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Abstract 

 

Malaria is a blood-borne disease caused by protozoans of the genus 

Plasmodium. Currently, 300-500 million cases are reported each year and 1.3 million 

deaths occur world-wide, with the majority taking place in developing nations. Four 

major species of Plasmodium cause disease in humans, the most wide-spread of them 

being Plasmodium falciparum. Typical symptoms of malaria include fever, lethargy, 

splenomegaly, and anemia, and in severe cases, neurological symptoms may arise. 

Interleukin-3 (IL-3), a cytokine released primarily by activated T-cells and mast cells, is 

known for its hematopoietic growth functions. It has also been shown to play a 

protective role in nematode infections and in promoting delayed-type contact 

hypersensitivity responses. In this study, we investigated the extent to which IL-3 plays 

a role in the host response to Plasmodium infections. We induced a blood-stage malaria 

infection in wild-type (WT) and IL-3-deficient (IL-3 -/-) mice using P. berghei ANKA, a 

lethal strain of Plasmodium that infects rodents. We show that infected female IL-3 -/- 

mice, but not male mice, presented with lower numbers of circulating parasitized red 

blood cells, were more anemic, and had increased splenomegaly compared to 

corresponding WT mice. However, there was no difference in the survival rate between 

infected male or female mice of either genotype. Together these data indicate that IL-3 

might act to suppress protective immune responses to P. berghei ANKA in female mice, 

but these actions were not enough to prolong survival. Our findings that gender 

influences the disease indicators likely suggest hormonal and immunological differences 

in the sexes. These findings are in contrast to similar studies by our laboratory using P. 

berghei NK65-infected IL-3 -/- and WT mice in which it was shown that IL-3 plays a 
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critical role in suppressing protective immunity in both male and female mice, and 

prolongs survival in male mice. We believe that the studies presented here, together 

with those reported for P. berghei NK65, will help to eventually elucidate the relative 

contribution of IL-3 in the resulting morbidity and mortality associated with both rodent 

and human malaria. 
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Introduction 

 

Malaria 

Overview of malaria 

Malaria is a parasitic infection caused by a protozoan of the genus Plasmodium 

and is transmitted among humans by female mosquitoes of the genus Anopheles. The 

most common Plasmodium species that infect humans are P. falciparum, P. vivax, P. 

ovale and P. malariae. Each year, 300-500 million cases of malaria are reported and 1.3 

million deaths occur worldwide, mainly among children under the age of 5; it takes the 

life of 2000 children daily in Africa alone (National Institute of Allergy and Infectious 

Diseases, 2011). Although malaria is not currently a problem in developed countries 

such as the United States, almost half of the world's population lives in areas where due 

to economic situations malaria is endemic. It occurs mainly in sub-Saharan Africa, 

Southeast Asia, India and South America. (National Institute of Allergy and Infectious 

Diseases, 2011). 

Malaria is a serious and sometimes fatal infection. Individuals infected with 

malaria present with a variety of symptoms but generally include high fever, shaking, 

chills, headaches, and anemia, and flu-like illness. All the clinical symptoms of malaria 

are caused by asexual blood stage parasites. When the parasites develop in the RBCs, 

numerous toxic substances accumulate and are released when the infected cells are 

lysed. The release of these toxic substances stimulates a variety of immune and non-

immune cells which in turn contribute to pathology. With some Plasmodium spp., 

parasitized RBCs adhere to the vascular endothelium of blood vessels and do not freely 
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circulate. When this occurs in vessels of the brain, a serious and often fatal condition 

known as cerebral malaria (CM) can develop. Although malaria is a curable disease if 

diagnosed and treated properly, control and eradication of the disease has presented 

with various obstacles, mainly due to the lack of an effective vaccine and the 

development of drug resistant strains. A better understanding of the biology of 

Plasmodium is therefore critical to identifying meaningful targets for vaccines, 

therapeutics and diagnostics. 

 

Plasmodium life cycle 

Among the Plasmodium spp. four are known to infect humans: P. falciparum, P. 

vivax, P. ovale, and P. malariae. While P. falciparum, found worldwide, is the most 

virulent among these species and is known to cause severe fatal malaria, P. vivax is the 

most prevalent Plasmodium species, causing high morbidity and high socioeconomic 

impact. Other Plasmodium spp. have been reported to infect rodents, including P. 

chabaudi, P. vinckei, P. yoelii and P. berghei. 

Plasmodium spp. exhibit a complex life cycle that involves female Anopheles 

mosquitoes and a vertebrate host. This life cycle is similar in both humans and rodents. 

