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Abstract 

Researchers utilizing either experimental or quasi-experimental research often want to 

compare group means. However, with more than two groups, comparing group means 

may result in an inflated Type I error rate, the probability of wrongly rejecting a null 

hypothesis. Researchers often employ analysis of variance (ANOVA) methodology to 

compare more than two group means. Post-hoc comparison procedures (PCPs) are 

utilized to indicate which group means differ following a significant ANOVA. SPSS 

provides 18 options for PCPs. The purpose of this study was to determine which PCP 

provides the best power while maintaining Type I error control when assumptions of 

ANOVA are met and when they are not met. Data were simulated in a variety of 

conditions to address this issue. Only those tests designed for assumption violations, 

Dunnett’s C, Dunnett’s T3, Games-Howell, and Tamhane, adequately controlled Type I 

error in all conditions. Power results were similar for all four tests, with the Games-

Howell being slightly higher than the other four tests. I recommend using the Games-

Howell procedure unless extenuating circumstances exist. 

Keywords: multiple comparisons, power, Type I error, ANOVA, post-hoc 

comparison procedures 

  



 
 

 

Chapter 1. Purpose of Study 

 Random-assignment experimental research is a staple of fields such as business, 

psychology, and medicine (though terminology may differ between fields). Although 

experimental research takes different forms in each study, the fundamental principles are 

the same: comparisons between a randomized control group(s) and a randomized, 

systematically manipulated experimental group(s). An accessible example of 

experimental research is in a drug testing experiment, where one randomly assigned 

group is given a placebo pill and another randomly assigned group is given the drug of 

interest. Then, if groups are sufficiently randomized, any differences in the dependent 

variable under study can be attributed to the effects of the drug. 

 However, in certain situations, it is either impossible or infeasible to randomize 

participants to control and experimental groups. For example, perhaps the drug of interest 

is a dietary supplement designed to aid in weight loss. Further, the drug is expected to be 

more efficacious for overweight and morbidly obese individuals than for non-obese 

individuals. To test this claim, a researcher would need to collect samples from the 

populations of overweight, morbidly obese, and non-obese individuals. However, it is 

impossible to assign people to be overweight, obese, or non-obese. Consequently, the 

experimental (overweight and obese) and control (non-obese) groups are not randomly 

assigned. This type of research is often referred to as quasi-experimental. 

 In both experimental and quasi-experimental research, oftentimes the outcome 

(dependent variable) of interest is a group mean. For example, in a weight loss drug 

study, the dependent variable may be pounds lost for the overweight, obese, and non-

obese participants. Consequently, research questions frequently center on comparing 
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group means to one another (e.g., did obese individuals have higher average weight loss 

than non-obese or overweight individuals?). One popular way of comparing two group 

means is by an independent samples t-test. However, if there are more than two groups in 

a study, a researcher may wish to compare all three groups to each other in a pairwise 

manner. Thus, the researcher may utilize three independent samples t-tests comparing 

groups 1 and 2, groups 1 and 3, and groups 2 and 3. While appealing for its simplicity, 

this approach has an inherit risk of multiplicity. 

Multiplicity 

 Whenever a researcher utilizes a statistical test, there is a risk of wrongly rejecting 

the null hypothesis due to sampling variability when the null is in fact true. The Type I 

error rate, denoted 𝛼, is the probability that the null hypothesis is falsely rejected and is 

commonly set at .05. Then, the probability of not making a Type I error is 1 − 𝛼, or .95 

when 𝛼 = .05, as is typically chosen. When multiple tests are conducted on the same 

data, each individual test has an inherent Type I error rate of 𝛼. To determine the overall 

probability of making at least one Type I error over a set of independent tests, commonly 

called the familywise (Toothaker, 1993) or experimentwise (Ryan, 1959) Type I error, 

simply multiply the probabilities of not making a Type I error for each test together and 

subtract from 1. If 𝛼 = .05, this formula appears as 1 − (1 − 𝛼)𝑚 or 1 − (.95)𝑚, where 

m is the number of tests being conducted (Field, 2013, chapter 2). Because .95 is the 

probability of not making a Type I error, we raise it to the power of m due to the 

multiplicative nature of probabilities (i.e., the probability of m number of independent 

events all occurring is equal to the product of their individual probabilities). This value, 

then, is the probability of not making any Type I errors. Next, we subtract from 1, 
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because we are interested in the probability of making at least one Type I error. For the 

weight loss drug example, there would be three tests, and the familywise Type I error 

would be equal to 1 − (. 95)3 = .14. Thus, there would be a 14% chance of falsely 

rejecting at least one null hypothesis for the set of tests. The more tests computed, the 

larger the familywise Type I error becomes. Obviously, this is an undesirable effect and 

is referred to as the multiplicity issue. 

 An astute researcher may simply ask, “If Type I error increases with the number 

of tests I conduct, why can’t I adjust my 𝛼 level to account for such?” One popular 

procedure, called the Bonferroni procedure, does exactly that. Using the Bonferroni 

procedure in the three comparison example with the weight loss drug results in setting the 

alpha level at roughly .017 (.05/3), a much more conservative value than the typical .05. 

The trade-off to combating multiplicity by decreasing 𝛼 is a loss of statistical power 

(Field, 2013, chapter 2). Power refers to the ability of a test to correctly identify a mean 

difference in a population of interest. Continuing with the weight loss example, the 

researcher may want a test with high power to detect if there are true differences between 

obese and non-obese participants, because the financial future of the drug depends on the 

results. By controlling Type I error by making 𝛼 stricter, the test loses power because it 

allows for so few falsely rejected null hypotheses. Consequently, some hypotheses that 

should be truly rejected are not rejected. 

Analysis of variance 

 Researchers often use analysis of variance (ANOVA) to test the null hypothesis of 

equal means for multiple groups simultaneously. The simplest ANOVA model is often 

called a one-way ANOVA, which consists of only one grouping independent variable 
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with three or more levels and one continuous dependent variable. However, ANOVA can 

be utilized for a variety of research designs including repeated-measures designs, 

multiple factor designs (often called factorial ANOVA), or even multivariate designs 

(MANOVA). The popularity of ANOVA is widespread, with a recent study showing that 

it was taught at least every two years in 95% of doctoral psychology programs (Aiken, 

West, & Millsap, 2008). Elmore and Woehlke (1998) found that ANOVA and/or analysis 

of covariance (ANCOVA) type methodology was the second most employed method 

(behind descriptive analysis) across three journals (American Educational Research 

Journal, Educational Researcher, and Review of Educational Research) from 1978 to 

1997. A similar study found factorial ANOVA to be the most common methodology in 

the Journal of Educational Psychology (Goodwin & Goodwin, 1985). 

Without going into detail, researchers use ANOVA to partition group variance on 

the dependent variable into variance attributable to differences between groups (often 

called between-group variability) and within groups (often called within-groups 

variability or error variability). A ratio of these two types of variability is created to 

produce an F-statistic with a known distribution. By comparing the F-statistic to a critical 

value determined by 𝛼 and degrees of freedom, ANOVA indicates whether group means 

differ statistically significantly from one another. If the F-statistic is significant, at least 

one of the group means differs from another1. 

 Although ANOVA is a useful tool for comparing group means, it does lack the 

ability to specify which means differ following a statistically significant F-test. Knowing 

that one group differs from another may be helpful in a limited sense, particularly for a 

                                                           
1 In certain situations, means may not statistically significantly differ if the omnibus F-test is significant 

due to a lack of power. See Field (2013, chapter 11) for more details about the inner workings of ANOVA. 
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small number of groups and largely disparate means, but when the number of groups 

increases and means are relatively close, more information is required. There are two 

primary ways of determining which means differ from each other: planned comparisons 

and post-hoc comparison procedures (PCPs).  

Planned comparisons 

 Although not the focus of this study, a brief introduction to planned comparisons 

is warranted. Planned comparisons are a popular tool for comparing group means, 

particularly in confirmatory studies where groups are theorized to relate to one another in 

a certain way. Established a priori, planned comparisons allow a researcher to choose 

which group comparisons he or she desires to compute. Thus, researchers can test 

specific hypotheses (see Ruxton & Beauchamp, 2008). For example, in typical 

experimental research, one or more experimental groups are often compared to a control 

group. A planned comparison of the difference between the average of the experimental 

groups and control group could be conducted by inputting a series of dummy codes and 

weights into a regression analysis. For a more thorough explanation of how planned 

comparisons work, see Field (2013, chapter 11). 

Post-hoc comparison procedures (PCPs) 

 PCPs, most of which were developed sometime during the 1950’s to the 1980’s, 

are more exploratory in nature than planned comparisons and are computed after running 

the ANOVA (hence, post-hoc). Most PCPs operate by comparing every group mean to 

every other group mean (referred to as pairwise comparisons). For example, in a three-

group scenario, there would be three unique comparisons: the mean of group 1 to the 

mean of group 2, the mean of group 1 to the mean of group 3, and the mean of group 2 to 
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the mean of group 3. In a four-group scenario, there would be six unique comparisons; 

for five groups, there are ten unique comparisons, and so on. Even though this sounds 

exactly like conducting multiple t-tests, which was shown to be poor practice, PCPs were 

all developed to account for the increased Type I error rate of conducting multiple tests in 

some way. 

 For example, one PCP, Fisher’s least significant difference (LSD), was designed 

to control familywise Type I error by requiring a statistically significant ANOVA F-test 

prior to being computed (Fisher, 1935). Thus, Fisher’s LSD would only be computed in 

error (i.e., if there are no significant differences to be found) if the significant result of the 

ANOVA F-test was itself a Type I error. Similar logic can be applied to all PCPs: if the 

omnibus F-test is not statistically significant, why would a researcher follow-up with a 

post-hoc test? However, all of these procedures (with the exceptions of Fisher’s LSD) 

were designed as stand-alone procedures, not as follow-ups. Further, some statistical 

software will compute PCPs regardless of the results from the omnibus F-test. 

Consequently, examining the Type I error of these tests even when group means truly do 

not differ and the omnibus test is not statistically significant is still extremely valuable, 

particularly due to the frequent use of PCPs. 

 Partly because of the popularity of ANOVA, PCPs are also a popular choice 

among researchers. For example, Goodwin and Goodwin (1985) found that for a sample 

of 150 articles across a five-year span in the Journal of Educational Psychology, almost a 

third (47 out of 150) of articles employed some sort of PCP (referred to as “Post-hoc 

Multiple Comparisons” in the article). Similarly, Keselman et al. (1998) noted that 29 out 

of 61 articles (across a wide variety of psychology and education journals) that utilized 
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between-subjects ANOVA designs also incorporated PCPs. To conduct ANOVAs and 

PCPs, many researchers turn to IBM’s Statistical Package for the Social Sciences (SPSS). 

The availability of pull-down menus in SPSS renders unnecessary the knowledge of the 

syntax necessary to compute such tests in similar statistical programs such as R or SAS. 

Consequently, SPSS may be more intuitive and less intimidating to use for both seasoned 

and new researchers than R or SAS. Muenchen (2016) found that for scholarly articles, 

SPSS was used in approximately twice as many articles as the next two closest 

competitors (R and SAS, respectively). 

However, one disadvantage of the pull-down menus is that researchers do not 

necessarily change the settings off default options, which are not always ideal for a given 

research question or dataset. Similarly, for certain procedures, there are many options to 

choose from, which can be both overwhelming and confusing. For example, SPSS 23 and 

24 provide 18 different PCP options with little to no explanation of what each does or 

how it works. Indeed, Games (1971) noted, “The area of multiple comparisons is one of 

the more confusing areas of statistics, and is one that receives a widely differing set of 

recommendations from many applied statistics texts in behavioral sciences” (p. 531). 

Consequently, a researcher may inadvertently choose a PCP that does not perform well 

under certain conditions. Similarly, the number of choices may be so overwhelming that 

a researcher chooses one at random or elects not to use PCPs at all. The problem is 

compounded by violating the assumptions associated with conducting an ANOVA, 

because the nature of the violations further influences the choice of PCP. 
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Assumptions of ANOVA 

 The data assumptions associated with conducting an ANOVA come from the 

method of estimation used to determine the parameters of interest (in ANOVA, the F-

statistic). Typically, ANOVA is estimated with ordinary least squares (OLS). OLS, as the 

name implies, produces parameter estimates that minimize the sum of the squared 

residual terms between the actual and method-implied data. OLS is a closed-form 

estimator, meaning that there is only one set of analytically derived parameters for a 

given procedure (in contrast, maximum likelihood [ML] estimation is an iterative process 

that only arrives at a solution when a certain criterion is met). 

OLS has several assumptions that can be lumped into three categories: 1) the 

model is correctly specified, 2) there is no measurement error in the independent 

variables, and 3) the residuals are independent and identically normally distributed with a 

mean of 0 (Cohen, 2013, chapter 10; Pedhazur, 1997). In simpler terms, the first 

assumption means that the relationship between the independent variables (IVs) and 

dependent variables (DVs) is linear and that all relevant IVs are included. The second 

assumption has to do with reliability of measurement in that IVs are assumed to have a 

reliability of 1.0. The third assumption contains several pieces: residuals are uncorrelated 

with one another, normally distributed about 0, and have equal variances across groups 

(also called homoscedasticity or homogeneity of variances). 

The first two assumptions of OLS (correctly specified model and no measurement 

error in IVs) and the assumption of independence of residuals are largely a concern 

during research design. Fortunately, because the IV in one-way ANOVA designs is a 

grouping variable, the IV should have high reliability. As for normality, OLS has been 
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shown to be robust to violations of normality (Bohrnstedt & Carter, 1971; Boneau, 1960; 

Pedhazur, 1997). Indeed, “…non-normality has only minor consequences in situations 

represented by most research applications” (Hopkins & Weeks, 1990). Therefore, I focus 

solely on violations of the final assumption: homoscedasticity. Finally, ANOVA is 

typically conducted with equal group sizes due to the pooling of variance across groups. 

In reality, due to restrictions of sampling or various other reasons, this is often not the 

case. Fortunately, this issue has largely been resolved for ANOVA by weighting 

variances by group size. However, many of the older PCPs do not account for the 

possibility of unequal group sizes, and thus may not function appropriately when group 

sizes are unequal. 

Study purpose 

 Let us return to the example of the weight loss drug. Recall that the researcher 

wanted to compare the weight loss of three groups: obese, overweight, and non-obese. 

Say, for this hypothetical example, that the assumptions of OLS are met except for 

homoscedasticity. Further, due to the relative minority of obese individuals, assume the 

group sizes are unequal, as well. The researcher conducts an ANOVA and attains a 

statistically significant F-statistic. However, the researcher does not know which PCP to 

choose for the data. SPSS does indicate that 4 of the 18 options are designed for unequal 

variances, but which of those four is “the best?” The researcher wants to maximize power 

while maintaining Type I error control. The purpose of this study is to explore the 

question: which PCP should I choose, given my data? 
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Chapter 2. Literature Review 

Type I error 

 There are two main approaches to examining Type I error when conducting 

multiple comparison tests: familywise (sometimes called experiment-wise) and 

comparison-wise. Consider a scenario where teachers apply four different teaching styles 

for a semester long course. The outcome variable is final exam grade. Following a 

significant ANOVA, the researcher wants to conduct post-hoc comparisons. Controlling 

Type I error in a comparison-wise fashion means that the alpha level for each comparison 

of a pair of means is set to some nominal level (usually .05). This is analogous to 

conducting six t-tests in the example and is poor practice because the probability of 

making at least one Type I error among the six tests is greater than .05. By controlling 

familywise Type I error, the alpha level remains at the nominal level (or below) for a set 

(i.e., family) of comparisons. Thus, the overall alpha for the six comparisons of the 

example would remain at the nominal level. Due to the relative disadvantages of 

controlling Type I error comparison-wise and the popularity of familywise Type I error 

control, I focus on familywise Type I error. A procedure is said to control familywise 

error in the weak sense if it does so only when all null hypotheses are true and is said to 

control error in the strong sense if it does so for any configuration of true and false 

hypotheses (Benjamini & Hochberg, 1995; Hochberg, 1988). 

False discovery rate 

 Instead of only considering wrongly rejected null hypotheses, the total number of 

null hypothesis rejections can also be examined. Benjamini and Hochberg (1995) 

suggested an alternate way of defining the issue of multiple comparisons: the false 
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discovery rate (FDR; see also Curran-Everett, 2000). The FDR is the proportion of 

wrongly rejected null hypotheses divided by the total number of rejected null hypotheses. 

The major advantage to the FDR is the increase in power over controlling for familywise 

Type I error due to the ability to set an acceptable level of false rejection. Thus, 

procedures controlling the FDR will be more likely to find true differences when 

compared with familywise error control, particularly when there are more true differences 

to find. Further, Benjamini and Hochberg (1995) showed that controlling the FDR also 

controls familywise error in the weak sense. For an example of how a test may provide 

control over FDR, see Keselman, Cribbie, and Holland (1999). However, because SPSS 

utilizes procedures designed to control familywise error, final recommendations will give 

more weight to familywise Type I error rate and less to FDR. 

