Spring 2018

Validity and Reliability of the YMCA Submaximal Cycle Test Using an Electrically Braked Ergometer

Justin Kidd
James Madison University

Follow this and additional works at: https://commons.lib.jmu.edu/honors201019

Part of the Exercise Physiology Commons, Exercise Science Commons, Health Information Technology Commons, Other Analytical, Diagnostic and Therapeutic Techniques and Equipment Commons, and the Sports Sciences Commons

Recommended Citation
https://commons.libjmu.edu/honors201019/602

This Thesis is brought to you for free and open access by the Honors College at JMU Scholarly Commons. It has been accepted for inclusion in Senior Honors Projects, 2010-current by an authorized administrator of JMU Scholarly Commons. For more information, please contact dc_admin@jmu.edu.
Validity and Reliability of the YMCA Submaximal Cycle Test Using an Electrically Braked Ergometer

An Honors College Project Presented to

the Faculty of the Undergraduate

College of Kinesiology

James Madison University

Justin M. Kidd

April 2018

Accepted by the faculty of the Kinesiology, James Madison University, in partial fulfillment of the requirements for the Honors College.

FACULTY COMMITTEE:

Project Advisor: Christopher J. Womack, Ph.D., FACSM
Professor, James Madison University

Reader: Nicholas D. Luden, Ph.D.
Associate Professor, James Madison University

Reader: Michael J. Saunders, Ph.D.
Professor, James Madison University
Director, JMU Human Performance Laboratory

HONORS COLLEGE APPROVAL:

Bradley R. Newcomer, Ph.D.,
Dean, Honors College

PUBLIC PRESENTATION

This work is accepted for presentation, in part or in full, at the Kinesiology Honors Symposium on 19 April 2018.
Acknowledgements

First and foremost, I would like to thank my project advisor, Dr. Womack, for his guidance and mentorship throughout this endeavor. Aside from his expertise, his continued motivation made this experience as rewarding as it was. Because of him, I was able to transform as a researcher and as a writer.

I would also like to thank Dr. Luden and Dr. Saunders for taking time to provide valuable insight during the writing portion of the Senior Honors Project. I knew since Spring 2017 that they would be essential to achieving my highest success. Please acknowledge my extended thanks to Dr. Saunders for directing the laboratory in which my data collection was recorded.

Finally, I would like to thank the Honors College for enhancing my academic journey over the past four years, as well as the Kinesiology Department for allowing me to complete this research under Dr. Womack’s supervision. I am honored and humbled to have been granted the opportunity to complete research as a JMU undergraduate, and I will take the lessons gained from this experience as I further my growth as a student, as an intellectual, and as a professional.
Table of Contents

Acknowledgements..2
List of Tables and Figures..2
Abstract..5
Chapter I. Introduction...6
Chapter II. Methods ...11
Chapter III. Manuscript ...13
 Manuscript References ...21
Table and Figures ...24
Appendix ..29
 App. A. Informed Consent Form ...29
 App. B. Health Status Questionnaire..30
 App. C. YMCA Data Table and Prediction Equation..33
Bibliography ..36
List of Table and Figures

Sample Characteristics..24 Table 1.
Mean actual VO$_{2\text{max}}$ compared to predicted VO$_{2\text{max}}$ (both ergometers).........................24 Figure 1.
Estimated VO$_{2\text{max}}$ (Monark) plotted against actual VO$_{2\text{max}}$..25 Figure 2.
Estimated VO$_{2\text{max}}$ (Viasprint) plotted against actual VO$_{2\text{max}}$..25 Figure 3.
Monark Trial 1 estimated VO$_{2\text{max}}$ plotted against Trial 2 estimated VO$_{2\text{max}}$......................26 Figure 4.
Viasprint Trial 1 estimated VO$_{2\text{max}}$ plotted against Trial 2 estimated VO$_{2\text{max}}$..............26 Figure 5.
Abstract

Purpose: To test the effect of using an electrically braked ergometer on the validity and reliability of the YMCA submaximal cycle test. **Methods:** 22 male and 13 female subjects ages 19 to 31 completed one maximal treadmill test and four submaximal cycle tests to measure and estimate \(VO_{2\text{max}} \), respectively. The maximal tests involved recording heart rate and \(VO_2 \) during graded exercise until volitional fatigue; an actual max was verified when two out of the following criteria: respiratory Exchange Ratio > 1.1, \(VO_2 \) plateau (< 150 ml/min increase in \(VO_2 \) during final stage), and achievement of 90% age-predicted HR max (or completed a validation stage). The submaximal tests were conducted in accordance with ACSM guidelines (10th ed.). Measured and predicted \(VO_{2\text{max}} \) measurements were compared between tests using repeated measures ANOVA and Pearson correlations. **Results:** The treadmill \(VO_{2\text{max}} \) protocol yielded significantly higher values (50.3 ± 7.7 mL/kg/min) than the YMCA submax protocol using a friction-braked (40.8 ± 5.5 mL/kg/min) and electrically braked ergometer (38.8 ± 4.5 mL/kg/min). Furthermore, estimated \(VO_{2\text{max}} \) using the friction-braked ergometer was higher than that observed using the electrically braked ergometer. There were similar reliability coefficients between the friction-braked (R = 0.63) and electrically braked (R = 0.52) ergometers. Lastly, a moderately strong (R = 0.74) relationship was observed between actual \(VO_{2\text{max}} \) and prediction error (\(VO_{2\text{max}} \) - estimated \(VO_{2\text{max}} \)). **Conclusion:** Both Monark and Viasprint ergometers severely underestimated \(VO_{2\text{max}} \) in a sample of generally fit, young individuals. Future investigations should explore the possible relationship between higher aerobic fitness and accuracy of predicting \(VO_{2\text{max}} \) via HR response.

