to be off from UTC by much farther than twelve hours.  Because it performs 

this adjustment every time it encounters this time difference, clockdiff forces two hosts 

whose system times actually do differ by greater than twelve hours to appear more 

closely synchronized than they actually are.   In these cases, clockdiff reports inaccurate 

results, as the actual timestamp values are improperly manipulated.   

 To make matters worse, clockdiff does not report to the user that the number has 

been changed.  Clockdiff’s “man” page does contain the statement:  “clockdiff shows 

difference in time modulo 24 days.”  Perplexed by this statement, even after carefully 

analyzing the source code, we asked clockdiff’s author to provide an explanation.  In a 
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personal communication with the author (October 2008), he stated that this was a 

mistake, and the intended statement was “clockdiff shows difference in time modulo 24 

hours”, meaning that the results from a host that is off by more than 24 hours are not to 

be trusted.  In fact, as shown above, clockdiff cannot correctly handle a situation in which 

the system time on two machines differs by more than twelve hours, nor was it ever 

intended to handle this situation.  Unfortunately, the output from running the program 

against a target that is closely synchronized with the local host and one that differs by 

greater than twelve hours may look extremely similar.  Because the user is never notified 

when an arbitrarily manipulated result is displayed, at least one other means of measuring 

the system time on a remote host is necessary to corroborate the result reported by 

clockdiff. 

3.2  Improving System Time Measurement in Speed and Fidelity to the Raw Data 

 

 Our solution to this problem centered on developing a program that utilizes the 

same internet protocols for obtaining a timestamp from the target host, but that does so 

much faster and is not limited by the need for the two hosts to be synchronized to within 

12 hours.  Therefore, we wrote a program called clockvar that also uses ICMP and IP 

timestamp messages to determine the differences in system time between two computers.  

Also, since the clockdiff’s  output consists only of the calculated results (and thus we 

can’t know when the time difference has been manipulated), we wanted to provide the 

user with the raw timestamps in binary format and a human-readable representation of 

the raw timestamps in addition to the time difference calculated by the program.   

 Clockdiff can only be invoked against one target at a time.  In order to make 

clockvar more useful for a large-scale study like the one described above, we built in the 
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option of reading a list of targets from a file.  In this section, we describe how our 

program produces its results. 

3.2.1  How Clockvar Obtains the Time Difference Between Two Computers 

 

 This pseudo code algorithm demonstrates the way in which clockvar measures the 

system time on remote hosts: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 This process is elaborated in the following 8 steps: 

1. When the raw socket is created, the socket timeout value (read from the config 

file) is set using setsockopt; this prevents the program from waiting for a reply 

in an infinite loop.  If the timeout expires, clockvar reports that this host is not 

responding and moves on to the next target. 

socket timeout value = value read from config file 

target_start = gettimeofday()  

local_time = Originate timestamp = target_start % 86,400,000 

 

send timestamp request to target host 

if (reply received) 

target_finish = gettimeofday() % 86,400,000 

target_time = Transmit timestamp 

if (target_time & 0x80000000 != 0) 

exit loop; report non-standard timestamp format 

end if 

 

rtt = target_start – target_finish 

delta  = target_time – local_time – (0.5 * rtt) 

 

output: host name, IP address, timestamp option used, actual 

local and target timestamps received, rtt, delta 

else 

when socket timeout expires, declare host down 

end if 
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2. The current system time on the local host is obtained using gettimeofday() 

and stored in the timeval struct target_start.  This struct is converted to 

milliseconds since the epoch and divided modulo 24 hours. This value, 

representing the local host’s system time in number of milliseconds since 

midnight UTC, is stored in the variable local_time. 

3. Clockvar sends a timestamp request (or echo request with IP timestamp options 

set) to the target host, with the value of local_time as its originate timestamp. 

4. When clockvar receives the timestamp reply, it stores the value as target_time 

and gets the local host’s system time once more, storing it as target_finish. 

5. The round-trip-time to the target is calculated by subtracting the timeval struct 

target_start from target_finish. 

6. The estimated delta between the two system clocks is calculated by subtracting 

local_time from target_time and then subtracting ½ of the round-trip time. 

7. The round-trip-time also represents the maximum error range for the time 

measurement.  This is the worst-case scenario for the amount by which clockvar’s 

estimated delta could diverge from reality.  That is, we are assuming that if it 

takes zero milliseconds for the local host to transmit the timestamp request to the 

target host, then it would take the full number of milliseconds in rtt for the 

program to receive the timestamp reply from the target host, and thus the accuracy 

of the reported delta could be off by up to that number of milliseconds.  Certainly, 

in reality, it is not possible for the transmission of the timestamp request to be 

instantaneous; thus, we can have a high degree of confidence that the reported 
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rtt does in fact represent an upward bounds on the actual error caused by 

network delay. 

8. The default behavior is for clockvar to display the following data:  

1.  number of the target host (out of total number of targets) 

2. the target host’s name and IP address, 

3. the timestamp option used 

4. the actual timestamp from the local and target hosts, formatted as 

hh:mm:ss.000 (hours, minutes, seconds, and milliseconds since midnight 

UTC) 

5. the round-trip time for obtaining the timestamp from the target host 

6. the estimated delta, calculated by the formula: 

  delta = target_time - 0.5(rtt) - local_time 

We also added an option so that clockvar could be invoked to run in a “clockdiff mode”; 

that is, when it encountered a system time difference of greater than 12 hours, it would 

perform the same adjustment that clockdiff does.  We foresaw that it would be useful to 

collect data from target hosts in both modes for comparison with the clockdiff results. 
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3.3  Confirming the results: how Web-time Works 

 

 Establishing the degree to which internet hosts are synchronized to standard time 

was not one of the goals of our study.  However, in order to provide a third method of 

time measurement for the inevitable situations when clockdiff and clockvar would 

disagree, we wrote our own version of web-time to run against each target host along with 

the other two programs.   

