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Abstract

Traditional encryption schemes such as AES and RSA aim to achieve the highest level

of security, often indistinguishable security under the adaptive chosen-ciphertext attack.

Ciphertexts generated by such encryption schemes do not leak useful information. As a

result, such ciphertexts do not support efficient searchability nor range queries.

Order-preserving encryption is a relatively new encryption paradigm that allows for

efficient queries on ciphertexts. In order-preserving encryption, the data-encrypting key

is a long-term symmetric key that needs to stay online for insertion, query and deletion

operations, making it an attractive target for attacks.

In this thesis, an intrusion-tolerant order-preserving encryption system was developed

to support range queries on encrypted data. Within this system, the long-term symmetric

key is shared among multiple (say n) servers and is never reconstructed in full, at any single

point. An adversary who has compromised less than a threshold number (say t : t <= n) of

said servers will not be able to reconstruct the shared key, and therefore will not be able to

decrypt stolen ciphertexts. This system is robust in that only a threshold number of servers

are required for insertions into or range queries over the ciphertexts within the database. In

this thesis, a prototype implementation was developed to show the feasibility of this design.

This system can be used to enhance the security of range-queryable encrypted data stored

in the cloud.

x



Chapter 1

Introduction

Problem Statement

In order to preserve data confidentiality on an outsourced, potentially hostile, database

system it is common practice to employ strong encryption on the data stored. Strong

encryption of data hinders the ability to perform searching, as well as range queries on said

data. The cryptographic trait of indistinguishably from that of random data obliterates

the ability for an outsourced database to perform searching, comparison, as well as range

queries on the stored ciphertext.

In the past few decades there has been significant interest and development in searchable

encryption [25] [8] , order preserving encryption (OPE) [1] [6] [7] , order preserving tagging

(OPT) [22] [23] [15] and order revealing encryption (ORE) [9] [11] [16]. Constructions

therein attempt to provide data confidentiality as well as the ability for an existing database

system to perform efficient range queries on stored ciphertext values alone.

Within all of these constructions, OPE, ORE and OPT, it is assumed that the data

owner, the client, is solely trusted with knowledge of the encryption key which is used

to encrypt and decrypt the records to and from the database. In the case of ORE this

encryption key is used by the client to generate tags, or tokens, by which the database

system will be able to ascertain the ordering of the underlying data. This simplistic key

assumption is problematic for three reasons:

1. Inherent risk of key compromise and exposure

2. Lack of fault tolerance when the key is lost, or the client is not available

3. Difficulty related to key rotation, and key management.

As enumerated, these problems are not acceptable in distributed database systems where

fault tolerance and intrusion tolerance are requirements. Within this work we will validate

the applicability of secret sharing by means of a distributed pseudo-random function for
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existing OPE, ORE and OPT constructions. We will also provide a practical implementa-

tion of an intrusion tolerant order preserving encryption (itOPE) scheme which employs a

(t, n) − threshold based general access structure for key sequence sharing across multiple

participants.

Background OPE, OPT, ORE

OPE variants have been in use for centuries. One-pad code books, by definition, preserve

the ordering of plaintext values within resulting ciphertext through the ordered bijection

of the code book’s structure. Intuitively this construction causes a key double in size of

the plaintext domain. Modern OPE constructions attempt to reduce the key size, while

maintaining the same result, an ordered bijection from plaintext to ciphertext.

Order Preserving Encryption

Modern OPE has it’s roots in the database community. Within the early exploration

of order preserving encryption schemes a few were notable. Ozsoyoglu et al. proposed

two schemes, the summation of random numbers, as well as the computation of increasing

polynomial functions. [20] Explained in depth in Chapter 2, Ozsoyoglu proposed taking the

sum of m random numbers where m is the value being encrypted. Though this solution is

clever, it is shown by Agrawal et al. [1] that the underlying ciphertext which is computed

still retains density characteristics of the plaintext. The second solution, computation of

increasing polynomial function, approaches the problem from the same direction. By com-

puting a sequence of increasing polynomial functions one is able to create ciphertext that

retains order, but unfortunately also suffers from the density leakage as Agrawal proves.

The first attempt at an OPE scheme with limited leakage was shown by Agrawal et al.

[1]. Therein the author’s key motivation was to develop a bijection which retained the order

of the underlying plaintext, and was as close to a uniform distribution as possible. Within

the OPE Scheme (OPES) [1] construction, detailed in Chapter 2, the author’s construction

relies on mathematical transformations of the plaintext domain and ciphertext range in

order to ”flatten” the data. This was a major improvement over existing schemes which

relied on summation of random numbers, and increasing polynomial function techniques.

The OPES scheme ciphertext values do not retain the distribution shape of the under-
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lying plaintext data as do the summation of random numbers and increasing polynomial

techniques.

Another technique known at the time for retention of partial ordering of ciphertext data

was a bucketing scheme, wherein the plaintext domain is broken into buckets of fixed space

which retain order. The client encrypts the plaintext data with strong encryption, and then

tells the server in which bucket to store the ciphertext. On the surface this scheme looks

promising, although Agrawal [1] points out that the balance between false positive inclusion

when a bucket is too large, and tight estimation exposure when the bucket is too small is

catastrophically problematic. [1]

The intuition of OPES, which is expressed in more depth in Chapter 2 is to create a

function F (K,m)→ ct wherein m1 < mi < mM and correspondingly ct1 < cti < ctN where

N is the ciphertext range of numbers in which the plaintext domain M is to be mapped.

The details of this scheme are outlined in Chapter 2, but at a high level the process consists

of three phases:

1. Modeling Phase

2. Flattening Phase

3. Transformation Phase

Within the ”Modeling Phase” the plaintext is bucketed such that the overall densities

of each bucket’s members are linear up to an arbitrary threshold. By creating bucket

boundaries that cause linear densities of the members of each bucket, the author shows that

a simple quadratic transformation in the ”Flattening Phase” of the density of each bucket

will cause the resultant flattened data to maintain a constant, or uniform, distribution.

After both plaintext domain and ciphertext range has been flattened a scaling process is

used in order to transform the flattened plaintext values to corresponding ciphertext values.

The result of the OPES construction provides an algorithm by which the distribution shape

of the underlying plaintext data is obliterated in the resulting ciphertext.

As seen, this transformation uses the data itself to generate the applicable mappings

and coefficients to ”encrypt” the data, which is drastically different than traditional cryp-

tography which derives randomness from a random key. This scheme is akin to simulation

of randomness through the transformation process. Within this construction the ”key”

consists of the bucket boundaries, quadratic coefficients, and scaling factors used within the

algorithm.
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Following Agrawal’s contributions, Boldyreva et al. [6] [7] continued this line of research

by contributing the first cryptographic treatment of OPE. Boldyreva formally defines the

security notions involved with OPE by loosening the strict definitions of Indistiguishability

of Chosen Plaintext Attack (IND-CPA) to more closely resemble the best possible security

an OPE could ever achieve. Much like Bellare et al. [4] did for weaking the security definition

for distinct chosen plaintext for deterministic encryption mechanisms by defining IND-

DCPA, Boldyreva defined Indistinguishability of Ordered Plaintext Attack (IND-OCPA)

[6]. Within this new, weakened definition the relative ordering of the plaintext is the only

leakage. Within the same work, it was also proven that no OPE scheme is actually capable

of providing this security guarantee without a ciphertext range which is exponentially larger

in size to the plaintext domain [6].

With this fatal proof that no OPE scheme is capable of proving IND-OCPA, Boldyreva

decided to provide a construction in which the security was derived on the security of

pseudo-random functions used within her scheme. Another security definition related to

the security of the order preserving pseudo-random functions was created: Pseudo-random

order-preserving function against chosen-ciphertext attack (POPF-CCA). With this no-

tation, the authors decided to use said notation for the security definition of their OPE

construction. [6]

Unfortunately this is a drastically weaker security definition than the ideal IND-OCPA,

”requiring that no adversary can distinguish between oracle access to the encryption al-

gorithm of the scheme or corresponding ’ideal’ object,” [6] the ideal object being a truely

random order preserving function. This means that the best security their construction

could possibly achieve hinges on the order preserving pseudo-random function chosen. De-

tails of Boldyreva’s construction can be found in Chapter 2.

The overwhelming willingness of the database community [21] to quickly develop and

deploy solutions based on Boldyreva’s symmetric deterministic order preserving scheme

gave pause to cryptographers, as the basic security premise completely revolved around the

security of the pseudo-random order preserving functions. Although potential for leakage

other than order was warned in [? ], a definitive assertion as to how much additional leakage

was unclear until Boldyreva’s follow-up work [7].

It turns out, based on Boldyreva’s follow-up paper in 2011 [7], that much is leaked from

their construction. The assumptions of security based on ROPF-CCA needed to be further
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explored, such as if ROPF is even one-way. Boldyreva states the definition of Window One-

Wayness (WOW) as the ability for an adversary, given a set of ciphertexts of uniformly

random messages, to determine the plaintext interval in which the plaintext lies. Using the

construction defined in [6] it is shown that upwards of half of the most significant plaintext

bits are leaked, and information about the relative distance between ciphertexts are also

leaked from their construction.

Order Preserving Tagging and Interactive Protocols

Given the drawbacks within [1] [6] and [7] Popa et al. [22] decided to attack the problem

from another direction. Instead of attempting to create another OPE scheme, of which is

impossible to achieve IND-OCPA as proven by Boldyreva, Popa’s solution was to create a

construction which consisted of an interactive protocol, and resulting encoding scheme which

could be used by an existing database to ascertain ordering of values. Popa’s construction

[22] consists of a binary tree data structure comprised of encrypted values using strong

encryption. Insertions, deletions and comparison operations are controlled directly by the

client through an interactive protocol, wherein the client requests a particular node in the

tree by the path to said node. The client would then decrypt the value of the node with the

secret key locally, and perform the comparison with the value for which the client is range

searching. The particular path values would form the basis of the tagging scheme which

would be used by a database to index the order relationship between the elements.

Since strong encryption is performed by the client, and all order relations are ascertained

by the client through the interactive protocol, only the ordering of ciphertexts are known

by the server within the encrypted binary tree. Detailed in Chapter 2, it is shown that this

construction is capable of providing ideal security.

Order Revealing Encryption

ORE is not to be confused with OPE, or OPT. ORE provides a mechanism by which

ordering relationships can be realized within ciphertexts, but does not provide the ability

to decrypt the ciphertexts back to their plaintext values.

The study of ORE was first entertained by Boneh [9], where a new theoretical construc-

tion was created that utilized multi-linear maps for a semantically secure ORE. Unfortu-

nately this was not a very practical solution as it was highly complex and computationally
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infeasible.

Practical order revealing constructions based on secure pseudo-random functions were

first explored by Chenette et al. [11] and Lewi et al. [16] in 2016. Primary to all of these

constructions is the use of modular blinding of the particular bit string elements within

a plaintext with a strong pseudo-random function. In order to compare ciphertexts the

implementer would walk through each bit, or block in [16] of a ciphertext and each bit, or

block, of the plaintext and perform a modular addition to un-blind comparison value at

that location in the bit string.

These ORE schemes provide clear equality leakage for individual bits within ciphertext

values, and do not comply with the ideal security proposed by Boldyreva through IND-

OCPA. This said, they do provide limited leakage utilizing a non-interactive solution, which

makes these schemes more attractive to practitioners.

Background Secret Sharing

Key Decomposition

Secret sharing is a mechanism by which multiple suspicious parties can work collabo-

ratively in order to perform actions with a particular secret key without recomposition of

said secret key. Shamir and Blakely both independently developed constructions in 1979

[24] [5] which provide the ability to “divide D [secret key] into n pieces [. . . ] in such a way

that: 1.) knowledge of any k or more Di pieces makes D easily computable; 2.) knowledge

of any [t]-1 or fewer Di pieces leaves D completely undetermined.” [24]

Shamir’s construction is based on interpolation of Lagrange polynomials [24]. By de-

composing the secret key into distinct values of a polynomial function, k participants can

work together to reconstruct the secret key. Detailed examples are given in Chapter 2.

Blakely’s scheme relies on intersection points of hyper planes, following a similar in-

tuition of Shamir’s construction. Given k participants who have knowledge of particular

intersecting planes, the collective will be able to reconstitute the secret key by working

together to find the intersection of all of their planes.

In order to use the Shamir construction without any one particular participant being

able to reconstruct the secret key, most implementations make use of the multiplicative

homomorphism which is a common homomorphism within schemes that abide by the Diffie-
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Hellman Assumption. Enc(m) =
∑k

i=1m
Di = m

∑
i=1kDi in which each participant Di uses

their own key share to compute a partial result, and the final result consists of the sum of the

partial participant computations. Though this works well in a public key setting, using this

mechanism with a strong pseudo-random function is infeasible without key reconstruction.

General Access Structures

Though the Shamir construction works very well for (k, n) threshold schemes, it was

shown in 1989 by Ito et al. [13] that this construction is limited, and does not work for

generic general access structures. Given a set of persons P , within Shamir’s construction

only a subset P ′ ⊂ P can construct the secret key if |P ′| >= k, meaning that the only

access structure supported would be P ′ ⊂ P : |P ′| >= k.

Ito stipulates that by assigning several shadows of a (k, n) threshold scheme to each

participant it is possible to create a threshold sharing scheme which is much more akin

to generic general access structures. With Ito’s scheme, you can create various access

structures based on boolean ORs-of-ANDs which is more flexible than the existing [24] [5]

threshold schemes.

Computation of Block Ciphers

Due to the apparent benefit of algebraic homomorphisms needed within existing secret

sharing schemes as defined by Shamir, Blakely and Ito for shared computation of prim-

itives that abide by the Diffie-Hellman Assumption, Naor et al [19] and Brickell et al.

[10] began the study of the perceived inability of utilizing secret sharing for shared block

cipher computation. Brickell shows that, through a new paradigm of Sequence Sharing,

by using general access structures as defined by Ito [13], one can perform shared block

cipher computation by nesting encryptions with derived keys in order through
(

n
t−1
)

en-

cryptions using
(

n
t−1
)

keys required from t participants. Brickell shows that by performing

Enc(k( n
t−1)

, Enc(ki, · · ·Enc(k1,m))) for i =
(

n
t−1
)
→ 1 an Access Structure given multiple

shadows, or shares, of a key are able to encrypt, and also decrypt a particular value without

needing to rely on algebraic homomorphisms, but rather use existing block ciphers which

by design do not have such algebraic traits.

In a follow-up work by Martin et al. [18] it is shown that an XOR based block cipher

sharing construction is possible using Naor’s distributed pseudo-random function. Within
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this construction instead of following the Brickell shared block cipher mechanism, it is shown

instead that a participant can send a random nonce out to other participants, of which would

then encrypt this random nonce with their key share. The originating participant, with the

plaintext value, would then blind the plaintext value with a sequence of XOR operations:

Enc(m) = (m⊕ Enc(k1, r)⊕ Enc(ki, r)⊕ Enc(k( n
t−1)

, r), r)

Within the scheme defined by Martin the plaintext value is not leaked to any other

participants, and when the combination of the encrypted values comes back from each

participant using their own key shares no information is leaked. This blinding mechanism

prevents participants from gaining any more information about the particular plaintext.

Computation of Pseudo Random Functions

Agrawal et al. [2] follows up on distributed symmetric-key encryption by proposing

a distributed pseudo-random function construction that improves on Naor’s construction.

Within the construction Agrawal proposes a simple Access Structure based on a (t, n)

threshold scheme. The key distribution algorithm is performed in the setup of the algo-

rithm, and creates
(

d:=n
n−t+1

)
random numbers for distribution to hosts. Given that there is

an ORs-of-ANDs access structure D1, . . . , Di, · · · , Dd then the i-th random number is given

to all participants in Di. The encryption and decryption is very similar to the construc-

tions defined in [19] [17] and [18], with the improvement being a mechanism for ciphertext

integrity checking. Within Agrawal’s construction it is shown that by having the DPRF

compute a commitment value which is (r ⊕ m) where r is a random nonce and m is the

plaintext value, integrity of the ciphertext can be checked upon decryption.

Overview

OPE, OPT and ORE schemes have been well defined and extensively studied over the

past several years. All of the modern cryptographic constructions [1] [6] [7] [22] [23] [15]

[9] [11] [16] rely primarily on the data owner, or client (proxy), to provide encryption key

security, and fault tolerance. As stated in the Problem Statement, this means that the

data owner, or client, is responsible to protect against secret key compromise, as well as

maintaining fault tolerance for when systems are offline.

Within intrusion tolerant design it is important to never fully reconstruct the encryption
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key which is distributed among the participants. Much as Wu et al. [26] shows how a web

server is constructed to provide intrusion tolerance, this work will focus on how to build an

intrusion tolerant OPE scheme. By the nature of a threshold based secret sharing scheme,

this work will show how fault tolerance and intrusion tolerance within OPE is achieved.



Chapter 2

Background and Related Work

Order Preserving Encryption from Antiquity

Order preserving encryption is not a recent development. Implementation of code books

through a “one-part” substitution cipher is a clear example of an order preserving encryption

scheme. The general construction of a code-book encryption scheme takes an enumerated

domain of plaintext values, and performs a direct one-to-one mapping to an enumerated

range of ciphertext values. Typically one would construct two-parts of a code-book, an

encipherment part and a corresponding decipherment part. With these two parts Alice

would be able to create a ciphertext from the ordered encipherment “part” of the code-book

and Bob would be able to decipher said ciphertext with the ordered decipherment “part”.

