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Abstract 

CRISPR arrays are a defense mechanism employed by bacteria against viral 

invaders. Cas proteins do the work in detecting, capturing, and integrating the viral DNA 

into the CRISPR array (Barrangou et al., 2007). Anti-CRISPR proteins are produced by 

phages, viruses that infect bacteria, to stop the bacterial host’s CRISPR-Cas complex 

from interrupting the phage life cycle (Bondy-Denomy, et al., 2015).  

SEA-PHAGES is a course-based bacteriophage research network composed of 

120 colleges and known at James Madison University as Viral Discovery. JMU uses the 

unsequenced Streptomyces griseus ATCC10137 as a host for bacteriophage discovery 

and propagation, and in this study we report the sequencing and analysis of this strain, 

including a search for CRISPR-Cas arrays. To determine if the S. griseus ATCC 10137 

encodes CRISPR-Cas arrays, next generation sequencing and bioinformatic analyses 

were performed.  

DNA extraction and whole genome sequencing using an Illumina MiniSeq and 

Oxford MinION were used to obtain sequence data from S. griseus ATCC10137. The 

Illumina reads were trimmed using Trimmomatic, and the Nanopore data were filtered 

using Filtlong. A hybrid genome assembly using the Illumina reads and Nanopore reads 

was generated using Unicycler, resulting in a genome assembly that was 8,576,363 bp 

long. To determine if CRISPR-Cas arrays were present in the genome, the assembly fasta 

was uploaded to CRISPRfinder. CRISPRfinder identified 3 probable CRISPR arrays, and 

10 questionable regions. 

Automated annotation methods Prokka and RAST were used to predict genes in 

the S. griseus genome, but they produced substantially different output. We therefore 



 
 

ix 
 

developed the novel bioinformatic tool, Prokkrastinator, to merge the two annotation 

methods. Prokkrastinator doubles as a genome browser and gene table. 

To search for anti-CRISPR proteins in the genome of bacteriophage Wipeout, 

protein models were generated using YASARA. Of the 62.57 % of the Wipeout gene 

products that were not able to be modeled, 13 gene products were in the same size range 

as all other phage-produced anti-CRISPR proteins, 50-150 amino acids long. These 13 

gene products should be further studied to determine whether or not they could be 

potential anti-CRISPR proteins, as they are the only proteins of the appropriate size.  
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Introduction 

Background 

 

 Clustered regularly interspaced short palindromic repeats (CRISPR) are a defense 

mechanism employed by bacteria against viral and plasmid invaders (Barrangou et al., 

2007). This defense is an array with a series of sequences of repeating bacterial host 

DNA that are interspaced with viral DNA sequences collected from prior infections 

(Barrangou et al., 2007; Hale et al., 2009). CRISPR-associated proteins, or Cas proteins, 

do the work in detecting, capturing and integrating the viral DNA into the CRISPR array 

(Barrangou et al., 2007). This system has been modified to work within eukaryotic cells 

as a genome editing tool, for example to repair mutations in the CFTR gene that causes 

cystic fibrosis (Firth et al., 2015). 

 Anti-CRISPR proteins are produced by phages, viruses that infect bacteria, to stop 

the bacterial host’s CRISPR-Cas complex from interrupting the phage life cycle. Some of 

these phage anti-CRISPR proteins can manipulate the host’s precursor CRISPR-Cas 

proteins, Csy proteins, into becoming a transcriptional repressor that blocks the host’s 

own CRISPR-Cas transcription (Bondy-Denomy et al., 2015). Anti-CRISPR proteins 

have been used in cystic fibrosis studies, which used both CRISPR-Cas to edit the 

diseased cell genome, and anti-CRISPR proteins to halt the progression of the CRISPR-

Cas complex. The use of anti-CRISPR proteins in conjunction with the CRISPR-Cas 

complex was necessary to inhibit unintended off-site targeting of the cell DNA by the 

CRISPR-Cas complex in the experimental trials (Shin et al., 2017). Because these phage 
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proteins are a relatively new discovery, important information such as their abundance, 

dispersal, structures and specific mechanisms are just beginning to be explored. 

         The natural purposes of CRISPR-Cas arrays are useful in a medical research 

setting. For example, mouse zygote genomes were edited by injecting CRISPR-Cas 

components into a cell during embryological development (Wang H et al., 2013). The 

cataract-causing allele Crygc was replaced with a non-deleterious allele in mice using 

CRISPR-Cas9 (Wu Y et al., 2013). While CRISPR-Cas9, also known as an RNA guided 

endonuclease (RGEN), has incredible capabilities and can be relatively simple to use, it is 

not always able to be used in a reliable and predictable manner. These particular RGENs 

have been shown to have off-site targeting (Cho et al., 2013). 

 The Cas9-single-guide RNA (Cas9-sgRNA) complex can have deleterious off-site 

effects when used in repairing mutated alleles or removing proviral DNA from host DNA 

(Shin et al., 2017). To combat these effects, the anti-CRISPR protein AcrIIA4 can be 

used alongside the Cas9-single-guide RNA treatment. Shin et al. used the phage protein 

AcrIIA4 in their experiments, as it acts as an inhibitor to the CRISPR-Cas complex by 

binding to the CRISPR-Cas active site. AcrIIA4 was injected into an experimental cell 

six hours after Cas9-sgRNA treatment. The competitive binding of anti-CRISPR left the 

Cas9-sgRNA complex unable to continue degrading DNA, thus alleviating some of the 

unintended cutting of non-target DNA (Shin et al., 2017). 

  CRISPR-Cas is a remarkable tool, but it is still imperfect.  Anti-CRISPRs are 

proteins that have been shown to alleviate or negate CRISPR-Cas’ deleterious effects, but 

there are large information gaps: how many there are, their structure, and how they 
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function. A deeper understanding of these proteins could lead to the development of fully 

functional and diverse genetic tools for further experimentation and clinical use. 

CRISPR-Cas: Mechanisms, Types, and Subtypes 

 Before the CRISPR-Cas-guide RNA complex is fully functional, the Cas proteins 

and guide RNA are first transcribed from the host DNA and translated into pre-crRNA. 

Protein editing of the pre-crRNA creates the fully mature complex (Bondy-Denomy et 

al., 2015). CRISPR associated proteins, or Cas proteins, do the work of detecting, 

capturing and integrating the viral DNA into the CRISPR array (Brouns et al., 2008). 

Certain Cas proteins, such as the nuclease Cas9, bind with transcribed viral DNA that 

was encoded in the CRISPR array and a guide RNA protein (Hsu et al., 2014). This 

complex patrols the cell and cuts the invading viral genome at specific genomic sites 

(Rath et al., 2015). There are three main “types” of CRISPR systems (discussed below), 

which each share the following characteristics: a repeating phage or plasmid- derived 

DNA sequence and CRISPR associated proteins. These CRISPR types are categorized 

into subtypes. 

 Type I CRISPR-Cas targets and cuts foreign DNA with the sgRNA and Cas3 

protein, which encodes a large helicase with DNase activity. Type I CRISPR systems 

also encode Cas5, Cas6, and Cas7, which are classified as being in the Repair Associated 

Mysterious Proteins (RAMP) superfamily and are active in the Cascade complex, which 

is a group of proteins that is used in lieu of Cas9 (Makarova, 2011). In the subtype I-F 

CRISPR-Cas system, endoribonuclease Csy4 binds to and cuts the repeat sequence in the 

pre-crRNA. This then complexes with the Csy1, Csy2 and Csy3 proteins that support the 

functional CRISPR-Cas complex (Bondy-Denomy et al., 2016). 
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 Type II CRISPR-Cas systems employ the well-known Cas9, a large protein that 

processes the crRNA and cleaves target DNA. The Cas9 protein has at least two domains, 

with the RuvC nuclease domain residing at the N terminus and the HNH nuclease domain 

(likely responsible for target degradation) residing in the middle of the protein. Also 

included in Type II systems are the proteins Cas1 and Cas2, which are responsible for 

acquiring spacers for the CRISPR array (Makarova, 2011). 

 Type III CRISPR-Cas utilizes RAMP and Cas6 proteins where they act in a 

similar way to the Cascade proteins in type I. Lacking in the Type III CRISPR operon are 

the Cas1 and Cas2 genes; instead the type III CRISPR-Cas system utilizes bacterial trans-

encoded proteins. Type III can be split into two subtypes- types III-A and III-B. Subtype 

III-A has been known to cleave DNA, while III-B has been shown to cleave RNA 

(Makarova, 2011). 

 In all CRISPR-Cas types, three main events transpire. The primary event is spacer 

acquisition, which Cas1 and Cas2 always participate in, and involves copying the 

invading viral DNA into the bacterial CRISPR array at the beginning, or leader end of the 

CRISPR array (Brouns et al., 2008). They are present in types I and II, and function in 

the cascade complex in type III (Makarova, 2011). These stored viral DNA sequences are 

used by the bacteria to provide adaptive immunity against that particular virus in the 

future by becoming the spacers in the array (Barrangou et al., 2007; Hale et al., 2009). 

 In type II systems, after the spacer is acquired, the entire CRISPR array is 

transcribed and processed into small CRISPR RNAs, or crRNAs (Brouns et al., 2008). 

Once processing of the crRNA occurs, it complexes with the tracrRNA. Once the RNA 

complex has been established, the Cas nuclease protein Cas9 is transcribed and 
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translated. The Cas9 protein then complexes with the crRNA/tracrRNA and roams the 

bacterial cell, hunting for Cas9’s protospacer adjacent motif (PAM), which is the viral 

DNA (Barrangou et al., 2014; Cong et al., 2013). Because the bacterial genome is 

genetically altered, the changes can be passed on to daughter cells when bacteria undergo 

binary fission. 

 The third and last event of the CRISPR-Cas system is interference. Once the 

complex has bound to the invading DNA, the nucleases cut the target DNA and discard it 

(Van der Osst et al., 2014).  

Anti-CRISPR: What they Inhibit and How 

         Of the known anti-CRISPR proteins, at least ten inhibit the type I-F CRISPR-Cas 

systems and are found in Pseudomonas aeruginosa (Pawluk et al., 2016). The more 

exclusively studied anti-CRISPR proteins, anti-CRISPRs 1, 2, 3 and 4 are found within 

the same genomic region in phage genomes. These anti-CRISPR proteins are found 

between two conserved capsid protein genes (Pawluk et al., 2014). 

 Three of these ten anti-CRISPR proteins, AcrF1, AcrF2 and AcrF4, interact with 

the Csy complex and directly inhibit the complex's ability to bind to the PAM site in the 

dsDNA target. AcrF1 and AcrF2 bind to different areas of the Csy complex, and do not 

inhibit each other in the process. They are able to simultaneously bind to the Csy 

complex and prevent it from binding to target DNA (Bondy-Denomy et al., 2015). 

 AcrF3 interacts with Cas3 and blocks the helicase-nuclease from binding to the 

Csy-DNA complex. Because Cas3 is unable to bind to Csy, the protein acts as a 

transcriptional repressor and blocks the transcription of the CRISPR-Cas complex 

(Bondy-Denomy et al., 2015). 
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 Of the ten previously mentioned anti-CRISPR proteins, four are found in the same 

operon as the I-F P. aeruginosa anti-CRISPRs and inhibit the type I-E CRISPR system 

(Pawluk et al., 2014; Pawluk et al., 2016). Each of these small anti-CRISPR proteins are 

between 50-150 amino acids in length (Rauch et al., 2017). 

         There are other anti-CRISPR proteins that function against type II CRISPR-Cas9 

systems. At least four of these anti-CRISPR proteins were found in Listeria 

monocytogenes. Of these four anti-CRISPR proteins, two are effective against CRISPR-

Cas systems in Streptococcus pyogenes. AcrIIA2 and acrIIA4 have been suggested to 

inhibit the S. pyogenes Cas9 (Rauch et al., 2017). 

The Arms Race 

         The evolutionary arms race between bacteria and their phages has likely been 

occurring since bacteria-phage interactions originated. In industry, the ability for bacteria 

to withstand phage attack is invaluable. The dairy industry struggles with phages and 

plasmids running rampant through their production facilities. This situation introduces 

selective pressure on those bacteria that are best able to fight off the infections 

(Barrangou et al., 2014). 

