
James Madison University
JMU Scholarly Commons

Masters Theses The Graduate School

Spring 5-7-2010

Project dynamics: An analysis of the purpose and
value of system dynamics applied to information
technology project management
Timothy Charles Delobe
James Madison University

Follow this and additional works at: https://commons.lib.jmu.edu/master201019
Part of the Business Administration, Management, and Operations Commons

This Thesis is brought to you for free and open access by the The Graduate School at JMU Scholarly Commons. It has been accepted for inclusion in
Masters Theses by an authorized administrator of JMU Scholarly Commons. For more information, please contact dc_admin@jmu.edu.

Recommended Citation
Delobe, Timothy Charles, "Project dynamics: An analysis of the purpose and value of system dynamics applied to information
technology project management" (2010). Masters Theses. 417.
https://commons.lib.jmu.edu/master201019/417

https://commons.lib.jmu.edu/?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F417&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.lib.jmu.edu/master201019?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F417&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.lib.jmu.edu/grad?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F417&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.lib.jmu.edu/master201019?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F417&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/623?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F417&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.lib.jmu.edu/master201019/417?utm_source=commons.lib.jmu.edu%2Fmaster201019%2F417&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dc_admin@jmu.edu

Project Dynamics: An Analysis of the Purpose and Value of System Dynamics

Applied to Information Technology Project Management

Timothy Charles Delobe

A thesis submitted to the Graduate Faculty of

JAMES MADISON UNIVERSITY

In

Partial Fulfillment of the Requirements

for the degree of

Master of Science

Integrated Science and Technology

May 2010

ii

Acknowledgements

First off, I would like to thank my thesis advisor, Dr. Geoffrey Egekwu, for all of

his guidance, assistance and availability throughout this entire process. His support was

invaluable in helping me stay on track and complete the thesis. I would also like to thank

my other committee members, Dr. Michael Deaton and Dr. Mohammed Zarrugh for their

sincere support and direction, as well as their valuable feedback. Dr. Deaton’s courses in

System Dynamics provided the foundation for this project and were critical to my

success.

In addition, I would like to thank my wife, Meghan Delobe, for her unwavering

support over the past two years as I worked towards the completion of both this degree

and my thesis. Without her help, none of this would have been possible.

Finally, I would like to thank my newborn son, Charles Andrew Delobe, for

providing me with all of the motivation to stay on track and finish this project on time

and under budget.

iii

Table of Contents

Acknowledgments .. ii

Table of Contents .. iii

List of Tables ...v

List of Figures ... vi

Abstract .. viii

I. Introduction ...1

II. The Problem ...5

a. Current State of Project Performance ..5

b. Project Complexity and the Case for New Models ..9

c. Software Development Projects ...11

d. The 90 % Syndrome in Systems/Software Development15

III. Augmenting Traditional Project Management Methodologies using
System Dynamics Lessons Learned ...22

a. What is System Dynamics ...22

i. Event-oriented vs. Systems-oriented world views23

ii. Mental Models and Single vs. Double Loop Learning25

iii. Stocks, Flow and Causal Loop Diagrams ..27

iv. Feedback and Delays ...30

b. Systemic Project Dynamics in Software Development – The Dynamics of
Schedule Pressure ..32

c. Brooks' Law ...36

d. Parkinson's Law ...38

e. Integrated Project Dynamics Model ..39

f. Client Interactions ..41

g. Project Estimation Techniques ..42

IV. System Archetypes as Project Learning Tools ...46

a. Drifting Goals – Software Quality Erosion ...47

iv

b. Limits to Growth – The Paradox of Process Improvements50

c. Inter vs. Intra Project Learning ..53

V. Discussion: Integration of System Dynamics with Traditional
Methods and Suggestions for Future Research ..56

VI. Conclusions ...62

VII. Bibliography ..65

v

List of Tables

Table 1: CHAOS Report for IT project performance from 1994-2008 (Standish Group
2009). ...5

vi

List of Figures

Figure 1: Twelve factors that produce complex projects (Haas 2009). Modern information
technology projects often consist of several of these factors leading to increased project
complexity and the associated increased project performance risks.11

Figure 2: Fully integrated subsystem diagram for software development project dynamics
(Abdel-Hamid and Madnick 1991). ...13

Figure 3: Classic S-shaped limits to growth representation of the 90% syndrome.
Cumulative progress increases at a decreasing rate once the project nears 90% completion
according to the original project plan (Ford and Sterman 2003). 16

Figure 4: An event-oriented world view assumes the problem is static in nature and
develops as a result of some event or combination of events (Sterman 2000). 24

Figure 5: A systems-oriented world view assumes the problem is dynamic in nature and
arises as a natural consequence of dynamic relationships between the various system
components. It broadens the scope of the model boundary, accounts for other actors,
accounts for feedback dynamics and attempts to account for potential unintended
consequences (Sterman 2000). ..24

Figure 6: Mental models are important variables in problem solving activities and should
be perpetually challenged as information feedback increases. These diagrams illustrate
the difference between single loop learning (left) and double loop learning (right); they
demonstrate how double loop learning uses information feedback from the system to
refine, or in some cases replace, deeply held biases associated with the object of study,
which in turn go on to affect our strategies and policies and produce yet more information
feedback (Sterman 2000). ...26

Figure 7: Population Model Stock and Flow Structure (Sterman 2000) 30

Figure 8: A typical development project rework cycle. Work packages move from the
original work to do stock to the work done stock. In the process errors are discovered and
sent back through the development process for "rework" (Lyneis and Ford 2007). 32

Figure 9: Theoretical model illustrating common project schedule policy decisions and
their systemic cause-effect relationships. Adapted from Sterman (2000). 34

Figure 10: Brooks Law. Adding developers to a late software project can make it later
due to the increase in communication and training required. This increase leads to
lowered productivity, lowered progress and the potential for more increases in hiring
developers to work on the delayed project. The balancing feedback to this loop is not
represented here but will be covered in more detail in figure 13. 37

Figure 11: Causal loop diagram showing the interactions and relationships from figure 9
after integrating the effects of Brooks' Law (figure 10) on project productivity. 38

vii

Figure 12: Causal loop diagram showing the integration of variables such as "deadline
slips" and Parkinson's Law and the effects of those variables on the project team's
productivity. ..39

Figure 13: Conceptual model designed to illustrate typical systemic project behaviors and
their causal connections Adapted from Sterman (2000), Lyneis and Ford (2007), Ford and
Sterman (2003). ...40

Figure 14: Causal loop diagram illustrating the feedback structure associated with
external influences (e.g. clients/customers) on the internal project dynamics referenced in
figure 13. ...41

Figure 15: Estimation by Analogy. Estimates influence schedules which influence actions
and decisions by the project team and management, which affects project performance
ultimately affecting the next project's estimates. ..43

Figure 16: This causal loop diagram illustrates management's tendency to cling to
unrealistic project schedules (underestimated) by simply adding more people to the
project. This produces an increase in project cost leading to an increase in pressure to cut
corners (B1). That pressure can reduce human resource levels, but does so at the expense
of quality standards. As quality standards decrease rework increases, further increasing
the project’s actual amount of work. ...44

Figure 17: Generic structure of the drifting goals archetype ..48

Figure 18: The erosion of software quality. Software project related example of the
drifting goals archetype (Hart 2008). ..49

Figure 19: Simple generic system structure of a limits to growth archetype. 51

Figure 20: Project management specific example of a limits to growth archetype (Hart
2008). ..52

Figure 21: Conceptual model of the integration of system dynamics models (SD Models)
in the traditional project management framework. ...57

viii

Abstract

Project failure in the Information Technology (IT) sector is well documented in

the literature; project managers miss their target budgets and schedules more than twice

as often as they meet them. Traditional project management methodologies initially

developed for the large-scale engineering projects of the 1950’s, while still relevant and

useful, are reductionist in nature and are therefore missing a systems approach that

concentrates on knowledge creation before, during and after a project. The research

presented herein will demonstrate the role of system dynamics in augmenting a project’s

control processes, as well as the skill set used by the project manager. Research from a

wide variety of projects within the information technology sector will be synthesized,

some using system dynamics methodologies, and will serve as the basis to comparatively

analyze the value added using this novel project management approach. The project

dynamics and lessons learned within will illustrate the complex interactions and feedback

structures inherent in all projects, as well as seek to educate project managers on their

cause-effect relationships. Furthermore, the research will illustrate problematic project

dynamics, using various conceptual models, and suggest the need to integrate system

dynamics methodologies for project management into traditional project management

processes and bodies of knowledge instead of solely relying on them as a post-mortem

tool for project analysis.

I. Introduction

While the discipline of project management has been around since early

civilization, it has gained importance in recent decades as a rapidly growing management

discipline in a wide variety of public and private organizations. Its modern practice began

in the 1950’s with large defense, aerospace engineering and construction projects;

however, recent trends such as globalization, corporate down-sizing, shorter product life

cycles, accelerated technological change and increased market competition have all

contributed to what David Cleland, a project management scholar, refers to as the rise of

the “Age of Project Management” (Gray and Larson 2000). One particular class of

projects (information technology) fail at an alarming rate (Standish Group 2009) and the

discipline remains inadequately researched and poorly understood compared to the other

more established management disciplines like operations management and new product

development. For example, out of the more than 7000 Harvard Business School case

studies, only 2% mention the discipline of project management and out of those there are

only a few dozen that deal with real project management related issues (Shenhar, Dvir

2007).

Project failures, delays and cost over-runs are all well documented in the literature

and adequately illustrate the problems all organizations face with their project related

initiatives. According to a Standish Group study (2009), only 32 percent of information

technology (IT) projects are successful, 24 percent are failures, and 44 percent were

completed but delivered late, over budget and/or without the required scope. In other

words, over two-thirds of all IT projects either fail to deliver on the project management

plan but still deliver something, or simply never produce a deliverable at all. Some other

2

studies show that upwards of 85 percent of projects, across a wide range of industries,

miss their scheduling and budget goals; on average, these failed projects miss their

schedule goals by as much as 70 percent and their budget goals by as much as 60 percent

(Shenhar and Dvir, 1993). However, 100 and 200 percent cost over runs very common as

well (Sterman 1992).

Multiple operational methods have been deployed since the 1950’s to address the

need to better manage projects; however, there has been considerable emphasis on

methodologies and tools (e.g. PERT, Work Breakdown Structure, Critical Path Method,

GANT Charts, Earned Value Analysis) that focus on dissecting projects into their

component parts and emphasizing that if each part can be understood and managed the

project as a whole can be understood and managed. These tools are focused on providing

important and useful methods for operational concerns and project planning; however,

some studies suggest that the main causes of project failure lie predominantly in strategic

areas such as the political, legal and behavioral aspects of projects (Rodrigues and

Bowers 1997).

Moreover, regardless of the increased success of these operational tools, projects

still routinely fail and cost organizations in both the private and public sectors $80 - $145

billion per year in the process (Standish Group 2009). These reductionist strategies to

project control are useful models; however, they are myopic because they often times fail

to properly account for the project’s macro view and the reality that slight perturbations

in any of the component parts of a project schedule can have cascading and escalating

effects on other work packages and the project as a whole; thereby causing increased

error rates and the potential to miss schedule and budget targets. Poor project success

3

rates suggest the need to not only better theoretically define and understand the

discipline, but to also reexamine the standard methodologies used and develop new

strategies to modify, replace or augment those traditional approaches.