Power 

 If differences in population means truly exist, Type I errors cannot be committed 

because the null hypothesis is false. Thus, statistical power of tests must also be 

considered. Power in mean comparison tests is traditionally conceptualized as the 

probability that the researcher rejects a null hypothesis based upon the test when there are 

true differences2 and is equal to 1 – β where β is Type II error3 (Field, 2013, p. 69). In 

other words, power is the ability to detect a difference in the population when there is 

one. For example, power for an ANOVA is the probability that the F-ratio will be 

statistically significant if there truly exists at least one difference among a set of means. 

Power can be conceptualized in several different ways, however, for PCPs. Specifically, 

one can examine per-pair power, any-pair power, or all-pairs power (Demirhan, Dolgun, 

                                                           
2 More generally, power is the probability of rejecting a null hypothesis if the null is false. 
3 A Type II error occurs when true population differences are undetected by a statistical test. 
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Parlak, & Dolgun, 2010; Jaccard, Becker, & Wood, 1984). Per-pair power is exactly as it 

sounds: the power for a given comparison. Any-pair power refers to the probability of 

correctly rejecting at least one null hypothesis for a set of comparisons. Thus, any-pair 

power is analogous to familywise error. Last, all-pairs power is the probability that all 

false null hypotheses are rejected. Obviously, all-pairs power is a far stricter measure 

than any-pair power in most cases. I will report all types of powers, but give more weight 

to any-pair power when making PCP recommendations due to its similarity to familywise 

error and the strictness of all-pairs power. However, power (and Type I errors) can only 

occur under certain distributions. 

Null and alternative distributions 

 Defining null and alternative distributions in the context of PCPs is conceptually 

easiest when examining mean differences between groups. Under the null distribution, 

the null hypothesis is that the mean difference is equal to zero. Thus, the mean of one 

sampled group is equal to another sampled group, within sampling error, because both 

groups come from the same population. However, under the alternative distribution, the 

alternative hypothesis states that the mean difference is not equal to zero, and the two 

sampled groups must come from different populations.  

 A Type I error can only be committed when the null distribution is true and a 

Type II error (1 – power) can only be committed when the alternative distribution is true. 

It is impossible to commit a Type I error if there are true population differences, as is the 

case when the alternative distribution is true, because the null hypothesis should be 

rejected. Similar logic applies to Type II errors: only when the alternative distribution is 

true and the null hypothesis should be rejected, but is not, can an error occur.  
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In real data situations, researchers cannot know which distribution, the null or 

alternative, is the “truth.” Thus, researchers employ statistical tests (e.g., PCPs) to 

determine if the data (e.g., group means) are from the same (null distribution) or different 

(alternative distribution) populations. Statistical tests set a nominal Type I error rate (i.e., 

α/false positives) and attempt to maximize power (i.e., minimize Type II errors/misses of 

statistical significance). In real data situations, it is impossible to know if a correct 

decision or an error (Type I or Type II) is being committed. Thus, researchers must trust 

that Type I errors occur at the nominal level and maximize power by increasing sample 

size, making the treatment effect stronger, or reducing the mean square error (MSE) with 

statistical controls. Fortunately, in simulation studies, researchers know if the data were 

simulated to follow the null or the alternative distribution. As such, empirical Type I error 

and power rates can be computed for various data conditions (such as when assumptions 

of estimators are violated) to determine how often statistical tests result in errors. Let us 

now turn our attention to the statistical tests in question: the PCPs. 

Simultaneous versus sequential procedures 

 A brief explanation of two classes of PCPs is required: simultaneous and 

sequential (Toothaker, 1993). Simultaneous test procedures (STPs) control for the Type I 

error for a set of comparisons and use one alpha value for all comparisons. STPs include 

tests such as Tukey’s honestly significant difference (HSD) and Scheffé tests. Sequential 

(also called stepwise) procedures utilize a series of comparative steps. The test only 

proceeds to the next step if the one before it meets certain criteria (e.g., statistical 

significance). Most sequential procedures use step-down logic, where the largest 

difference in means is tested first before moving on to the next largest mean difference, 
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and so on. Examples of sequential procedures using step-down logic are the Student-

Newman-Keuls (SNK) and the Ryan-Einot-Gabriel-Welsch Q (REGWQ). In contrast, 

some sequential procedures use step-up logic, where test statistics ordered from smallest 

to largest are compared to critical values (Dunnett & Tamhane, 1992; Hochberg, 1988). If 

the test statistics are significant (i.e., larger than the critical value), any larger test 

statistics are also deemed significant (see footnote 23 in Toothaker, 1993). For example, 

in a set of ordered test statistics, if the first statistic (derived from means 1 and 2) is 

statistically significantly, then the statistic for means 1 and 3, 1 and 4, etc. are also 

statistically significant. None of the PCPs in SPSS utilize a step-up procedure. 

Description of PCPs 

 This section details the 18 PCPs that are available in SPSS 23 and 24. There are 

many additional PCPs available, and interested readers should consult Keselman, 

Cribbie, and Holland (2004) or Klockars and Hancock (1992) for some (relatively) newer 

procedures. However, because of the popularity of SPSS, only the 18 available PCPs are 

examined. Each PCP is briefly described and then followed by the SPSS algorithm used 

to compute the PCP. The formulas utilized by SPSS may differ from what the original 

authors described, but, because of my interest in studying the way SPSS computes PCPs, 

I used the SPSS formulae (IBM, 2014) instead of the original formulae. Before 

beginning, notation used by SPSS is detailed in Table 1, which is a recreation of the 

information found in Appendix G of the SPSS 23 algorithm guide (IBM, 2014).  

SPSS computes some of the 18 PCPs using one of two range statistics. The more 

common range statistic is a Studentized range value. The Studentized range, traditionally 

denoted as q, is similar to the t-statistic and is equal to the difference between the largest 
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and smallest mean over the square root of the mean square error (MSE) divided by n 

(IBM, 2014; Winer, 1971). SPSS denotes the Studentized range value as Sε,r,m, where ε is 

equal to (1 – α) for a one-tailed test and (1 – α)/2 for a two-tailed test, r is the total 

number of means being compared, and m is a measure of degrees of freedom. The ε, r, 

and m variables may differ for the 18 PCPs. 

The second range statistic is the Studentized maximum modulus. Similar to the 

Studentized range, the Studentized maximum modulus is equal to the maximum of the 

absolute values of the group means divided by an estimate of the sample standard 

deviation with m degrees of freedom (IBM, 2014; Stoline & Ury, 1979). SPSS denotes 

the Studentized maximum modulus as Mε,r,m, where ε, r, and m are defined the same as 

for the Studentized range. Again, the values for the ε, r, and m variables may change 

depending on the PCP. Finally, several tests use neither the Studentized range value nor 

the Studentized maximum modulus. For these tests, the full formula is given as is detailed 

in IBM (2014). 

For most PCPs, SPSS outputs a table of pairwise comparisons. This table contains 

mean differences, standard errors, significance (i.e., p-values), and confidence intervals 

for each possible pairwise comparison. For certain tests, which I will highlight below, 

SPSS also outputs information on homogeneous subsets. Means are placed in a 

homogeneous subset if they are not statistically significantly different. The maximum 

number of homogenous subsets is therefore equal to the number of groups. 

Information from existing simulation studies will be described in the final 

paragraph for each PCP. The majority of studies examined tests under violation of 

assumptions. However, although some simulation studies examined both Type I error and 
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power, most only focus on one or the other. Consequently, there may be little to no 

information about how tests perform (in terms of power and Type I error) under violation 

of assumptions. Throughout this section, the terms “conservative” and “liberal” refer to 

Type I error rate whereas the terms “increased/high” or “decreased/low” will refer to 

power. 

 PCPs for equal variances. The following PCPs were designed for data that are 

homoscedastic. Unfortunately, this is rarely the case in real data. However, most PCPs 

are robust to some deviation from homoscedasticity. One popular way of testing the 

homogeneity of variances assumption in SPSS is the Levene’s test. If Levene’s test is 

statistically significant, the assumption of homogeneity of variances is violated. 

However, Levene’s test is influenced by sample size because it is a null hypothesis 

statistical significance test and will always be significant for real data with a large enough 

sample. Visual inspection of residuals and examination of the ratio of largest to smallest 

variance (sometimes called Fmax) are additional methods for determining if 

homoscedasticity is violated to a practical extent. 

 Fisher’s least significant difference (LSD). Fisher’s LSD was the first PCP 

created (Fisher, 1935). This method of comparison actually has no form of Type I error 

control beyond the assumption that the omnibus ANOVA test is significant4. However, 

SPSS will compute the LSD regardless of the overall ANOVA F-test. The LSD is 

analogous to computing a series of t-tests on a set of means. The only difference is that 

                                                           
4 The requirement of a significant F-statistic does maintain the total proportion of times where one or more 

PCPs is falsely rejected at the nominal alpha. However, the total proportion of falsely rejected PCPs will be 

greater than the nominal alpha due to dependence among PCPs in an experiment. Additionally, if the null 

hypothesis is partly true, Fisher’s LSD does nothing to control the Type I error rate for the comparisons that 

do have true null hypotheses. 
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the standard deviation is a pooled standard deviation across all group means instead of a 

pooled standard deviation of the two means being compared. Thus, we expect familywise 

Type I error to be 1 − (1 − 𝛼)k*, where k* is the number of comparisons made. A 

comparison between two means is significant if the following is true: 

𝑥𝑖 − 𝑥𝑗  > 𝑄𝑖,𝑗√2𝐹1−𝛼(1, 𝑓),           (1) 

where 𝑥𝑖  and 𝑥𝑗  are the means for groups i and j, respectively, 𝑄𝑖,𝑗 is equal to 𝑠𝑝𝑝√
1

2
( 1

𝑛𝑖
+

1
𝑛𝑗

) 

where 𝑠𝑝𝑝 is the square root of MSE term from the omnibus ANOVA F-test and 

𝑛𝑖  and 𝑛𝑗  are group sizes for i and j, respectively, and 𝐹1−𝛼(1, 𝑓) is the critical value of 

the F-distribution with degrees of freedom equal to 1 and the degrees of freedom for the 

MSE term (f). 

 Conducting multiple t-tests on the same data inflates Type I error, which is only 

exacerbated by violating assumptions, because heterogeneous variances also inflate Type 

I error of t-tests (Boneau, 1960). Thus, the LSD will not maintain Type I error control 

when assumptions are met or otherwise. However, because the LSD will often be 

statistically significant, the test does offer the researcher high power (i.e., the more null 

hypotheses rejected, the more likely to correctly reject one). 

 Bonferroni. The Bonferroni procedure was popularized by Dunn (1959; 1961). 

Named for its use of Bonferroni inequalities, the Bonferroni method controls for Type I 

error by adjusting the alpha level for each pairwise comparison. In fact, the formula for 

each comparison is the same as the LSD in equation 1 except for 𝛼. Instead of being set 

at the nominal .05 level, 𝛼 is computed as follows: 

    𝛼′ =  𝜖/k*,             (2) 
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where 𝜖 is equal to the nominal familywise error rate. Thus, the alpha level for each 

pairwise comparison is equal to the desired familywise error divided by the number of 

comparisons being made. This is a direct attempt to combat the multiplicative increase in 

Type I error for conducting multiple comparisons. 

Dunn (1961) noted that when the number of comparisons is large, the Bonferroni 

method results in wider confidence intervals (i.e., less power) than other methods. 

Relative to other PCP methods, the Bonferroni procedure also may not detect group mean 

differences even when assumptions are met (Curran-Everett, 2000). Moreover, there is 

evidence that unequal group sizes increase Bonferroni Type I error rates, whereas 

heterogeneous variances have little effect (Demirhan et al., 2009). Kromrey and La 

Rocca (1995) concluded that the Bonferroni procedure (which they refer to as the Dunn 

procedure) maintained Type I error control in a liberal sense (i.e., less than .075 when 

nominal alpha was .05) for unequal variances in most cases. However, Type I error was 

still inflated. 

 Sidak. The Sidak (1967) test is a modification of the Bonferroni procedure that 

provides slightly more power by allowing a slightly larger 𝛼 for each comparison. Instead 

of using equation 2 to modify the alpha level used with equation 1, the following 

equation is used: 

    𝛼′′ = 1 − (1 − 𝜖) 
1

k*.            (3) 

The above equation is derived by solving equation 4 for 𝛼𝑐, the per comparison 

error rate for m multiple comparisons if the nominal familywise error rate is 𝛼𝑓: 

   𝛼𝑓  = 1 − (1 − 𝛼𝑐) 𝑚.           (4) 
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Thus, the Sidak equation actually determines the precise alpha level per comparison (𝛼𝑐) 

to ensure the overall familywise error rate (𝛼𝑓) is the nominal level (usually .05). The 

Bonferroni procedure corrects for Type I error in a strict additive sense (the alpha per 

comparison sums to the desired familywise alpha) which is more conservative than 

necessary because the familywise error is not equal to the sum of the error rates for each 

comparison. The Sidak method provides a more exact alpha level per comparison so that 

the familywise error will be the same as the nominal level (instead of below it), thus 

increasing power. However, the Sidak test loses power when group sizes or variances are 

unequal (Demirhan et al., 2009). 

 Student-Newman-Keuls (SNK). The Student-Newman-Keuls (SNK) procedure is, 

unsurprisingly, named for three papers by Student (1927), Newman (1939), and Keuls 

(1952). This test is a sequential PCP that uses the step-down procedure to compare 

means. Thus, means are ordered and the largest and smallest are compared first. If the 

largest and smallest means statistically significantly differ, the next smallest is compared 

with the largest and the smallest is compared with the next largest, and so on until all 

comparisons are made. Comparisons that are not statistically significant are placed in 

homogeneous subsets, which SPSS displays in the output. If two group means are in 

different subsets, they differ statistically. A comparison is statistically significant if the 

following equation holds: 

    𝑥𝑖 − 𝑥𝑗  > 𝑄ℎ𝑆𝜀,𝑟,𝑓,            (5) 

where ε is equal to (1 – α)/2 for a two-tailed test, r is the number of steps between the 

ordered means being compared, f is the degrees of freedom from the MSE term, and 𝑄ℎ is 

equal to 𝑠𝑝𝑝/√𝑛ℎ where 𝑛ℎ is the harmonic mean of the sample size, 
𝑘

∑ 𝑛𝑖
−1

1≤𝑖≤𝑘
. This is 
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the first test described that utilizes the Studentized range statistic, which is similar to a t-

statistic. Note that the critical value of the Studentized range statistic (and consequently 

the SNK test) depends on r, the number of steps between means, and thus differs across 

comparisons. Thus, the critical value for each comparison will depend on how close the 

means being compared are relative to all the other group means. 

 The SNK does not control Type I error when assumptions are met except in the 

special case of three groups (Einot & Gabriel, 1975; Ramsey, 1978; Ramsey, 1981). 

Further, when assumptions are not met, the SNK is negatively affected by unequal group 

sizes and variances in terms of both power and Type I error (Demirhan et al., 2009), 

particularly when the smallest group has the largest variance (Petrinovich & Hadrych, 

1969) and as the number of groups increases (Kromrey & La Rocca, 1995). 

 Tukey’s honestly significant difference (HSD). Tukey’s honestly significant 

difference (HSD) test (also called Tukey’s A and, sometimes, wholly significant 

difference [WSD]) is one of the most popular PCPs used (if not the most popular). 

Described as what “may be the most frequently cited unpublished paper in the history of 

statistics” (Toothaker, 1993, pp. 32-33), Tukey first introduced the HSD in a 

mimeographed monograph. This procedure, similar to the SNK, also utilizes the 

Studentized range statistic. In fact, Tukey’s HSD is computed in the same way as in 

equation 5, except for the two differences seen in equation 6. First, instead of using r to 

compute the critical value, Tukey proposed using k, the number of groups. Thus, the 

critical value for each comparison is the same, because k is constant, meaning all 

comparisons are computed simultaneously. Second, Tukey’s HSD uses Qi,j instead of Qh:  

    𝑥𝑖 − 𝑥𝑗  > 𝑄𝑖,𝑗𝑆𝜀,𝑘,𝑓.            (6) 
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SPSS will produce redundant homogeneous subset output and pairwise comparison 

output for Tukey’s HSD. Tukey’s HSD was designed for equal variance and equal 

sample sizes. If these assumptions are violated, the test can become either more 

conservative or too liberal. 

 When assumptions are met, Tukey’s HSD controls Type I error well with power 

that is about average, being greater than some and less than other PCPs (Petrinovich & 

Hadrych, 1969; Ramsey, 1981; Seaman, Levin, & Serlin, 1991). However, when 

assumptions are not met, Tukey’s HSD does not strictly control Type I error when 

variances are unequal at ratios of 13:1 (Kromrey & La Rocca, 1995) or the smallest group 

has the largest variance (Petrinovich & Hardyck, 1969). 

 Tukey’s B. Far less well known is Tukey’s B (which is unfortunately also 

frequently referred to as the wholly significant difference [WSD] test and thus sometimes 

confused with Tukey’s HSD). Tukey’s B is a compromise between the SNK and Tukey’s 

HSD tests. The range statistic is computed as the average of the Studentized range 

statistics from the two tests: ½(Sε,r,f + Sε,k,f). Thus, as with the SNK, each comparison will 

have a slightly different critical value associated with it. Additionally, Tukey’s B uses the 

harmonic mean (Qh), like the SNK. SPSS outputs homogeneous subset information for 

Tukey’s B. 