         Dairy industry investors had a pressing need to discover which strains of 

Streptococcus thermophilus, bacteria used in the dairy production industry, were resistant 

to phage infection (Barrangou et al., 2014).  S. thermophilus CRISPR-Cas was found to 

encode CRISPR-Cas arrays. To determine if these bacteria were immune to common 

phage contaminants, S. thermophilus cultures introduced to S. thermophilus phages. Most 

S. thermophilus phages could not infect the host due to the CRISPR-Cas arrays. The 
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evolutionary pressures applied to S. thermophilus bacteria by phage infection led to the 

acquisition of CRISPR-Cas arrays in an industrial setting (Barrangou et al., 2014). 

Pseudomonas aeruginosa also encodes at least one CRISPR-Cas array. P. 

aeruginosa phages were able to develop a work-around through evolutionary pressures 

on their genes, which led to the development of anti-CRISPR proteins. (Bondy-Denomy 

et al., 2013). 

The Deleterious Effects of CRISPR-Cas, and the Anti-CRISPR Proteins that Stop 

Them; CRISPR-Cas Genome Editing in the Lab 

 

       CRISPR-Cas9 has recently been utilized in labs to edit genomes because of the 

ease of use and effective results with the molecule. Gene editing of mutations that cause 

disease, such as attempted manipulation of the CFTR gene, has shown promise (Firth et 

al., 2015). Other experiments with gene-editing and CRISPR-Cas, such as those on HIV-

infected cells, have been more complicated and yielded undesired results (Wang, G et al., 

2016; Wang, Z et al., 2016). 

  The use of CRISPR-Cas9 to remove HIV-I proviral DNA from infected cells was 

mildly successful, but also encouraged genetic changes in some HIV viral particles, 

enabling them to escape the attack. The mammalian error-prone Non-Homologous End-

Joining Pathway (NHEJ Pathway) added insertions, deletions and substitutions into the 

genome of the HIV after being cut by the CRISPR-Cas9-guide RNA. These changes 

enabled the escaped particles to avoid further degradation by the pre-fabricated CRISPR-

Cas9-guide RNA complex (Wang, G et al., 2016; Wang, Z et al., 2016). The natural 

function of the NHEJ pathway happened to benefit the virus (Wang, G et al., 2016). 
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 Insertions and deletions (indels) can be fatal for the HIV provirus, as they can 

interrupt genes and prevent proper transcription of the HIV genome. Some indels are in 

just the right place to increase viral resistance to the host and CRISPR-Cas. This leaves 

the virus immune to further CRISPR-Cas9 guide RNA complex attack (Wang, Z et al. 

2016; Liang et al., 2016). 

 Gene editing with CRISPR-Cas was also used to revert a single-base mutation in 

the CFTR gene, which causes cystic fibrosis. CRISPR-Mediated gene targeting showed 

promise as there were few mutations other than those that were intended. The few 

mutations that were present were found at predicted off-target nucleotide sites (Firth et 

al., 2015). 

 After cells containing the mutation was injected with the CRISPR-Cas9-guide-

RNA complex to repair the CFTR gene, it was injected with AcrIIA4, an anti-CRISPR 

protein isolated from Pseudomonas phages. The phage protein bound to the CRISPR-

Cas9-guide-RNA complex, keeping it from binding to the target DNA and thus inhibiting 

the cause of the off-site damage (Shin et al., 2017). 

Anti-CRISPR: A Necessary Addition to the Medical Applications of CRISPR-Cas9 

 

         CRISPR-Cas9 has dramatically increased the genome editing abilities of medical 

and research science, but it is not perfect. It has been used to edit proviral genomes out of 

host cells (Liang et al., 2016), edit mutated genes in mouse embryonic cells (Wang H et 

al., 2013; Wu Y et al., 2013) and to correct disease-causing mutations in genes that affect 

lung epithelial cell function (Firth et al., 2015).  While these medical advances in the use 

of CRISPR-Cas9 genetic manipulation have been useful, they are not without risk. Off-

site targeting of the target DNA by the CRISPR-Cas9 complex has been known to occur, 
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and can cause unintended deleterious effects (Liang et al., 2016; Firth et al., 2015; Wang, 

G et al., 2016; Wang, Z et al., 2016). 

         Anti-CRISPRs have been shown to alleviate the off-site deleterious side-effects of 

CRISPR-Cas9 in medical applications (Shin et a.l, 2017). Through competitive inhibition 

and forced redirection of host protein complexes, anti-CRISPR proteins limit off-site 

targeting of DNA by CRISPR-Cas9-guide-RNA complexes (Shin et al., 2017). Few anti-

CRISPR proteins and their mechanisms are currently known. This begs for more anti-

CRISPR research due to their useful nature in conjunction with CRISPR-Cas9 gene 

editing. 
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Methods 

Extracting and Precipitating DNA from Streptomyces griseus 

DNA extraction Method 1 

 Cultures of S. griseus were grown in 50 mL of sterile 1877 liquid media for 48 

hours at 28°C and 220 rpm. Once grown, 30 mL of the culture was centrifuged in a 50 

mL conical tube for 5 minutes at 4,000 x g in order to pellet the cells. The supernatant 

was discarded and the pelleted cells were washed with 10 ml of 10% sucrose solution. 

The sample was centrifuged again for 5 minutes at 4,000 x g, afterwards the supernatant 

was discarded.  

 After the supernatant was discarded, the pellet was suspended in 10 mL of lysis 

solution, which was made up of 2 mL of 0.3 M sucrose, 2 mL of 25 mM EDTA, 2 mL of 

25 mM Tris base, and 2 U of RNAse. Ten mg of lysozyme and 7 mg of 

achromopeptidase were added to the suspension post resuspension. The conical tube was 

then incubated at 37°C for 20 minutes in a standing incubator.  

 The conical tube was removed from the incubator, and 1 mL of 10% SDS solution 

and 5 mg of proteinase K were added to the sample. The sample was then incubated in a 

water bath for 1.5 hours at 55°C.  

 Once the sample was removed from the water bath, 3.6 mL of 5M NaCl and 15 

mL of chloroform were added. A white clump was observed in the sample post-addition. 

The sample was then gently rotated end-over-end for 20 minutes. After rotation, the 

sample was centrifuged for 20 minutes at 5,000 x g.   
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 The resulting aqueous phase was transferred to a sterile 50 mL conical tube, 

where the DNA was precipitated by adding 0.5 mL of isopropanol. The sample was then 

centrifuged at 4,000 x g for 5 minutes to pellet the precipitated DNA. The isopropanol 

was removed from the sample by pipetting.  

 One mL of -20°C, fresh 70% ethanol was used to rinse the sides of the sample. 

The ethanol and DNA mix were removed and put into a new microcentrifuge tube, where 

the DNA was air dried. Once air dried, the DNA was then dissolved in 100 µL of 

prewarmed, 60°C 10 mM Tris and 10 mM EDTA buffer. The solution sat for four days in 

a 4°C refrigerator to allow for the DNA resuspend. After eluting the DNA, the quality of 

the DNA was assessed using a BioTek Synergy H1. The Take3 Nucleic Acid 

Quantification program from the BioTek Synergy H1 Gen5 microplate reader software, 

version 2.09, was utilized.  

DNA extraction Method 2 

 S. griseus was cultured in 50 mL of sterile 1877 liquid media for 72 hours at 28°C 

in a shaking incubator at 220 rpm. 30 mL of the culture was transferred to a 50 mL sterile 

conical tube and centrifuged for 5 minutes at 4,000 x g. The supernatant was discarded, 

and the pellet was washed with 10 mL of 10% sucrose. The conical tube was centrifuged 

for 5 minutes at 4,000 x g, after which the supernatant was discarded.  

 The pellet was resuspended in 10 mL of lysis solution, which was made up of 2 

mL of 0.3 M sucrose, 2 mL of 25 mM EDTA, 2 mL of 25 mM Tris base, and 2 U of 

RNAse. After the pellet was suspended, 0.0176 g of lysozyme and 0.0077 g of 

achromopeptidase were added. The conical tube was then incubated in a standing 

incubator at 37°C for 20 minutes.  
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 Once the sample was removed from the standing incubator, 1 mL of 10% SDS 

and 0.0051 g of proteinase K were added. The sample was then incubated in a water bath 

at 55°C for 1.5 hours. After the sample was removed from the water bath, 3.6 mL of 5 M 

NaCl and 15 mL of chloroform were added. The conical tube was then rotated end-over-

end for 20 minutes.  

 The sample was then centrifuged for 5,000 x g for 20 minutes. The aqueous phase 

was then transferred to a sterile 50 mL conical tube, and 0.5 mL of isopropanol was 

added to precipitate the DNA. The sample was then centrifuged at 4,000 x g for 5 

minutes. The isopropanol was removed, and 1 mL of ethanol was added to the same 

conical tube.  

 The sample was centrifuged at 4,000 x g for 5 minutes, afterwards the ethanol was 

removed and the DNA was allowed to air dry. The dried DNA was suspended in 4 mL of 

66°C sterile double distilled water (DDI water). The sample was stored in a 4°C 

refrigerator for 48 hours to suspend the DNA. After suspending the DNA, the quality of 

the DNA was assessed using a BioTek Synergy H1. The Take3 Nucleic Acid 

Quantification program from the BioTek Synergy H1 Gen5 microplate reader software 

version 2.09 was utilized.  

Precipitating DNA from Method 2 

 8 mL of -80°C 70% ethanol was added to 4 mL of 4°C DNA from the second 

extraction method to a sterile 50 mL conical tube.  The sample was centrifuged at 4,000 x 

g for 5 minutes, after which the ethanol supernatant was removed. The “waste” conical 

tube was re-centrifuged at the same parameters as the original tube. Once separated, the 

supernatant was removed, leaving behind the full DNA pellet. Both tubes were allowed 
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to air dry to allow excess ethanol to evaporate overnight in a sterilized Biological Safety 

Cabinet.  

 After air-drying, 1 mL of 60°C fresh MilliQ water was added to the primary 50 

mL conical tube. The sides of the tube were rinsed with 1 mL of 60° C fresh MilliQ 

water, and the sample was stored at 4°C for five days. After air-drying in the BSC, the 15 

mL conical tube still contained ethanol. The 15 mL conical tube was centrifuged at 4,000 

x g for 5 minutes, after which the supernatant was removed. Once the supernatant was 

removed, the DNA was air-dried in the sterilized Biological Safety Cabinet (BSC). To 

elute the DNA from the 15 mL conical tube, 1 mL of 60°C MilliQ water was added. 

After the water was added, the sample was stored at 4°C for four days to suspend the 

DNA. The quality of the DNA was assessed using a BioTek Synergy H1. The Take3 

Nucleic Acid Quantification program from the BioTek Synergy H1 Gen5 microplate 

reader software, version 2.09, was utilized.  

DNA Extraction Method 3 

 Three cultures of S. griseus were grown in 50 mL of 1877 liquid media for 48 

hours at 28°C in a shaking incubator at 220 rpm. In order to concentrate the cells, each 

culture was transferred into individual 50 mL conical tubes and centrifuged at 2,000 x g 

for 5 minutes. After centrifugation, the supernatant was removed, leaving 10 mL of both 

the pellet and liquid media in the tube. The pellets were resuspended in the 10 mL of 

broth in the conical tubes using a vortex. Once suspended, the three concentrated cultures 

were combined into a new, sterile 50 mL conical tube.  

 The 50 mL conical tube was centrifuged for 5 minutes at 4,000 x g. After 

centrifugation, the supernatant was discarded. The pellet was then washed with 10 mL of 
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10% sucrose and centrifuged for 5 minutes at 4,000 x g. After centrifugation, the 

supernatant was discarded and then washed with 10% sucrose and centrifuged for 5 

minutes at 4,000 x g.  

 The supernatant was discarded, and the pellet was suspended in 10 mL of lysis 

solution (made with 4 mL of 0.3 M sucrose, 4 mL 25 mM EDTA, 4 mL 25 mM Tris 

Base, and 6.074g RnaseA). Lysozyme (0.0176 g) and achromopeptidase (0.0077 g) were 

added to the suspension.  

 The sample was incubated at 37°C for 20 minutes. Afterwards, 1 mL of 10% SDS 

and 0.0051 g of proteinase K were added to the sample, which was then incubated in a 

55°C water bath for 1.5 hours.  

 Once the 1.5 hour incubation had been complete, 3.6 mL of 5M NaCl and 15 mL 

of phenol-chloroform were added to the sample. The sample was then rotated end-over-

end for 20 minutes at 6 rpm, and centrifuged at 5,000 x g for 20 minutes.  