System Dynamics is one area of research that has begun to tackle this problem

from the strategic perspective and aid in management’s ability to understand complex

socio-technical systems. It is a methodology used by both industry and academia to

model, simulate and manage complex feedback mechanisms (System Dynamics Society

2009). Such mechanisms are universally present in large IT projects and, as the literature

suggests, often the cause of project failure. Much like other systems approaches to

problem solving, system dynamics focuses more attention on the higher level dynamics

(i.e. feedback) that exists between project components. These dynamics can often

produce counter-intuitive behavior and directly affect project success rates. Within a

system dynamics framework, less attention is paid to traditional Project Management

Institute (PMI) models and methodologies such as Program Evaluation and Review

Technique (PERT), Work Breakdown Structure (WBS), GANT charts and Earned Value

Analysis (EVA), which serve as complimentary toolsets, but are considered to be more

detailed operational methods for project management.

The goal for this paper is to present a comparative analysis between traditional

models and methods of project management and the recent developments in the use of

system dynamics to augment the more traditional operational approaches with a higher

level strategic understanding of how certain project dynamics affect project outcomes. A

review of the project management and system dynamics literature will serve as the basis

for the research and provide the foundation to draw conclusions about system dynamics’

4

value to the project management body of knowledge. The intent here is not to build a

running quantitative system dynamics model, but rather synthesize existing research and

models, into an integrated framework of lessons learned that will help project managers

in the field better understand the dynamic and complex nature of projects and the purpose

and value of the system dynamics methodology. Based on this research, suggestions for

future research will be presented, such as the development of quantitative models that are

dynamic in nature and integrated into the traditional PMI body of knowledge and project

management framework. The paper will explore the possibility of integrating system

dynamics models into the project management process instead of the more traditional

method of using them strictly as a post-mortem performance analysis tool.

II. The Problem

a. Current State of Project Performance

Contemporary business processes are more complex than in decades past and

resemble structures with more interrelationships and interdependencies. It is becoming

clear that the conventional (i.e. reductionist) project management methods are inadequate

for handling this new era of complexity. The Project Management Institute recognizes

this trend and research is currently underway by PMI, as well as others in academia, to

learn how best to manage complex projects (Haas 2009). Management styles and

organizational structures are also following this trend towards complexity. Historically,

managers subscribed to a Newtonian philosophy of management resembling a machine

model predicated on linear thinking, control theory and predictability; this model is

proving very difficult to tender in the new era of complexity (Lewis 2008, Hart 2009,

Haas 2009). Some executives are even rejecting traditional organizational structures in

favor of more complex models, like the matrix organization, or another type that Haas

(2009) refers to as “alliances,” whereby an organization creates an organizational

structure comprised of complex interrelationships between suppliers, partners, regulatory

entities, customers and sometimes even competitors. Out of the complex organizations,

complex projects are born.

 The project management literature over the last three decades suggests a poor

performance record for complex IT projects; particularly with regards to software

development projects (Brooks 1975, Abdel-Hamid and Madnick 1991, Rodrigues 1996,

Dorsey 2000, Lewis 2008, Haas 2009, Hart 2009). Some of the literature following this

6

trend references The CHAOS Report by the Standish Group (2009), which is considered

to be the most comprehensive, ground-breaking study to-date on information technology

related project performance. Since its first release in 1994, the Standish Group has

followed the IT industry’s performance, or lack thereof, and has regularly updated The

CHAOS REPORT roughly every two years.

Year
Successful

Projects

Failed

Projects

Challenged

Projects

2008 32% 24% 44%

2006 35% 19% 46%

2004 29% 18% 53%

2000 28% 23% 49%

1998 26% 28% 44%

1996 27% 40% 33%

1994 16% 31% 53%

Table 1: CHAOS Report for IT project performance from 1994-2008 (Standish Group 2009).

The original report in 1994 uncovered significant failure rates for IT projects (e.g.

web application development, software development, systems integration) and estimated

that these failures cost government agencies and corporations $80 billion - $145 billion

per year (Standish Group 2009). The report features three categories of project

performance – successful, challenged and failed. Successful projects refer to those that

were delivered on time, on budget and with the desired scope. Challenged projects refer

to those where the project was completed but was delivered late, over budget and without

7

the required scope. Failed projects refer to those where the project was not completed,

canceled or delivered something of no value to the customer.

 While The CHAOS Report data suggests a marginal improvement in project

performance between 1994 and 2008, it also highlights the continued challenges facing

the IT industry and the project management discipline, as well as the recent dip in project

performance between 2006 and 2008. Furthermore, the data is even more troubling when

one considers that although 32 percent of projects were on time and on budget, most were

originally over-estimated (Standish Group 2009). Focus groups indicated that “IT

executives reported that they first get their best estimates, multiply by two and then add a

half. It should not be surprising therefore, that the majority of these successful projects

were already 150% over budget before they began” (Standish Group 2001).

In addition, the research suggests that the bigger the size of the project, which

often times correlates to higher project complexity, the higher the failure rate (Standish

Group 1999). Johnson states, "seventy-three percent of projects with labor cost of less

than $750,000 succeed, but only 3 percent of projects a with labor cost of over $10

million succeed. I would venture to say the 3 percent that succeed succeeded because

they overestimated their budget, not because they were managed properly" (COOK

2008). The research suggests there are three metrics that are key to predicting, with a

high degree of certainty, whether or not a project will be successful – the project size, the

project duration and the size of the project team. The research confirms what many

project managers may have sensed all along; that smaller projects with shorter durations

and smaller teams have a better chance at success compared to projects that are large with

8

long durations. The 2001 report suggests a sweet spot for projects to be at four months,

with four team members and a cost of less than $500,000 (Standish Group 2001).

Haas (2009) suggests that the reason for the overall improvement in projects, as

seen in the CHAOS Report, is due to the following three factors: 1) Average project costs

has been reduced by more than half since 2001; 2) more emphasis has been placed on

using project managers and project management methodologies for complex IT projects;

and 3) better methodologies and tools for change/configuration management have been

developed and deployed. However, considering that the most recent data shows over two-

thirds of all IT projects were over budget, over schedule or failed outright, and the fact

that the Standish Group (2009) predicts that the number of critical projects will double

every year it is apparent that the industry and the discipline still have a considerable

challenge ahead to increase project performance to levels where management has

confidence in the investments associated with these often large scale and dynamically

complex projects.

 Shenhar and Dvir (2007) recently conducted a study which spanned 15 years and

more than 600 complex projects across the globe in business, non-profit and government

sectors. Their research demonstrates yet another example of poor project performance

when one considers that 85 percent of the projects studied failed to meet budget and

schedule goals. On average, schedules were overrun by 70 percent and budgets by 60

percent (Shenhar Dvir, 2007). They concluded that “executives as well as project teams

failed to appreciate up front the extent of uncertainty and complexity involved (or failed

to communicate this extent to each other) and failed to adapt their management style to

the situation” (Shenhar Dvir 2007). Furthermore, in the public sector, the Office of

9

Management and Budget (OMB) conducted a study in 2003 that concluded there was an

unsustainable risk of failure among 771 projects with a total cost of $20.9 billion

included in the fiscal year 2004 budget (OMB 2003).

b. Project Complexity and the Case for New Models

Complex projects require a team effort of experienced project managers, technical

architects, developers, business analysts and executive leadership with a keen eye on

strategy. These teams consist of complex adaptive social systems nested in diverse

organizations, which in turn are nested in our increasingly dynamic economic, political

and social environments. Once an organization defines the right projects to undertake, the

question as to how to best do the projects (i.e. what methodology/process) becomes

critical to the success of the project (Haas 2009). While traditional methods of project

management are still relevant and useful, they are not always the best methodologies to

select in today’s environment. Projects in the 21st century require new methods of

thinking and new approaches, some of which might replace traditional methods and some

of which will augment them. The Project Complexity Model pioneered by Haas (2009)

provides the project manager with a three step process to ensure that:

1. A project leader with the appropriate skill set is assigned

2. The project leader selects the appropriate project cycle

3. The management style selected is appropriate given the project’s level of

complexity.

The traditional approach to project management resembles a logical, linear,

reductionist process to achieve a goal. It primarily involves the management of tasks and

10

making sure those task are completed on time, within budget constraints and to the

technical specifications of the customer. The methodology is a well defined one whereby

the project manager/team performs the following linear progression:

1. Define the problem

2. Decompose the problem into its component parts (milestones, work-packages,

activities)

3. Develop a plan to address the problem

4. Execute the work addressed in the plan

5. Integrate the decomposed parts into the final solution

6. Deliver/deploy the solution

The logic behind the traditional approach is that if we can reduce the problem down

to manageable components, develop a plan to manage those components and then

execute and control changes to that highly structured plan, we can therefore reduce the

overall complexity and risk associated with the project (Project Management Institute

PMI 2008, Gido and Clements 2009, Haas 2009, Lewis 2008). This methodology, born

out of mathematical models and structured planning approaches to manage large

aerospace engineering and construction projects of the 1950’s, works well for projects

where requirements are well understood and stable. However, projects in the information

technology sector, and more specifically software projects, are often times highly

complex, with volatile and ambiguous requirements; therefore, a new paradigm is

emerging; one that is more complex, adaptive, agile and iterative (Loch et al 2006, Haas

2009).

11

Figure 1: Twelve factors that produce complex projects (Haas 2009). Modern information technology
projects often consist of several of these factors leading to increased project complexity and the
associated increased project performance risks.

 The Project Management Research Program is currently exploring the application

of complexity theory to project management and what that area of science can provide to

better understand the nature of complex projects (Haas 2009). In addition, new and more

adaptive system development methodologies are emerging that emphasize agile and

iterative techniques instead of the more traditional approaches, which place more

emphasis on planning and control. A hybridization of these two methods is most likely

the answer to handling different types of projects appropriately.

c. Software Development Projects

Software and web application development projects are complex in nature,

involving technical knowledge-work that does not produce the linear relationships

between system variables (e.g. the relationship between number of developers and lines

of bug-fee code) often found in more tangible product production such as manufacturing

and construction. For example, if one were to paint a house, the project’s schedule length

Project Complexity Factors

1. Large scope
2. Long duration

3. Urgent
4. Volitile requirements

5. Ambiguous requirements
6. Politically sensitive

7. Highly Visible
8. Large scale cultural

9. Heavily dependent on external
factors/constratints

10. Unproven technology
11. Vague business problems,
opportunities or solutions

12. Multiple dispersed and diverse cross‐
functional teams

12

would decrease almost linearly (up to a certain point) based on how many painters the

project manager had for the task; this is not the case with IT projects and software/web

application development in particular. Adding an extra developer to a project does not

ensure that twice as many lines of bug-free code will be deployed. The complexity

inherent in software development, and the project management practices that seek to

control and improve its performance, have been well studied in recent decades and can be

traced back as far as a report by the Comptroller General in 1979 citing the “software

crisis” that existed in the federal government (Abdel-Hamid and Madnick 1991). The

report concluded that “the government got for its money less than 2 percent of the total

value of the contracts” (Abdel-Hamid and Madnick 1991, 3). Project performance for

software development has improved marginally since then but is still deficient according

to the Standish Group’s Chaos report (2009). Abdel-Hamid and Madnick (1991)

produced a pioneering study in an attempt to understand the systemic issues involving

software development and produce a working quantitative model that illustrates the

complex interactions and causal connections between variables affecting software

development.

 Figure 2 illustrates a high level subsystem diagram for software development and

demonstrates the key interactions between the planning, controlling, human resources

management and software production components of any software development effort.