The Plasmodium life cycle is generally divided to two parts within the vertebrate host: 

the exo-erythrocytic and erythrocytic stages. When an infected female mosquito takes a 

blood meal from a vertebrate host, saliva containing vasodilation compounds and 

parasite sporozoites are injected into the bloodstream of the host. Sporozoites travel 

through the bloodstream and enter the parenchymal cells of the liver, initiating the exo-

erythrocytic stage, where they divide asexually forming thousands of merozoites. The 
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number of merozoites produced varies between the different species. When the 

merozoites fill the entire volume of a cell they burst out into the bloodstream to start the 

erythrocytic stage by invading red blood cells (RBCs) (Sylvie et al., 2008). 

        Within RBCs, merozoites develop into a ring stage (early trophozoites) and 

undergo asexual division to form a schizont. Eventually the RBCs burst and release 

numerous newly formed merozoites into the bloodstream to infect more RBCs. The 

erythrocytic cycle is repeated every 48 hours for most species. Merozoites depend on 

RBCs for nutrition as they utilize hemoglobin after breaking the complex and releasing a 

pigmented product, hemozoin, which is primarily responsible for most symptoms of 

disease, especially fever (Goldberg, et al., 1990). Some merozoites advance into the 

sexual stage and form into macro gametocytes (female) or microgametocytes (male). 

These stages can develop further only in the gut of a female mosquito. Once the 

gametocytes are ingested by a mosquito during a second blood meal they fuse and 

form zygotes which become oocytes. The oocytes mature into sporozoites which 

migrate to the salivary glands of the mosquito. When the mosquito infects another host, 

the life cycle continues. The generalized life cycle of Plasmodium is shown in Figure 1. 

 

Clinical disease 

        Clinical symptoms of malaria result mainly from the erythrocytic stage of 

Plasmodium infection and commonly include enlargement of the spleen (splenomegaly), 

anemia, headache, myalgia and a periodic outbreak of fever and chills (Haldar et al., 

2007). Many of the studies in malaria identify a severe malaria infection to be one that  

 



 

12 
 

 

 

 

 

 

 

 

 

 

 

FIG 1. Plasmodium life cycle (Derbyshire et al., 2011). 
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includes a cerebral pathogenesis, severe anemia and splenomegaly. It is thought that 

the fever and chills are mainly caused by the release of hemozoin, a byproduct of 

hemoglobin breakdown, and other toxic factors which induce macrophages and other 

immune cells to produce inflammatory cytokines and other inflammatory mediators 

leading to fever and tremors (chills). 

Since malaria is a blood borne pathogen, the spleen plays a major role as a 

secondary lymphoid tissue. Within the spleen, immune cells encounter antigens and 

proliferate into cytokine-producing effector cells. This proliferation process is believed to 

be the reason the spleen enlarges (Haldar et al., 2007). There is much debate on how 

CM occurs in a Plasmodium infection. It is thought that it is mainly caused due to the 

sequestration of parasitized RBCs and immune cells (mainly neutrophils) in the 

microvasculature of the central nervous system (Porcherie et al., 2011). Along with 

blockage, other factors are thought to play a role in CM pathogenesis. For instance, 

TNF-, IFN-, IL-1 and IL-6 are inflammatory cytokines pivotal in the early response to 

malarial infection and have also been implicated in CM (Kwiatkowski et al., 1990). 

Severe infection, characterized by hyperparasitemia, hypoglycemia and severe anemia, 

were also observed with patients who had higher levels of TNF- (Schaffer et al., 1991). 

In some studies, suppression of the inflammatory cytokines IFN-, TNF- and IL-12 

inhibited the development of CM in infected murine models (Yanez et al., 1996), 

although the mechanism by which these cytokines result in these outcomes is unclear. 

Another great cause of morbidity and mortality in malaria is anemia. The process 

by which anemia occurs is still unclear. It is thought that the two likely mechanisms are 

due to the clearance of parasitized and possibly non-parasitized RBCs and/or 
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suppression of erythropoiesis (Haldar et al., 2007). Waitumbi et al., (2000) suggested 

that as parasitized RBCs lyse as part of the Plasmodium life cycle, antigens are 

released that bind to non-parasitized RBCs, which consequently become eliminated 

from the bloodstream by phagocytosis mediated by immunoglobulin G or by 

complement mediated opsonization. The symptoms of malaria, specially fever and 

chills, occur in a periodical manner due to the nature of the Plasmodium life cycle, 

where large number of merozoites break out of RBCs in a repetitive cycle and the time 

elapsed depends on the strain of Plasmodium. 