Ultimately each part would be ordered such that either party would be able to quickly

search the plaintext domain or the ciphertext range to yield the particular encryption or

decryption mapping. A practical design “improvement” over a two-part code-book scheme

was to have both parts collapsed into one book as it is much easier to distribute a one-part

code-book in the field of battle as opposed to a potentially more secure two-part code book.

This one-part code-book was developed in such a way that the plaintext and ciphertext

mapping retained order.

Within this construction Alice and Bob would exchange a book of ordered plaintext

to ordered ciphertext mappings as the key for future messages. In order to encipher a

message Alice would search through the ordered plaintext values within the code book, and

substitute the mapped ciphertext values in the enciphered message to Bob. Similarly, when

Bob receives the ciphertext, Bob will perform an ordered search on the ciphertext values in

the code-book from the message, and map them back to their respective plaintext values.

The ordered nature of the plaintext to ciphertext mapping was critical for the speed of

encryption and decryption. If the code words were not ordered, Alice would need to, at

the worst case, scan the entirety of the code-book to encrypt a message if they were not

ordered.
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Though at the time computers were not in use, Alice and Bob would be able to man-

ually perform message enciphering in O(logn) complexity using a binary search method

through the code-book searching for the word to encipher or decipher, as opposed to an

O(n) complexity from an unordered code-book where n is the number of code words in the

book. Take for example the following one-part code-book:

Table 2.1: Example One-Part Code-Book
Plaintext Ciphertext

Alpha 101

Bravo 102

Charlie 103

The vocabulary terms would be arranged in alphabetical order, so that they
could be readily found when enciphering messages; [. . . ] In the other section,
the code groups would be rearranged in straight alphabetical (or numeric) order,
so as to be readily found when deciphering [. . . ]. [12]

As we explore the more modern constructions of order preserving encryption using

mathematical discoveries and algorithms to eliminate the need for a dictionary mapping

“code-book” we should not loose sight of the fact that the spirit of all surveyed order

preserving encryption primitives enumerated herein have the following properties in common

with that of a one-part code-book:

1. Mapping function from a plaintext domain to a ciphertext range

2. Retaining order of underlying plaintext in the resulting ciphertext

3. Given a plaintext and ciphertext pairing, an attacker has the ability to infer knowledge
of other ciphertext values

Order Preserving Encryption from Database Community

The first modern order preserving encipherment and decipherment scheme was devel-

oped within the database community in 2004 by Agrawal et al. The problem, expressed by

Agrawal in [1], is that even though database systems offer access control as a mechanism

to restrict access to sensitive data, these access control implementations are insufficient.

The insufficiency lies in the fact that the implemented database access controls are only
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specifically protecting database Application Programming Interfaces (APIs) which are eas-

ily bypassed by an attacker who gains access to the raw database files or memory.

Data confidentiality therefore, must be preserved in the internal memory and on disk

representation of the data directly within the raw database files and memory itself in or-

der to prevent unauthorized data accesses that may happen outside of the purview of the

database access control mechanism. A potential solution, traditional data cryptography,

unfortunately does not solve the problem without creating untenable performance degrada-

tion. Using cryptography one attempting to perform a range query on a set of data would

have to iterate over the entirety of the database, decrypting every value, in order to know

the ordering of the underlying data set. This full table scan and decryption makes even

simple queries painfully slow. Even employing keyword searchable encryption [25][8], or de-

terministic encryption techniques do not remedy this situation as the underlying ciphertext

does not retain order even if it may retain exact keyword matches. Due to this apparent

shortcoming it is not possible to organize ciphertext within an efficient data-structure such

as a B-tree in a database. [1]

Order Preserving Encryption Intuition

The intuition of Agrawal’s OPES scheme [1] is expressed as “Generate |P | unique values

from a user-specified target distribution [R] and sort them into a table T . The encrypted

value ci of pi is then given by ci = T [i]. [. . . ] Here T is the encryption key that must be

kept secret.” [1] It should be noted that this is strikingly similar to the construction behind

one-part code-book schemes of antiquity, where the one-part code book is the mapping table

T . Agrawal notes there are clear shortcomings within this simplified intuitive construction,

namely: the encryption key size (which is 2x the size of the database); and the scheme is

problematic to update because in order to update the mapping table one would have to

re-encrypt all values greater than the value inserted, much like a node insertion in a linked

list.

Based on the flaws listed from the intuition, it is evident that in order to have an efficient

scheme, said scheme would need to remove the need for such a large encryption key to be

practical, and remove the need for re-encryption of values on insertion. Agrawal mentions

in related work three schemes which attempt to apply a treatment to tackle these flaws,

enumerated below:
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1. Summation of Random Numbers

2. Nested Polynomial Functions

3. Bucketing

Summation of Random Numbers

A proposed order preserving encryption scheme defined in [20] involves the summation of

random numbers generated by a pseudo-random number generator. The resulting ciphertext

will be the sum of R1 . . . Rj . . . RP where P is the value of the plaintext, and Rj is the jth

randomly chosen number from the pseudo-random number generator R.

: Random Number Summation

P∑
j=0

Rj (2.1)

This will indeed provide an improvement in key space, as one will only be required

to generate a key that is the size of the plaintext domain. Improvement is also realized

in the graceful updating capabilities of the database. Though there are improvements

with this scheme it is shown in [1] that the distribution of the encrypted values is directly

proportional with the input distribution. This scheme is susceptible to frequency analysis

as the distribution of the plaintext matches the ciphertext directly.

Nested Polynomial Functions

Further defined in [20] there is a scheme based in nested polynomial functions which

provides similar improvements. When nesting a set of polynomial functions that are strictly

increasing and providing the randomness through coefficients of said polynomial functions

as the encryption key, this construction will allow for a transformation from plaintext to

ciphertext. Using this method the ciphertext distribution appears different than the input

distribution. Unfortunately though for this scheme, Agrawal found that the shape of the

ciphertext distribution does still retain characteristics of the input data distribution [1], and

therefore is not suitable.
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: Monotonically Increasing Nested Polynomial Functions

fi(x) = Ci−1x
i + Ci; i ∈ 1 ≤ i < k (2.2)

: Computation of Nested Polynomial Functions

f(x) = fi+1(fi(x));∀i : k > i ≥ 1 (2.3)

Bucketing

Another interesting solution to this problem is found in ciphertext partitioning based

on the ordering of underlying plaintext. Within this construction conventional encryption

is used to add data confidentiality, but the ciphertexts are grouped with buckets. For

example imagine we have three buckets the boundaries of which are B1 → [0, . . . , 5];B2 →

[6, . . . , 10];B3 → [11, . . . , 15]. Considering we encrypt the plaintext number 7, we would

first locate which bucket would be suitable to contain the number 7 which would be B2,

then we would encrypt the number 7 and insert it into the partition B2. For a query of

the range of plaintext numbers 4 ≤ i ≤ 8 , one would take both buckets which potentially

contain those values, then decrypt every number within those buckets, returning the results

of corresponding plaintext values within that range.

This scheme is more efficient than a non-bucketing scheme of conventionally encrypted

values, due to the fact that you will not incur a O(n) penalty, though there are potentially

significant false-positives within the result set. Depending on the bucket size, this failure

rate could be substantial. Moreover, Agrawal has shown that the bucket size is directly

correlative to estimation exposure. “It is shown [. . . ] that the post-processing overhead

can become excessive if a course partitioning is used for bucketization. On the other hand,

a fine partitioning makes the scheme vulnerable to estimation exposure, particularly if an

equi-width partitioning is used.” [1]
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Order Preserving Encryption Scheme Construction

Based on the research from [1] we have two new requirements for an order preserv-

ing scheme. Firstly our resulting ciphertext should not retain statistical attributes of the

underlying plaintext data. As seen in the Summation of Random Numbers scheme and

the Nested Polynomial Function constructions, if our ciphertext retains the exact same, or

slightly shifted, distribution of the input plaintext domain the scheme will be susceptible

to estimation exposure and frequency analysis. It is paramount that the ciphertext values

maintain a near perfectly uniform distribution such as that of a random sampling. Secondly

the scheme should provide for an exact one to one mapping from plaintext to ciphertext in

order to avoid post-processing overhead as well as estimation exposure. Thirdly the scheme

should create ciphertext values that can act as a direct drop-in replacement for the plaintext

within a database scheme, as to not over complicate queries.

The novel OPES scheme presented in [1] accomplishes these tasks through the use of a

three phase scheme, enumerated below:

1. Model: The input and target distributions are modeled as piece-wise linear splines

2. Flatten: The plaintext database P is transformed into a “flat” database F such that
the values in F are uniformly distributed.

3. Transform: The flat database F is transformed into the cipher database C such that
the values in C are distributed according to the target distribution

Order Preserving Encryption Scheme Model Phase

Within the first phase of the OPES scheme stipulated in [1] the density function of the

plaintext domain space is computed, and a linear spline is taken across the endpoints of the

density of the domain. This linear spline is our reference point from which our first bucket

splitting operation will be performed. The point at which the density of the underlying

plaintext data differs most dramatically from this spline is the where the bucket boundary

will be located. This process is repeated recursively until an arbitrary threshold is achieved

where the density of each bucket is no longer differing with the computed linear spline

across the bucket boundaries. This may seem like an odd first step, but this step is actually

creating buckets that exhibit a linear density function, which is an important step for the

flattening stage. At the end of the modeling phase we will have a multitude of buckets of

plaintext values, all with linear densities.
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Since within [1] the authors are allowing a custom ciphertext range to which the plaintext

values will be mapped, it is important to note that we must also perform this modeling phase

for our ciphertext range as well as the plaintext range. Just as stated above, we begin

by calculating the linear spline over the density of the ciphertext range, and recursively

bucket the ciphertext range so that in the end each ciphertext range will maintain a linear

distribution.

Order Preserving Encryption Scheme Flatten Phase

The goal of the flattening phase within the OPES scheme is to convert the bucketed

plaintext from a linear density to a constant density (aka uniform density). As stated in the

analysis on the prior work in this field, all of the existing mechanisms (summation, nested

polynomials) retained the underlying density of the plaintext values within the ciphertext.

The result of this flattening operation is to convert our linear distribution to a uniform

distribution.

Agrawal realized that if you want to convert a linear function into a constant function

you need to apply a quadratic transformation to the linear function. In order to ensure that

all flattened buckets are uniform as well, one can apply a “scaling factor” to each of the

plaintext buckets within this flattening scheme which will result in uniform flattened bucket

lengths. With uniform flattened bucket lengths, as well as uniform flattened values within

the buckets, the plaintext values will no longer exhibit any particularities of the original

plaintext values.

In order for this scheme to be reversed for decryption, or repeated deterministically, state

needs to be kept. Firstly from our modeling phase we need to know the bucket boundaries

that have been recursively constructed by start and endpoints. Secondly we need to keep

track of each particular bucket’s quadratic coefficient used to turn the plaintext bucket

values into the flattened uniformly distributed values. Thirdly we need to keep track of the

particular scaling factor for each plaintext bucket in order to scale them to uniformly sized

flattened database buckets.

Since the authors dictate that the ciphertext range to which the plaintext will be mapped

is given, the modeled ciphertext buckets must also be flatten as well. This follows the

same procedure as the plaintext bucket to flattened database. We start by calculating the

quadratic coefficient to which each of our bucketed ciphertext values will be mapped. Then
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we create a scaling factor for each bucket such that the resulting flattened ciphertext buckets

will be uniform in size as well. Much like the plaintext flattening stage, we need to maintain

each ciphertext bucket’s start and endpoint, as well as the quadratic coefficient and scaling

factor in order to convert to and from the flattened database and the ciphertext range.

Order Preserving Encryption Scheme Transform Phase

Using our plaintext flattened intermediate database and our ciphertext flattened inter-

mediate database, in order to map these two flattened databases together we need to create

a matching factor for each bucket pairing which will allow us to seamlessly transition val-

ues from one flattened database to the other. This is required as the ciphertext flattened

buckets are not guaranteed to exactly line up with the plaintext flattened buckets. This

matching factor value per bucket pairing needs to be stored within the state so that this

process can be deterministically reproduced.

It is important to note that within the construction [1] this shared state that has been

growing is the actual “encryption key” for the algorithm.

Future Work for Order Preserving Encryption Scheme

As seen, the construction of [1] is limited. In order to have a truly uniform ciphertext

distribution a requirement is to know, or have a tight sampling of, the entirety of the

plaintext domain space prior to encryption. Though the author claims database updates are

graceful, the resulting ciphertext values will be bound to the same bucket definitions defined

in the initial modeling phase, thereby skewing the bucket densities potentially creating a

non-uniform distribution in the resulting ciphertext. Moreover a significant improvement to

this scheme would be to create a stateless scheme. Within this scheme the “encryption key”

consists of the state of the buckets from the modeling phase and needed scaling factors for

the flattening phase. Another shortcoming from this work is the cryptographic treatment of

the scheme itself. The author provides no formal security definition for this order preserving

encryption construction, nor what is leaked from this particular OPES scheme.

With these problems presented future order preserving encryption schemes must provide

a stateless scheme, as well as a security definition and provable security with leakages.



18

Order Preserving Encryption from Cryptographic Community

The first security definition and cryptographic treatment of order preserving encryption

was performed by Boldyreva et al. [6] Within this work an investigation of what OPE is from

a security perspective was developed and new notions of security definitions were created. It

might be apparent to the reader at this point that it is not possible for any order preserving

scheme to preserve standard notions of security such as indistinguishability against chosen-

plaintext attack (IND-CPA). This is primarily due to the fact that an order preserving

encryption scheme must be deterministic in nature, as well as the fact that a particular

quality of the plaintext value is leaked through the ciphertext. Simply put if you know two

ciphertext values you will at the very least and by definition know which one is larger or

smaller. This leakage is not defined in depth within [6] paper, and it remained as future

work.

Due to this self evident fact that we cannot have an order preserving encryption scheme

that will maintain IND-CPA, it is prudent to outline exactly what one could expect a perfect

order preserving scheme to obtain. In the same fashion as [4] introduced the concept of

indistinguishability against distinct chosen-plaintext attack (IND-DCPA) for the security

model for deterministic encryption schemes based on a pseudo-random function (PRF),

Boldyreva invented a new security definition which is to define a perfect order preserving

function: indistinguishability against ordered chosen-plaintext attack (IND-OCPA). This

security definition intentionally weakens IND-CPA in order to provide a starting point for

analysis of order preserving schemes. Boldyreva goes on to show that this definition is, as

of that time, unachievable [6] using their construction without the ciphertext range being

exponentially larger than the plaintext domain. Never the less this scheme is something by

which order preserving schemes should strive to achieve, and in future work be compared

to.

Since it is infeasible [6] to create a deterministic order preserving scheme that can

satisfy IND-OCPA, the authors decided to settle on a further lessened scheme: pseudo-

random order preserving function against chosen-ciphertext attack (POPF-CCA). Instead

of further restricting the definition of IND-OCPA, the author has chosen to focus instead on

the security of the PRF which will be used to generate the mappings from plaintext domain

to ciphertext range. POPF-CCA “requries that no adversary can distinguish between oracle
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access to the encryption algorithm of the scheme or a corresponding “ideal” object.” [6] This

means that an adversary given the algorithm itself should not be able to determine the result

of a ciphertext as oracle access should be indistinguishable from a perfectly random result.

The author uses this definition as a building block of the security of the construction proving

that the result of the algorithm itself (the order preserving pseudo-random function) cannot

be distinguished from the “ideal” result of a truly random function the scheme is sound

even if it cannot feasibly achieve IND-OCPA.

Order Preserving Encryption Construction

The construction outlined within [6] aims to produce an algorithm that samples a

pseudo-random order preserving function, with provable POPF-CCA security, from a plain-

text domain into a reasonably sized (2x the domain size) ciphertext range. The intuition

behind the scheme is that any order-preserving function from D → [1, . . . ,M ] plaintext

domain to R → [1, . . . , N ] ciphertext range can be represented by an ordered combination

of M out of N items. Below you can see a few examples of such combinations:

Table 2.2: Example k Permutations of Mapping M → N Permutations
Domain (M) Range (N) RPF1(M)→ N RPF2(M)→ N RPFk(M)→ N

1 25 25 25 83

2 43 43 78 92

3 78 78 83 101

- 83 - - -

- 92 - - -

- 101 - - -

Boldyreva shows [6] that an M out of N bijective order preserving function is no different

than the distribution of an experiment of selecting random items from a finite range without

replacement as visualized in Figure 2.1.

Boldyreva discovered that a random order preserving function is identical to the negative

hyper-geometric distribution.[6] In order to visualize, consider an experiment shown in

Figure 2.1 followed by Table 2.3 where we have N total balls in a bin where M balls

are black and N −M balls are white. Drawing i balls from the bin at random without

replacement each time a black ball is drawn we can map the least unmapped value in our

domain to the ith number which corresponds to the total number of balls drawn to this point



20

Figure 2.1: Drawing Randomly from a Bin of Balls

in the experiment. Below is a tabular visualization based on our figure above. Consider

we are mapping M ∈ [1, . . . , 4] → N ∈ [1, . . . , 8]. Table 2.3 shows the mapping based on

drawing, and Table 2.4 shows the resultant mappings from this concrete example.