Abdel-Hamid and Madnick (1991) suggest that in order to get a better understanding of

the software development process we needed a fully integrated model that took other

variables into account instead of the traditional practice of focusing solely on the

software production subsystem.

13

Figure 2: Fully integrated subsystem diagram for software development project dynamics (Abdel-
Hamid and Madnick 1991).

The Human Resource subsystem is comprised of functions such as hiring, training

and assimilation. Abdel-Hamid and Madnick (1991) recognized that these functions do

not operate as independent and exogenous variables to the system, but rather as

endogenous variables that both affect and are affected by the other subsystems. For

example, the Work Force Available influences the allocation of human resources in the

Software Production subsystem and both the Controlling subsystem and Planning

subsystem have a direct affect on the Human Resource subsystem, and therefore the

Workforce Available (Abdel-Hamid and Madnick 1991).

The Planning subsystem accounts for project estimation activities that directly

affect both the project schedule and the work force needed to develop the software.

Estimates are initially produced and subsequently revised throughout the life-cycle of the

project. These estimates create the environment in which management interventions, such

14

as adding more people to the project or adjusting the project schedule, take place and can

lead to some of the unintended and counter-intuitive project behaviors referenced in

Figure 13.

The Software Production subsystem comprises of four development activities:

development, quality assurance, rework and testing. The Controlling subsystem

represents those activities by which project managers track progress in development

activities vs. the project plan and make adjustments. Unfortunately, tracking progress in

software development is extremely difficult because the intended product (i.e.

“software”) remains intangible for most of the development process. This makes it very

difficult for both developers and the project managers to determine how far along the

project has progressed (Abdel-Hamid and Madnick 1991, Hart 2009).

As previously mentioned, this is one of the major differences between information

systems/software development project management control and accounts for much of the

complexity and performance problems associated with managing software projects. The

inability to accurately measure progress directly affects the project manager’s ability to

effectively control the project schedule, budget and performance. Abdel-Hamid and

Madnick (1991) suggest this is primarily the result of how software development projects

are measured, using the surrogate variable, consumptions of resources, as a way to

measure progress instead of a more tangible method you might see in manufacturing or

construction. They assert that along with underestimation, this inability to precisely

measure software project progress is one of the contributing factors in producing the 90%

syndrome – a common form of project failure where estimates of the fraction of work

completed reaches roughly 90% completion according to the original project schedule but

15

then stalls as the task completion rate starts to decrease. In some cases the project takes

just as long if not longer to finish the final 10% as it did to finish the first 90% (Abdel-

Hamid 1990, Abdel-Hamid and Madnick 1988, 1991, Ford and Sterman 2003, Lyneis

and Ford 2007, Hart 2009).

d. The 90% Syndrome in Systems/Software Development

In the project management and software development literature the 90%

syndrome refers to a type of project failure where estimates of the fraction of work

completed reaches roughly 90% according to the original project schedule but then stalls

(Abdel-Hamid 1988). Sterman (1992) concisely defines the syndrome by stating that “a

project is thought to be 90% complete for half the total time required” (1992, 1). In more

layman’s terms, projects have an uncanny way of appearing to be on target and

proceeding as planned until they near their end; however, even though project

management planning and control took place, the rate of progress stalls as the scope of

the endeavor grows, the resource requirements increase and/or the errors made early on in

the development process lead to schedule pressure, schedule slippage, overtime, poor

product quality and potentially yet more rework.

16

Figure 3: Classic S-shaped limits to growth representation of the 90% syndrome. Cumulative
progress increases at a decreasing rate once the project nears 90% completion according to the
original project plan (Ford and Sterman 2003).

 There are several reasons cited in the literature for this project phenomenon.

Abdel-Hamid and Madnick (1991) attribute it primarily to the interaction between two

factors: project size (i.e. scope) underestimation and man-day underestimation (i.e.

human resources). As one might expect, if the project scope is underestimated from the

beginning there is a greater chance for the 90% syndrome to appear due to the following

characteristics surrounding many software development projects. Early on in the project,

the ability of the project manager to effectively measure progress is hampered because

software is mostly intangible for much of its development and progress is often measured

by the rate of resource expenditures instead of actual accomplishments (e.g. bug-free

lines of code or functioning software modules); this in turn creates the illusion that the

project is on schedule (Abdel-Hamid 1991).

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

C
u
m
m
u
la
ti
ve
 P
ro
gr
e
ss
 (
%
)

Weeks

Characteristics of the 90% Syndrome

Planned Progress

Actual Progress

17

Once the project progresses into its later stages, the discrepancy between

resources expenditures and completed tasks becomes increasingly apparent to both the

project team members and the project manager. This produces a better appreciation for

the actual amount of work left; often times the inevitable discovery and underestimation

of rework exacerbates the syndrome, leading to a prolonged stall or outright failure (Ford

and Sterman 2003). Furthermore, progress can continue to decline as a result of ill-

advised managerial responses to the schedule failure. For example, such “corrective

actions” as adding more developers, pushing the deadline, engaging in concurrent

development and/or requiring overtime, produce what Ford and Lyneis (2007) categorize

as “ripple” and “knock-on” effects. These actions often activate feedback dynamics,

induced and exacerbated by management interventions, which can have the unintended

consequence of producing an increase in the error rate, further reduced productivity and

further delays.

The second factor Abdel-Hamid and Madnick (1991) attribute to the syndrome is

man-day underestimation. According to their model, the syndrome is more severe when

man-day requirements are underestimated than it is when size is underestimated (Abdel-

Hamid and Madnick, 1991). At first this might appear to be somewhat counterintuitive;

however, a closer examination of the case study and model results reveals that when size

is underestimated the syndrome is less severe for two reasons: 1) because problems with

the estimation of project scope tend to be detected faster in the project life cycle than

problems with labor estimates and size underestimation, and 2) because when size is

underestimated, and subsequently detected in the early stages of the project, man-days

estimates are often revised appropriately (Abdel-Hamid and Madnick, 1991).

18

Man-day requirements often remain undetected until late in the life cycle when

the majority of the budgeted man-days have been consumed; this occurs because it isn’t

until the later stages of a project when the budgeted man-days are exhausted and the team

members are able to effectively perceive how productive they have actually been (Abdel-

Hamid and Madnick 1991). Bringing additional resources into the project during its

critical late stages (when the rework cycle starts to dominate), instead of earlier in the

project lifecycle, increases the project’s potential for Brooks’ Law (i.e. adding resources

to a late software projects only makes it later), as well as other supporting ripple and

knock-on effects (Lyneis and Ford 2007), further degrading schedule/project performance

(Abdel-Hamid and Madnick 1991).

In addition to Abdel-Hamid and Madnick’s assertions on the causes for the 90%

syndrome, Ford and Sterman (2003) also provided insights through their study of

concurrent engineering projects. Concurrent engineering refers to a method by which

certain tasks, work packages and/or project milestones are developed in parallel rather

than serial formation. For example, in the case of software development, a project

manager might choose to overlap (i.e. work in parallel) the design and development tasks

in an effort to reduce the total schedule length of those task, as compared to working

them in serial order.

Ford and Sterman (2003) developed a system dynamics model to better

understand the interactions between the process structure of concurrent development and

the project team members’ behavioral decision-making processes. Their model

demonstrates the strength behind the system dynamics methodology; its ability to

integrate managerial decision-making into the various physical information processes

19

involved in any software development effort. The results from their research illustrate

how the interaction between development processes (e.g. overlapping activities/task

sequencing, activity durations and rework), as well as the behaviors of management and

developers deliberately concealing rework (i.e. “the Liars Club”), creates a detrimental

dynamic leading to unplanned iterations and a lower quality product at a higher than

estimated cost (Ford and Sterman 2003). They assert that concurrent engineering actually

increases the risk of producing the 90% syndrome because it increases a project’s

vulnerability to multiple iterations and errors, as well as actually increasing the fraction

of work requiring changes or additional iterations (Ford and Sterman 2003).

Their research outlines the “Liar’s Club” as a social/behavioral phenomenon in

projects whereby project teams conceal rework in order to avoid the responsibility of

failure, prevent blame escalation or retaliation from peers and to solve their own

problems under cover and free from management intervention. This behavior illustrates

the importance of considering (i.e. factoring them into models) individual and team

behaviors, a practiced widely used in system dynamics modeling, when devising policies

to improve project performance in concurrent development projects (Ford and Sterman

2003). According to Ford and Sterman (2003, 217), “Process changes cannot improve

concurrent development project performance if they do not also address the behaviors

that drive iteration cycles such as the policy of concealing rework requirements.” In other

words, without considering and addressing how people truly behave in socio-technical

systems, the project manager can continue in vain to tweak development processes ad

infinitum, only to realize that the project team’s socio-cultural incentive structure

continues to wreak havoc on the final project outcome.

20

The literature referenced in this research focuses on the use of system dynamics

modeling and simulation, which provides a better understanding of the project behaviors,

such as the aforementioned 90% syndrome, as well as quantitative data to support the

anecdotal evidence encountered by many project managers in the field. The goal for

project managers should be to first develop a richer understanding of dynamic project

behaviors, which include individual, management and project planning/estimation

behaviors. Armed with that knowledge, they must use it to develop better strategies for

handling project perturbations in a way that mitigates the risk of the 90% syndrome.

These strategies should include, but are not limited to the use of, 1) better

estimation tools for both project size and man-days requirements, remembering that

project estimates create project behaviors and vice versa; the methods to also properly

account for rework cycles and their critical position late in the project life-cycle, as well

as the man-day considerations needed to effectively handle them, 2) improved methods to

account for, manage and adjust the socio-cultural incentive structures associated with the

concealment of rework (i.e. the Liar’s Club); the literature suggests agile development as

a methodology to increase cycle speed and mitigate the syndrome’s risks; however,

management’s communication styles/patterns, as well as their policies towards rework,

must not institutionalize the desire to conceal problems and hide the “bad news,” and

lastly, 3) the development, and use of, commercially available software project

management simulation tools (e.g. system dynamics models) that are widely accessible,

intuitive, extensible, relevant and provide project managers with a robust learning

environment from which to learn and become better dynamically driven decision makers.

21

Each one of these suggested strategies represents a component that must be

considered in any attempt to improve the marginal success rate of software development

and information technology projects. Simply addressing whichever component solution is

conveniently located in close proximity has the potential to deliver minor incremental

improvements, no improvements, or worse yet, aggravate the development process and

deliver worse results than before.

III. Augmenting Traditional Project Management Methodologies using System
Dynamics Lessons Learned

a. What is System Dynamics?

System Dynamics is a modeling and simulation methodology pioneered by Jay

Forester at the MIT School of Management in the 1950’s and grounded in the

mathematical theories of nonlinear dynamics and feedback control. Initially termed

Industrial Dynamics, it was used by management teams who recognized the

counterintuitive nature of their production systems and needed a problem solving method

for analyzing the complex and dynamic nature of their production processes, inventories

and services (Sterman 2000). Sterman (2000) concisely, yet precisely, describes it as, “a

method to enhance learning in complex systems.” Since its inception, the methodology

has been applied across a wide spectrum to solve problems and assist managers in the

policy and decision making process.

The discipline is predicated on the following main premises (Sterman 2000,

Meadows 2008, Senge 1990)

1. The behavior of any system, in other words its output, is principally

caused by its structure and associated interrelationships and

interdependencies between system components or variables.

2. The system structure includes not only the physical aspects of the system

but the policies and procedures that govern organizational decision-

making.