         

Mouse models of malaria 

Mice have provided investigators with a useful model suitable for the study of the 

interactions between the host and Plasmodium parasites. A number of Plasmodium 

spp. that infect mice and other rodents have been extensively studied. The major 

species used in mouse models of infection include P. chabaudi, P. vinckei, P. yoelii, and 

two subspecies of P. berghei, NK65 and ANKA. There are numerous small differences 

between the major species in regard to their life cycle, morphology and host 

interactions. For example, P. chabaudi is generally considered to be a non-lethal 

parasite whereas P. berghei causes significant mortality by 2 weeks post-infection (p.i.). 

Therefore, the decision to work with a particular parasite will depend on the goals of the 

research in question. 

Mouse experiments with Plasmodium can be conducted by using mosquitoes to 

infect the mice. This method of infection can be utilized to study the exo-erythrocytic 

stage of the Plasmodium infection. To study the blood stages, mice are normally 
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injected with parasitized RBCs. Parasitized RBCs can be introduced into the blood 

stream by injecting them intraperitoneally (IP) into the abdomen, or intravenously. 

P. berghei is a commonly used strain because the resulting pathology is similar to that 

seen in humans: severe anemia, splenomegaly and respiratory distress. P. berghei 

NK65, a subspecies, is used commonly because it mimics the effects of P. falciparum in 

humans which can serve as an essential tool for studying malaria. Mice injected I.P. 

with parasitized RBCs develop a significant parasitemia that is generally lethal by 12 

days p.i. 

Infection with a different subspecies, P. berghei ANKA, presents with similar 

symptoms, but it varies from that of P. berghei NK65 in that it also causes CM. CM is 

the most consequential manifestation of severe malaria that often involves impairment 

of consciousness, seizures, coma, and other neurological abnormalities. Although the 

etiology of CM is not clear, it is thought to be caused by blockage of the cerebral 

capillaries with parasitized RBCs, which adhere to the endothelium. In mice, 

experimental CM induced by P. berghei ANKA also leads to blockage of cerebral 

capillaries. Furthermore, it has been shown that neutrophils, not mast cells or basophils, 

play a central role in inducing inflammatory responses in CM (Porcherie et al., 2011).  

Importantly, involvement of neutrophils was not seen in mice infected with P. berghei 

NK65, a strain that does not induce CM.  

 

Interleukin-3 and malaria 

Interleukin-3 (IL-3) is a 28 kDa glycoprotein monomer functioning as a cytokine, 

released primarily by activated T-cells and mast cells working primarily as a 
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hematopoietic growth factor. It has been documented to cause the in vitro differentiation 

of murine stem cells into granulocytes, erythrocytes and mast cells (Ihle, 1992). IL-3 has 

also been documented to play a role in the differentiation of monocytes into 

macrophages (Young et al., 1990) and in vitro studies have shown that IL-3 induces 

TNF- production by antigen-activated monocytes (Cannistra et al., 1988). In addition, 

IL-3 has also been used in in vivo studies by administering it to mice, primates and 

humans which resulted in increased hematopoiesis (Ihle, 1992). Moreover, IL-3 has 

been documented to promote mast cell growth and release of pro-inflammatory 

mediators in allergic reactions (Hu et al., 2007). 

Notwithstanding the functions of IL-3, studies show that BALB/c IL-3-deficient 

(IL-3 -/-) mice do not have abnormalities in hematopoiesis, presenting with normal 

basophil and mast cell numbers under normal physiological conditions (Mach et al., 

1998). This is likely because IL-3 is not produced constitutively. However, IL-3 -/- mice 

have shown impaired delayed-type contact hypersensitivity responses to hapten 

antigens (Mach et al., 1998) and delayed expulsion of gastrointestinal nematodes 

(Lantz et al., 1998). 

Since the initial description of IL-3, there has been no direct evidence in a 

published literature of a role for IL-3 in the pathophysiology of malaria. Grau et al., 

(1988) have shown that the use of anti-IL-3 and anti-GM-CSF antibodies on P. berghei 

ANKA-infected CBA mice prevents the development of CM and extends their survival, 

possibly by preventing increase in TNF-. Furthermore, IL-3 has been shown to play a 

role in increasing adhesion of parasitized RBCs to endothelial cells leading to severe 
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malaria (Carlson et al., 1990). Meyer et al., (2011) have also shown that IL-3 

polymorphisms are associated with chances of recurrent malaria infections in humans. 