 The aqueous phase was transferred to a new conical tube. Two syringes with 

Promega DNA columns were used to collect the DNA from the aqueous phase. Once 

each DNA column was attached to a syringe, 1.5 mL of the aqueous phase was 

transferred to each syringe and pushed through. The flow-through was collected in a 

microcentrifuge tube.  

 Two mL of 80% isopropanol was added to each syringe, and pushed through. 

This step was repeated two more times, and each time the waste was discarded. The 

columns were removed from the syringe, placed in new microcentrifuge tubes, and 

centrifuged for 6 minutes at 10,000 x g. After centrifugation, the columns were 

transferred from the microcentrifuge tubes to a 90°C dry bath for 1.5 minutes.   
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 Once the columns finished incubating, they were moved to a sterile DNA-LoBind 

microcentrifuge tube. To elute the DNA, 50 µL of 90°C MilliQ water was added directly 

to each column, which were then incubated at room temperature for 1.5 minutes. The 

columns and tubes were then centrifuged at 10,000 x g for 1 minute. The products of both 

tubes were combined into one tube. The process was repeated one more time, beginning 

with transferring the aqueous phase to a new set of syringes and columns, and ending 

with the two eluates being combined into one DNA-LoBind tube. The quality of both 

eluate tubes were assessed using a BioTek synergy H1. 

BioTek synergy analysis of DNA samples 1, 2, and 3 

 Each S. griseus DNA extraction sample was tested for quality and quantity using 

the BioTek synergy H1 with Gen5 and Take3 software. Nuclease-free water was used as 

a blank, with 2 µL samples of water being added to the glass tray in lanes A1 and A2. 

After the blanks were added to the glass tray, 2 µL of sample from extraction 1 was 

added to lane B1 and B2. The program was then run using the dsDNA setting. This 

process was repeated for each sample.  

Qubit Quantification of S. griseus DNA with the dsDNA BR kit 

 In order to use the Qubit for quantifying DNA prior to Illumina sequencing, a 

working solution was made. The Qubit dye was spun down in a Qubit supplied tube, and 

shaken to resuspend the dye. To maintain the 1 µL:199 µL dye:buffer ratio the working 

solution requires for each sample and an extra, 1,791 µL of buffer and 9 µL of dye was 

added to two 1.5 mL eppendorf tubes. The samples were then vortexed to resuspend the 

dye.  
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 Working solution was added to each of the five sample tubes, but in different 

quantities. One hundred ninety µL of working solution was added to the two standard 

sample tubes, while 198 µL of working solution was added to the three experimental 

sample tubes. Two µL of DNA was added to each experimental sample, while the 

standard sample tubes, S1 and S2,  had 10 µL of DNA/blank material added. Once each 

tube had all reagents added, they were incubated at room temperature for 2 minutes and 

spun to get rid of any air bubbles present in the sample.  

 The outside of each tube was cleaned with a KimWipe to remove any smudges on 

the outside of the sample that would prevent an accurate reading from the Qubit. After 

the sample was put into the Qubit, the “DNA” option and “ dsDNA BR Kit” option was 

selected. The standards were read first, and then sample tube was inserted into the 

instrument. The Qubit was adjusted to the volume of the sample, and the units were 

changed to ng/uL.  

 A series of DNA sample dilutions was created by adding 0.05 µL of the sample to 

99.95 µL of nuclease-free, lab grade water. New working solution was made in the same 

ratios that were made before. To further dilute the DNA, 20.5 µL of the diluted sample 

was combined with 79.5 µL of nuclease-free lab-grade water. 

Sequencing S. griseus ATCC 10137 DNA  

Illumina Sequencing with the single-end 76 cycle reagent cartridge and  

Nextera XT DNA Library Prep Kit 

 
 An index matrix was setup to show which indices were used for each sample.  
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Table 1: The index matrix of the S. griseus and Staphylococcus samples run on the Illumina. 

Samples 1-4 of S. griseus are labelled SGriseus#. 

 N701 N702 N703 

N517 SGriseus1 SGriseus2 SGriseus3 

M502 SGriseus4   

 

 The TD buffer, ATM, and gDNA were taken from the freezer and put on ice to 

thaw. A 96 well PCR plate had 10 µL of TD, 5 µL of gDNA, and 5 uL of ATM added to 

each well. Once the reagents had been added, the PCR plate was centrifuged at 20°C for 

280 rcf for 1 minute. The plate was then put in the thermocycler at 55°C for five minutes, 

and 10°C holding temperature. Immediately after the hold temperature was reached, 5 µL 

of NT was added to the wells and was centrifuged at 280 x g, at 20°C for 1 minute. After 

the plate was incubated at room temperature for 5 minutes, 5 µL of each index was added 

to each individual well. The plate was centrifuged at 280 x g for 1 minute after 15 µL of 

NPM was added to each well. The plate was then put in the thermal cycler at 72°C for 3 

minutes, 95°C for 30 seconds, for 12 cycles of the following: 95°C for 10 seconds, 55°C 

for 30 seconds, 72°C for 30 seconds. The plate was then subjected to 72°C for 5 minutes, 

and kept at a hold temperature of 10°C. 

To begin the DNA library clean up process, the PCR plate was removed  

from the thermal cycler and centrifuged at 280 x g at 20°C for 1 minute. The contents of 

each well in the plate was transferred to its respective well on a new midi plate. Twenty 

seven µL of fully suspended room temperature Ampure beads were added to each well. 

The midi plate was shaken at 1,800 rpm for 2 minutes, and was then incubated at room 

temperature for 5 minutes. The midi plate was put on a magnetic stand to pellet the 
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Ampure beads for at least 2 minutes. Once separated, the supernatant was removed from 

the wells. To air dry the DNA, the plate was left for 5 minutes on the bench.  

 Fifty two and a half µL of resuspension buffer was added to each well once the 

plate was removed from the magnetic stand, and was shaken at 1,800 rpm for 2 minutes. 

The sample was then put on the magnetic stand for 2 more minutes. After separation, 50 

µL of each sample was transferred into a new hard-shell PCR plate for storage. Once part 

of the sample was stored, the plate was put on the magnetic stand to ensure that there 

were no Ampure beads left in the solution. After 2 minutes, 20 µL of each sample was 

transferred to a new midi plate.  

 In a new DNA-LoBind tube, 308 µL of LNA1 and 56 µL of LNB1 were 

combined. Forty-five µL of the LNA1/LNB1 mixture were added to each well of the midi 

plate with 20 µL of each sample. The midi plate was then shaken at 1,800 rpm for 30 

minutes, and then put on the magnetic stand for 2 minutes. The supernatant was removed 

from the wells. 45 µL of LNW1 was added to each well, and the midi plate was shaken at 

1,800 rpm for 5 minutes, and placed on the magnetic stand for 2 minutes. After being left 

on the magnetic stand for 2 minutes, the supernatant was removed and 45 µL of LNW1 

was added to each well. The plate was again shaken at 1,800 rpm for 5 minutes, and then 

set on the magnetic stand for 2 minutes. Thirty µL of 0.1 M NaOH was added to each 

well, afterwhich the plate was shaken at 1,800 rpm for 5 minutes. The plate was checked 

for homogenization, and then shaken at 1,800 rpm for 5 more minutes. After being 

shaken, the plate was put on the magnetic stand for 2 minutes, and the supernatant was 

transferred to a new PCR plate labelled SGP with 30 µL of LNS1 added in each well. 
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The plate was then centrifuged at 1,000 x g for 1 minute. Five µL of each sample was 

pooled into a new LoBind tube labelled “PAL”. 

995µLof hybridization buffer and 5µLof the PAL was added to a new LoBind 

tube, which was then vortexed and centrifuged for 1 minute. Two hundred fifty µL of the 

diluted library was then transferred to a new LoBind tube, with 250 µL of hybridization 

buffer. The new DNA-LoBind tube with the diluted library and hybridization buffer was 

then vortexed and centrifuged at 280 x g for 1 minute. The sample was then incubated at 

98°C for 2 minutes, and then immediately cooled on ice for 5 minutes.  

To dilute and denature the PhiX control, 3 µL of EBT and 2 µL of 10 mM PhiX 

were added to a new DNA-LoBind tube. The sample was then vortexed and pulse 

centrifuged. After centrifugation, 5 µL of 0.1 M NaOH was added, and vortex and 

centrifuged again. The diluted PhiX control was incubated for 5 minutes at room 

temperature, afterwhich 5 µL of 200 mM Tris-HCl was added. The sample was then 

vortexed and centrifuged at 280 x g for 1 minute. 985 µL of hybridization buffer was 

added to the sample. To dilute the PhiX control to 1.8 pM, 45 µL of denatured PhiX and 

455 µL of hybridization buffer were added to a new tube. In another new tube, 5 µL of 

denatured and diluted PhiX control and 500 µL of denatured and diluted DNA library 

were combined. This final tube was then set on ice.  

The reagent cartridge was removed from the freezer and placed in a shallow 

warm-water bath for 90 minutes. Once the cartridge was thawed and at room 

temperature, well #16 was punctured with a 1,000 µL pipette tip. Five hundred µL of the 

DNA/PhiX library was inserted into the punctured well. After loading the cartridge, the 

flow cell was removed from the refrigerator to be brought up to room temperature. The 
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flow cell was cleaned on both sides with 70% ethanol, and was loaded into the MiniSeq. 

Once both the flow cell and the MiniSeq were loaded, the MiniSeq was started. 

MinION Sequencing with a 1D Genomic DNA by Ligation Kit (SQK-

LSK109) 

 The DNA concentration was determined with the Qubit. To prepare the MinION 

flow cell for sequencing, it was warmed to room temperature. The Nanopore was then 

connected to a Dell Optiplex 9020, Microsoft Windows version 7 Professional. 

MinKNOW was opened, and “connect” was selected. The flow cell and sample IDs were 

entered into the form on MinKNOW. The flow cell was then slid into the Nanopore. 

“Platform quality control” was clicked and the product code was entered.  Once the flow 

cell was set up, “execute” was clicked to perform a quality control check. It was 

determined that the flow cell had 1,281 pores active. Once the quality of the flow cell was 

established, the priming and barcode kits were removed from the freezer to thaw.  

 Seven and a half µL of DNA were added to a PCR tube with 2.5 µL of 

fragmentation mix, ID #RB06. The sample was flicked and stun down to pull all of the 

liquid in the sample to the bottom. The sample was then put in the thermal cycler, with a 

cycle of 30°C for 1 minute, 80°C for 1 minute, and 4°C indefinitely.  The samples were 

then removed from the Thermal cycler, and was spun down. All of the samples were 

pulled into one DNA-LoBind DNA tube, with 60 µL of Ampure beads added. The 

LoBind tube was then flicked and allowed to incubate at room temperature to allow the 

DNA to bind to the beads. The sample was then spun down a second time, and then 

placed on a magnet for 2 minutes.  
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Once the Ampure beads collected in the bottom of the sample, the supernatant 

was removed. Two hundred µL of 70% of EtOH was used to wash the beads. The ethanol 

was removed 30 seconds later, and the sample was spun down. The sample was placed on 

the magnet again to enable the removal of the remaining alcohol. After the ethanol was 

removed, 11 µL of Tris-NaCl was added. This was mixed by flicking, and put back on 

the magnet. Once the beads had fallen out of suspension, 10 µL of the mix was 

transferred to a new DNA-LoBind tube. In another tube, the RAP reagent was spun 

down, and 1µLof RAP was added to the 10 µL of DNA mix. This new mix was 

incubated at room temperature for 5 minutes. Four and a half µL of water was added to 

the sample after incubation. Thirty-four µL of Sequencing Buffer (SQB) and 25 µL of 

Loading Beads (LB) were added to complete the DNA library preparation. 

To prime the flow cell, 30 µL of Flush Tether reagent was added to the sample of 

flush buffer and mixed by pipetting. The priming port cover was moved slightly, and a 

P1000 pipette was set to 200 µL. This pipette was then put into the port, and turned 

carefully to 230 µL to draw out the liquid in the flow cell. Once the liquid was removed, 

30 µL of priming mix was loaded into the priming port. To allow for full saturation of the 

flow cell, the priming mix was allowed to sit for five minutes after addition to the cell.  

The last 200 µL of primer mix was added to the cell, with the priming port cover 

left open afterwards. The DNA library was resuspended, and added to the spot-on port. 