23

3. The whole is greater than the sum of its parts. Our intuitive judgment

proves to be unreliable in understanding system behavior over time even

when we think we fully understand the individual components of the

system.

4. All systems involve feedback processes which often produce counter-

intuitive system behavior.

5. The key to understanding a system is to understand the causal connections

and feedback structures that exist and how those interrelationships

dynamically influence system behavior over time.

One of the most fertile application areas for the system dynamics methodology is

within the discipline of project management and, more specifically, the discipline’s

application to software development and construction (Sterman 2000). In order to

properly understand system dynamics, and its many contributions to project management,

it is important to grasp some of the core concepts central to systems thinking, such as

event-oriented vs. systems-oriented worldviews, mental models, single-loop vs. double-

loop learning, stocks, flows, feedback and delays.

i. Event-oriented vs. Systems-oriented world views

Central to the system dynamics methodology are the concepts of a systems-

oriented world view (figure 4), as opposed to the event-oriented worldview (figure 5).

Quite often, these system characteristics govern the dynamic behavior of the systems

themselves, leading many systems thinkers to the realization that a system’s output is

more a function of the relationships between system components, than simply the sum of

24

each component. In other words, the output for a system/project is much more than the

sum of all its parts (Sterman 2000, Meadows 2008, Senge 1990).

Figure 4: An event-oriented world view assumes the problem is static in nature and develops as a
result of some event or combination of events (Sterman 2000).

Figure 5: A systems-oriented world view assumes the problem is dynamic in nature and arises as a
natural consequence of dynamic relationships between the various system components. It broadens
the scope of the model boundary, accounts for other actors, accounts for feedback dynamics and
attempts to account for potential unintended consequences (Sterman 2000).

For example, a project manager would be hard pressed to understand, or predict,

the true outcome of any project by simply dissecting it down to its component part tasks,

estimating, planning and scheduling the project. That approach is ignorant to the more

holistic systems approach, which realizes that the slightest perturbations in any task can

Goals

Situation

Problem Decision Results

Goals

Decisions Environment

Side Effects

Goals of
Other Agents

Actions of Others

25

have cascading and escalating effects throughout the lifecycle of the project, leading to

increases in errors/rework, costs and schedule overruns. This higher level strategic

perspective is considered to be one of system dynamics’ major contributions to the

discipline of project management.

ii. Mental Models and Single vs. Double-Loop Learning

Another core concept in system dynamics is the notion of mental models, which

refer to a person’s preconceived understanding about how some particular aspect of the

world works (Sterman 2000). Senge (1990) describes mental models as “deeply ingrained

assumptions, generalizations, or even pictures of images that influence how we

understand the world and how we take action.” When we fail to recognize or subject our

mental models to scrutiny or testing, our ability to learn and better manage complex

systems is minimized. A systems approach to project management provides the project

manager with a methodology to formally identify, test and adjust mental models so

he/she can effectively understand and analyze all of the data presented instead of

embarking on a path using a static, faulty or biased cognitive foundation. Constantly

challenging our mental models leads to the process of double-loop learning (Sterman

2000).

26

Figure 6: Mental models are important variables in problem solving activities and should be
perpetually challenged as information feedback increases. These diagrams illustrate the difference
between single loop learning (left) and double loop learning (right); they demonstrate how double
loop learning uses information feedback from the system to refine, or in some cases replace, deeply
held biases associated with the object of study, which in turn go on to affect our strategies and
policies and produce yet more information feedback (Sterman 2000).

 Galileo and Lord Kelvin both emphasized the importance of studying and

quantifying the phenomena we wish to understand, with Kelvin stating, “to measure is to

know.” A common maxim in the project management community also states that you

cannot manage what you cannot measure, which is also commonly referred to as

“management by fact,” compared to the opposite philosophy of intuitive decision-

making. Management by fact is advantageous compared to intuitive decision-making

because it exposes the mangers mental models and challenges them to be continually re-

examined when the data supporting those mental models changes (i.e. double-loop

learning). This is of course is not without difficulty when one considers the myriad of

variables present in any decision-making process that are either un-quantifiable, or very

difficult to establish consensus on how to properly quantify the variable.

Real World

Decisions
Information
Feedback

Mental Models of
the Real World

Strategy, Structure,
Decision Rules

Real World

Decisions
Information
Feedback

Mental Models of
the Real World

Strategy, Structure,
Decision Rules

27

 For example, in software development, variables such as customer satisfaction,

team moral, team knowledge/expertise, project scope and latent software errors are all

representative of variables Hart (2008) refers to as “fuzzy” or “soft variables;” these

variables challenge the manager to provide data, and as Hart (2008) suggests, eventually

“encounter the wall of measurability.” Thus, as managers, if we accept the philosophy

inherent in managing by fact we are forced to ignore important soft variables present in

our project. Ignoring these variables can produce negative systemic effects when

intervention strategies are planned without regard to the effect these soft variables have

on the intervention’s outcome; sometimes producing counter-intuitive side effects that

ultimately degrade project performance.

Properly integrating these soft variables into operational models is difficult

practice; however, taking the easy way out and excluding them can lead to poorly

performing intervention strategies and what Sterman (2000) and Meadows (2008) refer to

as policy resistance, or “the tendency for interventions to be delayed, diluted, or defeated

by the response of the system to the intervention itself” (Sterman 2000, 5). As Senge

(1990, 60) wisely states, “the easy way out usually leads right back in.” System dynamics

for project management provides a methodology for effectively building both theoretical

and quantitative models that integrate hard and soft variables into one model, properly

illustrating the cause-effect relationships and systemic feedback structures.

iii. Stocks, Flows and Causal Loop Diagrams

 If one were to conceptualize the previously mentioned concepts as the

philosophical foundations for systems thinking, then the concepts of stocks, flows and

28

causal loop diagrams would be considered its language. Peter Senge (1990) says the

following regarding causal loop diagramming and the language of systems thinking:

“Language shapes perception. What we see depends on what we are prepared to

see. Western languages, with their subject-verb-object structure, are biased toward

a linear view. If we want to see system-wide interrelationships, we need a

language of interrelationships, a language made up of circles. … Such a language

is important in facing dynamically complex issues and strategic choices,

especially when individuals, teams and organizations need to see beyond events

and into the forces that shape change.”

More than any other tool, stock and flow diagrams lie at the foundation for

systems thinking. Such diagrams describe dynamic system structure, and can be used to

provide insight on the behaviors those structures produce. Without causal loop

diagramming and the stock and flow models they seed, there is limited potential to

expand system dynamics’ application via advanced tools such as: computer modeling and

simulation, and digital learning environments that mimic flight simulators.

Stocks are the system state variables, sometimes also referred to as system

“reservoirs” because they represent accumulations in any system (e.g number of software

defects, number of developers on a project). Meadows (2008) describes them as elements

in a system that you can count feel or measure at any given point in time. They are

accumulations and, therefore, are the main source of system buffer and delays. Flows on

the other hand are rates (i.e. processes) that affect the stock accumulations in an

increasing or decreasing fashion. If the sum of all inflows is greater than the sum of all

29

outflows the stock level will increase; if the sum of all outflows is larger the stock will

decrease, and if inflows and outflows are equal, the system state remains in dynamic

equilibrium (Sterman 2000, Meadows 2008).

Understanding how system stocks and flows work, and their associated feedback

structure, is critical to understanding the true nature and output of any system. For

example, figure 7 depicts a simple population model stock and flow structure in an

attempt to illustrate this important concept with a very simple, narrow boundary system

(Sterman 2000). The Population stock is the system state variable we are concerned with

understanding. It represents a snapshot in time and can be quantified using people as the

units. The stock has two associated flows. On the left, there is the Births flow that adds

people to the population stock. The left side represents a self-reinforcing (i.e. positive)

feedback loop structure (R1), which indicates that as more people are born, and the

population grows in size, there will be more births, which in turn increases the

population. This kind of self-reinforcing feedback represents the classic exponential

growth archetype (Senge 1990, Sterman 2000, Meadows 2008). To the right of the

population stock is the Deaths flow. This side represents the balancing (i.e. negative)

feedback loop structure (B1), which indicates that as the population increases, the number

of deaths per unit of time will also increase, which in turn then decreases the population

stock in a “goal seeking” fashion.

30

Figure 7: Population Model Stock and Flow Structure (Sterman 2000).

The different polarities associated with each feedback arrow indicate how one

variable influences the other. In the case of Births, for example, as either the Birth

Fraction variable or the Population stock increases, so will the Births flow increase. The

positive polarity sign indicates that these variables move in the same direction. However,

on the right side balancing loop, as the Average Lifetime increases the number of deaths

decreases. The negative polarity indicates that these variables move in opposite

directions.

iv. Feedback and Delays

The feedback structure of any system, and the delays associated with that system,

predominantly account for the system’s complex, dynamic and sometimes

counterintuitive behavior. Simply put, feedback refers to the interactions among system

variables. A feedback loop is formed when the inflows and outflows of a particular stock

(e.g. population) are affected by changes in that stock. So in the case of figure 7, the size

of the population stock directly affects both Births and Deaths flows and creates a

feedback loop for each. These interactions comprise the structure of the system and,

therefore, demonstrate how systems cause their own behaviors. Moreover, different

systems with similar feedback structures (i.e. system archetypes) tend to exhibit similar

Population
Births Deaths

Birth Fraction Average Lifetime

+ + -+R1 B1

31

dynamic behaviors (Senge 1990, Sterman 2000, Meadows 2008). Figure 7 demonstrates

both types of feedback loops – positive (R1 self-reinforcing) and negative (B1

balancing). Positive feedback loops are runaway processes that produce exponential

growth (e.g. compounding interest of bank account). Conversely, balancing feedback

loops provide system stability and illustrate goal-seeking behavior (e.g. an increase in

inventory increases sales which then decreases inventory).

System delays, in addition to feedback structure, significantly determine system

behaviors. Sterman (2000) describes delays as “a process whose output lags behind its

input in some fashion.” Delays often produce stock oscillations, especially in a balancing

feedback loops. In IT projects, and more specifically software/web application

development, delays can affect the project’s outcome and complicate our ability to

understand and potentially change the system/project behavior. Hart (2008) suggests

there are three ways in which delays impact a system. First, delays produce reactions that

are not necessarily proportional to the system’s observed conditions. Second, project

team members act as if their decision making processes are based on current (real-time)

data when in fact systemic delays assure this is not the case. And lastly, delays affect our

ability to learn and properly decipher the cause-effect relationships among system

variables. In software development, delays can be witnessed in the lag-time inherent

between a customer’s perception of software quality and its actual quality, the delay

associated with new-hire productivity gains and from a traditional project management

perspective, the reality that project status reports often times do not truly reflect the

project’s progress and are not always based on current information regarding the project

(Hart 2008).

32

b. Systemic Project Dynamics in Software Development – The Dynamics of
Schedule Pressure

The occurrence of the aforementioned 90% syndrome in projects is well

documented in the literature (Abdel-Hamid 1990, Abdel-Hamid and Madnick 1988,

1991, Sterman 1992, Ford and Sterman 2003, Lyneis and Ford 2007, Hart 2009) and the

causes for the syndrome are extensive and complex in nature. While Adbel-Hamid and

Madnick (1991) assert that the main causes can be attributed to underestimation and the

imprecise measurement of project progress, other studies by Ford and Sterman (2003),

Lyneis and Ford (2007) and Hart (2008) suggest the causes can be much wider and

involve other factors such as the interaction between factors such as “the rework cycle”

and project staffing trends throughout the lifecycle of the project.