Recently, in our laboratory, we studied the role of IL-3 in host immunity during a 

Plasmodium infection using IL-3 -/- and wild-type (WT) BALB/c mice. We have found 

that P. berghei NK65-infected IL-3 -/- mice presented with larger spleens (perhaps due 

to significant immune cell expansion) and lower hematocrit (more anemic) at day 8 p.i. 

compared to similarly infected WT mice. Interestingly, we have demonstrated in 

separate experiments that IL-3 -/- male mice presented with significantly increased 

survival and lower peak parasitemia compared to similarly infected WT mice. We also 

found that infected IL-3 -/- male mice were able to produce more erythrocyte progenitors 

(CFU-E and BFU-E) compared to infected WT male mice. Furthermore, WT mice had 

higher levels of the inflammatory cytokine IFN- at day 4 p.i. in their plasma. All these 

results indicate the importance of IL-3 during a Plasmodium infection and necessitate 

further studies. 

 

Project goals 

After having discovered that IL-3 plays a significant role in a mouse model of P. 

berghei NK65 infection, we think a similar study using a different strain of Plasmodium 

is necessary. This is justified by the differences in symptomatology implicated by the 

various strains on the host. P. berghei ANKA, a mouse model of Plasmodium, is known 

to cause CM unlike P. berghei NK65. CM occurs as a result of cellular blockage (see 

above) which is a significantly different form of pathogenesis compared to that which 
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occurs with P. berghei NK65. This necessitates the completion of a similar study using 

P. berghei ANKA to provide an understanding of the role of IL-3 in CM. 

We intend to study the blood stage form of P. berghei ANKA infection by injecting 

105 parasitized RBCs IP into 8-12 WT and IL-3 -/- male and female mice. We will then 

examine the spleen sizes and the hematocrits. In addition, we intend to do a survival 

study accompanied by a kinetic study to examine parasitemia levels at different time 

points (preferably at days 2, 4, 6, 8 and 10). As time allows, we also plan to perform an 

analysis of cytokine levels in serum using a multiplex assay. 

 

The specific aims of this project are as follows: 

Aim 1 – Assess the extent to which IL-3 influences the course and outcome of disease 

in P. berghei ANKA-infected BALB/c mice. We will employ both male and female 

BALB/c IL-3 -/- and WT mice infected with P. berghei ANKA to test the hypothesis that 

endogenous IL-3 influences blood parasitemia and survival. 

 

Aim 2 – Assess the extent to which IL-3 influences the host immune response of 

P. berghei ANKA-infected BALB/c mice. We will characterize parameters that are 

indicative of a host protective response to infection in BALB/c IL-3 -/- and WT mice 

infected with P. berghei ANKA: the development of splenomegaly, RBC levels, and 

cytokine production. 
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Materials and method 

 

Mice 

IL-3-deficient (IL-3 -/-) BALB/c mice were generated as described by (Mach et al., 

1998) and housed in the animal holding facility of the Department of Biology at James 

Madison University. The wild-type (WT) BALB/c mice used were ordered from The 

Jackson Laboratory (Bar Harbor, ME).The mice were maintained and used in 

accordance with James Madison University’s Institutional Animal Care guidelines. Both 

male and female mice were used and ranged in age between 8-12 weeks at the start of 

the experiments. 

 

Plasmodium berghei ANKA parasites 

Cryopreserved P. berghei ANKA parasites were obtained from BEI Resources 

(Manassas, VA; stock number MRA311) in the form of parasitized RBCs. Before using 

the parasites experimentally, they were passaged through WT BALB/c mice. Blood from 

these mice was routinely collected and used to infect experimental animals. Frozen 

stocks of P. berghei ANKA were stored in liquid nitrogen. 

 

P. berghei ANKA infection and evaluation of disease 

P. berghei ANKA parasites were obtained from cryopreserved vials stored in 

liquid nitrogen. After a single passage through a WT BALB/c mouse, the parasites were 

ready to be used on experimental mice. Specifically, the parasites were thawed and 

injected intraperitoneally (I.P.) into a single mouse. 7 days post-infection (p.i.) blood was 
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collected from the retro-orbital sinus of the mouse and prepared for the experimental 

infection. Approximately 105 parasitized RBCs were injected I.P. into each mouse. In 

each experiment, IL-3 -/- and WT male or female BALB/c mice (n = 6 per group) were 

used. 8 days p.i. the mice were weighed and blood was collected from their retro-orbital 

sinus. Thin smears of the peripheral blood were prepared and stained with Giemsa to 

examine the percentage of parasitized RBCs (% parasitemia) using light microscopy. 

Blood was also collected into heparinized hematocrit capillary tubes to evaluate anemia. 

Additionally, the remaining blood was centrifuged for 8 minutes at 1000 x g to collect 

serum to be stored at -80°C for future cytokine level analysis. The spleens were also 

extracted and weighed immediately after euthanizing the mice. The splenic indices were 

calculated using the formula (spleen weight (mg)/ body weight (g)) x 1000. 