 Because Tukey’s B is a compromise between the SNK and the HSD, it will 

perform somewhere in the middle in terms of Type I error control and power when 

assumptions are met, and will control Type I error adequately for three groups 

(Petrinovich & Hardyck, 1969). In other words, Tukey’s B will be more conservative 

than the SNK but more powerful than the HSD (Duncan, 1955; Petrinovich & Hardyck, 
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1969). When assumptions were violated, Tukey’s B was too liberal with three groups if 

the smallest group had the largest variance (Petrivonich & Hardyck, 1969). 

 Scheffé. Scheffé developed his method for simultaneously computing all possible 

comparisons (not just pairwise comparisons; Scheffé, 1953). The advantage to Scheffé’s 

method is that it allows a researcher to conduct any post-hoc comparison he or she 

desires. The trade-off for this is lower power and a too conservative Type I error rate. 

Further, researchers often only care about pairwise comparisons, making the utility of the 

Scheffé test a moot point. A given comparison is statistically significant if: 

    𝑥𝑖 − 𝑥𝑗  > 𝑄𝑖,𝑗√2(𝑘 − 1)𝐹1−𝛼(𝑘 − 1, 𝑓).         (7) 

SPSS provides both homogeneous subset output and pairwise comparison data for the 

Scheffé test. 

The Scheffé test tends to be conservative and underpowered when data 

assumptions are met and the number of groups is large (Games, 1971; Ozkaya & Ercan, 

2012; Petrinovich & Hardyck, 1969). Violations of assumptions can serve to exacerbate 

or lessen this problem depending on the manner of the violations (Keselman & Rogan, 

1978; Petrivonich & Hardyck, 1969). 

 Duncan’s multiple range test. Duncan’s (1955) multiple range test (MRT) is very 

similar to the SNK, but designed with an increase in power in mind. The difference 

between the two tests lies in an adjustment to the Studentized range value’s alpha level. 

Instead of using the nominal familywise error (𝜖), Duncan’s test uses the following 

formula: 

    𝛼 = 1 − (1 − 𝜖) 𝑟−1.            (8) 
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The change to the alpha level used in computing the Studentized range value results in 

more liberal tests for those comparisons where the range between means is larger. 

 When assumptions are met, the multiple range test tends to inflate Type I error 

rate (Carmer & Swanson, 1973), particularly when k > 3 (Petrinovich & Hardyck, 1969; 

Seaman, Levin, & Serlin, 1991). Type I error for Duncan’s multiple range test is affected 

by unequal group sizes (Demirhan et al., 2009). Ozkaya and Ercan (2012) also found 

inflated Type I error rates when group sizes differed. Unequal variances inflate Type I 

error if the smallest group has the largest variance (Petrinovich & Hardyck, 1969). 

 Hochberg’s GT2. The Generalized T procedures (GT1 and GT2) were originally 

designed as a way of extending Tukey’s HSD for data with non-homogenous variances or 

unequal covariances (Hochberg, 1974). The GT2 was shown to provide more power than 

the Bonferroni and Scheffé tests when assumptions were met due to its use of the 

Studentized maximum modulus. A pairwise comparison is statistically significant if the 

following inequality holds: 

    𝑥𝑖 − 𝑥𝑗  > 𝑄𝑖,𝑗√2𝑀𝜀,k*,𝑓,           (9) 

where 𝑀𝜀,k*,𝑓 is the Studentized maximum modulus with degrees of freedom equal to k*, 

the number of comparisons, and f, the degrees of freedom for the MSE term. SPSS will 

give both homogeneous subset output and pairwise comparison output for Hochberg’s 

GT2. 

The GT2 can be conservative when sample sizes and/or variances are unequal 

(Demirhan et al., 2009; Dunnett, 1980a). Conversely, the GT2 has also been shown to 

have largely inflated Type I error rates when the smallest group has the largest variance 

(Keselman, Games, & Rogan, 1979), a condition that usually causes inflated Type I error 
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(Glass, Peckham, & Sanders, 1972). Still other research has found that the GT2 was 

robust to assumption violations, except when the variances were unequal at larger 

proportions (such as 1:10; Tamhane, 1979).  

 Gabriel. Gabriel’s (1978) pairwise comparison test was designed for comparison 

of confidence intervals when group sizes differed. Two means were said to be statistically 

significantly different if and only if their respective confidence intervals computed via 

Gabriel’s method were disjoint. The algorithm utilized by SPSS for pairwise comparisons 

is: 

    |𝑥𝑖 − 𝑥𝑗|  ≥ 𝑠𝑝𝑝 (
1

√2𝑛𝑖
+

1

√2𝑛𝑗
) 𝑀𝜀,k*,𝑓.       (10) 

The Gabriel test in SPSS will provide both homogeneous subset output and pairwise 

comparison output. When computing the homogeneous subsets, the harmonic mean nh is 

used instead of ni and nj. Thus, slightly different results could arise when comparing the 

pairwise and homogeneous subset output. 

Gabriel (1978) found that largely imbalanced group sizes tended to result in 

inflated Type I error, though the test was conservative for less disparate sample sizes. 

Dunnett (1980a) found that Gabriel’s test was conservative when group sizes were 

unequal but variances were equal. If the differences among group sizes became too large, 

Gabriel’s test became too liberal. Demirhan et al. (2009) also found that unequal group 

sizes increased Type I errors. Further, they found that heterogeneous variances affected 

Type I errors, and Keselman, Games, and Rogan (1979) found that when the smallest 

group size was paired with the largest variance, Type I error increased dramatically. 

 Waller-Duncan t-test. The Waller-Duncan t-test works similarly to Fisher’s LSD, 

but instead employs Bayesian methods to create homogeneous subsets (Duncan, 1965; 
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Waller & Duncan, 1969). Additionally, the Bayesian t-statistic (tB) is based in part on a 

relative seriousness ratio of Type I to Type II error (w)5. The equation used for 

conducting the test is: 

    𝑣𝑖,𝑗 = 𝑥𝑖 − 𝑥𝑗  ≥ 𝑡𝐵(𝑤, 𝐹, 𝑞, 𝑓)𝑠𝑝𝑝√2

𝑛
,       (11) 

where F is the F-ratio from the one-way ANOVA, q = k – 1,  f = k(n – 1), and n is the 

group size. The default w ratio in SPSS is set at 100:1, which approximates to an alpha 

level of .05 (alternately, a ratio of 50:1 approximates an alpha of .10 and a ratio of 500:1 

approximates an alpha of .01). As the F-ratio increases, tB decreases, resulting in a more 

powerful test when assumptions are met. Equation 11 is for equal sample sizes; if sample 

sizes are unequal, nh is used in place of n. 

 Waller and Duncan (1969) noted that their Bayesian t-test tends to inflate Type I 

error rate when the accompanying F-test is moderate to large, but is more conservative 

when F is small. Similarly, Carmer and Swanson (1973) noted an inflated Type I error 

rate, particularly as the number of comparisons increased. However, they noted that the 

Waller-Duncan test had good power. 

 Dunnett’s t-tests. Dunnett (1955) proposed a special solution to the multiple 

comparison problem when a researcher wishes to compare treatment groups to a control 

group. Because of the nature of this design, Dunnett showed that the confidence intervals 

constructed around the means were narrower than those created by Tukey’s HSD or 

Scheffé’s test, thus increasing power when assumptions were met. Dunnett provided 

equations for two-tailed or one-tailed tests against the control group. SPSS also offers 

these capabilities, but I will limit myself to the two-tailed case because this is the more 

                                                           
5 That is, w is a user-defined ratio of which error is considered more detrimental: Type I or Type II. 
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popular and conservative test. To compute Dunnett’s two-tailed t-test, see equations 12.1 

to 12.36.  

    |𝑥𝑖 − 𝑥0|  > 𝑑𝑘,𝑣
𝜀 𝑠𝑑𝑑√

1

𝑛0
+

1

𝑛𝑖
,      (12.1) 

where x0 is the control group and 𝑑𝑘,𝑣
𝜀  is the upper 100ε percentage point of the 

distribution of: 

𝑇 = max1≤𝑖≤𝑘{|𝑇𝑖|} ,       (12.2) 

where 

𝑇𝑖 =
(𝑥𝑖−𝑥0)

𝑠𝑑𝑑√
1

𝑛0
+

1
𝑛𝑖

 and 𝑠𝑑𝑑
2 =

∑ ∑ (𝑥𝑖𝑗−
𝑛𝑖
𝑗=1

𝑥𝑖)2𝑘
𝑖=0

∑ (𝑛𝑖−1)𝑘
𝑖=0

.     (12.3) 

Dunnett’s t-tests were designed for equal groups and will only provide approximate 

values when group sizes differ (Dunnett, 1955). 

 Ryan-Einot-Gabriel-Welsch (REGW) tests. There are two tests that arose out of a 

series of papers by Ryan (1960), Einot and Gabriel (1975), and Welsch (1977): the Ryan-

Einot-Gabriel-Welsch range test (REGWQ) and the Ryan-Einot-Gabriel-Welsch F test 

(REGWF). Both tests utilize a modified significance level based on the number of steps 

between means computed as: 

    𝛾𝑟 = {1 − (1 − 𝜖)
𝑟

𝑘⁄     if 𝑟 < 𝑘 − 1
𝜖                             if 𝑟 ≥ 𝑘 − 1

.        (13) 

The simpler REGWQ test is based on a Studentized range statistic, and a comparison is 

deemed statistically significant if: 

    max𝑖,𝑗∈𝑅{(𝑥𝑖 − 𝑥𝑗)√min (𝑛𝑖, 𝑛𝑖𝑗)}/𝑠𝑝𝑝 ≥ 𝑆𝛾𝑟,𝑟,𝑓.      (14) 

The REGWF test is based on an F-statistic and is computed as: 

                                                           
6 For information on how Dunnett’s one-tailed t-tests are computed, see IBM (2014). 
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(∑ 𝑛𝑖𝑖∈𝑅 𝑥𝑖

2
−(∑ 𝑛𝑖𝑥𝑖𝑖∈𝑅 )2/ ∑ 𝑛𝑖𝑖∈𝑅 )

(𝑟−1)𝑠𝑝𝑝
2 ≥ 𝐹𝛾𝑟,𝑟−1,𝑓,       (15) 

where r = j – i + 1 and summations are over R = {i,…,j}. Both the REGWQ and REGWF 

tests produce homogeneous subset output only. 

 When assumptions are met, the REGW tests tend to be conservative (Seco, de la 

Fuente, & Escudera, 2001). Ramsey (1981) found that the REGWQ tended to control 

Type I error fairly well in an ideal situation where pairs of means were equal and equally 

spaced from other pairs of means. In other mean configurations, the REGWQ exhibited 

more power than the Tukey HSD. Unequal sample sizes decreased power and increased 

Type I errors for the REGWQ, while heterogeneous variances primarily affected Type I 

error (Demirhan et al., 2009). 

 PCPs for unequal variances and sample sizes. A smaller set of four tests 

available in SPSS 23 and 24 do not have the same strict OLS assumptions as the previous 

PCPs. These tests were created for violation of these assumptions, and thus are theorized 

to perform adequately in those scenarios. To accommodate heterogeneous variances and 

sample sizes, variances are weighted by sample size and an estimate is used for the mean 

square error degrees of freedom. The adjusted degrees of freedom term from Welch 

(1938) is 

    𝑣 =
(

𝑠𝑖
2

𝑛𝑖
+

𝑠𝑗
2

𝑛𝑗
)

2

𝑠𝑖
4

𝑛𝑖
2𝑣𝑖

+
𝑠𝑗

4

𝑛𝑗
2𝑣𝑗

           (16) 

where 𝑠𝑖
2 and 𝑠𝑗

2 are the variances for groups i and j, respectively, and 𝑣𝑖 and 𝑣𝑗  are the 

degrees of freedom for groups i and j, respectively. The weighted variance term only uses 

the sample sizes and variances from the two groups being compared, and is equal to 
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    𝑄𝑖,𝑗
∗ = √

𝑠𝑖
2

𝑛𝑖
+

𝑠𝑗
2

𝑛𝑗
.          (17) 

 Tamhane (1979) noted that (at least for the Games-Howell and T2) the tests 

designed for violation of assumptions may not be as powerful when assumptions are met. 

However, he notes that the loss of effectiveness is not large when sample sizes are 

relatively equal. Because the following tests are designed for assumption violations, little 

research has been conducted on their performance when assumptions are met. 

 Games-Howell. The Games-Howell (1976) pairwise comparison test is a simple 

modification of the Tukey HSD that incorporates the adjustments to pooled standard 

deviation and degrees of freedom. A comparison is statistically significant if the 

following is true: 

    |𝑥𝑖 − 𝑥𝑗  | ≥ 𝑄𝑖,𝑗
∗ 𝑆𝜀,𝑘,𝑣/√2.         (18) 

When assumptions are met, the Games-Howell procedure controlled Type I error 

rate fairly well, generally being near the nominal value (Dunnet, 1980b). When 

assumptions were violated, the Games-Howell procedure was found to be slightly liberal 

when group sizes were small (i.e., less than 14; Dunnett, 1980b; Tamhane, 1979). 

Additionally, Demirhan et al. (2009) indicated that heterogeneous variances and unequal 

group sizes affected comparisons employing the Games-Howell method, although they 

did not specifically say in what way and indicated that increasing the number of groups 

seemed to combat these effects. In contrast, Hsiung and Olejnik (1991) found the Games-

Howell procedure to adequately control Type I error for data conditions with a 16:1 ratio 

of largest to smallest variance and a 2:1 ratio of largest to smallest group size. Keselman 

and Rogan (1978) found similar results with more discrepant variances and group sizes 
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(roughly 22:1 and 3:1, respectively). Further, they concluded that the Games-Howell 

procedure provided the most power (when compared to several other PCPs) when 

assumptions were violated. 

 Tamhane’s T2. Tamhane (1979) compared several PCPs designed to control 

Type I error when variances were heterogeneous. Among those tested were two of his 

own design: the T1 and T2 procedures. However, “it was demonstrated that T1 is highly 

conservative relative to T2” (Tamhane, 1979, p. 473), and, consequently, the T2 was 

deemed the better test and studied further. The T2 is a modified t-test deemed significant 

if: 

    |𝑥𝑖 − 𝑥𝑗  | ≥ 𝑄𝑖,𝑗
∗ 𝑡𝛾,𝑣, where 𝛾 = 1 − (1 − 𝜖) 

1

k*.      (19) 

The modified significance level is based on the Sidak (1967) test, which uses the same 

adjustment to significance level. Tamhane (1979) suggested a modified version of the T2 

(called the T2′ in his paper) for use in certain data conditions when the group sizes and/or 

group variances are only slightly heterogeneous. However, this modification does not 

appear as an option in SPSS. 

Dunnett (1980b) showed that the T2 tended to be too conservative when group 

sizes and variances were equal. The power of the T2 test is negatively impacted by 

unequal group sizes, though less so for larger numbers of groups (Demirhan et al., 2009; 

Dunnett, 1980b). 

 Dunnett’s C and T3. Dunnett (1980b) extended the work done by Tamhane 

(1979) and developed two new PCPs for simulation study: C and T3. Dunnett’s C is a 

three or more group extension of Cochran’s (1964) solution to the issue of comparing 
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means for two groups with different variances (referred to as the Behrens-Fisher 

problem). A comparison with Dunnett’s C is statistically significant if: 

    |𝑥𝑖 − 𝑥𝑗  | ≥ 𝑄𝑖,𝑗
∗

(
𝑆𝜀,𝑘,𝑛𝑖−1𝑠𝑖

2

𝑛𝑖
⁄ +

𝑆𝜀,𝑘,𝑛𝑗−1𝑠𝑗
2

𝑛𝑗
⁄ )

√2(
𝑠𝑖

2

𝑛𝑖
⁄ +

𝑠𝑗
2

𝑛𝑗
⁄ )

.       (20)  

 Dunnett examined the performance of the C statistic under heterogeneous 

variances and group sizes and found it to perform best in moderate to large sample sizes, 

whereas it was too conservative at small sample sizes. Further, when group sizes and 

variances were equal, the C tended to be too conservative. Similarly, Hsiung and Olejnik 

(1999) concluded that the C statistic was conservative with small samples. 

Dunnett’s (1980b) T3 is an extension of Tamhane’s T2 that is based on Sidak’s 

(1967) uncorrelated t inequality instead of the multiplicative inequality the T2 uses. 

Computed with the Studentized maximum modulus, means differ if the following 

inequality holds: 

    |𝑥𝑖 − 𝑥𝑗  | ≥ 𝑄𝑖,𝑗
∗ 𝑀𝜀,k*,𝑣.         (21) 

Dunnett found that the T3 was less conservative than Tamhane’s T2 while still 

controlling Type I error rate for unequal group sizes and variances, though it was 

conservative when variances and group sizes were equal. Demirhan et al. (2009) found 

that heterogeneous variances decreased power for the T3.  