 According to the standard set by RFC 2616, servers must use the following format 

when including date information in HTTP/1.1 header fields transmitted to clients:   

Ddd, dd Mmm yyyy hh:mm:ss GMT 

where Ddd represents the three-letter abbreviation for the weekday, dd represents the 

two-digit date, Mmm represents the three-letter abbreviation for the month, yyyy is a 

four-digit year, and hh:mm:ss represents the 6-digit hour, minute, and second.  Although 

servers are not required to transmit a timestamp, if they do, the time must be according to 

GMT, and hence the “GMT” must be included with the timestamp (Fielding, 1999).   

 We wrote a simple program that, given an IP address, transmits the following 

request to the server:  "GET /index.html HTTP/1.1 \r\n\r\n".  Since our 

program does not first establish a TCP connection with the remote host, the server 

typically sends back a “Bad request” message, most often including a date/time stamp.  

Web-time parses the response, looking for the line which includes the word “Date”, and 

then reads the rest of the line.  An example of web-time’s output is: “Thu, 01 Jan 

2009 06:40:59 GMT”. 



IV.  Experiments and Results 

 

 We conducted a large-scale experiment in order to test the speed and accuracy of 

clockvar.  For this experiment, we had three primary goals: 

1.  Drastically reduce the amount of time needed (versus using clockdiff) to 

determine the system times on a large number of hosts. 

2.  Show that the difference in system times can be measured with reasonable 

accuracy using just one timestamp request (versus 50 messages, as clockdiff 

uses).  It was our desire to see the difference between the results reported by 

clockdiff and clockvar to be under 50 milliseconds for the vast majority of 

hosts surveyed. 

3.  Demonstrate that, when the system times on two hosts differ by more than 12 

hours, clockvar generates output that is more consistent with the raw 

timestamp data that it receives than clockdiff’s output. 

In the following sections, we outline how we conducted our experiments and analyzed 

the data, and then discuss the significance of the results we obtained. 

4.1  Experiment Setup 

 

 So that we could test clockvar and clockdiff against a substantial number of 

targets, we began with the same list of 8,410 hosts used in Buchholz’s and Tjaden’s 

experiment.  In order to eliminate those hosts that simply would not respond to ICMP and 

IP timestamp requests, we ran both clockvar and clockdiff once against all 8,410 hosts 

(August 2008).  Our analysis of the outcome was not surprising:  many of the hosts did 

not respond to our timestamp requests (far fewer, in fact, than in the earlier  Buchholz / 
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Tjaden experiment); however, the ones that replied to clockdiff were the same ones that 

replied to clockvar.  A total of 2,389 hosts responded to at least one of the options at that 

time.  This list of 2,389 hosts was used in our daily measurements.   

 We installed clockvar and clockdiff on a server running Red Hat Enterprise Linux 

(version 2.6.9-67.EL) which was synchronized with standard time via NTP.  We wrote a 

simple shell script that reads our target list, and for each target invokes first clockvar, 

then clockvar running in clockdiff mode, then web-time, and finally clockdiff.  All of the 

output from each program is directed to a single output file for later study.  

 We composed a program that parses the script output (for a single day) and places 

the results of each of the programs into a single, tab-separated line containing (along with 

some raw data) the host name, the time differences generated by clockvar, clockvar (in 

clockdiff mode), and clockdiff, and the date/time string produced by web-time.  The 

output of this program can be opened with any spreadsheet program for further analysis.  

Although we rarely saw a measurement difference between clockvar and clockdiff of 

greater than one second, we decided to classify any difference of at least 10 seconds as an 

outlier.  For the overwhelming majority of hosts, the difference in the results reported by 

the two programs was 10 milliseconds or less, but there were a few outliers each day.  

We hypothesize about the causes of the outliers in a subsequent section.   

 One of the functions of this program was to sort the measurement differences into 

a number of “bins” in order to generate a histogram and cumulative histogram of the 

results.  For the charts and tables in Chapter IV, we define the rule for placing a value 

into a bin as follows: 



51 

 

 

bin label values in the bin 

0  difference between clockvar and clockdiff’s measurement is 0 

10  0 < measurement difference ≤ 10 milliseconds 

20  10 < measurement difference ≤ 20 milliseconds 

… 

more  300 < measurement difference ≤ 10,000 milliseconds (10 seconds) 

outlier  10,000 milliseconds < measurement difference 

Initial experiments revealed that, for most of the target hosts, the difference between the 

measurements was exceedingly small, and that 98% of the differences were less than 300 

milliseconds.  Thus, for the sake of limiting the number of bins, we placed any value 

between 301 and 10,000 milliseconds into the “more” bin, and any value greater than 

10,000 into the “outlier” category.   

4.2  Highlights of the Results 

 

 We ran our experiment from November 3, 2008 to February 21, 2009.  Due to 

system crashes, we are missing some data from a few of these days.  However, we 

collected complete data for a total of 105 days, including 172,259 measurements of the 

system time on remote hosts using clockvar, clockdiff, and web-time.  On average, 1,656 

hosts responded to timestamp requests each day.  The lowest number of hosts responding 

was 899 on January 12 (the server crashed after just over one half of the hosts had been 

measured), and the highest number of hosts responding was 1,794 on November 13.  