For each survival experiment, male and female IL-3 -/- and WT mice (n = 7-9 per 

group) were injected with 105 parasitized RBCs I.P. The health and behavior of each 

mouse was monitored and recorded at approximately 24 hour intervals. Blood was also 

drawn from male mice through tail snips every two days beginning from days 0 to 10 p.i. 

to prepare thin blood smears for kinetic parasitemia evaluation. 

 

Statistical analysis 

Data are presented as the means ± standard deviations from the means (SD). To 

assess the statistical significance between mean values influenced by two variables, a 

two-way or repeated analysis of variance (ANOVA) followed by Bonferroni posttest was 

performed; an unpaired t test was used to compare one variable between two groups. 

Survival data were analyzed using the log-rank (Mantel-Cox) test. A significance level of 
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0.05 was used for all comparisons. All statistical analyses were performed using 

GraphPad Prism, version 5.02 (GraphPad Software, La Jolla, CA). 
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Results 

 

Mortality rates of P. berghei ANKA-infected IL-3 -/- and WT mice. Mice 

infected with P. berghei ANKA usually do not clear their infection and tend to die 8-12 

days post-infection (p.i.). In order to determine if IL-3 plays a role in the survival of P. 

berghei ANKA-infected mice, male and female IL-3 deficient (IL-3 -/-) and wild-type 

(WT) mice (n = 6-9 of each genotype) were infected intraperitoneally (I.P.) with 105 

parasitized RBCs. Mice were then monitored daily for signs of illness and death. The 

objective of this experiment was to conduct a survival comparison for the two 

genotypes. 

Neither sex presented with a statistically significant difference in mortality 

between the IL-3 -/- and WT mice as can be seen in Figs. 2A and 2B. Male mice of both 

genotypes started dying on day 10, and by day 15 all the WT mice were dead while two 

IL-3 -/- mice survived until day 20 (Fig 2A). Similar to male mice, female mice of both 

genotypes started dying on day 10 p.i. but lived as long as day 30-35. All the mice had 

rough hair coats by day 7 p.i. but still had normal outward physical activity. By day 9 p.i. 

all the mice exhibited advanced malaria symptoms of lethargy and were prostrate and 

inactive by day ~12 with some periodically active days.  

 

 

 

 



 

24 
 

 

 

 

 

 

 

 

 

 

FIG 2. Survival rate of P. berghei ANKA-infected male (A) and female (B) WT and IL-3   

-/- (KO) mice (n = 6-9 mice/group). There was no statistically significant difference in 

survival between infected WT and IL-3 -/- mice (P > 0.05). 
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Parasitemia in P. berghei ANKA-infected IL-3 -/- and WT mice. A successfully 

induced experimental malaria infection is indicated by the invasion of RBCs by 

Plasmodium merozoites. Plasmodium parasites benefit from this parasitic relationship 

by using hemoglobin as a nutrition component and by undergoing asexual division in 

blood cells. Since parasitic burden is a good indication of the severity of infection, 

measurement of parasitemia levels was evaluated in P. berghei ANKA-infected WT and 

IL-3 -/- mice. To evaluate the degree to which IL-3 influences parasitemia levels, we 

infected male and female IL-3 -/- and WT mice (n = 6 of each genotype) with 105 

parasitized RBCs IP and sacrificed them on day 8 p.i.  Blood was then collected just 

prior to sacrifice through retro-orbital bleeding. Day 8 of infection is ideal for collecting 

blood and tissue samples since the mice are experiencing advanced outward symptoms 

of malaria but have not yet succumbed to infection. Parasitemia counts were 

determined by examining peripheral blood smears stained with Giemsa. 

Fig. 3A illustrates the parasitemia levels of male and female infected mice at day 

8 p.i. No statistically significant difference was observed between male IL-3 -/- and WT 

mice, with both genotypes having approximately 8-9% parasitemia. However, female 

WT mice were more susceptible to parasite invasion (~9%) than their IL-3 -/- 

counterparts (~5%) on day 8 p.i. as evidenced by the statistically higher parasitemia.  