After the library was loaded, both port covers were closed. Finally, “sequencing run”  

was selected on the MinKNOW software to begin sequencing. 
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BaseCalling S. griseus ATCC 10137 Sequencing Data 

Illumina MiniSeq 

 As the Illumina MiniSeq sequenced the S. griseus genome, the instrument 

basecalled the sequence at the same time. Those files were downloaded from BaseSpace, 

the cloud computing software developed by Illumina, onto a personal computer and the 

Virtual Machine (VM) for analysis.  

Albacore-MinION 

 Albacore was run on a VM using Docker instance to basecall the Nanopore data. 

The following command was used to run the program: 

docker run -v $PWD:$PWD -w $PWD -u $UID vera/albacore \ 

--recursive -t 4 -i Salmonella_DG_1_18/ -c \ 

/opt/albacore/r94_450bps_linear.cfg -s output 

 

Trimming the Illumina data 

 The Illumina data was trimmed to obtain optimal data for hybrid assembly. The 

tool Trimmomatic was used with the Illumina reads on the command line, using the 

following command on the terminal: 

java -jar /home/steve/Trimmomatic-0.36/trimmomatic-0.36.jar SE \ 

-phred33 Sgriseus_Cat.fastq.gz \ 

Sgriseus_trimmedSW420MinLen36.fastq \ 

ILLUMINACLIP:TruSeq3-SE:2:30:10 LEADING:3 TRAILING:3\ 

SLIDINGWINDOW:4:20 MINLEN:36 
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FastQC was used to determine the quality of the Trimmomatic output.  

Filtering Nanopore data with Filtlong 

 

 The Nanopore data was filtered for 1000 bp long reads using the following 

Filtlong command on the server maintained by the lab: 

./filtlong --min_length 1000 --keep_percent 90 --target_bases \ 

500000000 /home/nanopore/porechoppedreads/BC06.fastq | gzip > \ 

BC06filtered.fastq.gz 

The output was stored on the VM. 

Hybrid S. griseus ATCC 10137 Genome Assemblies 

 The bioinformatic tool Unicycler was used to produce a hybrid genome assembly 

of S. griseus reads from the Illumina sequencing and MinION sequencing data.  The 

following command was run on the server maintained by the lab:  

screen unicycler -s \ 

/home/rachael/Sgriseus_trimmedSW420MinLen36.fastq -l \ 

/home/rachael/BC06filtered.fastq.gz --mode bold --linear_seqs 1 \ 

-o \ 

Sgriseus_trimmedSW420MinLen36FiltlongNanoporeDataUnicyclerAssembl

y  

The output was stored on the VM, Open Science Framework (OSF),  and the laptop used. 

PHASTER analysis of the S. griseus ATCC 10137 genome 

 The assembled S. griseus genome was uploaded to the PHASTER web 

application to identify potential prophages.  
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CRISPRfinder analysis of the S. griseus ATCC 10137  genome 

 The assembled S. griseus genome was uploaded to the CRISPRfinder web 

application to identify CRISPR-Cas arrays. 

Automated S. griseus ATCC 10137 Genome Annotations 

Prokka 

 To use Prokka to auto annotate the S. griseus genome, the following command 

was used: 

 
prokka --outdir SgriseusUniAssT3LinAssAnnotated.fna --prefix \ 

Sgriseus SgriseusUniAssT3LinAss.fasta 

 

The name of the file was then changed SgriseusUniAssemblyT3.  

RAST 

 The S. griseus assembled genome was run through the auto annotator RAST 

through the WebApp. The options Genetic code 11, RASTtk, automatically fix errors, 

and backfill gaps were selected after the genome was uploaded to the site.   

Development of Prokkrastinator, an Annotation Method combination tool 

 

 Prokkrastinator was built using JavaScript, python, HTML and CSS. JavaScript 

libraries, such as D3.js and Meteor.js, were implemented. Git was used as a version 

control software, and GitLab is the current repository for the code.  
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Genome Annotation of Bacteriophage Wipeout 

 Wipeout’s genome was run through the auto annotation tool GeneMark Heuristic 

Approach for Gene Prediction on the WebApp. The fasta sequence for Wipeout was 

uploaded onto the site, and the options LST, PDF, genetic code 11, both, and heuristic 

2010 were selected.  

 The GeneMark output file was uploaded to PECAAN, a phage genome annotation 

tool. PECAAN automatically generates a Glimmer annotation file and Starterator file, as 

well as a BLASTN, BLASTP, HHPRED, RBS site analysis, and conserved domain 

search.  

 Each auto annotated gene was analyzed using these data gathered from these 

programs to determine if the gene was actually present, if the proper start codon had been 

selected, and what the function of the gene may be. Those genes that were ~300 bp long 

and under were selected for protein modeling.  

Bacteriophage protein modeling (potential anti-CRISPR proteins) 

 To convert the amino acid fastas of the genes from Wipeout, R code was used. 

The script was titled file_list_maker.R. These converted files were then run through 

YASARA to compare the gene products with homologues, and thus queried against the 

PDB database. The resulting model data table was converted from an HTML format into 

a csv file with R script titled model_table.R. The rest of the homology results were 

written to a csv file using R script titled prediction.R.  
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S. griseus ATCC 10137 Cas3 modeling 

 
The Cas3 gene fasta was translated into amino acids using ExPASy Translate. 

The  

output option “Compact” and the Genetic Code option “ Standard” was selected. The 

longest open reading frame was the first reading frame in the 5’-3’ direction. Once 

translated to amino acids, the file was uploaded to the Phyre2 protein fold recognition 

server. The modeling option “normal” and the “not for profit” option were selected. 

S. griseus ATCC 10137 Cas3 ligand search 

 

 The Cas3 pdb file generated by Phyre2 was uploaded to the COACH server to 

identify ligand interaction sites.  
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Results 

DNA was extracted from S. griseus cells using a phenol-chloroform based 

method. As with other gram positive bacteria, DNA extraction from Streptomyces species 

is notoriously difficult (Blakely et al., 2003). Three attempts were made, each with a 

slightly different method. The first DNA extraction was done according to the method 

developed by Blakely et al. While the yield of the extraction was high, the quality of the 

extraction was poor (Table 2). The first DNA extraction sample yielded on average 

181ng/ µL of DNA. As can be seen in table 2, The average 260/280 ratio was 1.401 and 

the 260/230 ratio was 2.155 on average. The second DNA extraction attempt varied 

slightly from the first attempt. To decrease the chances of contamination, the DNA was 

kept in the same conical tube that it was precipitated in. This decreased the overall yield, 

and had little effect on the purity of the sample. The second DNA extraction yielded an 

average DNA concentration of 18.35 ng/ µL. As can be seen in table 3, The 260/280 ratio 

was 1.433 on average and the 260/230 ratio was 2.311 on average. The third and final 

DNA extraction method was similar to the first two extraction methods, with the major 

alteration being the addition of filtering DNA through a column. The third DNA 

extraction yielded on average 594.5 ng/ µL of DNA. As can be seen in table 3, The 

260/280 ratio was 1.8125 on average and the 260/230 ratio was 2.09 on average.  

A BioTek Synergy H1 was used to collect quality and quantity data from the 

sample. The Take3 Nucleic Acid Quantification program from the BioTek Synergy H1 

Gen5 microplate reader software, version 2.09, was used to analyze the DNA. Two µL of 

each DNA extraction sample was put onto each well of the microplate. Once the 
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microplate was inserted into the BioTek Synergy H1, the dsDNA option was selected and 

run.  

To sequence DNA, the 260/280 ratio of the sample must be approximately 1.8, 

and the 260/230 must be approximately 2 (Illumina, 2018). The sample that resulted from 

the third DNA extraction had these parameters, so was selected for sequencing. 

BioTek Synergy H1 analysis of S. griseus ATCC 10137 DNA extraction data 

Table 2 : DNA extraction 1 analysis results. A BioTek Synergy H1 was used to collect quality 

and quantity data from the first DNA extraction method. The Take3 Nucleic Acid Quantification 

program from the BioTek Synergy H1 Gen5 microplate reader software, version 2.09, was 

utilized. The sample yielded an average of 181 ng/µL of DNA with a 260/280 ratio of 1.401 and a 

260/230 ratio of 2.155. 

 Row B2 Row B3 

260 Raw 0.237 0.233 

280 Raw 0.181 0.177 

230 Raw 0.274 0.268 

320 Raw 0.049 0.045 

260 0.181 0.181 

280 0.129 0.13 

230 0.085 0.083 

260/280 1.402 1.4 

260/230 2.121 2.188 

ng/uL 180.85 181.225 
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Table 3: DNA extraction 2 analysis results. A BioTek Synergy H1 was used to collect quality and 

quantity data from the first DNA extraction method. The Take3 Nucleic Acid Quantification 

program from the BioTek Synergy H1 Gen5 microplate reader software, version 2.09, was 

utilized. The sample yielded an average of 18.4  ng/µL of DNA with a 260/280 ratio of 1.433 and 

a 260/230 ratio of 2.311. 

 Row B2 Row B3 

260 Raw 0.095 0.07 

280 Raw 0.089 0.062 

230 Raw 0.097 0.069 

320 Raw 0.073 0.046 

260 0.017 0.019 

280 0.013 0.013 

230 0.009 0.007 

260/280 1.362 1.504 

260/230 2.035 2.587 

ng/uL 17.3 19.4 
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Table 4: DNA extraction 3 analysis results. A BioTek Synergy H1 was used to collect quality and 

quantity data from the first DNA extraction method. The Take3 Nucleic Acid Quantification 

program from the BioTek Synergy H1 Gen5 microplate reader software, version 2.09, was 

utilized. The sample yielded an average of 594.5 ng/ µL of DNA with a 260/280 ratio of 1.8125 

and a 260/230 ratio of 2.09. 

 Row B2 Row B3 

260 Raw 0.512 0.797 

280 Raw 0.311 0.459 

230 Raw 0.29 0.419 

320 Raw 0.057 0.054 

260 0.451 0.738 

280 0.252 0.402 

230 0.218 0.349 

260/280 1.789 1.836 

260/230 2.066 2.114 

ng/uL 450.8 738.2 

 

Qubit quantification of S. griseus ATCC 10137 DNA 

The Qubit was used for quantifying DNA prior to Illumina sequencing, as 

required by Illumina. To test the DNA concentration of the samples, a working solution 

was needed. The working solution was made by spinning down the Qubit dye in a Qubit 

supplied tube, and shaken to resuspend the dye. A 1 µL:199 µL dye:buffer ratio was used 

to make the working solution, and was split between two 1.5 mL eppendorf tubes. The 

samples were then vortexed to resuspend the dye.  

 One hundred ninety µL of working solution was added to the two standard sample 

tubes, while 198 µL of working solution was added to the three experimental sample 

tubes. Two µL of DNA was added to each experimental sample, while the standard 
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sample tubes, S1 and S2, had 10 µL of DNA/blank material added. Once each tube had 

all reagents added, they were incubated at room temperature and spun to get rid of any air 

bubbles present in the sample.  

 The outside of each tube was cleaned with a KimWipe to remove any smudges on 

the outside of the sample that would prevent an accurate reading from the Qubit. The 

Qubit was adjusted to the volume of the sample, and the units were changed to ng/uL.  

 The original concentration of the third DNA extraction sample as determined by 

Qubit was 379 ng/µL. The Illumina sequencer only needed 2 ng/µL of DNA, so the 

sample had to be dilutes. A series of DNA sample dilutions was created by adding 0.05 

µL of the sample to 99.95 µL of nuclease-free, lab grade water. New working solution 

was made using the same ratios as before. To further dilute the DNA, 20.5 µL of the 

diluted sample was combined with 79.5 µL of nuclease-free lab-grade water. 

 The first attempt at diluting the DNA resulted in a concentration of 0.976 ng/µL.  

 
Table 5: Qubit quantification of S. griseus sample for Illumina sequencing. The DNA 

concentration of the S. griseus sample was determined to be 379 ng/µL. After dilution, the DNA 

concentration of the sample was determined to be 0.976 ng/µL. 

Species Sample DNA concentration (ng/µL) 

S. griseus 379 

S.griseus 1st dilution 0.976 
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S. griseus ATCC 10137 Sequencing Data 

 
The Nextera XT DNA Library prep kit was used to prepare DNA libraries from 

the third DNA extraction sample. Once the libraries were prepared, the individual 

libraries were pooled to create one sample. This pooled sample was loaded into a 75-

cycle reagent kit and then run on the Illumina MiniSeq. As can be seen in table 6, the 

Illumina sequencing run resulted in 19,773,962 total reads, and 18,982,977 identifiable 

reads (Table 6). S. griseus sample 1 had an index 1 of TAAGGCGA and index 2 of 

TCTTACGC, and made up 12.4625% of the total identifiable reads. S. griseus sample 2 

had an index 1 of CGTACTAG and index 2 of TCTTACGC, and made up 10.1038% of 

the total identifiable reads. S. griseus sample 3 had an index 1 of AGGCAGAA and an 

index 2 of TCTTACGC, and made up 9.8552% of the total identifiable reads. S.griseus 

sample 4 had an index of TAAGGCGA and ATAGAGAG, and made up 19.0788% of the 

total identifiable reads. 