Although we surveyed 2,389 total hosts each day (and these were the hosts from which 

we initially received responses), the numbers responding each day of the experiment 
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never approached this number for two reasons.  First, the initial measurement was taken 

using a server with a direct connection to the Internet, and it was capable of processing 

both ICMP and IP timestamp requests and replies.  The remainder of the experiment was 

performed using a server behind a NAT, and we discovered that neither clockdiff nor 

clockvar is capable of receiving timestamp replies to requests transmitted from behind a 

NAT.  Thus, this excludes the hosts that had initially responded to either of the IP 

timestamp request options, but not to ICMP timestamp requests.  Secondly, the 2,389 

include all hosts for which clockvar did not experience a server timeout.  That is, these 

hosts transmitted a response, but it may not have been a valid timestamp.  For example, 

the non-standard response bit may have been set, or the timestamp may have turned out 

to be a number greater than 24 hours.  These responses were discarded as invalid by both 

clockdiff and clockvar. 

 Ideally, we would see the delta reported by clockvar exactly match the delta 

reported by clockdiff for all hosts, except for those where the delta is greater than 12 

hours (as we know the programs deal with the deltas differently in this case).  In reality, 

though, we expected to see some difference in these numbers due to the fact that clockdiff 

executes a more complicated algorithm for estimating the network delay. 

 When clockvar and clockdiff measure the system times on two hosts, they report 

the delta between them in milliseconds.  As stated above, we had hoped to find that the 

difference between the deltas would be less than 50 milliseconds for the majority of 

targets surveyed.  In fact, we found that the difference between the measurements of 

clockvar and clockdiff turned out to be only 10 milliseconds or less for 95.17% of the 
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hosts measured over the course of the experiment.  We now discuss some of the trends 

we discovered. 

4.2.1  The Precision of Clockvar and Clockdiff  

 

 Our experiment revealed that it is possible to measure the system time difference 

between two computers using the same internet protocols as clockdiff with a very high 

degree of accuracy, but with far greater speed.  We show the advantages gained in speed 

in section 4.4.  Here, we would like to focus on how consistently close clockvar’s 

estimated deltas (using one measurement) are to clockdiff’s, which utilizes a series of 50 

measurements before displaying a result.  Table 1 shows a complete summary of the 

averages of each daily round of measurements during the entire experiment.  The first 

column is a list of the bins (as described above), with one additional row, which we are 

calling “clockdiff outlier” and define below).  The second is an average number of hosts 

falling into each bin per day, rounded to a whole number.  The third is a sum of all the 

hosts in each bin over the entire 105-day experiment.   The last two columns are the 

percentage and cumulative percentage of the total number of hosts responding in the 

experiment. 
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Time diff. msecs Avg. daily hosts Total hosts  % of total Cumulative % 

0 548 57,037  33.11% 33.11% 

10 1028  106,908  62.06% 95.17% 

20 28  2,899  1.68% 96.86% 

30 10  1,001  0.58% 97.44% 

40 5  531  0.31% 97.75% 

50 3  305  0.18% 97.92% 

60 1  118  0.07% 97.99% 

70 1  109  0.06% 98.05% 

80 1  70  0.04% 98.10% 

90 1  62  0.04% 98.13% 

100 0  37  0.02% 98.15% 

110 0  38  0.02% 98.17% 

120 0  29  0.02% 98.19% 

130 0  35  0.02% 98.21% 

140 0  18  0.01% 98.22% 

150 0  17  0.01% 98.23% 

160 0  24  0.01% 98.25% 

170 0  7  0.00% 98.25% 

180 0  13  0.01% 98.26% 

190 0  6  0.00% 98.26% 

200 0  5  0.00% 98.26% 

210 0  9  0.01% 98.27% 

220 0  4  0.00% 98.27% 

230 0  8  0.00% 98.28% 

240 0  3  0.00% 98.28% 

250 0  11  0.01% 98.28% 

260 0  4  0.00% 98.29% 

270 0  10  0.01% 98.29% 

280 0  2  0.00% 98.29% 

290 0  4  0.00% 98.30% 

300 0  3  0.00% 98.30% 

301 – 10,000 20  2,069  1.20% 99.50% 

“clockdiff” outlier 3  356  0.21% 99.71% 

outlier (> 10,000) 5  507  0.29% 100.00% 

Total 1,656 172,259 100.00% 100.00% 

Table 1:  Summary of the Results of the clockdiff / clockvar Comparison 
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4.2.2  Consistency of the Results 

 

 From day to day, the distribution of the measurement differences across the 

“bins” did not vary much.  Figure 6 shows a breakdown of this data into just 5 

categories.  The largest of these (95.17%) contains those instances where the 

measurements taken by clockvar and clockdiff differ by 10 or fewer milliseconds.  The 

second largest group (3.12%) consists of differences of between 10 and 300 milliseconds.  

The next group (1.20%) contains those measurements that differed by between 301 and 

10,000 milliseconds.  Outliers made up 0.29% of the measurements, and the smallest 

group (0.21%) consists of a special category of outlier, which we are calling “clockdiff 

outlier”.  These are all hosts whose system times differed from NTP time by more than 

12 hours.  Thus, the deltas reported by clockdiff and clockvar differed greatly, as clockdiff 

added or subtracted 86,400 seconds (24 hours) before displaying the delta.  For each of 

these hosts, however, the differences between the clockdiff and clockvar running in 

clockdiff mode (i.e., making the same delta adjustment clockdiff makes) were very small.  