Figure 8: A typical development project rework cycle. Work packages move from the original work
to do stock to the work done stock. In the process errors are discovered and sent back through the
development process for "rework" (Lyneis and Ford 2007).

The various behaviors, interrelationships and causal connections that typify most

software and web development projects are illustrated in Figures 9, 10, 11, 12 and 13.

These dynamics represent common behaviors referenced in the project management

33

literature and are important learning tools for project managers. They provide a

foundation for shared understanding of typical behaviors that can lead to poor project

performance, or outright failure. Furthermore, they can be used by project team members

to identify project pitfalls, communicate systemic issues, design and adjust project

policies and perform elementary risk-analysis.

Figure 9 illustrates the core theoretical sub-model to the comprehensive model

found in figure 13. It integrates a few of the more common policy decisions found in

information technology projects and centers on the Schedule Pressure variable, which

when increased or decreased throughout the project lifecycle can become both cause and

effect for second the third order project effects . Lyneis and Ford (2007) refer to these as

“ripple” and “knock-on” effects, which are the key causes of policy resistance.

Various project control efforts (e.g. adding more developers, working overtime)

cause ripple effects which are commonly understood as side effects to these well-

intentioned managerial interventions. These ripple effects then produce second and third

order effects (e.g. errors/rework, out of sequence work), amplifying problems in the

project and feeding back throughout the systems structure to produce counter-intuitive

systemic project behaviors. Using these conceptual causal loop diagram models to

effectively communicate these dynamics is an important initial step towards

management’s improved understanding of the complex dynamics at play and their ability

to learn and develop appropriate intervention strategies (Hart 2008).

34

Figure 9: Theoretical model illustrating common project schedule policy decisions and their systemic
cause-effect relationships. Adapted from Sterman (2000).

 A software/web application development project under Schedule Pressure can

exhibit various behaviors that either lead to a reduction in Schedule Pressure or

unintentionally feedback to produce an unintended increase in Schedule Pressure. When

faced with Schedule Pressure, a project manager has an array of options to choose from

should intervention become necessary. For example, overtime can be instituted to make

up for lost time, the amount of time dedicated to each work package or task can be

reduced (i.e. Cutting Corners, B2 and R2 from figure 9), or the project manager can

decide to engage in concurrent development as referenced in both the R8 and B4 loops.

Each one of these interventions is designed to reduce schedule pressure by increasing the

rate of development; however, they each can produce unintended side effects that work to

Schedule Pressure
Work Remaining

Task
Completion

Rate

Overtime

Fatigue

Productivity

Time per Task

Error Rate

+

+

-

+

-

-

+

-

-

+

-

Work More

B1

R1

Burnout

B2

Work Faster

R2

Haste Makes
Waste

Concurrent
Development

Number of
Interdependent Tasks

+

+

+

R8

Risk of
Parallelism

Number of tasks being
worked on simultaneously

+

+

B4

Reward of
Parallelism

35

counter those intended gains in productivity (Sterman 2000). The B1 loop in figure 9

illustrates how an increase in overtime can increase the task completion rate, decrease the

work remaining and form a feedback balancing loop by reducing the schedule pressure;

however, R1 illustrates that an increase in overtime can also lead to developer fatigue, a

decrease in productivity, and a decrease in the task completion rate, which then leads to

an increase in the amount of work remaining and ultimately leads to more schedule

pressure (Sterman 2000).

Alternatively, the project manager could opt to reduce time per task (R2 loop in

figure 9), which would be designed to boost productivity and in the end reduce schedule

pressure; however, speeding up development by cutting corners can also increase the

error rate because developers become less concerned with following sound systems

development methodologies and instead focus on task completion regardless of the

negative costs associated with it such as software bugs, errors and reduced functionality.

Therefore, regardless of the intent of the policy, the reduction of time per task can often

times lead to reductions in productivity and subsequently feed back to ultimately increase

schedule pressure and perpetuate the negative feedback loop (Sterman 2000).

Another option the project manager might consider is to engage in concurrent

development (R8 and B4 of figure 9 by overlapping project work packages and/or phases

in attempt to increase the development rate and boost productivity. This is an increasingly

common practice in systems development (Ford and Sterman 2003) and is not without its

own set of negative repercussions. Ford and Sterman (2003) assert that regardless of

some success, implementing concurrent development has proven to be challenging for

many project managers mainly because it increases the amount of communication

36

overhead (i.e. information transfers) between the project phases/tasks; therefore, more

tasks are begun using preliminary or incomplete information and specifications. This

leads to an increase in the number and length of iteration cycles, sometimes producing

what Taylor and Ford (2006) refer to as “tipping points” in development projects

whereby tipping point feedback structures push the project into “firefight mode” as errors

pile up in ever increasingly taxed rework cycle and, therefore, further degrade project

performance.

B4 of figure 9 illustrates how an increase in concurrent development strategies

increases the number of tasks being worked on simultaneously, which leads to an increase

in productivity and then feeds back to reduce schedule pressure. However, the increase in

concurrence can also increase the interdependency between tasks, which can increase the

error rate and after some delay lead to a decrease in productivity as more and more errors

enter the rework cycle (Ford and Sterman 2003, Taylor and Ford 2006).

c. Brooks’ Law

As the task completion rate of a project begins to decrease management

interventions such hiring and firing rates can increase, leading to the classic counter-

intuitive phenomenon found in software and systems development known as Brooks’

Law (figure 10), which states that adding developers to a late software project only

makes it later (Brooks 1975).

37

Figure 10: Brooks Law. Adding developers to a late software project can make it later due to the
increase in communication and training required. This increase leads to lowered productivity,
lowered progress and the potential for more increases in hiring developers to work on the delayed
project. The balancing feedback to this loop is not represented here but will be covered in more
detail in figure 13.

As the task completion rate begins to decrease, project managers might decide to

intervene by adding more developers (i.e. an increase in the hiring rate), which increases

the communication overhead for the project, lowers the productivity and ultimately feeds

back to further degrade the task completion rate (Abdel-Hamid 1988, Abdel-Hamid

1990, Lyneis and Ford 2007). An increase in the hiring rate can also dilute the experience

levels for the team (R5 in figure 10), which in turn increases the training overhead,

lowers the productivity and ultimately feeds back to further decrease the task completion

rate. Furthermore, as team experience erodes it is also common to see an increase in the

error rate which also feeds back to lower productivity and pave the way for potential

increases in both schedule pressure and hiring rates.

Task
Completion Rate

Productivity

+

Hiring Rate

Communication
Overhead

-

+

-

R3

Brooks' Law -
Hiring

Team Experience
-

R5

Brooks' Law -
Training

Training
Overhead

+

-

38

Figure 11: Causal loop diagram showing the interactions and relationships from figure 9 after
integrating the effects of Brooks' Law (figure 10) on project productivity.

d. Parkinson’s Law

Having tried all the other options, a project manager might also decide to push the

deadline of the project in an attempt to provide more time for the project team and

increase the probability for success (B3 in figure 12). While this practice increases the

time remaining and therefore should result in a decrease in schedule pressure, it also can

lead to Parkinson’s Law which states that work expands to equal the time allotted for it

(Abdel-Hamid and Madnick 1989). A deadline push that increases the time remaining on

the project also increases slacking off which lowers productivity and feeds back to further

increase schedule pressure. In addition, it can also lead to a common software and

systems development practice called gold plating, whereby developers, with more time

due to the deadline push, decide to add superfluous features to software versions even

Schedule Pressure
Work Remaining

Task
Completion Rate

Overtime

Fatigue

Productivity

Time per Task

Error Rate

+

+

-

+

-

-

+

-

-

+

-

Work More

B1

R1

Burnout

B2

Work Faster

R2

Haste Makes
Waste

Hiring Rate

Communication
Overhead

-

+

-

R3

Brooks' Law -
Hiring

Team Experience

-

-

R5

Brooks' Law -
TrainingTraining

Overhead +

-

Concurrent
Development

Number of
Interdependent Tasks

+

+

+

R8

Risk of
Parallelism

Number of tasks
being worked on
simultaneously

+

+

B4

Reward of
Parallelism

39

though they were not scheduled to be part of the planned release cycle (Lyneis and Ford

2007). While this practice might initially appear to be a good use of the extra time, it

often times leads to additional errors that otherwise would not be in the rework cycle.

Figure 12: Causal loop diagram showing the integration of variables such as "deadline slips" and
Parkinson's Law and the effects of those variables on the project team's productivity.

e. Integrated Project Dynamics Model

Once we integrate figures 9-12 into figure 13 the complex dynamics associated

with projects becomes increasingly apparent and the policy decisions made by project

managers are exposed as both cause and effect of both positive and negative feedback, as

well as both increases and decreases in project productivity. The model illustrates the

difficulty associated with project policy decisions and the counter-intuitive nature of

Schedule Variance

Schedule Pressure
Work Remaining

Task Completion
Rate

Overtime

Fatigue Productivity

+

+

-

+

+

+

-

Work More

B1

R1

Burnout

Pressure to Push
Deadline

+

+
Gold Plating

-

B3

Slip Deadline

Slacking Off

+

+

+

-

Parkinson's Law

Parkinson's Law

R6

R7

40

those policy effects as they interact with an increasing amount of system variables, which

in turn alter system states in a non-linear fashion.

Figure 13: Conceptual model designed to illustrate typical systemic project behaviors and their
causal connections Adapted from Sterman (2000), Lyneis and Ford (2007), Ford and Sterman (2003).

The conceptual model referenced in figure 13 does not account for some

additional variables that could contribute to schedule pressure such as, aggressive

deadlines set by management, overly optimistic assumptions of productivity and/or

quality, customer interventions, satisfaction levels or increases in customer feature

requests. For the purposes of this study those variables will be considered outside the

boundary scope and therefore exogenous to our system. The relevant concept is that

Schedule Pressure, the central variable for this model, is common in projects, and

Schedule Variance

Schedule Pressure
Work Remaining

Task
Completion Rate

Overtime

Fatigue

Productivity

Time per Task

Error Rate

+

+

-

+

-

-

+

-

-

+

-

Work More

B1

R1

Burnout

B2

Work Faster

R2

Haste Makes
Waste

Hiring Rate

Communication
Overhead

-

+

-

R3

Brooks' Law -
Hiring

Firing Rate

Team
Morale

-

-

+

R4
Team

Deterioration

Pressure to Push
Deadline

+

+

Team Experience

-

-

Gold Plating

-

B3

Slip Deadline

Slacking Off

+

+

+

-

Parkinson's Law Parkinson's Law

R5

Brooks' Law -
TrainingTraining

Overhead +

-

R6R7

Concurrent
Development

Number of
Interdependent Tasks

+

+

+

R8

Risk of
Parallelism

Number of tasks
being worked on

simultaneously

+

+

B4

Reward of
Parallelism

41

management interventions, in the form of traditional project control techniques, represent

both Schedule Pressure cause and effect.

f. Client Interactions

It is important to note that while the majority of research referenced in this paper

refers to ripple and knock-on feedback structures associated with internal project actions,

policy decisions and interventions, further reinforced by figure 13’s model boundary

which implicitly considers client interaction as exogenous to the system, external sources,

such as customers or clients, can trigger or amplify some of the aforementioned project

dynamics referenced in figure 13 (Rodrigues 1998). Rodrigues (1998) states that client

initiated scope creep, low-balled project proposals followed by change orders, as well as

deadline slips, all contribute to feedback dynamics that directly affect and degrade project

performance.