Table 2.3: Tabular Representation of Drawing from Bin of Balls Without Replacement
of draw Color of Ball Drawn PRF (M)→ N [i− 1]

1 White -

2 Black PRF (1)→ N [1] = 2

3 Black PRF (2)→ N [2] = 3

4 White -

5 White -

6 Black PRF (3)→M [5] = 6

7 White -

8 Black PRF (4)→M [7] = 8

Using the link to the negative hyper-geometric function as a pseudo-random order pre-

serving function one can inject randomness into the algorithm, and maintain POPF-CCA,

as the algorithm itself does not contain the randomness. Oracle access to the PRF is there-
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Table 2.4: Result of Hypergeometric Distribution Mapping
M → N

1 2

2 3

3 6

4 8

fore indistinguishable for chosen ciphertext attack. Unfortunately there is one hurdle which

is that there is no efficient mechanism in place to calculate the negative hyper-geometric

distribution. To remedy this [6] employs the algorithm from [14] which solves the problem

of isolating hyper-geometric random variates efficiently and with exact precision. With this

algorithm Boldyreva’s construction is able to figure out the random variate, or the number

of a particular type of balls drawn, from a population. The construction is able to isolate

the number of white balls (failures) drawn given a domain and range for a particular element

in a domain element.

: Negative Hypergeometric Distribution as PRF [6]

Pr[f(x) ≤ y < f(x+ 1) : f ← OPF[M ],[N ]] =

(
y
x

)(
N−y
M−x

)(
N
M

) (2.4)

This construction is secure than the scheme presented from Agrawal because the ran-

dom order preserving function oracle access for a given ciphertext is indistinguishable from

a sampling of the ideal hypergeometric distribution. Agrawal’s algorithm does not use a

random order preserving function, but rather relies on the algorithm itself and the distri-

bution density of the underlying plaintext data to provide the bijection. This scheme is

better also due to the statelessness, as all one needs to inject is randomness in the form of

coin tosses, as opposed to storing the state of buckets, coefficients and scaling factors for

the computations.

Order Preserving Encryption Lazy Sampling Algorithm

Boldyreva’s OPE construction [6] consists of a recursive lazy sampling function LazySam-

ple (and inverse LazySampleInv), as well as a mechanism for keeping state of the random
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coins used TapeGen.

Since it is untenable to pre-compute every possible mapping possibility ahead of time

for very large plaintext domains, as in a one-part code-book implementation, Boldyreva’s

construction relies on a binary search algorithm O(logn) for isolating the particular map-

pings. At a high level the algorithm calculates the mid value of the consecutive integer

ciphertext range and determines what the domain gap should be for each side of the range

based on the hypergeometric random variates, given a sequence of random coin flips from

the key’s randomness. When the domain and range gaps are mapped together, the range

is then recursively subdivided, and the new subdivided sides of the range are mapped to

the domain gap. This process continues through the binary search until there is only one

domain element left for a particular subdivided ciphertext range.

After convergence on the plaintext value we wish to encrypt a uniformly random value

from the resulting ciphertext values is chosen from the range gap that is left. The random-

ness is taken from the TapeGen algorithm just as the hypergeometric variates were taken

from during the binary search. This allows for repeatability and deterministic behavior.

You can see in Figure 2.2 the recursive algorithm used to LazySample. Starting from the

mid point in the domain, the algorithm recursively maps domain values to range gaps.

Figure 2.2: Graph of Recursive Search
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Order Preserving Encryption Drawbacks

Though this construction is intriguing and very novel, there are a few drawbacks that

are noted within [6][7]. One drawback is that this scheme is not capable of providing
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IND-OCPA without using an exponentially larger ciphertext image than the underlying

plaintext. This is not feasible as the algorithm will significantly slow down with very large

ciphertext ranges. Due to the recursive nature of the algorithm using a binary search, very

large plaintext and ciphertext spaces will dramatically reduce efficiency. Another problem

noted is that the algorithm has worse security than deterministic encryption, and you can

gain much information from the ciphertext that is generated from this scheme. Outstanding

from [6] but resolved in [7] is the open question of what exactly is leaked about the plaintext

from the ciphertext. Within [7] the author follows up with the fact that approximations

of plaintext values as well as the distance between plaintext values are significantly leaked

within the ciphertext.

Another area for improvement is to replace the hypergeometric variate computation

with an efficient negative hypergeometric calculation algorithm, but as of this no current

solutions exist to address this open problem.

Of greater concern, and addressed in [7] is the open question regarding the ciphertext

range size to the plaintext domain size. The authors of [6] merely state that the ciphertext

range must be greater than or equal to the plaintext domain, and throw out that the

ciphertext range can, quite arbitrarily, be twice the size of the plaintext domain.

Revisiting Order Preserving Encryption

Immediately after [6] was introduced it was seized by the applied community, accord-

ing to Boldyreva, and implemented by many as the definitive order preserving encryption

scheme. [7] This was unfortunate as the authors indicated in [7] that there were many

unknowns within the construction regarding leakage, and these concerns warranted further

examination prior to implementation. This Pandora’s Box of sorts which was opened in [6]

and the authors attempt to quell premature implementation in the followup work [7] by

furthering the study of order preserving encryption security notations.

In the original work [6] we were introduced to the concept of a Random Order Preserving

Function (ROPF) as well as a Pseudo-Random Order Preserving Function (POPF) as the

basis for the security of the construction. The key difference between the two is that the

ROPF is what a POPF attempts to strive to produce, indistinguishability of oracle access

from a ROPF. The security notation for this indistinguishability is defined as ROPF-CCA.

Within [7] the security definitions of order preserving encryption is further broken down
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into the following composite constructs:

1. Window One-Wayness

2. Window Distance One-Wayness

Window One-Wayness

The definition of Window One-Wayness in order preserving cryptography is “For 1 <=

r <= M and z >= 1, the adversary is given a set of z ciphertexts of (uniformly) random

messages and is asked to come up with an interval of size r within which one of the underlying

plaintexts lies.” [7] This definition is abbreviated (r, z)−WOW for brevity. Restated, given

a number of random ciphertext values, from an order preserving encrypted database, can an

adversary isolate a window of the plaintext domain, in which said ciphertext’s corresponding

plaintext values falls.

Window Distance One-Wayness

The definition of Window Distance One-Wayness in order preserving cryptography is

defined by Boldyreva as “the adversary attempts to guess the interval of size r in which

the distance between any two out of z random plaintexts lies, for 1 <= r <= M and

z >= 2.” [7] This notation is abbreviated (r, z) −WDOW . This can be restated as given

two or more ciphertexts, can an adversary isolate the relative difference in the underlying

plaintext within a particular range, or window size.

With these two One-Wayness definitions, it was proven by Boldyreva [7] that there

exists a certain amount of leakage within OPE construction. In an attempt to remedy

these leakages two new constructions were presented in [7]. One of the constructions is a

modification to the OPE scheme which improves (r, z)−WOW posture of the construction.

The other construction is a brand new construction that relies on order preserving tagging

based on monotone minimal hashing techniques.

Modular Order Preserving Encryption

Modular Order Preserving Encryption (MOPE) [7] uses the exact same OPE scheme

defined in [6] but requires an additional step of performing a modular addition operation over
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a secret base to the message space prior to encryption. This additional step improves (r, z)-

WOW for the OPE construction due to the fact that the resulting ciphertext will end up

“wrapping around” the plaintext space. Equation 2.5 shows the extent of the modification

to the original OPE scheme. By drawing a random j from the plaintext domain M during

the setup, and storing j as a part of the secret key, we are able to perform a modular

subtraction in order to blind the location of the ciphertext result.

: MOPE - Modular OPE Encryption[7]

j ∈M ;EncMOPE = EncOPE(K,m–j(mod|M |)) (2.5)

: MOPE - Modular OPE Decryption[7]

j ∈M ;DecMOPE = DecOPE(K, c) + j(mod|M |) (2.6)

The decryption of the MOPE scheme is shown in Equation 2.6. Where |M | is the length

of the plaintext domain, K is the encryption key, j is the MOPE blinding secret and c is

the ciphertext value. Since the modular addition is performed on the plaintext [7] shows

that this will maintain the bijective nature of the original OPE scheme within the MOPE

scheme. If the modular blinding operation were to be performed on the ciphertext, bijection

is not guaranteed, meaning that there could be collisions in the mapping from plaintext to

ciphertext. Also interesting to note is that this “wrap around” addition to the scheme only

wraps around once as the modulo base is the size of the plaintext space.

This improved scheme completely blinds the approximate location of the plaintext,

but still allows for effective range queries, so long as one takes into account the modular

behavior. This scheme however looses the trait of order preserving encryption in that it

is possible for a bigger plaintext to be a smaller ciphertext. This modified, modular order

preserving encryption will handle range queries, but will not retain order as was an original

requirement of any OPE scheme.
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Order Preserving Tagging

An alternate scheme presented within [7] is that of order preserving tagging. It is proven

in this work that the order preserving tagging scheme is capable of achieving IND-OCPA,

the gold standard of order preserving encryption security notations. This construction is

implemented through the use of monotone minimal perfect hashing defined by Belazzougui

et al. [3]. Monotone minimal perfect hashing functions map bijectively n keys into the

set of [0, n − 1] using a Trie data structure based on binary prefixing. After a compacted

prefix trie is constructed from a plaintext domain, the resulting hash function will retain

lexicographic ordering of the plaintext values.

The construction for Order Preserving Tagging as defined by [7] uses monotone minimal

perfect hashing to create an order preserving tagging scheme. The process is informally

defined as given the database of plaintext values, compute the monotone minimal perfect

hash of each value within the plaintext domain. Then use strong encryption (IND-CPA) to

encrypt the plaintext values, and merely append the corresponding monotone hash value to

the ciphertext value. It is proven that the only attribute of the plaintext that is leaked is the

relative ordering of the plaintext, which complies with the IND-OCPA security notation.

Unfortunately the drawbacks of this scheme completely defeat one of the main selling

points of the original symmetric OPE scheme from the original Boldyreva construction [6],

being that one would need to have the entire plaintext domain known ahead of time to use

this scheme, as monotone minimal perfect hashing requires, by the nature of a prefix trie,

all of the values ahead of time to determine the lexicographic ordering of the values in the

trie. This particular construction is less resilient to changes in the underlying data than

the Agrawal [1] construction in that it does not handle graceful updates at all. In order to

add new values to the database one would need to decrypt the entire database, compute

the monotone minimal perfect hashing of each ciphertext, then tag every single entry in the

entire database. It is apparent that this scheme will not work in implementation, though it

does initiate the discussion about order preserving encoding in the field.

Order Preserving Tagging (Encoding)

After Boldyreva showed in [7] that it is not possible to create a symmetric order pre-

serving encryption with the ideal security notion of IND-OCPA where the only leakage of
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the algorithm would be the ordering of the plaintext values, Popa et al. [22] took pursued a

different direction. Very similar to Boldyreva’s order preserving tagging technique, Popa’s

construction uses semantically secure encryption to protect the confidentiality of the plain-

text values, and uses an additional “tagging” attribute to specify the relative ordering of the

ciphertexts. Unlike Boldyreva’s tagging solution, Popa implements an interactive protocol

to remove the requirement of a priori full database knowledge.

Popa uses the fact that a binary search tree data-structure, by definition, is ordered

which can be visualized in Figure 2.3. By creating a binary search tree of ciphertext values,

where the decision on which branch to take is performed by the client who has the encryption

key, an interactive protocol will allow for ideal security.

Figure 2.3: mOPE Binary Search Tree

Within Popa’s construction [22] a client, or data owner, would request from the remote

mOPE server the root node of the tree. When the server returns the ciphertext for the root

node, the client is able to decrypt the value of the root node, and decide if the right or left

path should be taken based on if the value being encrypted (or looked up) is greater than

or less than the value of the root node. Well known recursive and non-recursive solutions

exist for binary tree traversals, but the interactive nature of this tree allows the server no

intuition as to the particular values of the ciphertexts, only the relative ordering. Figure 3.4
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provides a flow chart of this interactive process.

Up until the advent of interactive protocols for order preserving tagging, no order pre-

serving scheme was capable of providing ideal security. Improvements to the Popa construc-

tion have been shown which improve insertion performance [23] for big data applications

where insertion optimization is crutial. Query optimization has also been constructed [15]

which allow a data owner or client to perform faster lookups, but comes at the cost of

maintaining a local cache of ciphtertext to plaintext mappings.

Order Revealing Encryption

Research from [7] shows that deterministic symmetric order preserving encryption has

substantial leakage. This leakage primarily pertains to the approximate plaintext estima-

tion, as well as approximate distance between plaintexts given a set of ciphertext values.

The leakages have been found to be upwards of half of the bits of the plaintext given a ci-

phertext. It was also shown that the Boldyreva’s MOPE construction outlined is vulnerable

to inference attacks based on inference attacks by watching the queries performed, which

leads to a trivial deduction of the “secret” modular shift value used thereby removing the

blinding benefits the scheme introduced.

In 2015 Boneh et al. [9] developed a new theoretical construction that radically changed

the trajectory of the order preserving encryption field. Within Boneh’s construction, which

uses multi-linear maps, the authors were able to create a semantically secure construction,

albeit impractical, which does not comply with traditional symmetric order preserving defi-

nitions. Upon examination of what is required by practitioners in the field regarding sorting,

searching and range queries, it is evident that a symmetric encryption scheme is not re-

quired. As eluded to in [7] Boldyreva’s order preserving tagging construction and followed

up by Popa’s [22], all that is required is isolation of the ciphertext who’s plaintext values

fall within a particular range. There is no need to actually perform a decryption, or reverse

transformation back to the plaintext value, as the plaintext can be encrypted with seman-

tically secure cryptographic mechanisms. Order revealing encryption is therefore a subset

of order preserving encryption.
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Practical Order Revealing Encryption

Chenette et al. [11] set to the task of creating a practical construction of an order reveal-

ing encryption which was based on more practical primatives than Boneh’s construction.

The authors settled on a scheme which relied on the security of pseudo-random functions

for their construction. This scheme resembles hashing and is implemented using provable

strong security primitives already used in the cryptographic community.

As mentioned order revealing encryption is subtly different than order preserving en-

cryption in that there is no decryption attribute. The ciphertext still retain order and

allow for sorting and searching. When pairing this order revealing encryption with a strong

traditional encryption mechanism on the value itself, one can create tags which allow for

order revealing traits. When analyzing order revealing versus order preserving, Chenette

discovered [11] that order preserving encryption is a subset of order revealing encryption,

in that order preserving encryption incorporates a decryption mechanism.

The order revealing construction created by Chenette [11] provides an encryption al-

gorithm which relies on a secure pseudo-random function F which derives it’s randomness

from a key K. Let b1||...||bn be the binary representation of a plaintext value where n is the

length of the plaintext bit string, and M ∈ Z3. For each i in [n] compute the Equation 2.7

concatenating each ui value into a ciphertext value (u1, . . . , un).

: Practical Order Revealing Encryption[11]

∀i ∈ [n]; ct = ||ni=1F (K, (i, b1. . . bi−1||0n−i)) + bi(modM) (2.7)

As seen within the construction we are taking our secure pseudo-random function and

passing a key and a bit-string the result of which is modular added base M to the bit value

in the i-th location in the bit string. As seen in this construction, if we choose M = 3 we

will have a 2 times expansion. Table 2.5 provides a simple toy example for visualization of

the encryption of 15 (bit string of 1111).

Given Table 2.5 the resulting ciphertext value is shown in Equation 2.8.

As seen this construction requires n secure pseudo-random function computations where

n is the length of the bit string being encrypted. Also seen is the amount of ciphertext ex-
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Table 2.5: Example ORE Practical
Iteration (i) PRF Parameter (i|bi−1) ui

1 1,0000 F(K, (1,0000)) + 1 (mod 3)

2 2,1000 F(K, (2,1000)) + 1 (mod 3)

3 3,1100 F(K, (3,1100)) + 1 (mod 3)

4 4,1110 F(K, (4,1110)) + 1 (mod 3)

: Practical Order Revealing Encryption Example Result

(Fk(1, 0000)+1mod3, Fk(2, 1000)+1mod3, Fk(3, 1100)+1mod3, Fk(4, 1110)+1mod3) (2.8)

pansion required is a factor of M − 1 where M is an arbitrary security parameter greater

than 3. What is nice about this construction is the fact that it resembles a prefix trie,

much like the monotone minimal perfect hashing scheme noted by Boldyreva [6]. The com-

parison mechanism simply traverses to the first ui value between the two ciphertexts being

compared, and merely un-blinds the modular addition. Equation 2.9 shows the comparison

operation given two ciphtertext values ct1 and ct2 respectively. If this condition is true,

then ct2 is in fact larger than ct1.

: Practical Order Revealing Comparison

uct2i = uct1i + 1(modM) (2.9)

With this extremely elegant construction in place we can see clearly that the order of the

plaintext values are revealed within the resulting ciphertext, and we are able to use a strong

pseudo-random function to generate the ciphertext. Though this is a definite improvement

over the order preserving schemes from [6] [7] there is still room for improvement. Notice

in the algorithm the prefix of the bit strings leaks information about the two ciphertext

values, specifically equality of high order bits. This does not fall within IND-OCPA security

notation clearly as more than just the ordering of the plaintexts are realized. It is shown

within [11] that this prefix equality between ciphertext values reveals equality of the first i
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bits of each ciphertext value.

Improved Order Revealing Encryption Small Domain

Directly following the practical order revealing encryption notion was discovered, Lewi

et al. started investigating a new construction that would solve a few notable problems

within Chenette’s practical order revealing scheme. The most obvious problem with the

Chenette construction is the fact that a database of ciphertexts using the same secret key

are all directly comparable by the server housing the ciphertexts. Another obvious problem

is that the leakage incurred, up to the first differing bit of the ciphertext was untenable.

In order to address the first problem Lewi [16] implemented a “right/left” framework

in which the encryption process was broken into a right encryption algorithm, and a left

encryption algorithm. The right ciphertexts generated were not directly comparable with

other right ciphertexts. Only the left ciphertext was directly comparable with the right

ciphertext values. In implementation this means that a practitioner would be able to store

right ciphertexts within the remote database system, and the remote database system would

no longer be able to infer anything about the corresponding plaintext value from the right

ciphertext alone. Within Equation 2.10 is the left side encryption algorithm, and Equa-

tion 2.11 demonstrates the right side encryption algorithm.