Research questions 

 Table 2 contains a summary of the PCPs with some general comments on Type I 

error and power when assumptions are met and unmet. The research questions addressed 

in this paper are: (a) in a fully true null hypothesis scenario, which PCP is best suited to 

maintaining Type I error control when the assumptions of OLS estimation are met and 
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the assumptions of OLS estimation are not met; (b) in a partly true null hypothesis 

scenario, which PCP is best suited to maximize power while maintaining Type I error 

control when assumptions are met and assumptions are not met; and (c) in a fully false 

null hypothesis scenario, which PCP is best suited for maximizing power when 

assumptions are met and assumptions are not met? 
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Chapter 3. Method 

Simulation 

Conditions. Table 3 shows the simulation conditions under four factors: 

hypothesis, number of groups, group sizes, and group variances. In short, the number of 

groups were 3, 5, or 7, the sample sizes were either equal at 60 per group or unequal at a 

ratio of 1:5, and the variances were either equal to 1 or differed by a ratio of 1:7. Two 

sets of conditions were created when both group sizes and variances were unequal. For 

one set, the largest variance was paired with the largest group. In the second set, the 

opposite occurred: the smallest group had the largest variance. Each combination of 

number of groups, group sizes, and group variances were replicated for fully true null 

hypotheses (i.e., groups were simulated with equal means to represent coming from the 

same population), partly true null hypotheses (i.e., groups were simulated to come from 

one of two populations and groups from the same population were simulated with the 

same mean), or fully false null hypotheses (i.e., all groups were simulated from different 

populations with different means). The group means differed depending on the 

hypothesis condition (more information in the “Data” section below).  

There were a total of 45 data conditions. Hypothesis, number of groups, sample 

size ratio, and variance ratio were crossed (3 X 3 X 2 X 2) for a total of 36 conditions. 

Additionally, within the cells where both sample sizes and variances were unequal, there 

were two configurations of the variance ratio: smallest variance with the largest group or 

smallest variance with the smallest group, adding another 9 cells in the design. Each of 

these 45 data conditions was replicated 1,000 times. In a similar study, Demirhan et al. 

(2010) found no difference between 1,000 and 5,000 replications, which informed the 
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decision to complete only 1,000 replications. Across the 45 conditions, there was a total 

of 45,000 replications. 

The decisions made for the group sizes and variances were mostly based on 

previous literature, but also partly based on good practice. For many of the PCPs studied, 

the computing limitations at the time of development restricted the sample sizes tested to 

quite small numbers (e.g. as low as 6 in Games & Howell, 1976). Some recent 

evaluations of PCPs also maintain small sample sizes (as low as 4 in Demirhan et al., 

2010). In part because literature already exists in the field at these small sample sizes and 

in part because good practice indicates that sampling error of group sizes so small can be 

detrimental to precision of results, I chose to keep the minimum group size at 20. For 

unequal group size conditions, the 1:5 ratio results in a 20-100 sample size range. This 

ratio tends to be slightly larger than what is used in the literature, but is realistic in 

educational research, where focal groups may be much smaller than comparison groups 

(e.g., comparing African American students to White students at a primarily White 

institution). For the variance, the ratio of 1:7 was consistent with the average in the 

literature, which ranged anywhere from 1:2 to 1:16. 

Data. Data were simulated via SAS 9.4 using the “rannor” command, which pulls 

a random number from a normal distribution with a mean of 0 and a variance of 17. For 

the fully true null hypothesis conditions, means were set to 10 by adding 10 to each 

random number, to avoid negative values. For the partly true null hypothesis conditions, 

one set of means was fixed at 10 and the other group of means was set to a value equal to 

0.6 standard deviations above the fixed means (a medium effect size; Cohen 1992). This 

                                                           
7 SAS syntax for simulating the data is available upon request. 
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is the standardized mean difference used in Cohen’s d, except that Cohen’s d is defined 

by the pooled within-group variances of only two groups. I instead used the square root 

of the MSE term from the ANOVA as the measure of shared variance to compute the 

appropriate means corresponding to a standard deviation difference of 0.6. For the fully 

false null hypothesis conditions, all means differed. The mean for group 1 was fixed at 10 

and the mean for the last group was 0.6 standard deviations larger than the first mean. 

The remaining group means were equally spaced between the smallest and largest means. 

Consequently, the standard deviation difference between means depended on the number 

of groups. For example, the mean difference between adjacent group means was smaller 

in the 7-group case than in the 3-group case.  

Given that the variances and sample sizes for groups differ in some conditions, 

means also differed for conditions. Table 3 shows the means assigned to each group for 

each condition. The consistency across conditions comes from the repeated maximum 

difference of 0.6 standard deviations between the group means. For conditions where 

variances differed between groups, the data were multiplied by the appropriate square 

root of the variance (i.e., standard deviation; see Table 3) prior to adding the desired 

mean value. 

The final two columns of Table 3 detail the theoretical range of per-pair power 

and omnibus F-test power for the fully true and partly true null hypothesis conditions. 

The per-pair power values were computed as the theoretical power of independent 

samples t-tests between all simulated groups within a condition. Thus, I expected the 18 

PCPs under study to provide slightly lower per-pair power because they were designed to 

control Type I error and should consequently be less powerful. The omnibus power 
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reported in Table 3 is the theoretical power of the omnibus ANOVA F-test to reject the 

null hypothesis that all group means are equal. I expected that any-pairs power for the 18 

PCPs would closely align with the omnibus power.  

Procedure and measures 

 Once data were simulated, a macro was written in SPSS 23 to open the data, run 

the one-way ANOVA, and output the relevant PCP data to a text file8. Syntax for the 

SPSS macro is available in Appendix A. Then, the text file was read into SAS 9.4 and 

analyzed. Familywise Type I error rate (a.k.a. experimentwise Type I error rate) was 

computed for the fully true null hypothesis and partly true null hypothesis conditions, and 

false discovery rate (FDR) was computed for the partly true null hypothesis (FDR is 

equal to 1 in fully true null hypothesis conditions and equal to 0 in fully false null 

hypothesis conditions). Per-pair power, any-pair power, and all-pairs power were 

computed for the partially true null hypothesis and fully false null hypothesis conditions. 

The values from the five measures were each aggregated across all relevant replications 

to provide an average measure value for every PCP.  

 

 

 

 

 

 

 

                                                           
8 The macro also runs in SPSS 24 without modification. 
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Chapter 4. Results 

 Results are partitioned into three sections that align with my research questions. 

First, results pertaining to the fully true null hypothesis conditions (i.e., Type I error) are 

presented. Then, results for the partly true null hypothesis conditions are given (Type I 

error, FDR, and power). Because it is of secondary interest, only the range of FDR values 

is provided. Finally, the results from the fully false null hypothesis conditions are 

provided (power). Within each of the three sections, any general comments about the 

performance of the PCPs are given before going into specific results for the PCPs. 

Fully true null hypothesis conditions 

 Recall that in these conditions, groups were simulated to come from the same 

population. Thus, group population means were equal. Tables 4-6 show the Type I error 

rates for each of the 18 PCPs in the fully true null hypothesis conditions for 3, 5, and 7 

groups, respectively. Bolded cells indicate that a test was either too conservative or too 

liberal when controlling Type I error9. Several tests never or almost never adequately 

controlled Type I error rate at the nominal level (Duncan’s MRT, Fisher’s LSD, and the 

Waller-Duncan test) and are thus removed from further consideration in this section.  

 Assumptions are met. Even when the assumptions of ANOVA are met (Equal N, 

Equal SD condition), only a subset of tests adequately control Type I error near the 

nominal level of .05 (Dunnett’s t, Games-Howell, REGWF, REGWQ, SNK, Tukey’s B, 

and Tukey’s HSD). Most of the remaining tests (Bonferroni, Dunnett C, Dunnett T3, 

Gabriel, Hochberg, Sidak, and Tamhane) controlled Type I error in the 3-group 

                                                           

9 The acceptable range of values [.037 to .063] was defined as 𝛼 ± 1.96√
𝛼(1−𝛼)

1000
, where α was equal to .05. 

Using the normal approximation to the binomial distribution, this is the 95% confidence interval for a 

proportion of .05 with 1,000 samples. 
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conditions but became too conservative as the number of groups increased. The Scheffé 

test was always too conservative. 

 Assumptions are not met.  

 Equal N, Unequal SD. In the 3-group case, all tests controlled Type I error 

well10. However, as the number of groups increased, only the PCPs designed for unequal 

variances—Dunnett’s C, Dunnett’s T3, Games-Howell, and Tamhane—maintained Type 

I error at the nominal rate. All other tests became too liberal with the exception of the 

Scheffé test, which was again too conservative. 

 Unequal N, Equal SD. For 3 groups, most tests controlled Type I error well, 

except for the REGWQ and Scheffé tests that were too conservative. With 5 groups, a 

large number of tests became too conservative. Only the Gabriel, Games-Howell, 

REGWF, SNK, Tukey’s B, and Tukey’s HSD tests maintained adequate Type I error 

rates. Then, with 7 groups, the Dunnett’s C, Dunnett’s t, Gabriel, Games-Howell, 

REGWF, and Tukey’s HSD performed well. Most other tests were too conservative, 

except for the SNK and Tukey’s B, which were too liberal. 

 Unequal N, Unequal SD (large). When the largest group had the largest variance, 

tests tended towards being too conservative. Only Dunnet’s C, Dunnet’s T3, and Games-

Howell maintained appropriate Type I error rates across all three group sizes. The 

Tamhane test, which is also designed for assumption violations like the above three tests, 

and Dunnett’s t were conservative with 3 groups but performed well for 5 and 7 groups. 

Tukey’s HSD controlled Type I error adequately in the 5-group case, but not in the 3- or 

7-group conditions. 

                                                           
10 Excluding Duncan’s MRT, Fisher’s LSD, and the Waller-Duncan as indicated previously. 
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 Unequal N, Unequal SD (small). When the smallest group had the largest 

variance, almost every test was too liberal for 3 and 5 groups. Only Dunnett’s C, 

Dunnett’s T3, the Games-Howell, and the Tamhane tests adequately controlled Type I 

error. With 7 groups, Dunnett’s C, Dunnett’s T3, and the Tamhane all became too 

conservative, while the Games-Howell continued to control Type I error. Additionally, 

the REGWQ and the Scheffé tests had acceptable Type I error rates in the 7-group 

conditions, though this is likely due to their conservative nature overall rather than 

appropriate control of Type I error. All other tests were too liberal in the 7-group 

conditions. 

 Summary. Most tests did not maintain the nominal Type I error rate (within 

sampling variability) in multiple conditions. The tests designed for assumption violations 

(Dunnett’s C, Dunnett’s T3, Games-Howell, and Tamhane) tended to perform better than 

other tests across the majority of conditions, including when assumptions were met. Only 

the Games-Howell test had acceptable Type I error rates across all conditions. In the 

fourth condition, when the largest group had the largest variance, tests were often too 

conservative. While not problematic in the fully true null hypothesis conditions, power 

can be negatively affected by Type I error rates that are too conservative. Conversely, in 

the condition where the smallest group had the largest variance, Type I error rates were 

often triple or quadruple the nominal level.  

Partly true null hypothesis conditions 

 Moving forward to the partly true null hypothesis conditions, where groups were 

simulated to come from one of two populations with different means, necessitates 

consideration of the effects of Type I error control on power. A test can have high power 
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due solely to not controlling Type I error. Essentially, a test could lead researchers to 

reject virtually every null hypothesis, resulting in high Type I error rates, but 

simultaneously detect every significant difference, thus having high power. Because 

researchers can never know which situation their data fall under (i.e., null or alternative 

distribution), blindly using a test that provides high power at the expense of increased 

Type I error rates is poor practice. Similarly, using a test that controls Type I error rate so 

tightly that power is negatively affected is also poor practice. Thus, when I report power 

statistics for the partly true and fully false null hypothesis conditions, I only do so for the 

four tests that maintain control over Type I error in all conditions: Dunnett’s C, Dunnett’s 

T3, Games-Howell, and Tamhane. Power statistics for all other tests are available in 

Appendix B11. I will continue to report Type I error rates for all tests. 

 Recall that the power statistics reported are any-pairs power, all-pairs power, and 

per-pair power. In this study, any-pairs power for a test was computed as the proportion 

of replications out of 1,000 that correctly identified at least one statistically significant 

difference. All-pairs power was computed as the proportion of replications out of 1,000 

where every statistically significant difference was correctly identified. Per-pair power 

was computed as the proportion of replications out of 1,000 that correctly identified a 

statistically significant difference for each individual comparison. Specifically, I report 

the lowest per-pair power (i.e., the smallest proportion) and the highest per-pair power 

(i.e., the largest proportion). 

                                                           
11 These power values should not be interpreted in isolation: instead, always refer back to a test’s Type I 

error rates. Researchers should ask themselves: is my power false (i.e., coming from inflated Type I error 

rates) or true (i.e., a function of the test)? 
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 The Type I error rates and FDR of the 18 PCPs in the 3-group, 5-group, and 7-

group conditions are shown in Tables 7-9, respectively. Largely, tests appeared to control 

Type I error rate fairly well, at least at the .05 level. In fact, most tests tended to be more 

conservative than the .05 level because some comparisons for each test in every condition 

were simulated not to have true differences. Thus, the number of comparisons that can 

possibly result in a Type I error was reduced to 1 out of 3 for 3 groups, 4 out of 10 for 5 

groups, and 9 out of 21 for 7 groups. But because these tests were designed to control 

Type I error in a familywise manner, the Type I error rates reported were essentially an 

aggregate of 1, 4, or 9 per comparison Type I error rates when attempting to control 

familywise error for 3, 10, or 21 comparisons. As a result, tests that have Type I error 

rates somewhere in the range of .01-.05 were considered as controlling Type I error well. 

 Assumptions are met. In the Equal N, Equal SD condition, the Duncan, LSD, 

and SNK tests were all too liberal for all group sizes. When there were 3 groups, both of 

the REGW tests (REGWQ and REGWF) were also too liberal. All other tests controlled 

Type I error adequately with 3 groups. Further, with 5 groups, every test but the Duncan, 

LSD, and SNK controlled Type I error adequately. However, with 7 groups, the Waller-

Duncan test also became too liberal. Some tests (the REGWF, REGWQ, and Tukey’s B) 

controlled Type I error near the .05 level, whereas other tests were conservative 

(Scheffé). FDR values ranged from .010 to .040 for 3 groups, from .002 to .035 for 5 

groups, and from .003 to .041 for 7 groups.  

 Power levels for the Dunnett’s C, Dunnett’s T3, Games-Howell, and Tamhane 

tests are shown in Figures 1-3 for 3, 5, and 7 groups, respectively. When assumptions 

were met, all four tests provided high any-pairs power that increased as the number of 
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groups increased. Intuitively, this makes sense, because as the number of groups 

increased, so did the number of comparisons being made. Consequently, it was more 

likely that at least one of the comparisons accurately rejected the null hypothesis. Similar 

logic, but in reverse, was behind the decrease in all-pairs power from around .65 for 3 

groups to around .25 for 7 groups: the more comparisons possible, the less likely to 

correctly reject all of the null hypotheses that should be rejected. Additionally, as the 

number of groups increased, the effect size between adjacent means decreased because 

the smallest group mean was always 0.6 standard deviations lower than the largest group 

mean with the rest of the groups interspersed equally in between. Per-pair power also 

decreased from just under .80 to around .60 when moving from 3 to 7 groups. However, 

the margin between the lowest per-pair power and highest per-pair power remained 

similar across changes in group sizes. 

 Assumptions are not met. 

 Equal N, Unequal SD. For three groups, all tests controlled Type I error below 

the .05 level. Many tests were quite conservative in their control (< .01), but the Duncan, 

Dunnett’s C, Dunnett’s T3, Games-Howell, LSD, REGWF, REGWQ, SNK, and 

Tamhane had less extreme values (> .01). Tests became more liberal with 5 groups, and 

the Duncan, LSD, and SNK tests no longer controlled Type I error near the .05 level. The 

REGWF, REGWQ, Tukey’s B, and Waller-Duncan tests all controlled Type I error near 

the .05 level, and, in some cases, at rates slightly above .05. Results were largely similar 

between 5 groups and 7 groups, except that Dunnett’s t also became slightly too liberal. 

FDR values ranged from .001 to .012 for 3 groups, from .003 to .034 for 5 groups, and 

from .003 to .041 for 7 groups. 
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 All-pairs power in the Equal N, Unequal SD condition was nearly identical to the 

Equal N, Equal SD condition. Any-pairs power was just under .85 for 3 groups, but 

maxed out around 1.0 (i.e., 100% of replications) for 5 and 7 groups. Interestingly, unlike 

in the Equal N, Unequal SD condition, as the number of groups increased, so did the gap 

between the lowest per-pair power and the highest per-pair power. Further, the highest 

per-pair power was consistently higher and the lowest per-pair power was consistently 

lower than the previous condition. Highest per-pair power approached 1.0 as the number 

of groups increased, while lowest per-pair power decreased from roughly .65 to around 

.30. 

 Unequal N, Equal SD. The Duncan and SNK tests did not control Type I error 

rate well with 3 groups. Further, the LSD, REGWF, and Tukey’s B had error rates near or 

slightly above .05. All other tests performed well with 3 groups. With 5 groups, the 

Duncan, LSD, REGWF, and SNK did not control Type I error. All other tests maintained 

Type I error rates below or near .05, with Tukey’s B and the Waller-Duncan tests close to 

.05. With 7 groups, the Duncan, LSD, SNK, Tukey’s B, and Waller-Duncan tests did not 

control Type I error. The REGWF performed adequately, but with slightly inflated Type I 

error rates. All other tests controlled Type I error, with the Scheffé test as the most 

conservative (possibly too conservative). FDR values ranged from .011 to .056 for 3 

groups, from .004 to .046 for 5 groups, and from .001 to .045 for 7 groups.  