The Illumina sequencing run resulted in 97.5% of the reads with a Q Score  

equal to or above 30 (Figure 1). The beginning of the sequencing run produced reads with 

a Q Score between 25-32, while the majority of the run produced reads with a Q Score 

equal to or above 30 (Figure 2). 
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 Illumina data 

Table 6: Results from the Illumina sequencing run with S. griseus and Staph samples. The 

sequencing resulted in 19,773,962 total reads, and 18,982,977 identifiable reads. Of the reads 

generated, 92.9043% were able to be identified. Each S. griseus sample was given a unique name 

and index. S. griseus sample 1 had an index 1 of TAAGGCGA and index 2 of TCTTACGC, and 

made up 12.4625% of the total identifiable reads. S. griseus sample 2 had an index 1 of 

CGTACTAG and index 2 of TCTTACGC, and made up 10.1038% of the total identifiable reads. 

S. griseus sample 3 had an index 1 of AGGCAGAA and an index 2 of TCTTACGC, and made up 

9.8552% of the total identifiable reads. S.griseus sample 4 had an index of TAAGGCGA and 

ATAGAGAG, and made up 19.0788% of the total identifiable reads. 
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Figure 1: Q Score distribution of the reads from Illumina sequencing. A Q Score 

of 30 means that 1 base in every 1,000 bases called was a mistake. The Illumina 

sequencing run resulted in 97.5% of the 19,773,962 total reads with a QScore 

equal to or above 30.  

 

 

 

 

 

 

 

   

   

 

 

Figure 2: Q Score heat map of the reads and their quality during the sequencing  

cycles from the Illumina sequencing run. During the start of the Illumina 

sequencing run, the Q Score of the reads was between 25 and 35. A majority of 

the reads generated had a Q Score above 30, while the quality of the reads began 

to drop near the end of the sequencing run. 
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 Nanopore data 

The 1D Genomic DNA Ligation Kit (SQK-LSK109) was used to create DNA 

libraries from the third DNA extraction samples. Once the libraries were prepared and 

pooled, a P1000 pipette was used to load the sample onto the flow cell. The MinION was 

then plugged into a Dell Optiplex 9020, Microsoft Windows version 7 Professional. After 

the MinION was connected, the sequencing run was started.  

The MinION Nanopore sequencing run generated 1,688,493 reads and 

7,601,206,820 reads with a read length N50 of 7,576.0 bases and 140,000 reads with the 

mean read length of 4,501.8 bases (Figure 5). The run lasted for approximately 50 hours, 

and generated a cumulative yield of over 7 gigabases of data (Figure 3) and 

approximately 1,750,000 bases (Figure 4). 

 The read lengths remained similar over the course of the run (Figure 6), however 

the quality of the reads decreased over the 50 hours that the sequencer was collecting data 

(Figure 7). 
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Figure 3: The cumulative yield (gigabases) during the total run time (hours) of 

the Nanopore. Over seven gigabases of data were generated during the Nanopore 

Min ION sequencing run. The bioinformatic tool Nanoplot was used to generate 

the graphic. 
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Figure 4: The cumulative yield (number of bases) during the total run time 

(hours) of the Nanopore. Over 1.5 million bases were called during the entire 48 

hour Nanopore MinION sequencing run. The bioinformatic tool Nanoplot was 

used to generate the graphic. 
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Figure 5: The read length of the reads from the Nanopore run compared to the 

number or reads generated from the run after log transformation. The majority of 

the reads generated from the Nanopore MinION sequencing run were between 

1,000 and 10,000 base pairs in length. The bioinformatic tool Nanoplot was used 

to generate the graphic. 
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Figure 6: The distribution of Nanopore read lengths over time. The read lengths  

over each 3 hour period of the Nanopore MinION sequencing run were similar to 

each other for the entire 48 hour sequencing run. The bioinformatic tool 

Nanoplot was used to generate the graphic. 
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Figure 7: The quality of the basecalls over time. The quality of the Nanopore 

MinION bases fell between basecall quality 10-12 in the first three hours. As the 

sequencing run continued, the basecall quality of the reads steadily decreased. 

The quality of Nanopore MinION sequencing reads tends to decrease over time 

due to pore degradation in the flow cell. The bioinformatic tool Nanoplot was 

used to generate the graphic. 
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Hybrid S. griseus ATCC 10137 genome assembly data 

The bioinformatic tool Unicycler was used to generate S. griseus ATCC 10137 

genome assemblies. The first genome assembly was generated using just the Nanopore 

data that was over 1,000 bp long. With the filtered Nanopore data, Unicycler generated 

an assembly of four contigs; 6,410,491 bp long, 1,358,778 bp, 780,416 bp, and 29,804 bp 

(figure 8). The 1,000 bp filtered Nanopore data genome assembly results were visualized 

using the bioinformatic tool Bandage.  

The 1,000 bp filtered Nanopore data and the 4:20 sliding window trimming 

approach, 36 minimum length trimmed illumina data generated a hybrid genome 

assembly with 9 contigs and 1 unitig, which is 8,576,363 bp long (figure 9). The 1,000 bp 

filtered Nanopore data genome assembly results were visualized using Bandage. 
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Nanopore only assembly 

 

 
Figure 8: Unicycler assembly with the 1,000 bp filtered Nanopore MinION sequencing run data. 

Unicycler produced four contigs from the 1,000 bp filtered Nanopore MinION sequencing data. 

The first contig was 6,410,491 bp, the second contig was 1,358,778 bp, the third contig was 

780,416 bp, and the fourth contig was 29,804 bp long. The assembly was visualized using 

Bandage, with contigs being drawn in proportion to their length. 
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Nanopore and Illumina Unicycler Assembly 

 

 
Figure 9: Unicycler assembly with the filtered Nanopore MinION sequencing run data and 

trimmed Illumina MiniSeq sequencing run data. The 1,000 bp filtered Nanopore MinION data 

and 4:20 sliding window and 36 minimum length trimmed Illumina MiniSeq data were assembled 

using Unicycler, settings linear and bold. Unicycler generated an assembly that produced 10 

contigs. The first contig is 8,576,363 bp long, and is thought to be the S. griseus ATCC 10137 

genome. The other contigs are all under 10,000 bp long, and did not return any plasmid matches 

when analyzed using BLAST. The assembly was visualized using Bandage, with contigs being 

drawn in proportion to their length. 
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Analysis of the S. griseus ATCC 10137 genome 

Prophages identified in the S. griseus ATCC 10137 genome using PHASTER  

  
 The S. griseus genome assembly generated by Unicycler was uploaded to 

PHASTER to scan the S. griseus genome to identify potential prophages. One incomplete 

prophage was identified in the S. griseus genome. The region length was 22.7Kb, 

coordinates 3,217,534-3,240,311 bp. The incomplete prophage had a PHASTER score of 

60, had a GC content of 70.95 %, and contained 22 potential proteins. Three tail proteins 

were found on the 5’-3’ strand, coordinates 3,223,067-3,224,266 bp, 3,224,263-3,225,546 

bp, and 3,227,818-3,228,924 bp. A fiber protein was identified at position 3,229,705-

3,231,171 bp. 

CRISPR-Cas arrays in the S. griseus ATCC 10137 genome using  

CRISPRfinder  

 
The hybrid S. griseus ATCC 10137 genome assembly produced by Unicycler was 

uploaded to the web server www.crispr.i2bc.paris-saclay.fr, or CRISPRfinder, to identify 

potential CRISPR-Cas arrays in the genome (Grissa et al., 2007).  

CRISPRfinder identified 3 confirmed CRISPR arrays, and 10 questionable 

regions in the S. griseus ATCC 10137 genome. The first confirmed CRISPR array begins 

at genome position 4,000,169 and ends at 4,001,234, for a total length of 1,065 base 

pairs. In the first array, there are 17 spacers. The second confirmed CRISPR array begins 

at genome position 4,004,378, ends at 4,005,445, and contains 17 spacers. The final 

confirmed CRISPR array begins at position 4,015,427, ends at 4,016,611, and has 19 
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spacers (Table 7). The number of questionable CRISPR arrays and the number of spacers 

in each of those arrays can be found in Table 8. 

 The NCBI BLASTn with default parameteres was used to identify Confirmed 

CRISPR-Cas spacer regions that are also found in phage genomes (Altschul 

 et al, 1990). The first confirmed CRISPR-Cas region of S. griseus ATCC 10137 had 17 

spacers, but BLAST only identified spacer 11 in CRISPR-Cas region 1 as matching other 

bacteriophage DNA. Bacteriophages Biscum, Ididsumtinwrong, Austintatious, 

PapayaSalad, and Darolandstone were found to have similar sequence as spacer 11. 

CRISPR-Cas region 2, spacer 2 encoded sequence that was similar to bacteriophage 

Rando14. CRISPR-Cas region 2, spacer 9 encoded sequence that was similar to 

bacteriophage Menlow. CRISPR-Cas region 3, spacer 6 encoded sequence that was 

similar to bacteriophage ToastyFinz. CRISPR-Cas region 3, spacer 7 encoded sequences 

that were similar to bacteriophages SV1, Mojorita, Picard, and ToastyFinz (Table 9). 

 
Table 7: Data from the confirmed CRISPR-Cas arrays in S. griseus. CRISPRfinder was used to 

identify the 3 confirmed CRISPR-Cas arrays in the S. griseus genome. The first two CRISPR 

regions contained 17 spacers each, while the third CRISPR region contained 19 spacers.  

CRISPR Region Start End Number of Spacers DR Consensus 

1 4000169 4001234 17 GTGGTCCCCGCGCGTGCGGGGGTGTTCCC 

2 4004378 4005445 17 GTGGTCCCCGCGCGTGCGGGGGTGTTCCC 

3 4015427 4016611 19 GTGGTCCCCGCGCGTGCGGGGTTGTTCC 
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Table 8: Data from the questionable CRISPR-Cas arrays in S. griseus.CRISPRfinder was used to 

identify the 10 questionable CRISPR-Cas arrays in the S. griseus genome. The first 4 CRISPR 

regions each encoded 1 spacer, the fifth region encoded 3 spacers, the sixth region encoded 1 

spacer, the seventh region encoded 5 spacers, and regions eight through ten each encoded 1 

spacer. 

CRISPR Region Start End Number of Spacers DR Consensus 

 

1 

 

9090 

 

9248 

 

1 

GGGCGGGGGCGCCGGTCAGGTCGGCGGCTTCG

CGCAGGAGGGCGGCGGCCTGGGC 

2 1580588 1580696 1 CCCGGAGCCGAACCCGGTGTCGCTGGA 

3 2854405 2854508 1 AGCGGTTACGCGCATACATCTGCGGTGG 

4 3550255 3550340 1 GGTTCCGTCCTCAAACGCCGGACGGGCTG 

5 4049500 4049704 3 CAACCCCGCACGCGCGGGGACCAC 

6 4154117 4154184 1 CCGCCGCCCTGCTGGCCTCCGCC 

7 4346586 4346950 5 GGAGTCGGTGTACCGGTTGTCGT 

8 4578862 4578927 1 CCGTCCGTCGGTCCCGCCGTGCC 

9 5522346 5522450 1 CTACAACGGCCCCGTCTTCAACCAG 

10 6045450 6045534 1 CTCGCCCGCCCCACGGCGGCCGGCC 
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Table 9: BLAST results from comparing S. griseus ATCC 10137 CRISPR spacers in the genome 

to other genomes in the NCBI BLAST database. Confirmed CRISPR region 1, spacer 11 encoded 

sequence that was found in bacteriophages Biscum, Ididsumtinwrong, Austintatious, 

PapayaSalad, and Darolandstone. Confirmed CRISPR region 2, spacer 2 encoded sequence that 

was found in bacteriophage Rando14. Confirmed CRISPR region 2, spacer 9 encoded sequence 

that was found in bacteriophage Menlow. Confirmed CRISPR region 3, spacer 6 encoded 

sequence that was found in bacteriophage ToastyFinz. Confirmed CRISPR region 3, spacer 7 

encoded sequence that was found in bacteriophages SV1, Mojorita, Picard, and ToastyFinz.  