The left encryption algorithm as seen in Equation 2.10 requires additional key matter.

Besides the encryption key, the additional key matter required is a random permutation

function Π(m)→ m over the plaintext domain M such that Π performs a unique bijection

of each plaintext value within the plaintext domain to another plaintext value within said

small domain. A practical example of this is realized in Table 2.6. Consider the values of a

small domain in [1, . . . , 8] as shown in Table 2.6. The need for this permutation, and more

importantly for the inverse permutation is to obfuscate the actual values being encrypted.

The result of this “left” ciphertext is shown to actually be the modular blinding “key” to

the right ciphertext.

: Improved “Left” Small Domain Order Revealing Encryption

ctleft = (F (K,Π(m)),Π(m)) (2.10)
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Table 2.6: Small Domain Order Revealing Encryption Π Function
m Π(m)

1 5
2 6
3 7
4 1
5 3
6 8
7 4
8 2

The right encryption algorithm of this small domain ORE takes the value which is to be

encrypted, and performs order comparisons between that value and all other values within

the small domain. This algorithm can be seen in Equation 2.11. The resulting “right”

ciphertext is therefore a tuple, or concatenation, of the comparison of each and every value

within the small domain with the value being encrypted blinded by the “left” ciphertext

value. This produces an incredible amount of ciphertext expansion in the resulting right

side ciphertext as seen in Table 2.7. Given H is a one way hashing function, F is a secure

pseudo-random function, and r is a random nonce generated at encryption time, which is

stored along with the ciphertext value for comparison purposes.

: Improved “Right” Small Domain Order Revealing Encryption

ctright = r|||M |i=0CMP (Π−1(i),m) +H(Fk(i), r)(mod3) (2.11)

Table 2.7: Example Right Encryption of Value 5; Small Domain Order Revealing Encryption
i Π−1(i) ctright[i]

1 4 CMP (4, 5) +H(Fk(4), r)mod3
2 8 CMP (8, 5) +H(Fk(8), r)mod3
3 5 CMP (5, 5) +H(Fk(5), r)mod3
4 7 CMP (7, 5) +H(Fk(7), r)mod3
5 1 CMP (1, 5) +H(Fk(1), r)mod3
6 2 CMP (2, 5) +H(Fk(2), r)mod3
7 3 CMP (3, 5) +H(Fk(3), r)mod3
8 6 CMP (6, 5) +H(Fk(6), r)mod3
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As seen in our simple example the ciphertext expansion is very large for the “right”

side encryption algorithm. With our small domain example of 8 values, we can see that the

right side encryption of the value ‘5’ proves to be |M | ∗2+r in size which is 16 bits plus the

length of our random nonce r, compared to the 3 bits of plaintext. Within the construction

[16] it is shown that the required space to encrypt one 32 bit integer is 224 bytes.

By encoding the comparisons of the small domain directly inside the ciphertext, and

using the “left” component to “decrypt” the right ciphertext Lewi was able to get around

the problem of directly comparable ciphertexts stored within the database. By using a small

domain of size 256 for example and embedding this solution into Chenette’s ORE scheme,

it is proven [16] that the leakage from comparisons by left ciphertext only propogate to the

first byte block that differs, instead of the first bit that differs.



Chapter 3

Intrusion Tolerent Order Preserving Encryption Implementation

Overview

Based on the prior art in the field from Chapter 2 it has been shown that there exist im-

plementations of order preserving tagging that maintain ideal security (IND-OCPA) which

provide ordering of ciphertexts based on the ordering of the underlying plaintext. It is

shown that common to all of these implementations is the use of a pseudo-random function

as a basis for the security of the ciphertext stored within a database. Furthermore, it is

shown that one is able to create a secure distributed pseudo-random function using general

access structures. Within this chapter it will be shown how an order preserving encryption

scheme is constructed to provide intrusion tolerance as well as fault tolerance, improving

existing order preserving encryption schemes.

Given in Table 3.1 is a list of existing OPE, OPT, ORE schemes along with their known

leakages and security notations. Each entry is also expressed with the level of difficulty

required to distribute this particular algorithm. As you can see, since many of the existing

OPE, OPT and ORE constructions are completely stateless, and rely on a pseudo-random

function, it is plain to see that those particular implementations can be distributed utilizing

a distributed pseudo-random function.

Table 3.1: Ease of Intrusion Tolerance on Existing OPE/OPT/ORE
Encryption Scheme Security Distributable? Leakage

Agrawal ’04 OPES None Hard Unknown
Boldyreva ’09 OPE POPF-CCA Easy Half bits/relative distance

Boldyreva ’11 MOPE POPF-CCA Easy Relative distance
Boldyreva ’11 OPT IND-OCPA Hard Order

Popa ’13 mOPE/stOPE IND-OCPA Easy Order
Kerschbaum ’14 OPE IND-OCPA Hard Order

Roche ’2016 IND-OCPA Easy Order
Chenette ’16 ORE PRF Easy First differing bit
Lewi ’16 sdORE PRF Easy First differing block

More interestingly are the constructions that are hard to distribute. Agrawal’s OPES
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[1] scheme completely relies on the state of the algorithm setup as the encryption key. By

maintaining the state of the quadratic coefficients, bucket boundaries and scaling factors a

distributed OPES construction would need to maintain a shared distributed state across all

participants, which is infeasible in practice. Boldyreva’s OPT scheme [7] similarly requires

state preservation from the setup process, which does not lend itself to intrusion tolerance.

In essence it is very hard to carve up a construction that relies on initial state in a manner

that will allow for discrete access structures to share said state.

Though intrusion tolerance can be applied to any encryption primitive that utilizes

a pseudo-random function through the use of a distributed pseudo-random function, the

decision on order preserving implementation outlined within this chapter was consciously

made to provide the best possible security definition (IND-OCPA), as well as most clearly

demonstrable. To that end it was decided that Popa’s mOPE [22] was the most suitable due

to the fact that it is capable of maintaining IND-OCPA security, and additionally it is fairly

simple to understand as it uses common data structures and allows for ease in asymptotic

calculations.

The choice in distributed pseudo-random function for this intrusion tolerant order pre-

serving tagging implementation is derived from Agrawal’s DISE [2] implementation primar-

ily due to the fact that it builds off of a long line of successful distributed pseudo-random

function implementations [19] [18] [17] with the added improvement of ciphertext integrity

validation.

Design

The construction of an intrusion tolerant order preserving encryption scheme (itOPE)

described can be broken into three independent classifications of processes, a key-share

dealer process, a mOPE process, as well as multiple participant processes. The organization

of this section follows:

1. Definition of the key sharing implementation

2. Definition of the mOPE interactive protocol implementation

3. Definition of the distributed pseudo-random function and client interface
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itOPE Dealer Key Sharing Process

Symmetric key based pseudo-random functions do not allow for algebraic homomor-

phisms by design. In order to create a key sharing mechanism across a general access

structure for which will accommodate a threshold of participants we need to follow the

OR-of-ANDs boolean access structures which enables threshold key sequence sharing [? ]

[2]. This construction uses the algorithm mentioned in [2] Section 8.2 for key distribution.

Informally, given n participants P , collaborating in d =
(

n
n−t+1

)
access structures D, d key

shares k need to be created, and distributed such that Pi ← kj where Pi ∈ Dj . This algo-

rithm can be seen in Algorithm 1 and visualized within Figure 3.1. An implementation of

this process in Go can be found in Appendix A within GenerateKeys and KeyAssignment

functions.

Algorithm 1 Dealer Key Sharing Algorithm

procedure KeyShares

keys ←[1, ..., n] . Initialize keys as array length n

for i in range
(

n
n−t+1

)
do . for all Access Structures based on (t,n)

keysi ← RNG() . Add randomly generated key to ”keys”

for ∀i ∈[n] do . for all Access Structures based on (t,n)

for ∀j ∈keys do . for all Access Structures based on (t,n)

if participanti ∈ AccessStructurej then participanti ← keyj

return 0

=0

By distributing the keys using the aforementioned algorithm, it is shown in Figure 3.1

that it is not possible to have all n keyshares needed for the distributed pseudo-random

function operations without at least t participants collaborating. This key sharing mecha-

nism unfortunately expands key shares exponentially, but in all practicality it is rare that

the number of participants involved in a distributed computation are more than twenty

in size [2]. Although this general access structure key sharing scheme is less efficient than

an algebraic constructs such as discovered by Shamir [24] it is never the less practical for

limited collections of participants.

It should also be noted, that by using a symmetric pseudo-random function this con-
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struction is fairly limited with regards to key rotation capabilities. It is evident that an

encryption process that uses key shadows which are fixed, meaning that one would need

all of the particular key shares that was used for an encryption process in order to perform

decryption, does not allow for ease of key rotations. It would be interesting future work to

work through key rotation capabilities within this scheme. This is effectively the same as

having one key, as in this case the key shares together fully compose the one encryption key.

Within Shamir [24] it is shown that due to the algebraic nature of key derivation, and use

within schemes that abide by the Diffie-Hellman Assumption, the group encryption mech-

anism actually results in the encryption of the secret the shares were derived from. This is

helpful in key rotation as so long as the modular addition of the key parts equal the original

key, the encryption and decryption mechanism will still operate on the blinded original key.

This is not the case because symmetric pseudo-random functions have no algebraic traits

and do not abide by the Diffie-Hellman Assumption.

Figure 3.1: Visualization of dOPE Dealer Process

From a practical perspective it is of note that merely because this construction contains

the dealer as the key generation service within this embodiment, does not mean that one
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is required to have a secure dealer. In order to remove the requirement of having a secure

dealer within another embodiment, one can merely implement the access structure code

within Appendix A directly within the participant services themselves, removing the need

for a dealer process completely.

In another embodiment where participants figure out for themselves what the key shad-

ows should be two or more nodes who are within a particular access structure can create

random numbers themselves and come up with a composite key by performing an exclusive-

or of those randomly created numbers to use as the key for that particular key shadow. This

implementation includes an authority key dealer for simplicity of design, and ease of under-

standing.

Also of note, within Appendix B it is shown that after all calculated key shares are

distributed, the dealer process shuts down. This is to prevent the full key from staying

available in a fully reconstructed state. It is important to never have the fully recomposed

encryption key available.

As can be seen in Appendix B this particular construction uses the GRPC protocol over

TLS with client certificate authentication over HTTP2. This client certificate authentication

allows for the dealer to validate authentication of the connecting participants in order to

validate the participants are actually part of the distributed pseudo-random function cluster.

itOPE Participant Encryption/Decryption Process

Due to the distributed design, it is important to have every participant capable of

initiating the encryption, decryption, storage and range query functionality independently.

One of the primary drawbacks with current OPE, OPT and ORE constructions is the

inherent sequential operations required to encode or encrypt regarding the pseudo-random

function access. To this end itOPE is designed such that any participant, no matter in

which access structure that participant resides, must be able to perform all actions related

to search, and data storage.

As seen in Figure 3.2 the encryption process follows directly the art from shared block

ciphers over the past 20 years. As shown by Agrawal et al. [2], a distributed pseudo-

random function is as secure as the composite pseudo-random functions it of which it is

comprised. Initial attempts at creating ”sequence sharing” schemes [10] prove that by

nesting pseudo-random function accesses with a particular sequence of key shares allows
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for decryption through the inverted nesting of said function accesses. This concept of

sequence sharing allows for robustness, and distributed computation, although it requires a

sequential operation across participants, which is not optimal for multi-party computation.

Equation 3.1 outlines the particularities of Brickell’s sequence sharing design for encryption

and Equation 3.2 shows the corresponding decryption process.

: Brickell Sequence Sharing for Shared Block Cipher Encryption Computation

Enc(K,m)→ Enc(K( n
n−t+1)

, Enc(K( n
n−t+1)−1

, ..., Enc(K1,m))) (3.1)

: Brickell Sequence Sharing for Shared Block Cipher Decryption Computation

Dec(K, ct)→ Dec(K1, ..., Dec(K( n
n−t+1)−1

, Dec(K( n
n−t+1)

, ct))) (3.2)

Clearly this solution will work for shared computation of a block cipher, although it

is not efficient, as each participant with the appropriate key share needs to be summoned

sequentially, in order, to perform their portion of the block cipher computation.

Directly following Brickell’s work, Martin et al. authored two follow up papers [17] and

[18] wherein Martin showed the ⊕ operator could be used in order to more fully distribute

the computation of block ciphers. Within Martin’s work on Threshold MAC the authors

proposed a scheme by which each individual participant was given the plaintext value, and

asked to return the partial MAC result by performing a MAC operation with their own key

shares. The result of all of the participants were then ⊕-ed together to produce a shared

mac, see Equation 3.3.

: Martin Threshold MAC for Shared MAC Computation

MAC(K,m)→ ⊕( n
n−t+1)

i=1 MAC(Ki,m) (3.3)

This works very well in a distributed model, but now each of the individual participants
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were given the value of m, the plaintext. For MAC calculation this doesn’t really matter,

but when data confidentiality is paramount, this scheme does not limit the number of

participants that are in control of the plaintext, which could lead to a curious participant

recording the plaintext values. To that end Martin’s followup work [18] revisited this concept

and created a scheme which would allow for the best of both worlds, shown in Equation 3.4.

: Martin XOR based Shared Block Cipher Encryption Computation

r ← RNG;Encd(K,m)→ (r,m⊕⊕( n
n−t+1)

i=1 Dec(Ki, r)) (3.4)

: Martin XOR based Shared Block Cipher Decryption Computation

(r, c)← ct;Decd(K, r, c)→ c⊕⊕( n
n−t+1)

i=1 Dec(Ki, r) (3.5)

This provides a blinding effect similar to a one-time pad ⊕ operation to the plaintext

m. The inverse operation shown in Equation 3.5 uses the random nonce created from the

encryption and asks all participants to compute the Encryption of r with their key share

thereby coming up with the value needed to un-blind the plaintext. Within Martin’s scheme

it is very important that the random nonce is indeed random. Within Martin’s scheme,

clearly, it is possible to create a block cipher from symmetric primitives allowing for a fully

distributed solution.

Agrawal improved these schemes by adding the concept of identity authentication to

the resulting ciphertexts by having computation of the distrubuted pseudo-random function

performed on a commitment instead of just a random nonce value. This commitment is

comprised of α = (m⊕r) where m is the plaintext value and r is a random nonce. By storing

this commitment with the ciphertext a decryption can be validated by performing α⊕ r′ =

?m′. The construction expressed in this work implements the distributed pseudo-random

function definition from Agrawal’s DISE work [2]. Within Appendix C in method dprf you

can how we are performing the distributed pseudo-random function. Figure 3.2 expresses

how the inter-participant communication is performed for encryptions and Figure 3.3 shows
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the corresponding decryption. This process allows the primary participant the only view

into the value of the plaintext. By not propagating the plaintext to other participants the

plaintext need not be sent to other participants in the distributed computation.

Figure 3.2: Visualization of itOPE Participant Encrypt and Store Process

Much as the dealer utilizes GRPC and TLS authenticated communication channels, so

to do the participants. Each participant is issued a self signed certificate for authenticated

secure communications. Upon registering with the dealer, the dealer will inform participants

of their peers as seen in Appendix B. At this registration time, the participants create a

long lived secure socket to their peers and inform their peers which keys they have.

itOPE Participant Integration with mOPE

Showcased within Chapter 2 the mOPE interactive protocol defined by Popa et al.

[22] is a ”remote” binary search tree, where the ordering comparison function is defined

and performed within the client that has the encryption key, as opposed to on the server.

The mOPE server implementation used within this research was written in Go in order to

provide a side-by-side performance analysis and can be found in Appendix D. The binary
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Figure 3.3: Visualization of itOPE Participant Range Search Process

tree data-structure which holds the encrypted data can be seen in Appendix E. Within the

interactive protocol there are three primary functions, enumerated below.

1. insert(path, ct)

2. delete(path)

3. retrieve(path) → ct

The mOPE client as envisioned by Popa et al. [22] is visualized in Figure 3.4. Defined

informally the mOPE interactive protocol is a remote binary search tree which allows the

client to retain all authority in ordering of the ciphertexts within the tree. This binary

search tree allows for easy in order traversal, but more pointedly, allows for a natural en-

coding scheme based on branching decisions. By requiring the client to manage all ordering

operations within the interactive protocol the server learns absolutely about the plaintext

when using semantically secure encryption, other than the ordering from the client through

the protocol, and placement of ciphertexts within the search tree. Popa proves that this

interactive protocol leaks nothing other than the ordering, and complies with IND-OCPA
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[22].

Figure 3.4: Visualization of mOPE Insertion Interactive Protocol

The order preserving encoding within Popa’s scheme is a direct artifact of the binary

search tree traversal, of which can be ingested directly into an existing database system with

minor modification. By employing the mOPE interactive protocol within dOPE participant

process it is realized that what is created is a distributed IND-OCPA order preserving solu-

tion. In terms of mOPE, the participant process is the ”client” and performs all encryption

and decryption using a shared block cipher.

As with the other components for this intrusion tolerant order preserving encryption

scheme the interactive mOPE protocol is protected by secure sockets using TLS with client

authentication through client certificates. Within this scheme each participant is responsi-

ble for maintaining an authenticated secure socket with the mOPE server and performing

GRPC calls for insertions and traversals of the encrypted tree.
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itOPE Infrastructure and Automation

The final construction provided consists of one dealer service, one mOPE service and

several cooperative participant nodes. The construction requires t of n participants to

successfully perform encryption and decryption in order to manipulate the mOPE data

structure. As seen in Appendix F and Appendix G, for this construction we have automated

the instantiation of these services using docker, and docker compose for orchestration.