Keywords: YMCA Submaximal Cycle Test, cycle ergometry, electrically braked ergometer, validity, reliability, \(VO_{2\text{max}} \), indirect calorimetry
Chapter I

Introduction

When assessing cardiovascular fitness, VO_{2max} (oxygen utilization rate relative to body weight,) testing is widely accepted as the criterion measurement. Endurance training can increase aerobic fitness in both older, sedentary and young, healthy adults, typically following a dose-response curve according to current fitness level. By extent, assessing VO_{2max} can provide information reflecting current fitness status and can also serve to chronicle improvements due to a training regimen.

VO_{2max} is also linked to risk factors for metabolic and cardiopulmonary diseases. Specifically, peak aerobic capacity is associated with biomarkers such as body fat distribution, high density lipoprotein (HDL) cholesterol, low density lipoprotein (LDL) cholesterol, and insulin sensitivity, and also has been proposed to be the best predictor of postoperative cardiopulmonary complications after surgical resection in lung cancer patients. Significant correlations exist between VO_{2max} and fat free mass (r = 0.37), body mass index (r = -0.32), and, most notably, body fat percentage (r = -0.75). One study noted significant differences in 10-year CVD risk, HDL, systolic blood pressure, C-reactive protein, insulin resistance, and fibrinogen, among subjects with rheumatoid arthritis who were grouped into aerobic fitness categories based on control-tested VO_{2max} levels. Lastly, a 15% difference in VO_{2max} has been observed between high- and low-risk individuals for insulin-resistance syndrome (IRS) and/or type II diabetes mellitus (T2DM), with an inverse correlation existing between maximal aerobic capacity and a homeostatic model assessment for assessing β-cell function and insulin resistance (r = -0.30, p < 0.0001). When screening for non-communicative diseases, VO_{2max} could serve as an important
biomarker of consideration due to its relationship with associated risk factors for important factors for metabolic as atherosclerosis.10

Submaximal Cycle Ergometer Protocols (validity and reliability of both Astrand and YMCA). \(\text{VO}_{2\text{max}}\) is directly assessed using a metabolic cart that analyzes gas exchange as the participant performs graded exercise until volitional fatigue. However, due to the financial expense of this type of equipment, the physical stress associated with a maximal intensity exercise test, and the potential danger to certain populations, a submaximal test is often administered to predict \(\text{VO}_{2\text{max}}\) rather than measure it directly.

Submaximal cycle ergometer protocols involve pedaling at prescribed workloads and using heart rate as a surrogate for oxygen uptake (VO\(_2\)). Two well-known protocols are the Astrand and YMCA bike tests. Since its development in the late 1980’s, the YMCA submaximal cycle test has become one of the most common indirect methods to estimate \(\text{VO}_{2\text{max}}\). The test involves a participant pedaling on a stationary bike at a constant rate, with multiple stages of increasing power outputs. This protocol has been suggested to be an adequate predictor of \(\text{VO}_{2\text{max}}\) for the general population11,12 and in physically active individuals.13 Additionally, submaximal cycle protocol predictions have shown to have high intrasubject test-retest reliability, as well as significant correlations (\(r = 0.66-0.80\)) with results attained using a maximal cycle ergometer test administered on stoke patients.14 However, it has also been observed that the YMCA cycle ergometer test underestimates \(\text{VO}_{2\text{max}}\) across a range of aerobically fit individuals15 and collegiate athletes16 while the Astrand protocol accurately estimated \(\text{VO}_{2\text{max}}\) in the latter study.16 Similarly, the YMCA test has slightly underpredicted \(\text{VO}_{2\text{max}}\) in samples containing both males and females who averaged around 50th percentile,17 but to a similar degree as the Astrand protocol.18 Conversely, YMCA bike test protocols have
resulted in overestimated VO$_{2\text{max}}$ values with low to modest19 or inconsistent test-retest reliability.20 Potential reasons for low reliability include daily fluctuations in physiological responses to exercise, as well as biologically and technologically induced variation between direct VO$_{2\text{max}}$ tests. One investigation saw significant day-to-day coefficients of mean variation in minute-oxygen consumption (4.42\%) and minute-ventilation rate (3.86\%) as participants cycled at 100, 150, and 200 W.21 Furthermore, another study calculated biological plus technological error to result in 5.6\% variability across 80 total maximum aerobic power tests across five trained subjects, with biological (individual) variability accounting for at least 90\% of this sum.22 Overall, a consensus for the practical accuracy and precision of the YMCA bike test in predicting maximal VO$_2$, either across the general population or for any specific demographic, has not yet been established.