Although this category contains the fewest hosts, the calculations we made (as well as 

our inspection of the raw packets transmitted) prove that, for these 356 measurements,  

clockdiff did indeed report a delta that did not correlate to the raw timestamps it received 

from the target hosts. 
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Figure 6:  Average Differences Between Clockdiff and Clockvar Measurements 

Entire Experiment:  172,259 measurements 

 

 

4.2.3  Consistency in the Measurement of Individual Hosts 

 

 In addition to seeing a consistent distribution across the bins, we hoped to see a 

great deal of consistency in the difference between clockvar’s and clockdiff’s 

measurement of each individual host across the entire experiment.  For the majority of 

hosts, these differences were consistent when we measured them over the 105 days of the 

experiment.  The server with the lowest average difference (0.47 milliseconds) between 

clockvar’s and clockdiff’s measurements was 207.138.234.59.  On many days, the 

difference between the measurement from each program was exactly 0, with the highest 

difference being only 2 milliseconds.  The median value for average differences was 6.41 

milliseconds, and this came from the server at 198.104.184.58.  Differences for this target 
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ranged from 0 to 22 milliseconds, and we did not receive responses to our timestamp 

requests on 6 days of the experiment.  A graph of the differences between the 

measurements of clockvar and clockdiff for these two servers can be seen in Figure 7. 

 

Figure 7:  Minimum and Median Differences Between Clockdiff and Clockvar 

 

 Figure 8 represents the other end of the spectrum.  Of the hosts that did not 

qualify by our criteria as “outliers” (a difference of over 10 seconds), the server at 

168.83.72.5 had the largest average difference between the measurements made by 

clockvar and clockdiff, 1194.90 milliseconds, or just over one second.  For this host, the 

smallest difference was a mere 2 milliseconds, but the largest was 6.058 seconds.   We 

received replies from this server to all but 5 of our timestamp requests.  Although we are 

not able to confirm this hypothesis, it is possible that multiple physical machines (with 

unsynchronized clocks) answer timestamp requests to this IP address.  That would 



58 

 

 

provide a reasonable explanation for such a large difference among measurements taken 

each day within milliseconds of each other and using the same Internet protocols.  Figure 

8 shows the differences in the measurements for this host on each day of the experiment.  

 

Figure 8:  Maximum Differences Between Clockdiff and Clockvar (non-outlier) 

 

4.3  Outliers 

 

 Each day of the experiment, there were measurements that qualified as outliers; 

that is, the differences between clockvar’s measurement and clockdiff’s was greater than 

10 seconds.  Our initial evaluation of the data yielded the conclusion that outliers made 

up a total of 863 out of 172,259 measurements in the experiment (0.501%).  However, 

further analysis revealed that in 356 of these cases, the measurement was being classified 

as an outlier due to the fact that clockdiff made a 24-hour adjustment in the delta, while 

clockvar reported the delta based solely on the raw data it received.  We now classify 
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these 356 (0.207% of the total) measurements as “clockdiff outliers” and the remaining 

507 (0.294%) as regular outliers.  Figures 9  and 10 show the total number of both kinds 

of outliers that occurred each day of the experiment. 

 

Figure 9:  “Regular” Outliers Per Day 

 

4.3.1  Extreme Outliers:  Hosts Differing from NTP Time by More Than 12 Hours 

 

 Examining clockdiff’s code convinced us that this program does not report a delta 

that reflects the timestamps it receives when the system time on the host on which it is 

running differs from that of the target host by over 12 hours.  When we began to 

investigate why clockvar and clockdiff reported such widely varying measurements for 

the system time on these hosts, we discovered that the hosts whose system clocks 

diverged from NTP time by more than 12 hours were always outliers.  In each case, the 

delta  reported by clockvar was much larger than the one reported by clockdiff.  We 
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concluded that clockvar was reporting the actual difference, while clockdiff was 

manipulating the timestamp response due to its assumption that the clocks must be 

synchronized to within 12 hours.   

 

Figure 10:  “Clockdiff” Outliers Per Day 

 

 

 In order to prove that this was the case, we performed additional experiments on 

these hosts using a laptop running Windows Vista.  This machine uses a VMware 

workstation to run a Fedora Core 4 installation of Linux 2.6.11-1.1369.  While running 

our shell script described in section 4.1 on the virtual machine, we captured the raw 

network packets using Wireshark, which was running in the Windows environment.  As 

an example, we show the results of a series of measurements against host 69.57.128.4 on 

March 3, 2009.   
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 Clockvar reported a local time of 01:55:54.423 UTC (the local time on our 

machine was 8:55 pm Eastern Standard Time, which is 5 hours behind GMT).  Clockvar 

reported the target timestamp of 20:57:57.098 and a round-trip time to the target as 122 

milliseconds.  Clockvar calculates the delta by subtracting the two raw timestamp 

numbers (75,477,098 – 6,954,423) and then subtracting ½ of the RTT (61).  This yields a 

difference of 68,522,614 milliseconds, or 19 hours, 2 minutes, 2 seconds, and 614 

milliseconds (+19:02:02.614).  As part of our experiment, clockvar ran a second time in 

“clockdiff mode”, that is, configured to adjust the delta by 24 hours as clockdiff does.  

Just milliseconds later, the program reported the target timestamp of 20:57:57.208, but a 

delta of -17,877,394 milliseconds, or (-4:57:57.394).  When we examined the raw data in 

the packet through Wireshark, we confirmed that the program received both a Receive 

and Transmit timestamp of (network byte ordered) 0x047fb0d8, and this corresponds to 

20:57:57.208, which the program reported. 

 Around a half of a second later, clockdiff received its first of 50 responses for this 

host.  Again, using Wireshark to view this packet, we observed that the raw data clockdiff 

received as a timestamp was 0x047fb2b0, or 20:57:57.680 after midnight UTC.  The time 

on the local host was 1:55:55.034, so clockdiff should have reported a delta of 

(+19:02:02.582).  If it had, the difference between clockvar’s and clockdiff’s deltas would 

have been only 32 milliseconds.  However, clockdiff reported the delta as  

-17,877,418, or (-4:57:57.418).  Thus, the difference between clockvar’s and clockdiff’s 

deltas is 24 hours and 32 milliseconds; however, the difference between clockdiff’s and 

clockvar’s (in clockdiff mode) deltas is only 24 milliseconds.  As we have such a close 

agreement between clockdiff and clockvar in clockdiff mode, we can conclude with 
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confidence that there is such a large disagreement between clockdiff and clockvar (in 

normal mode) because clockdiff is adjusting the delta prior to reporting its results. 