Chapter 4

Intrusion Tolerant Order Preserving Encryption Performance Analysis

In order to test the performance of this intrusion tolerant order preserving encryp-

tion construction the code has been instrumented using a time series database solution

prometheus. This testing was performed on a Dell XPS laptop with an Intel(R) Core(TM)

i7-8550U CPU @ 1.80GHz processor with 8MB cache and 16GB of RAM. Testing was

performed on a vanilla mOPE implementation written in Go, of which the itOPE imple-

mentation was based. Testing was then performed on a two out of three threshold itOPE

construction as well as a three out of five threshold itOPE construction. Key performance

indicators included the rate of insertions per second into the mOPE server, rate of traver-

sal requests per second to the mOPE server. On the itOPE construction metrics included

number of distributed pseudo-random function calls on each participant per second as well

as number of client requests per second.

Insertion Performance

In order to achieve a base line, best possible performance of itOPE, the mOPE imple-

mentation created was tested with inputs of factors of ten. One thousand random entries

were inserted, then ten thousand, and finally one hundred thousand. The results are visu-

alized within Figure 4.1. Between minute three and four in the graph we can see that the

vanilla mOPE server was able to handle around 450 insertions per second. Between minute

four and five it is shown that ten thousand were dispatched within 35 seconds. Finally

one hundred thousand inputs were inserted into the mOPE database over the course of 8.5

minutes.

As can be expected by the performance of a binary search tree, we are able to realize

a log(n) performance degradation as the tree grows in size from more items being inserted

into the tree.

With this performance metric realized, the testing then attempted the same test of

insertions against the itOPE construction. As witnessed in Figure 4.2, the insertion rate

realized that the mOPE server is half of what was seen with the vanilla mOPE client/server

45
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Figure 4.1: Insertion Performance (insertions/s) of Vanilla mOPE 1K, 10K, 100K

interaction. We can see clearly that the average insertion performance for itOPE is 160

insertions per second averaged for one thousand entries, then the next ten thousand averaged

70 insertions per second, and finally over the course of one hundred thousand insertions

we realized 60 insertions per second. Comparing this to vanilla mOPE where we saw 477

insertions per second for one thousand, 300 insertions per second for ten thousand insertions

and 175 insertions per second for one hundred thousand insertions.

Figure 4.2: Insertion Performance (insertions/s) of itOPE 1K, 10K, 100K

Encryption/Decryption Performance

Figure 4.3 shows the number of distributed pseudo-random function initiations that

were caused by the insertion requests during this test run. Each time a value needs to

be encrypted or decrypted, as shown in Chapter 3, the participant handling the request

is required to isolate which keys they are missing, and request from the other participants

who have access to those missing keys to perform an encryption on the commitment. These

results are then collated by the caller and exclusively-or-ed with the plaintext value for
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encryption. Within this figure we can see the rate of requests to perform this distributed

pseudo-random function access. It shows clearly that there are multiple requests to the

distributed pseudo-random function access proportional to the number of requests that are

being handled by the participant.

With the one thousand insertions range the participant averaged 1250 distributed pseudo-

random function accesses per second. That equates to around 7 distributed pseudo-random

function calls per one insertion request. This is directly due to the interactive mope pro-

tocol, as in order to perform an insertion, the client needs to traverse to the right location

within the search tree.

Figure 4.3: dPRF Initiations (dprf/s) of itOPE 1K, 10K, 100K

Since a collective of participants must work together to encrypt or decrypt a value,

within Figure 4.4, it is shown the relative participant workload required to perform the

distributed pseudo-random function. It is shown within this graph that one participant

out of the three total (threshold 2 out of 3) does not need to participant in order to still

allow encryptions and decryptions to succeed. Within the code implementation the author

chose to always attempt to encrypt locally with a key that the current participant owns.

Looking at this graph it is fairly clear that it would be more performant to allow the peers

to compute the pseudo-random function with keys they have access to, instead of favoring

the local key computation.

Within Figure 4.5 and Figure 4.6 we see that the graph of number of encryptions and

decryptions performed is linear, though as stated before, the number of decryptions is much
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Figure 4.4: dPRF Computations (computations/s) of itOPE 1K, 10K, 100K

larger due to the interactive protocol. But these numbers follow closely to the asymptotic

calculations based on the traversal/insertion cycle of a binary search tree which is to be

expected.

Figure 4.5: Encryption Requests of itOPE 1K, 10K, 100K

Clearly there are some performance improvements that can affect the overall efficiency,

such as not biasing toward local key usage. Overall, it is shown that an itOPE is linear in

performance to a vanilla mOPE.
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Figure 4.6: Decryptions Requests of itOPE 1K, 10K, 100K



Chapter 5

Conclusion

This work explains how to construct an intrusion and fault tolerant order preserving

encryption scheme by modifying an existing scheme to use a distributed pseudo-random

function. By employing an intrusion tolerant order preserving encryption scheme, practi-

tioners are able to better safe guard encryption keys as well as provide more configurable

access structures for participants to maintain ordered ciphertext values within a database.

The implementation of itOPE, within Chapter 3, uses a secure distributed pseudo-random

function which results in authenticated ciphertext values which can be validated at decryp-

tion time. Said implementation does not reconstruct the full encryption key and therefore

is designed such that any particular node can be compromised without compromising the

entirety of the database.

Based on the analysis performed in Chapter 4 of the proposed scheme, it is shown

that the overhead incurred by itOPE is asymptotically linear to the number of participants

regarding additional network overhead. The additional overhead is the point to point com-

munications between the participant nodes during the distributed pseudo-random function

calculation. It is also shown in analysis that the storage overhead in the ciphertext is linear,

as the resulting ciphertext is two times the size of the ciphertext value in the unmodified

scheme. Encryption processing time is also linear where the additional required encryp-

tions are k ∗
(

n
n−t
)

where k is the number of plaintexts to be encrypted, n is the number of

participants and t is the number of participants required.
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Appendix A

Key Sharing Dealer Source Code

src/dealer/dealer.go

1 package dea l e r
2
3 import (
4 ” crypto / aes ”
5 ” crypto /rand”
6 ”fmt”
7
8 ” github . com/pkg/ e r r o r s ”
9 )

10
11 // KeyPart − a key shadow which i s d i s t r i b u t e d
12 type KeyPart struct {
13 ID int
14 Value [ ] byte
15 }
16
17 // GenerateKeys − based on ( t , n) t h r e s h o l d compute a l i s t o f shadows
18 func GenerateKeys (n , t int ) ( [ ] KeyPart , error ) {
19 var (
20 // number o f keys r e qu i r ed based on n and t
21 d = choose (n , n−t )
22 // the l i s t o f keyshares to be d i s t r i b u t e d
23 shadows = make ( [ ] KeyPart , d )
24 )
25 // c rea t e d key par t s
26 for i := 0 ; i < d ; i++ {
27 shadows [ i ] . ID = i + 1
28 shadows [ i ] . Value = make ( [ ] byte , aes . B lockS ize )
29 , e r r := rand . Read ( shadows [ i ] . Value )
30 i f e r r != ni l {
31 return nil , e r r o r s .Wrap( err , ” f a i l e d to make keys ” )
32 }
33 }
34 return shadows , ni l
35 }
36
37 // KeyAssignment − based on the id o f the p a r t i c i p an t produce a l i s t
38 // o f keys t ha t p a r t i c i p an t shou ld g e t
39 func KeyAssignment ( pid , n , t int , as [ ] [ ] int , shadows [ ] KeyPart ) ( [ ] KeyPart ,

error ) {
40
41 i f pid > n {
42 return nil , e r r o r s .New( ” i n v a l i d pa r t i c i p an t id ” )
43 }
44
45 // i f p id i s in a p a r t i c u l a r acces s s t ruc tu r e , then g i v e i t t h a t key
46 var (
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47 d = choose (n , n−t )
48 keys = [ ] KeyPart{}
49 count = 0
50 )
51
52 // f o r each acces s group
53 for j := 0 ; j < d ; j++ {
54 // i f t h i s p a r t i c i p an t i s a member o f acces s group j
55 // g i v e t ha t p a r t i c i p an t key j
56 for k := 0 ; k < t ; k++ {
57 i f pid == as [ j ] [ k ] {
58 keys = append( keys , shadows [ j ] )
59 count++
60 }
61 }
62 }
63
64 return keys , ni l
65 }
66
67 // choose − he l p e r to perform combination ca l c ua t i on s
68 func choose (n , m int ) int {
69 var (
70 factN int = 1
71 factM int = 1
72 factNM int = 1
73 )
74 for i := 1 ; i <= n ; i++ {
75 factN = factN ∗ i
76 }
77 for i := 1 ; i <= m; i++ {
78 factM = factM ∗ i
79 }
80 for i := 1 ; i <= (n − m) ; i++ {
81 factM = factM ∗ i
82 }
83 return factN / ( factM ∗ factNM)
84 }
85
86 // ComputeAS − t a k e s in ( t , n) and genera t e s a gener i c acces s s t r u c t u r e
87 func ComputeAS( t , n int ) [ ] [ ] int {
88 var (
89 pa r t i c i p an t s = make ( [ ] int , n )
90 tmp = make ( [ ] int , t )
91 r e s u l t = make ( [ ] [ ] int , choose (n , n−t ) )
92 )
93
94 fmt . Pr in t ln ( ”d = ” , choose (n , n−t ) )
95 // i n i t i a l i z e r e s u l t
96 for i := 0 ; i < choose (n , n−t ) ; i++ {
97 r e s u l t [ i ] = make ( [ ] int , t )
98 }
99 // i n i t i a l i z e p a r t i c i p a n t s

100 for i := 0 ; i < n ; i++ {
101 pa r t i c i p an t s [ i ] = i + 1
102 }
103
104 var count int
105 // r e c u r s i v e l y compute the acces s s t r u c t u r e s
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106 computeAS( t , 0 , n−1, 0 , pa r t i c i pan t s , tmp , r e su l t , &count )
107
108 return r e s u l t
109 }
110
111 // computeAS − r e cu r s i v e a l gor i thm fo r f i g u r i n g out acces s s t r u c t u r e s
112 func computeAS( t , s t a r t , end , index int , p a r t i c i pan t s , tmp [ ] int , r e s u l t [ ] [ ]

int , count ∗ int ) {
113 i f index == t {
114 for i , v := range tmp {
115 r e s u l t [∗ count ] [ i ] = v
116 }
117 ∗ count = ∗ count + 1
118 return
119 }
120 for i := s t a r t ; i <= end && end−i+1 >= t−index ; i++ {
121 tmp [ index ] = pa r t i c i p an t s [ i ]
122 computeAS( t , i +1, end , index+1, pa r t i c i pan t s , tmp , r e su l t , count )
123 }
124 }
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Appendix B

Key Sharing Dealer Server Source Code

src/dealer/server/main.go

1 package main
2
3 import (
4 ” context ”
5 ” crypto / t l s ”
6 ” crypto /x509”
7 ” f l a g ”
8 ” i o / i o u t i l ”
9 ” log ”

10 ”net ”
11 ”net /http ”
12 ” sync”
13 ” time”
14
15 ” dea l e r ”
16 pb ” dea l e r / protobuf ”
17
18 ” goog le . golang . org / grpc ”
19 ” goog le . golang . org / grpc / c r e d e n t i a l s ”
20
21 ” github . com/prometheus/ c l i e n t g o l a n g /prometheus/promhttp”
22 )
23
24 type s e r v e r struct {
25 Part ic ipantKeyAssignments [ ] [ ] d e a l e r . KeyPart
26 pkaMu sync .RWMutex
27 pkaNum int
28 Pa r t i c i p an t s [ ] ∗ pb . Peer
29 }
30
31 // Reg i s t e r implements p ro tobu f . Dea lerServ ice , t h i s i s the r e g i s t r a t i o n l o g i c
32 func ( s ∗ s e r v e r ) Reg i s t e r ( ctx context . Context , in ∗pb . Reg i s terRequest ) (∗pb .

RegisterResponse , error ) {
33 log . P r i n t f ( ”Received Reg i s t r a t i on Request : %v” , in . S e l f )
34 s . pkaMu . Lock ( )
35 defer s . pkaMu . Unlock ( )
36 log . P r i n t f ( ”Ass ign ing Ca l l e r ID : %d” , s . pkaNum)
37
38 var keys = [ ] ∗ pb .Key{}
39 // add t h i s peer to our l i s t o f peers we g i v e p a r t i c i p a n t s
40 s . Pa r t i c i p an t s = append( s . Par t i c ipant s , in . S e l f )
41
42 // conver t our key to the response s t r u c t u r e
43 for , k := range s . Part ic ipantKeyAssignments [ s . pkaNum] {
44 keys = append( keys , &pb .Key{
45 Id : int32 ( k . ID) ,
46 Value : k . Value ,
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47 })
48 }
49
50 resp := &pb . Regis terResponse {
51 Message : ” Success ” , Success : true ,
52 KeyParts : keys , KnownPeers : s . Par t i c ipant s ,
53 }
54
55 s . pkaNum++
56
57 return resp , ni l
58 }
59
60 var (
61 n int
62 t int
63
64 // f o r t l s au t h en t i c a t i on and c o n f i d e n t i a l i t y
65 se rve rCer t string
66 serverKey string
67
68 c l i e n tCe r t string
69 c l i entKey string
70
71 caCert string
72
73 addr string
74 )
75
76 func i n i t ( ) {
77 f l a g . IntVar(&n , ”n” , 5 , ”Number o f t o t a l Par t i c ipant s , d e f au l t=5” )
78 f l a g . IntVar(&t , ” t ” , 3 , ”Number o f Pa r t i c i p an t s r equ i r ed to decrypt , d e f au l t

=3” )
79
80 f l a g . Str ingVar(&serverCert , ” sCrt ” , ”” , ” Server TLS Cert ” )
81 f l a g . Str ingVar(&serverKey , ”sKey” , ”” , ” Server TLS Key” )
82 f l a g . Str ingVar(&c l i en tCe r t , ” cCrt” , ”” , ” C l i en t TLS Cert ” )
83 f l a g . Str ingVar(&cl ientKey , ”cKey” , ”” , ” C l i en t TLS Key” )
84 f l a g . Str ingVar(&caCert , ” caCrt ” , ”” , ”CA TLS Cert ” )
85
86 f l a g . Str ingVar(&addr , ”addr” , ” :1234 ” , ” Server Address ” )
87
88 f l a g . Parse ( )
89 }
90
91 // main − main en t r ypo in t f o r the dea l e r s e r v e r
92 func main ( ) {
93
94 go func ( ) {
95 http . Handle ( ”/metr i c s ” , promhttp . Handler ( ) )
96 log . Fata l ( http . ListenAndServe ( ” :9090 ” , ni l ) )
97 } ( )
98
99 // load in l o c a l CA

100 c e r t i f i c a t e , e r r := t l s . LoadX509KeyPair ( serverCert , serverKey )
101 i f e r r != ni l {
102 log . Fa ta l f ( ” f a i l e d to load c e r t s : %s \n” , e r r . Error ( ) )
103 }
104
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105 ce r tPoo l := x509 . NewCertPool ( )
106 ca , e r r := i o u t i l . ReadFile ( caCert )
107 i f e r r != ni l {
108 log . Fa ta l f ( ” f a i l e d to load c e r t s : %s \n” , e r r . Error ( ) )
109 }
110
111 i f ok := cer tPoo l . AppendCertsFromPEM( ca ) ; ! ok {
112 log . Fa ta l f ( ” f a i l e d to load c e r t s : %s \n” , e r r . Error ( ) )
113 }
114
115 // Dealer se tup
116 keys , e r r := dea l e r . GenerateKeys (n , t )
117 i f e r r != ni l {
118 log . Fa ta l f ( ” e r r : %s \n” , e r r . Error ( ) )
119 }
120
121 as := dea l e r . ComputeAS( t , n )
122 log . P r i n t f ( ”%+v” , as )
123
124 par t i c ipantKeys := make ( [ ] [ ] d e a l e r . KeyPart , n )
125 // f i g u r e out who g e t s what key
126 for i := 1 ; i <= n ; i++ {
127 keys , e r r := dea l e r . KeyAssignment ( i , n , t , as , keys )
128 i f e r r != ni l {
129 log . Fa ta l f ( ” e r r : %s \n” , e r r . Error ( ) )
130 }
131 part i c ipantKeys [ i −1] = append ( [ ] d e a l e r . KeyPart {} , keys . . . )
132 }
133
134 log . P r i n t f ( ”%+v” , par t i c ipantKeys )
135
136 l i s , e r r := net . L i s t en ( ” tcp ” , addr )
137 i f e r r != ni l {
138 log . Fa ta l f ( ” f a i l e d to l i s t e n : %v” , e r r )
139 }
140
141 // r e qu i r e c l i e n t c r e d e n t i a l s
142 creds := c r e d e n t i a l s .NewTLS(& t l s . Conf ig {
143 ClientAuth : t l s . RequireAndVeri fyCl ientCert ,
144 C e r t i f i c a t e s : [ ] t l s . C e r t i f i c a t e { c e r t i f i c a t e } ,
145 ClientCAs : certPool ,
146 })
147
148 grpcServer := grpc . NewServer ( grpc . Creds ( c reds ) )
149
150 var s = &se rv e r {
151 Part ic ipantKeyAssignments : part i c ipantKeys ,
152 pkaMu : sync .RWMutex{} ,
153 pkaNum: 0 ,
154 }
155
156 pb . Reg i s t e rDea l e rS e rv i c eS e rv e r ( grpcServer , s )
157
158 // shutdown the s e r v e r i f we f i nd we have g iven a l l the keys away
159 go func ( s ∗ s e r v e r ) {
160 for {
161 time . S leep (5 ∗ time . Second )
162 s . pkaMu . Lock ( )
163 i f s . pkaNum >= len ( s . Part ic ipantKeyAssignments ) {
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164 log . Fa ta l f ( ”Dealer has dea l t a l l o f the keys to pa r t i c i pan t s , e x i t i n g . ” )
165 }
166 s . pkaMu . Unlock ( )
167 }
168 }( s )
169
170 i f e r r := grpcServer . Serve ( l i s ) ; e r r != ni l {
171 log . Fa ta l f ( ” f a i l e d to s e rve : %v” , e r r )
172 }
173 }
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Appendix C