Sources of Error-YMCA Test. Potential variability associated with the YMCA test could be due to a number of factors. First, predicting maximal heart rate will not always yield valid estimations, as the respective calculation (HR$_{\text{max}} = 220 - \text{age}$) has an accepted margin of error of at least plus/minus 10 bpm.23 Additionally, this calculation tends to overestimate and underestimate max heart rate for individuals older and younger than ~40 years of age, respectively.24

Next, cycling efficiency may not be equivalent across all individuals. However, while some evidence exists for a difference in gross mechanical efficiency at certain workloads based on training status,25 multiple studies have recorded no relationship between cycle ergometer efficiency and cycling experience,26 even between world-class and recreational cyclists.27

Further, short-term variations in heart rate occur in healthy individuals due to baroreceptive biofeedback that occurs with inhalation and exhalation, which increases and
decreases contraction rate, respectively. The within-subject variability of heart rate has averaged 3.2% of the mean steady-state response at submaximal power outputs on a cycle ergometer, which could equate to a modest, but significant variability in heart rate during incremental exercise. However, despite these factors, it has been suggested that the YMCA submaximal cycle ergometer protocol has the potential to accurately assess aerobic fitness so long as pre-screening guidelines are followed.

Although a linear workload-heart rate relationship up to an intensity that elicits 85% maximum predicted HR is assumed for the ACSM protocol, a graphical deflection point prior to this estimated workload would serve as another potential source of error. One of the first studies to assess an intensity-heart rate relationship had runners increase speed progressively, and found that a mean HR-speed delineation occurred near anaerobic threshold. Additionally, heart rate and lactate thresholds, when assessed using computerized breakpoint analysis between HR or lactate concentration and power output during incremental cycle ergometry, were not significantly different. However, the degree of heart rate deflection and its relationship with lactate turnpoint ("second lactate threshold") are highly dependent on the protocol used, and not all studies report 100 percent consistency. Overall, since a potential relationship between HR deflection and lactate threshold exists (with high inter-subject variability), coupled with the fact that many individuals, particularly sedentary or detrained, often reach lactate threshold at intensities below 85% maximal heart rate, a non-linear heart rate vs. workload relationship may induce some error when using the YMCA cycle ergometer protocol.

A final consideration pertaining to the predictive strength of the YMCA submax test is the dependence on the participant maintaining a consistent power output throughout the durations of multiple trials. Although the protocol requires participants to maintain a
consistent cadence of 50 rpm, it may be surmised that that pedaling above and below this rate results in under- and overestimated VO$_{2\text{max}}$ respectively. Theoretically, this could be corrected by using electrically braked stationary cycles, which are designed to stabilize power output by automatically adjusting pedal resistance with fluctuating pedaling rates in order to maintain a consistent work-rate. However, no studies have established whether or not the use of electrically braked ergometers improves validity and/or reliability of the YMCA submax test. Therefore, the purpose of the current investigation is to determine the validity and reliability of the YMCA protocol using both electrically braked and friction-braked ergometers.
Chapter II

Methods

Participants. Twenty or more people between the ages of 18 and 40 will be recruited from JMU and surrounding communities via social interaction, approved fliers, and electronic mail. Participants will be free from known cardiovascular, metabolic, pulmonary or renal disease as well as signs/symptoms of these conditions.

Protocol. Participants will complete one maximal treadmill test and four submaximal cycle tests to measure and estimate VO\textsubscript{2}\text{max}, respectively, all of which will be completed within a three-week period. Subjects will have been advised to refrain from food, caffeine, or nicotine three hours prior to each trial in concordance with The American College of Sports Medicine guidelines.30 Furthermore, all trials for each subject will take place at the same time of day.36

Treadmill Maximal Test. The participant will begin the test at 2.5 mph. The speed will be increased by 0.5 mph every one-minute interval until 6.0 mph is reached. Every minute thereafter, grade will be increased by 3.0% until the subject reaches exhaustion. Throughout the test, heart rate and expired gases will be monitored using a Polar Electro heart rate monitor and a Parvomedics metabolic measurement cart, respectively. VO\textsubscript{2}\text{max} will be defined as the highest 30-second average for VO\textsubscript{2} achieved during the test. Subjects must achieve two out of the following criteria to ensure achievement of VO\textsubscript{2}\text{max}: Respiratory Exchange Ratio \textgtr 1.1, plateau in VO\textsubscript{2} (an increase in VO\textsubscript{2} in the final stage that is less than 150 ml/min), or achievement of 90% of age predicted HR max (determined by subtracting the age of the participant in years from 220). If only one of the criteria is achieved, subjects will rest for five minutes and then resume the test starting at the second-highest stage achieved until volitional fatigue.
Submaximal Tests. Each participant will cycle using mechanically braked (Monark) and electrically braked (Viasprint) ergometers on four separate occasions. Following a brief warm-up, the test will proceed as described previously. For the electrically braked ergometer trials, pedal cadence will be determined by the participant. VO$_{2\text{max}}$ will be calculated by extrapolating the linear relationship between power output and HR up to age-predicted maximum heart rate. The resulting estimated maximal power output will be used to estimate the VO$_2$ associated with that power output (VO$_{2\text{max}}$) using the ACSM metabolic equation for leg ergometry.