 Interestingly, the timestamp string we received from this host via web-time was 

“Tue, 3 Mar 2009 20:57:57 GMT” which corroborates the delta and timestamp reported 

by clockvar exactly.  Furthermore, this gives even less credence to the result reported by 

clockdiff. 

 We encountered an average of 3.42 measurements exhibiting this behavior (a 

huge difference between the clockdiff and clockvar deltas, but a very small difference 

between clockdiff and clockvar in clockdiff mode) in each daily run of the experiment.   

 

Figure 11:  Number of Times an Individual  Host was a Regular or "Clockdiff" 

Outlier 
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The 356 total occurrences of “clockdiff outliers” corresponded to only 94 distinct hosts.   

The servers at 72.9.249.194, 206.176.210.45, and 69.10.136.151 fell into this category 

63, 81, and 102 times respectively.  The other 91 hosts were clockdiff outliers only 1, 2, 

or 3 times over the course of the experiment.  Figure 11 shows this distribution. 

4.3.2  Other Outliers 

 

 Figure 11 also shows that 280 distinct hosts fell into the outlier category (a 

difference of over 10 seconds between the deltas reported by clockdiff and clockvar) at 

least once.  The maximum number of times that a particular host was an outlier was 7 

times.  The 507 instances of outliers accounted for 0.29% of the total 172,259 

measurements.  While this already represents a small percentage of the total, a further 

497 of these occurrences can be explained – and eliminated with more careful coding. 

 When we produced the first version of clockvar, we knew that we would be 

comparing its results against clockdiff’s against a large list of targets in a single run.  

When we wrote the shell script that invoked both programs against each host in the target 

list, we were aware of the possibility that one program could begin to measure the time 

on a new target before the other program finished measuring the time on the previous 

target.  For instance, we saw in the packet capture files that the shell script occasionally 

caused clockvar to launch its timestamp request to, say, host 4 before clockdiff had 

received its last response from host 3.  In order to deal with this possibility, we initially 

took clockdiff’s lead. 

 The Linux kernel passes ICMP packets (such as the ones used by clockdiff and 

clockvar) to all open raw sockets.  Clockdiff uses part of its own process identifier (ID) to 

determine whether it is the intended destination of each packet that the kernel sends it.  
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When a Linux process is created, the system assigns the process an integer identifier, 

called the Process ID.  In order to insure that a particular clockdiff process “recognizes” 

the timestamp requests that it sends out, clockdiff places part of its process ID into the 

ICMP Identifier (ICMP ID) field of all outgoing packets, and then checks for this number 

in the ICMP ID field of all incoming packets, rejecting any that do not have the correct 

identifier.  The ICMP ID field is only 16 bits long, but the process ID is a 32-bit value.  

Thus, clockdiff determines its ICMP ID by performing a logical AND between its process 

ID and 0xffff. 

 We employed the same strategy in clockvar; however, due to a slight coding error 

in the version that ran throughout the experiment, only the last 8 bits of the ICMP ID 

were tested.  Thus, in the rare cases that each of the following conditions occurred, 

clockvar processed one of the packets intended for clockdiff, and reported incorrect 

results for the target host: 

1. The last 8 bits of both clockdiff’s and clockvar’s process ID were identical. 

2. The shell script caused clockvar to initiate measurement of one target host before 

clockdiff had finished measuring the previous host.  That is, clockvar has sent a 

timestamp request to host 2 while clockdiff is awaiting a reply from host 1. 

3. The timestamp reply from host 1 (intended for clockdiff) arrives prior to the reply 

from host 2 (intended for clockvar). 

In this case, both clockdiff and clockvar would process the timestamp reply received from 

host 1 (clockvar then closes the open socket after receiving what it believes to be a 

response to its request, and thus it never receives the reply from host 2).  However, 
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clockvar would report this as the timestamp reply received from host 2, and thus its 

calculated delta would not match that of clockdiff’s. 

 The following sequence of packets sent and received to two target hosts illustrates 

this condition.  In Frame 5106 of the packet capture from an entire run of our comparison 

shell script, clockvar sends a timestamp request to 213.238.33.194; its ICMP ID is 

0x8946.  In Frame 5107, we captured the 50
th
 response from 213.218.116.170 (the 

previous target), intended for clockdiff, but processed by both programs.  This is due to 

the fact that clockvar had an open raw socket at this point awaiting a response from 

213.238.33.194, and clockdiff’s ICMP ID is  0x8546 (the last 8 bits match clockvar’s) .  

Here, the target’s transmit timestamp is 0x024c840b, or 10:42:48.971.  Clockvar 

computed the round trip time as 3 milliseconds, and calculates the delta using the raw 

timestamps as 38568971 - 26130389 (10:42:48.971 - 07:15:30.389) – (½ * 3) , or 

12438581 milliseconds (3:27:18.581). 

 Frame 5108 is the second timestamp request from clockvar to 213.238.33.194.  A 

second timestamp request is sent when clockvar runs in “clockdiff mode”; the delta 

calculated from this reply would undergo the same adjustment clockdiff uses if its delta 

were greater than 12 hours.  Frame 5109 contains the reply from 213.38.33.194 to 

clockvar, which the program did not process, as it believed Frame 5107 was this reply.  