 Any-pairs power was high regardless of the number of groups (> .90). In contrast, 

all-pairs power began moderately high (around .50) and decreased quickly as the number 

of groups increased to 5 (around .10) and to 7 (near 0) due to the decreasing effect size 

between adjacent means. As in the previous condition, the gap between lowest per-pair 
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power and highest per-pair power increased as the number of groups increased. Highest 

per-pair power remained fairly consistent at slightly below .90, but lowest per-pair power 

decreased from around .50 at 3 groups to about .15 with 7 groups. 

 Unequal N, Unequal SD (large). All tests except those designed for violation of 

assumptions (i.e., Dunnett’s C, Dunnett’s T3, Games-Howell, and Tamhane) were quite 

conservative for 3 groups (< .01). For 5 groups, most tests were still conservative, though 

the Duncan, Dunnett t, REGWF, and SNK also had more typical Type I error rates. 

Additionally, the LSD was too liberal with 5 groups. With 7 groups, the LSD did not 

control Type I error. Otherwise, tests performed adequately except the Scheffé and 

Tukey’s B, which were still conservative. FDR values ranged from .001 to .009 for 3 

groups, from .000 to .014 for 5 groups, and from .001 to .022 for 7 groups. 

 All measures of power were highest in this condition, which seems counter-

intuitive at first. However, recall that power is only reported for tests that are designed for 

unequal variances and sample sizes. If the power values for the other tests are examined 

(Appendix B), power tended to be lower for most other tests in this condition. In any 

event, any-pairs power for the Dunnett’s C, Dunnett’s T3, Games-Howell, and Tamhane 

tests was close to 1 regardless of group size. All-pairs power followed established trends 

of decreasing as the number of groups increased due to decreasing adjacent groups’ effect 

sizes. However, all-pairs power remained around .50 with 5 groups instead of decreasing 

quite as substantially, as was found in other conditions. Similarly, with 7 groups, all-pairs 

power, though low at around .10, was still higher than other conditions. Per-pair power 

was slightly higher than the assumptions met condition (Equal N, Equal SD), but 
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followed the trend of this condition where the gap between lowest per-pair power and 

highest per-pair power did not increase substantially as the number of groups increased. 

 Unequal N, Unequal SD (small). Only the Dunnett’s C, Dunnett’s T3, Games-

Howell, and Tamhane tests controlled Type I error for 3, 5, and 7 groups. The Scheffé 

test had adequate Type I error rates in the 5 and 7 group conditions, though this was 

likely due to its inherent conservative tendencies. All remaining tests were too liberal. 

Some tests exceeded the nominal Type I error rate by about .05, but other tests had Type 

I error rates nearly 10 times the nominal rate. FDR values ranged from .016 to .160 for 3 

groups, from .008 to .099 for 5 groups, and from .005 to .090 for 7 groups. 

 Although any-pairs and highest per-pair power were comparable with other 

conditions, all-pairs power was at its lowest in this condition, approaching 0 for some 

tests with 7 groups. Similarly, lowest per-pair power was also at its minimum, near .05 

for 7 groups, and consistently lower than other conditions for 3 and 5 groups. These 

findings appear to be due to the interaction of sample sizes and group variances. 

Specifically, in this condition with 7 groups, the comparison of the two smallest groups 

(1 and 2) had the lowest per-pair power. However, in the Unequal N, Unequal SD (large) 

condition with 7 groups, the lowest per-pair power was when the largest groups were 

compared (i.e., groups 6 and 7).  

 Summary. The Duncan, LSD, SNK, and Waller-Duncan tests did not control 

Type I error in a large number of conditions. Other tests maintained Type I error in most 

conditions, but were too conservative in the Unequal N, Unequal SD (large) condition 

and were too liberal in the Unequal N, Unequal SD (small) condition. Only Dunnett’s C, 

Dunnett’s T3, the Games-Howell, and the Tamhane tests adequately controlled Type I 
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error in all conditions, similar to the fully true null hypothesis conditions. Power was 

reported only for these four tests. Any-pairs power was high for all conditions, but all-

pairs power decreased as the number of groups increased (because the average effect size 

between adjacent means decreased) across all conditions. In general, the Unequal N, 

Unequal SD (large) condition resulted in the highest power levels, and the Unequal N, 

Unequal SD (small) condition resulted in the lowest power levels. Per-pair power varied 

greatly across all conditions. 

Fully false null hypothesis conditions 

 Recall that in these conditions, each group was simulated to come from a different 

population with a different mean. For the fully false null hypothesis conditions, only 

power was reported for the Dunnett’s C, Dunnett’s T3, Games-Howell, and Tamhane 

tests, because Type I errors could not be committed. For all fully false conditions, all-

pairs power was at or near 0, with the exception of the 3-group, Unequal N, Unequal SD 

(large) condition, where all-pairs power was at its maximum around .05. Because all-

pairs power was universally low, it is not reported for each condition separately. 

Similarly, lowest per-pair power was at or near 0 in all 5-group and 7-group conditions, 

and thus is not reported. 

 Assumptions are met. In the Equal N, Equal SD condition, any-pairs power 

remained steady at around .80 for 3, 5, and 7 groups. Similarly, highest per-pair power 

was near .80 with 3 groups, but dropped to around .65 with 5 groups and to around .58 

with 7 groups. 
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 Assumptions are not met.  

 Equal N, Unequal SD. Any-pairs power maintained around .85 regardless of 

number of groups. Lowest per-pair power began around .17 with 3 groups but 

immediately dropped to near 0 for 5 and 7 groups. For highest per-pair power, values 

were around .80 for 3 groups, dropped to around .70 for 5 groups, and ended at around 

.58 for 7 groups. These results were largely similar to those found when assumptions 

were met (i.e., the Equal N, Equal SD condition). 

 Unequal N, Equal SD. Any-pairs power remained fairly consistent at or just 

below .60 regardless of number of groups in this condition. However, lowest per-pair 

power began at around .10 for 3 groups and was essentially 0 for 5 and 7 groups. Highest 

per-pair power was around .50 for 3 groups, decreased to around .35 for 5 groups, and 

was about .25-.30 for 7 groups. 

 Unequal N, Unequal SD (large). As was the case in the partly true null 

hypothesis conditions, the condition where the largest group had the largest variance 

resulted in the highest power values. Any-pairs power was at or slightly above .90 for 3, 

5, and 7 groups. Lowest per-pair power was slightly above .30 for 3 groups, dropped to 

.03 for 5 groups, and was essentially 0 for 7 groups. Highest per-pair power was at or 

above .75 regardless of the number of groups, with the 3-group condition resulting in the 

largest values. 

 Unequal N, Unequal SD (small). Again similar to the partly true null hypothesis 

conditions, the lowest power values were observed in conditions where the smallest 

group had the largest variance. Any-pairs power was slightly above .40 for 3 groups and 

increased to around .43-.50 for the 5- and 7-group conditions. Lowest per-pair power was 
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.06 for 3 groups and decreased to essentially 0 for 5 and 7 groups. Highest per-pair power 

was at its highest for 3 groups at about .25 and decreased to around or slightly under .20 

for 5 and 7 groups.  

 Summary. The power results for the fully false null hypothesis conditions were 

similar in pattern to the partly true null hypothesis conditions. In general, the fully false 

null hypothesis conditions resulted in lower power, particularly all-pairs power, likely 

due to the increased number of comparisons that should have been found significant. That 

is, as the number of comparisons that should be rejected increased, the more difficult it 

was to reject all of the appropriate comparisons. I will revisit the issue of all-pairs power 

again in the Discussion, Limitations, and Conclusions section. 
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Chapter 5. Discussion, Limitations, and Conclusions 

Type I error 

 The Type I error results from this study are both disappointing and encouraging. 

First, the vast majority of tests (Bonferroni, Duncan, Dunnett t, Gabriel, Hochberg, LSD, 

REGWF, REGWQ, Scheffé, Sidak, SNK, Tukey B, Tukey HSD, and Waller-Duncan) did 

not control Type I error when assumptions were violated. In general, increasing the 

number of groups in the model resulted in worse Type I error rates, whether in the form 

of too conservative Type I error rates (e.g., Bonferroni, Scheffé) or in the form of too 

liberal Type I error rates (e.g., LSD, Duncan). Inflated Type I error rates were as high as 

59.7% in the fully true null hypothesis conditions and as high as 48.0% in the partly true 

null hypothesis conditions. 

 Type I error performance in the Equal N, Unequal SD condition deserves a closer 

examination, because it is not uncommon to see recommendations to use the better-

known procedures if sample sizes are equal but variances may not be, despite the fact that 

the assumption of homogeneity of variance is violated (Cohen, 2013, chapter 13; 

Toothaker, 1993). However, I found that as the number of groups increased, many well-

known tests became somewhat liberal (e.g., Bonferroni, REGWQ, Tukey’s HSD; Tables 

4-6). Thus, what has been considered as a relatively “safe” data condition for using the 

standard PCPs actually results in inflated Type I error. 

 Fortunately, the four tests designed for violations of assumptions, Dunnett’s T3, 

Dunnett’s C, Games-Howell, and Tamhane, controlled Type I error adequately in all 

conditions. Thus, the adjustment to the degrees of freedom coupled with a weighted 

pooled variance term based on only the two groups being compared was able to account 
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for the heterogeneity and unequal group sizes simulated in this study. However, 

Dunnett’s T3, Dunnett’s C, and the Tamhane procedure were each slightly too 

conservative in at least one condition; thus, the Games-Howell procedure was the test that 

controlled Type I error the best. I adopt a “better safe than sorry” mentality for PCPs and 

recommend that researchers and practitioners utilize one of these four tests. Although 

certain common tests also controlled Type I error when assumptions were met (e.g., 

Tukey’s HSD), the data condition is unrealistic in real data research (i.e., groups are often 

unequal and population variances are almost never equal). As the performance of tests 

such as Tukey’s HSD was not examined under the minor violations of assumptions that 

are more likely in real data research, simply choosing a test that will control Type I error 

rate under even more extreme violations is the most logical decision, if power is not 

negatively affected. 

 If power is not a consideration and controlling Type I error is the only concern, 

using a more conservative test such as the Bonferroni or Scheffé may be attractive. 

However, even these tests still had inflated Type I error rates in the Unequal N, Unequal 

SD (small) condition. Further, recall that in real data research, it is impossible to know if 

a Type I error is being committed and what the empirical Type I error rate is. Thus, 

although a researcher could be reasonably sure that the Scheffé test is maintaining the 

nominal .05 familywise Type I error rate in most situations, he or she cannot be positive. 

Instead, he or she should use a test that is known to maintain the nominal Type I error 

rate, such as the Games-Howell procedure. This argument can (and will be) extended to 

when statistical power is a consideration. 
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Power 

 Prior to discussing power results from this study specific to the PCPs, I provide 

some general comments on how the simulation design affected power. In particular, all-

pairs power was at or near 0 for most tests in nearly all of the fully false null hypothesis 

conditions. However, readers should not take this fact to mean that all 18 PCPs are 

incapable of identifying every statistically significant difference between groups. Rather, 

readers might question whether there really were “true” differences to find between 

groups in the fully false null hypothesis conditions. For example, some group means only 

differed by 0.10 (Equal N, Equal SD, with 7 groups, Table 3). Although these data were 

simulated to come from different populations, it may be unreasonable to expect a 

statistical test to identify such seemingly small differences. Why, then, were data 

simulated as they were? 

 First, I wanted to keep the largest mean difference between two groups the same 

as it was in the partly true null hypothesis conditions, 0.6 standard deviations (recall that 

the square root of the MSE was used for the pooled standard deviation). Doing so 

provided some level of consistency between the two sets of conditions. Second, and more 

importantly, all-pairs power had an upper bound defined by lowest per-pair power12. In 

turn, any-pairs power had a lower bound as defined by lowest per-pair power13. Thus, if 

                                                           
12 All-pairs power could not be higher than lowest per-pair power because lowest per-pair was the smallest 

proportion of correctly rejected tests amongst all comparisons. For example, if a comparison was only 

found statistically significant in 50% of replications and every other comparison was rejected in those same 

50% of replications (or more), all-pairs power would be 50%. 
13 Recall that any-pairs power was the proportion of replications with at least one statistically significant 

comparison. Thus, any-pairs power could not be lower than lowest per-pair power, because lowest per-pair 

power was the smallest proportion of statistically significant comparisons amongst all comparisons. For 

example, if a comparison was found statistically significant in 50% of replications, at least those 50% of 

replications had one or more statistically significant comparisons, and any-pairs power would be at least 

50%. 
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the simulation were created with larger mean differences between adjacent groups in the 

fully false null hypothesis conditions, all-pairs power might be higher, but at the expense 

of any-pairs power being essentially 1.0 in all scenarios. Similarly, as the mean difference 

between adjacent groups increases, so too does the per-pair power, until highest per-pair 

power is essentially 1.0 in all scenarios as well. Third, because of its similarity to 

familywise Type I error, I was focused more on any-pairs power than all-pairs power. 

 Although power results were only presented for Dunnett’s T3, Dunnett’s C, 

Games-Howell, and Tamhane, a more general discussion of power for all tests is 

required. Specifically, the Type I error control of the Dunnett’s T3, Dunnett’s C, Games-

Howell, and Tamhane tests is not as beneficial if it comes at the cost of lower power 

when compared to alternative tests. Excluding those tests that do not control Type I error 

in the majority of conditions (the Duncan, LSD, SNK, and Waller-Duncan) and 

Dunnett’s t14, comparisons between the four tests that controlled Type I error and all 

others indicate that power for the four tests is roughly the same as any other test 

(Appendix B). The price for tight Type I error control that the Dunnett’s T3, Dunnett’s C, 

Games-Howell, and Tamhane procedures provide is practically insignificantly lower 

power rates. The REGWF and REGWQ tests did provide meaningfully higher all-pairs 

and per-pair power in several conditions while simultaneously maintaining Type I error 

rates, but the lack of Type I error control in several other conditions for these two tests 

does not make them attractive options. 

 An argument could be made for purposefully choosing a PCP that provides high 

power at the expense of Type I error control in exploratory research, where there is no 

                                                           
14 Dunnett’s t is excluded because the number of comparisons is different than all other tests. Thus, how 

any-, all-, and per-pair power is interpreted differs for this PCP comparative to all others. 
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well-established theory to help dictate comparisons of interest. Exploratory researchers 

may be more concerned with any statistically significant findings to help inform later 

follow-up studies. Essentially, these studies are theory-generating studies instead of 

theory-confirming studies. PCPs are in some ways exploratory by nature because they 

examine all pairwise comparisons with no a priori hypotheses. In this case, inflated Type 

I error rates may be less of a concern. However, I would argue that instead of switching 

to a PCP with known higher power but unknown Type I error control, simply increase the 

nominal Type I error rate from .05 to something like .10 or .15 for the Games-Howell 

procedure (or Dunnett’s C, Dunnett’s T3, or Tamhane). Consequently, the experimental 

Type I error rate is still known, while simultaneously increasing power to account for the 

experimental nature of the research. 

FDR 

 Although not the main focus of this study, FDR values were computed and ranges 

were reported for each partly true null hypothesis condition. Recall that none of the 18 

PCPs studied were designed to control FDR. Thus, the sometimes large ranges of FDR 

values were not particularly surprising. In general, tests that had low Type I error rates 

tended to have lower FDRs, and vice versa for tests with high Type I error rates. The 

largest issue I find with the FDR statistic is that there is no generally accepted “good” 

level of FDR, whereas familywise Type I error rates of .05 are considered standard. 

Further, the total number of computed comparisons influences FDR because of the way 

FDR is defined. 

 For example, consider the Games-Howell procedure in the partly true null 

hypothesis conditions. The Games-Howell controlled familywise Type I error rate around 
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.20-.26 regardless of number of groups. However, the FDRs for this test were .019 for 3 

groups, .009 for 5 groups, and .006 for 7 groups. Familywise Type I error and FDR are 

not the same. However, it seems as though the main reason for the decrease in FDR while 

Type I error rate remains fairly constant was related to the number of comparisons being 

made. Recall that 3 comparisons were made in the 3-group conditions, 10 comparisons 

were made in the 5-group conditions, and 21 comparisons were made in the 7-group 

conditions. For procedures such as the Games-Howell that are designed to control Type I 

error while maximizing power, the increase in possible comparisons means that fewer 

Type I errors will be made relative to the total number of comparisons, and that the 

number of correct statistically significant findings (i.e., power) will be maximized. Thus, 

the numerator of the FDR statistic will remain low while the denominator grows, 

resulting in lower FDR values with more groups.  

 Similarly, I find it difficult to interpret FDR. Strictly speaking, the meaning of a 

.006 FDR is clear: of the total number of comparisons that were rejected, .6% of them 

were false rejections (i.e., Type I errors). However, I do not know if this is an acceptable 

rate of false discovery. It seems quite low, but as stated above, that may simply be a 

function of the total number of comparisons being made. Further, because the FDR is not 

a particularly well-known statistic, it is reasonable to expect researchers to treat it as a 

Type I error statistic, and compare values of FDR to a .05 cutoff. However, doing so may 

be misleading. For example, consider the Tukey B procedure in the partly true null 

hypothesis, Unequal N, Unequal SD (small) condition with 7 groups. The FDR for this 

test was .055, which is reasonable when compared to the typical nominal familywise 

Type I error rate of .05. However, this test had a Type I error rate of .229, over four times 



54 
 

 

 

the expected nominal rate. Applying the same cutoff to FDR as is typically used for 

familywise Type I error is clearly not appropriate. 