Data Analysis.

Validity- VO$_{2\text{max}}$ values from the maximal treadmill test, the first friction-braked ergometer test and the first electrically braked cycle ergometer test will be compared using repeated measures analysis of variance (RMANOVA). Post-hoc testing will be performed using Fisher’s least significant difference (LSD) to identify differences in sample means. Pearson correlation coefficients will be generated for actual and estimated VO$_{2\text{max}}$ for both YMCA protocols. Reliability- Repeated VO$_{2\text{max}}$ estimates from both ergometers will be compared using paired t-tests. Pearson correlation coefficients for both trails within a given ergometer will be generated. A priori statistical significance will be set at $P < 0.05$.

12
Chapter III

Manuscript

Introduction

When assessing cardiovascular fitness, VO$_{2\text{max}}$, or oxygen utilization rate relative to body weight (mL O$_2$/min/kg), is widely accepted as the criterion measurement of aerobic capacity. VO$_{2\text{max}}$ testing can provide useful information that can be used by exercise professionals to prescribe physical activity, track improvements, and generate information related to health. However, the usefulness of this information is dependent upon the validity and reliability of the chosen protocol. The Youth Men’s Christian Association (YMCA) submaximal test is commonly used to estimate VO$_{2\text{max}}$, as it is easy to administer to most populations and does not require a maximal effort from participants. However, the test is commonly performed on friction-braked cycle ergometers that require maintaining a constant pedaling rate for the duration of the exercise. Electrically braked ergometers, in contrast, regulate power output by automatically adjusting resistance regardless of pedaling cadence, thus eliminating a potential source of error in the YMCA protocol.

The YMCA submax test has been reported to be an adequate predictor of VO$_{2\text{max}}$ for the general population1,2 and in physically active individuals.3 Additionally, submaximal cycle protocol predictions have shown to have high intrasubject test-retest reliability, as well as significant correlations ($r = 0.66$-0.80) with criterion results attained using a maximal cycle ergometer test in stroke patients.4 However, it has also been observed that the YMCA cycle ergometer test underestimates VO$_{2\text{max}}$ across a range of aerobically fit individuals5 and collegiate athletes.6 Similarly, the YMCA cycle test has slightly underpredicted VO$_{2\text{max}}$ in samples containing both males and females who averaged around 50$^{\text{th}}$ percentile.7,8 Conversely, YMCA
bike test protocols have resulted in overestimated VO$_{2\text{max}}$ values with low to modest9 or inconsistent test-retest reliability.10 Potential reasons for low reliability include daily fluctuations in physiological responses to exercise, as well as biologically and technologically induced variation between direct VO$_{2\text{max}}$ tests. One investigation observed a day-to-day coefficient of variation (CV) of 4.42% in VO$_2$ as participants cycled at 100, 150, and 200 Watts.11 Another study calculated biological plus technological error to result in 5.6% variability across 80 total maximum aerobic power tests across five trained subjects, with biological (individual) variability accounting for at least 90% of this sum.12

Overall, a consensus for the practical accuracy and precision of the YMCA bike test in predicting maximal VO$_2$, either across the general population or for any specific demographic, has not been clearly established, and there is currently insufficient evidence to conclude whether the use of electrically braked ergometers enhances the validity and/or reliability of the YMCA test. Ultimately, this project will assess the effectiveness of a technological innovation designed to increase the accuracy of a well-known protocol. It was hypothesized that the validity and reliability of the YMCA protocol would be improved with the use of an electrically braked ergometer.

Methods

Participants. Twenty-two males (21.7 ± 2.8 years; 176 ± 5.9 cm; 75.8 ± 7.8 kg) and thirteen females (20.8 ± 0.7 years; 164 ± 4.2 cm; 62.1 ± 6.0 kg) were recruited from JMU and surrounding communities via social interaction, approved fliers, and electronic mail. All participants were considered “low risk” based on the American College of Sports Medicine Guidelines for Exercise Testing and Prescription, 10th Edition.13
Protocol. Participants completed one maximal treadmill test and four submaximal cycle tests to measure and estimate VO$_{2\text{max}}$ respectively, all of which were completed within a three-week period. Subjects were advised to refrain from food, caffeine, or nicotine three hours prior to each trial in concordance with ACSM guidelines. All trials for each subject took place at the same time of day.

