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(or footprint4) for a target representing the typical metal 
content of a class of landmines. Second, the experiment 
tries matching acquired MD image data with the sensitiv-
ity profile gathered in step one using two cross-correlation 
calculation methods. If the outputs of the calculations, 
which represent target burial depths, lay within a certain 
tolerance, then the target is a true positive—otherwise the 
target is considered a false positive. The result of the cal-
culations can also be used in a more differentiated way, 
allowing the deminer to adjust his/her behavior accord-
ing to the likeliness of a target to be a landmine. This fine-
tuning should improve deminers’ safety.

 Experiments have been conducted with a commer-
cially available MD in the laboratory first, then at a test 
demining site in Cambodia to assess practicality in near-
real-world conditions. The effect of different types of soil 
was also investigated using sand, laterite and clay soils.

Discrimination Method
The discrimination method is based on two simple 

observations:
1. Raw MD images can be used to extract depth infor-

mation if the target is known: for a given target, the 
burial depth (or distance to the MD) is a function of 
the MD’s signal maximum amplitude.

2. Normalized MD images for a large variety of targets 
are relatively similar for corresponding depths: The 
burial depth is a function of the MD’s normalized 
signal pattern.

The above observations allow us to obtain two dif-
ferent target burial depths—one is target-dependent; the 
other is not. If the calculation method dependent on the 
target is tuned appropriately (e.g., tuned to accurately 
detect the depth of a target landmine), the difference of 
the two calculated values allows us to conclude that the 
target is not the searched landmine. The discrimina-
tion method is presented and tested with a commercially 
available MD but can also be used with other types of 
MDs, given certain restrictions discussed later.

M I L -D1 Met a l  Dete c tor.  T he M I L -D1 model 
(Costruzioni Elettroniche Industriali Automatismi [CEIA], 
Arezzo, Italy) is commonly used by humanitarian and 
military deminers. Based on two side-by-side coils (or 
“double-D” configuration), the left coil delivers a negative 
signal that is combined differentially with the positive 
signal from the right coil. Figure 1 on the previous page 
shows the operation principle of the MIL-D1.

The obtained MD images depend on various factors 
such as target shape, size, material, orientation and burial 
depth. In a less significant way they also depend on soil 
type. Figure 2 shows the normalized MD images at vari-
ous depths for an 11-mm stainless steel ball.

Target metallic objects. While flat, long or relatively 
large targets can produce different images, we notice 
that for rather small and isotropic objects, similarities 
with patterns shown in Figure 2 are important. Metallic 
objects of such a target class are shown in Figure 3 and 
were used throughout the experiments. They include 
stainless steel balls (3mm, 5mm and 11mm), an alumi-
num cylinder (11mm in diameter and 21mm in length) 
and an International Test Operations Procedure insert, a 

Figure 3: Metallic targets used for the discrimination experiments.

Figures 4a and 4b: Cut through the MD’s sensitivity profile for (a) an 11-mm ball and (b) a corresponding, 
z-axis-normalized sensitivity profile.

Figure 5: Cut through the MD’s sensitivity mask (along the x-y plane) for the 11-mm ball at various depths.

Figure 2: MIL-D1 imaging of an 11-mm stainless steel ball at various burial depths.
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Discrimination value calculation. The above two sec-
tions resulted in two different burial depths for a tested 
target. The idea, when searching for a given landmine, is 
to use the landmine to first create a corresponding sen-
sitivity profile and sensitivity mask. That will then be 
used on input images (obtained from blind scanning) to 
compute the above two burial depths. The discrimina-
tion value is obtained by taking the difference of the two 
burial depths; the closer to zero, the higher the chance the 
scanned target is a landmine of the searched type. 

In-laboratory Experiments and Results
To be able to acquire high-quality MD imaging data 

with as litt le disturbance as possible, a non-metallic 
position-acquisition device was developed (see Figure 6). 
It consists of a wooden board under which the MIL-D1 
MD is attached. During data acquisition, the MD stays 
fixed, eliminating common disturbances.

Experiment set-up. The target to be tested is attached 
at the tip of a passive mechanical arm that records its x-y 
position when manually swept by the user. Data is dis-
played and the user can quickly detect accidental holes 
in the raster pattern and correct them, keeping a regular 
data density of at least 40,000 points/sq m.

Results. All five targets’ images were recorded with 
the position-acquisition device at several depths to obtain 
input images to test the discrimination capabilities of 
the proposed method. Measurements were preceded by 
an MD reset procedure to ensure the same initial condi-
tions. Since the proposed experiment was to discriminate 
the ITOP (e.g., landmine) from the other targets shown 
in Figure 3 (see previous page), the ITOP was measured 
twice at each depth—once to obtain input images to test 
the discrimination method and a second time to obtain 
data to generate the sensitivity profile and mask for the 
ITOP. Recorded images where noise levels became appar-
ent or when the MD became saturated (aluminum cylin-
der at a shallow depth) were discarded. 