 Before readers dismiss FDR as a useless statistic, again recall that these tests were 

not designed to control FDR. The FDR statistic is likely more interpretable and intuitive 

to use with procedures that are designed for its use. See Benjamini and Hochberg (1995) 

or Keselman et al. (1999) for more information about modified PCPs that control FDR 

instead of Type I error. However, because of how popular and established the concept of 

Type I error control is for multiple comparisons, I expect FDR will remain a less well-

known statistic. 

Limitations 

 Some limitations of this study have already been discussed: the simulation design 

that essentially resulted in null levels of all-pairs power in the fully false null hypothesis 

conditions and the reporting of FDR for PCPs that were not designed to control FDR. As 

with any simulation study, an obvious limitation to this study was the restricted set of 

conditions. Real data research does not conform to the conditions tested in this study; 

rather, the conditions tested were intended to be generally similar to real data situations. 

That is, the simulation conditions were designed to reflect reasonable deviations in group 

size and variances between groups with the thought that at least some real data group 

sizes and variances would fall in the same “ballpark” as the simulation.  

 Next, the data in this study were simulated from a normal population. Rarely is 

real data perfectly normally distributed. Additionally, I did not examine the effects of 

dependencies amongst the data like what may be found with cluster sampling that results 

in nested data. Some research has shown that even mild levels of dependence can 
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seriously inflate Type I error rates (Demirhan et al., 2009; Seco et al., 2001).  I chose not 

to simulate non-normal data in part to reduce the scope of this study, but primarily 

because ordinary least squares (OLS) estimation tends to be fairly robust to non-

normality. For dependence, ANOVA provides a framework for modeling any cluster 

effects to combat the nuisance of inflated Type I error15. To do so, the effect is simply 

modeled as a random factor in the ANOVA model. For example, if students are nested 

within schools, model the school effect by entering a school ID variable as a separate 

grouping factor. In any event, the recommendation I make for PCP choice should be 

considered only when data are close to normally distributed and independent.  

Conclusions and recommendation 

 When the assumptions of equal sample sizes and variances were violated, only 

four tests adequately maintained Type I error rate: Dunnett’s C, Dunnett’s T3, Games-

Howell, and Tamhane. All other tests failed to maintain Type I error rate (Bonferroni, 

Duncan, Dunnett t, Gabriel, Hochberg, LSD, REGWF, REGWQ, Scheffé, SNK, Tukey 

B, Tukey HSD, Waller-Duncan). To avoid capitalizing on false power via inflated Type I 

error rates, only the four tests that maintained Type I error rates were further considered 

for power statistics. All four tests provided similar levels of any-, all-, and per-pair 

power, with the Games-Howell providing a slight edge. Thus, for strict control of Type I 

error and acceptable power, I recommend utilizing the Games-Howell procedure with 

normal and independent data (similar to Keselman & Rogan, 1977). Further research is 

required for non-normal and dependent data. 

                                                           
15 The inflated Type I error is actually due to deflated standard errors when the nested nature of data is not 

accounted for. 
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 Although other tests are attractive due to their higher power, I do not recommend 

their use, as they do not control Type I error at the nominal level. Instead of choosing a 

test that provides high power at the expense of unknown empirical Type I error, I suggest 

instead to utilize the Games-Howell procedure with an increased nominal alpha level. 

Increasing alpha provides greater power at the expense of more Type I errors, but the 

Type I error rate will be controlled at the value of the nominal alpha, unlike with tests 

that do not control Type I error. Using the Games-Howell procedure with a less strict 

alpha level may be particularly useful for exploratory research, where controlling Type I 

error at the typical .05 level may be of less importance. 
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Table 1 

Notation and description used for PCPs 

Notation Description 

k Number of groups 

ni Number of observations for group i 

𝑥i Mean of group i 

si Standard deviation of group i 

vi Degrees of freedom for group i, ni – 1 

spp Square root of the mean square error 

𝜖 Familywise error rate (set at .05 in most cases) 

α Comparison error rate 

r Number of steps between means when ordered 

f Degrees of freedom for mean square error 

vi,j Absolute difference between the ith and jth means 

k* Number of comparisons, k(k – 1)/2 

Qi,j 
𝑠𝑝𝑝√

1

2
(

1

𝑛𝑖
+

1

𝑛𝑗
) 

nh Harmonic mean of the sample size 
𝑘

∑ 𝑛𝑖
−1

1≤𝑖≤𝑘
 

Qh 𝑠𝑝𝑝/√𝑛ℎ 

Note: see IBM (2014) for more details. 
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Table 2 

Summary of PCPs 

Test Original citation(s) 

 Assumptions met  Assumptions not met 

 Type I error Power  Type I error Power 

LSD Fisher (1935)  Does not control High  Does not control - 

Bonferroni Dunn (1959; 1961)  Too conservative, 

particularly with 

increased number 

of comparisons 

Low  Unequal group 

sizes increases 

error, unequal 

variances less 

impactful 

Decreased 

Sidak Sidak (1967)  Controlled Low  - Decreased 

SNK Student (1927); Newman 

(1939); Keuls (1952) 

 Controlled only 

with 3 groups and 

too liberal 

otherwise 

Medium  Does not control Decreased 

HSD Unpublished  Controlled Medium  Does not control - 

Tukey’s B Unpublished  Controlled only 

with 3 groups and 

too liberal 

otherwise 

Medium  Does not control - 

Scheffé Scheffé (1953)  Too conservative 

with large number 

of groups 

Low  Increases Type I 

error, but may still 

be below nominal 

- 

MRT Duncan (1955)  Too liberal, 

particularly with 

more than 3 

groups 

High  Differing group 

sizes increase Type 

I error 

- 

GT2 Hochberg (1974)  Controlled Low-

medium 

 Can be too 

conservative or too 

liberal 

- 
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Table 2 

Summary of PCPs - continued 

Test Original citation(s) 

 Assumptions met  Assumptions not met 

 Type I error Power  Type I error Power 

Gabriel Gabriel (1978)  Tends towards 

conservative 

Low-

medium 

 Generally too 

conservative unless 

group sizes differ 

largely 

- 

Waller-Duncan Duncan (1965); Waller & 

Duncan (1969) 

 Too conservative 

when F is small 

and too liberal 

when F is 

moderate to large 

Medium-

High 

 Too liberal Stays 

medium-

high 

Dunnett’s t-test Dunnett (1955)  Controlled Medium  Results are 

approximate when 

group sizes differ 

- 

REGWQ/REGWF Ryan (1960); Einot & 

Gabriel (1975); Welsch 

(1977) 

 Tends towards 

conservative 

Medium  Increased error Decreased 

Games-Howell* Games & Howell (1976)  Controlled High  Can be liberal at 

very group sizes 

Remains 

high 

T2* Tamhane (1979)  Tends towards 

conservative 

-  Generally 

controlled 

Decreased 

C* Dunnett (1980b)  Tends towards 

conservative 

-  Too conservative 

in small samples 

- 

T3* Dunnett (1980b)  Tends towards 

conservative 

-  Controlled Decreased 

Note: * indicates tests designed for unequal group sizes and variances. The categories of Low, Medium, and High are general 

assessments of PCP power in relation to other PCPs, and are not meant to be precise descriptors of PCP power. 
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Table 3 

Simulation conditions 

Ho k ni 𝝁𝒊 𝝈𝒊
𝟐 

Pairwise 

power 

Omnibus 

power 

Fully true 3 60/60/60 10.00/10.00/10.00 1/1/1 - - 

  60/60/60 10.00/10.00/10.00 1/4/7 - - 

  20/60/100 10.00/10.00/10.00 1/1/1 - - 

  20/60/100 10.00/10.00/10.00 1/4/7 - - 

  20/60/100 10.00/10.00/10.00 7/4/1 - - 

     - - 

 5 60/60/60/60/60 10.00/10.00/10.00/10.00/10.00 1/1/1/1/1 - - 

  60/60/60/60/60 10.00/10.00/10.00/10.00/10.00 1/2.5/4/5.5/7 - - 

  20/40/60/80/100 10.00/10.00/10.00/10.00/10.00 1/1/1/1/1 - - 

  20/40/60/80/100 10.00/10.00/10.00/10.00/10.00 1/2.5/4/5.5/7 - - 

  20/40/60/80/100 10.00/10.00/10.00/10.00/10.00 7/5.5/4/2.5/1 - - 

     - - 

 7 60/60/60/60/60/60/60 10.00/10.00/10.00/10.00/10.00/10.00/10.00 1/1/1/1/1/1/1 - - 

  60/60/60/60/60/60/60 10.00/10.00/10.00/10.00/10.00/10.00/10.00 1/2/3/4/5/6/7 - - 

  20/33/47/60/73/87/100 10.00/10.00/10.00/10.00/10.00/10.00/10.00 1/1/1/1/1/1/1 - - 

  20/33/47/60/73/87/100 10.00/10.00/10.00/10.00/10.00/10.00/10.00 1/2/3/4/5/6/7 - - 

  20/33/47/60/73/87/100 10.00/10.00/10.00/10.00/10.00/10.00/10.00 7/6/5/4/3/2/1 - - 

       

Partly true 3 60/60/60 10.00/10.00/10.60 1/1/1 .91 .93 

  60/60/60 10.00/10.00/11.20 1/4/7 .91 .93 

  20/60/100 10.00/10.00/10.60 1/1/1 .68-.96 .95 

  20/60/100 10.00/10.00/11.39 1/4/7 .68-.96 .95 

  20/60/100 10.00/10.00/10.98 7/4/1 .68-.96 .95 

       

 5 60/60/60/60/60 10.00/10.60/10.00/10.60/10.00 1/1/1/1/1 .91 .99 

  60/60/60/60/60 10.00/11.20/10.00/11.20/10.00 1/2.5/4/5.5/7 .91 .99 

  20/40/60/80/100 10.00/10.60/10.00/10.60/10.00 1/1/1/1/1 .59-.98 .99 
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Table 3 

Simulation conditions – continued 

Ho k ni 𝝁𝒊 𝝈𝒊
𝟐 

Pairwise 

power 

Omnibus 

power 

Partly true 5 20/40/60/80/100 10.00/11.34/10.00/11.34/10.00 1/2.5/4/5.5/7 .59-.98 .99 

  20/40/60/80/100 10.00/11.04/10.00/11.04/10.00 7/5.5/4/2.5/1 .59-.98 .99 

       

 7 60/60/60/60/60/60/60 10.00/10.60/10.00/10.60/10.00/10.60/10.00 1/1/1/1/1/1/1 .91 1.0 

  60/60/60/60/60/60/60 10.00/11.20/10.00/11.20/10.00/11.20/10.00 1/2/3/4/5/6/7 .91 1.0 

  20/33/47/60/73/87/100 10.00/10.60/10.00/10.60/10.00/10.60/10.00 1/1/1/1/1/1/1 .56-.98 1.0 

  20/33/47/60/73/87/100 10.00/11.27/10.00/11.27/10.00/11.27/10.00 1/2/3/4/5/6/7 .56-.98 1.0 

  20/33/47/60/73/87/100 10.00/11.13/10.00/11.13/10.00/11.13/10.00 7/6/5/4/3/2/1 .56-.98 1.0 

       

Fully false 3 60/60/60 10.00/10.30/10.60 1/1/1 .36-.91 .84 

  60/60/60 10.00/10.60/11.20 1/4/7 .36-.91 .84 

  20/60/100 10.00/10.30/10.60 1/1/1 .21-.68 .69 

  20/60/100 10.00/10.69/11.39 1/4/7 .21-.68 .69 

  20/60/100 10.00/10.49/10.98 7/4/1 .21-.68 .69 

       

 5 60/60/60/60/60 10.00/10.15/10.30/10.45/10.60 1/1/1/1/1 .13-.91 .85 

  60/60/60/60/60 10.00/10.30/10.60/10.90/11.20 1/2.5/4/5.5/7 .13-.91 .85 

  20/40/60/80/100 10.00/10.15/10.30/10.45/10.60 1/1/1/1/1 .09-.69 .73 

  20/40/60/80/100 10.00/10.34/10.67/11.01/11.34 1/2.5/4/5.5/7 .09-.69 .73 

  20/40/60/80/100 10.00/10.26/10.52/10.78/11.04 7/5.5/4/2.5/1 .09-.69 .73 

       

 7 60/60/60/60/60/60/60 10.00/10.10/10.20/10.30/10.40/10.50/10.60 1/1/1/1/1/1/1 .09-.91 .88 

  60/60/60/60/60/60/60 10.00/10.20/10.40/10.60/10.80/11.00/11.20 1/2/3/4/5/6/7 .09-.91 .88 

  20/33/47/60/73/87/100 10.00/10.10/10.20/10.30/10.40/10.50/10.60 1/1/1/1/1/1/1 .06-.69 .79 

  20/33/47/60/73/87/100 10.00/10.22/10.44/10.66/10.89/11.11/11.33 1/2/3/4/5/6/7 .06-.69 .79 

  20/33/47/60/73/87/100 10.00/10.18/10.35/10.53/10.70/10.88/11.06 7/6/5/4/3/2/1 .06-.69 .79 

Note. Power of 1.0 indicates power values larger than .995, thus rounding to 1.0. 
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Table 4 

Fully true null hypothesis type I error rates, by condition and test for 3 groups 

Test 

Condition 

Equal N, Equal 

SD 

Equal N, Unequal 

SD 

Unequal N, Equal 

SD 

Unequal N, 

Unequal SD 

(large) 

Unequal N, 

Unequal SD 

(small) 

Bonferroni .041 .042 .038 .013 .167 

Duncan .089 .095 .109 .001 .297 

Dunnett C* .049 .043 .043 .037 .046 

Dunnett T3* .044 .040 .039 .036 .043 

Dunnett t .049 .061 .057 .017 .159 

Gabriel .041 .044 .051 .014 .192 

Games-Howell* .050 .044 .046 .043 .047 

Hochberg .041 .044 .038 .013 .170 

LSD .108 .127 .124 .034 .286 

REGWF .050 .048 .051 .012 .175 

REGWQ .044 .050 .016 .004 .096 

Scheffé .034 .037 .031 .010 .157 

Sidak .041 .043 .038 .013 .167 

SNK .044 .050 .056 .000 .213 

Tamhane* .043 .039 .039 .036 .043 

Tukey B .044 .050 .056 .000 .213 

Tukey HSD .043 .050 .044 .015 .178 

Waller-Duncan .040 .041 .028 .000 .162 

Note. (large) indicates that the largest group has the largest variance. (small) indicates that the smallest group has the largest 

variance. Variances used for the 3-group conditions were 1, 4, and 7. Sample sizes for the 3-group conditions were 60 each for equal 

sizes and 20, 60, and 100 for unequal sizes. *indicates that SPSS labels this post-hoc test as not assuming equal variances. Tests not 

starred assume equal variances. 
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Table 5 

Fully true null hypothesis type I error rates, by condition and test for 5 groups 

Test 

Condition 

Equal N, Equal 

SD 

Equal N, Unequal 

SD 

Unequal N, Equal 

SD 

Unequal N, 

Unequal SD 

(large) 

Unequal N, 

Unequal SD 

(small) 

Bonferroni .035 .067 .032 .031 .148 

Duncan .169 .196 .169 .042 .403 

Dunnett C* .034 .055 .034 .052 .047 

Dunnett T3* .031 .045 .031 .051 .041 

Dunnett t .041 .093 .036 .044 .117 

Gabriel .037 .067 .037 .035 .162 

Games-Howell* .040 .058 .039 .060 .052 

Hochberg .037 .067 .033 .031 .150 

LSD .270 .279 .242 .177 .429 

REGWF .049 .076 .044 .034 .172 

REGWQ .042 .072 .018 .022 .080 

Scheffé .013 .040 .015 .015 .099 

Sidak .037 .067 .033 .031 .150 

SNK .042 .072 .057 .009 .242 

Tamhane* .031 .045 .031 .051 .040 

Tukey B .042 .072 .057 .009 .242 

Tukey HSD .041 .072 .039 .038 .162 

Waller-Duncan .082 .111 .073 .015 .254 

Note. (large) indicates that the largest group has the largest variance. (small) indicates that the smallest group has the largest 

variance. Variances used for the 5-group conditions were 1, 2.5, 4, 5.5, and 7. Sample sizes for the 5-group conditions were 60 each 

for equal sizes and 20, 40, 60, 80, and 100 for unequal sizes. *indicates that SPSS labels this post-hoc test as not assuming equal 

variances. Tests not starred assume equal variances. 
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Table 6 

Fully true null hypothesis type I error rates, by condition and test for 7 groups 

Test 

Condition 

Equal N, Equal 

SD 

Equal N, Unequal 

SD 

Unequal N, Equal 

SD 

Unequal N, 

Unequal SD 

(large) 

Unequal N, 

Unequal SD 

(small) 