Treadmill Maximal Test. The participants began the test at 2.5 mph. The speed was increased by 0.5 mph every one-minute interval until 6.0 mph was reached. Every minute thereafter, grade was increased by 3.0% until the subjects reached either volitional exhaustion or 15% grade. If subject achieved 15% grade, speed was further increased by 0.5 mph every minute until termination. Throughout the test, heart rate and expired gases were monitored using a Polar Electro heart rate monitor and a Parvo Medics (Sandy, UT) metabolic measurement cart, respectively. The highest 30-second average for VO$_2$ was defined as VO$_{2\text{max}}$. To ensure an accurate VO$_{2\text{max}}$, subjects had to achieve two out of the following criteria: Respiratory Exchange Ratio (RER) > 1.1, plateau in VO$_2$ (< 150 ml/min increase in VO$_2$ during the last stage), and achievement of 90% of age predicted HR max. Twenty-seven subjects achieved two or more of these criteria, and the remaining eight subjects completed a “validation” stage by resting for five minutes, then continuing the test at the second-highest stage achieved until volitional fatigue. A graded maximal treadmill exercise test using indirect calorimetry was chosen as the criterion measurement because under most circumstances it yields higher, therefore more accurate VO$_{2\text{max}}$ values compared to maximal cycler ergometry, likely as a result of greater peripheral and overall circulatory rate. Additionally, the ACSM prediction equation is based on VO$_{2\text{max}}$ values achieved using a graded treadmill protocol.
Submaximal Tests. Each participant cycled using friction-braked (Monark) and electrically braked (Viasprint) ergometers on four separate occasions (twice on each ergometer). The sequencings of the tests were randomly counterbalanced to minimize any potential order effects. Following a brief warm-up, the subject pedaled at 25 W for the first three minutes (Stage 1). For the Monark tests, cadence was kept constant at 50 rpm, while subjects were allowed to maintain any cadence on the Viasprint. Heart rate (HR) was obtained at the end of each minute; once the participant maintained a steady HR for two minutes, resistance was increased for subsequent stages as described previously. Each trial was terminated if 85% of age predicted HR$_{max}$ was achieved. VO$_{2max}$ was calculated by extrapolating the linear relationship between power output and HR to age-predicted maximum heart rate. The resulting estimated maximal power output was used to estimate the VO$_2$ associated with that power output (VO$_{2max}$) using the ACSM metabolic equation for leg ergometer.

Data Analysis.

Validity: VO$_{2max}$ values (Treadmill, YMCA test using Monark, and YMCA test using Viasprint) were compared using repeated measures analysis of variance (RMANOVA). Post-hoc testing was performed using Fisher’s least significant difference (LSD). Linear regression values (Pearson’s R) were generated for actual and estimated VO$_{2max}$ for both YMCA protocols.

Reliability: Repeated VO$_{2max}$ estimates from both ergometers were compared using paired t-tests. Pearson correlation coefficients for both trails within a given ergometer were generated. A priori statistical significance was set at P < 0.05.
Results

Descriptive characteristics of our sample are summarized in Table 1. The VO_{2\text{max}} values for twenty-two males and thirteen females were 54.3 ± 6.2 mL/kg/min and 43.4 ± 4.4 mL/kg/min, respectively.

Validity: Average VO_{2\text{max}} data for all three protocols are illustrated in Figure 1. The treadmill VO_{2\text{max}} protocol yielded significantly higher values (50.3 ± 7.7 mL/kg/min) than the YMCA submax protocol using a friction-braked (40.8 ± 5.5 mL/kg/min) and electrically braked ergometer (38.8 ± 4.5 mL/kg/min). Furthermore, estimated VO_{2\text{max}} using the friction-braked ergometer was higher (P < 0.05) than that observed using the electrically braked ergometer.

Estimated VO_{2\text{max}} using a Monark (friction-braked) cycle ergometer is plotted against actual VO_{2\text{max}} in Figure 2. A Pearson’s product-moment correlation coefficient of R = 0.66 was observed. Similarly, estimated VO_{2\text{max}} using a Viasprint (electrically braked) cycle ergometer is plotted against actual VO_{2\text{max}} in Figure 3. The validity coefficient was R = 0.54.

Reliability: There was no significant difference between estimated VO_{2\text{max}} for the two friction-braked ergometer test between Trial 1 (40.58 ± 5.22 mL/kg/min) and Trial 2 (41.04 ± 6.87 mL/kg/min). Similarly, there was no significant difference between Trial 1 (38.32 ± 5.04 mL/kg/min) and Trial 2 (39.30 ± 5.24 mL/kg/min) for the electrically braked ergometer. Trial 1 and Trial 2 using a friction-braked ergometer are plotted against one another in Figure 4, along with the reliability coefficient R = 0.62. Likewise, Trial 1 and Trial 2 predicted VO_{2\text{max}} values using a Viasprint (electrically braked) cycle ergometer are plotted in Figure 5 along with the reliability coefficient R = 0.53.

Discussion

The major finding of the present study is that the YMCA bike test has poor validity and reliability in the studied population, regardless of whether a friction-braked or electrically braked ergometer was used. It appears that any improvements in keeping a constant and accurate workload engendered by the electrically braked ergometer did not substantially affect either the validity or reliability of the YMCA protocol. This may suggest that maintenance of workload is not an important source of error in this test.