In order to determine if IL-3 influenced parasitemia levels at other times points 

during infection, a kinetic experiment was performed using male mice. To make this 

analysis, blood was drawn from tail snips of male mice shown in Fig. 2A at days 0, 2, 4, 

6, 8 and 10 p.i. As shown in Fig. 3B male WT mice reached a peak parasitemia of 

~12 % on day 8 p.i. followed by a reduced parasitemia on day 10 p.i. IL-3 -/- mice had a 
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FIG 3. (A) Parasitemia values in P. berghei ANKA-infected male and female WT and 

IL-3 -/- (KO) mice. Parasitemia of infected mice was determined on day 8 (male and 

female). All data are presented as mean ± SD from 6 mice per group analyzed 

individually. *, P < 0.05 for mice as indicated by the square brackets versus 

corresponding values for female mice of the other genotype. (B) Time course of 

parasitemia in P. berghei ANKA-infected male WT and IL-3 -/- (KO). All data are 

presented as mean ± SD from 6-9 mice per group analyzed individually. 
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peak parasitemia of ~18 % on day 10 p.i. However, the two groups of mice did not 

present with a significant difference in parasitemia throughout the course of the 

infection. 
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Anemia in P. berghei ANKA-infected IL-3 -/- and WT mice. Typically in 

Plasmodium infections, anemia occurs as a major symptom, largely due to the fact that 

merozoites utilize RBCs for nutrition and proliferation, eventually resulting in their 

rupture. The clearance of invaded and damaged RBCs by the spleen or suppression of 

erythropoiesis also contributes to anemia. In order to determine if IL-3 influenced the 

degree of anemia resulting from infection, we measured hematocrit levels in P. berghei 

ANKA-infected male and female WT and IL-3 -/- mice at day 8 p.i. Mice used for 

obtaining these results are the same mice as those shown in Fig. 3A. 

As illustrated by Fig. 4, uninfected WT and IL-3 -/- mice presented with similar 

hematocrit levels as previously reported (Mach et al., 1998). All infected mice had 

significantly lower hematocrit values compared with baseline values. However, male 

IL-3 -/- and WT mice did not have a statistically significant difference in hematocrit 

levels. In fact, both groups had levels between 40-41%. In contrast, female IL-3 -/- and 

WT mice infected similarly had statistically significant difference in anemia, with IL-3 -/-

mice being more anemic (~33%) than WT mice (~38%). 
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FIG 4. Hematocrit values in uninfected and P. berghei ANKA-infected male and female 

WT and IL-3 -/- (KO) mice. Hematocrits of infected mice were determined on day 8 p.i. 

Data from uninfected male and female mice of each genotype were not significantly 

different and were pooled (Day 0). All data are presented as means ± SD from 6 mice 

per group analyzed individually. P < 0.001 (***), P < 0.01 (**), and P < 0.05 (*) versus 

corresponding values for uninfected mice or (as indicated by the square brackets) 

versus corresponding values for mice of the other genotype. 
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Development of splenomegaly in P. berghei ANKA-infected IL-3 -/- and WT 

mice. As a major secondary lymphoid organ, the spleen plays an important role in 

controlling blood-borne infections. During a Plasmodium infection, mice typically present 

with enlarged spleens caused by immune cell proliferation in response to antigens 

encountered in the splenic white pulp and/or as a result of RBC destruction occurring in 

the splenic red pulp. Although IL-3 had no influence over the mortality rate of P. berghei 

ANKA-infected mice, its role in influencing spleen pathology was yet to be determined. 

We investigated whether IL-3 plays a role in P. berghei ANKA infection by examining 

spleen sizes of infected IL-3 -/- and WT mice. We infected male and female mice of 

both genotypes (n = 6 pergroup) with 105 parasitized RBCs I.P. and sacrificed them on 

day 8 p.i. to determine if there were differences in spleen size as determined by 

calculating the splenic index. Mice used for obtaining these results are the same mice 

as those shown in Figures 3A and 4. 

We found that infected mice of both genotypes had significantly higher splenic 

indices than corresponding uninfected mice (Fig. 5). Male IL-3 -/- and WT mice did not 

have a significant difference in spleen size with both groups having a splenic index of 

~16. Interestingly, there was a significant difference between infected female mice. We 

observed that female IL-3 -/- had a higher splenic index (~27) than similarly infected WT 

mice (~18). 
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FIG 5. Splenic index in uninfected and P. berghei-infected male and female WT and 

IL-3 -/- (KO) mice. Spleen weights of infected mice were determined on day 8 p.i. The 

splenic index was determined as the ratio of spleen weight to body weight. Data from 

uninfected male and female mice of each genotype were not significantly different and 

were pooled. All data are presented as means ± SD from 6 mice per group analyzed 

individually. P < 0.001 (***) and P < 0.01 (**) versus corresponding values for uninfected 

mice or (as indicated by the square brackets) versus corresponding values for mice of 

the other genotype.  
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Discussion 

 

IL-3 is a cytokine produced primarily by activated T-cells and mast cells and has 

been shown to be critical for nematode-induced mast cell and basophil proliferation, and 

in promoting delayed-type hypersensitivity reactions (Mach et al., 1998). Since the 

discovery of IL-3 in 1981 (Ihle et al., 1981), there have only been a limited number of 

reports suggesting a role for IL-3 in the pathophysiology of protozoan infections, 

including malaria. Recently, Auclair et al. (2013) have reported that IL-3-deficieint 

(IL-3 -/-) mice have increased resistance to blood-stage malaria caused by P. berghei 

NK65 (Auclair et al., 2013). However, only one strain of Plasmodium was examined in 

this report. P. berghei ANKA is a lethal strain of Plasmodium that induces symptoms 

similar to P. berghei NK65. However, unlike P. berghei NK65, P. berghei ANKA also 

causes cerebral malaria (CM) in mice. Thus, further work is necessary to determine if 

IL-3 influences the outcome of infection in other Plasmodium strains besides P. berghei 

NK65. 