Fig u re 7 shows resu lt s  obta i ned w it h t he ta r-
get-dependent burial depth calculation method. The ITOP 
shows precise depths with a maximum error of 4mm. The 
other curves can only be evaluated subjectively since they 
don’t correspond to an actual depth. We can, however, note 
that they look relatively regular and noise-free. 

standard target that represents the metal content of a class of anti-personnel land-
mines and allows safe experimentation (called an ITOP or an ITOP insert).5

The ITOP and aluminum cylinder, generating slight anisotropic responses, 
remain vertical. The goal of the experiments conducted was to discriminate the ver-
tical ITOP from other targets. Depth is always measured as the distance from the 
bottom surface of the MD to the center of the target.

Target-dependent burial depth calculation. The MD’s sensitivity profile for the 
five targets was generated by acquiring MD images at various depths, then by inter-
polating data between slightly smoothed images to obtain a dense three-dimen-
sional matrix. A cut through the matrix (along the x-z plane) is shown in Figure 4a 
(see previous page). Figure 4b shows the same cut through the matrix that is nor-
malized at each depth level.

The sensitivity profile is used as a comparison reference to compute a burial 
depth for an input image of an unknown target. The best match along the verti-
cal axis of the sensitivity profile with the input image is used to determine a burial 
depth. The following cross-correlation product (sum of squared differences) is used 
to determine the best match:

 
Here f is the raw input image, g is a slice in the sensitivity profile at a given depth 

and x and y are horizontal shift amounts. Practically, for each depth value, several 
cross-correlation products are calculated around the 0-position, varying the x-y off-
sets. Then, taking a set of the smallest values along the vertical axis, we obtain a dis-
tribution that indicates a burial depth. If the target is identical to the object used to 
generate the sensitivity profile, the burial depth will be accurate; otherwise it might 
be off by several centimeters.

Target-independent burial-depth calculation. The sensitivity profile obtained 
in previous section is used to generate another three-dimensional matrix, hereaf-
ter referred to as the sensitivity mask; for each depth layer in the sensitivity profile, 
the strongest amplitudes in an image are kept to form a binary image as can be seen 
from Figure 5 (see previous page). The sensitivity mask gives a simplified signal pat-
tern description.

As for the sensitivity profile, the sensitivity mask is used as a comparison ref-
erence to compute a burial depth for an unknown target. The best match along the 
vertical axis of the sensitivity mask with a modified input image (as for the sensitiv-
ity mask, the raw input image is first turned into a binary image) is used to deter-
mine a burial depth. The following cross-correlation product (sum of products) is 
used to determine the best match:

 
 
 
 
with f being the modified input image, g being a slice in the sensitivity mask at a 
given depth and x and y being horizontal shift amounts. Taking a set of the big-
gest values along the vertical axis, we obtain a distribution that indicates a burial 
depth. Given a reasonable tolerance, this burial depth is always accurate and does 
not depend on the tested target.

Figure 6: Metal-free position acquisition device for MD imaging as seen (a) from above and (b) from below.

Figure 7: Depth determination errors for the target-dependent burial-
depth calculation method. Dashed curves indicate the change obtained 
for the aluminum cylinder and 11-mm ball if the ITOP’s sensitivity profile 
was extended upwards.
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and then uses that map to generate necessary movement sequences to 
scan the terrain at a vertical distance of 20 mm. The manipulator’s five 
degrees of freedom allow it to adaptively scan above uneven terrain. The 
robot, called Gryphon (see image above),9 underwent extensive field 
tests in Japan10 and Croatia.11 From November 2006 to January 2007 it 
also took part in field trials in Cambodia—two Gryphons, each with a 
different sensor configuration (MD/MD-ground-penetrating radar), 
performed tests on prepared minefields during a combined 150 hours of 
semi-autonomous operation. At the same time, one Gryphon performed 
discrimination experiments on sand, laterite and clay soil types.

Experiment set-up. In-field data acquisition was achieved using 
Gryphon. Instead of moving the target over the MD as in laboratory 
tests, the target was kept fixed while the MD scanned over it with a data 
density of 40,000 points/sq m. Acquired data was later transformed to 
obtain images of moving targets for a fixed MD. Each time, a 15-mm 
diameter and 300-mm long plastic tube was vertically embedded into 
the soil, allowing a flexible target and target-depth change (see image 
below). The tube and air gap had negligible influence on the MD read-
ings. The scanning height to the ground was kept at 20mm.