In general, the YMCA protocol underpredicted VO\(_{2\text{max}}\) values compared to the actual value obtained from a maximal treadmill protocol. These findings are consistent with Dabney & Butler,\(^5\) Van Duser et al.,\(^6\) Jamnick et al.,\(^7\) and Akalan et al.,\(^8\) who reported underestimations of ~14%, 22.3%, 8.8%, and 12.3%, respectively. In contrast, Beekley et al.,\(^1\) George et al.,\(^2\) Kovaleski et al.,\(^3\) and Eng et al.\(^4\) reported no significant differences between maximal and submax testing protocols with validity coefficients of 0.77, 0.88, 0.73, and 0.66-0.80, respectively. Furthermore, Grossmann et al.\(^9\) and Griewe et al.\(^10\) reported overestimations of 12.1 % and 39%, respectively. Thus, there appears to be discrepancies in the literature as to the validity of this protocol.

It should be addressed that the aforementioned prior studies generally used larger sample sizes with greater ranges of both age and measured cardiovascular fitness. While the present investigation tested 22 males (19-31 years; 42.8-63.3 ml/kg/min) and 13 females (20-22 years; 36.5-53.3 mL/kg/min), Beekley et al.\(^1\) tested 55 males (20-54 years; 28.7-83.2 mL/kg/min) and 47 females (20-54 years; 16.9-67.7 mL/kg/min). This large, heterogeneous sample could have contributed to the higher observed validity coefficient between predicted and actual VO\(_{2\text{max}}\). Conversely, the current study focused mainly on younger, fitter individuals between roughly the
45th to 99th percentile for both men and women, with the average value located within the “superior” category for both genders according to ACSM guidelines.13

In order to investigate the impact of high VO\textsubscript{2max} values on YMCA test validity, a post-hoc correlation test was performed between the observed prediction error (difference of actual VO\textsubscript{2max} and predicted VO\textsubscript{2max}) and VO\textsubscript{2max}. A significant correlation (R = 0.74) was observed, suggesting that as VO\textsubscript{2max} increases, the magnitude of underprediction becomes greater. This could explain the findings of the current study in light of previous literature, as average VO\textsubscript{2max} in the current study was higher than in previously mentioned studies where no underprediction of VO\textsubscript{2max} was observed. Furthermore, Beekley et al.1 observed that the YMCA test was more valid in females than males. It is possible that these findings were due to higher VO\textsubscript{2max} values attained by the males. Moreover, the aforementioned study by Griewe et al.10 showed a lower-sloped regression trendline (between estimated and actual VO\textsubscript{2max}) compared to the line of identity. These two lines intersect at an absolute VO\textsubscript{2max} value of about 2 L O\textsubscript{2}/min, suggesting that VO\textsubscript{2max} values above this VO\textsubscript{2} will tend to be underpredicted. However, this protocol used only 2-minute stages and factored first stage heart rate into the regression equation, which has been since modified. Additionally, a maximal cycle test was administered as the criterion measurement rather than a treadmill protocol.

Moderate test-retest correlation coefficients (0.62 and 0.53, respectively) were observed in the Monark and Viasprint trials, indicating lower YMCA submax test reliability compared to most prior literature. George et al.2 reported test-retest R-values of 0.93 and 0.71 for women and men, respectively; Eng et al.4, Grossmann et al.,9 and Griewe et al.10 reported test-retest values of 0.66-0.80, 0.71-0.75, and 0.86, respectively. George et al.2 noted that the test-retest intraclass reliability was stronger for females (r = 0.93) than for males (r = 0.74).
The current investigation did not control for effects of daily fluctuations of ambient temperature and/or hydration status on heart rate variability or maximal oxygen consumption. While temperature and hydration are worth considering as potential sources of error of the YMCA submaximal cycle test,¹⁷,¹⁸ they were not likely significant confounding variables given that subjects completed their respective staggered exercise tests during the same time of day, and the results are relevant in terms of outcomes when following ACSM recommendations.¹³

In conclusion, data from the present study suggest that the YMCA protocol is not a highly valid or reliable test to estimate VO₂max in a young, fit population. It was also observed that neither validity nor reliability of the YMCA test was improved with the use of an electrically braked ergometer. Furthermore, a correlation between prediction error and criterion VO₂max suggests that the magnitude of underprediction increases with increasing cardiorespiratory fitness. Future research designs should aim to adapt the YMCA bike test to more accurately extrapolate maximal work-rate for those higher VO₂max values. Additionally, in order to strengthen the statistical relevance of the present findings compared to other sources, a future investigation could recruit a large, normally distributed sample, containing individuals with cardiorespiratory fitness levels between the 0.1st and 99.9th percentile across all sex/age groups listed in the ACSM guidelines.¹³ Ultimately, until a more accurate model has been developed using submaximal heart rates to estimate VO₂max, when working with individuals of higher fitness levels, other means of estimating VO₂max for this population may be preferable.
Manuscript References

Table 1. Mean height (cm), weight (kg), age (years), and VO\textsubscript{2max} (mL/kg/min) for male (n = 22) and female (n = 13) subjects.