CRISPR 

region 

Spacer Phage Query 

coverage 

E-value % identity 

1 11 Biscum 75 % 0.023  100.00 

1 11 Ididsumtinwrong 75% 0.023 100.00 

1 11 Austintatious 75% 0.99 95.83 

1 11 PapayaSalad 75 0.99 95.83 

1 11 Darolandstone 93 3.5 86.67 

2 2 Rando14 78  0.28 96.00 

2 9 Menlow 78 3.5 96.00 

3 6 ToastyFinz  100 0.007 90.91 

3 7 SV1 100 1e-05 96.97 

3 7 Mojorita 100 2e-04 93.94 

3 7 Picard 100 2e-04 93.94 

3 7 ToastyFinz 90 0.007 93.33 
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Automated genome annotation of S. griseus ATCC 10137 

 
The auto annotation methods Prokka and RAST were used to predict genes in the 

S. griseus ATCC 10137 genome. Prokka was run with a terminal command using the 

hybrid S. griseus ATCC 10137 genome assembly, while the the hybrid S. griseus ATCC 

10137 genome assembly was uploaded onto the web application-based RAST. Analysis 

of the S. griseus genome with auto annotation methods Prokka and 

RAST resulted in different numbers of potential genes. Prokka predicted 7,438 genes and 

RAST predicted 7,775 genes (Figure 10). 

 There are CRISPR arrays present in the genome, as well as CRISPR-associated 

protein coding genes such as CRISPR-associated endoribonuclease Cas1, CRISPR-

associated endoribonuclease Cas2, CRISPR-associated endoribonuclease Cse3, CRISPR 

system Cascade unit casD, CRISPR system Cascade unit casC, and CRISPR-associated 

helicase/nuclease Cas3.  

 The genome also encodes the antiseptic resistance genes qacA_2, qacA_3, 

qacA_5, and qacA_6. The multidrug resistance gene MdtH_1 and the Vancomycin B-type 

resistance coding gene VanW were found in the genome. Also present are genes that 

belong to the SMR, or small multidrug resistance protein family, such as the quaternary 

ammonium compound-resistance coding genes sugE_1 and sugE_2. Tetracycline 

resistance is conferred to the bacteria by the presence of the gene TetR_2. Soluble 

epoxide hydrolase and multidrug ATP/binding permease protein are also encoded by 

genes found in the genome. 
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Figure 10: Number of genes called by Prokka and RAST. Prokka version predicted 7,438 

genes to be present in the S. griseus genome, while RAST predicted 7,775 genes to be 

present in the S. griseus genome.  
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Prokkrastinator data 

 
Analysis of the S. griseus genome with the auto annotation methods Prokka 

and RAST resulted in different numbers of potential genes. Prokkrastinator was written 

in the coding languages HTML, CSS, and JavaScript. JavaScript libraries such as 

Meteor.js and D3.js were used to draw interactive and reactive depictions of data, 

respectively. This novel bioinformatic tool accepts the uploaded gff output files of RAST 

and Prokka. Once uploaded, the gene data were visualized on a genome ruler. Gene data 

such as start, stop, and coding strand were included in the genome browser, as well as the 

gene table below the graphic.  

Analysis of the auto annotation method’s gff files with Prokkrastinator revealed 

that Prokka predicted 7,381 genes and RAST predicted 8,045 genes (Figure 11). Both 

Prokka and RAST called 6,675 genes that had the same start coordinates, stop 

coordinates, and coding strand. These were considered shared genes. There were 376 

variations of genes between Prokka and RAST, where the genes had different start 

coordinates, but the same stop coordinates and coding strands. Prokka called 432 genes 

that were unique to that auto annotation method, or that were not called by RAST. RAST 

called 1,012 genes that were unique to that auto annotation method, or that were not 

called by Prokka (Figure 17).  

Of the 8,045 genes called by RAST, 17.3 % were not predicted by Prokka, while 

82.7 % were. Of the 7,381 genes predicted by Prokka, 9.8 % were not called by RAST, 

while 90.2 % were (Figure 18).  
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Figure 11: Opening screen of Prokkrastinator. To make a new account, click Register and fill out 

the form. Click Forgot your password? to reset your password. Enter your email and password to 

log in. 

 
 
 
 
 
 

 
Figure 12: The homepage of Prokkrastinator. Located here is the genome ruler, template for the 

gene box, and an empty list of all of your projects. To create a new project, click add a new 

project. 
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Figure 13: The upload page of Prokkrastinator. To upload the Prokka.gff file, click UPLOAD A 

GFF FILE under the Prokka title. Parsing the data takes approximately one minute. 

 
 
 

 
Figure 14: Parsing data completion. The alert message shows how many features, or genes, were 

uploaded with the gff upload. Click OK to close the alert. 
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Figure 15: The Prokkrastinator homepage with data loaded. The blue boxes are the Prokka genes, 

the red boxes are the RAST genes, and the black boxes are what was in common between the two 

annotation methods. Underneath the genome ruler is the gene box, which provides a list of genes, 

their genomic coordinates, their potential function, and the program that predicted them. 

 

 

 

 
Figure 16: The Prokkrastinator homepage with the annotation method number of genes data 

loaded. To view this screen, click More Tools, then Developer Tools. Here the number of genes 

called by each annotation method can be viewed, as well as the number of genes both annotation 

methods have in common.  
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Figure 17: A comparison of the results from Prokka and RAST with the genes unique to  

Prokka and Rast. Prokka predicted 7,381 genes and RAST called 8,045 genes. Of these, 

6,675 genes were called identically by the two programs and 376 genes varied between 

Prokka and RAST only by the position of their start codon. The remaining genes, 432 in 

Prokka and 1,012 in RAST, were unique to the program that called them. 
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18a       18b 

 

Figure 18: Prokka was used to analyze genes called by RAST that were also called by 

Prokka (a) and genes predicted by Prokka that were also predicted by RAST (b). Of the 

genes that were predicted by RAST, 17.3 % were not predicted by Prokka, while 82.7 % 

were predicted by Prokka. Of the genes that were predicted by Prokka, 9.8 % were not 

predicted by RAST, while 90.2 % were predicted by RAST. 
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Bacteriophage protein modeling data 

Overall results 

 
To model the gene products from Bacteriophage Wipeout, the bioinformatic tool 

YASARA was used. DNA Fasta data was uploaded to YASARA after being converted to 

amino acid fastas with R code. These converted files were then run through YASARA to 

compare the gene products with homologues, and thus queried against the PDB database.  

Modeling the 258 gene products from bacteriophage Wipeout using Yasara yieled 

155 protein models. Of these models, 2 were Disgusting (z-score <= -4), 18 were Terrible 

(z-score between -4.9 and -4.0), 47 were Bad (z-score between -3.9 and -3), 47 were Poor 

(z-score between -2.9 and -2) , 25 were Satisfactory (z-score between -1.9 to -1) , 9 were 

Good (z-score between -0.9 to -0.05), and 7 were Optimal( z-score >=0.0). Some gene 

products, 103 of them, were unable to be modeled at all (Figure 13).  
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Figure 19: The number of Phage Wipeout gene products in each model quality category 

according to YASARA. Protein models with a z-score of over 0.0 were considered “optimal” 

models, models with a z-score of -0.9 to 0  is considered a “good” model, models with a z-score 

of -1.9 to -1 is considered a “satisfactory” model, models with a z-score between -2.9 and -2 is is 

considered “poor” quality, models with a z-score between -3.9 and -3 are considered “bad” 

quality,  models with a z-score between -4.9 -4 were considered “terrible” quality, and a model 

with a score below -5 is considered a “disgusting” model. Out of the 258 genes encoded by phage 

Wipeout, 103 gene products were unable to be modeled by YASARA. 

 

Essential proteins required for infection 

 

 Two gene products were predicted to be structurally functional proteins. Gene 

product 129 was predicted to be a capsid protein. The model had a BLAST e-value of 

7.5e-1, an alignment score of 45, 93% query coverage, and a z-score of -3.65. The capsid 

protein prediction fell in the Bad quality category.  
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 Gene product 110 was predicted to be a portal protein. The model had a BLAST 

e-value of 7.8e-1, an alignment score of 52, 66% query coverage, and a z-score of -2.141. 

This model fell into the Poor quality category.  

Proteins of interest 

  
 Other proteins of interest from Wipeout include gene products 49, 265, 94, 62, 57, 

79, and 93. Gene product 49 fell into the Poor quality category, and was predicted to be a 

Bcl-2 protein from Human herpesvirus 8. The model had a BLAST e-value of 9.8e-1, an 

alignment score of 53, 53 % query coverage, and a z-score of -2.724. Wipeout gene 

product 265 was predicted to be a swarming motility protein, and had a BLAST e-value 

of  7e-17, an alignment score of 170, 90 % query coverage, and a z-score of -2.35. 

 Wipeout gene product 94 was in the Bad quality category, and was predicted to be 

a CRISPR-associated exonuclease Cas4 protein. The model had a BLAST e-value of 1e-

3, an alignment score of 66, 79 % query coverage, and a z-score of -3.303. Gene product 

66 was predicted to be a CdiI immunity protein, and had a BLAST e-value of 8.9e-1. The 

model also had an alignment score of 47, 77 % query coverage and a z-score of -3.01.  

 Gene product 57 resembles a penicillin G acylase protein, and was in the Poor 

quality category. The model had a BLAST e-value of 1.8, an alignment score of 45, 76 % 

query coverage, and a z-score of -2.401. Wipeout gene product 79 was identified as a 

potential pertussis toxin-like subunit ArtA protein. The BLAST e-value for the pertussis 

toxin-like subunit was 0.9, the alignment score was 42, had 67 % query coverage, and 

had a z-score of -2.586. Gene product 93 was identified as a potential tetanus toxin-like 

protein. This model had a BLAST e-value of 1.6, an alignment score of 45, 90 % query 

coverage, and a z-score of -2.352. 
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Potential anti-CRISPR proteins 

 
All bacteriophage produced anti-CRISPR proteins are between 50- 150 amino 

acids long, or 150-450 base pairs long (Dong et al., 2017). Of the 103 unmodeled gene 

products from phage Wipeout, 13 gene products fell between 150-450 base pairs long. 

Gene products 2, 36, and 42 are 150, 291, and 157 bp long, respectively. Gene product 56 

is 332 base pairs long. Gene products 59 and 262 are 164 and 262 base pairs long, 

respectively. Gene product 60 is 262 base pairs long, and gene product 61 is 167 base 

pairs long. Gene products 101 and 106 are 207 and 206 base pairs long, respectively. 

Gene product 144 is 179 base pairs long. Gene products 183 and 266 are 264 and 160 and 

base pairs long, respectively. Gene product 266 is 160 base pairs long. Finally, gene 

product 275 is 150 base pairs long (Table 9). 
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Table 10: Unmodeled phage Wipeout gene products with nucleotide lengths of 50-450 

bp. Listed with the length of the genes are the amino acid sequences that correspond to 

each gene product.  