An MD reset procedure preceded each test. At first, each reset was 
also followed by a soil-compensation procedure, which was not ben-
eficial; it even reduced sensitivity non-systematically, so that data 
was hardly usable. All measurements were then repeated without a 
soil-compensation procedure. Recorded data was then modified by 
adding an offset value in order to have negative and positive values 
with same amplitudes. This procedure can be seen as an a posteriori 
soil-compensation procedure. An in-sand acquired ITOP sensitivity 
profile and mask were used throughout the experiments. 

Results. Only input images with clear pattern and little noise levels 
were used in the discrimination experiment. Figure 10 (next page) shows 
an example of which image is tolerated and which is not: while Figure 
10a is still acceptable, Figures 10b and 10c show definitely no regular 
pattern anymore and are therefore rejected.

The target-dependent burial-depth calculation method produced 
precise depths for the ITOP, with a maximum error of 3mm, irrespec-
tive of the soil type. The other targets showed consistent and regular 
values as for the in-laboratory measurements. The target-independent 

The 11-mm steel ball and the aluminum cylinder, generating wider 
signal amplitudes than the ITOP at a given depth, produce erroneous 
results at shallow depths; indeed, the ITOP’s sensitivity profile doesn’t 
offer appropriate matches at considered depth levels. To avoid this 
problem, the ITOP’s sensitivity profile can be extrapolated upwards. 
This operation doesn’t bias results as it only produces a wider choice 
for signal matching. 

Figure 8 shows results obtained with the target-independent burial-
depth calculation method. It can be seen that the method is not perfect 
and errors can reach 25mm for the 11-mm ball. Figure 9 plots the dis-
crimination values for the five targets at different burial depths. This 
data can be used to actually discriminate targets. Given a reasonable 
threshold as indicated in shaded color, we can safely discriminate the 
3- and 5-mm ball, and the aluminum cylinder. The 11-mm ball, which 
apparently presents characteristics most similar to the ITOP, can also 
be safely discriminated up to a depth of 71mm. At deeper depths, it is 
probably safer to consider it as an ITOP.

In-field Experiments and Results
The Tokyo Institute of Technology developed a mine-searching robot 

that autonomously scans a 3-square-meter area with any attached sen-
sor.6, 7, 8 Once in position along the minefield borderline, the robot uses 
a stereo vision camera to acquire topographical terrain information Gryphon scanning over a test-minefield in Cambodia.

Figure 8: Depth determination errors for the target-independent burial depth calcula-
tion method.
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Figure 9: Discrimination capability; the discrimination axis indicates the depth differ-
ence of the two calculation methods.

3-mm ball
5-mm ball
11-mm ball 
Vertical ITOP
Aluminium cylinder

Discrimination Axis

D
ep

th
 (

m
m

)

4

Journal of Conventional Weapons Destruction, Vol. 12, Iss. 1 [2008], Art. 45

https://commons.lib.jmu.edu/cisr-journal/vol12/iss1/45



12.1 | summer 2008 | journal of mine action | research and development | 97  

Target and target-depth set-up and insertion into the soil.

Figure 10: In-clay input images of 5-mm ball at depths of (a) 60mm, (b) 90mm and (c) 120mm.

buria l-depth ca lculation method, on the 
other hand, produced less precise depths, 
with errors reaching up to 25mm for the 
11-mm ball. The results, however, are consis-
tent with data obtained in-laboratory.

Figure 11 (left), Figure 12 and Figure 13 
(see both next page) show the discrimina-
tion graphs for the in-sand, in-laterite and 
in-clay measurements respectively. Having 
used an in-sand ITOP sensitivity profile and 
mask, there is litt le surprise that the dis-
crimination looks fine for the in-sand buried 
targets. However, there is only little degra-
dation of the discrimination capabilities of 
the method when looking at the in-laterite 
and in-clay buried targets. It seems that the 
soil type has only little effect with the con-
sidered targets. The clay-soil, however, sees 
a quick appearance of a static noise pattern 
that hides the signal of small targets, thus the 
depth at which the method could be applied 
on clay soil was less significant than for the 
sand or laterite soil. In general, in-soil mea-
surements are more affected by noise com-
pared to in-laboratory measurements, but 
these measurements still allow us to obtain 
good discrimination results.

Discussion
The experiments showed clear discrim-

ination capabilities. It must be mentioned 
that in order to discriminate for a specific 
landmine type, one has to be sure that there 
are no additional landmine types present in 
the searched minefield. The discrimination 
method can only be applied with restrictions 
in areas where several landmine types are 
present (e.g., by using one distinct sensitivity 
profile/mask for each landmine type). Also, 
the cases in which several targets lie within 
a short distance, say a few centimeters, or 
when the targets produce a very different 
image (flat or long objects), have to be care-
fully examined. Areas hit by cluster strikes 
could also benefit from the presented method 
since the type, load and footprint of muni-
tions would be known beforehand.