<table>
<thead>
<tr>
<th>Gender</th>
<th>Height (cm)</th>
<th>Weight (kg)</th>
<th>Age (years)</th>
<th>VO\textsubscript{2max} (mL/kg/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>176 ± 5.9</td>
<td>75.8 ± 7.8</td>
<td>21.7 ± 2.8</td>
<td>54.3 ± 6.2</td>
</tr>
<tr>
<td>Female</td>
<td>164 ± 4.2</td>
<td>62.1 ± 6.0</td>
<td>20.8 ± 0.7</td>
<td>43.4 ± 4.4</td>
</tr>
</tbody>
</table>

Figure 1. Comparison of actual VO\textsubscript{2max} and predicted VO\textsubscript{2max} using both a friction-braked Monark cycle ergometer and electrically braked Viasprint cycle ergometer. *-significantly (p < 0.05) lower than actual VO\textsubscript{2max}. †-significantly (p < 0.05) lower than friction-braked estimated VO\textsubscript{2max}.
Figure 2. Estimated VO$_{2\text{max}}$ from the YMCA Bike Test using Monark (friction-braked) cycle ergometer plotted against actual VO$_{2\text{max}}$. Dashed line represents line of identity.

Figure 3. Estimated VO$_{2\text{max}}$ following YMCA Bike Test using Viasprint (electrically braked) cycle ergometer plotted against actual VO$_{2\text{max}}$. Dashed line represents line of identity.
Figure 4. Estimated VO$_{2\text{max}}$ values of Trial 1 plotted against Trial 2 of the YMCA Bike Test using a Monark (friction-braked) cycle ergometer. Dashed line represents line of identity.

Figure 5. Estimated VO$_{2\text{max}}$ values of Trial 1 plotted against Trial 2 of the YMCA Bike Test using a Viasprint (electrically braked) cycle ergometer. Dashed line represents line of identity.
Appendix A

Informed Consent Form
Consent to Participate in Research

Identification of Investigators & Purpose of Study
You are being asked to participate in a research study conducted by Christopher J. Womack, Ph.D. and Justin M. Kidd from James Madison University. The purpose of this study is to determine whether different types of exercise bikes (manual versus electric) effect how well a particular exercise test predicts your aerobic capacity.

Potential Risks
If you choose to participate in this study, you will perform five separate exercise tests; one on a treadmill, two on an electrically braked ergometer, and two on a friction-braked ergometer. The treadmill test is a maximal test while both the tests on the ergometers are submaximal tests. During the testing you may experience: fatigue, shortness of breath, cramping, general discomfort, and in unusual instances, heart attack, stroke or death may result. Prior to your participation in this study, you will be asked to complete a Health History Questionnaire (HHQ), which will evaluate your current health status and history in order to maximize your safety to participate in these exercise tests. Furthermore, at least one member of the testing team will be CPR certified.

Potential benefits from participation in this study include:
Your participation will contribute to research that may help to improve the validity of submaximal tests for measuring cardiorespiratory fitness. You will also be informed as to your maximal oxygen consumption score (VO2max). Also, the results of our findings may help educate exercise professionals on the accuracy of submaximal cycling tests for assessing maximal oxygen consumption.

Research Procedures
Should you choose to participate in this research study, you will be asked to sign this consent form. We ask for you to perform all five tests around the same time of day on separate occasions spanning a two to three week period. We ask you to abstain from consuming food, caffeine, nicotine or alcohol 3 hours prior to testing.

Treadmill Maximal Test:
You should allot approximately an hour for this test due to the length of the testing period and time required to set up the equipment. Multiple pieces of equipment will be used in order to take necessary measurements. A monitor wrapped around your chest will track your heart rate. You will breathe through a mouthpiece while your nose is clipped in order to monitor your expired air for oxygen content. The test will start at a slow (walking) speed and progress every minute until you are at 6.0 miles/hour. From that point, the elevation of the treadmill will increase every minute until you indicate that you can no longer continue the test.

ACSM Submaximal Testing on Monark and Electrically braked Ergometer:
Four submaximal tests will be performed using the same protocol. Two trials will be completed on a Monark mechanically braked ergometer while the other two will be completed on an electrically braked ergometer. These are incremental tests consisting of a maximum of 4 three-minute stages. After each stage, the resistance will progressively increase depending on your heart rate at the conclusion of the first 3 minute stage. You will begin with a short 3 minute warm up at 50 revolutions per minute (50 RPM). Once again a monitor around your chest will provide us with your heart rate throughout the test at regular intervals. Allot yourself approximately 30-40 minutes for these tests due to the testing period and time required for equipment set up as well as warm up and cool down.
Confidentiality
The goal of this research study aims to publish the results in exercise science journals. However, your identity will not be disclosed with the results of this study. Should you wish to have your data removed, notify the researchers involved prior to publication. The researcher retains the right to use and publish non-identifiable data. While individual responses are confidential, aggregate data will be presented representing averages or generalizations about the responses as a whole. All data will be stored in a secure location accessible only to the researcher. Final aggregate results will be made available to you upon request.

Participation & Withdrawal
Realize that your participation is voluntary and you are free to choose not to participate at any time. There are no consequences if you choose to withdrawal.