In order to understand the significance of IL-3 during a P. berghei ANKA 

infection, we first infected IL-3 -/- and wild-type (WT) mice of both sexes and determined 

if there were any differences in their survival. We found that there was no significant 

difference in survival between IL-3 mice and their corresponding WT counterparts (Fig. 

2). This is in contrast to results found using P. berghei NK65 in which it was observed 

that male, but not female mice, IL-3 -/- survived significantly longer that male WT mice 

(Auclair et al., 2013). Although there was no significant difference in mortality between 

female IL-3 -/- mice and WT mice, we did observe that female mice of both genotypes 

survived significantly longer than corresponding male mice. A similar finding was 
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observed in P. berghei NK65-infected mice. Rodent malaria mortality rates are generally 

higher in males than in females and may relate to immunological and sex steroid 

differences in the sexes (Klein, 2004).  

In addition to survival, measurement of blood parasitemia levels are used to 

monitor the course and severity of infection. The percentage of parasitized RBCs 

present in an infected animal allows one to determine the susceptibility to infection and 

the ability of the animal to clear parasitized RBCs. We first examined parasitemia levels 

in male P. berghei ANKA-infected IL-3 -/- and WT mice at days 0, 2, 4, 6, 8, and 10 

post-infection p.i. There was no statistically significant difference in parasitemia levels 

between male IL-3 -/- and WT mice at any time point examined (Fig. 3b). These results 

correlate with our observation that there is no difference in survival between these 

infected mice. This is in contrast to results found with P. berghei NK65-infected mice, 

where male IL-3 -/- mice had significantly lower parasitemia at day 8 and 10 p.i. 

compared to infected male WT mice. 

To begin studies examining the influence of IL-3 on the degree of parasitemia 

present in female mice, we infected both female and male mice with P. berghei ANKA 

and examined parasitemia at day 8 p.i., a time point just prior to when mice begin to 

suffer significant mortality. As expected, we did not detect a significant difference in 

parasitemia between male infected IL-3 -/- and WT mice at day 8 p.i. (Fig. 3a). 

However, we observed that female IL-3 -/- mice had a significantly lower parasitemia at 

this time point than did female WT mice. Despite there being fewer parasitized RBCs in 

IL-3 -/- mice, this does not lead to increased survival of the mice as noted above. It is 

interesting to note that no similar difference was observed in female IL-3 -/- and WT 
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mice infected with P. berghei NK65 (Auclair et al., 2013). A kinetic study of parasitemia 

in P. berghei ANKA-infected IL-3 -/- and WT mice is planned to further characterize our 

findings in female mice. 

The severity of anemia often correlates with the severity of Plasmodium infection 

in mice. Malarial anemia appears to be multifactorial. It involves the destruction of 

circulating parasitized RBCs, premature destruction of non-parasitized RBCs, as well as 

suppression of erythroid development in the bone marrow and mouse spleen (Haldar et 

al., 2007). Furthermore, there is a strong correlation between severity of disease and an 

observed increase in splenic erythropoiesis. We have previously reported that both 

male and female P. berghei NK65-infected IL-3 -/- mice were more anemic as 

determined by hematocrit values than similarly infected WT mice (Auclair et al., 2013). 

Furthermore, the decreased anemia was not due to insufficient erythropoiesis occurring 

in the bone marrow or spleen since it was found that IL-3 -/- mice actually had higher 

numbers of colony-forming unit erythrocytes (CFU-Es) and burst-forming unit 

erythrocytes (BFU-Es) present in these organs (Auclair et al., 2013). Therefore, it was 

hypothesized that IL-3 -/- mice may be more anemic due to increased destruction of 

parasitized RBCs and/or non-parasitized RBCs by mechanisms such as antibody-

mediated opsonization and phagocytosis. We therefore wanted to determine the effects 

of IL-3 on anemia in P. berghei ANKA-infected mice. 