The weakness of the method is the target-
independent burial-depth calculation that 
presents relatively high errors compared to 
the target-dependent burial-depth calcula-
tion; performing several identical scans would 
probably help acquire better data for profile/
mask generation and/or obtaining more pre-
cise input images. This in turn would increase 
the precision of burial-depth calculation.

The discrimination method can be used 
with other types of statically operating MDs, 
but there are restrictions regarding depth. 
MDs using a single circular coil are limited 
to a few centimeters only, the reason being 

Figure 11: In-sand discrimination capability; the discrimination axis indicates the depth difference of the two calcula-
tion methods.
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that the sensitivity mask will not change any more 
from that depth (Figures 14c and 14d are the same). 
Non-circular coils will have their sensitivity mask 
change over deeper depths (Figures 14g and 14h are 
slightly different).

Interesting possibilities to explore would be to 
tune the hardware in order to obtain more precise 
target-independent burial-depth calculations by 
adjusting the position of the MD coils or by elec-
tronically “steering” the MD’s electromagnetic 
field. The latter could also lead to reduced scan-
ning times during which physical scanning with 
the MD would only be performed along the MD’s 
y-axis (the x-axis being covered through the elec-
tromagnetic field sweeping).

The scanning motion and image acquisition are 
currently performed by Gryphon, but any appropri-
ate MD equipped with a position-acquisition device 
(e.g., tracking camera) can produce a cheap and 
lightweight alternative.

Conclusion
We presented two depth-calculation methods 

that allow discrimination of metallic targets from 
landmines to a certain extent: the discrimination 
algorithm applies to a class of relatively small and 
relatively isotropic targets and is ideally suited for 
discrimination of a large range of targets typically 
contained in anti-personnel landmines. At the same 
time, knowing the target’s burial depth can increase 
safety by allowing for better target pinpointing dur-
ing a prodding operation.

Experimental data shows good discrimina-
tion capabilities and relatively precise burial-
depth determination—4mm when the target could 
be identified, 25mm otherwise. The discrimina-
tion algorithm prohibits blind application; input- 
images not presenting clear and standard patterns 
or with high noise levels should be discarded. 
Future improvements will look at the possibility to 
automatically evaluate an input image according 
to certain applicability criteria.

Soil type influences MD reading but does not 
seem to have a direct effect on the applicability of 
the discrimination method. At the current stage, 
the method cannot yet be used to discriminate 
landmines with a 100-percent certainty. It, how-
ever, can add to the deminer’s safety by allowing 
for an adapted and more informed behavior when 
prodding the soil. 

See Endnotes, page 114

The work described in this article is supported 
by the Japan Science and Technology Agency and 
the Grant-in-Aid for the 21st Century Centers of 
Excellence Program by the Japanese Ministry of 
Education, Culture, Sports, Science and Technology. 

Figure 14: Cut through the sensitivity mask of single detection coil MD for the circular coil (a–d) and for 
the elliptical coil (e–h).

Figure 13: In-clay discrimination capability; the discrimination axis indicates the depth difference of the two 
calculation methods. The 3-mm ball image at 20 mm depth is already too noisy to be included in the graph.
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Figure 12: In-laterite discrimination capability; the discrimination axis indicates the depth difference of the 
two calculation methods.
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Nepal Expresses Commitment to Becoming Mine Free

Members of the Nepalese Constituent Assembly gathered in early August with representatives from 

national and international nongovernmental organizations, civil-society groups, and security 

forces to express a commitment toward building a mine-free Nepal. 

The declaration they made, entitled “Mine Action and the Ottawa Treaty,” focuses on providing 

holistic victim assistance (through financial, material and other resources) and remediating 

national contamination from landmines and other explosive remnants of war. The declaration 

builds on anti-landmine efforts already active in Nepal; with support from the Campaign to 

Ban Landmines–Nepal, the Nepalese Minister for Peace and Reconstruction has signed a letter 

of support for banning landmines. Demining activities are underway, but observers note a 

disappointing lack of progress. Organizers hope this newest declaration will lead Nepal to 

become a State Party to the Ottawa Convention. 

Mine contamination and the use of improvised explosive devices have been prevalent in Nepal 

as part of that country’s prolonged internal struggles. Since the cessation of hostilities 

in 2006, demining activities have not progressed quickly, and much of the country remains 

affected by mines and other ERW. The cease-fire agreement has held, making the formation 

of a national mine-action authority possible; however, the lack of manpower and demining 

capacity (both financial and technical) has hampered efforts. Beyond possible accession to the 

Ottawa Convention, the new declaration could increase support for mine action in-country, as  

well as internationally.
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