Participant Server Source Code

src/participant/server/main.go

1 package main
2
3 import (
4 ” bytes ”
5 ” context ”
6 ” crypto / aes ”
7 ” crypto /rand”
8 ” crypto / t l s ”
9 ” crypto /x509”

10 ” encoding / binary ”
11 ” encoding /gob”
12 ” f l a g ”
13 ”fmt”
14 ” i o / i o u t i l ”
15 ” log ”
16 ”net ”
17 ”net /http ”
18 ” s t r i n g s ”
19 ” sync”
20 ” time”
21
22 dea lerpb ” dea l e r / protobuf ”
23 mopepb ”mope/ protobuf ”
24 pb ” pa r t i c i p an t / protobuf ”
25
26 ” github . com/pkg/ e r r o r s ”
27 ” github . com/prometheus/ c l i e n t g o l a n g /prometheus”
28 ” github . com/prometheus/ c l i e n t g o l a n g /prometheus/promauto”
29 ” github . com/prometheus/ c l i e n t g o l a n g /prometheus/promhttp”
30 ” goog le . golang . org / grpc ”
31 ” goog le . golang . org / grpc / c r e d e n t i a l s ”
32 )
33
34 var (
35 // f o r t l s au t h en t i c a t i on and c o n f i d e n t i a l i t y
36 se rve rCer t string
37 serverKey string
38
39 c l i e n tCe r t string
40 c l i entKey string
41
42 caCert string
43
44 addr string
45 dealerAddr string
46 mopeAddr string
47 )
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48
49 type s e r v e r struct {
50 id int
51 Keys [ ] ∗ dea lerpb .Key
52 Peers [ ] ∗ pb . Peer
53 MopeClient mopepb . MopeServiceCl ient
54 Pee rC l i en t s [ ] pb . Pa r t i c i p an tS e r v i c eC l i e n t
55 pcMu sync .Mutex
56 c l i e n tCe r t t l s . C e r t i f i c a t e
57 ce r tPoo l ∗x509 . CertPool
58 }
59
60 func ( s ∗ s e r v e r ) GetMissingKeys ( ) [ ] int32 {
61 loca lKeys := map[ int32 ] struct {}{}
62 tmp := map[ int32 ] struct {}{}
63 r e t := [ ] int32{}
64
65 for , v := range s . GetSel fKeys ( ) {
66 loca lKeys [ v . Id ] = struct {}{}
67 }
68
69 for , v := range s . Peers {
70 // shou ld we add any o f t h i s peer ’ s keys
71 for , k id := range v . Keys {
72 // shou ld we add t h i s key?
73 , seenPeer := tmp [ kid ]
74 , seenLoca l := loca lKeys [ k id ]
75 i f ! s eenLoca l && ! seenPeer {
76 tmp [ kid ] = struct {}{}
77 }
78 }
79 }
80 for k , := range tmp {
81 r e t = append( ret , k )
82 }
83
84 return r e t
85 }
86
87 func ( s ∗ s e r v e r ) GetSel fKeys ( ) [ ] ∗ dea lerpb .Key {
88 return s . Keys
89 }
90
91 func ( s ∗ s e r v e r ) dpr f (w [ ] byte ) [ ] byte {
92 pr fCtr . Inc ( )
93 t imer := prometheus . NewTimer ( pr fDurat ion )
94 defer t imer . ObserveDuration ( )
95
96 var r e s u l t s = make(chan [ ] ∗ pb .DPRFValue)
97 for , c := range s . Pee rC l i en t s {
98 go func (w [ ] byte ) {
99 resp , e r r := c .ComputeDPRF( context . Background ( ) , &pb . ComputeDPRFRequest{

100 W: w,
101 })
102 i f e r r != ni l {
103 log . P r i n t f ( ” f a i l e d to compute dpr f : %s \n” , e r r . Error ( ) )
104 }
105 // l o g . Pr in t l n (” here we go , go t back : ” , resp . Values )
106 r e s u l t s <− re sp . Values
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107 }(w)
108 }
109 go func (w [ ] byte ) {
110 resp , e r r := s .ComputeDPRF( context . Background ( ) , &pb . ComputeDPRFRequest{
111 W: w,
112 })
113 i f e r r != ni l {
114 log . P r i n t f ( ” f a i l e d to compute dpr f : %s \n” , e r r . Error ( ) )
115 }
116 // l o g . Pr in t l n (” here we go , computed l o c a l l y : ” , resp . Values )
117 r e s u l t s <− re sp . Values
118 }(w)
119
120 tota lKeys := len ( s . GetMissingKeys ( ) ) + len ( s . GetSel fKeys ( ) )
121 keysFound := map[ int32 ] struct {}{}
122 va lue s := [ ] [ ] byte{}
123
124 for i := 1 ; len ( keysFound ) < tota lKeys ; i++ {
125 // l o g . Pr in t l n (” l en ( keysFound ) : ” , l en ( keysFound ) )
126 // l o g . Pr in t l n (” to ta lKeys : ” , t o t a lKeys )
127 // wai t f o r r e s u l t s
128 // l o g . Pr in t l n (” wa i t ing f o r a l l key r e s u l t s to r o l l in : ” , i )
129 r e s u l t := <−r e s u l t s
130 for , r := range r e s u l t {
131 // i f we havent seen t h i s key , append the va lue
132 i f , ok := keysFound [ r . KeyUsed ] ; ! ok {
133 keysFound [ r . KeyUsed ] = struct {}{}
134 va lue s = append( values , r . Value )
135 }
136 }
137 }
138 r e t := [ ] byte{0x0}
139 for , v := range va lue s {
140 r e t = xor ( ret , v )
141 }
142 return r e t
143 }
144
145 func encode (p interface {}) [ ] byte {
146 var buf bytes . Bu f f e r
147 enc := gob . NewEncoder(&buf )
148 enc . Encode (p)
149 b := buf . Bytes ( )
150 return b
151 }
152
153 func decode (p [ ] byte , v interface {}) {
154 var buf = bytes . NewBuffer (p)
155 dec := gob . NewDecoder ( buf )
156 dec . Decode (v )
157 }
158
159 func xor (p . . . [ ] byte ) [ ] byte {
160 // f i g u r e out the l e n g t h o f v ( s )
161 var l ength = 0
162 for , v := range p {
163 i f len ( v ) > l ength {
164 l ength = len ( v )
165 }
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166 }
167
168 for i := 0 ; i < len (p) ; i++ {
169 for j := length − len (p [ i ] ) ; j > 0 ; j−− {
170 p [ i ] = append(p [ i ] , 0x0 )
171 }
172 }
173 var r e t = make ( [ ] byte , l ength )
174
175 for , v := range p {
176 for i , := range r e t {
177 r e t [ i ] = r e t [ i ] ˆ v [ i ]
178 }
179 }
180 return r e t
181 }
182
183 func ( s ∗ s e r v e r ) Pr int ( ) {
184 for {
185 time . S leep (5 ∗ time . Second )
186 fmt . P r i n t f ( ”Peer connect i ons : ” )
187 for , v := range s . Pee rC l i en t s {
188 fmt . P r i n t f ( ”%v , ” , v )
189 }
190 fmt . P r i n t f ( ”\nPeers : ” )
191 for , v := range s . Peers {
192 fmt . P r i n t f ( ”%v , ” , v )
193 }
194 fmt . P r i n t f ( ”\n” )
195 }
196 }
197
198 // He l l o implements p ro tobu f . Par t i c i pan tSe r v i c e , t h i s i s the h e l l o l o g i c
199 func ( s ∗ s e r v e r ) He l l o ( ctx context . Context , in ∗pb . Hel loRequest ) (∗pb .

Hel loResponse , error ) {
200 log . P r i n t f ( ”Received : %v” , in )
201 // we need to make a pee rC l i en t f o r t h i s c a l l e r
202 creds := c r e d e n t i a l s .NewTLS(& t l s . Conf ig {
203 ServerName : s t r i n g s . S p l i t ( in . S e l f . Address , ” : ” ) [ 0 ] ,
204 C e r t i f i c a t e s : [ ] t l s . C e r t i f i c a t e { s . c l i e n tCe r t } ,
205 RootCAs : s . certPool ,
206 })
207 conn , e r r := grpc . Dia l ( in . S e l f . Address , grpc . WithTransportCredent ia ls ( c r eds ) )
208 i f e r r != ni l {
209 return nil , e r r o r s .Wrap( err , ” f a i l e d to connect to peer ” )
210 }
211 s . pcMu . Lock ( )
212 s . Peers = append( s . Peers , &pb . Peer{Address : in . S e l f . Address , Keys : in . S e l f .

Keys })
213 s . Pee rC l i en t s = append( s . PeerCl i ents , pb . NewPart i c ipantServ i ceCl i ent ( conn ) )
214 s . pcMu . Unlock ( )
215
216 var keys = [ ] int32{}
217 for , v := range s . Keys {
218 keys = append( keys , v . Id )
219 }
220
221 var peer s = append( s . Peers , &pb . Peer{
222 Address : addr , Keys : keys ,
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223 })
224
225 return &pb . Hel loResponse { Success : true , Message : ” Success ” , Peers : pee r s } ,

ni l
226 }
227
228 func nopEnc (k , m [ ] byte ) ( c t [ ] byte , e r r error ) {
229 ct = m
230 return
231 }
232
233 var (
234 encCtr = promauto . NewCounter ( prometheus . CounterOpts{
235 Name : ” p a r t i c i p a n t e n c r y p t t o t a l ” ,
236 })
237 decCtr = promauto . NewCounter ( prometheus . CounterOpts{
238 Name : ” p a r t i c i p a n t d e c r y p t t o t a l ” ,
239 })
240 pr fCtr = promauto . NewCounter ( prometheus . CounterOpts{
241 Name : ” p a r t i c i p a n t p r f t o t a l ” ,
242 })
243 computePRFCtr = promauto . NewCounter ( prometheus . CounterOpts{
244 Name : ” pa r t i c i p an t c ompu t e p r f t o t a l ” ,
245 })
246 getRangeCtr = promauto . NewCounter ( prometheus . CounterOpts{
247 Name : ” p a r t i c i p a n t g e t r a n g e t o t a l ” ,
248 })
249 s to r eCtr = promauto . NewCounter ( prometheus . CounterOpts{
250 Name : ” p a r t i c i p a n t s t o r e t o t a l ” ,
251 })
252
253 encDuration = prometheus . NewHistogram ( prometheus . HistogramOpts{
254 Name : ” pa r t i c i p an t en c r yp t du r a t i on ” ,
255 Buckets : prometheus . Exponentia lBuckets ( 0 . 1 , 1 . 5 , 5) ,
256 })
257 decDuration = prometheus . NewHistogram ( prometheus . HistogramOpts{
258 Name : ” pa r t i c i p an t d e c r yp t du r a t i on ” ,
259 Buckets : prometheus . Exponentia lBuckets ( 0 . 1 , 1 . 5 , 5) ,
260 })
261 pr fDurat ion = prometheus . NewHistogram ( prometheus . HistogramOpts{
262 Name : ” p a r t i c i p a n t p r f d u r a t i o n ” ,
263 Buckets : prometheus . Exponentia lBuckets ( 0 . 1 , 1 . 5 , 5) ,
264 })
265 )
266
267 func ( s ∗ s e r v e r ) encrypt ( pt [ ] byte ) ( [ ] byte , error ) {
268 encCtr . Inc ( )
269 t imer := prometheus . NewTimer ( encDuration )
270 defer t imer . ObserveDuration ( )
271
272 // c rea t e a random number
273 var rho = make ( [ ] byte , 2∗ aes . B lockS ize )
274 , e r r := rand . Read ( rho )
275 i f e r r != ni l {
276 return nil , e r r o r s .Wrap( err , ” f a i l e d to make keys ” )
277 }
278
279 // conver t id to b inary
280 var id = make ( [ ] byte , 8)
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281 n := binary . PutUvarint ( id , uint64 ( s . id ) )
282
283 var (
284 alpha = xor ( rho , pt )
285 w = encode(&wparam{ id [ : n ] , alpha })
286 m = encode(&p l a i n t e x t {pt , rho })
287 p r f = xor ( s . dpr f (w) , m)
288 )
289
290 ct := &c iphe r t ex t {prf , id [ : n ] , alpha }
291 return encode ( ct ) , ni l
292 }
293
294 type wparam struct {
295 ID [ ] byte
296 Alpha [ ] byte
297 }
298
299 type c i ph e r t ex t struct {
300 PRF [ ] byte
301 ID [ ] byte
302 Alpha [ ] byte
303 }
304
305 type p l a i n t e x t struct {
306 M [ ] byte
307 Rho [ ] byte
308 }
309
310 func ( s ∗ s e r v e r ) decrypt ( ct [ ] byte ) ( [ ] byte , error ) {
311 decCtr . Inc ( )
312 t imer := prometheus . NewTimer ( decDuration )
313 defer t imer . ObserveDuration ( )
314
315 var ctdec = new( c i ph e r t ex t )
316 decode ( ct , c tdec )
317
318 var (
319 p r f = ctdec .PRF
320 id = ctdec . ID
321 alpha = ctdec . Alpha
322 m = xor ( s . dpr f ( encode(&wparam{ id , alpha }) ) , p r f )
323 pt = new( p l a i n t e x t )
324 )
325 decode (m, pt )
326
327 // check i n t e g r i t y
328 // ptPar t s [ 0 ] i s pt , p tPar t s [ 1 ] i s rho
329 i f bytes . Compare ( xor ( pt .Rho , alpha ) [ : len ( pt .M) ] , pt .M) != 0 {
330 return nil , e r r o r s .New( ” unauthent icated c i ph e r t ex t ” )
331 }
332
333 return pt .M, ni l
334 }
335
336 // Store implements p ro tobu f . Par t i c i pan tSe r v i c e , t h i s i s the s t o r e l o g i c
337 func ( s ∗ s e r v e r ) Store ( ctx context . Context , in ∗pb . StoreRequest ) (∗pb .

StoreResponse , error ) {
338 log . P r i n t f ( ”Received : %v” , in . Value )
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339 s to r eCtr . Inc ( )
340 s . MopeInsert ( in . Value )
341 return &pb . StoreResponse { Success : true , Message : ” Success ! ” } , ni l
342 }
343
344 // GetRange implements p ro tobu f . Par t i c i pan tSe r v i c e , t h i s i s the query l o g i c
345 func ( s ∗ s e r v e r ) GetRange ( ctx context . Context , in ∗pb . GetRangeRequest ) (∗pb .