Figure 14: Causal loop diagram illustrating the feedback structure associated with external
influences (e.g. clients/customers) on the internal project dynamics referenced in figure 13.

Schedule
Pressure

Client Trust

Progress
Reporting

Productivity

Deadline Slips

+

-

-

-

+

R1

Client Interaction
Death Spiral

Customer's
Tolerance for Delays

+
R2

Tolerance
Death Spiral

Litigation

Project Resources

+

+

-

-

R3

Making Enemies

R4

Making Enemies

Client Initiated
Scope Creep

+

Work Remaining

-

Task
Completion Rate

-

+

42

Figure 14 illustrates some of these external source dynamics and demonstrates a

few important areas of concern regarding the impact of client behavior on project

performance. The dynamics associated with figure 14 could also be integrated into figure

13 and would demonstrate the added effect of client initiated scope creep on work

remaining. Client initiated scope creep can increase work remaining on a project as more

and more change requests or feature adds pile up. This can lead to an increase in schedule

pressure, deadline slips and a decrease in client trust. As client trust begins to degrade,

progress reporting usually begins to increase, which reduces productivity and further

degrades schedule performance. As deadline slips mount and client trust degrades, their

tolerance for future deadline slips also decreases, which in turn produces more schedule

pressure, more progress reporting and feeding back to further degrade schedule

performance. In the worst case contracting scenario, significant deadline slips can

ultimately lead to litigation efforts initiated by the client (USN, Laverghetta and Brown

1999, Sterman 2000), which divert and/or decrease project resources, leading to a

reduction in productivity and a further decrease in schedule performance.

g. Project Estimation Techniques

Given the importance of the project deadline and the schedule pressure that results

from that deadline, it is not surprising that some of the literature (Abdel-Hamid and

Madnick 1991) suggests how projects begin, and more specifically how their scope and

associated schedules are estimated, is of critical importance to the outcome of the project.

They assert that the most common method is one referred to as “estimation by analogy,”

whereby the project team uses historical data and experience as the guiding factors to

produce future work package estimates (Abdel-Hamid and Madnick 1991). Abdel-

43

Hamid and Madnick (1991) suggest that this common tendency to base future estimates

of a project’s (or work package’s) cost and schedule based on similar past project reveals

organizational bias in the scheduling process and can ultimately lead to higher project

costs and increasingly longer project schedules over time.

Figure 15: Estimation by Analogy. Estimates influence schedules which influence actions and
decisions by the project team and management, which affects project performance ultimately
affecting the next project's estimates.

The logic follows that if one work package is analogous to another from previous

experience it should therefore require the same amount of time to complete. This method

makes several dangerous assumptions, most of which, if not all, can turn out to be false

as the project progresses and significantly reduce the probability of project success. First,

it assumes that the historical data driving the new estimate is not itself already bloated

with deliberate and/or excessive slack. Second, it assumes the same people, or different

people with the same skills sets, will be working those tasks. In addition, if there are

different people involved with the same skill sets it also assumes that those people will

work, make decisions and deliver an identical result in fit, form and function as compared

to the people that produce the original work package from which the estimate was made.

Third, it assumes that the interdependency of project tasks are not themselves dynamic

and that their relationships may vary in linearity from project to project. Lastly, it

Estimates by
Analogy

Schedule Length

Actions,
Decisions

Performance R1

44

assumes that management interventions, actions or decisions, as well as those involving

the project team, will be the same for the new work package as they were for the one the

new estimate was based on.

Abdel-Hamid and Madnick (1991) assert that management’s tendency to cling to

unrealistic schedules by adding developers, instead of adjusting the project deadline to

more appropriately reflect the level of effort required to finish the project, is political in

nature. They suggest this happens for two reasons; first, project managers are hesitant to

show a slip in the project schedule “too early” in the project, and second, if they re-

estimate now they risk doing it again later and looking bad twice (Abdel-Hamid and

Madnick (1991). This type of political decision making in projects can also become

unintentionally institutionalized and consequently ignored by management as one of the

potential causes for reductions in project performance, as well as unnecessary increases

in schedule pressure and the down-stream dynamics associated with that increase.

Figure 16: This causal loop diagram illustrates management's tendency to cling to unrealistic project
schedules (underestimated) by simply adding more people to the project. This produces an increase

Project Cost

Human Resource
Level

Underestimation

Actual Amount
of Work

+

Pressure on
management to

cut corners
+

-

Quality
Standards

Rework

-

-

+

B1
R1

+

+

45

in project cost leading to an increase in pressure to cut corners (B1). That pressure can reduce
human resource levels, but does so at the expense of quality standards. As quality standards decrease
rework increases, further increasing the project’s actual amount of work.

Some of this political decision making is guided by conventional wisdom in the

project management community, as well as research from two empirical studies and an

informal review of over 500 completed contracts, stating that when “a contract is more

than 15 percent complete, the [final] overrun at completion will not be less than the

overrun to date, and the [final] percent overrun at completion will be greater than the

percent overrun to date” (Christensen 1993, 45). In addition, Christensen (1993, 45)

states that “once a contract is 20 percent complete, the cumulative Cost Performance

Index (CPI) does not change more than 10 percent; in fact, in most cases it only

worsens.” Given these project management industry rules of thumb, it becomes obvious

that the pressure to not show a schedule slip early in the project life cycle produces a

dynamic whereby project managers choose to add developers and cost to the project

instead of analyzing estimates and potentially re-estimating scopes and schedules to

achieve a better target end date, which in turn reinforces the dynamics associated with

Brooks’ Law (figure 10).

1V. System Archetypes as Project and Organizational Learning Tools

 The study of system archetypes as project learning tools is another contribution

the system dynamics methodology makes to the project management discipline. These

generic system structures provide a conceptual foundation so that project teams can

identify common generic project variables and their associated dynamics, communicate

their cause-effect relationships, map them to the project or issue at hand and plan

effective intervention strategies for mitigating problematic project behavior. Effective

learning usually requires some level of pattern recognition; system archetypes provide

these project patterns, which can be analyzed to improve performance.

Both Meadows (2008) and Sterman (2000) provide detail on system archetypes as

they relate to generic system behavior; however, Hart (2008) takes these system

archetype concepts a step further using software engineering, and various real-world

software case studies, to illustrate archetypes as they relate to the software development

process. Hart’s (2008) research, and associated exploration into system archetypes

applied to software engineering, provides an IT project manager with a solid foundation

for analyzing typical software project behaviors and designing intervention strategies to

mitigate the risks inherent in those software engineering system archetypes. While there

are several system archetypes to learn from, the scope of this paper will limit us to a

discussion on two areas common to systems/software development – software quality and

process improvement efforts.

47

a. Drifting Goals – Software Quality Erosion

 The first archetype we will explore is the Drifting Goals archetype. Senge (1990),

Meadows (2008) and Hart (2008) all describe this archetype as a situation whereby

organizational/project goals are allowed to drift or slowly erode to a state that is

ultimately unacceptable to the organization; however, because it happens slowly over an

extended period of time it goes unnoticed or becomes institutionalized into the business

process. Meadows (2008, 122) refers to this phenomenon as the “boiled frog syndrome”

and suggests, “some systems not only resist policy and stay in a bad state, they keep

getting worse.” A frog’s biology for sensing danger is hard-wired to sudden

environmental changes, not gradual ones; therefore, if you place a frog in water at room

temperature and slowly turn up the heat to a boiling level it will be content until it is too

late to save itself (Senge 1990). Project delays, communication issues and inaccurate

project control data can all have the same effect on a project, turning a slow gradual

decline in performance into outright project failure.

 The systemic structure of the drifting goals archetype, as referenced in figure 17,

provides the project manager with a generic understanding of the dynamics surrounding

goal erosion behavior. Figure 18, takes this concept a step further and applies it to

software development to illustrate the unintended consequences of goal erosion with

regards to software quality standards.

48

Figure 17: Generic structure of the drifting goals archetype

 The behavior over time we are concerned with here is either the increase or

decrease of both Project Performance Goal and Actual Project Performance over time.

The Performance Gap variable is the difference between the Project Performance Goal

and the Actual Project Performance. When the gap increases, it produces two systemic

reactions; the first (B1) is the project control loop which states that as the Performance

Gap increases, so do project team interventions to improve performance, and as Project

Performance Improvement Interventions increase Actual Project Performance increases,

albeit most often after some amount of delay. This delay is important because as it

increases it produces a sentiment among team members that fixes are failing and/or

improving the project performance is a fruitless effort, which ultimately triggers the

introduction of the B2 loop – the Drifting Goals loop. This feedback mechanism results

in a balancing feedback loop that increases the # of Adjustments to Project Goals when

the Performance Gap increases. Those interventions then reduce the Project

Performance Goal and ultimately reduce the Performance Gap, which makes the team

believe they are succeeding, even though the reality is that should this behavior continue

Project
Performance Goal

Performance Gap

Actual Project
Performance

of Adjustments to
Project Goals

Project Peformance
Improvement Interventions

+

+

-

-

+

+

B2

Drifting Goals

B1

Project Control

49

it can result in a continued degradation of project performance when one accepts a

variable like software quality as an appropriate measure of project performance.

 Figure 18 illustrates these drifting goals dynamic as it applies the erosion of

software quality over time. For the purposes of this example, we will continue the

practice of considering software quality as an appropriate measure of project

performance, which according to Hart (2008) is a function of delivered functionality and

software defects.

Figure 18: The erosion of software quality. Software project related example of the drifting goals
archetype (Hart 2008).

Most, if not all, software development projects are forced to deal with the cost vs.

schedule vs. quality dilemma. Software quality can degrade over time as quality goals

shift due to increased pressure to deliver products on time and under budget (i.e. pressure

to declare success). Figure 18 is designed to illustrate the dynamics behind this dilemma.

Like figure 17, the Quality Gap is the difference between the Quality Goal and the Actual

Quality. Hart (2008) suggests that this gap produces three main dynamics. First are the

Customer
Expectations

Quality Goals
Actual Quality

Quality Gap

Actions to Lower
Quality Goals

Actions to Improve
Quality

Short-term
Success

Pressure to Declare
Success

+

-

+

+

+

+

+

-

+

+

R1

B1 B2

Drifting GoalsQuality
Improvement

Be Careful What
You Wish For

50

system interventions or Actions to Improve Quality (B1), such as testing and process

improvement techniques. Second are the Actions to Lower Quality Goals such as

releasing a product prior to testing it properly and reworking errors. These actions are

usually a result of pressure to declare success and the fact that the Actions to Improve

Quality are often expensive and time consuming; the logic is that the customer is still

using the product right now and not complaining that much so why not. Hart (2008)

suggests that in general, the reality is that people tend to tolerate software that is beneath

their expectations or standards. Third are the Customer Expectations, which when

considered as part of the system equation produce the potential dynamic whereby

software of acceptable quality gets worse over time. If the Actual Quality of the software

decreases, so does the Customer’s Expectation of that software, which reduces the

Quality Goals, reduces the Quality Gap, reduces the Actions to Improve Quality and in

turn further reduces the Actual Quality of the software. The erosion of software quality,

as illustrated in figure 18, is therefore a systemic problem including both the project team

and the customer.

b. Limits to Growth – The Paradox of Process Improvements

The second archetype to briefly explore is the limits to growth archetype

mentioned in the literature (Senge 1990, Meadows 2008, Hart 2009). Hart (2008) suggest

this to be the generic structure associated with the aforementioned 90% syndrome in

projects; and while Lyneis and Ford (2007), Ford and Sterman (2003) and Abdel-Hamid

(1991) don’t specifically reference the limits to growth system archetype in their

research, their research on the 90% syndrome describes a system structure and behavior

that is consistent with this archetype.