Had it processed this response, it would have calculated the delta between the two hosts 

as 42506772 - 26130389 (11:48:26.772 - 07:15:30.389) – (½ * 3), or 16376382 

milliseconds (4:32:56.382 UTC).  If so, then the difference between clockdiff and 

clockvar deltas for this host would be only 174 milliseconds, as opposed to the 3937974 
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milliseconds (1:5:37.974) reported by the program we wrote to process the shell script 

output. 

 Frame 5110 contains the second timestamp reply from 213.238.33.194 to 

clockvar.  This time, clockvar is not confused by a packet intended for clockdiff, and it 

correctly reports the target timestamp as 11:48:26.772.  This time, the shell script 

processing program reports a reasonably small difference between the deltas calculated 

by clockvar and clockdiff. 

4.4  Performance 

 

 Since one of the primary goals for our work is to determine the system time on 

remote hosts drastically faster than using clockdiff, we carefully evaluated how much 

time it took for each program to perform its measurements. In order to focus on the 

differences due to the measurement algorithms (primarily, clockvar’s one packet method 

versus clockdiff’s use of fifty packets), our initial comparisons were made running 

clockvar as a single-threaded application, since clockdiff does not have multi-threading 

capability.  We analyze the performance gains from multi-threading following the single-

threaded comparison. 

 We used a shell script to measure clockdiff’s performance against a large number 

of targets (since the program can only measure one target per invocation).  We 

discovered that it takes clockdiff an average of 12,039 milliseconds (12.039 seconds) to 

return a result for a target that is responding to the timestamp requests.  When the target 

host is not responding, it takes this program an average of 10,861milliseconds (10.861 

seconds) to announce that the host is down.   
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 Clockvar, on the other hand, has a configurable server timeout value (expressed in 

seconds and microseconds).  This value is set in the config file and can be changed at 

any time without recompiling the program.  We initially found that clockvar receives a 

response from all the hosts in this study (that is, if the host is answering timestamp 

requests) in less than two seconds.  We concluded that two seconds would be an 

appropriate timeout value for all subsequent experiments, and thus it takes the program 

an average of 2 seconds per host to report that a target is not answering.  Typically, 

clockvar displays its results in an average of 104 milliseconds (0.104 seconds) when the 

target host is answering the timestamp requests.  Table 2 shows the results of our 

performance experiments.   

 

 Total Time (hh:mm:ss) Average Time per host (seconds) 

Experiment clockvar clockdiff clockvar clockdiff 

Test 1: 

8410 hosts 

3:20:21 26:08:04 1.429  11.187  

Test 2: 2382 

responding 

0:04:02 7:47:07 0.104 12.039  

Test 3: 6082 

not responding 

3:16:18 18:20:57 1.937 10.861  

Table 2: Performance Times of Clockdiff and Single-Threaded Clockvar 

 

 For Test 1, we used all 8,410 hosts from the initial experiment.  2,328 of the target 

hosts responded to clockvar and clockdiff, while 6,082 did not answer ICMP timestamp 

requests.  For Test 2, we used the 2,328 hosts that responded during Test 1.  We used the 

remaining 6,082 targets for Test 3.  Figure 12 shows that the amount of time clockdiff 
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consumes to process targets grows in a linear manner along with the number of hosts. 

Figure 13 shows the average time per host utilized by each program.  Clockvar, on the 

other hand, uses much less time to measure targets that are answering timestamp 

requests.  The largest part of the total time in a clockvar run against multiple targets is 

spent waiting for the timeout to expire when a host is not responding.  Clearly, 

completing the test against all 8,410 targets took only 4 minutes longer than the 3 hours 

and 16 minutes for the test against the 6,082 hosts not answering timestamp requests.  

The 2,328 servers that responded to our timestamp requests were measured in those 4 

short minutes. 

 

Figure 12:  Total Time Consumed by Clockvar and Clockdiff 
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Figure 13:  Clockvar and Clockdiff – Average Processing Times Per Target 

 

 As Table 2 and Figure 12 show, the overwhelming majority of clockvar’s 

running time is spent idly, waiting for a timeout to expire when a target host is not 

answering timestamp requests.  Clearly, if we increase the number of targets that can be 

measured at the same time, then, when the targets are not responding, the program can 

wait for multiple timeouts at the same time, resulting in greater efficiency. 

 We accomplished this through multi-threading.  When clockvar is invoked against 

a list of targets (contained in a text file), the user can pass the desired number of threads 

to run via a command line argument.  Clockvar begins by attempting to create the number 

of threads requested.  If more threads are requested than the machine on which it is 

running is capable of creating, then it proceeds with the maximum number of threads 

possible.  Once a thread is created, it enters the following loop: 
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1. If unprocessed targets exist in the input file, read the next target from the file. 

2. Attempt to measure the system time on the target host via the method described in 

Section 3.2.1.  If the target does not respond, proceed to the next target after the 

timeout expires. 

3. Write the results to the output file and/or display them on screen, depending on 

the command line arguments passed to the program. 

Once all the targets in the input file have been processed, the threads are joined and 

summary statistics are displayed and/or written to file. 