GetRangeResponse , error ) {
346 getRangeCtr . Inc ( )
347 log . P r i n t f ( ”Received : %v , %v” , in .A, in .B)
348 aTag , e r r := s . MopeFindTag ( in .A)
349 i f e r r != ni l {
350 return &pb . GetRangeResponse{ Success : false , Message : e r r . Error ( ) } , ni l
351 }
352 bTag , e r r := s . MopeFindTag ( in .B)
353 i f e r r != ni l {
354 return &pb . GetRangeResponse{ Success : false , Message : e r r . Error ( ) } , ni l
355 }
356 return &pb . GetRangeResponse{ Success : true , Message : ” Success ! ” , StartTag :

aTag , EndTag : bTag} , ni l
357 }
358
359 // ComputeDPRF implements p ro tobu f . Par t i c i pan tSe r v i c e , t h i s i s the compute d−

p r f l o g i c
360 func ( s ∗ s e r v e r ) ComputeDPRF( ctx context . Context , in ∗pb . ComputeDPRFRequest )

(∗pb . ComputeDPRFResponse , error ) {
361 log . P r i n t f ( ”Received : %v” , in )
362 computePRFCtr . Inc ( )
363 // perform encryp t ion on a randomly genera ted nonce
364 var dprfValues = [ ] ∗ pb .DPRFValue{}
365 for , v := range s . Keys {
366 // l o g . Pr in t l n (” doing the computation here , key : ” , v . Id )
367 dprfValues = append( dprfValues , &pb .DPRFValue{
368 KeyUsed : v . Id ,
369 Value : in .W,
370 })
371 }
372
373 return &pb . ComputeDPRFResponse{ Success : true , Message : ” Success ! ” , Values :

dpr fValues } , ni l
374 }
375
376 func i n i t ( ) {
377 f l a g . Str ingVar(&serverCert , ” sCrt ” , ”” , ” Server TLS Cert ” )
378 f l a g . Str ingVar(&serverKey , ”sKey” , ”” , ” Server TLS Key” )
379 f l a g . Str ingVar(&c l i en tCe r t , ” cCrt” , ”” , ” C l i en t TLS Cert ” )
380 f l a g . Str ingVar(&cl ientKey , ”cKey” , ”” , ” C l i en t TLS Key” )
381 f l a g . Str ingVar(&caCert , ” caCrt ” , ”” , ”CA TLS Cert ” )
382
383 f l a g . Str ingVar(&addr , ”addr” , ” :1234 ” , ” Server Address ” )
384 f l a g . Str ingVar(&dealerAddr , ” dea l e r ” , ” d ea l e r . l o c a l :8080 ” , ”Dealer Server

Address ” )
385 f l a g . Str ingVar(&mopeAddr , ”mope” , ”mope . l o c a l :8080 ” , ”mOPE Server Address ” )
386
387 f l a g . Parse ( )
388
389 gob . Reg i s t e r (new( p l a i n t e x t ) )
390 gob . Reg i s t e r (new( c i ph e r t ex t ) )
391 gob . Reg i s t e r (new(wparam) )
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392 }
393
394 // main − main en t r ypo in t f o r the p a r t i c i p an t s e r v e r
395 func main ( ) {
396 go func ( ) {
397 http . Handle ( ”/metr i c s ” , promhttp . Handler ( ) )
398 log . Fata l ( http . ListenAndServe ( ” :9090 ” , ni l ) )
399 } ( )
400 // load in l o c a l CA
401 c e r t i f i c a t e , e r r := t l s . LoadX509KeyPair ( serverCert , serverKey )
402 i f e r r != ni l {
403 log . Fa ta l f ( ” f a i l e d to load c e r t s : %s \n” , e r r . Error ( ) )
404 }
405
406 ce r tPoo l := x509 . NewCertPool ( )
407 ca , e r r := i o u t i l . ReadFile ( caCert )
408 i f e r r != ni l {
409 log . Fa ta l f ( ” f a i l e d to load c e r t s : %s \n” , e r r . Error ( ) )
410 }
411
412 i f ok := cer tPoo l . AppendCertsFromPEM( ca ) ; ! ok {
413 log . Fa ta l f ( ” f a i l e d to load c e r t s : %s \n” , e r r . Error ( ) )
414 }
415
416 l i s , e r r := net . L i s t en ( ” tcp ” , addr )
417 i f e r r != ni l {
418 log . Fa ta l f ( ” f a i l e d to l i s t e n : %v” , e r r )
419 }
420
421 // r e qu i r e c l i e n t c r e d e n t i a l s
422 creds := c r e d e n t i a l s .NewTLS(& t l s . Conf ig {
423 ClientAuth : t l s . RequireAndVeri fyCl ientCert ,
424 C e r t i f i c a t e s : [ ] t l s . C e r t i f i c a t e { c e r t i f i c a t e } ,
425 ClientCAs : certPool ,
426 })
427
428 // r e qu i r e c l i e n t c r e d e n t i a l s
429 dea l e rC l i en tCreds := c r e d e n t i a l s .NewTLS(& t l s . Conf ig {
430 ServerName : s t r i n g s . S p l i t ( dealerAddr , ” : ” ) [ 0 ] ,
431 C e r t i f i c a t e s : [ ] t l s . C e r t i f i c a t e { c e r t i f i c a t e } ,
432 RootCAs : certPool ,
433 })
434
435 // f e t c h the keys / peers from dea l e r through r e g i s t r a t i o n
436
437 var (
438 id , peers , keys = dea l e rReg i s t e r ( dea l e rC l i entCreds , addr , dealerAddr )
439 )
440
441 // l o g . P r in t f (” Peers : %v ” , peers )
442 var keys t r string
443 for , v := range keys {
444 keys t r += fmt . Sp r i n t f ( ”%d , ” , v . Id )
445 }
446
447 // l o g . P r in t f (”Keys : %s ” , k e y s t r )
448
449 // se tup i n i t i a l peer c l i e n t s we know about
450 var pe e rC l i en t s = [ ] pb . Pa r t i c i p an tS e r v i c eC l i e n t {}
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451
452 for , v := range peer s {
453 // we need to make a pee rC l i en t f o r t h i s c a l l e r
454 creds := c r e d e n t i a l s .NewTLS(& t l s . Conf ig {
455 ServerName : s t r i n g s . S p l i t ( v . Address , ” : ” ) [ 0 ] ,
456 C e r t i f i c a t e s : [ ] t l s . C e r t i f i c a t e { c e r t i f i c a t e } ,
457 RootCAs : certPool ,
458 })
459 conn , e r r := grpc . Dia l ( v . Address , grpc . WithTransportCredent ia ls ( c r eds ) )
460 i f e r r != ni l {
461 log . Fa ta l f ( ” f a i l e d to connect to peer ” )
462 }
463 var c = pb . NewPart i c ipantServ i ceCl i ent ( conn )
464 pe e rC l i en t s = append( pee rC l i en t s , c )
465
466 var k = [ ] int32{}
467 for , v := range keys {
468 k = append(k , v . Id )
469 }
470
471 resp , e r r := c . He l lo ( context . Background ( ) , &pb . Hel loRequest {
472 S e l f : &pb . Peer{Address : addr , Keys : k} ,
473 })
474
475 // f o r a l l the re turned peers , we shou ld add them to our s e r v e r
476 for , v := range re sp . Peers {
477 i f ! s t r i n g s . HasPref ix ( v . Address , addr ) {
478
479 var found = fa l se
480 for i , vv := range peer s {
481 i f vv . Address == v . Address {
482 peer s [ i ] = v
483 found = true
484 }
485 }
486 i f ! found {
487 peer s = append( peers , v )
488
489 creds := c r e d e n t i a l s .NewTLS(& t l s . Conf ig {
490 ServerName : s t r i n g s . S p l i t ( v . Address , ” : ” ) [ 0 ] ,
491 C e r t i f i c a t e s : [ ] t l s . C e r t i f i c a t e { c e r t i f i c a t e } ,
492 RootCAs : certPool ,
493 })
494 conn , e r r := grpc . Dia l ( v . Address , grpc . WithTransportCredent ia ls ( c r eds ) )
495 i f e r r != ni l {
496 log . Fa ta l f ( ” f a i l e d to connect to peer ” )
497 }
498 var c = pb . NewPart i c ipantServ i ceCl i ent ( conn )
499 pe e rC l i en t s = append( pee rC l i en t s , c )
500 }
501 }
502 }
503
504 // l o g . P r in t f (” Received from peer : %v , %v ” , resp , err )
505 }
506
507 // r e qu i r e c l i e n t c r e d e n t i a l s
508 c l i e n tCr ed s := c r e d e n t i a l s .NewTLS(& t l s . Conf ig {
509 ServerName : s t r i n g s . S p l i t (mopeAddr , ” : ” ) [ 0 ] ,
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510 C e r t i f i c a t e s : [ ] t l s . C e r t i f i c a t e { c e r t i f i c a t e } ,
511 RootCAs : certPool ,
512 })
513
514 conn , e r r := grpc . Dia l (mopeAddr , grpc . WithTransportCredent ia ls ( c l i e n tCr ed s ) )
515 i f e r r != ni l {
516 log . Fa ta l f ( ” could not connect to mope : %s \n” , e r r . Error ( ) )
517 }
518 mopeClient := mopepb . NewMopeServiceClient ( conn )
519
520 grpcServer := grpc . NewServer ( grpc . Creds ( c reds ) )
521 var s = &se rv e r {
522 id : int ( id ) ,
523 Pee rC l i en t s : pee rC l i en t s ,
524 pcMu : sync .Mutex{} ,
525 c l i e n tCe r t : c e r t i f i c a t e ,
526 ce r tPoo l : certPool ,
527 Peers : peers , Keys : keys , MopeClient : mopeClient ,
528 }
529 go s . Pr int ( )
530 pb . Reg i s t e rPa r t i c i p an tS e r v i c eS e r v e r ( grpcServer , s )
531
532 i f e r r := grpcServer . Serve ( l i s ) ; e r r != ni l {
533 log . Fa ta l f ( ” f a i l e d to s e rve : %v” , e r r )
534 }
535 }
536
537 func dea l e rReg i s t e r ( c l i e n tCr ed s c r e d e n t i a l s . TransportCredent ia l s , addr ,

dealerAddr string ) ( int32 , [ ] ∗ pb . Peer , [ ] ∗ dea lerpb .Key) {
538 conn , e r r := grpc . Dia l ( dealerAddr , grpc . WithTransportCredent ia ls ( c l i e n tCr ed s )

)
539 i f e r r != ni l {
540 log . Fa ta l f ( ” could not connect to dea l e r : %s \n” , e r r . Error ( ) )
541 }
542 c := dea lerpb . NewDealerServ iceCl ient ( conn )
543 resp , e r r := c . Reg i s t e r ( context . Background ( ) , &dea lerpb . Reg i s terRequest {
544 S e l f : &dea lerpb . Peer{
545 Address : addr ,
546 } ,
547 })
548 i f e r r != ni l {
549 log . Fa ta l f ( ” f a i l e d to get key par t s from dea l e r : %s \n” , e r r . Error ( ) )
550 }
551
552 peer s := [ ] ∗ pb . Peer {}
553 for , v := range re sp . KnownPeers {
554 i f ! s t r i n g s . HasPref ix ( addr , v . Address ) {
555 peer s = append( peers , &pb . Peer{
556 Address : v . Address ,
557 })
558 }
559 }
560
561 return re sp . Id , peers , r e sp . KeyParts
562 }
563
564 // MopeInsert − t a k e s a va lue , key and encryp t ion func t i on
565 func ( s ∗ s e r v e r ) MopeInsert (m [ ] byte ) error {
566 var (
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567 path , e r r = s . MopeFindTag (m)
568 ct , = s . encrypt (m)
569 )
570
571 i f e r r != ni l {
572 return e r r o r s .Wrap( err , ” f a i l e d i n s e r t i o n ” )
573 }
574
575 // i n s e r t i n t o the path l o c a t i o n
576 resp , e r r := s . MopeClient . I n s e r t ( context . Background ( ) , &mopepb . Inse r tReques t {
577 Path : path ,
578 Data : ct ,
579 })
580 i f e r r != ni l {
581 return e r r o r s .Wrap( err , ” f a i l e d i n s e r t i o n ” )
582 }
583 i f ! r e sp . Success {
584 return e r r o r s .New( resp . Message )
585 }
586 return ni l
587 }
588
589 // MopeFindTag − t a k e s a va lue , and f i g u r e s out the tag o f sa id va lue in the

tree , f o r search ing
590 func ( s ∗ s e r v e r ) MopeFindTag (m [ ] byte ) ( string , error ) {
591 // ge t roo t
592 // path w i l l be the running path in the BST
593 path := ””
594 for {
595 // fmt . Pr in t l n (” path va lue : ” , path )
596 resp , e r r := s . MopeClient . Traverse ( context . Background ( ) , &mopepb .

TraverseRequest {
597 Path : path ,
598 })
599 i f e r r != ni l {
600 log . Pr in t ln ( ” t r av e r s e e r r o r : ” , e r r . Error ( ) )
601 return ”” , e r r o r s .Wrap( err , ” f a i l e d to t r av e r s e f o r i n s e r t ” )
602 }
603
604 i f re sp . Data == ni l | | len ( re sp . Data ) == 0 {
605 // done
606 log . Pr in t ln ( ”data i s n i l , reached the end” )
607 break
608 }
609
610 mP, e r r := s . decrypt ( resp . Data )
611 i f e r r != ni l {
612 log . Pr in t ln ( ” decrypt e r r o r ” )
613 return ”” , e r r o r s .Wrap( err , ” f a i l e d to decrypt f o r i n s e r t ” )
614 }
615
616 var done bool
617 // 0 i f a==b , −1 i f a < b , and +1 i f a > b .
618 switch bytes . Compare (m, mP) {
619 case 0 :
620 // t h i s i s the path to use , break outer
621 // fmt . Pr in t l n (” va lue i s equa l . ” )
622 done = true
623 break
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624 case −1:
625 // go l e f t
626 // fmt . Pr in t l n (” va lue i s l e s s than . ” )
627 path += ”0”
628 case 1 :
629 // go r i g h t
630 // fmt . Pr in t l n (” va lue i s g r ea t e r than . ” )
631 path += ”1”
632 }
633 i f done {
634 break
635 }
636 }
637 return path , ni l
638 }
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Appendix D

mOPE Server Source Code

src/mope/server/main.go

1 package main
2
3 import (
4 ” context ”
5 ” crypto / t l s ”
6 ” crypto /x509”
7 ” f l a g ”
8 ” i o / i o u t i l ”
9 ” log ”

10 ”mope”
11 ”net ”
12 ”net /http ”
13 ” sync”
14
15 pb ”mope/ protobuf ”
16
17 ” github . com/prometheus/ c l i e n t g o l a n g /prometheus”
18 ” github . com/prometheus/ c l i e n t g o l a n g /prometheus/promauto”
19 ” github . com/prometheus/ c l i e n t g o l a n g /prometheus/promhttp”
20 ” goog le . golang . org / grpc ”
21 ” goog le . golang . org / grpc / c r e d e n t i a l s ”
22 )
23
24 var (
25 mopeInsCtr = promauto . NewCounter ( prometheus . CounterOpts{
26 Name : ” mope i n s e r t i o n t o t a l ” ,
27 Help : ”The t o t a l number o f mope i n s e r t i o n s ” ,
28 })
29 mopeTravCtr = promauto . NewCounter ( prometheus . CounterOpts{
30 Name : ”mope t r ave r s e t o t a l ” ,
31 Help : ”The t o t a l number o f mope t r a v e r s a l s ” ,
32 })
33 )
34
35 // s e r v e r i s used to implement h e l l owo r l d . Gree terServer .
36 type s e r v e r struct {
37 mMu sync .RWMutex
38 mopeRoot ∗mope . Node
39 }
40
41 // In s e r t implements p ro tobu f . MopeService , t h i s i s the i n s e r t i o n l o g i c
42 func ( s ∗ s e r v e r ) I n s e r t ( ctx context . Context , in ∗pb . Inse r tReques t ) (∗pb .

InsertResponse , error ) {
43 log . P r i n t f ( ” I n s e r t − Received : %v , %v” , in . Path , in . Data )
44 mopeInsCtr . Inc ( )
45 s .mMu. Lock ( )
46 defer s .mMu. Unlock ( )
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47
48 var e r r error
49 i f s . mopeRoot , e r r = mope . Inser tPath ( s . mopeRoot , in . Path , in . Data ) ; e r r !=

ni l {
50 return &pb . Inser tResponse {Message : e r r . Error ( ) , Success : fa l se } , ni l
51 }
52 return &pb . Inser tResponse {Message : ” Success ” , Success : true } , ni l
53 }
54
55 // Traverse implements p ro tobu f . MopeService , t h i s i s the i n s e r t i o n l o g i c
56 func ( s ∗ s e r v e r ) Traverse ( ctx context . Context , in ∗pb . TraverseRequest ) (∗pb .

TraverseResponse , error ) {
57 log . P r i n t f ( ”Traverse − Received : %v” , in . Path )
58 mopeTravCtr . Inc ( )
59 s .mMu. RLock ( )
60 defer s .mMu. RUnlock ( )
61 node , e r r := mope . TraversePath ( s . mopeRoot , in . Path )
62 i f e r r != ni l {
63 return &pb . TraverseResponse {Message : e r r . Error ( ) , Success : fa l se } , ni l
64 }
65 i f node == ni l {
66 return &pb . TraverseResponse {Message : ” Success ” , Success : true } , ni l
67 }
68 return &pb . TraverseResponse {Message : ” Success ” , Success : true , Data : node .