 
    

Gene 

Product 

Length (base pairs) Amino Acid sequence 

 

 

2 

 

 

150 

 

MRHTQTIEGRMAAAREALNITFAYADEFEREMNELFRTECTKNQFDELI
KTIYGDRPAENVKGSQVKWDGKRDLLMGIFTDTGDGPKTTQSLAGTM

AGALNALTERLDWYRMPRKGEVDNLFAAASGFDPVINSEKNKIRKAVL
SMALAA 

 

 

36 

 

 

291 

MKKPDLKRLMDWRGAVSFGSVLIVALALSWWSLYSMAVEFYGVPKEL

AFGVSIAFDGAALFVADLASKYARTEDSGLAPKLATYAFVGTSVYLNV
EHAALLNYGTPGKVLFGAPPVIAGVLFELYLRFVHRSEMRSNGLVAKR

MPVFGKVSWMIFPGKTFKGFKNVVFFRLNEVVTNVTGESLSRKRDKPV

TPKKMSRDKRDKTDDKSVTKPVMTKDDTPVKTNAPIVTTVTEIPRRDV
TDDKQKSVSRLVKELWDDGTRDKAELRKLISDIKGRDIPANTITVALSR

MSP 

 

42 

 

157 

 
MKTDEDRCREYGVPYDPTITRPAVYQQSGWKCHLCGKRVRKSLKYPH

PRSASLDHIVPLSWRKDSPGHVWGNVALAHLRCNQSKGARFAGSTKPA
PRKPGIVTPLWKLRLTLFAGTAALFYFNAEPTVLTIAAVLCILSVVPQRK

VRRRRRRAWWKL 

 

 

 

 
 

 

 

56 

 

 

332 

MSDELIEKVIRTTEVASGGGGLLNAEQSNRFIDYMWEATVLGTQVRTIR

MRADTVDIDKLGIGERLMRVATEAVDDGVNAGATFSKISLTTKKLRLD

WEISTESLEDNIEGDALEDHIARLMATQAGNDLEDLAINGDTALTGNPL
LKAFDGWRKRALAGGHVIDHGGNGVDRSVFNKALKAMPRKYMQRRN

GLKFFTGSNVIQDYLFSLQNTSADYVTPEALAAAGINSGVRTEGPAGFT

TGNAFGIPVQEVPLFEETLDGDYSGASGDHADVWLTFPNNMLWGVKR
EVQIFTEFKPKKDTTEYTMYCRVGTQIENADAFVVVKNVKIAS 

 

59 

 

164 

MSCLISSRFNMRATVLRQAGTNPQENPGGHWETVQDPDSGAIERVWVP
DEDSGTPGDQTLVIKCMVRGVTNGGIRAAGTTQRFSEIYENVDWAIIQF

PASVVLSKYDRVTNISNSKGQLIWREEEINQAPATVFQVMGSTPVIDPFG

NHIENTALLQRAQVQSG 

 

 

60 

 

 

262 

MAKGKAFVGVTADTTEVSALTGFLSTLSTQIKADVNMAPVLDYAHSA

MSSKFDAYMSAIAPTAPNQFHHVYDWGRIGVPQNQLWKNVIRGRGAN
KYASFEFRASVLPVPLPEGNKKPFMRKHRFIYKAMIMEYNIGVTVKPKR

AKMLAFPNERGDIIFTKGPVFVQNPGGMGTTGAFTAAWSNWWGGAGA

DQVFKSEIQRVLERDLGGSALSRFMRRFKKAKFRTGRIAVADSKSAMA
DGSRLALEFLQERNRKNEARRKAQ 

 

61 

 

167 

MTYDITATHALNKFLVDQLSGENLIDLTKYNGLSPFIPAQQQPELTNLPS
GVPFFVYNYASNGEYEDWWLEHEQAAYIIYSDNEKQIRQISNYLNQLL

KRYDWAADDINDYLREFGTTEQKKFEFKYTRVISMASIEPATEEGGRY

AGSITVNLCFTSQLNQEGMRV 

  MIKIGMTGAQGTGKTSMAQAMINSPAFKDFVLVPSTARQIKDYGYPINR
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101 207 EATELSQLLVPALRMVDEWETMNSPQNTLYKQGIISDRTLIDSLAYTYY
QNEHVWENGALVENVTRRLTEMHMQSYHFVLYFPVYWEAEDDGVRD

ADESYRTRIDDYVIQALEMLNVPYLTVPDVSPEERVEWFIGEIQELYAE

AERQYLRRFGNDLL 

 

106 

 

206 

MSTTTAMLLIVDRSGSMSSIQMEAEQALNDFLTKQKAVDGRCGVKVV

QFDGEVEDLFGPVALAQAPEIKIVPRGMTALLDAIGKSVTEFRETMDHM
PVDKRLVVILTDGLENVSQEWKLDAVNKLISESRELGYEFIFLAANQDA

IATGAQMGIPTASSLTFAASPAGVRGMGMTMDMYVTNYREGKAAEFT

DQDRATASGLTDED 

 

144 

 

179 

MTDRTDKFTGRPVTGDRPENTSMVEQANTQLFIDAMDELLAHPLVKA

VRWTQYTPGFNDGEPCTFDGHTPEVCLTGLELGEEGIETERDHYEDGD
EVWLGEYDMYEYPRKENGQIDWDQPKIYKVGGVDTTEINELLSKFAGC

VEGGRHDVWMNRTFGDPAEVIATPEGFEVSFYDCGY 

 

183 

 

264 

MGIFSRKVKPAFVPAQNLSAKKTVTLTPIVSGQPAANVSLIKQNGVSFE

KKVESAVKLQKDAGVANRFDVIGLIDESYSMDYLFANGTVQTISERVL

AWTAGVDADGMAPVGGFANGFQWHGEIDLTNVMGCASGWGCWGGT

DLAAGLREAFEVAKGADNPVYLFIVTDGAPNDRQAVIDLIAQMSEYPIF

IKIVLVGDDPQGKKFVEYLDDLEKHEPGRRLFDNTDAQHIRDASRVSDD
DFNKAMTEEVPSAIDAMRQAGLVV 

 

266 

 

160 

MTDLARMTDAEISSKFKGLVEGYAKDLAKSNKSKGDPGTASIASVRVG

KIKRKKGQLVPSQILLAMRAAIWKMGWAQGVLRDEEGRLCLRGAMV

WLYRKGYFHQEDGDIAAQWLHDEVRRKNGDAQKYNFIYWNNDPRRT
LAEILKILEDAGNRAKLAGE 

 

275 

 

150 

MRHTQTIEGRMAAAREALNITFAYADEFEREMNELFRTECTKNQFDELI

KTIYGDRPAENVKGSQVKWDGKRDLLMGIFTDTGDGPKTTQSLAGTM
AGALNALTERLDWYRMPRKGEVDNLFAAASGFDPVINSEKNKIRKAVL

SMALAA 
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Cas3 protein modeling data 

The Cas3 gene from S. griseus ATCC 10137 was obtained using Prokkrastinator. 

Once the Cas3 DNA fasta file was obtained, Expasy was used to translate that DNA fasta 

data into an amino acid fasta file. Once translated, the amino acid file was uploaded to the 

Phyre2 server to compare the sequence to potential homologues. Phyre2 outputs a PDB 

file, which was uploaded to YASARA to further analyze the protein. The Cas3 protein 

from S. griseus is 1,559 amino acids long, of which 95 % Yasara could be modeled at 

>90 % confidence. Of the 1,559 residues in the protein, 900 residues (58 % of the 

protein) could be modeled with 100% confidence.  
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Figure 20: Cas3 protein from S. griseus. The fasta sequence of the S. griseus gene was 

obtained using Prokkrastinator. The DNA sequence was translated and modeled in using 

Phyre2, and then modeled using YASARA.  

Cas3 ligand search data 

COACH modeling 

 
After the potential structure of the S. griseus ATCC 10137 Cas3 protein was 

predicted, the PDB file was uploaded to the COACH server to predict potential ligand 

binding sites and active residues. COACH predicted Mg, ATP, DTP, and nucleic acid to 

be potential ligands of the S. griseus Cas3 protein. The magnesium ligand was predicted 

to interact with Cas3 residues 314 and 465, as seen in Figure 56. This prediction had a C-

score of 0.25, and had a total of 10 clusters (Figure 57).  
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The ATP ligand prediction potentially interacts with Cas3 residues 280, 282, 283, 

284, 287, 309, 310, 311, 312, 313, 314, 315, 349, and 465. The C-score for this 

prediction was 0.18, and had 9 clusters (Figure 58).  The ligand DTP was predicted to 

interact with Cas3 residues 280, 284, 287, 309, 310, 312, 313, 314, 315, 349, 656, 674, 

678, and 681. The C-score for this prediction was 0.08 and had 3 clusters (Figure 59).  

COACH predicted nucleic acid to be a possible ligand for S. griseus Cas3. The 

nucleic acid is predicted to interact with Cas3 residues 21, 68, 71, 109, 143, 217, 218, 

223, 339, 340 ,372, 436, 438, 439 ,590, 613, 648, 649, 650, 653, 712, 716, 717, 823, 827, 

828, and 880. This prediction had a C-score of 0.02, and had 1 cluster (Figure 60). 
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Figure 21: The COACH ligand MG ligand prediction is highlighted in yellow. The consensus 

binding residues 314 and 465 are highlighted in blue and annotated in purple. The c-score for this 

ligand prediction was 0.25 and had 10 clusters. 
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Figure 22: The COACH ligand ATP prediction is highlighted in yellow. The consensus binding 

residues 280, 282, 283, 284, 287, 309, 310, 311, 312, 313, 314, 315, 349, and 465 are highlighted 

in blue and annotated in purple. The c-score for this ligand prediction was 0.18 and had 9 clusters.  
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Figure 23: The COACH ligand DTP prediction is highlighted in yellow. The consensus binding 

residues 280, 284, 287, 309, 310, 312, 313, 314, 315, 349, 656, 674, 678, and 681 are highlighted 

in blue and annotated in purple. The c-score for this ligand prediction was 0.08 and had 3 clusters.  
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Figure 24: The COACH ligand nucleic acid prediction is highlighted in yellow. The consensus 

binding residues 21, 68, 71, 109, 143, 217, 218, 223, 339, 340 ,372, 436, 438, 439 ,590, 613, 648, 

649, 650, 653, 712, 716, 717, 823, 827, 828, and 880 are highlighted in blue, and annotated in 

purple. The c-score for this ligand prediction was 0.02, and had 1 cluster.  
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TM Site Results 

The COACH server also ran TM Site predictions for the S. griseus Cas3 protein. 

The TM Site prediction identified DTP and nucleic acid as potential ligands. DTP is 

predicted to interact with Cas3 residues 280, 284, 287, 309, 310, 312, 313, 314, 315, 349, 

656, 674, 678, and 681. This prediction had a c-score of 0.31 and 1 cluster (Figure 25). 

Nucleic acid is predicted to interact with Cas3 residues 21, 68, 71, 109, 143, 217, 218, 

223, 339, 340, 372, 436, 438, 439, 590, 613, 648, 649, 650, 653, 712, 716, 717, 823, 827, 

828, and 880. This prediction had a c-score of 0.25 and 1 cluster (Figure 26). 
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Figure 25: The TM Site prediction of the ligand DTP is highlighted in yellow. The 

predicted binding residues 280, 284, 287, 309, 310, 312, 313, 314, 315, 349, 656, 674, 

678, and 681 are highlighted and annotated in blue and purple, respectively. The  c-score 

for this prediction was 0.31, and had 1 cluster.  
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Figure 26: The TM Site prediction of the nucleic acid ligand is highlighted in yellow. The 

predicted binding site residues 21, 68, 71, 109, 143, 217, 218, 223, 339, 340, 372, 436, 

438, 439, 590, 613, 648, 649, 650, 653, 712, 716, 717, 823, 827, 828, and 880 are 

highlighted in blue and annotated in purple. The c-score for the prediction was 0.25 and 

had 1 cluster. 
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Discussion 

 The evolutionary arms race between viruses that infect bacteria, bacteriophages, 

and their hosts has resulted in ingenious strategies to promote and defend against viral 

infection and propagation. For example, during phage infection the virus injects its DNA 

into the host cell. In response bacteria encode and express exonucleases, enzymes that 

specifically degrade linear phage DNA while leaving untouched the typically circular 

chromosomes and plasmids of the bacterial cell (Berg et al., 2002). This is problematic 

for the phage; without a way to avoid the bacterial exonucleases, the phage fails to 

replicate within the bacterium. The evolutionary pressure of bacterial exonucleases on 

phages selected for the circularization of the phage genome once injected into the cell 

(Lehman et al., 1964). 

 The circularization of phage DNA to avoid degradation by bacterial exonucleases 

is not new knowledge, unlike the discovery of bacterial CRISPR-Cas systems (Barrangou 

et al., 2007). CRISPR-Cas is a bacterial adaptive immune system. As the bacterial cell 

interacts with infecting phages, CRISPR-associated proteins (Cas proteins) like Cas9 and 

Cas3 cut the phage DNA. While both Cas9 and Cas3 cut phage DNA, the results are quite 

different. Cas9 is known in popular culture as the gene editing protein. The DNA cuts 

that are made with Cas9 are precise, enabling it to be combined with a guide RNA 

(gRNA) and pre-designed DNA on a separate plasmid to introduce targeted substitutions, 

insertions, or deletions (Wu Y et al., 2013). Cas3, however, does not make a clean cut in 

the genome. The Cas3 protein shreds the phage DNA beyond repair (Bondy-Denomy et 

al., 2016) 
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 Interacting with either the Cas9 and Cas3 proteins would be detrimental to the 

phage, as a cut phage genome is no longer infectious (Bondy-Denomy et al., 2016). It has 

recently been discovered that phages have evolved a defense against CRISPR. These 

phage-encoded anti-CRISPR, or Acr, proteins are the latest advance in an ancient arms 

race.  