51

Figure 19: Simple generic system structure of a limits to growth archetype.

 This limits to growth archetype is simple in nature and revolves around the

Project Performance variable, which when increased causes a positive feedback loop

(R1), increasing Productivity and further increasing Project Performance. This growth

spiral does have its limits though, represented in the B1 loop, whereby some constraint on

the system produces a limiting condition (e.g. the number of developers writing code is a

constraint that produces a limiting condition), which ultimately balances out the system,

reduces project performance and ultimately demonstrates the limits to growth archetype.

 Figure 20 illustrates this limits to growth concept as it applies to project

management with an example Hart (2008) refers to as the process improvement paradox.

For the purpose of this example, the causal loop diagram has been kept relatively

simplistic so as to clearly demonstrate the archetype; however, this dynamic could easily

be integrated into figure 13’s overarching structure, and if you look closely, while the

variables names are different, the concepts overlap with two of the loops – B1 and R1.

Productivity
Project

Performance
Limiting Condition

Constraint

+

+

-

+
R1

Growth Spiral

B1

Limit to Growth

-

52

Figure 20: Project management specific example of a limits to growth archetype (Hart 2008).

 B1 of figure 20, or the Closing the Schedule Gap balancing loop, illustrates that as

Schedule Variance (i.e. the difference between where you hoped to be in the project

schedule and where you actually are) increases, Work Intensity increases, which can

cause an increase in Production, an increase in Completed Tasks, and therefore, a

decrease in Schedule Variance. However, increases in Work Intensity can also lead to a

degradation of Process Improvement Efforts among the project team, as more time is

dedicated to completing tasks and less time is therefore dedicated to improving

project/production processes in order to increase Production Capacity. R1, and more

specifically the relationship between Work Intensity and Process Improvement Efforts,

clearly demonstrates the limits to growth archetype in systems and provides project

managers with the foundation for applying these concepts, as well as their associated

interventions, to better improve their project performance.

Schedule Variance

Work Intensity

Production

Completed Tasks

Project Duration
-

+

+

+

-

Process
Improvement Efforts

Production
Capability

-

+

+

B1

R1

Closing the
Schedule Gap

Limit to Growth

Amount of Business
for Company

+

53

c. Inter vs. Intra Project Learning

The organization, or team learning process, is of critical importance for project

success and the study and application of system archetypes aid in that learning process.

Kotnour (2000) suggests there are two forms of learning in a project environment –

“inter-project learning” and “intra-project learning”. The goal of inter-project learning is

to increase project and team learning acumen; it is the knowledge assimilation,

combination and dissemination of lessons learned across projects to facilitate knowledge

creation, and ultimately, better project performance (Kotnour 2000). The dissemination

process is critical for organizations interested in mitigating the risks of perpetuating poor

project performance across both similar and disparate projects. Assimilation and

combination involves the post-mortem analysis of a project, which is an important project

plan phase (Kotnour 2000).

However, this inter-project learning (i.e. post-mortem) process alone does not

provide a panacea for solving problematic project behaviors and mitigating the risks of

their associated outcomes. Equally important is to engage in the accompanying practice

Kotnour (2000) describes as “intra-project learning,” whereby the project team develops

methods and processes for capturing near real-time project data (e.g. number of software

bugs released to production) and integrates that data into the project lifecycle, creating

knowledge and improving project decision making. While this practice should

accompany inter-project learning, it often times does not, as more effort and resources are

often times applied to the project’s close out phase, or post-mortem analysis, in support

of the next project.

54

The study and development of system archetypes primarily falls within the

domain of inter-project learning; however, as this paper will discuss later, they can also

be used for intra-project learning when one considers the theoretical integration of system

dynamics models with the traditional project management process framework as outlined

by the Project Management Institute’s Project Management Body of Knowledge (2008).

Further discussion regarding this novel practice will be presented later in Chapter V.

Intra-project learning focuses on the task of individual projects with the goal of

producing a successful project outcome, to build individual and team capabilities, and

ultimately, to support inter-project learning as the data that is captured during the project

is then assimilated, combined and distributed in support of that mission (Kotnour 2000).

It identifies, analyzes and solves problems during the course of a project as opposed to

the post-mortem methodology, a method widely used in both traditional project

management processes and system dynamics analysis to projects (USN, T. Laverghetta and

Brown USN 1999), which relies on project data captured during a project to provide insight

into how to improve performance on future projects.

Unfortunately, because the very definition of a project according to the Project

Management Institute’s Body of Knowledge (2008, 5) is that of a “temporary endeavor

undertaken to create a unique product, service or result,” it stands to reason that solely

relying on inter-project learning as a strategy for increased project and organizational

performance is myopic; particularly when one considers that projects vary in

requirements, complexity and dynamics from one project to the next. This consideration

underpins the foundation for research, (Rodrigues and Bowers 1996, Rodrigues and

Williams 1998, Williams 1999, Williams 2003, Taylor and Ford 2006, Lyneis and Ford

55

2007) in both the system dynamics and project management communities, that attempts

to improve traditional project management processes and methods by modifying,

replacing, and in some cases, augmenting them to better govern contemporary project

dynamics and effectively integrate new models into the existing project management

framework as outlined by PMI (2008).

V. Discussion: Integration of System Dynamics with Traditional Methods and
Suggestions for Future Research

Williams (1999) and Rodrigues (1997) provide a rough outline for this new

methodology – the integration of dynamic models with traditional project management

methodologies, and other areas in the literature (Lyneis and Ford 2007, Taylor and Ford

2006, Lyneis and Cooper 2001, Rodrigues and Bowers 1996, Klein 2007, Hart 2008,

Haas 2009) also suggest the need to re-examine the use of our traditional techniques for

project management in an attempt to develop better strategic, as well as tactical,

methodologies. Many of the current operational models, while useful, are lacking in a

holistic/systems approach to project management; therefore, integration of system

dynamics models into the entire project management framework, and not solely as a post-

mortem analysis tool to support inter-project learning and knowledge dissemination,

represents a novel practice in the project management field and one that could potentially

benefit project teams as well as the organizations they support.

This augmented project management framework would be designed to better

manage projects in real-time and provide functioning quantitative models that project

managers could use during a project instead of just after the project in support of the next.

These models would be integrated into the traditional project management toolset (PERT,

CPA,WBS, OBS, Network Diagramming) and lifecycle in a way that shares project data

(e.g. % of tasks completed for a particular work package, or number of software defects

released to production) in near real-time with the previously mentioned operational tools

used to plan and control projects.

57

At this stage in its evolutionary development, system dynamics models applied to

project management are predominantly used as post-mortem tools and occasionally as

models used prospectively (e.g. estimation techniques). Progress towards this next step of

integration into the entire project life cycle (see figure 21) is currently more of an

academic exercise than a mature methodology. The literature at this point does not

suggest any real-world case of this novel approach to augmenting the project manager’s

tool set. The literature does, however, consistently emphasize the need for new models to

adapt to the ever increasing complex nature of information technology projects, as well as

to improve the mediocre performance that continues to plague the industry.

Figure 21: Conceptual model of the integration of system dynamics models (SD Models) in the
traditional project management framework. Lessons learned and modeling ‘what if” scenario results
are aggregated at the strategic level and continuously fed into the traditional plan and control project
management framework.

Models that originated from the defense and aerospace engineering projects of the

1950’s are useful but need to be augmented with more contemporary, quantitative and

dynamic models that allow project managers the ability to test “what-if” scenarios (e.g.

58

will adding developers at the later stages of this project make the project stall even more)

before, during and after their projects in an attempt to facilitate knowledge creation

throughout the entire project life-cycle and organizational learning prowess among all

project team members. Properly and continually calibrated system dynamics models,

using as close to real-time project status data as possible, integrated into a project

manager’s tool set (see figure 21) could serve many purposes including:

1. Effective project management training, mentoring and skill set building.

The use of CLDs and quantitative stock and flow simulation models could

provide project managers with a learning environment that enables them to

see the feedback structures present in a particular project management

problem (e.g. client scope changes) and run simulations to test/validate

their managerial intuition on how best to intervene. These tests could serve

to educate managers on the 2nd and 3rd order effects of their interventions

and where in the system it is best to intervene (i.e. which levers to adjust).

2. Improved project estimation and risk analysis/mitigation techniques

3. Dynamically adaptive project plans/network diagrams

4. Scenario analysis used to plan intervention strategies should problems

arise throughout the course of the project and post-mortem analysis to

support the project’s close-out phase and facilitate inter-project learning.

Intervention strategies must also be adaptive given the complex nature of

modern-day IT projects and the challenges this type of knowledge-work

presents.

59

Rodrigues and Williams (1998) developed a conceptual model called the Project

Management Integrated Model (PMIM) for how this integration might look and broke it

down into both a System Dynamics Operational Model (SDOM), as well as a System

Dynamics Strategic Model (SDSM). They suggest using the integration of system

dynamics models as a way to develop a more sophisticated approach to project network

models that would include feedback processes designed to deliver more effective

modeling of project activity durations and costs (Rodrigues and Williams 1998). In

addition to the integration of system dynamics models with the established project

management processes, Rodrigues (2001) also suggests the use of system dynamics

modeling within the Project Management Body of Knowledge risk management

processes, thereby providing an alternative, yet complementary, method for managing

project risks.

Unfortunately, at this stage in its evolution, the literature suggests little has been

done to normalize, implement and test these integrated models in practical organizational

situations. While this represents undoubtedly a massive undertaking, it is one which has

the potential to positively influence the direction of project management research and

practice; further research in this area is warranted. Simply identifying lessons learned at

the end of a project, and using those lessons as a means to improve future project

performance, is insufficient to advancing the performance rate of information technology

projects and the project management discipline in general. The delay associated with

team learning and the development of effective management interventions must be

reduced; knowledge creation, combination, assimilation and dissemination, as well as

60

risk mitigation strategies and tactics, must be developed and implemented throughout the

entire life-cycle of the project, not just at the end of a project and in support of the next.

In addition to the integration of system dynamics models and simulation into the

traditional project management framework, the use of system archetypes as a project

management learning tools should also be further researched, developed and applied to

specific areas of project management such as information systems projects and web

application development. While there will always be overlap in the concepts explored in

these system archetypes, different project types, such as the development of complex and

diversely distributed cloud computing applications, call for specific examples to be

developed, validated and circulated amongst project management professionals. This

knowledge creation and dissemination process could facilitate the development of a new,

more systems-thinking oriented world view for the discipline.

However, while the use of system dynamics as a project team learning tool is of

particular importance to advancing the project management field, we should not limit the

discussion to simply using these tools as strictly an education tool. More research must be

done to propagate the use of system dynamics as not just an academic exercise, but also

as a strategic planning and project control toolset that project managers can use to

dynamically and adaptively manage complex projects throughout their entire life-cycle. It

is important to note, however, that integrating system dynamics modeling and simulation

techniques into the entire project life-cycle would not work very well on novel projects.