Value } , ni l
69 }
70
71 var (
72 // f o r t l s au t h en t i c a t i on and c o n f i d e n t i a l i t y
73 se rve rCer t string
74 serverKey string
75
76 c l i e n tCe r t string
77 c l i entKey string
78
79 caCert string
80
81 addr string
82 sqlConnStr string
83 )
84
85 func i n i t ( ) {
86 f l a g . Str ingVar(&serverCert , ” sCrt ” , ”” , ” Server TLS Cert ” )
87 f l a g . Str ingVar(&serverKey , ”sKey” , ”” , ” Server TLS Key” )
88 f l a g . Str ingVar(&c l i en tCe r t , ” cCrt” , ”” , ” C l i en t TLS Cert ” )
89 f l a g . Str ingVar(&cl ientKey , ”cKey” , ”” , ” C l i en t TLS Key” )
90 f l a g . Str ingVar(&caCert , ” caCrt ” , ”” , ”CA TLS Cert ” )
91
92 f l a g . Str ingVar(&addr , ”addr” , ” :1234 ” , ” Server Address ” )
93 f l a g . Str ingVar(&addr , ” s q l ” , ”” , ”SQL connect ion s t r i n g ” )
94
95 f l a g . Parse ( )
96 }
97
98 // main − main en t r ypo in t f o r the dea l e r s e r v e r
99 func main ( ) {

100 go func ( ) {
101 http . Handle ( ”/metr i c s ” , promhttp . Handler ( ) )
102 log . Fata l ( http . ListenAndServe ( ” :9090 ” , ni l ) )
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103 } ( )
104
105 var t r e e ∗mope . Node
106
107 go mope . Pr in t Inorde r ( t ree , ”” , mope . Depth ( t r e e ) )
108 // load in l o c a l CA
109 c e r t i f i c a t e , e r r := t l s . LoadX509KeyPair ( serverCert , serverKey )
110 i f e r r != ni l {
111 log . Fa ta l f ( ” f a i l e d to load c e r t s : %s \n” , e r r . Error ( ) )
112 }
113
114 ce r tPoo l := x509 . NewCertPool ( )
115 ca , e r r := i o u t i l . ReadFile ( caCert )
116 i f e r r != ni l {
117 log . Fa ta l f ( ” f a i l e d to load c e r t s : %s \n” , e r r . Error ( ) )
118 }
119
120 i f ok := cer tPoo l . AppendCertsFromPEM( ca ) ; ! ok {
121 log . Fa ta l f ( ” f a i l e d to load c e r t s : %s \n” , e r r . Error ( ) )
122 }
123
124 l i s , e r r := net . L i s t en ( ” tcp ” , addr )
125 i f e r r != ni l {
126 log . Fa ta l f ( ” f a i l e d to l i s t e n : %v” , e r r )
127 }
128
129 // r e qu i r e c l i e n t c r e d e n t i a l s
130 creds := c r e d e n t i a l s .NewTLS(& t l s . Conf ig {
131 ClientAuth : t l s . RequireAndVeri fyCl ientCert ,
132 C e r t i f i c a t e s : [ ] t l s . C e r t i f i c a t e { c e r t i f i c a t e } ,
133 ClientCAs : certPool ,
134 })
135
136 s := grpc . NewServer ( grpc . Creds ( c reds ) )
137
138 pb . Reg i s te rMopeServ iceServer ( s , &s e r v e r {mMu: sync .RWMutex{} , mopeRoot : t r e e })
139
140 i f e r r := s . Serve ( l i s ) ; e r r != ni l {
141 log . Fa ta l f ( ” f a i l e d to s e rve : %v” , e r r )
142 }
143 }
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Appendix E

mOPE Data Structure Source Code

src/mope/tree.go

1 package mope
2
3 import (
4 ” e r r o r s ”
5 ”fmt”
6
7 ” github . com/prometheus/ c l i e n t g o l a n g /prometheus”
8 ” github . com/prometheus/ c l i e n t g o l a n g /prometheus/promauto”
9 )

10
11 // Node − mope . Node i s a node in the mOPE t r e e
12 type Node struct {
13 Le f t ∗Node
14 Right ∗Node
15 Value [ ] byte
16 }
17
18 // NewNode − c r ea t e a new mope . Node
19 func NewNode( value [ ] byte ) ∗Node {
20 return &Node{Value : va lue }
21 }
22
23 var (
24 mopeTreePath = promauto . NewCounter ( prometheus . CounterOpts{
25 Name : ” mope t r e e t r a v e r s e pa th t o t a l ” ,
26 Help : ”The t o t a l number o f t r e e t r a v e r s a l s ” ,
27 })
28 mopeTreeInsert = promauto . NewCounter ( prometheus . CounterOpts{
29 Name : ” mop e t r e e i n s e r t p a t h t o t a l ” ,
30 Help : ”The t o t a l number o f t r e e i n s e r t s ” ,
31 })
32 )
33
34 // TraversePath − t r a v e r s e the t r e e based on the path
35 func TraversePath ( node ∗Node , path string ) (∗Node , error ) {
36 mopeTreePath . Inc ( )
37 i f node == ni l | | len ( path ) == 0 {
38 i f len ( path ) > 0 {
39 return nil , e r r o r s .New( ” f a i l e d to t r av e r s e to path” )
40 }
41 return node , ni l
42 } else i f path [ 0 ] == ’ 0 ’ {
43 return TraversePath ( node . Left , path [ 1 : ] )
44 } else {
45 return TraversePath ( node . Right , path [ 1 : ] )
46 }
47 }
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48
49 // Inser tPath − i n s e r t a node at a p a r t i c u l a r path in the t r e e
50 func Inser tPath ( node ∗Node , path string , data [ ] byte ) (∗Node , error ) {
51 mopeTreeInsert . Inc ( )
52 i f node == ni l {
53 i f len ( path ) > 0 {
54 return nil , e r r o r s .New( ” f a i l e d to t r av e r s e to path” )
55 }
56 return NewNode( data ) , ni l
57 }
58 i f len ( path ) == 0 {
59 // found the node where we need to i n s e r t
60 n := NewNode( data )
61 // new node be l ong s to l e f t
62
63 n . Le f t = node
64
65 return n , ni l
66 }
67
68 var e r r error
69 i f path [ 0 ] == ’ 0 ’ {
70 node . Left , e r r = Inser tPath ( node . Left , path [ 1 : ] , data )
71 return node , e r r
72 }
73 node . Right , e r r = Inser tPath ( node . Right , path [ 1 : ] , data )
74 return node , e r r
75 }
76
77 func Depth ( node ∗Node ) int {
78 i f node == ni l {
79 return 0
80 }
81 return 1 + Depth ( node . Le f t ) + Depth ( node . Right )
82 }
83
84 // Pr in t Inorder − t r a v e r s e the BST depth f i r s t
85 func Pr in t Inorde r ( node ∗Node , tag string , depth int ) {
86 i f node == ni l {
87 return
88 }
89 Pr in t Inorde r ( node . Left , tag+”0” , depth−1)
90
91 fmt . P r i n t f ( ”%s ” , tag )
92 fmt . P r i n t f ( ”%d” , 1)
93 for i := 0 ; i < depth ; i++ {
94 fmt . P r i n t f ( ”%d” , 0)
95 }
96 fmt . P r i n t f ( ” − %v\n” , node . Value )
97
98 Pr in t Inorde r ( node . Right , tag+”1” , depth−1)
99 }
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Appendix F

itOPE 2 of 3 Compose File

src/compose-2-out-of-3.yaml

1 ve r s i on : ’ 3 ’
2 s e r v i c e s :
3 prometheus :
4 image : prom/prometheus
5 volumes :
6 − ” . / prom . yaml : / e t c /prometheus/prometheus . yml”
7 expose :
8 − ”9088”
9 por t s :

10 − ” 9088:9090 ”
11 dea l e r :
12 image : d ea l e r : l a t e s t
13 container name : d ea l e r . l o c a l
14 expose :
15 − ”8080”
16 − ”9090”
17 por t s :
18 − ” 8080:8080 ”
19 − ” 9090:9090 ”
20 ent rypo int :
21 − ”/ dea l e r ”
22 − ”−n”
23 − ”3”
24 − ”−t ”
25 − ”2”
26 − ”−addr”
27 − ” dea l e r . l o c a l :8080 ”
28 − ”−sCrt ”
29 − ”/ c e r t s / dea l e r / dea l e r . c r t ”
30 − ”−sKey”
31 − ”/ c e r t s / dea l e r / dea l e r . key”
32 − ”−caCrt ”
33 − ”/ c e r t s / ca/rootCA .pem”
34 mope :
35 image : mope : l a t e s t
36 container name : mope . l o c a l
37 expose :
38 − ”8079”
39 − ”9089”
40 por t s :
41 − ” 8079:8079 ”
42 − ” 9089:9090 ”
43 ent rypo int :
44 − ”/mope”
45 − ”−addr”
46 − ”mope . l o c a l :8079 ”
47 − ”−sCrt ”
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48 − ”/ c e r t s /mope/mope . c r t ”
49 − ”−sKey”
50 − ”/ c e r t s /mope/mope . key”
51 − ”−caCrt ”
52 − ”/ c e r t s / ca/rootCA .pem”
53 pa r t i c i p an t 1 :
54 image : p a r t i c i p an t : l a t e s t
55 container name : pa r t i c i p an t 1 . l o c a l
56 depends on :
57 − mope
58 − dea l e r
59 expose :
60 − ”8081”
61 − ”9091”
62 por t s :
63 − ” 8081:8081 ”
64 − ” 9091:9090 ”
65 ent rypo int :
66 − ”/ pa r t i c i p an t ”
67 − ”−addr”
68 − ” pa r t i c i p an t 1 . l o c a l :8081 ”
69 − ”−sCrt ”
70 − ”/ c e r t s / p a r t i c i p an t s / pa r t i c i p an t 1 / pa r t i c i p an t 1 . c r t ”
71 − ”−sKey”
72 − ”/ c e r t s / p a r t i c i p an t s / pa r t i c i p an t 1 / pa r t i c i p an t 1 . key”
73 − ”−caCrt ”
74 − ”/ c e r t s / ca/rootCA .pem”
75 − ”−dea l e r ”
76 − ” dea l e r . l o c a l :8080 ”
77 − ”−mope”
78 − ”mope . l o c a l :8079 ”
79 pa r t i c i p an t 2 :
80 image : p a r t i c i p an t : l a t e s t
81 container name : pa r t i c i p an t 2 . l o c a l
82 depends on :
83 − mope
84 − dea l e r
85 expose :
86 − ”8082”
87 − ”9092”
88 por t s :
89 − ” 8082:8082 ”
90 − ” 9092:9090 ”
91 ent rypo int :
92 − ”/ pa r t i c i p an t ”
93 − ”−addr”
94 − ” pa r t i c i p an t 2 . l o c a l :8082 ”
95 − ”−sCrt ”
96 − ”/ c e r t s / p a r t i c i p an t s / pa r t i c i p an t 2 / pa r t i c i p an t 2 . c r t ”
97 − ”−sKey”
98 − ”/ c e r t s / p a r t i c i p an t s / pa r t i c i p an t 2 / pa r t i c i p an t 2 . key”
99 − ”−caCrt ”

100 − ”/ c e r t s / ca/rootCA .pem”
101 − ”−dea l e r ”
102 − ” dea l e r . l o c a l :8080 ”
103 − ”−mope”
104 − ”mope . l o c a l :8079 ”
105 pa r t i c i p an t 3 :
106 image : p a r t i c i p an t : l a t e s t
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107 container name : pa r t i c i p an t 3 . l o c a l
108 depends on :
109 − mope
110 − dea l e r
111 expose :
112 − ”8083”
113 − ”9093”
114 por t s :
115 − ” 8083:8083 ”
116 − ” 9093:9090 ”
117 ent rypo int :
118 − ”/ pa r t i c i p an t ”
119 − ”−addr”
120 − ” pa r t i c i p an t 3 . l o c a l :8083 ”
121 − ”−sCrt ”
122 − ”/ c e r t s / p a r t i c i p an t s / pa r t i c i p an t 3 / pa r t i c i p an t 3 . c r t ”
123 − ”−sKey”
124 − ”/ c e r t s / p a r t i c i p an t s / pa r t i c i p an t 3 / pa r t i c i p an t 3 . key”
125 − ”−caCrt ”
126 − ”/ c e r t s / ca/rootCA .pem”
127 − ”−dea l e r ”
128 − ” dea l e r . l o c a l :8080 ”
129 − ”−mope”
130 − ”mope . l o c a l :8079 ”
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Appendix G

itOPE 3 of 5 Compose File

src/compose-3-out-of-5.yaml

1 ve r s i on : ’ 3 ’
2 s e r v i c e s :
3 prometheus :
4 image : prom/prometheus
5 volumes :
6 − ” . / prom . yaml : / e t c /prometheus/prometheus . yml”
7 expose :
8 − ”9088”
9 por t s :

10 − ” 9088:9090 ”
11 dea l e r :
12 image : d ea l e r : l a t e s t
13 container name : d ea l e r . l o c a l
14 expose :
15 − ”8080”
16 − ”9090”
17 por t s :
18 − ” 8080:8080 ”
19 − ” 9090:9090 ”
20 ent rypo int :
21 − ”/ dea l e r ”
22 − ”−n”
23 − ”5”
24 − ”−t ”
25 − ”3”
26 − ”−addr”
27 − ” dea l e r . l o c a l :8080 ”
28 − ”−sCrt ”
29 − ”/ c e r t s / dea l e r / dea l e r . c r t ”
30 − ”−sKey”
31 − ”/ c e r t s / dea l e r / dea l e r . key”
32 − ”−caCrt ”
33 − ”/ c e r t s / ca/rootCA .pem”
34 mope :
35 image : mope : l a t e s t
36 container name : mope . l o c a l
37 expose :
38 − ”8079”
39 − ”9089”
40 por t s :
41 − ” 8079:8079 ”
42 − ” 9089:9090 ”
43 ent rypo int :
44 − ”/mope”
45 − ”−addr”
46 − ”mope . l o c a l :8079 ”
47 − ”−sCrt ”
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48 − ”/ c e r t s /mope/mope . c r t ”
49 − ”−sKey”
50 − ”/ c e r t s /mope/mope . key”
51 − ”−caCrt ”
52 − ”/ c e r t s / ca/rootCA .pem”
53 pa r t i c i p an t 1 :
54 image : p a r t i c i p an t : l a t e s t
55 container name : pa r t i c i p an t 1 . l o c a l
56 depends on :
57 − mope
58 − dea l e r
59 expose :
60 − ”8081”
61 − ”9091”
62 por t s :
63 − ” 8081:8081 ”
64 − ” 9091:9090 ”
65 ent rypo int :
66 − ”/ pa r t i c i p an t ”
67 − ”−addr”
68 − ” pa r t i c i p an t 1 . l o c a l :8081 ”
69 − ”−sCrt ”
70 − ”/ c e r t s / p a r t i c i p an t s / pa r t i c i p an t 1 / pa r t i c i p an t 1 . c r t ”
71 − ”−sKey”
72 − ”/ c e r t s / p a r t i c i p an t s / pa r t i c i p an t 1 / pa r t i c i p an t 1 . key”
73 − ”−caCrt ”
74 − ”/ c e r t s / ca/rootCA .pem”
75 − ”−dea l e r ”
76 − ” dea l e r . l o c a l :8080 ”
77 − ”−mope”
78 − ”mope . l o c a l :8079 ”
79 pa r t i c i p an t 2 :
80 image : p a r t i c i p an t : l a t e s t
81 container name : pa r t i c i p an t 2 . l o c a l
82 depends on :
83 − mope
84 − dea l e r
85 expose :
86 − ”8082”
87 − ”9092”
88 por t s :
89 − ” 8082:8082 ”
90 − ” 9092:9090 ”
91 ent rypo int :
92 − ”/ pa r t i c i p an t ”
93 − ”−addr”
94 − ” pa r t i c i p an t 2 . l o c a l :8082 ”
95 − ”−sCrt ”
96 − ”/ c e r t s / p a r t i c i p an t s / pa r t i c i p an t 2 / pa r t i c i p an t 2 . c r t ”
97 − ”−sKey”
98 − ”/ c e r t s / p a r t i c i p an t s / pa r t i c i p an t 2 / pa r t i c i p an t 2 . key”
99 − ”−caCrt ”

100 − ”/ c e r t s / ca/rootCA .pem”
101 − ”−dea l e r ”
102 − ” dea l e r . l o c a l :8080 ”
103 − ”−mope”
104 − ”mope . l o c a l :8079 ”
105 pa r t i c i p an t 3 :
106 image : p a r t i c i p an t : l a t e s t
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107 container name : pa r t i c i p an t 3 . l o c a l
108 depends on :
109 − mope
110 − dea l e r
111 expose :
112 − ”8083”
113 − ”9093”
114 por t s :
115 − ” 8083:8083 ”
116 − ” 9093:9090 ”
117 ent rypo int :
118 − ”/ pa r t i c i p an t ”
119 − ”−addr”
120 − ” pa r t i c i p an t 3 . l o c a l :8083 ”
121 − ”−sCrt ”
122 − ”/ c e r t s / p a r t i c i p an t s / pa r t i c i p an t 3 / pa r t i c i p an t 3 . c r t ”
123 − ”−sKey”
124 − ”/ c e r t s / p a r t i c i p an t s / pa r t i c i p an t 3 / pa r t i c i p an t 3 . key”
125 − ”−caCrt ”
126 − ”/ c e r t s / ca/rootCA .pem”
127 − ”−dea l e r ”
128 − ” dea l e r . l o c a l :8080 ”
129 − ”−mope”
130 − ”mope . l o c a l :8079 ”
131 pa r t i c i p an t 4 :
132 image : p a r t i c i p an t : l a t e s t
133 container name : pa r t i c i p an t 4 . l o c a l
134 depends on :
135 − mope
136 − dea l e r
137 expose :
138 − ”8084”
139 − ”9094”
140 por t s :
141 − ” 8084:8084 ”
142 − ” 9094:9090 ”
143 ent rypo int :
144 − ”/ pa r t i c i p an t ”
145 − ”−addr”
146 − ” pa r t i c i p an t 4 . l o c a l :8084 ”
147 − ”−sCrt ”
148 − ”/ c e r t s / p a r t i c i p an t s / pa r t i c i p an t 4 / pa r t i c i p an t 4 . c r t ”
149 − ”−sKey”
150 − ”/ c e r t s / p a r t i c i p an t s / pa r t i c i p an t 4 / pa r t i c i p an t 4 . key”
151 − ”−caCrt ”
152 − ”/ c e r t s / ca/rootCA .pem”
153 − ”−dea l e r ”
154 − ” dea l e r . l o c a l :8080 ”
155 − ”−mope”
156 − ”mope . l o c a l :8079 ”
157 pa r t i c i p an t 5 :
158 image : p a r t i c i p an t : l a t e s t
159 container name : pa r t i c i p an t 5 . l o c a l
160 depends on :
161 − mope
162 − dea l e r
163 expose :
164 − ”8085”
165 − ”9095”
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166 por t s :
167 − ” 8085:8085 ”
168 − ” 9095:9090 ”
169 ent rypo int :
170 − ”/ pa r t i c i p an t ”
171 − ”−addr”
172 − ” pa r t i c i p an t 5 . l o c a l :8085 ”
173 − ”−sCrt ”
174 − ”/ c e r t s / p a r t i c i p an t s / pa r t i c i p an t 5 / pa r t i c i p an t 5 . c r t ”
175 − ”−sKey”
176 − ”/ c e r t s / p a r t i c i p an t s / pa r t i c i p an t 5 / pa r t i c i p an t 5 . key”
177 − ”−caCrt ”
178 − ”/ c e r t s / ca/rootCA .pem”
179 − ”−dea l e r ”
180 − ” dea l e r . l o c a l :8080 ”
181 − ”−mope”
182 − ”mope . l o c a l :8079 ”
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