A total of ten Acr proteins have been described in the literature, four of which are 

well characterized (Pawluk et al., 2014). Three of these ten anti-CRISPR proteins, AcrF1, 

AcrF2, and AcrF4, interact with the Csy complex, which is a group of proteins that binds 

the target DNA through hybridization of the target and crRNA. These proteins directly 

inhibit the complex's ability to bind to the PAM site in the dsDNA target. AcrF1 and 

AcrF2 bind to different areas of the Csy complex, and do not inhibit each other in the 

process. They are able to simultaneously bind to the Csy complex and prevent it from 

binding to target DNA (Bondy-Denomy et al., 2015). 

 AcrF3 interacts with Cas3 and blocks the helicase-nuclease from binding to the 

Csy-DNA complex. Because Cas3 is unable to bind to Csy, Csy acts as a transcriptional 

repressor and blocks the transcription of the CRISPR-Cas complex (Bondy-Denomy et 

al., 2015).  

Acr proteins are not only useful for ensuring the success of phage infections; 

these proteins have been used in tandem with CRISPR-Cas genome engineering 

mechanisms to attempt to decrease the occurrence of off-target genomic changes. For 

instance, one such study used CRISPR-Cas editing to correct a mutation responsible for 

cystic fibrosis, followed by an Acr protein treatment to halt the progression of the 

CRISPR-Cas complex. The use of Acr proteins was effective in preventing deleterious 
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effects caused by CRISPR-Cas complexes (Shin et al., 2017). Acr proteins have been 

shown to be effective tools for CRISPR-Cas genome editing, and are already designed 

and implemented by phages. There are an estimated 1031 phages on the planet (Hatful, 

2013), and those phages that infect bacteria that encode CRISPR-Cas arrays require some 

mechanism to circumvent CRISPR-Cas-mediated immunity.  

The SEA-PHAGES program is an international consortium of universities, tribal 

colleges, and community colleges that offers a course-based undergraduate research 

experience focused on the discovery and genomic characterization of novel 

actinobacteriophages, phages that infect members of the phylum Actinobacteria. The 

program has stored these phage data (genomic and amino acid data) on Phamerator.org. 

Most of the bacterial species and strains used in this program have been 

completely sequenced, but this is not true of the S. griseus ATCC 10137 strain that is 

used at JMU. A related strain, S. griseus 13350, has been sequenced and published. 

Interestingly, this strain has been shown to encode CRISPR-Cas arrays, implying that 

phages which can infect it use a mechanism that allows them to circumvent CRISPR-

Cas-mediated immunity. 

 If S. griseus 13350 encodes CRISPR-Cas arrays, the S. griseus strain used by 

JMU and the SEA-PHAGES consortium would probably contain CRISPR-Cas arrays as 

well. If S. griseus 10137 encodes CRISPR-Cas arrays, then the phages that infect them 

may have anti-CRISPR proteins. If those anti-CRISPR proteins are similar to other anti-

CRISPR proteins, models of optimal or satisfactory quality will be generated from the 

phage amino acid fastas. If those proteins are unique anti-CRISPR proteins, they will not 

be able to be modeled, but will fall in the same size range (50-150 amino acids long) as 
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other known Acrs. Thus, the overall goals of this study were to determine if S. griseus 

ATCC 10137 encoded CRISPR-Cas arrays, and to discover the mechanism phages were 

using to work around those host defense systems. 

To determine if S. griseus ATCC 10137 encodes CRISPR-Cas arrays, S. griseus 

ATCC 10137 DNA was extracted using a phenol chloroform based method. The DNA 

was then assessed for quality and quantity using both a BioTek Synergy H1 and Qubit 

fluorometer. Analysis with the BioTek synergy concluded that the third DNA extraction 

yielded on average 594.5 ng/ µLof DNA. As can be seen in table 3, The 260/280 ratio for 

the extraction was reported to be 1.8125 on average, and the 260/230 ratio was 2.09 on 

average. Analysis with the Qubit showed that the concentration of the DNA was 379 

ng/uL. This difference in quantity could be due to the individual accuracy of the different 

instruments. 

 Once the concentration and quality of the DNA was assessed, DNA sequencing 

was possible. The Illumina MiniSeq and Nanopore MinION owned and operated by the 

James Madison CGEMS facility were utilized for the project. As can be seen in Table 6, 

sequencing with the MiniSeq yielded 9,773,962 total reads, and 18,982,977 identifiable 

reads. S. griseus samples 1, 2, 3, and 4 combined made up a total of 51.5% of the total 

identifiable reads from the sequencing run. 97.5 % of the total reads had a QScore equal 

to or above 30 (Figure 1), with a majority of those reads being generated during each 

cycle (Figure 2). 

 The Nanopore MinION sequencing run yielded 1,688,493.0 total reads, and 

7,601,206,820.0 reads with a read length N50 of 7,576.0 bases. The sequencing run also 

generated 140,000 reads with the mean read length of 4,501.8 bases (Figure 5). The run 
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lasted for approximately 50 hours, and generated a cumulative yield of over 7 gigabases 

of data (Figure 3) and approximately 1,750,000 bases (Figure 4). 

 The read lengths remained similar over the course of the run (Figure 6), however 

the quality of the reads decreased over the 50 hours that the sequencer was collecting data 

(Figure 7). This is not unusual with the Nanopore MinION, as it is known to have lower 

quality reads compared to the Illumina MiniSeq. The Nanopore MinION has an accuracy 

rate of 97 %, while the Illumina MiniSeq has an accuracy rate of 99.9 % (Tyler et al., 

2018 & Glenn, 2011). Nanopore reads are also longer than the Illumina reads generated, 

making them useful for hybrid assemblies.  

 By combining both the Nanopore and Illumina reads with the bioinformatic tool 

Unicycler, a hybrid genome assembly was built. The final product resulted in one unitig 

which was 8,576,363 base pairs long, and 9 smaller contigs (Figure 9). An assembly with 

just the filtered Nanopore data provided evidence that the smaller contigs were 

missasemblies due to the lower quality of Nanopore reads. This leads to the conclusion 

that the unitig from the hybrid assembly is the full genome of S. griseus ATCC 10137.  

 Once the assembly was generated and assessed for completion, the S. griseus 

genome was run through CRISPRfinder to determine if CRISPR-Cas arrays were present 

in the genome. There were a total of 3 confirmed CRISPR-Cas arrays present, with a total 

of 53 spacers shared between them (Table 7). There were also 10 questionable regions, or 

regions where the CRISPRfinder program was not certain enough about the presence of a 

true CRISPR-Cas array. Between the 10 questionable regions there were 16 spacers 

(Table 8). This provided evidence that there were CRISPR-Cas arrays encoded in the S. 

griseus ATCC 10137 genome, completing one of the objectives of the study. 
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 To identify a Cas9 or Cas3 gene and determine the rest of the contents of the S. 

griseus genome, the S. griseus ATCC 10137 fasta file was analyzed using Prokka and 

RAST. The Prokka program, version 1.13, was run on the command line and called 7,381 

genes. Out of curiosity, the genome was run through the web app genome annotator 

RAST.  RAST predicted 8,045 genes (Figure 11). The disparity between the number of 

genes called by Prokka and the number of genes called by RAST was alarming. 

However, there was no tool to be able to view both the Prokka and RAST annotations 

side by side to gauge which annotation method was correct. 

 This led to the development of Prokkrastinator, a genome browser that combines 

both Prokka and RAST annotations. The majority of the Prokkrastinator code is written 

in JavaScript and uses libraries such as D3.js and Meteor.js. Python is used for the 

general feature format file parser, while GitLab is used to store the code and for version 

control. To use Prokkrastinator, an account was made on prokkrastinator.org (Figure 11). 

Once the account was made, “add a new project” was clicked (Figure 12). Once at that 

form, the project name was entered. Prokka and RAST annotations were individually 

exported as GFF files and submitted to Prokkrastinator for analysis and visualization. 

After the necessary information is added, the “submit” button was clicked (Figure 13). 

Only 6,657 genes were called by both Prokka and RAST (Figures 14 & 15). Of the 8,045 

genes called by RAST, 17.3% were not predicted by Prokka and 82.7% were. Of the 

7,381 genes predicted by Prokka, 9.8% were not called by RAST, while 90.2% were 

(Figure 18). 

 S. griseus ATCC 10137 was also found to encode genes such as CRISPR-

associated endoribonuclease Cas1, CRISPR-associated endoribonuclease Cas2, CRISPR-
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associated endoribonuclease Cse3, CRISPR system Cascade unit casD, CRISPR system 

Cascade unit casC, and CRISPR-associated helicase/nuclease Cas3. Prokkrastinator was 

used to obtain the nucleotide sequence corresponding to the Cas3 gene for subsequent 

protein modeling. Modeling the Cas3 protein would provide further evidence as to its 

structure and function. 

 Once the fasta file for the Cas3 protein was obtained, it was translated into amino 

acids using the ExPASy DNA translator. The Phyre2 server was used to generate a 

potential structural model of the Cas3 protein. Phyre2 also predicted this protein to have 

the same structure as other Cas3 homologues, which was further evidence to show that S. 

griseus has and uses CRISPR-Cas arrays. 

 Once the evidence had been gathered that supported S. griseus ATCC 10137 

encodes CRISPR-Cas arrays, the next step of research was to begin modeling 

bacteriophage proteins. The bacteriophage Wipeout was selected for gene modeling 

because it was identified and purified at James Madison University, and is in a small 

cluster of just 14 bacteriophages. This would have been useful if Acr proteins were 

identified, as there were a limited number of other, related bacteriophage genomes to 

search through.  

To identify potential Acr proteins in the Wipeout phage genome, the annotation of 

the genome was modeled in Yasara. This generated 155 protein models, 2 were 

Disgusting, 18 were Terrible, 47 were Bad, 47 were Poor, 25 were Satisfactory, 9 were 

Good, and 7 were Optimal. These quality score categories are generated by the Yasara 

software. Of the entire Wipeout genome, 37.43 % of gene products were able to be 

modeled (Figure 13).  
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Of the gene products that were able to be modeled, gene products 49, 265, 94, 62, 

57, 79, and 93 were of particular interest. Gene product 49 was predicted to be a Bcl-2 

protein from Human herpesvirus 8. Wipeout gene product 265 was predicted to be a 

swarming motility protein. Wipeout gene product 94 was predicted to be a CRISPR-

associated exonuclease Cas4 protein. This is not unusual, as other phages have been 

shown to encode their own CRISPR-Cas arrays to avoid degradation by the host (Seed et 

al., 2013). However, Wipeout has no confirmed CRISPR-Cas arrays. Future studies 

should be done to determine how many and which actinobacteriophages contain 

CRISPR-Cas arrays. Gene product 57 resembles a penicillin G acylase protein, which is 

one of the most prevalently used biocatalysts utilized for the production of the antibiotic 

beta-lactam (Srirangan et al., 2013). Wipeout gene product 79 was identified as a 

potential pertussis toxin-like subunit ArtA protein, and gene product 93 was identified as 

a potential tetanus toxin-like protein. These proteins are of obvious interest to the medical 

field, as bacteriophages have been known to transfer genes to and from bacteria through 

transduction (Wagner & Waldor, 2002). 

YASARA was able to predict two gene products that are proteins for the phage to 

be infectious. Gene product 129 was predicted to be a capsid protein, and gene product 

110 was predicted to be a portal protein.  

While there were genes that able to be modeled, none of the gene products that 

were modeled were Acr proteins. However, 39.9 % of the gene products were unable to 

be modeled. These are proteins with no known structure, and as such are novel proteins. 

All known phage-produced Acr genes are 150-450 base pairs long (Table 9). Of the 39.9 

% of unmodeled Wipeout gene products, 13 fell in this size range. Because of the length 



80 
 

 
 

of the gene that codes for them, these gene products are the most likely candidates for 

potential Wipeout Acr proteins. 

 These Acr proteins are potentially useful in the bioengineering field. Other Acr 

proteins have been shown to help negate the deleterious effects that genetic engineering 

with CRISPR-Cas9 can have. While knowledge of these proteins is growing, there are 

still unanswered questions as to how their mechanisms work. With the vast resources 

provided by the SEA-PHAGES consortium, these proteins can be further studied in a 

classroom setting to provide information to the medical field (Shin et al., 2017). 
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