Bonferroni .032 .072 .034 .022 .135 

Duncan .275 .301 .300 .046 .507 

Dunnett C* .046 .049 .041 .046 .036 

Dunnett T3* .039 .040 .035 .044 .033 

Dunnett t .051 .114 .050 .039 .110 

Gabriel .033 .073 .041 .023 .150 

Games-Howell* .056 .050 .046 .053 .041 

Hochberg .033 .073 .035 .023 .137 

LSD .441 .445 .445 .286 .597 

REGWF .052 .069 .056 .024 .151 

REGWQ .043 .083 .016 .020 .061 

Scheffé .004 .021 .007 .003 .055 

Sidak .033 .073 .035 .023 .137 

SNK .043 .083 .084 .005 .277 

Tamhane* .039 .039 .035 .043 .033 

Tukey B .043 .083 .084 .005 .277 

Tukey HSD .043 .083 .042 .029 .161 

Waller-Duncan .121 .156 .133 .018 .323 

Note. (large) indicates that the largest group has the largest variance. (small) indicates that the smallest group has the largest 

variance. Variances used for the 7-group conditions were 1, 2, 3, 4, 5, 6, and 7. Sample sizes for the 7-group conditions were 60 

each for equal sizes and 20, 33, 47, 60, 73, 87, and 100 for unequal sizes. *indicates that SPSS labels this post-hoc test as not 

assuming equal variances. Tests not starred assume equal variances. 
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Table 7 

Partly true null hypothesis Type I error rates and false discovery rates (FDR), by condition and test for 3 groups 

Test 

Condition 

Equal N, Equal 

SD 

Equal N, Unequal 

SD 

Unequal N, Equal 

SD 

Unequal N, Unequal 

SD (large) 

Unequal N, 

Unequal SD 

(small) 

Type I 

error FDR 

Type I 

error FDR 

Type I 

error FDR 

Type I 

error FDR 

Type I 

error FDR 

Bonferroni .018 .012 .002 .001 .018 .013 .001 .001 .129 .084 

Duncan .070 .039 .014 .008 .088 .054 .003 .002 .269 .156 

Dunnett C* .019 .012 .018 .012 .023 .016 .014 .008 .018 .017 

Dunnett T3* .019 .012 .016 .011 .023 .016 .015 .008 .017 .016 

Dunnett t – – – – – – – – – – 

Gabriel .018 .011 .002 .001 .021 .014 .001 .001 .142 .089 

Games-Howell* .022 .014 .018 .012 .026 .018 .017 .009 .021 .019 

Hochberg .018 .011 .002 .001 .019 .013 .001 .001 .131 .085 

LSD .069 .038 .015 .008 .049 .029 .002 .001 .208 .117 

REGWF .070 .039 .014 .008 .050 .029 .002 .001 .211 .119 

REGWQ .070 .040 .014 .008 .019 .014 .001 .001 .137 .091 

Scheffé .017 .011 .002 .001 .015 .011 .001 .001 .124 .083 

Sidak .018 .012 .002 .001 .019 .013 .001 .001 .131 .085 

SNK .070 .040 .014 .008 .086 .056 .003 .002 .264 .160 

Tamhane* .019 .012 .016 .011 .023 .016 .014 .008 .017 .016 

Tukey B .039 .018 .006 .004 .060 .042 .002 .001 .228 .148 

Tukey HSD .022 .014 .002 .001 .020 .014 .001 .001 .139 .089 

Waller-Duncan .016 .010 .002 .001 .025 .021 .001 .001 .157 .123 

Note. (large) indicates that the largest group has the largest variance. (small) indicates that the smallest group has the largest 

variance. Variances used for the 3-group conditions were 1, 4, and 7. Sample sizes for the 3-group conditions were 60 each for equal 

sizes and 20, 60, and 100 for unequal sizes. *indicates that SPSS labels this post-hoc test as not assuming equal variances. Tests not 

starred assume equal variances. Type I error and FDR for Dunnett’s t cannot be computed because Dunnett’s t compares groups 1 

and 2 to group 3, which were simulated to come from different populations. Thus, no Type I error can be committed. 
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Table 8 

Partly true null hypothesis Type I error rates and false discovery rates (FDR), by condition and test for 5 groups 

Test 

Condition 

Equal N, Equal 

SD 

Equal N, Unequal 

SD 

Unequal N, Equal 

SD 

Unequal N, Unequal 

SD (large) 

Unequal N, 

Unequal SD 

(small) 

Type I 

error FDR 

Type I 

error FDR 

Type I 

error FDR 

Type I 

error FDR 

Type I 

error FDR 

Bonferroni .017 .005 .022 .006 .017 .006 .003 .001 .085 .029 

Duncan .138 .029 .140 .030 .170 .046 .023 .005 .327 .099 

Dunnett C* .024 .006 .024 .007 .021 .007 .016 .003 .020 .009 

Dunnett T3* .021 .006 .017 .005 .018 .007 .015 .003 .016 .008 

Dunnett t .025 .017 .039 .028 .031 .018 .012 .007 .082 .047 

Gabriel .017 .005 .022 .006 .023 .007 .003 .001 .102 .036 

Games-Howell* .025 .006 .025 .007 .022 .007 .017 .004 .020 .009 

Hochberg .017 .005 .022 .006 .018 .006 .003 .001 .088 .030 

LSD .169 .035 .162 .034 .186 .043 .069 .014 .327 .092 

REGWF .047 .011 .056 .013 .069 .020 .013 .003 .167 .055 

REGWQ .045 .011 .055 .013 .018 .006 .003 .001 .078 .030 

Scheffé .008 .002 .011 .003 .010 .004 .001 .000 .050 .020 

Sidak .017 .005 .022 .006 .018 .006 .003 .001 .088 .030 

SNK .093 .022 .101 .024 .104 .033 .016 .004 .251 .091 

Tamhane* .020 .005 .017 .005 .018 .007 .015 .003 .016 .008 

Tukey B .044 .011 .054 .013 .050 .018 .001 .000 .193 .075 

Tukey HSD .019 .005 .024 .007 .022 .007 .006 .002 .093 .032 

Waller-Duncan .041 .010 .044 .010 .052 .017 .001 .000 .201 .071 

Note. (large) indicates that the largest group has the largest variance. (small) indicates that the smallest group has the largest 

variance. Variances used for the 5-group conditions were 1, 2.5, 4, 5.5, and 7. Sample sizes for the 5-group conditions were 60 each 

for equal sizes and 20, 40, 60, 80, and 100 for unequal sizes. *indicates that SPSS labels this post-hoc test as not assuming equal 

variances. Tests not starred assume equal variances. 
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Table 9 

Partly true null hypothesis Type I error rates and false discovery rates (FDR), by condition and test for 7 groups 

Test 

Condition 

Equal N, Equal 

SD 

Equal N, Unequal 

SD 

Unequal N, Equal 

SD 

Unequal N, Unequal 

SD (large) 

Unequal N, 

Unequal SD 

(small) 

Type I 

error FDR 

Type I 

error FDR 

Type I 

error FDR 

Type I 

error FDR 

Type I 

error FDR 

Bonferroni .018 .003 .034 .005 .016 .004 .010 .002 .094 .021 

Duncan .237 .032 .230 .034 .242 .042 .054 .008 .456 .090 

Dunnett C* .028 .004 .020 .003 .023 .005 .030 .004 .023 .006 

Dunnett T3* .023 .003 .018 .003 .021 .005 .027 .004 .021 .005 

Dunnett t .022 .011 .067 .035 .029 .012 .023 .011 .080 .032 

Gabriel .019 .003 .034 .005 .020 .005 .010 .002 .110 .025 

Games-Howell* .031 .004 .021 .003 .028 .006 .035 .005 .026 .006 

Hochberg .019 .003 .034 .005 .016 .004 .010 .002 .094 .021 

LSD .313 .041 .288 .041 .295 .045 .174 .022 .480 .090 

REGWF .053 .008 .058 .010 .059 .013 .025 .005 .178 .042 

REGWQ .055 .008 .066 .011 .024 .007 .015 .003 .104 .027 

Scheffé .003 .001 .005 .001 .003 .001 .003 .001 .038 .010 

Sidak .019 .003 .024 .005 .016 .004 .010 .002 .094 .021 

SNK .096 .016 .111 .019 .118 .030 .014 .003 .282 .069 

Tamhane* .023 .003 .018 .003 .021 .005 .027 .004 .019 .005 

Tukey B .058 .009 .067 .011 .088 .021 .002 .001 .229 .055 

Tukey HSD .025 .003 .036 .006 .021 .005 .011 .002 .110 .024 

Waller-Duncan .081 .011 .097 .014 .122 .024 .010 .002 .280 .058 

Note. (large) indicates that the largest group has the largest variance. (small) indicates that the smallest group has the largest 

variance. Variances used for the 7-group conditions were 1, 2, 3, 4, 5, 6, and 7. Sample sizes for the 7-group conditions were 60 

each for equal sizes and 20, 33, 47, 60, 73, 87, and 100 for unequal sizes. *indicates that SPSS labels this post-hoc test as not 

assuming equal variances. Tests not starred assume equal variances. 
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Figure 1. Power values for Dunnett’s C, Dunnett’s T3, Games-Howell, and Tamhane procedures with 3 groups – partly true null 

hypothesis conditions. ANP=any-pairs power, ALP=all-pairs power, LowPP=lowest per-pair power, and HighPP=highest per-pair 

power. 
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Figure 2. Power values for Dunnett’s C, Dunnett’s T3, Games-Howell, and Tamhane procedures with 5 groups – partly true null 

hypothesis conditions. ANP=any-pairs power, ALP=all-pairs power, LowPP=lowest per-pair power, and HighPP=highest per-pair 

power. 
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Figure 3. Power values for Dunnett’s C, Dunnett’s T3, Games-Howell, and Tamhane procedures with 7 groups – partly true null 

hypothesis conditions. ANP=any-pairs power, ALP=all-pairs power, LowPP=lowest per-pair power, and HighPP=highest per-pair 

power. 
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Figure 4. Power values for Dunnett’s C, Dunnett’s T3, Games-Howell, and Tamhane procedures with 3 groups – fully false null 

hypothesis conditions. ANP=any-pairs power, ALP=all-pairs power, LowPP=lowest per-pair power, and HighPP=highest per-pair 

power. 
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Figure 5. Power values for Dunnett’s C, Dunnett’s T3, Games-Howell, and Tamhane procedures with 5 groups – fully false null 

hypothesis conditions. ANP=any-pairs power, ALP=all-pairs power, LowPP=lowest per-pair power, and HighPP=highest per-pair 

power. 
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Figure 6. Power values for Dunnett’s C, Dunnett’s T3, Games-Howell, and Tamhane procedures with 7 groups – fully false null 

hypothesis conditions. ANP=any-pairs power, ALP=all-pairs power, LowPP=lowest per-pair power, and HighPP=highest per-pair 

power. 
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Appendix A 

*ANOVA macro that opens a data file, computes the ANOVA, and saves the PCP output in a text file. 

 

*This portion of the macro creates the loop and reads in the data. 

define !anova (iv=!TOKENS(1) /dv=!TOKENS(1)) 

!DO !rep = 1 !to 1000. 

data list list file= !QUOTE(!CONCAT("FILE PATH")) 

 /id grp y. 

execute. 

 

*This commend informs SPSS which tables from the output I want sent to a separate text file. 

oms 

    /select tables 

    /destination format = TEXT outfile = !QUOTE(!CONCAT("FILE PATH")) viewer = no 

    /if commands = ["oneway"] subtypes = ["multiple comparisons" "homogeneous subsets"]. 

 

*Running the one-way ANOVA with all 18 PCPs. 

ONEWAY !dv BY !iv 

  /MISSING LISTWISE 

  /statistics=descriptives 

  /POSTHOC=SNK TUKEY BTUKEY DUNCAN SCHEFFÉ LSD BONFERRONI SIDAK GABRIEL 

FREGW QREGW GT2 T2 T3 GH C  

    WALLER(100) DUNNETT ALPHA(0.05). 

 

*Create separate text files with required output tables and end macro. 

omsend. 

!DOEND. 

!enddefine. 

 

*Running ANOVA macro. 

!anova iv=grp dv=y. 
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Appendix B 

Table B1 

Partly true null hypothesis power rates, by condition and test for 3 groups 

Test 

Condition 

Equal N, Equal SD Equal N, Unequal SD Unequal N, Equal SD 

Unequal N, Unequal 

SD 

(large) 

Unequal N, Unequal 

SD 

(small) 

ANP ALP PP ANP ALP PP ANP ALP PP ANP ALP PP ANP ALP PP 

Bonferroni .89 .65 .77-.78 .86 .70 .76-.80 .92 .49 .54-.88 .91 .50 .52-.89 .94 .47 .52-.89 

Duncan .95 .80 .87-.88 .92 .84 .86-.90 .91 .64 .74-.80 .89 .73 .81 .92 .54 .65-.80 

Dunnett C* .90 .65 .77-.78 .84 .62 .65-.80 .93 .47 .51-.89 .97 .86 .90-.93 .90 .17 .20-.87 

Dunnett T3* .90 .64 .77 .83 .60 .63-.79 .92 .46 .50-.88 .97 .86 .90-.93 .88 .16 .19-.85 

Dunnett t .93 .72 .82 .89 .76 .81-.84 .95 .57 .61-.91 .93 .60 .61-.92 .95 .52 .56-.91 

Gabriel .89 .66 .77-.78 .86 .71 .76-.81 .93 .56 .61-.88 .92 .59 .61-.90 .95 .50 .56-.89 

Games-Howell* .90 .66 .78 .84 .62 .66-.80 .93 .48 .52-.89 .98 .87 .91-.93 .90 .17 .20-.87 

Hochberg .89 .66 .77-.78 .86 .71 .76-.81 .93 .49 .54-.88 .91 .50 .52-.89 .94 .47 .52-.89 

LSD .96 .80 .88 .93 .84 .87-.90 .97 .68 .70-.95 .97 .75 .76-.96 .97 .60 .62-.94 

REGWF .91 .79 .85 .88 .83 .84-.87 .95 .70 .72-.93 .95 .78 .79-.94 .95 .61 .63-.93 

REGWQ .90 .78 .84 .87 .81 .83-.85 .88 .51 .53-.86 .84 .53 .53-.84 .89 .48 .50-.87 

Scheffé .88 .63 .75-.76 .84 .68 .75-.78 .91 .47 .52-.86 .90 .46 .48-.88 .93 .45 .50-.88 

Sidak .89 .65 .77-.78 .86 .71 .76-.81 .92 .49 .54-.88 .91 .50 .52-.89 .94 .47 .52-.89 

SNK .90 .78 .84 .87 .81 .83-.85 .83 .62 .70-.75 .80 .69 .74 .86 .52 .63-.76 

Tamhane* .90 .64 .77 .83 .59 .63-.79 .92 .45 .50-.88 .97 .86 .90-.93 .88 .16 .19-.85 

Tukey B .90 .73 .81 .87 .77 .80-.84 .83 .55 .68-.71 .80 .62 .71 .85 .46 .60-.71 

Tukey HSD .90 .67 .78-.79 .87 .72 .77-.82 .93 .52 .56-.89 .92 .53 .55-.90 .95 .49 .54-.90 

Waller-Duncan .89 .634 .76 .85 .68 .75-.79 .78 .37 .57-.58 .73 .43 .57-.58 .81 .31 .55-.57 

Note. (large) indicates that the largest group has the largest variance. (small) indicates that the smallest group has the largest variance. Variances used for the 

3-group conditions were 1, 4, and 7. Sample sizes for the 3-group conditions were 60 each for equal sizes and 20, 60, and 100 for unequal sizes. *indicates that 

SPSS labels this post-hoc test as not assuming equal variances. Tests not starred assume equal variances. 
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Table B2 

Partly true null hypothesis power rates, by condition and test for 5 groups 

Test 

Condition 

Equal N, Equal SD Equal N, Unequal SD Unequal N, Equal SD 

Unequal N, Unequal 

SD 

(large) 

Unequal N, Unequal 

SD 

(small) 

ANP ALP PP ANP ALP PP ANP ALP PP ANP ALP PP ANP ALP PP 

Bonferroni .97 .25 .65-.70 .97 .28 .62-.76 .97 .13 .26-.88 .97 .04 .12-.86 .98 .14 .34-.92 

Duncan 1.0 .66 .89-.90 1.0 .68 .84-.96 .99 .45 .72-.86 .99 .58 .84-.87 .99 .41 .67-.89 

Dunnett C* .98 .26 .67-70 1.0 .25 .42-.98 .97 .10 .24-.88 1.0 .48 .81-.85 .99 .03 .08-.99 

Dunnett T3* .97 .24 .66-.69 1.0 .23 .41-.98 .97 .09 .24-.88 1.0 .47 .80-.85 .99 .03 .08-.98 

Dunnett t .91 .70 .80-.81 .87 .64 .74-.78 .96 .74 .77-.93 .96 .78 .82-.92 .98 .71 .73-.97 

Gabriel .97 .25 .66-.70 .97 .28 .62-.76 .97 .14 .27-.88 .98 .06 .14-.88 .99 .15 .35-.92 

Games-Howell* .98 .26 .69-.72 1.0 .26 .44-.98 .97 .11 .26-.89 1.0 .51 .82-.87 .99 .03 .09-.99 