Projects where an organization has relatively decent experience would represent fertile

ground for this type of new approach. For example, if an organization is experimenting

with new technology, new business processes and/or a type of project it has never

61

engaged in before, the integration of system dynamics models into the project

management process will not only be lacking in value-added, it might actually detract

from the end-result and hinder progress because there is no historical data available from

which one could effectively initially calibrate the model. Projects that become somewhat

repeatable (e.g. developing a management information system for a government

organization) are good examples of where this integration would be applicable. Even

though these projects are unique in nature, they should contain enough similar project

variables and dynamics to calibrate a model with minor adjustments and account for

some of the project’s unique elements.

Lastly, more research and development could go into expanding the project

dynamics covered in section III; taking some of those concepts one step further into the

development of quantitative system dynamics stock and flow models, derived from the

project behavior dynamics CLDs. These models could be used to produce adaptive

strategic models and simulations, which would enhance both the project managers’ skill

and tool set, as well as provide a much need augmentation to traditional project

management processes.

VI. Conclusions

 The current state of information technology project performance is unacceptable

and its failures are well documented in the literature. The discipline is poorly researched

relative to other management disciplines and, coupled with the near exponential growth

of technical and project complexity in the information technology industry, it is

becoming increasingly evident that new systems-based models must be adopted for the

field to advance and attempt to improve upon its mediocre performance rate. These new

models do not necessarily need to replace traditional methods, but instead should

augment them to produce a hybrid, or best-of-breed approach to managing complex

IT/systems projects.

Because the nature and complexity of a project should dictate the method by

which it is controlled, the project management discipline must continue to develop its

operational and strategic methods and not continue to solely rely on reductionist methods

that were developed more than half a century ago and apply more to the types of projects

that originated out of that era. A new era of highly complex, deadline driven knowledge-

work based information technology projects has developed in recent decades and dictates

we take a holistic approach to project control, or suffer the consequences for ignoring to

do so. This failure to properly adapt our methodologies and processes has been cited in

the literature as both cause and effect for low project performance rates, the 90%

syndrome or outright project failure. Adjustments to traditional models, the development

of new models and the integration of both where appropriate, must be done to effectively

account for the new complexities introduced by the global information age.

63

Moreover, project management professionals should seek to develop new

competencies in systems-thinking approaches to project management, as well as the

modeling and simulation tools needed to aid in that development. This expansion of core

competencies would appropriately augment the current knowledge base that favors the

types of reductionist approaches advanced by the Project Management Institute. The use

of system dynamics benefits the discipline in many ways including, improvements in

management training in the form of dynamic "flight simulator" models, management

skill-set building, estimation and risk analysis techniques, project plans and network

diagrams, what if" based scenario analysis used to craft effective intervention strategies,

as well as a “best-of-breed” approach to management where the appropriate tools are

used in the appropriate situations instead of being universally applied.

This area of research has just begun to tackle the project performance problem

and will continue to search for new and improved methods for advancing the discipline.

The value of system dynamics to project management is in its approach to effectively

capture, communicate and strategically address project behavior issues using a systems

approach that integrates both "soft" and "hard" variables into the model's equations. This

is understandably a monumental task, especially when one considers the difficulty in

adjudicating the validity of certain measures associated with soft variables; however, to

ignore this task because debates over how to quantify certain aspects of a project can be

contentious, is myopic in its approach and one might argue less effective because the

model deliberately ignores the "reality on the ground," and consequently, is not

representative of the system's true behavioral elements. System dynamics models applied

to project management seek to be more inclusive of the project's true reality and,

64

therefore, should be developed and matured into useful tools to improve performance that

are widely disseminated and developed throughout the project management community.

65

VII. Bibliography

Abdel-Hamid, Tarek K. 1988. Understanding the "90% syndrome" in software project
management: A simulation-based case study. The Journal of Systems and Software
8, (4): 319-30.

Abdel-Hamid, Tarek K., and Stuart E. Madnick. 1991. Software project dynamics: An
integrated approach. New Jersey: Prentice-Hall, Inc.

———. 1990. The elusive silver lining: How we fail to learn from software development
failures. Sloan Management Review 32, (1): 39-48.

———. 1989. Lessons learned from modeling the dynamics of software development.
Communications of the ACM 32, (12): 1426.

Belassi, Walid, Alex Z. Kondra, and Oya I. Tukel. 2007. New product development
projects: The effects of organizational culture. Project Management Journal 38, (4):
12-24.

Brooks, Frederick. 1975. The mythical man-month: Essays on software Engineering
. enlarged edition 1995 ed. Reading, MA: Addison-Wesley.

Christensen, David S. 1993. An analysis of cost overruns on defense acquisition
contracts. Project Management Journal(3): 43-48.

Cook, Rick. How to spot a failing project. in CIO.com [database online]. 2008 [cited
August 5 2009]. Available from
http://www.cio.com.au/article/203946/how_spot_failing_project?pp=1 (accessed
August 5, 2009).

Dorsey, Paul. Top ten reasons why systems projects fail. in Harvard [database online].
Boston, 2000 [cited September 7 2009]. Available from
http://www.hks.harvard.edu/m-
rcbg/ethiopia/Publications/Top%2010%20Reasons%20Why%20Systems%20Project
s%20Fail.pdf (accessed September 7, 2009).

Ford, David N., and John D. Sterman. 2003. The liar's club: Concealing work in
concurrent development. Concurrent Engineering: Research and Applications 11,
(3): 211-8,
https://ceprofs.civil.tamu.edu/dford/dnf%20profesional/TheLiar%27sClubCERA-
PUBLISHED.pdf (accessed October 1, 2009).

66

———. 2003. Overcoming the 90% syndrome: Iteration management in concurrent
development projects. Concurrent Engineering: Research and Applications 11, (3):
177-86.

Galway, Lionel. 2004. Quantitative risk analysis for project management: A critical
review. Santa Monica: RAND Corporation, ,
http://www.rand.org/pubs/working_papers/2004/RAND_WR112.pdf (accessed
5/29/2009).

Garvin, David. Learning in action. in Harvard Business School [database online].
Cambridge, 2000 [cited September 8 2009]. Available from
http://hbswk.hbs.edu/item/1450.html (accessed September 9, 2009).

Garvin, David A., Amy C. Edmondson, and Francesca Gino. 2008. Is yours a learning
organization? Harvard Business Review 86, (3) (03): 109-16.

Gido, Jack, and James P. Clements. 2009. . 4th ed. Mason, OH: South-Western Cengage
Learning.

Gray, Clifford F., and Erik W. Larson. 2000. Project management: The managerial
process. Boston: McGraw-Hill.

Hart, James D. 2008. Discovering system dynamics in software engineering. Matthews,
NC: Software Process Dynamics, LLC.

Hass, Kathleen B. 2009. Managing complex projects – A new model. Vienna, VA:
Management Concepts.

Holder, L. D., and Edward J. Fitzgerald. 1997. The center for army lessons learned:
Winning in the information age. Military Review 77, (4) (Jul): 123.

Klein, Gary. 2007. Performing a project premortem. Harvard Business Review 85, (9)
(09): 18-9.

Kotnour, Tim. 2000. Organizational learning practices in the project management
environment. The International Journal of Quality & Reliability Management 17,
(no. 4/5) (January 1): 393,
http://proquest.umi.com/pqdlink?did=115716474&Fmt=7&clientId=50078&RQT=3
09&VName=PQD (accessed 8/06/2009).

Lewis, James P. 2008. Mastering project management: Applying advanced concepts to
systems thinking, control & evaluation, resource allocation. New York, NY:
McGraw-Hill.

Loch, Christopher, Svenja Sommer, Jing Dong, and Michael Pich. 2006. Step into the
unknown. Financial Times, March 24, 2006, 2006, sec Mastering Uncertainty.

67

Lovallo, Dan, and Daniel Kahneman. 2003. Delusions of success. Harvard Business
Review 81, (7) (07): 56-63.

Lyneis, James M., Kenneth G. Cooper, and Sharon A. Els. 2001. Strategic management
of complex projects: A case study using system dynamics. System Dynamics Review
17, (3): 237-60.

Lyneis, James M., and David N. Ford. 2007. System dynamics applied to project
management: A survey, assessment, and directions for future research. System
Dynamics Review 23, (2-3): 157-89.

Matta, Nadim E., and Ronald N. Ashkenas. 2003. Why good projects fail anyway.
Harvard Business Review 81, (9) (09): 109-14.

Maylor, Harvey. 2001. Beyond the gantt chart:: Project management moving on.
European Management Journal 19, (1) (2): 92-100.

Meadows, Donella H. 2008. Thinking in systems. Thinking in systems., ed. Cannon
Labrie. 1st ed. Vol. 1. Vermont: Chelsea Green Publishing Company.

Moyer, Don. 2007. What evidence? Harvard Business Review 85, (11) (11): 156-.

Project Management Institute PMI. 2008. A guide to the project management body of
knowledge (PMBOK guide). Fourth ed. Newton Square, PA: .

Rodrigues, Alexandre G. 2001. Managing and modeling project risk dynamics: A system
dynamics-based framework. Paper presented at Fourth European Project
Management Conference: PMI Europe, London.

Rodrigues, Alexandre G., and John Bowers. 1996. The role of system dynamics in project
management. International Journal of Project Management 14, (4) (8): 213-20.

Rodrigues, Alexandre G., and T. M. Williams. 1998. System dynamics in project
management: Assessing the impacts of client behaviour on project performance. The
Journal of the Operational Research Society 49, (1) (Jan.): 2-15.

———. 1997. System dynamics in software project management: Towards the
development of a formal integrated framework. European Journal of Information
Systems 6, (1): 51-66.

Senge, Peter M. 1990. The fifth discipline. New York: Doubleday.

Shore, Barry. 2008. Systematic biases and culture in project failures. Project
Management Journal 39, (4): 5-16.

Smith, Karl A. 2000. Project management and teamwork. Boston: McGraw-Hill.

68

Sterman, John D. 2002. All models are wrong: Reflections on becoming a systems
scientist. System Dynamics Review 18, (4): 501-31.

———. 2000. Business dynamics: Systems thinking and modeling for a complex world.
Boston: McGraw-Hill.

———. System dynamics modeling for project management. in System Dynamics Group
[database online]. Boston, 1992 [cited November 8 2009]. Available from
http://web.mit.edu/jsterman/www/SDG/project.html (accessed June 16, 2009).

System Dynamics Society. SystemDynamics.org. in System Dynamics Society [database
online]. Albany, 2009 [cited 07/29 2009]. Available from
http://www.systemdynamics.org/index.html (accessed 07/29/2009).

Taylor, Tim, and David N. Ford. 2006. Tipping point failure and robustness in single
development projects. System Dynamics Review 22, (1): 51-71.

Upton, David M., and Bradley R. Staats. 2008. Radically simple IT. Harvard Business
Review 86, (3) (03): 118-24.

USN, T. Laverghetta, and A. Brown USN. 1999. Dynamics of naval ship design: A
systems approach. Naval Engineers Journal 111, (3): 307-23.

Williams, T. 2003. Learning from projects. The Journal of the Operational Research
Society 54, (5) (May): 443-51, http://www.jstor.org/stable/4101731.

Williams, T. M. 1999. The need for new paradigms for complex projects. International
Journal of Project Management 17, (5) (10): 269-73.

———. 1995. What are PERT estimates? The Journal of the Operational Research
Society 46, (12) (Dec.): 1498-504.

	James Madison University
	JMU Scholarly Commons
	Spring 5-7-2010

	Project dynamics: An analysis of the purpose and value of system dynamics applied to information technology project management
	Timothy Charles Delobe
	Recommended Citation

	Microsoft Word - delobetc_masters_04-20-2010.docx