 We performed an additional large-scale experiment to measure the benefits of 

multithreading.  We wrote a shell script that, using the original list of 8410 servers as a 

target list, invokes clockvar with between 25 and 300 threads, in increments of 25.  This  

Threads 

Running 

Average Time 

(Min:Secs) 

Average Time 

(Seconds) 

Average Time 

(Milliseconds) 

Time (Msecs) 

per Host 

1 3:20:21 12028 12028000 1429 

25 10:44 644 644851 77 

50 5:50 350 350018 42 

75 4:00 240 240299 29 

100 2:59 179 179744 21 

125 2:19 139 139683 17 

150 1:56 116 116300 14 

175 1:44 104 104113 12 

200 1:32 92 92592 11 

225 1:22 83 83478 10 

250 1:16 76 76383 9 

275 1:12 72 72717 9 

300 1:08 68 68185 8 

Table 3: Performance Times of Clockvar Running Various Numbers of Threads 
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script ran for one month, and then we averaged the results, which are displayed in Table 

3.  The columns show:  1) the number of threads that ran concurrently,  2) the average 

time it took for all 8410 hosts to be measured (in minutes and seconds),  3) and 4) the 

average time of the run in seconds and milliseconds, respectively, and 5) the average 

number of milliseconds required to measure the time on one target host.  The first row in 

the table represents results from our previous experiment using the single-threaded 

version. 

 

Figure 14: Total Measurement Times of 8410 Target Hosts 
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 Observe Figure 14, the total time consumed measuring the system time on the 

8410 hosts, and Figure 15, the total time expended waiting for timeouts to expire for 

hosts that did not respond.  From these figures, it can clearly be seen that increasing the 

number of threads yields an exponential benefit in performance.  Clockvar took over 

three hours to process the 8410 targets running as a single-threaded application (which is, 

of course, still a significant improvement over clockdiff, which took over 26 hours to 

accomplish this).  Using 25 threads dramatically reduces this time to under eleven 

minutes, and using 300 threads brings down the total time for measuring this large 

number of hosts to just over one minute. 

 

 

Figure 15: Total Time Consumed Waiting for Non-Responding Host Timeouts 

 

 Figure 16 shows a vary similar trend.  While it took an average of 1429 

milliseconds to process the 8410 targets with a single thread, this processing time falls 

dramatically when using the multi-threading capability, taking an average of as low as 



73 

 

 

only 8 milliseconds per host.  Clearly, clockvar’s multi-threading offers an enormous 

performance advantage over clockdiff – an average of 8 milliseconds per host (measuring 

300 targets concurrently) versus an average of 11,187 milliseconds per host (measuring 

just one target at a time). 

 

 

Figure 16: Average Processing Time Per Host 

 

 

 

 



V.  Conclusions and Future Work 

 

 In this chapter, we present the conclusions that we have drawn from this 

experiment.  Our primary goal was to maintain a high degree of accuracy while 

drastically reducing the time it takes to measure the system time on remote hosts.  A 

secondary goal was to prove that clockdiff’s output cannot always be trusted.  Our results 

demonstrate that we have achieved these goals.  We conclude with a brief summary of 

clockvar’s advantages over clockdiff and a discussion of several objectives for future 

work in this area. 

5.1  Advantages of Clockvar over Clockdiff 

 

 A number of advantages in using clockvar over clockdiff are evident from this 

study.  The first and most obvious is speed.  Because clockvar does not send multiple 

packets to the target host, it returns results significantly faster than clockdiff. Clockdiff is 

preconfigured to use a series of 50 ICMP timestamp requests (or 50 ICMP echo requests 

with IP timestamp options), and we feel that such a large number is unnecessary.  

However, should a user wish to run multiple measurements, that can be done with 

clockvar; the number of packets to be sent to each target host can be passed into the 

program as a command line argument.  Also, we have demonstrated that responses from 

all the servers in our experiment reach our test machine within 2 seconds of sending the 

request; thus we have concluded that 2 seconds is a reasonable timeout value – although 

this value can also be modified by the user.  Thus clockvar, by default, will report after 

two seconds that a host is not responding, while clockdiff takes an average of over 10 

seconds to make the same determination.  Our experiments show that, on average, in a 
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single-threaded mode, clockvar yields a result 7.8 times faster than clockdiff.  When the 

host is not responding to timestamp requests, clockvar reports this 5.4 times faster.  When 

the host is answering, clockvar produces its output an average of 115.8 times faster than 

clockdiff.  Again, this performance advantage is gained merely by running clockvar as a 

single-threaded application.  When running against a large number of targets with 300 

threads, for example, clockvar measures the system time on all of the targets an average 

of 1389.7 times faster than clockdiff does. 

 The second major advantage is flexibility.  Like clockdiff, clockvar can be run 

against a single target.  Unlike clockdiff, however, clockvar can read a list of targets from 

an input file and obtain timestamps from an unlimited number of targets in one run of the 

program.  With clockdiff, the user specifies which timestamp option to use for the target 

(ICMP, IP with 4-term specified route, or IP with 3-term specified route).  If the user 

wishes to try multiple options, this requires multiple runs of the program.  With clockvar, 

the user has the ability to try any combination of the options (1, 2, or all) in the same run 

of the program.  

 Clockdiff only has the option to send its output to the screen (though, as with any 

program run on Linux, the output can be redirected).  Screen output only is the default 

behavior for clockvar when run against only one target; however, when reading targets 

from an input file, clockvar can be instructed (via command line arguments) whether to 

display or suppress screen output, and whether to direct its output to files.  File options 

include binary output (for efficient storage and machine processing) and human-readable 

output, which may be broken down into multiple files, including an error log, all program 
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output, and lists of targets that 1) responded to a particular option, 2) responded to any 

option, and 3) did not respond.   

 Although clockdiff uses multiple measurements of round-trip-time in an effort to 

estimate the network delay and provide an accurate result, it ultimately reports only a best 

guess of the difference in system time between the local and remote host.  It displays the 

current time on the local host, the best round-trip times, and a delta value representing the 

time difference between the two hosts, but not the actual time on the target host.  