Questions
If you have questions or concerns before, during or after your participation in this study contact Christopher J. Womack, Ph.D. at womackcx@jmu.edu or by phone at 540-568-6515.

Questions about Your Rights as a Research Subject
Dr. David Cockley
Chair, Institutional Review Board
James Madison University
(540) 568-2834
cocklede@jmu.edu

Giving of Consent
I have read this consent form and understand what is being requested of me as a participant in this study. I freely consent to participate. I have been given satisfactory answers to my questions. The investigator provided me with a copy of this form. I certify that I am at least 18 years of age.

__
Name of participant (Printed) Name of Researcher(s) (Printed)

__
Name of participant (Signed) Name of Researcher(s) (Signed)

__________________________ __________________________
Date Date
Appendix B

Health Status Questionnaire
James Madison University
Department of Kinesiology
Health Status Questionnaire

Instructions: Complete each question accurately. All information provided is confidential.

Part I: General Information

1. Subject #

2. Local Phone
 Email: ________________________________

3. Gender (circle one) Male Female

4. Date of Birth (Month/Day/Year)

Part II: Medical History

5. Circle any that died of heart attack before age 50: Father Mother Brother Sister Grandparent

6. Date of last medical exam: __________ Last physical fitness test: __________

7. Circle operations you have had: Back Heart Kidney Eyes Joint Neck Ears Hernia

 Lung Other ________________

8. Please circle any of the following for which you have been diagnosed or treated by a physician or health professional:

 Alcoholism Diabetes Kidney Problems
 Anemia (sickle cell) Emphysema Mental Illness
 Anemia (other) Epilepsy Muscular Injury
 Asthma Eye Problems Neck Strain
 Back Strain Gout Obesity
 Bleeding trait Hearing Loss Orthopedic Injuries
 Bronchitis, chronic Heart Problem Phlebitis
 Cancer High Blood Pressure Rheumatoid arthritis
 Cirrhosis, liver Hypoglycemia Stroke
 Concussion Hyperglycemia Thyroid problem
 Congenital defect Infectious Mononucleosis Ulcer
 Other ________________

9. Circle all medications taken in the last six months:

 Blood thinner Epilepsy medication Nitroglycerin
 Diabetic pill Heart-rhythm medication Other ________________
 Digitalis High-blood pressure medication
 Diuretic Insulin
10. Any of these health symptoms that occur frequently is the basis for medical attention. Circle the number indicating how often you have each of the following:
5 = Very often 4 = Fairly often 3 = Sometimes 2 = Infrequently 1 = Practically never

a. cough up blood
 1 2 3 4 5

f. chest pain
 1 2 3 4 5

b. abdominal pain
 1 2 3 4 5

g. swollen joints
 1 2 3 4 5

c. low back pain
 1 2 3 4 5

h. feel faint
 1 2 3 4 5

d. leg pain
 1 2 3 4 5

i. dizziness
 1 2 3 4 5

e. arm or shoulder pain
 1 2 3 4 5

j. breathless on slight exertion
 1 2 3 4 5

Part III: Health Related Behavior

11. Do you smoke? Yes No

12. If you are a smoker, indicate the number of smoked per day:

Cigarettes:
 40 or more 20-39 10-19 1-9

Cigars or pipes only:
 5 or more or any inhaled less than 5, none inhaled

13. Do you exercise regularly? Yes No

14. How many times in a week do you spend at least 30 minutes in moderate to strenuous/vigorous exercise?
 1 2 3 4 5 6 7 days per week

15. Can you walk 4 miles briskly without fatigue? Yes No

16. Can you jog 3 miles continuously at a moderate pace without discomfort? Yes No

17. Weight now: __________ lb. One year ago: __________ lb Age 21: __________ lb
Appendix C

YMCA Data Table and

Submaximal Prediction Equation
YMCA Cycle Ergometer Test

<table>
<thead>
<tr>
<th>Stage</th>
<th>Power Output</th>
<th>Heart Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Date:
Subject #:
Height:
Weight:

Ergometer:	Monark	ViaSprint

Submaximal Prediction Equation:

\[\text{VO}_{2\text{max}} \text{ in mL/kg/min} = \frac{1.8 \times [\text{slope} \times (220 - \text{age}) + \text{y-intercept}]}{[\text{body weight in kg} + 3.5 + 3.5]} \]

note: slope and y-intercept determined using linear regression of multiple points representing heart rates (bpm) at submax workloads
Bibliography

2. Huang G, Gibson C, Tran Z, Osness W. Controlled endurance exercise training and

3. Scribbans T, Vecsey S, Hankinson PB, Foster WS, Dao DC, Gurd, BJ. The Effect
 of Training Intensity on VO_{2max} in Young Healthy Adults: A Meta-Regression

4. Alouaini K, Egred M, Alahmar A, Wright DJ. Cardiopulmonary exercise testing and

 profile, BMI, body fat distribution, and aerobic fitness in men with metabolic

7. Mondal H. Effect of BMI, Body Fat Percentage and Fat Free Mass on Maximal
 Oxygen Consumption in Healthy Young Adults. *Journal Of Clinical And