Hochberg .97 .25 .66-.70 .97 .28 .62-.76 .97 .13 .26-.88 .97 .05 .12-.87 .98 .14 .34-.92 

LSD 1.0 .66 .90-.91 1.0 .68 .86-.97 1.0 .42 .58-.98 1.0 .50 .66-.97 1.0 .40 .58-.99 

REGWF .99 .50 .80-.81 1.0 .51 .74-.90 .99 .33 .48-.92 .99 .38 53-.92 .99 .32 .49-.95 

REGWQ .98 .47 .78-.79 .98 .49 .72-.88 .95 .24 .36-.89 .95 .24 .34-.89 .97 .23 .39-.93 

Scheffé .94 .15 .55-.59 .94 .16 .54-.60 .94 .07 .19-.82 .94 .01 .07-.83 .96 .09 .29-.87 

Sidak .97 .25 .66-.70 .97 .28 .62-.76 .97 .13 .26-.88 .97 .05 .12-.87 .98 .14 .34-.92 

SNK .98 .60 .82-.83 .98 .63 .77-.91 .92 .37 .61-.70 .92 .45 69-.71 .92 .35 .60-.73 

Tamhane* .97 .24 .66-.68 1.0 .23 .41-.98 .97 .09 .23-.88 .99 .47 .80-.85 .99 .03 .08-.98 

Tukey B .98 .45 .76-.77 .98 .48 .77-.87 .92 .24 .56-.63 .92 .28 .61.-64 .92 .24 .56-.65 

Tukey HSD .98 .28 .69-.72 .98 .32 .64-.79 .98 .14 .29-.89 .98 .06 .15-.89 .99 .16 .36-.94 

Waller-Duncan .99 .38 .77-.78 1.0 .42 .72-.89 .96 .19 .58-.67 .97 .23 .65-.67 .96 .18 .58-.68 

Note. (large) indicates that the largest group has the largest variance. (small) indicates that the smallest group has the largest variance. Variances used for the 

5-group conditions were 1, 2.5, 4, 5.5, and 7. Sample sizes for the 5-group conditions were 60 each for equal sizes and 20, 40, 60, 80, and 100 for unequal 

sizes. *indicates that SPSS labels this post-hoc test as not assuming equal variances. Tests not starred assume equal variances. 
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Table B3 

Partly true null hypothesis power rates, by condition and test for 5 groups 

Test 

Condition 

Equal N, Equal SD Equal N, Unequal SD Unequal N, Equal SD 

Unequal N, Unequal 

SD 

(large) 

Unequal N, Unequal 

SD 

(small) 

ANP ALP PP ANP ALP PP ANP ALP PP ANP ALP PP ANP ALP PP 

Bonferroni .99 .07 .58-.61 .98 .06 .55-.65 .99 .02 .17-.83 .97 .00 .02-.75 1.0 .05 .30-.97 

Duncan 1.0 .52 .86-.90 .99 .51 .82-.97 .99 .29 .71-.84 .99 .30 .75-.79 .99 .33 .70-.84 

Dunnett C* .99 .06 .58-.62 1.0 .06 .33-.99 .99 .01 .15-.84 .99 .12 .63-.71 1.0 .00 .05-1.0 

Dunnett T3* .99 .05 .56-.60 1.0 .05 .31-.99 .99 .01 .15-.83 .99 .12 .62-.72 1.0 .00 .06-1.0 

Dunnett t .92 .53 .74-.75 .87 .52 .68-.74 .98 .57 .66-.92 .94 .52 .61-.85 1.0 .60 .67-.99 

Gabriel .99 .07 .58-.61 .98 .06 .55-.66 .99 .02 .18-.83 .97 .00 .03-.75 1.0 .06 .31-.97 

Games-Howell* 1.0 .07 .60-.63 1.0 .06 .34-.99 .99 .01 .17-.84 1.0 .14 .64-.75 1.0 .01 .06-1.0 

Hochberg .99 .07 .58-.61 .98 .06 .55-.66 .99 .02 .17-.83 .97 .00 .03-.75 1.0 .05 .30-.97 

LSD 1.0 .52 .90-.92 1.0 .52 .85-.98 1.0 .28 .56-.98 1.0 .25 .53-.95 1.0 .31 .59-1.0 

REGWF 1.0 .24 .73-.76 .99 .25 .65-.85 1.0 .17 .43-.91 .99 .16 .42-.83 .99 .21 .43-.96 

REGWQ .99 .19 .68-.72 .99 .22 .63-.80 .98 .08 .30-.86 .94 .09 .26-.77 .99 .14 .36-.95 

Scheffé .93 .01 .38-.41 .92 .01 .32-.41 .94 .00 .09-.69 .87 .00 .00-.60 .99 .01 .18-.88 

Sidak .99 .07 .58-.61 .98 .06 55-.65 .99 .02 .17-.83 .97 .00 .03-.75 1.0 .05 .30-.97 

SNK .99 .40 .76-.79 .98 .40 .69-.86 .95 .19 .56-.62 .91 .16 .50-.54 .97 .25 .59-.79 

Tamhane* .99 .05 .56-.59 1.0 .05 .31-.99 .99 .01 .15-.83 .99 .12 .62-.71 1.0 .00 .05-1.0 

Tukey B .99 .19 .67-.72 .99 .22 .63-.79 .95 .07 .49-.54 .91 .08 .43-.48 .98 .14 .54-.70 

Tukey HSD 1.0 .08 .61-.64 .99 .08 .58-.70 .99 .02 .19-.85 .97 .00 .04-.77 1.0 .07 .32-.98 

Waller-Duncan 1.0 .19 .75-.78 .99 .21 .70-.87 1.0 .07 .58-.67 .98 .07 .57-.62 .99 .13 .60-.84 

Note. (large) indicates that the largest group has the largest variance. (small) indicates that the smallest group has the largest variance. Variances used for the 

7-group conditions were 1, 2, 3, 4, 5, 6, and 7. Sample sizes for the 7-group conditions were 60 each for equal sizes and 20, 33, 47, 60, 73, 87, and 100 for 

unequal sizes. *indicates that SPSS labels this post-hoc test as not assuming equal variances. Tests not starred assume equal variances. 
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Table B4 

Fully false null hypothesis power rates, by condition and test for 3 groups 

Test 

Condition 

Equal N, Equal SD Equal N, Unequal SD Unequal N, Equal SD 

Unequal N, Unequal 

SD 

(large) 

Unequal N, Unequal 

SD 

(small) 

ANP ALP PP ANP ALP PP ANP ALP PP ANP ALP PP ANP ALP PP 

Bonferroni .82 .01 .23-.80 .83 .01 .16-.80 .60 .01 .10-.51 .58 .00 .01-.52 .64 .02 .22-.49 

Duncan .89 .07 .37-.87 .90 .06 .32-.89 .73 .02 .16-.71 .82 .01 .14-.81 .68 .04 .19-.62 

Dunnett C* .82 .02 .24-.80 .87 .02 .17-.81 .59 .01 .09-.49 .94 .05 .31-.94 .43 .00 .06-.27 

Dunnett T3* .81 .01 .23-.79 .86 .02 .17-.80 .57 .01 .09-.47 .94 .05 .31-.94 .41 .00 .06-.25 

Dunnett t .85 .28 .29-.83 .85 .32 .32-.85 .67 .23 .32-.58 .68 .31 .35-.64 .69 .19 .35-.54 

Gabriel .82 .01 .24-.80 .83 .01 .16-.80 .65 .01 .12-.58 .67 .00 .02-.63 .68 .02 .24-.54 

Games-Howell* .82 .02 .25-.80 .87 .02 .18-.81 .61 .02 .10-.51 .94 .05 ..33-.94 .43 .00 .06-.27 

Hochberg .82 .01 .24-.80 .83 .01 .16-.80 .61 .01 .10-.51 .58 .00 .01-.53 .65 .02 .23-.50 

LSD .91 .07 .38-.89 .93 .06 .33-.90 .78 .06 .20-.68 .82 .01 .06-.79 .77 .08 .31-.60 

REGWF .83 .07 .37-.83 .84 .06 .31-.83 .68 .06 .19-.63 .68 .01 .06-.67 .70 .08 .32-.58 

REGWQ .83 .07 .36-.83 .84 .06 .31-.83 .37 .02 .09-.33 .31 .00 .01-.30 .50 .04 .22-.40 

Scheffé .81 .01 .23-.78 .81 .01 .14-.79 .57 .01 .09-.48 .55 .00 .01-.48 .63 .02 .22-.48 

Sidak .82 .01 .24-.80 .83 .01 .16-.80 .61 .01 .10-.51 .58 .00 .01-.53 .65 .02 .23-.50 

SNK .83 .07 .36-.83 .84 .06 .31-.83 .62 .02 .15-.61 .69 .01 .12-.69 .59 .04 .15-.56 

Tamhane* .81 .01 .23-.79 .86 .02 .17-.80 .57 .01 .09-.47 .94 .04 .31-.94 .41 .00 .06-.25 

Tukey B .83 .04 .30-.82 .84 .04 .23-.82 .62 .01 .11-.61 .69 .00 .08-.69 .59 .02 .12-.56 

Tukey HSD .83 .02 .25-.81 .84 .01 .17-.82 .63 .01 .11-.53 .61 .00 .01-.56 .66 .03 .23-.50 

Waller-Duncan .82 .01 .21-.79 .82 .00 .13-.80 .57 .00 .05-.56 .60 .00 .03-.60 .56 .00 .06-.53 

Note. (large) indicates that the largest group has the largest variance. (small) indicates that the smallest group has the largest variance. Variances used for the 

3-group conditions were 1, 4, and 7. Sample sizes for the 3-group conditions were 60 each for equal sizes and 20, 60, and 100 for unequal sizes. *indicates that 

SPSS labels this post-hoc test as not assuming equal variances. Tests not starred assume equal variances. 
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Table B5 

Fully false null hypothesis power rates, by condition and test for 5 groups 

Test 

Condition 

Equal N, Equal SD Equal N, Unequal SD Unequal N, Equal SD 

Unequal N, Unequal 

SD 

(large) 

Unequal N, Unequal 

SD 

(small) 

ANP ALP PP ANP ALP PP ANP ALP PP ANP ALP PP ANP ALP PP 

Bonferroni .79 .00 .01-.67 .79 .00 .00-.68 .62 .00 .01-.36 .52 .00 .00-.34 .69 .00 .02-.40 

Duncan .93 .00 .11-.87 .94 .00 .04-.88 .84 .00 .04-.70 .87 .00 .04-.79 .85 .00 .01-.67 

Dunnett C* .79 .00 .02-.67 .84 .00 .02-.70 .61 .00 .01-.36 .90 .00 .03-.83 .47 .00 .01-.22 

Dunnett T3* .77 .00 .02-.65 .83 .00 .01-.67 .59 .00 .01-.34 .90 .00 .03-.82 .43 .00 .01-.19 

Dunnett t .83 .02 .05-.78 .82 .06 .09-.80 .73 .03 .07-.48 .66 .05 .09-.47 .80 .00 .04-.50 

Gabriel .79 .00 .02-.67 .79 .00 .00-.68 .67 .00 .01-.43 .58 .00 .00-.37 .73 .00 .02-.46 

Games-Howell* .80 .00 .02-.69 .85 .00 .02-.70 .62 .00 .01-.37 .93 .00 .03-.85 .48 .00 .01-.22 

Hochberg .79 .00 .02-.67 .79 .00 .00-.68 .63 .00 .01-.36 .53 .00 .00-.34 .69 .00 .02-.40 

LSD .96 .00 .12-.90 .97 .00 .04-.91 .92 .00 .08-.68 .92 .00 .01-.75 .93 .00 .10-.66 

REGWF .84 .00 .05-.74 .85 .00 .01-.75 .73 .00 .03-.56 .71 .00 .00-.59 .77 .00 .03-.55 

REGWQ .82 .00 .05-.73 .82 .00 .01-.74 .38 .00 .01-.26 .27 .00 .00-.20 .48 .00 .02-.31 

Scheffé .68 .00 .01-.57 .68 .00 .00-.57 .49 .00 .00-.26 .36 .00 .00-.22 .58 .00 .00-.32 

Sidak .79 .00 .02-.67 .79 .00 .00-.68 .63 .00 .01-.36 .53 .00 .00-.34 .69 .00 .02-.40 

SNK .82 .00 .07-.74 .82 .00 .02-.74 .63 .00 .02-.54 .61 .00 .02-.56 .69 .00 .00-.55 

Tamhane* .77 .00 .02-.65 .82 .00 .01-.67 .59 .00 .01-.33 .90 .00 .03-.82 .43 .00 .01-.19 

Tukey B .82 .00 .04-.72 .82 .00 .01-.72 .63 .00 .00-.53 .61 .00 .01-.54 .69 .00 .00-.54 

Tukey HSD .82 .00 .02-.70 .82 .00 .00-.71 .66 .00 .01-.39 .56 .00 .00-.36 .71 .00 .02-.43 

Waller-Duncan .88 .00 .04-.78 .89 .00 .01-.80 .74 .00 .01-.61 .74 .00 .01-.65 .76 .00 .00-.58 

Note. (large) indicates that the largest group has the largest variance. (small) indicates that the smallest group has the largest variance. Variances used for the 

5-group conditions were 1, 2.5, 4, 5.5, and 7. Sample sizes for the 5-group conditions were 60 each for equal sizes and 20, 40, 60, 80, and 100 for unequal 

sizes. *indicates that SPSS labels this post-hoc test as not assuming equal variances. Tests not starred assume equal variances. 
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Table B6 

Fully false null hypothesis power rates, by condition and test for 7 groups 

Test 

Condition 

Equal N, Equal SD Equal N, Unequal SD Unequal N, Equal SD 

Unequal N, Unequal 

SD 

(large) 

Unequal N, Unequal 

SD 

(small) 

ANP ALP PP ANP ALP PP ANP ALP PP ANP ALP PP ANP ALP PP 

Bonferroni .80 .00 .00-.57 .78 .00 .00-.59 .60 .00 .00-.27 .49 .00 .00-.25 .69 .00 .00-.32 

Duncan .97 .00 .07-.87 .97 .00 .01-.86 .93 .00 .01-.71 .92 .00 .01-.80 .92 .00 .00-.65 

Dunnett C* .80 .00 .01-.58 .85 .00 .00-.59 .60 .00 .01-.28 .91 .00 .01-.75 .51 .00 .00-.20 

Dunnett T3* .78 .00 .00-.56 .83 .00 .00-.56 .56 .00 .01-.26 .90 .00 .01-.75 .46 .00 .00-.17 

Dunnett t .85 .00 .03-.76 .81 .03 .07-.77 .75 .01 .03-.45 .66 .01 .05-.44 .83 .00 .00-.45 

Gabriel .80 .00 .00-.58 .78 .00 .00-.59 .66 .00 .00-.34 .56 .00 .00-.30 .72 .00 .00-.37 

Games-Howell* .82 .00 .01-.60 .86 .00 .00-.59 .62 .00 .01-.30 .91 .00 .01-.78 .52 .00 .00-.20 

Hochberg .80 .00 .00-.58 .78 .00 .00-.59 .61 .00 .00-.29 .50 .00 .00-.25 .69 .00 .00-.32 

LSD .99 .00 .08-.91 .99 .00 .01-.90 .97 .00 .07-.70 .96 .00 .00-.77 .98 .00 .03-.66 

REGWF .89 .00 .02-.67 .87 .00 .00-.69 .80 .00 .02-.53 .74 .00 .00-.55 .80 .00 .00-.49 

REGWQ .83 .00 .01-.64 .82 .00 .00-.65 .34 .00 .01-.18 .26 .00 .00-.17 .47 .00 .00-.24 

Scheffé .58 .00 .00-.39 .54 .00 .00-.39 .35 .00 .00-.14 .22 .00 .00-.09 .47 .00 .00-.21 

Sidak .80 .00 .00-.58 .78 .00 .00-.59 .61 .00 .00-.29 .50 .00 .00-.25 .69 .00 .00-.32 

SNK .83 .00 .03-.66 .82 .00 .00-.66 .66 .00 .00-.48 .61 .00 .00-.48 .70 .00 .00-.48 

Tamhane* .78 .00 .00-.56 .82 .00 .00-.55 .55 .00 .01-.26 .90 .00 .01-.75 .45 .00 .00-.17 

Tukey B .83 .00 .01-.63 .82 .00 .00-.64 .66 .00 .00-.47 .61 .00 .00-.47 .70 .00 .00-.47 

Tukey HSD .83 .00 .01-.60 .82 .00 .00-.62 .66 .00 .01-.32 .54 .00 .00-.29 .73 .00 .00-.35 

Waller-Duncan .93 .00 .02-.78 .93 .00 .00-.78 .84 .00 .00-.61 .81 .00 .00-.66 .84 .00 .00-.57 

Note. (large) indicates that the largest group has the largest variance. (small) indicates that the smallest group has the largest variance. Variances used for the 

7-group conditions were 1, 2, 3, 4, 5, 6, and 7. Sample sizes for the 7-group conditions were 60 each for equal sizes and 20, 33, 47, 60, 73, 87, and 100 for 

unequal sizes. *indicates that SPSS labels this post-hoc test as not assuming equal variances. Tests not starred assume equal variances. 
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