Clockvar reports a best guess as well, but it also displays the actual timestamp received 

from the remote host along with the delta and round-trip time.  Thus the raw data from 

clockvar is available if the user wants to perform additional calculations.  As we 

demonstrated in Section 4.3, clockdiff makes no report to the user when it encounters a 

timestamp indicating that the target host’s system time differs by more than 12 hours 

from the local host’s time and then arbitrarily adjusts the delta, showing a closer 

synchronization than may be the case in reality.  Thus, without another source of 

measurement providing corroborating evidence, we ultimately cannot trust the accuracy 

of the delta that clockdiff reports. 

5.2  Future Work 

 

 Our results show that clockvar is a promising alternative to using clockdiff to 

measure the system time on a remote host; however, the research in this area is not 

complete.  We have several ideas about possibilities for future work, including other 

potential uses for this application.   
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 The main goal of our study has been to further digital forensic science by 

providing a useful tool for measuring the system time on remote computers.  

Investigators can use clockvar to build a clock description of a remote host that is a 

source of time stamped data on a local machine so that they may form a reasonable 

hypothesis regarding its past behavior.  This may prove essential in confirming or 

developing a precise timeline of events on a local machine or network. 

 Other uses are also possible.  Buchholz and Tjaden propose that one may want to 

monitor the system time on each computer within one’s own network.  Clockvar could be 

used from a dedicated machine to do so quickly and efficiently on a regular basis for two 

purposes.  First, this would guarantee that a highly accurate clock description of each host 

on the network would be immediately available if ever needed for an investigation.  

Second,  the process could be used to generate an alarm if it perceives that the system 

clock on a host has been altered.  This might play a part in intrusion or misuse detection 

(Buchholz and Tjaden, 2007). 

 Kohono et al. developed a technique for “fingerprinting” a computer on the 

Internet by carefully measuring its clock skew over time.  Although the major part of 

their work focuses on measuring the TCP timestamp options clock (which is 

implemented within the network hardware, rather than maintained by the operating 

system), clockvar might be used to identify a host’s signature by measuring the skew of 

the system clock.  These researchers suggest that this technique could be useful not only 

in forensic analysis, but also in tracking a particular computer across the Internet, even 

when these it makes a connection from varying locations with different IP addresses 

(Kohono et al., 2006).  Zander and Murdoch propose that using their technique of 
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synchronized sampling could enhance this method of remote host identification and 

tracking (Zander and Murdoch, 2008).  Clockvar is capable of measuring the system time 

on a target host with just one packet, but the user may direct the program to utilize any 

number of packets.  Thus, it may be possible to refine clockvar’s accuracy by 

incorporating a synchronized sampling algorithm when a large number of measurements 

are taken against a target host. 

 Ultimately, clockvar is a useful tool, but it cannot be used in all situations.  The 

protocols for ICMP and IP timestamps messages require that the timestamps be formatted 

as the number of milliseconds since midnight UTC.  Although the 32-bit timestamp field 

has enough space for a number representing over 24 days, only numbers less than 24 

hours make any sense.  Thus, for timestamp replies to be valid, the target hosts must 

maintain some degree of synchronization with standard time.  Additionally, the protocols 

specify that, if timestamps are not being transmitted in a standard format, the high-order 

bit is to be set.  However, even if we receive a timestamp reply with this bit set, we know 

only that it is “non-standard,” but we don’t know how we should otherwise interpret the 

number.  Also, not all hosts play by the rules; for example, they may send a non-standard 

response without flagging it as non-standard.   

 Furthermore,  many professional network administrators configure their servers 

not to respond to ICMP messages for security reasons.  Neither clockdiff nor clockvar can 

measure the time on a host if they do not receive timestamp replies.  We also found by 

experiment that the IP timestamp options don’t work when the host transmitting the 

timestamp requests resides behind a NAT device.  In this case, clockvar and clockdiff 

register the IP address of the transmitting host inside the IP options portion of the IP 
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header; however, although the kernel on this host places its own address in the source 

address portion of the regular IP header, this value is overwritten by the NAT host when 

the packet passes through it on the way to the target host.  We hypothesize that the target 

host drops the IP timestamp request packet when it inspects the header and sees that the 

address of the host requesting the timestamp (within the IP options) does not match the 

address of the host from which it received the request (i.e., the NAT host).  Thus, further 

research needs to be done on finding and refining means of measuring the system time on 

remote hosts using NAT. 

 Finally, additional comparisons between the results obtained by clockdiff and 

clockvar should be made.  Our experiments demonstrated that clockdiff manipulates the 

delta when this value is larger than 12 hours; however, we are not able to state with 

certainty whether this adjustment was right or wrong in each situation.  Clockdiff’s 

author incorporated this adjustment to prevent the program from reporting an enormous 

delta when measurements are taken very close to midnight and the two hosts timestamps 

reflect the number of milliseconds past UTC on different days.  However, we question 

whether this should be done in all situations when the delta appears to be larger than 12 

hours.  For instance, say the local host’s time is 19 hours past midnight UTC, and it 

receives a timestamp of 6 hours past midnight UTC from the target host.  Is it more likely 

that the hosts’ clocks are set to the same day and the target is 13 hours behind the local 

host, or should we assume (as clockdiff does) that the target host’s clock is 11 hours 

ahead of the local host (and is set to the next day)?  We do not believe that this is a safe 

assumption.   
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 Additional experiments that may shed more light on this issue should involve 

adjusting the time of day at which the measurements are taken.  For our 105-day 

experiment, we initiated the shell script at 1 a.m. EST (06:00:00 UTC).  On most days, 

the shell script ran for around 8 and a half hours, so all measurements took place between 

06:00:00 UTC and around 14:30:00 UTC.  It would be very interesting to see if we 

discover a varying number of “clockdiff” outliers as we vary the time of measurements 

from very close to midnight UTC to as far away as possible from midnight UTC. 
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