We examined hematocrit levels in uninfected and in IL-3 -/- and WT mice 

infected 8 days with P. berghei ANKA. As previously reported, there were no differences 

in hematocrit levels between uninfected IL-3 -/- and WT mice (Fig. 4). As expected, 

infection caused a significant decrease in hematocrit levels in all mice compared to 
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uninfected controls. However, no difference in anemia was observed between infected 

IL-3 -/- and WT male mice. In contrast, female IL-3 -/- mice were significantly more 

anemic than corresponding WT mice at day 8 p.i. These results, as well as our findings 

that infected female IL-3 -/- mice have decreased parasitemia, are difficult to interpret at 

this time. These results may suggest that IL-3 exerts its effects in P. berghei ANKA-

infected female, but not male mice, and that the absence of IL-3 results in more efficient 

removal of parasitized RBCs from the peripheral circulation. Future experiments need to 

be performed to examine this possibility. 

Spleen enlargement or splenomegaly is a common manifestation of malaria in 

both humans and rodents. Reason for its increase in size is likely due to multiple 

factors. The spleen is an important site of emergency erythropoiesis, as well as a site of 

parasitized RBC clearance and immune system activation in response to blood-stage 

malaria (Lamikanra et al., 2007). During infection, parasitized RBCs are normally 

removed by increasing numbers of macrophages and dendritic cells primarily located in 

the splenic red pulp. At the same time, there is expansion of parasite-specific 

lymphocytes occuring in the white pulp of the spleen. These processes together are 

thought to contribute to the development of splenomegaly (Ing et al., 2006; Mizobuchi et 

al., 2014). 

Because the degree of splenomegaly often impacts the host’s ability to mount a 

successful response to parasites, splenomegaly was examined in male and female 

IL-3 -/- and WT mice infected with P. berghei ANKA by determining the splenic index on 

day 8 p.i. As shown in Fig. 5, there was no difference in the splenic index of uninfected 

IL-3 -/- and WT mice. In response to infection, all strain of mice experienced significant 
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splenomegaly, but the splenic index was significantly higher in female IL-3 -/- mice as 

compared to infected female WT mice. No difference was observed between male 

IL-3 -/- and WT mice. Increased splenomegaly in female IL-3 -/- mice does correlate 

with our findings that female IL-3 -/- mice had lower numbers of parasitized RBCs 

(parasitemia) and increased anemia. Although it is difficult to speculate at this time, the 

increased splenomegaly seen in IL-3 -/- mice might contribute to increased clearance of 

parasitized RBCs, leading to a decrease in the number of circulating RBCs as 

measured by hematocrit. However, it is important to note that despite these findings, 

infected female mice did not survive longer than corresponding WT mice. 

Overall, these results suggest that IL-3 plays a minor role in susceptibility of 

female, but not male mice, to blood-stage malaria caused by P. berghei ANKA. The fact 

that IL-3 plays a critical role in suppressing protective immunity to P. berghei NK65 but 

not P. berghei ANKA suggests there are key differences in host IL-3-dependent 

response to these pathogens. Both are lethal murine malarial strains and it is well-

known that P. berghei ANKA infection leads to the development of experimental CM 

whereas P. berghei NK65 does not. CM caused by P. berghei ANKA is believed to be a 

major cause of mortality and involves increased cytoadherence of parasitized RBCs in 

the host brain microvasculature, leading to inflammation dominated neutrophils 

(Porcherie et al., 2011). The exact cause of death in mice infected with P. berghei NK65 

is not known but may be a combination of several factors, including severe anemia and 

excessive cytokine production. Interestingly, P. berghei NK65 does have a higher 

preference for invading reticulocytes and induces greater liver damage than does 

P. berghei ANKA infection. Whether or not these differences account for the varied 
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influence of IL-3 on the host response to these two strains of P. berghei remains to be 

determined. 

Many questions remain regarding the underlying basis of how IL-3 influences 

disease outcome during both P. berghei ANKA and P. berghei NK65 infection. Due to 

time limitations, many of the time-consuming studies described with P. berghei ANKA 

will need to be repeated since they reflect only one experiment. It will also be important 

to initiate studies to determine the cellular source IL-3 during infection, the kinetics of 

IL-3 production, and the target cell(s) which mediate IL-3 actions. We have already 

initiated studies using multiplex cytokine assays to determine if there are differences in 

serum levels of cytokines between IL-3 -/- and WT mice infected P. berghei ANKA. 

These are important questions that must be answered in order to determine the 

mechanism by which IL-3 is functioning, either directly and/or indirectly, in the context P. 

berghei infection. We believe that the studies presented here, together with those 

reported for P. berghei NK65, will help to eventually elucidate the relative contribution of 

IL-3 in the resulting morbidity and mortality associated with both rodent and human 

malaria. 
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